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A B S T R A C T   

The considerable increase in parcel deliveries has negatively impacted the accessibility and livability of cities. 
One solution strategy is to decouple short-distance from long-distance shipping so that last-mile transport can be 
performed with low-footprint vehicles. Such solutions are referred to in the literature as multi-echelon distri-
bution systems. This study introduced a new variant of the two-echelon vehicle routing problem that considers 
multiple alternative transport modes as well as multiple commodities over a multi-period time horizon, where 
customers can obtain their commodities from any store. We referred to this problem as the two-echelon multi- 
commodity multimodal vehicle routing problem (MCM-2E-VRP). The objective of service providers is to mini-
mize total generalized costs while satisfying customer requirements. We formulated this as a mathematical model 
based on a space–time network and introduced a random utility discrete choice model to capture variations in 
performance and preferences. We developed an adaptive large-neighborhood search (ALNS) algorithm to provide 
solutions for newly generated MCM-2E-VRP instances based on the Beijing Yizhuang transportation network. 
Extensive numerical experiments were conducted to verify the effectiveness of the proposed model and algo-
rithm. A sensitivity analysis revealed some policy-relevant findings regarding the effects of store distribution and 
vehicle capacity.   

1. Introduction 

The rapid development of the express delivery industry has led to 
substantial increase in shipping activities in urban areas, contributing to 
traffic congestion and environmental problems. City logistics managers 
struggle to design cost-efficient and environmentally friendly last-mile 
delivery services. One solution strategy is to decouple short-distance 
from long-distance shipping so that last-mile transport can be per-
formed with low-footprint vehicles. In the literature, such delivery 
configurations are known as multi-echelon distribution systems, 
particularly, two-tiered systems (Crainic, Ricciardi, & Storchi, 2009). 
The first echelon connects one or more facilities to multiple intermediate 
facilities in a larger urban area, and the second echelon (SE) connects the 
intermediate facilities to customers. The problem of vehicle routing in 
such systems is known as the two-echelon vehicle routing problem (2E- 
VRP) (Sluijk et al., 2023). The 2E-VRP aims to determine a set of 
minimal-cost routes for first-echelon and SE vehicles. 

To reduce the challenges associated with freight transport while 
providing a cost-efficient and environmentally friendly distribution 
operation, transportation managers may consider the use of multiple 
city logistics elements such as buses, trams, and trucks to transport 
commodities. Although some researchers, such as Fontaine, Crainic, 
Jabali, and Rei (2021) and Vincent, Jodiawan, Schrotenboer, and Hou 
(2023), considered multiple transport modes to be available in the first 
echelon, the relevant literature is still limited, and the distribution of 
commodities in different transport modes is worthy of further discus-
sion. Motivated by a realistic case for the collection and delivery of fresh 
agri-food products, the multi-commodity two-echelon distribution 
problem (MC2DP), another variant of the 2E-VRP, has been reported 
(Gu et al., 2022). The explicit consideration of multiple commodities is 
essential in city logistics, as it enables the joint optimization of trans-
portation plans and the satisfaction of customer demands. Multiple 
commodities in a multi-period horizon can be considered as a compo-
nent of future research (Gu et al., 2022). Therefore, in this study, we 
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proposed a new variant of the 2E-VRP, the two-echelon multi-com-
modity multimodal vehicle routing problem, considering user hetero-
geneity. The studied problem is a complex dynamic transportation 
system involving multiple transport modes to transport commodities in 
the first echelon and multiple commodities supplied from pickup loca-
tions, called stores. The service design determines the distribution path 
for logistics services, including the allocation to transportation modes. 

The first feature of this study was the multiple transport modes that 
make use of multiple city logistics elements to transport commodities to 
satisfy customer requirements as much as possible. Since Perboli et al. 
(2011) coined the term 2E-VRP, several variants have been proposed 
(Cuda, Guastaroba, & Speranza, 2015; Sluijk, Florio, Kinable, Dellaert, 
& Van Woensel, 2023). Most studies focused on a single transport mode 
in each echelon. Fontaine et al. (2021) were the first to investigate two- 
tier multiple city logistics elements, including line-based and other 
transport modes. Line-based transport modes usually include regular 
and light rail tramways, whereas other transport modes include various 
trucks and barges. Bayliss, Bektaş, Tjon-Soei-Len, and Rohner (2023) 
introduced a multimodal variable-echelon last-mile delivery system. In 
contrast to Fontaine et al. (2021), this study used multiple transport 
modes to transport commodities by considering the heterogeneity of 
users. The second important feature of this study was the presence of 
multiple commodities. Multiple commodities were collected from stores 
and delivered to communities via satellites or hubs for consolidation. 
Only two recent studies considered multiple commodities in the context 
of the 2E-VRP. Gu et al. (2022) were the first to make route decisions 
considering multiple commodities in two-echelon distribution problems 
and introduced the multi-commodity two-echelon distribution problem 
for the 2E-VRP. Jia, Deng, Zhao, and Chen (2023) also studied route 
optimization with multiple commodity requests, where each customer 
could obtain two commodities from two depots. Although the recent 
literature has discussed the benefits of multiple transport modes and 
commodities, their integration into the 2E-VRP has not yet been 
considered. In this study, we combined these two features into one 
model. 

The contributions of this study are as follows. First, we defined a new 
two-echelon vehicle routing problem that integrates multiple transport 
modes, considering the heterogeneity of users and multiple commodities 
in a multi-period horizon, known as the MCM-2E-VRP. Second, we 
formulated a mathematical model for the MCM-2E-VRP based on a 
space–time network and introduced a random utility discrete choice 
model to capture user heterogeneity. An adaptive large neighborhood 
search (ALNS) algorithm was developed to solve the MCM-2E-VRP. 
Some modifications were made to adapt the characteristics of the 
MCM-2E-VRP. Finally, we performed extensive numerical experiments 
to demonstrate the efficiency of the proposed model and algorithm and 
analyzed the impacts of store distribution and vehicle capacity. 

The remainder of the paper is organized as follows. Section 2 pro-
vides a review of the related literature. Section 3 describes the problem 
statement and presents the mathematical formulation of the model. The 
solution algorithm is outlined in Section 4. Section 5 presents and dis-
cusses the results of the numerical experiments, including the sensitivity 
analysis. Finally, section 6 concludes the paper and provides suggestions 
for future research. 

2. Literature review 

In this section, we review research related to the MCM-2E-VRP, 
including the baseline 2E-VRP model, its extension toward multi-
modality, and its multi-commodity variant (MC-2E-VRP). 

The study of the 2E-VRP was initiated by Crainic et al. (2009), who 
formalized the two-echelon, synchronized, scheduled, multi-depot, 
multiple-tour, heterogeneous vehicle-routing problem with time win-
dows. Perboli, Tadei, and Vigo (2011) introduced a mathematical model 
and two heuristics for the 2E-VRP. Most existing literature on the 2E- 
VRP utilizes heuristic methods to solve the 2E-VRP, including local 

neighborhood search (Belgin, Karaoglan, & Altiparmak, 2018), adaptive 
large neighborhood search (Hemmelmayr, Cordeau, & Crainic, 2012; 
Grangier, Gendreau, Lehuédé, & Rousseau, 2016), genetic algorithms 
(Wang, Lan, & Zhao, 2017; Zhou, Baldacci, Vigo, & Wang, 2018), and 
path relinking (Anderluh, Hemmelmayr, & Nolz, 2017). Exact methods 
for the 2E-VRP have also been investigated. Baldacci, Mingozzi, Roberti, 
and Calvo (2013) proposed a customized exact method with a bounding 
procedure to decompose the two-echelon capacity vehicle routing 
problem (2E-CVRP). Santos, Mateus, and da Cunha (2015) and Marques, 
Sadykov, Deschamps, and Dupas (2020) proposed branch-and-cut-and- 
price algorithms for the 2E-CVRP. For a broader overview of research 
on the 2E-VRP, refer to the literature reviews by (Cuda et al., 2015; 
Sluijk et al., 2023). Over the years, many variants of the 2E-VRP have 
emerged in the literature, based on various problems encountered in 
real-world vehicle routing applications, such as time windows (Vincent 
et al., 2023; Zhou, Zhang, Ji, & Li, 2024), drones (Zhou, Qin, Cheng, & 
Rousseau, 2023), simultaneous pickup and delivery (Yıldız, Karaoğlan, 
& Altiparmak, 2023), and collaborative delivery (Kim, Jeong, & Lee, 
2023). 

