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A B S T R A C T

Cerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with
neurovascular disease, allowing for vessel and flow visualization with high spatio-temporal resolution.
Automatic artery–vein segmentation in DSA plays a fundamental role in vascular analysis with quantitative
biomarker extraction, facilitating a wide range of clinical applications. The widely adopted U-Net applied on
static DSA frames often struggles with disentangling vessels from subtraction artifacts. Further, it falls short
in effectively separating arteries and veins as it disregards the temporal perspectives inherent in DSA. To
address these limitations, we propose to simultaneously leverage spatial vasculature and temporal cerebral
flow characteristics to segment arteries and veins in DSA. The proposed network, coined CAVE, encodes a
2D+time DSA series using spatial modules, aggregates all the features using temporal modules, and decodes it
into 2D segmentation maps. On a large multi-center clinical dataset, CAVE achieves a vessel segmentation Dice
of 0.84 (±0.04) and an artery–vein segmentation Dice of 0.79 (±0.06). CAVE surpasses traditional Frangi-based
𝑘-means clustering (P < 0.001) and U-Net (P < 0.001) by a significant margin, demonstrating the advantages
of harvesting spatio-temporal features. This study represents the first investigation into automatic artery–vein
segmentation in DSA using deep learning. The code is publicly available at https://github.com/RuishengSu/
CAVE_DSA.
1. Introduction

1.1. Clinical background

Cerebrovascular diseases are a major contributor to global mortality
and long-term disability (Roth et al., 2020). These diseases encompass
a range of conditions, including ischemic stroke due to vessel occlusion,
stenosis, and aneurysms. In order to diagnose and treat such condi-
tions, dynamic imaging of cerebral blood vessels is conducted using
X-ray digital subtraction angiography (DSA). DSA provides a means of
visualizing blood flow dynamics and changes in vasculature appearance
over time (Fig. 1), thereby offering valuable information for diagnosis,
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procedural navigation, therapeutic decision-making, and evaluation of
treatment outcomes.

DSA images are conventionally examined visually by neuroradi-
ologists and interventionalists, which could be laborious, subjective,
qualitative, and vulnerable to error. Automatic segmentation of arteries
and veins promises to assist in this assessment by highlighting and
quantifying vascular changes, providing a foundation for a range of
downstream clinical applications, including quantitative evaluation of
endovascular thrombectomy, automatic emboli detection, and image
guidance for real-time endovascular navigation. For example, auto-
matic artery–vein segmentation can be valuable for providing a ve-
nous roadmap for navigation during transvenous procedures, such
vailable online 1 May 2024
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Fig. 1. Task illustration of artery–vein segmentation in DSA. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
as dural venous sinus stenting or transvenous embolization of dural
arteriovenous fistula or arteriovenous malformations. The segmented
arteries and veins provide a wealth of quantitative data that can be
used to extract and analyze various blood flow-related biomarkers for
peri-operative decision-making and post-operative prognosis.

DSA is a dynamic imaging technique that provides a visual represen-
tation of blood flow over time through a series of consecutive frames
(Fig. 1). Although existing semantic segmentation networks could be
utilized for end-to-end artery–vein segmentation, most methods only
consider static frames. When addressing artery–vein segmentation in
DSA series, which are 2D+time image sequences, the temporal di-
mension is relevant. We hypothesize that effectively incorporating
spatio-temporal flow dynamics is key for achieving accurate artery–
vein segmentation in DSA. The aim of this work, therefore is to har-
ness the high-resolution contrast flow dynamics of DSA for improved
artery–vein segmentation through spatio-temporal learning techniques.