Research on multimodal city logistics has increased over the past 
decade. However, most studies have focused on single-echelon multi-
modal city logistics. Perboli, Rosano, Saint-Guillain, and Rizzo (2018) 
proposed a simulation–optimization framework and applied it to an 
online parcel delivery problem to evaluate the impact of multimodal 
delivery options on e-commerce demand in the urban context of Turin. 
Liu, Lyu, Liu, and Cao (2021) investigated a city-wide multimodal 
transportation recommendation system (MTRS). Najmi, Rashidi, and 
Waller (2023) proposed a multi-class, multimodal, and multi-provider 
market equilibrium (MCMPE) model to evaluate the operation of 
transport systems. Multimodal transport includes private vehicles, 
walking, public transport, ride-sourcing, ridesharing-as-driver, 
ridesharing-as-rider, and crowd-shipping. Customer choices between 
these shipping options can be described using random utility discrete 
choice models (Wicaksono, Lin, & Tavasszy, 2022; Tapia, Kourounioti, 
Thoen, de Bok, & Tavasszy, 2023; Cebeci, Tapia, Kroesen, de Bok, & 
Tavasszy, 2023). Very few studies have discussed two-echelon multi-
modal city logistics. Fontaine et al. (2021) addressed the tactical plan-
ning problem for a two-tier multimodal city logistics (2TM-CL) system 
that integrated inbound and outbound demands and different trans-
portation modes. Vincent et al. (2023) introduced the concept of crowd- 
shipping, which utilizes the extra capacity of on-road vehicles to deliver 
small demands, and proposed a two-echelon vehicle routing problem 
with time windows, intermediate facilities, and occasional drivers (2E- 
VRPTW-IF-OD). Customers can receive goods delivered by either city 
freighters or occasional drivers to their homes or perform self-pickup at 
selected parcel lockers. Bayliss et al. (2023) proposed a last-mile logis-
tics delivery system that utilized multiple localized storage depots and 
multimodal delivery options. 

The MC-2E-VRP was developed by Sluijk et al. (2023) as an extension 
of the traditional 2E-VRP. Studies on the MC-2E-VRP generally assume 
that each commodity is provided by a unique depot, as in Crainic, Errico, 
Rei, and Ricciardi (2016), Kancharla and Ramadurai (2019), and Del-
laert, Van Woensel, Crainic, and Saridarq (2021). Boccia, Crainic, 
Sforza, and Sterle (2018) studied a multi-commodity location-routing 
problem (LRP) in city logistics systems, known as the flow-intercepting 
facility LRP (FIFLOR). Here, each commodity has only one origin-
–destination path. We are aware of only two studies that have explicitly 
considered multiple commodities. Gu et al. (2022) presented an MC2DP 
for a many-to-many setting in which each commodity was collected 
from any origin offering it and delivered to any destination requiring it. 
Jia et al. (2023) introduced a multi-commodity two-echelon vehicle 
routing problem with satellite synchronization. In this problem, each 
customer obtained two commodities from two depots. 

Table 1 summarizes the related literature regarding the studied 
problems, including the structure of the logistics network, problem 
features, models, algorithms, and case studies. As the literature survey 
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shows, research investigating the features of multimodality or multi- 
commodity remains limited in the 2E-VRP literature, and the integra-
tion of the two features in the 2E-VRP is absent. This study aimed to fill 
this gap by introducing a new two-echelon vehicle-routing problem that 
integrates two features: multimodality and multi-commodity. Unlike 
previous studies that selected the transport mode based on the total 
generalized cost, such as Fontaine et al. (2021) and Vincent et al. (2023), 
this study utilized multiple transport modes to transport commodities by 
considering the heterogeneity of users. Meanwhile, we used a many-to- 
one logistics setting in which multiple commodities can be collected 
from any store and customers can obtain their commodities in a multi- 
period horizon. Then, we constructed a new model that addressed the 
following dimensions: (1) assigning a distribution route for each com-
modity in a many-to-one logistics setting, and (2) selecting a transport 
mode to transport commodities considering the heterogeneity of users in 
a multimodal setting. The consideration of these two features increases 
the complexity of solving the model; thus, the ALNS algorithm was used 
to solve the model. Extensive numerical experiments were conducted to 
verify the efficiency of the proposed method. 

3. Problem statement and model formulation 

3.1. Problem statement 

We present the MCM-2E-VRP below as an illustrative case, as shown 
in Fig. 1. The MCM-2E-VRP consists of two echelons. In the first echelon, 
commodities can be transported using different modes of transport. In 
the example, the city logistics service includes three transport modes: 
rigid truck transport, trailer truck transport, and public transport. SE 
vehicles are used for pickup and delivery operations in the SE. Each store 
contains a variety of commodities, and the customer requirements in 
each community represent a single type of commodity. Satellites facil-
itate the transshipment of commodities between vehicles. We assume 
that shipping requests are served by a logistics company or a third-party 

platform, referred to as the supplier. The supplier provides logistics 
network information, including storage information, trans-shipment 
information, distances between satellites, and information on different 
transport modes. All travel times for each link, service times, and 
transfer times in the logistics network are known in advance. In addi-
tion, the supplier sets capacity limits for different transport modes. User 
heterogeneity is an important motivation for transport mode choice. The 
supplier aims to minimize total delivery costs while meeting customer 
requirements. 

Customers can select a transport mode that suits their requirements 
for delivering commodities based on the cost, time, and frequency of all 
transport modes. However, once suppliers fully outsource shipping 
functions, they realize the risk of losing control and visibility over 
freight movements. We assume that customers will be willing to transfer 
mode selection authority to the service provider under certain condi-
tions (Khakdaman, Rezaei, & Tavasszy, 2020) and that the supplier is 
trusted to choose a transport mode according to the preferences of 
customers. The route-choice behavior considered in this study is deter-
mined by the supplier. For instance, if the customer pursues minimum 
transport cost and pays no attention to time, the supplier will prioritize 
selecting public transport to deliver the commodities. We applied a 
mixed logit model to describe the variations in user preferences. 

We assume that multiple commodities in each store must be deliv-
ered to different communities. In the SE, each vehicle can transport 
multiple commodities within the city if its capacity is not exceeded. 
Service design is established for short periods and is repeatedly carried 
out throughout the planning horizon. We assume that the service design 
cannot be modified during shipping, and that public transport is used as 
a part of freight services without affecting the passenger service level. 
Moreover, we assume that public transport has a finite capacity for 
freight shipments, in addition to the available spaces for passengers. 
Thus, it is possible that the capacity of public transport is insufficient to 
satisfy freight shipments. Suppliers may readjust the shipping service to 
achieve the demand–supply balancing in the system. A first-in-first-out 

Table 1 
Summary of the related literature on the problem features of the MCM-2E-VRP.  

Reference Problem Structure of logistics 
network 

Multi- 
modal 

Multi- 
commodity 

Model Solution algorithm Case study 

Liu et al. (2021) Multi-modal 
transportation 

VRP √  MTRS A post-processing algorithm Baidu Maps, 
China 

Najmi et al. 
(2023) 

Transport system 
planning 

VRP √  MCMPE Karush–Kuhn–Tucker 
optimality conditions 

Sydney, 
Australia 

Fontaine et al. 
(2021) 

2TM-CL 2E-VRP √  MILP Benders decomposition algorithm Synthetical data 

Vincent et al. 
(2023) 

2E-VRPTW-IF-OD 2E-VRP √  MILP Hybrid ALNS algorithm Synthetical data 

Bayliss et al. 
(2023) 

Last-mile delivery Variable-echelonVRP √  MILP A scalable two-phase heuristic 
algorithm 

London, England 

Boccia et al. 
(2018) 

FIFLOR LRP  √ ILP Branch-and-cut algorithm Synthetical data 

Gu et al. (2022) MC2DP 2E-VRP  √ MIP Two sequential approaches Isere, French 
Jia et al. (2023) MC-2E-VRPSS 2E-VRP  √ MIP ALNS algorithm Synthetical data 
This paper MCM-2E-VRP 2E-VRP √ √ MILP ALNS algorithm Beijing, China 

MTRS: Multimodal transportation recommendation system; MCMPE: Multi-class multimodal multi-provider market equilibrium; MILP: mixed-integer linear program; 
ILP: integer integer program; MIP: mixed-integer program. 

Fig. 1. Illustration of the MCM-2E-VRP.  
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policy can be applied to readjust the commodity allocations. 
An example of a stylized physical network for the MCM-2E-VRP is 

shown in Fig. 2. The network is composed of five types of nodes and two 
types of links. The number in the link represents the distance between 
two nodes. SE vehicles with a capacity of 10 pieces collect commodities 
from four stores and deliver them to two communities in the SE, whereas 
different transport modes can be adopted for shipping services in the 
first echelon. Here, the rigid truck capacity is set to 10, and the capac-
ities of the trailer trucks and public vehicles are assumed to be sufficient. 
We assume that the fixed cost of each rigid truck, trailer truck, and 
public vehicle is two units, three units, and zero per vehicle, respec-
tively, and this unit represents a cost unit, such as the euro. The average 
velocities of rigid trucks, trailer trucks, and public vehicles are 2 dis-
tances/mins, 1.2 distances/mins, and 1 distance/min, respectively, in 
the first echelon. In the SE, the capacity of the SE vehicles is set to 10, the 
fixed cost of each SE vehicle is one unit, and the average velocity of the 
SE vehicles is assumed to 1 distance/min. We assume that the travel cost 
of different trucks is the ratio of the corresponding travel time, and the 
ratios of SE vehicles, rigid trucks, trailer trucks, and public vehicles are 
1, 0.6, 0.3, and 0.2, respectively, in this network. The transfer time at the 
satellite facilities is set to 5 min. The planning horizon consists of three 
periods, each set at 90 min. The commodities are randomly generated 
during each period. 

In the constructed network, the supplier designs three routes for 
different transport modes and provides relevant attributes of the trans-
port modes, including cost, time, and frequency. The supplier can choose 
a suitable transport mode to deliver commodities to customers based on 
the attributes of the transport mode. Furthermore, the supplier can 
readjust customer requirements to satisfy the capacities of different 
transport modes. Finally, the demand–supply balancing for the service 
system is achieved, as illustrated in Fig. 3. 

3.2. Space–time network construction 

For convenience in constructing the mathematical model, the MCM- 
2E-VRP can be divided into three stages: pickup, transport, and delivery. 
The studied problem can be defined on a graph G = (N,A), where N =

NP ∪ NT ∪ ND and A = AP ∪ AT ∪ AD based on different stages. Moreover, 
T is a planning horizon, indexed by t, t′ ∈ T. In the pickup and delivery 
stages, the SE vehicles KP/KD with capacity QPD are dispatched to visit a 
set of pickup and delivery sites. In the transport stage, the transport 
trucks KT, including rigid trucks, trailer trucks, and public vehicles, are 
used to transport commodities. The three transport modes in the 
transport stage are indexed by w ∈ W. For different transport modes, the 
speed, unit travel cost, and fixed cost of truck k at link (i, j) are defined as 
vkw , cw

i,j, and fcw
k , respectively. For each link (i, j) ∈ A, the travel distances 

di,j are defined. The notations used are listed in Table 2. 

Although the space–time network graph is more complex than the 
physical network graph, the number of parameters can be reduced 
effectively because the time factor is incorporated into the space–time 
network. The space–time network is composed of vertice-arcs, where 
vertex (i, t) replaces node i and arc (i, j, t, t′) substitutes link (i, j). Con-
straints related to time windows, such as the time window [eτl, lτl] of 
each store l, the latest delivery time lτu for community u at each period τ, 
are embedded into the space–time network. The total commodity vol-
umes are considered as known inputs, but the commodities for each 
transport mode must be determined by the customer’s route-choice 
behavior. The commodities qτl = [q0

τl, q
1
τl,⋯, qu

τl] randomly generated 
are picked up at the store l and delivered to the community u at each 
period τ. Each store and community has a fixed service time of st, and 
each satellite has a specific transfer time of wt. The timetables of each 
transport mode w ∈ W are also a known input. 

The constructed space–time network of the illustrated instance is 
shown in Fig. 4. In the pickup stage, SE vehicles run from the origin 
depot to the satellite facilities and pick up commodities from several 
stores along their journey. The arc of the SE vehicles (i, j, t, t′) represents 
the vehicles starting from node i at time t to node j at time t′, where (t′ − t)
is the travel time of link (i, j) plus the service time at node j. Note that the 
service time is set to zero in the illustrated instance. In the transport and 
delivery stages, if the supplier chooses different transport modes, 
different transport paths are generated. When commodities are trans-
ferred to satellite facilities, the transfer arc (i, i, t, t′) is created to connect 
with different trucks. 

3.3. Mathematical model for the MCM-2E-VRP 

To optimize vehicle routing considering user heterogeneity, the 
MCM-2E-VRP was formulated as a mixed-integer linear programming 
model, and customer route-choice behavior was modeled using the 
mixed logit model. 

3.3.1. Model formulation 
The objective of the proposed problem is to minimize the total 

generalized costs while satisfying customer requirements, which consist 
of the pickup cost (Zp), delivery cost (Zd), and transport cost (Zw), 
including the cost of rigid trucks (Z1), trailer trucks (Z2), and public 
vehicles (Z3), as shown in equations (1)–(4). In the objective function, 
the fixed cost fc3

k of a public vehicle k, such as a bus or subway, is not 
considered. 

minZ = Zp + Zd + Zw (1)  

Zp =
∑

τ∈T

∑

k∈KP

∑

(i,j,t,t′)∈AP

ci,j,t,t′ • xτp
i,j,t,t′,k +

∑

τ∈T

∑

k∈KP

fck • yτp
k (2) 

Fig. 2. Physical network of the MCM-2E-VRP.  
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Zd =
∑

τ∈T

∑

k∈KD

∑

(i,j,t,t′)∈AD

ci,j,t,t′ • xτd
i,j,t,t′,k +

∑

τ∈T

∑

k∈KD

fck • yτd
k (3)  

Zw =
∑

τ∈T

∑

kw∈K

∑

w∈W

∑

(i,j,t,t′)∈AT

cw
i,j,t,t′ • xτt

i,j,t,t′kw
+
∑

τ∈T

∑

kw∈K

∑

w∈W
fcw

k • yτt
kw

(4) 

These constraints include the following four categories: constraints 
at the pickup stage, delivery stage, and transport stage, and synchroni-
zation constraints. 

Constraints in the pickup stage 
Constraints (5)–(7) represent the flow-balance constraints at the 

pickup stage. Constraints (5) and (6) define that each vehicle k begins at 
origin o, o ∈ NP and ends at the satellite facility to, to ∈ NT , respectively. 
Constraint (7) guarantees that the input flow is consistent with the 
output flow at the other intermediate nodes. Constraint (8) ensures that 
all commodities are selected. Constraint (9) represents the capacity of SE 
vehicles for commodity pickup. Constraint (10) states that SE vehicle k 
can serve at any store no more than once. 

∑

(o,j,t,t′)∈δ− (o,t)

xτp
o,j,t,t′,k = 1∀τ ∈ T, k ∈ KP, (o, j, t, t′) ∈ AP (5)  

∑

(j,to,t,t′)∈δ+(to,t′)

xτp
j,to,t,t′,k = 1∀τ ∈ T, k ∈ KP, (j, to, t, t′) ∈ AP (6)  

∑

(i,j,t,t′)∈δ+(j,t′)

xτp
i,j,t,t′,k −

∑

(j,j′,t′,t″)∈δ− (j,t′)

xτp
j,j′,t′,t″,k = 0∀τ ∈ T, k ∈ KP, j ∈ NPandj ∕= o, to

(7)  
∑

k∈KP

∑

(j,j′,t′,t″)∈δ− (j,t′)

f τu
j,j′,t′,t″,k −

∑

k∈KP

∑

(i,j,t,t′)∈δ+(j,t′)

f τu
i,j,t,t′,k = qu

τj∀τ ∈ T, j ∈ NL, u ∈ NU (8)  

0 ≤
∑

u∈NU

f τu
i,j,t,t′,k ≤ QPD • xτp

i,j,t,t′,k∀τ ∈ T, k ∈ KP, (i, j, t, t′) ∈ AP (9)  

∑

(i,j,t,t′)∈δ+(j,t′)

xτp
i,j,t,t′,k ≤ yτp

k ∀τ ∈ T, k ∈ KP, j ∈ NL (10) 

Constraints in the transport stage 
Constraints (11)–(13) represent the flow-balance constraints at the 

transport stage. Constraints (11) and (12) guarantee that each truck kw 

begins at one satellite facility to, to ∈ NT and ends at another satellite 
facility td, td ∈ NT, respectively. Constraint (13) ensures that the input 
flow is the same as the output flow at the other intermediate nodes. 
Constraint (14) indicates that the commodities are consistent at the 

transport nodes. Constraint (15) specifies the capacity of each truck. 
Constraint (16) guarantees that a transport node is visited no more than 
once by vehicle kw. 

∑

(to,j,t,t′)∈δ− (to,t)

xτt
to,j,t,t′,kw

= 1∀τ ∈ T, kw ∈ KT ,w ∈ W, (to, j, t, t′) ∈ AT (11)  

∑

(j,td,t,t′)∈δ+(td,t′)

xτt
j,td,t,t′,kw

= 1∀τ ∈ T, kw ∈ KT ,w ∈ W, (j, td, t, t′) ∈ AT (12)  

∑

(i,j,t,t′)∈δ+(j,t′)

xτt
i,j,t,t′,kw

−
∑

(j,j′,t′,t″)∈δ− (j,t′)

xτt
j,j′,t′,t″,kw

= 0∀τ ∈ T, kw ∈ KT ,w ∈ W, j

∈ NT andj ∕= to, td (13)  

∑

(i,j,t,t′)∈δ+(j,t′)

f τu
i,j,t,t′,kw

−
∑

(j,j′,t′,t″)∈δ− (j,t′)

f τu
j,j′,t′,t″,kw

= 0∀τ ∈ T, kw ∈ KT , j ∈ NT , u ∈ NU ,w

∈ W
(14)  

0 ≤
∑

(i,j,t,t′)∈δ+(j,t′)

f τu
i,j,t,t′,kw

≤ QT • xτt
i,j,t,t′,kw

∀τ ∈ T, kw ∈ KT , (i, j, t, t′) ∈ AT ,w ∈ W

(15)  
∑

(i,j,t,t′)∈δ+(j,t′)

xτt
i,j,t,t′,kw

≤ yτt
kw
∀τ ∈ T, kw ∈ KT ,w ∈ W, j ∈ NT (16) 

Constraints in the delivery stage 
Constraints (17)–(19) represent the flow-balance constraints at the 

delivery stage. Constraints (17) and (18) indicate that each SE vehicle k 
starts at satellite facility td, td ∈ NT and ends at destination d, d ∈ ND, 
respectively. Constraint (19) ensures that the input flow is consistent 
with the output flow at the other intermediate nodes. Constraint (20) 
guarantees that all delivery requests are satisfied. Constraint (21) gua-
rantees the capacity of the SE vehicle for commodity delivery. 
Constraint (22) indicates that SE vehicle k can serve a community no 
more than once. 