1.2. Related work

Vessel segmentation is an extensively studied field in medical imag-
ing for over two decades, with recent advancements propelled by deep
learning. Recent literature on vessel segmentation (Moccia et al., 2018)
primarily addresses retinal (Fraz et al., 2012; Chen et al., 2021a),
lung (Sluimer et al., 2006; Van Rikxoort and Van Ginneken, 2013;
Tan et al., 2021), and cardiovascular imaging (Huang et al., 2023a,b).
These studies demonstrate the adaptability of segmentation methods
across various anatomical structures and imaging modalities. In brain
imaging, various methods have been proposed to segment cerebral
vessels on different image modalities such as MRA (Phellan and Forkert,
2017; Phellan et al., 2017; Robben et al., 2016), CT angiography
(CTA) (Fu et al., 2020; Su et al., 2020), and DSA (Liu et al., 2018;
Su et al., 2021; Vepa et al., 2022; Zhang et al., 2020), each modality
posing unique challenges and necessitating tailored approaches. The
prevalent use of U-Net (Ronneberger et al., 2015) in these studies
underscores its versatility. However, existing methods mainly rely on
spatial vasculature features learned from static 2D DSA frames without
considering the complete series. It has been shown that U-Net tends
to generate false positives in the presence of subtraction artifacts that
appear similar to blood vessels (Zhang et al., 2020).

Artery–vein segmentation has been primarily explored in fundus
images (Hemelings et al., 2019) and non-contrast lung CT images (Qin
et al., 2021) using U-Net. However, the segmentation of cerebral ar-
teries and veins remains an under-explored area, with limited studies
2

on 4D CTA (Meijs et al., 2020), 3D MRA images (Hilbert et al., 2020),
and 3D-DSA (Raz et al., 2021) using 3D U-Net models. These methods
predominantly leverage spatial features (Hilbert et al., 2020) or man-
ually crafted temporal parameters (Meijs et al., 2020) to differentiate
between arteries and veins. In a previous study (Van Asperen et al.,
2022), we investigated the automatic classification of arteries and veins
using 𝑘-means clustering, contingent on vessel enhancement and bina-
rization via the Frangi filter. The quality of vessel segmentation through
the Frangi filter depends on the choice of the binarization threshold, a
parameter that exhibits high variability across different DSA images.
Nevertheless, to the best of our knowledge, no fully automatic and
robust artery–vein segmentation algorithm has been developed for DSA
images yet.

1.3. Contributions

This work presents CAVE, the first automatic method for artery–vein
segmentation in DSA using deep learning, establishing a new bench-
mark. CAVE takes a 2D+time video sequence with variable length as
input and produces 2D artery–vein segmentations as output. We lever-
age U-Net for spatial vasculature representation and temporal modules
to learn temporal cerebral contrast flow characteristics simultaneously.
On a multi-center clinical dataset, we demonstrate the utility of deep
learning in cerebral artery–vein segmentation. CAVE may facilitate fast,
accurate, and objective interpretation of cerebral vasculature in DSA,
thus assisting endovascular interventions in clinical practice.

The remainder of this paper is organized as follows: Section 2
describes the proposed artery–vein segmentation method and Section 3
details the experimental dataset and annotation process. The extensive
experiments and results are presented in Section 4, and further dis-
cussed in Section 5. Finally, Section 6 summarizes the conclusions of
this study.

2. Methods

A cerebral digital subtraction angiography (DSA) series consists of
a sequence of X-ray images captured post-contrast media injection,
subtracted from the initial frame (pre-contrast image). This sequence
presents the arrival of contrast media and the cerebral blood flow
dynamics over time. The primary objective of this work is to develop
an automated method for segmenting arteries and veins from a given
DSA series, obtaining 2D artery–vein label masks as shown in Fig. 1.
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Fig. 2. Network architecture for artery–vein segmentation in DSA. Input is a 2D+time DSA series with variable series length. Output is a two-channel segmentation image with
artery and vein represented by red and blue colors respectively. The temporal learning module (TLM) could be GRU, LSTM, or temporal transformer (TT). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
Rather than relying on pixel-wise time-intensity curves (TICs) or
vasculature appearance separately, we propose to simultaneously lever-
age spatial and temporal features to segment arteries and veins in
an end-to-end way. The proposed network architecture (Fig. 2) takes
DSA series of varying lengths as input. In the encoding path, each
frame undergoes the same set of convolutional operations with shared
weights, and the resulting features are temporally encoded to capture
the spatio-temporal flow dynamics across all frames. These aggre-
gated features are concatenated in the decoder path to generate high-
resolution segmentation maps, resulting in a two-channel binary image
that represents the segmented arteries and veins. The model is fully
convolutional, thus allowing for input of varying sizes and temporal
resolutions.