∑

(td,j,t,t′)∈δ− (td,t)

xτd
td,j,t,t′,k = 1∀τ ∈ T, k ∈ KD, (td, j, t, t′) ∈ AD (17)  

∑

(j,d,t,t′)∈δ+(d,t′)

xτd
j,d,t,t′,k = 1∀τ ∈ T, k ∈ KD, (j, d, t, t′) ∈ AD (18)  

Fig. 3. Demand–supply balancing for the service system.  
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∑

(i,j,t,t′)∈δ+(j,t′)

xτd
i,j,t,t′,k −

∑

(j,j′,t′,t″)∈δ− (j,t′)

xτd
j,j′,t,t′,k = 0∀τ ∈ T, k ∈ KD, j ∈ NDandj ∕= td, d

(19)  
∑

k∈KD

∑

(u,j,t′,t″)∈δ− (u,t′)

f τu
u,j,t′,t″,k −

∑

k∈KD

∑

(i,u,t,t′)∈δ+(u,t′)

f τu
i,u,t,t′,k =

∑

i′∈NL

qu
τi′∀τ ∈ T, u ∈ NU (20)  

0 ≤
∑

u∈NU

f τu
i,j,t,t′,k ≤ QPD • xτd

i,j,t,t′,k∀τ ∈ T, k ∈ KD, (i, j, t, t′) ∈ AD (21)  

∑

(i,j,t,t′)∈δ+(j,t′)

xτd
i,j,t,t′,k ≤ yτd

k ∀τ ∈ T, j ∈ NU , k ∈ KD (22) 

Synchronization Constraints 
Constraint (23) represents the consistency of commodity flows be-

tween the pickup and transport stages, in which t′ + wt ≤ t″′, and the 
arrival time of SE vehicles is earlier than the departure time of transport 
trucks at a satellite facility. Constraint (24) states that all commodities 
should be transferred from transport trucks to SE vehicles, in which 
t′ + wt ≤ t″′, and the arrival time of transport trucks is earlier than the 
departure time of SE vehicles. Because the arrival times of commodities 
in different transport modes in the transport stage are different, com-
modities in each transport mode are distributed by different groups of SE 
vehicles. 
∑

k∈KP

∑

(i,to,t,t′)∈δ+(to,t′)

f τu
i,to,t,t′,k −

∑

w∈W

∑

kw∈KT

∑

(to,j,t″′,t″)∈δ− (to,t″′)

f τu
to,j,t″′,t″,kw

= 0∀τ ∈ T, i ∈ NP, j

∈ NT , u ∈ NU

(23)  
∑

w∈W

∑

kw∈KT

∑

(i,td,t,t′)∈δ+(td,t′)

f τu
i,td,t,t′,kw

−
∑

k∈KD

∑

(td,j,t″′,t″)∈δ− (td,t″′)

f τu
td,j,t″′,t″,k = 0∀τ ∈ T, i ∈ NT , j

∈ ND, u ∈ NU

(24)  

3.3.2. Route-choice behavior 
The number of commodities can be obtained by selecting different 

transport modes based on their attributes. For each customer, there are 
three transport modes w ∈ W = [1, 2,3] of rigid trucks, trailer trucks, 
and public vehicles to select. In this study, a mixed logit model was 
adopted to handle customers’ route-choice behavior. Mixed logit elim-
inates the three limitations of the standard logit by allowing random 
taste variation, unrestricted substitution patterns, and time-dependent 
correlations of unobserved factors (Train, 2009). The utility function 
is given by equation (25) and includes the cost, time, and frequency of 
each transport mode. 

Uw,τ,u = βC
w,τ,u • XC

w,τ,u + βT
w,τ,u • XT

w,τ,u + βF
w,τ,u • XF

w,τ,u + εw,τ,u∀w ∈ W, τ ∈ T, u

∈ NU

(25)  

The value XC
w,τ,u denotes the total cost to deliver to community u by 

adopting transport mode w at period τ in the transport stage. The value 
XT

w,τ,u represents the total time to deliver to community u using transport 
mode w at period τ in the transport stage. The value XF

w,τ,u denotes the 
frequency of transport mode w to deliver to community u at period τ. The 
error term εw,τ,μ is a random term that is iid of the extreme value type I. 

The parameters in the mixed logit model were randomly distributed 
and each parameter was allowed to vary across observations and follow 
a predefined distribution form. For parameters with the same sign for all 
customers, a log-normal distribution was adopted in this study. For 
instance, the cost parameter βC

w,τ,u that is negative follows a lognormal 
distribution with parameters uc and σ2

c . The equation of the cost 
parameter βC

w,τ,u is expressed as follows, in which Z is a standard normal 
variable: 

Table 2 
Notations used for formulating the MCM-2E-VRP.  

Notation Definition 

Set and Parameters 
N Set of nodes in the transportation network, N = NP ∪ NT ∪ ND, where NP 

is the set of nodes at the pickup stage, NT is the set of nodes at the 
transport stage, and ND is the set of nodes at the delivery stage 

NL Set of stores,NL ∈ NP 

NU Set of communities,NU ∈ ND 

A Set of links in the transportation network, A = AP ∪ AT ∪ AD, where AP is 
the set of links at the pickup stage, AT is the set of links at the transport 
stage, and AD is the set of links at the delivery stage 

δ+(i, t) Set of links in A whose tail is node i at time t 
δ− (i, t) Set of links in A whose head is node i at time t 
T Set of time intervals 
W Set of transport modes 
K Set of vehicles, K = KP ∪ KD ∪ KT, where KP is the set of SE vehicles at 

the pickup stage, KD is the set of SE vehicles at the delivery stage, and KT 

is the set of the transport trucks, including rigid trucks, trailer trucks, 
and public vehicles 

QPD Capacity of SE vehicles,KP ∪ KD 

QT
w Capacity of transport trucks,kw ∈ KT 

i, j, j′ Index of nodes,i, j, j′ ∈ N 
(i, j) Index of links,(i, j) ∈ A 
di,j Index of distance at link (i, j)
t, t′ Index of time intervals,t, t′ ∈ T 
τ Index of time periods,τ ∈ T 
w Index of transport modes,w ∈ {1,2, 3}
k Index of vehicles,k ∈ KP ∪ KD 

kw Index of trucks,kw ∈ KT 

vkw Index of speed of truck kw 

qτl Index of commodity of store l at period τ, qτl = [q0
τl ,q

1
τl ,⋯,qu

τl ]

qu
τl Index of commodity of store l to community u at period τ 

ci,j Unit of travel cost of SE vehicle at link (i, j)
cw

i,j Unit travel cost of different terms, w ∈ {1,2, 3}. c1
i,j is the travel cost of 

the rigid truck at link (i, j), c2
i,j is the travel cost of the trailer truck at link 

(i, j), c3
i,j is the travel cost of the public vehicle at link (i, j)

fck Unit fixed cost of SE vehicle k, k ∈ K 
fcw

k Unit fixed cost of different terms, w ∈ {1, 2,3}. fc1
k is the fixed cost of 

rigid truck k, fc2
k is the fixed cost of trailer truck k, and fc3

k is the fixed cost 
of public vehicle k 

(i, t), 
(j, t′)

Index of space–time vertices 

(i, j, t, t′) Index of space–time arcs 
[eτl, lτl] Time window of store l at period τ, where eτl is the earliest service time, 

and lτl is the latest service time 
lτu Latest delivery time of community u at period τ 
st Service time at store and community 
wt Transfer time at the satellite 
M Sufficiently large positive integer  

Decision variables 
xτp

i,j,t,t′,k = 1 if SE vehicle k traverses arc (i, j, t, t′) at period τ at the pickup stage, 
(i, j, t, t′) ∈ AP; 
= 0 otherwise 

xτt
i,j,t,t′,kw 

= 1 if truck kw traverses arc (i, j, t, t′) at period τ by transport mode w ∈

{1,2, 3} at the transport stage, (i, j, t, t′) ∈ AT; 
= 0 otherwise 

xτd
i,j,t,t′,k = 1 if SE vehicle k traverses arc (i, j, t, t′) at period τ at the delivery stage, 

(i, j, t, t′) ∈ AD; 
= 0 otherwise 

yτp
k = 1 if SE vehicle k performs pickup operator at period τ at the pickup 

stage, k ∈ KP;  
= 0 otherwise 

yτt
kw 

= 1 if truck kw is used at period τ in the transport stage, kw ∈ KT; = 0 
otherwise 

yτd
k = 1 if SE vehicle k is used at period τ in the delivery stage, k ∈ KD; = 0 

otherwise 
fτu
i,j,t,t′,k Total load to unloading node u that is carried along arc (i, j, t, t′) by 

vehicle k at period τ 
fτu
i,j,t,t′,kw 

Total load to unloading node u that is carried along arc (i, j, t, t′) by truck 
kw at period τ  
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βC
w,τ,u = − euc+σcZ (26)  

Subsequently, the mean βC
w,τ,u and variance σ2

βC
w,τ,u 

of the cost parameter 

βC
w,τ,u can be obtained from equations (27) and (28). In this study, a 

maximum likelihood estimation with 10,000 draws in N(0, 1) was used 
to determine the parameter values. 

βC
w,τ,u = − euc+σ2

c/2 (27)  

σ2
βC

w,τ,u
= (eσ2

c − 1)e2uc+σ2
c (28)  

Based on the utility function, we can obtain the probability, as shown in 
equation (29). The supplier can choose the transport mode w to deliver 
to community u at period τ for customers, and the commodities f τu

i,j,t,t′,kw 

for selecting transport mode w can be obtained using equation (30). 
Finally, returning the commodities f τu

i,j,t,t′,kw 
of transport mode w to 

construct the proposed optimization model, the minimum total gener-
alized costs can be obtained. 

Pw,τ,u = eUw,τ,u/
∑

w∈W
eUw,τ,μ (29)  

f τu
i,j,t,t′,kw

= f τu
i,j,t,t′,k × Pw,τ,μ (30) 

Because public vehicles give priority to passengers, the commodities 
f τu
i,j,t,t′,k3 

generated based on customers’ route choice do not always match 
the capacity QT

3 of public vehicles for freight service, that is, f τu
i,j,t,t′,k3

> QT
3. 

Therefore, the capacity of public vehicles for freight services may be 
insufficient, causing customers to adopt other transport modes to satisfy 
their requirements. At this point, we adopt a first-in-first-out policy for 
readjustment. The supplier will change the customer’s transport mode 
until a new demand–supply balance is reached, in which no customer 
has an incentive to change their route choice. 

The service system assignment procedure is illustrated in Fig. 5. The 
service implementation involves the following steps: 1) Calculate the 
total commodities f τu

i,j,t,t′,k at the pickup stage and obtain the attribute 

values XC
w,τ,u, XT

w,τ,u, and XF
w,τ,u by adopting transport mode w at the 

transport stage. 2) Based on customers’ route-choice behavior, the 
commodities f τu

i,j,t,t′,kw 
of different transport modes are generated at the 

transport stage. Owing to public vehicle capacity limitation, part of the 

commodities f τu
i,j,t,t′,k3 

must be readjusted to other transport modes. We 
considered the part of the commodities transported using trailer trucks 
in this study. 3) Based on the commodities f τu

i,j,t,t′,kw 
of different transport 

modes, the cost and time in the transport and delivery stages can be 
obtained. 4) Finally, the total generalized costs are output and 
demand–supply balance is achieved. 

4. Adaptive large neighborhood search algorithm 

The ALNS was developed to solve the proposed model. ALNS is 
known for its efficacy in routing and scheduling problems (Ropke & 

Fig. 4. Space–time network of the illustrated instance.  

Fig. 5. Procedure for the service system assignment.  
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Pisinger, 2006) and has been applied frequently to two-echelon vehicle 
routing problems, largely due to the freedom to finetune the algorithm 
(Hemmelmayr et al., 2012; Grangier et al., 2016; Jie, Yang, Zhang, & 
Huang, 2019). Unlike large neighborhood search (LNS) (Shaw, 1998), 
which only applies one destroy and one repair operator, ALNS considers 
multiple destroy and repair operators. ALNS works from an initial so-
lution and iteratively applies a set of destroy and repair operators to 
improve the initial solution until a predefined number of iterations is 
reached. In each iteration of the ALNS algorithm, a destroy–repair pair is 
selected from the available operators, and a roulette-wheel mechanism 
is utilized. The probability of selecting the destroy–repair pair is 
assigned based on the corresponding weights, which depend on the 
historical performance of each operator. The value of each weight is 
initially set to be equal and then adjusted at each iteration. The newly 
generated solution is accepted based on a simulated annealing criterion. 
Utilizing different destroy and repair operators for different problems, 
and even for the same problem, varies in degrees of success. Fig. 6 shows 
a flowchart of the ALNS algorithm used in this study. 

Compared with the classical ALNS, our proposed ALNS algorithm 
considers the following modifications: (1) In addition to optimizing 
vehicle distribution routes, the framework of the proposed ALNS algo-
rithm can also determine the commodities for different transport modes 

to achieve a demand–supply balance in city logistics. (2) Some modifi-
cations on the destroy and repair operators are made to adapt the 
characteristics of the MCM-2E-VRP, including the consideration of store 
properties and scheduled time. (3) Unlike the adaptive mechanism 
illustrated in Ropke and Pisinger (2006), this study set the multiple sets 
of constants σ1, σ2, and σ3 to calculate the score of the operator π ac-
cording to the gap value between current and optimal solutions. 

Our ALNS algorithm was customized as follows. 
(1) Initial feasible solution: 
The MCM-2E-VRP is divided into three stages: pickup, transport, and 

delivery. Accordingly, an initial feasible solution is generated based on a 
heuristic method consisting of three steps. 

First, all stores are individually inserted into newly generated routes 
under vehicle capacity constraints. We can obtain the total commodities 
and costs at the pickup stage. 

Next, a mixed logit model is applied to determine the commodities in 
the three transport modes. The commodities of the three transport 
modes can be readjusted based on the capacity constraints. The com-
modities in the three transport modes have different transport times, and 
the total cost of each transport mode in the transport stage can be 
determined. 

Finally, all commodities are delivered to communities. We can 
obtain the total generalized costs and achieve a demand–supply balance. 
The generated initial solution satisfies all constraints, although the so-
lution may be large. 

(2) Process of the ALNS algorithm 
The basic steps of the ALNS algorithm are presented in Algorithm 1. 

Given an initial feasible solution s0 using a heuristic method, the itera-
tions continue to improve it until the termination condition is reached. 
At each iteration, a destroy operator is used to remove part of the stores 
and a repair operator is then chosen to insert these stores back into 
current solution s to generate a new solution s′. A destroy–repair pair is 
selected using the roulette-wheel mechanism, and the commodities for 
the different transport modes are determined by applying a mixed logit 
model. The simulated annealing criterion is utilized to determine 
whether the newly generated solution s′ can be accepted. If the objective 
function of the new solution s′ is less than that of the current solution s, 
the new solution s′ is considered acceptable. Otherwise, s′ is accepted 
based on a probability function e− (f(s′)− f(s) )/T, where T represents the 
current temperature. The initial temperature T0 = δf(s0), δ ∈ (0, 1) and 
is updated via the formula T = T0 × cα, where the cooling rate c ∈ (0, 1).  

Algorithm 1 Basic steps of the ALNS algorithm 
Input: Iterations of each optimization phase φ, number of optimization phases γ, 

destroy operators D, repair operators I, cooling rate c, reaction factor η 
Output: A best solution s* 

Obtain initial feasible solution s0 using a heuristic method 
Initialize best solution s* = s0, current solution s = s0, γ = 0, α = 0, T0 = δf(s0),

δ ∈ (0, 1)
Repeat 
Initialize γ := γ + 1, n = 0 
While n < φ, do 

Use the roulette-wheel mechanism 
wd

∑|D|
j=1wj

, 
wi

∑|I|
j=1wj 

to select and apply a 

destroy–repair pair 
Applying a mixed logit model to determine the commodities for different transport 

modes 
If fτu

i,j,t,t′,kw
≤ QT

w then 

Generating a new solution s′ 

Else 
Adopting a first-in-first-out policy to readjust commodities fτu

i,j,t,t′,kw 
to achieve fτu

i,j,t,t′,kw
≤

QT
w 

Generating a new solution s′ 

If f(s′) < f(s*) then 
s* = s = s′, update the score with σ1 

Else if f(s′) < f(s) then 
s = s′, update the score with σ2 

Else if s′ is accepted by probability function e− (f(s′)− f(s) )/T 

(continued on next page) Fig. 6. Flowchart of the ALNS algorithm.  

S. Wang et al.                                                                                                                                                                                                                                   



Expert Systems With Applications 252 (2024) 124141

9

(continued ) 

s = s′, update the score with σ3 

End if 
n := n + 1 
Adjusting weights wd,wi, d ∈ D, i ∈ I 
T = T0 × cα 

If the number of iterations reaches φ, 
Reset the weights wd = 1,wi = 1, d ∈ D, i ∈ I 
α := α + 1 
Until the predefined number of iterations is reached 
Return best solution s*  

(3) Destroy operators 
We use five destroy operators including random removal, worst 

removal, shaw removal, route removal, and route redistribution, which 
can be found in Ropke and Pisinger (2006; 2006) and Hemmelmayr et al. 
(2012). By applying these destroy operators, the predetermined stores 
are removed from the current solution s and saved to the removal list Lr. 
The structure of the destroy operators is presented as Algorithm 2 in 
Appendix A. 