2.1. Spatial learning

The proposed CAVE (Fig. 2) employs a UNet-like architecture for
spatial encoding and decoding of DSA frames, which comprises five
down layers (yellow boxes) and five up layers (green boxes). Each
layer utilizes double-convolution blocks with instance normalization
and ReLU activation. Max pooling and bilinear upsampling are utilized
for the contracting and expanding path respectively. The number of
feature channels starts from 64 and doubles after each max pooling to
offset spatial information loss and halves after each bilinear upsampling
operation to reconstruct spatial resolution. In Fig. 2, it is only for
illustration purposes that the down blocks appear to be replicated. In
practice, all frames of the DSA series share the same down block for
feature extraction, thereby avoiding an exponential increase in training
parameters.

2.2. Temporal learning

We extend our approach beyond spatial representation learning by
incorporating temporal learning techniques to improve the accuracy of
artery–vein segmentation in DSA. Specifically, we explore three state-
of-the-art techniques: convolutional GRU (ConvGRU) (Ballas et al.,
2015), convolutional LSTM (ConvLSTM) (Shi et al., 2015), and tempo-
ral transformer (TT) based on (Vaswani et al., 2017). The convGRU and
convLSTM architectures are designed to address the vanishing gradient
problem (Hochreiter, 1998) in long sequences. The convGRU employs
update and reset gates, while the convLSTM uses forget, input, and
3

output gates for a similar purpose. On the other hand, the transformer
model leverages its attention mechanism to focus selectively on various
segments of the input sequence, which could be particularly beneficial
for understanding temporal relationships in the application of artery–
vein segmentation in DSA. These techniques allow for the processing
of input series of varying lengths and encoding them into fixed-sized
representations, thereby enabling temporal aggregation of information.
We apply this feature extraction and temporal aggregation process in
all five layers, which operate on multi-scale image features.

Recurrent neural networks (RNN), such as GRU and LSTM, have
been widely used in learning sequential information flow using a
gate mechanism. In this work, we tailor ConvGRU and ConvLSTM to
distinguish vessels from subtraction artifacts. GRU and LSTM models
are employed to process sequential frame data, capturing temporal de-
pendencies. The high-level architecture is shown in Fig. 2. The module
takes the spatial features of size 𝐵 × 𝑇 × 𝐶 ×𝐻 ×𝑊 generated from
the U-Net encoders of each frame as input, and produces aggregated
feature maps of size 𝐵 × 𝐶 ×𝐻 ×𝑊 that align in dimensions with the
corresponding decoder branch. 𝐵, 𝑇 , 𝐶, 𝐻 , 𝑊 represents the batch size,
frame length, channel size, image height, and image width respectively.
In this work, the ConvGRU and ConvLSTM modules each consist of
two convolutional RNN layers with a kernel size of 3 × 3 and with
hidden dimensions equal to input dimensions. Such an end-to-end
trained module is designed to learn complex spatio-temporal features.
It is worth noting that this module allows a variable number of input
frames.

Besides RNN, Transformer (Vaswani et al., 2017) has been shown ef-
fective in numerous deep learning tasks including image segmentation.
We developed a temporal transformer module, as sketched in Fig. 2,
to learn aggregate temporal features through temporal attention. The
temporal transformer module, with its temporal attention capability,
is utilized to selectively emphasize pertinent frames in a DSA series
to enhance the differentiation between arteries, veins, and subtraction
artifacts based on temporal flow dynamics in DSA. The module takes
as input the UNet-encoded feature maps of all frames, and aggregates
temporal features along the time dimension with a kernel of 1 × 1 × 𝑇 .
The resulting feature map maintains the same size as a single-frame
feature map, which is then concatenated with the decoding branch
to construct the high-resolution segmentation map. In this work, the
temporal transformer module consists of one multi-head attention layer
with a kernel size of 1 × 1 and with hidden dimensions equal to input
dimensions.
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2.3. Loss function

As suggested in Isensee et al. (2021), we define the loss function for
vessel segmentation (𝑣𝑒𝑠𝑠𝑒𝑙(𝑝, 𝑔)) as a combination of a cross-entropy
loss and a Dice loss (Kervadec and de Bruijne, 2023):