Random removal: The random removal operator simply selects a 
predetermined number of stores at random and adds them into the 
removal list Lr. 

Worst removal: The worst removal operator is adapted to remove 
the predetermined number of stores with the maximum improvement in 
the objective value. The removal cost for each store is defined as the 
difference between the objective values of the distribution routes with 
and without the store. 

Shaw removal: The shaw removal operator is designed to remove 
the predetermined number of stores with similar relatedness. The 
concept of similar relatedness consists of the transport distance between 
two store nodes i and j, the pickup time of each store node, and the 
number of commodities of each store, described as SC(i, j) = μ1dij +

μ2
⃒
⃒ti − tj

⃒
⃒+μ3

⃒
⃒
⃒qi − qj

⃒
⃒
⃒, where μ1, μ2, and μ3 are normalized weights. 

Route removal: The route removal operator is used to remove stores 
on the route with the longest distribution time and place them on the 
removal list Lr. 

Route redistribution: The route redistribution operator is adapted 
to remove stores on three routes with the minimum distance between 
the satellite to which it is assigned and any other satellite. 

(4) Repair operators 
Two repair operators consisting of greedy and k-regret insertions are 

used, which can be found in Ropke and Pisinger (2006; 2006). After 
applying the destroy operators, the removal store nodes must be rein-
serted into the partial solution sp. The repair operations ensure the 
feasibility of generating a new solution s′ and improves its quality. The 
structure of the repair operators is presented as Algorithm 3 in Ap-
pendix A. 

Greedy insertion: The greedy insertion operator calculates the 
insertion cost of inserting each store into all feasible insertable positions 
and reinserts the store into its best position with the minimum insertion 
cost. 

K-regret insertion: By considering a look-ahead concept, the k- 
regret insertion operator is used to calculate the gap between the min-
imum insertion cost and the kth minimum insertion cost of each store 
from removal list Lr. The operator then selects the store with the greatest 
gap and inserts it into the corresponding position. 

(5) Adaptation mechanism 
The adaptive mechanism was designed to improve the performance 

of operators during the destroy and repair operations. Algorithm 1 uses 
the roulette-wheel mechanism to select destroy and repair operations. 
The weight of each operator is initialized to 1 when the algorithm starts. 
At each iteration, a destroy–repair pair is selected based on the proba-
bilities wd∑|D|

j=1
wj 

and wi∑|I|
j=1

wj
. Then, in each optimization phase, the weights 

are adjusted via the formulas wn+1
d = wn

d(1 − η) + ηπdn/θdn, and wn+1
i =

wn
i (1 − η) + ηπin/θin, where η ∈ [0, 1] is defined as the reaction factor, θ 

denotes the number of times the operator is used, and π is the score of the 
operator. Furthermore, π is updated by the constants σ1, σ2, and σ3, 
where σ1: a best new solution is obtained, σ2: a new solution is better 
than the current solution, and σ3: a new solution is accepted by the 
simulated annealing criterion. 

5. Computational experiments 

The numerical experiments are described in this section. Section 5.1 
describes the verification of the efficiency of the model and ALNS al-
gorithm. Section 5.2 presents the computational results of the experi-
ments with the model on the realistically sized Beijing Yizhuang 
transportation network, assessing the performance of the proposed so-
lution, including a sensitivity analysis. The model and solution ap-
proaches were coded in Python, and all experiments were conducted on 
a single thread 2.60 GHz Intel(R) Core (TM) I7 processor with 32 GB 
RAM. 

5.1. Case study 

5.1.1. Performance in solving 2E-VRP benchmark instances 
We validated the quality of our proposed model and the ALNS al-

gorithm by solving the small 2E-VRP benchmark instances, because the 
2E-VRP is a special case of the MCM-2E-VRP. The small 2E-VRP 
benchmark instances including “set-2” and “set-3” were obtained from 
Breunig, Schmid, Hartl, and Vidal (2016). We used Gurobi to solve the 
proposed model within a time limit of 7200 s. To solve the 2E-VRP in-
stances to optimality, the gap value was set to zero. If Gurobi could not 
find optimal solutions within the maximum time, we obtained the upper 
bound at the end of the time limit. Before adopting the ALNS algorithm, 
several benchmark instances were randomly selected for parameter 
tuning to determine the best combination of parameters. The final 
parameter values were set as follows: the number of worst removals was 
within (Belgin et al., 2018; Cuda et al., 2015), the route redistribution 
number was set to 1, the coefficient of regret-n was 2, and the other 
parameter values were the same as those in Table B1 in Appendix B. 
Tables 3 and 4 summarize the results for set-2 and set-3 of the 2E-VRP 
benchmark instances. The first column represents the benchmark 
instance. The second column lists the best-known solution (BKS) of the 
benchmark instances. The BKS solutions were obtained from Breunig 
et al. (2016). The next three columns show the best solution (either 
optimal solutions or upper bounds), computation time, and gap to the 
BKS of the mathematical model. The last three columns show the best 
solution, the computation time when the optimal solution is obtained, 
and the gap to the BKS of the ALNS algorithm. 

From Tables 3 and 4, we can see that Gurobi obtained optimal so-
lutions in 12 out of 30 instances in set-2 and 9 out of 24 instances in set- 
3. Specifically, Gurobi solved all instances with 22 customers to opti-
mality, and the average gap for all set-2 instances was 1.12 %. Similarly, 
all instances with 22 customers in set-3 were also optimal, and the 
average gap for all set-3 instances was less than 1 %. We further tested 
the 2c and 3c instances compared with those of Kancharla and Ram-
adurai (2019), and the average gaps of the set-2 and set-3 instances were 
reduced from 2.34 % and 2.52 % to 1.12 % and 0.97 %, respectively. 
Furthermore, the ALNS algorithm obtained the optimal solutions for the 
set-2 and set-3 instances based on Tables 3 and 4, which are the same as 
the results of Hemmelmayr et al. (2012), Breunig et al. (2016), and 
Vincent et al. (2023). In addition, the designed ALNS algorithm 
employed the maximum number of iterations and presented only the 
time required to obtain an optimal solution. The computation times 
were generally consistent with those of other well-performing heuristics. 
Therefore, we conclude that the proposed model and ALNS algorithm 
can effectively solve the small 2E-VRP benchmark instances. 

S. Wang et al.                                                                                                                                                                                                                                   
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5.1.2. Performance in solving MCM-2E-VRP instances 
Because the MCM-2E-VRP is a new problem, no benchmark instances 

exist. We designed the newly generated MCM-2E-VRP instances on 
physical networks available at https://github. 
com/Datainstances/MCM-2E-VRP-instances.git. We obtained solutions 

to the MCM-2E-VRP instances by solving the mathematical model shown 
in Section 3.3 via Gurobi and the ALNS algorithm. The maximum time 
for Gurobi was set to 7200 s. We mark the instances where Gurobi meets 
out of memory with a “—.” The parameter values of the ALNS algorithm 
were the same as those described in Section 5.1.1. Table 5 lists the 
computational results obtained by Gurobi and ALNS for the MCM-2E- 
VRP instances. The first column provides information about the in-
stances, including the number of stores (|S|), communities (|C|), and 
periods (|P|). The second and third columns represent the total gener-
alized costs and the corresponding computation times obtained by 
Gurobi. The next two columns report the total generalized costs and 
computation times obtained by ALNS. The final column shows the cost 
gap between the Gurobi and ALNS methods. 

Table 3 
Results for set-2 of the 2E-VRP benchmark instances.  

Instance BKS Mathematical model ALNS algorithm 

Best t (s) Gap 
(%) 

Best t 
(s) 

Gap 
(%) 