𝑣𝑒𝑠𝑠𝑒𝑙(𝑝, 𝑔) = CE(𝑝, 𝑔) + DSC(𝑝, 𝑔), (1)

where 𝑝 and 𝑔 denote the predicted class probability and the reference
binary label respectively. For artery–vein segmentation, we similarly
define the loss function 𝑎𝑣(𝑝, 𝑔) as

𝑎𝑣(𝑝, 𝑔) =CE(𝑝𝑎, 𝑔𝑎) + CE(𝑝𝑣, 𝑔𝑣)

+ DSC(𝑝𝑎, 𝑔𝑎) + DSC(𝑝𝑣, 𝑔𝑣).
(2)

The subscript ‘‘𝑎’’ and ‘‘𝑣’’ denote artery and vein respectively. More
specifically, the cross-entropy loss 𝐶𝐸 (𝑝, 𝑔), defined as

CE (𝑝, 𝑔) = −𝑔 log(𝑝) + (1 − 𝑔) log(1 − 𝑝), (3)

measures the difference between the reference labels and predicted
class probabilities. The Dice loss 𝐷𝑆𝐶 (𝑝𝑎, 𝑔𝑎) and 𝐷𝑆𝐶 (𝑝𝑣, 𝑔𝑣) are
defined as

DSC (𝑝, 𝑔) = 1 −
2
∑

𝑖∈𝛺 𝑔(𝑖)𝑝(𝑖)
∑

𝑖∈𝛺
[

𝑔(𝑖) + 𝑝(𝑖)
] , (4)

here 𝛺 denotes the subset of the image space where 𝑔 is positive.

. Data

The study uses data from the MR CLEAN Registry (Jansen et al.,
018). It is an observational cohort study that included patients with
cute ischemic stroke from sixteen centers in the Netherlands between
arch 2014 and December 2018. From this multi-center clinical reg-

stry, we manually segmented arteries and veins on 97 DSA series
rom different patients with either anterior–posterior (AP) or lateral
iews. The DSA series were acquired using various imaging systems
e.g., Philips, GE, and Siemens). The size of the individual frames of
he acquired DSA series is 1024 × 1024 pixels. The series have different
engths, ranging from 10 to 50 frames, and varying temporal resolutions
anging from 0.5 to 4 frames per second.

The artery–vein annotations were created using an in-house devel-
ped tool in MeVisLab (Heckel et al., 2009) by four trained clinical
tudents. To reduce inter-observer variability, the annotations were fur-
her refined by another trained student. An experienced radiologist was
vailable for consultation during annotation. As visualized in Fig. 1, the
nnotation results in two segmentation images, with arterial annotation
n red and venous annotation in blue. Overlapping pixels have both
abels as the two annotations are independent. These annotations serve
s the reference standard in this work.

. Experiments and results

.1. Implementation details

The proposed methods were implemented in PyTorch (Paszke et al.,
019), all trained on an NVIDIA RTX A40 GPU. As pre-processing, we
esized all frames to 512 × 512 pixels, linearly resampled the temporal
esolution to 1 fps, and normalized the intensity values to [0, 255]. The
orresponding mask images were also resized to the same resolution.
n addition, data augmentation techniques, i.e., horizontal flipping,
ranslation ∈ [−5%, 5%] range, scaling ∈ [−5%, 5%] range, and rotation

[−10◦, 10◦] range, were randomly applied during training with a
robability of 0.5 for each.

We randomly split the dataset into training, validation, and testing
et with a ratio of 50%-20%–30% on the patient level. This resulted
n 52 DSA series for training, 19 for validation, and 26 for testing.
4

he models were trained using RMSprop optimization (Hinton et al.,
2012) and a ReduceLROnPlateau (Paszke et al., 2019) scheduler with
a patience of 10 epochs, a decay factor of 0.5, and an initial learning
rate of 1 × 10−5. An early stopping strategy was applied with a patience
f 50 epochs and a maximum of 1000 epochs.

.2. Baselines

To benchmark the performance of CAVE and comprehensively as-
ess the added value of simultaneous spatio-temporal learning in dis-
inguishing vessels from subtraction artifacts, we implemented three
epresentative solutions, and evaluated the CAVE against those.

rangi+k-means. We implemented a conventional two-step artery–
ein classification method (Van Asperen et al., 2022) that combines the
rangi filter and 𝑘-means clustering. First, the Frangi filter is applied to

the static minimum intensity map (MinIP) of an input DSA, followed
by fixed thresholding to obtain a binary vessel mask. Subsequently, all
the vessel pixels within the mask are classified into arteries or veins.
This clustering is achieved through 𝑘-means clustering with 𝑘 = 2 using
a set of intensity-based features derived from the time-intensity curve
(TIC) of each pixel. These features include the area under the TIC curve
(AUC), peak intensity, time to peak (TTP), arrival time, peak width,
variance, standard deviation, and maximum uptake slope of the TIC. To
ensure uniformity in the clustering process and mitigate the influence of
varying magnitudes, all features are normalized to a range ranging from
0 to 1. Finally, the cluster with the lowest average TTP is identified as
arterial, while the one with the highest average TTP is designated as
venous.

U-Net semantic segmentation. Apart from classical machine learning,
a standard U-Net could be directly utilized for identifying arteries and
veins leveraging the spatial vascular features. We implemented a deep
learning baseline using U-Net (Ronneberger et al., 2015; Zhang et al.,
2020). The architecture is similar to the architecture in Fig. 2 with
the contracting path replaced by stand-alone down blocks. To have
all vessels present in the spatial dimensions, this U-Net approach uses
the MinIP image of all frames of a DSA series as input. Consequently,
U-Net purely relies on spatial vasculature features to differentiate be-
tween arteries and veins without considering the temporal contrast flow
features.

U-Net+k-means. To utilize both spatial and temporal features for
artery–vein segmentation, we further developed a two-stage baseline
approach that cascades U-Net and 𝑘-means clustering that sequentially
leverages spatial and temporal information. The U-Net encodes a MinIP
image and produces a binary vessel segmentation. The vessel pixels are
subsequently clustered into arteries and veins via 𝑘-means clustering on
the time-intensity curves.

4.3. Evaluation metrics

We assess these methods on a hold-out test set composed of 26 DSA
sequences from various patients from two perspectives: vessel segmen-
tation and artery–vein segmentation (Table 1). We report the Dice co-
efficients, accuracy, sensitivity, and specificity for vessel segmentation,
respectively defined below.

𝐷𝑖𝑐𝑒 = 2 𝑇𝑃
2 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

, (5)

𝐴𝑐𝑐 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

, (6)

𝑆𝑒𝑛𝑠 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, (7)

𝑆𝑝𝑒𝑐 = 𝑇𝑁 . (8)

𝑇𝑁 + 𝐹𝑃
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Table 1
Performance of CAVE and other existing methods in vessel and artery–vein segmentation on the test set. Acc: accuracy, Sens: sensitivity, Spec: specificity, A-Dice:
Artery Dice (Eq. (9)), V-Dice: Vein Dice (Eq. (10)), M-Dice: Multi-class Dice (Eq. (11)). The accuracy, sensitivity, and specificity of artery–vein segmentation are
over both artery and vein classes.

Method Vessel segmentation Artery–vein segmentation

Acc Sens Spec Dice Acc Sens Spec A-Dice V-Dice M-Dice

Frangi + 𝑘-means 0.83 0.69 0.89 0.70 0.82 0.63 0.89 0.65 0.54 0.60
±0.048 ±0.13 ±0.088 ±0.094 ±0.050 ±0.11 ±0.083 ±0.077 ±0.12 ±0.084

U-Net 0.89 0.79 0.93 0.80 0.87 0.68 0.94 0.70 0.63 0.67
±0.032 ±0.071 ±0.029 ±0.050 ±0.041 ±0.078 ±0.028 ±0.082 ±0.070 ±0.060

U-Net + 𝑘-means 0.89 0.79 0.93 0.80 0.87 0.73 0.93 0.73 0.65 0.69
±0.032 ±0.071 ±0.029 ±0.050 ±0.035 ±0.071 ±0.028 ±0.060 ±0.067 ±0.050

CAVE
(Temporal Transformer)

0.91 0.83 0.94 0.84 0.90 0.79 0.95 0.82 0.74 0.78
±0.029 ±0.064 ±0.025 ±0.041 ±0.032 ±0.071 ±0.024 ±0.054 ±0.071 ±0.048

CAVE
(ConvLSTM)