Set 2a 
E-n22-k4-s6- 

17  
417.07  417.07 6 0  417.07 1 0 

E-n22-k4-s8- 
14  

384.96  384.96 27 0  384.96 1 0 

E-n22-k4-s9- 
19  

470.60  470.60 44 0  470.60 1 0 

E-n22-k4-s10- 
14  

371.50  371.50 6 0  371.50 1 0 

E-n22-k4-s11- 
12  

427.22  427.22 92 0  427.22 2 0 

E-n22-k4-s12- 
16  

392.78  392.78 24 0  392.78 1 0 

E-n33-k4-s1-9  730.16  730.16 937 0  730.16 3 0 
E-n33-k4-s2- 

13  
714.63  714.63 385 0  714.63 4 0 

E-n33-k4-s3- 
17  

707.48  707.48 439 0  707.48 3 0 

E-n33-k4-s4-5  778.74  800.73 7200 2.82  778.74 4 0 
E-n33-k4-s7- 

25  
756.85  756.85 761 0  756.85 4 0 

E-n33-k4-s14- 
22  

779.05  779.05 417 0  779.05 3 0  

Set 2b 
E-n51-k5-s2-4- 

17-46  
530.76  537.43 7200 1.26  530.76 17 0 

E-n51-k5-s2- 
17  

597.49  602.42 7200 0.83  597.49 12 0 

E-n51-k5-s4- 
46  

530.76  530.76 2452 0  530.76 9 0 

E-n51-k5-s6- 
12  

554.81  558.79 7200 0.72  554.81 13 0 

E-n51-k5-s6- 
12-32-37  

531.92  532.98 7200 0.20  531.92 16 0 

E-n51-k5-s11- 
19  

581.64  587.59 7200 1.02  581.64 11 0 

E-n51-k5-s11- 
19-27-47  

527.63  529.49 7200 0.35  527.63 16 0 

E-n51-k5-s27- 
47  

538.22  576.48 7200 7.11  538.22 15 0 

E-n51-k5-s32- 
37  

552.28  570.84 7200 3.36  552.28 14 0  

Set 2c 
E-n51-k5-s2-4- 

17-46  
601.39  605.13 7200 0.62  601.39 14 0 

E-n51-k5-s2- 
17  

601.39  602.77 7200 0.23  601.39 13 0 

E-n51-k5-s4- 
46  

702.33  713.41 7200 1.58  702.33 13 0 

E-n51-k5-s6- 
12  

567.42  586.36 7200 3.34  567.42 11 0 

E-n51-k5-s6- 
12-32-37  

567.42  585.45 7200 3.18  567.42 15 0 

E-n51-k5-s11- 
19  

617.42  633.71 7200 2.64  617.42 14 0 

E-n51-k5-s11- 
19-27-47  

530.76  537.43 7200 1.26  530.76 12 0 

E-n51-k5-s27- 
47  

530.76  544.21 7200 2.53  530.76 12 0 

E-n51-k5-s32- 
37  

752.59  755.67 7200 0.41  752.59 13 0 

Average  578.27  584.8 4506 1.12  578.27 9 0  

Table 4 
Results for set-3 of the 2E-VRP benchmark instances.  

Instance BKS Mathematical model ALNS algorithm 

Best t (s) Gap 
(%) 

Best t 
(s) 

Gap 
(%) 

Set 3a 
E-n22-k4- 

s13-14  
526.15  526.15 82 0  526.15 2 0 

E-n22-k4- 
s13-16  

521.09  521.09 131 0  521.09 2 0 

E-n22-k4- 
s13-17  

496.38  496.38 152 0  496.38 3 0 

E-n22-k4- 
s14-19  

498.80  498.80 178 0  498.80 1 0 

E-n22-k4- 
s17-19  

512.81  512.81 247 0  512.81 4 0 

E-n22-k4- 
s19-21  

520.42  520.42 337 0  520.42 2 0 

E-n33-k4- 
s16-22  

672.17  676.80 7200 0.69  672.17 4 0 

E-n33-k4- 
s16-24  

666.02  666.02 674 0  666.02 3 0 

E-n33-k4- 
s19-26  

680.37  680.37 1522 0  680.37 3 0 

E-n33-k4- 
s22-26  

680.37  680.37 1352 0  680.37 3 0 

E-n33-k4- 
s24-28  

670.43  678.29 7200 1.17  670.43 3 0 

E-n33-k4- 
s25-28  

650.58  665.75 7200 2.33  650.58 4 0  

Set 3b 
E-n51-k5- 

s12-18  
690.59  718.16 7200 3.99  690.59 14 0 

E-n51-k5- 
s12-41  

683.05  702.52 7200 2.85  683.05 10 0 

E-n51-k5- 
s12-43  

710.41  711.03 7200 0.09  710.41 11 0 

E-n51-k5- 
s39-41  

728.54  740.65 7200 1.66  728.54 13 0 

E-n51-k5- 
s40-41  

723.75  742.57 7200 2.60  723.75 12 0 

E-n51-k5- 
s40-43  

752.15  766.43 7200 1.90  752.15 16 0  

Set 3c 
E-n51-k5- 

s13-19  
560.73  574.57 7200 2.47  560.73 12 0 

E-n51-k5- 
s13-42  

564.45  565.06 7200 0.11  564.45 18 0 

E-n51-k5- 
s13-44  

564.45  565.06 7200 0.11  564.45 15 0 

E-n51-k5- 
s40-42  

746.31  752.45 7200 0.82  746.31 10 0 

E-n51-k5- 
s41-42  

771.56  777.08 7200 0.72  771.56 12 0 

E-n51-k5- 
s41-44  

802.91  816.28 7200 1.67  802.91 13 0 

Average  641.44  648.13 4695 0.97  641.44 8 0  
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As shown in Table 5, 28 of the 30 small MCM-2E-VRP instances were 
solved to optimality by Gurobi. The computation time gradually 
increased with the problem size, and Gurobi ran out of memory when 
solving instances 6–3-9 and 6–3-10. For each optimal solution, ALNS 

provided the same solution within 20 s. For instances 6–3-9 and 6–3-10, 
ALNS still obtained the solution within approximately 20 s. In terms of 
computation time, ALNS outperformed the exact Gurobi method for 
small-scale MCM-2E-VRP instances. While Gurobi required 1336 s to 
solve the 6–3-8 instance, ALNS only needed15 s. ALNS obtained optimal 
solutions for all small instances with a significantly lower computational 
time than Gurobi. Therefore, we utilized ALNS to solve large-scale in-
stances, as described in Section 5.2. 

5.1.3. Analysis of user heterogeneity for the MCM-2E-VRP 
As shown in this section, we analyzed two approaches, (1) the MCM- 

2E-VRP and (2) MCM-2E-VRP, considering user heterogeneity in the 
MCM-2E-VRP instances in Section 5.1.2. The MCM-2E-VRP determines 
which transport mode is selected based solely on total costs, whereas the 
MCM-2E-VRP considers user heterogeneity by using a discrete choice 
model to capture user heterogeneity for multimodal transport in terms 
of distribution time and total costs. The analyses were conducted based 
on the solutions provided by Gurobi. We measured two indicators, dis-
tribution time and total costs, to compare the two approaches. Table 6 
summarizes the results of the analyses. The first column presents the 
instances. The next five columns provide information on the MCM-2E- 
VRP. In the MCM-2E-VRP instances, it was assumed that the capacities 
of the trailer trucks and public vehicles were sufficient. Because this 
MCM-2E-VRP considers the total cost as the objective function, rigid 
transport with high cost and short time attributes was not used. The last 
few columns provide information on the MCM-2E-VRP considering user 
heterogeneity, including commodities, distribution time of the three 
transport modes, and total costs. 

As shown in Table 6, by considering user heterogeneity in the MCM- 
2E-VRP, some commodities could be delivered earlier by rigid trucks 
than by trailer trucks or public vehicles when time is the primary 
objective of customers. Without considering user heterogeneity, com-
modities were distributed by trailer trucks and public vehicles to mini-
mize total costs. For example, in the 4–2-1 instance, commodities of 
[3;2] were delivered to the corresponding customers via rigid trucks 

Table 5 
Computational results of Gurobi and the ALNS algorithm.  

Instances|S| − |C| − |P| Gurobi ALNS Gap (%) 

Cost (unit) t (s) Cost (unit) t (s) 

2-2-1 91 31 91 1 0 
2-2-2 186 67 186 1 0 
2-2-3 273 98 273 1 0 
2-2-4 380 137 380 2 0 
2-2-5 463 170 463 3 0 
2-2-6 554 204 554 4 0 
2-2-7 637 240 637 5 0 
2-2-8 736 275 736 7 0 
2-2-9 819 312 819 8 0 
2-2-10 926 344 926 10 0 
4-2-1 108 37 108 1 0 
4-2-2 216 79 216 1 0 
4-2-3 324 118 324 2 0 
4-2-4 432 155 432 4 0 
4-2-5 540 196 540 5 0 
4-2-6 644 234 644 8 0 
4-2-7 756 281 756 10 0 
4-2-8 856 313 856 11 0 
4-2-9 972 347 972 11 0 
4-2-10 1080 394 1080 12 0 
6-3-1 133 154 133 1 0 
6-3-2 266 317 266 1 0 
6-3-3 391 478 391 3 0 
6-3-4 532 647 532 5 0 
6-3-5 665 810 665 7 0 
6-3-6 794 984 794 10 0 
6-3-7 919 1139 919 13 0 
6-3-8 1064 1336 1064 15 0 
6-3-9 — — 1193 19 — 
6-3-10 — — 1318 21 —  

Table 6 
Analysis of user heterogeneity for the MCM-2E-VRP.  