0.91 0.83 0.94 0.83 0.90 0.80 0.95 0.82 0.75 0.79
±0.025 ±0.060 ±0.025 ±0.048 ±0.031 ±0.075 ±0.022 ±0.062 ±0.058 ±0.052

CAVE
(ConvGRU)

0.91 0.84 0.94 0.84 0.90 0.79 0.95 0.82 0.76 0.79
±0.027 ±0.062 ±0.022 ±0.039 ±0.035 ±0.078 ±0.024 ±0.077 ±0.054 ±0.057
.2 s
For artery–vein segmentation, we additionally evaluate the artery
ice (𝐴-𝐷𝑖𝑐𝑒), vein Dice (𝑉 -𝐷𝑖𝑐𝑒), and multi-class Dice (𝑀-𝐷𝑖𝑐𝑒). We
efine 𝐴-𝐷𝑖𝑐𝑒 and vein Dice 𝑉 -𝐷𝑖𝑐𝑒 as

-𝐷𝑖𝑐𝑒 =
2 𝑇𝑃 𝑎

2 𝑇𝑃 𝑎 + 𝐹𝑃 𝑎 + 𝐹𝑁𝑎
, (9)

and

𝑉 -𝐷𝑖𝑐𝑒 =
2 𝑇𝑃 𝑣

2 𝑇𝑃 𝑣 + 𝐹𝑃 𝑣 + 𝐹𝑁𝑣
, (10)

here the subscript 𝑎 and 𝑣 denote artery and vein respectively. TP, FP,
nd FN are true positive, false positive, and false negative respectively.
e define the multi-class Dice (𝑀-𝐷𝑖𝑐𝑒) as

-𝐷𝑖𝑐𝑒 =
2 (𝑇𝑃 𝑎 + 𝑇𝑃 𝑣)

2 (𝑇𝑃 𝑎 + 𝑇𝑃 𝑣) + 𝐹𝑃 𝑎 + 𝐹𝑃 𝑣 + 𝐹𝑁𝑎 + 𝐹𝑁𝑣
. (11)

Besides, we compute statistical significance using the paired Wilcoxon
test on the Dice coefficients.

4.4. Quantitative analysis

In Table 1, we present the results of CAVE and other representative
solutions on the test set in terms of vessel segmentation and artery–
vein segmentation. Regarding vessel segmentation, both U-Net and
CAVE significantly outperform the Frangi+𝑘-means approach in terms
of Dice coefficient with a margin of 10% (P<0.001). Notably, CAVE
substantially surpasses U-Net by 3.6% (P = 0.023) and the Frangi+𝑘-
means approach by 14% (P<0.001), demonstrating the effectiveness of
incorporating simultaneous spatio-temporal vascular and flow repre-
sentation for separating vessels from subtraction artifacts or other static
instruments.

With respect to artery–vein segmentation, the advantage of spatio-
temporal learning is even more prominent as shown in Table 1. While
Frangi+𝑘-means, by relying solely on pixel-wise temporal characteris-
tics, achieves a multi-class Dice coefficient of 0.60 (±0.084), spatial
feature-based deep learning (U-Net) obtains a higher Dice coefficient
of 0.67 (±0.060). The U-Net+𝑘-means approach, which leverages spa-
tial and temporal features in two sequential stages, achieves a Dice
coefficient of 0.69 (±0.050). In contrast, by integrating both vascula-
ture appearance and flow dynamics in an end-to-end spatio-temporal
deep learning model, CAVE yields a significantly higher multi-class
Dice coefficient of 0.79 (±0.057) compared to U-Net (P<0.001) and
Frangi+𝑘-means (P<0.001). Overall, CAVE demonstrates significant im-
provements in artery–vein segmentation by incorporating the temporal
contrast flow aspects of DSA in end-to-end learning. We observe no
statistically significant differences among ConvGRU, ConvLSTM, and
the temporal transformer.

In terms of computational efficiency, CAVE takes on average 0.57 ± 0
to segment a complete DSA series on an NVIDIA 2080 Ti GPU with
5

11 GB of memory.
Table 2
Performance of CAVE with respect to various temporal resolutions in frames per
second (fps).

fps 1 0.5 0.25

M-Dice 0.79 ± 0.056 0.76 ± 0.060 0.64 ± 0.12

4.5. Impact of temporal resolution

We investigate the influence of temporal characteristics, specifically
the number of frames of a DSA series and the temporal frequency,
on artery–vein segmentation performance. As shown in Fig. 5, we
do not find a notable correlation between the average Dice coeffi-
cient and the frame count of DSA series in the test set, evidenced
by a Pearson correlation coefficient of 0.05 (P = 0.81). This could
be attributed to the fact that all DSA series have the same temporal
frequency and are complete in our dataset. In contrast, we observe a
notable reduction in segmentation performance when the DSA series
are temporally down-sampled for testing, as shown in Table 2. This
suggests that the proposed CAVE method effectively utilizes temporal
flow characteristics to enhance segmentation performance.

4.6. Qualitative analysis

To provide a comprehensive comparison between the proposed
CAVE and U-Net, we present representative visualizations and qual-
itative evaluations. CAVE is particularly effective in distinguishing
cerebral vessels from the subtraction artifacts, instruments, and sub-
traction artifacts, thanks to its ability to learn temporal contrast flow
dynamics. In Fig. 3, we provide visual comparisons of vessel seg-
mentation results using U-Net and CAVE. The error maps, shown in
columns c and e, use orange to indicate false positives and light blue
to indicate false negatives. We identify two scenarios. First, in regions
#1 and #3, where U-Net mistakenly recognizes subtraction artifacts
and static instruments as vessels (column c), CAVE correctly avoids
such misclassifications (column e). Furthermore, CAVE successfully
identifies venous vessels, as shown in regions #2 and #4, even when
they are surrounded by subtraction artifacts based on their temporal
characteristics, whereas U-Net fails to detect them in the presence of
noise in the background.

Fig. 4 presents two examples illustrating the performance of U-Net
and CAVE in artery–vein segmentation. Compared to manual anno-
tations (column a), CAVE (column e) shows fewer errors than U-Net
(column c). While U-Net performs well in recognizing large vessels such
as proximal arteries and the superior sagittal sinus (SSS), it struggles to
correctly classify distal arteries and veins, as highlighted in regions #1

and #2. In contrast, CAVE achieves accurate classification in both small
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Fig. 3. Example visualizations of cerebral vessel segmentation results of U-Net and the proposed CAVE. Column a: manual annotation of vessels overlaid on the MinIP image;
column b: segmentation output of U-Net; column c: U-Net error map with false positives (orange) and false negatives(light blue); column d: segmentation output of CAVE; column
e: CAVE error map with false positives (orange) and false negatives (light blue). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
and large vessels, demonstrating its effectiveness in capturing spatial
and temporal features. Additional visual comparisons of these methods
are available in the appendix.

5. Discussion

In this work, we proposed a fully automated deep learning-based
method for artery–vein segmentation in cerebral DSA images. Through
quantitative and qualitative comparisons, we have demonstrated the
added value of simultaneous spatio-temporal learning (CAVE) against
spatial learning (U-Net), temporal learning (𝑘-means), and sequential
two-stage spatial and temporal learning (U-Net + 𝑘-means).

This application-tailored solution innovatively leverages the dis-
tinctive temporal contrast flow characteristics in DSA to precisely
identify cerebral arteries and veins while alleviating misclassifications
of subtraction artifacts and other surgical instruments. The primary
focus of the analyses revolves around evaluating the inherent benefits
of harnessing temporal information. For quantitative assessments, we
employ the foundational U-Net as our benchmark. With the rapidly
evolving landscape of deep network architectures, the U-Net may not be
positioned among the most recent models in the current literature. Re-
cent advancements in state-of-the-art networks, such as UNet++ (Zhou
et al., 2018), PointRend (Kirillov et al., 2020), nnU-Net (Isensee et al.,
2021), TransUNet (Chen et al., 2021b), or CTransNet (Wang et al.,
2022) may outperform U-Net, when leveraging purely spatial features
from MinIP images. Nevertheless, adapting the baseline spatial learning
module and capitalizing on the abundant temporal flow dynamics are
orthogonal and mutually reinforcing efforts to improve performance.
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CAVE is designed to take complete DSA series with variable lengths
and output an overall 2D artery–vein segmentation map for an input
DSA series. The explored TLM modules are flexible in terms of input
dimensions. These modules are capable of handling DSA series with
variable lengths, while alternative methods such as 3D U-Net, direct
feature concatenating, or temporal convolutional network (TCN) (Lea
et al., 2016) typically cannot. It necessitates temporal sliding or tempo-
ral padding/cropping to utilize models that require fixed frame length.
Such models would also require temporarily varying annotations to
train.

In comparison with the hold-out strategy, K-fold cross-validation
may provide a more robust assessment of the described methods
in this manuscript. We tested the proposed CAVE (with ConvGRU)
method on five random data splits and obtained M-Dice coefficients of
0.79 (±0.057), 0.79 (±0.052), 0.78 (±0.043), 0.78 (±0.049), and 0.78
(±0.057). No significant performance differences (P = 0.4, Kruskal–
Wallis test) were observed among these splits. This indicates that the
hold-out method allows for reliable performance estimates. Considering
this observation, alongside the substantial computational demands of
cross-validation, we opted for the hold-out strategy in subsequent
performance evaluations.

In this study, we observe that, despite the differences in network
design, the TLM modules (i.e., ConvGRU, ConvLSTM, and Temporal
Transformer) perform comparably in the application of artery–vein
segmentation on our dataset. This could be attributed to their shared
capability to capture temporal dependencies. While the temporal trans-
former is often considered superior (Vaswani et al., 2017; Devlin et al.,
2018; Dai et al., 2019), its effectiveness may not consistently extend
to all scenarios. In this context, temporal information is relevant. All
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Fig. 4. Two example visualizations (in rows) of artery–vein segmentation. Column a: manual annotation of arteries (red) and veins (blue) overlaid on the MinIP image; column b:
segmentation output of U-Net; column c: U-Net error map with false positives (orange) and false negatives(light blue); column d: segmentation output of CAVE; column e: CAVE
error map with false positives (orange) and false negatives (light blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
Fig. 5. Association between the segmentation Dice and the number of frames of DSA
series in the test set.

modules do the job of extracting temporal patterns, whereas the exact
network design and configuration do not make a notable difference.
7

This aligns with a broader understanding that the practical impact of
architectural advantages can vary greatly depending on the specifics of
the task and data.

We note that the segmentation Dice scores of veins are on average
lower than those of arteries across all methods. This observation can
be attributed to several factors: (1) venous vessels typically exhibit
relatively lighter intensities and more ambiguous boundaries, making
them challenging to be accurately predicted; (2) the quality of vein an-
notations may also be comparatively lower due to increased annotation
difficulties; (3) there tends to be a scarcity of venous phase frames,
especially in cases of incomplete DSA series when image acquisition is
prematurely stopped by the operator.

Building upon this work, future research may investigate the in-
fluence of patient motion on those spatio-temporal techniques for
artery–vein segmentation. From the clinical perspective, there is sig-
nificant value in conducting thorough validations to assess the clinical
generalizability of CAVE.

6. Conclusion

We have presented CAVE, a deep learning-based cerebral vessel
and artery–vein segmentation method in digital subtraction angiog-
raphy. It integrates both spatial vascular appearance and temporal
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Fig. 6. Example visualization of artery, vein, and vessel segmentation. Column a: manual annotation of arteries (red), veins (blue), and vessels (green) overlaid on the MinIP
image; column b: segmentation output of the Frangi + 𝑘-means approach; column c: segmentation output of U-Net; column d: segmentation output of CAVE.
contrast flow dynamics in a unified end-to-end framework, producing
high-quality multi-class segmentations from cerebral DSA series with
variable lengths. Experimental results on a multi-center clinical dataset
demonstrate that CAVE significantly outperforms existing methods.
Qualitative analyses further underpin the advantages of CAVE in dis-
tinguishing vessels from subtraction artifacts. CAVE has the potential
to facilitate vessel-based quantitative analyses for clinical diagnosis,
prognosis, and treatment planning in endovascular interventions.
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Fig. 7. Example visualization of artery, vein, and vessel segmentation. Column a: manual annotation of arteries (red), veins (blue), and vessels (green) overlaid on the MinIP
image; column b: segmentation output of the Frangi + 𝑘-means approach; column c: segmentation output of U-Net; column d: segmentation output of CAVE.
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