Instances MCM-2E-VRP MCM-2E-VRP considering user heterogeneity 

Trailer transport Public transport Total cost Rigid transport Trailer transport Public transport Total cost 

Commodities t (min) Commodities t (min) Commodities t (min) Commodities t (min) Commodities t (min) 

2-2-1 [3;4] 76 [0;2] 80 61 [1;1] 59 [2;3] 76 [0;2] 80 91 
2-2-2 [8;6] 76 [2;1] 80 126 [2;2] 59 [6;4] 76 [2;1] 80 186 
2-2-3 [8;10] 76 [2;3] 80 183 [2;3] 55 [6;7] 76 [2;3] 80 273 
2-2-4 [13;16] 76 [4;5] 84 260 [4;5] 59 [9, 11] 76 [4;5] 84 380 
2-2-5 [16;19] 76 [2;6] 80 313 [5;6] 59 [11;13] 76 [2;6] 80 463 
2-2-6 [18;23] 76 [5;5] 80 374 [5;7] 55 [13;16] 76 [5;5] 80 554 
2-2-7 [24;19] 76 [6;3] 80 427 [8;5] 55 [16;14] 76 [6;3] 80 637 
2-2-8 [30;26] 76 [5;7] 80 496 [9;7] 55 [21;19] 76 [5;7] 80 736 
2-2-9 [29;32] 76 [6;5] 80 549 [7;10] 55 [22;22] 76 [6;5] 80 819 
2-2-10 [32;32] 76 [7;9] 80 626 [9;9] 55 [23;23] 76 [7;9] 80 926 
4-2-1 [6;6] 72 [2;2] 84 83 [3;2] 59 [3;4] 76 [2;2] 84 108 
4-2-2 [14;11] 72 [4;4] 84 166 [7;4] 59 [7;7] 76 [4;4] 84 216 
4-2-3 [21;16] 72 [5;5] 84 249 [9;6] 59 [12;10] 76 [5;5] 84 324 
4-2-4 [24;23] 72 [5;8] 84 332 [9;9] 59 [15;14] 76 [5;8] 84 432 
4-2-5 [29;27] 72 [7;8] 84 406 [12;10] 59 [17;17] 76 [7;8] 84 540 
4-2-6 [29;37] 72 [8;11] 80 494 [11;15] 59 [18;22] 76 [8;11] 80 644 
4-2-7 [42;39] 72 [10;13] 84 563 [17;16] 59 [25;23] 76 [10;13] 84 756 
4-2-8 [48;44] 72 [12;10] 80 656 [19;17] 59 [29;27] 76 [12;10] 80 856 
4-2-9 [60;47] 72 [20;15] 84 747 [26;18] 59 [34;29] 76 [20;15] 84 972 
4-2-10 [56;62] 72 [19;18] 84 830 [21;26] 59 [35;36] 76 [19;18] 84 1080 
6-3-1 [4;4;5] 76 [1;1;1] 88 104 [1;1;2] 63 [3;3;3] 80 [1;1;1] 88 133 
6-3-2 [6;10;8] 76 [2;4;2] 88 208 [2;4;2] 63 [4;6;6] 80 [2;4;2] 88 266 
6-3-3 [11;13;16] 76 [4;3;5] 84 304 [4;4;6] 59 [7;9;10] 80 [4;3;5] 84 391 
6-3-4 [18;17;21] 76 [6;5;6] 88 420 [6;5;8] 63 [12;12;13] 80 [6;5;6] 88 532 
6-3-5 [21;24;18] 76 [6;6;5] 88 520 [6;8;6] 63 [15;16;12] 80 [6;6;5] 88 665 
6-3-6 [32;32;29] 76 [10;9;7] 84 624 [13;12;11] 63 [19;20;18] 80 [10;9;7] 84 794 
6-3-7 [32;24;31] 76 [8;7;8] 80 716 [11;6;10] 59 [21;18;21] 80 [8;7;8] 80 919 
6-3-8 [31;34;32] 76 [11;9;9] 88 832 [10;11;11] 63 [21;23;21] 80 [11;9;9] 88 1064  
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within one hour, but the total cost increased from 83 to 108 units. By 
modeling user heterogeneity, the supplier can choose a suitable trans-
port mode to deliver commodities based on the attributes of the trans-
port modes to capture customer requirements. 

5.2. Tests using the real-world Beijing Yizhuang transportation network 

5.2.1. Transportation network and parameter setting 
The transportation network of Beijing Yizhuang is shown in Fig. 7. It 

consists of 1954 nodes and 4807 links. The datasets are available at 
https://github.com/Datainstances/Beijing_YiZhuang_network.git. The 
network comprises four satellites. Each satellite has a sufficient capacity 
to process and store data. We generated shipping services on predefined 
lines between the two satellites, as shown in Fig. 7. Three transport 
modes–rigid trucks, trailer trucks, and public vehicles–were allowed to 
travel on each transport line. Seven communities were generated for 
distribution, and stores were randomly generated. Each store also 
randomly generated commodities from seven communities [3, 2, 0, 3, 0, 
1, 2]. We considered a planning horizon divided into 10 periods of 3 h 
each. The time window for each shipment was generated in the space-
–time network. The service time of stores and communities was set to 2 
min, and the transfer time at the satellite facilities was assumed to be 5 
min. 

The settings of the three transport modes (rigid trucks, trailer trucks, 
and public vehicles) were as follows: The travel costs of the three 
transport modes were set to 4, 2, and 1 units/km, respectively, and their 
fixed costs were 20, 30, and zero units, respectively. The capacities of 
the three transport modes were 50, 100, and random units. We 
considered the fixed cost of public vehicles to be zero, and the capacity 

of public vehicles to be randomly generated. The capacity of public 
vehicles in the first and last periods was assumed to lie within (Kim et al., 
2023; Shaw, 1998) and the capacity in other periods within [40, 60]. 
The average velocities of the three transport modes were set to 54, 42, 
and 30 km/h, respectively. In the pickup and delivery stages, the travel 
cost, fixed cost, capacity, and average velocity of the SE vehicles were 1 
unit/km, 10 units, 30 units, and 24 km/h, respectively. As expected, the 
instances generated in the transportation network were too large for the 
standard Gurobi solver, and we adopted ALNS as described above. The 
parameters used are listed in Table B1 of Appendix B. 

5.2.2. Analysis of the results 
Next, we designed five scenarios, and 24 instances of each scenario 

were generated with different stores and commodities, where the 
number of stores varied from 282 to 568, and the number of commod-
ities varied from 2833 to 5826. For each instance, the best solution from 
five repeated experiments was adopted. A maximum of 500 iterations 
was imposed for all instances. The run time increased significantly from 
1 h to approximately 10 h with the size of the instances. The five sce-
narios were: 

(1) Basic scenario. Considering the heterogeneity of users, there are 
three stages in the MCM-2E-VRP: the transport stage in the first echelon 
and the pickup and delivery stages in the SE. In the pickup stage, the SE 
vehicles perform pickup operations at randomly generated stores. Three 
transport modes–rigid trucks, trailer trucks, and public vehicles–can be 
selected to transport commodities by considering the heterogeneity of 
users during the transport stage. Owing to the different transport times 
of the three modes, the commodities are distributed by the three groups 
of SE vehicles in the delivery stage. For convenience, the commodities of 

Fig. 7. Beijing Yizhuang Transportation Network.  
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the rigid trucks, trailer trucks, and public vehicles are referred to as 
rigid, trailer, and public commodities, respectively. 

(2) Scenario I. The multimodal service including rigid trucks, trailer 
trucks, and public vehicles is still adopted to transport commodities in 
the transport stage. However, the heterogeneity of users will not be 
considered, that is, all commodities are uniformly delivered to com-
munities during the delivery stage. The remaining configuration is the 
same as in the Basic scenario. 

(3) Scenario II. One service modal (rigid trucks) is allowed to 
transport commodities in the transport stage, and the remaining settings 
are the same as in Scenario I. 

(4) Scenario III. Only trailer trucks are used to transport commod-
ities in the transport stage, and the remaining configuration is the same 
as in Scenario I. 

(5) Scenario IV. Only public vehicles are adopted to transport 
commodities in the transport stage, and the remaining settings are the 
same as in Scenario I. 

For the Basic scenario, we analyzed the cost per stage behavior of two 
main variables: the number of stores and number of commodities. The 
computational results for the Basic scenario are presented in Table C1 in 
Appendix C. The following information can be obtained: (1) Cost at each 
stage. Considering the heterogeneity of users, three transport modes 
were selected, and three groups of SE vehicles delivered the commod-
ities. Thus, three types of travel and fixed costs were formed in the 
transport and delivery stages according to the three transport modes. 
Moreover, the cost at each stage generally increased with the number of 
stores and commodities. (2) Demand–supply balancing. Public vehicles 
transported commodities with only the remaining capacity. Owing to 
capacity limitations, some public commodities were delivered using 
trailer trucks. The fixed costs of public vehicles were not considered in 
this study. Thus, the travel cost C7 of public vehicles remained un-
changed. The detailed results for instance B_12 are listed in Table C2, 
showing the commodities to seven communities of three transport 
modes and the costs at different stages in each period. The results of the 
Basic scenario reveal that the MCM-2E-VRP considering user heteroge-
neity can be effectively solved using the proposed solution. 

To evaluate the impact of user heterogeneity, we constructed the 
instances of Scenario I, and the computational results are listed in 
Table C3. We used two performance indicators for comparison: the 
number of SE vehicles and the cost during the delivery stage. The 
comparison results are shown in Fig. 8. As shown, the cost and number 
of vehicles in the delivery stage when considering user heterogeneity 

were, on average, 1350 and 43 higher, respectively, than those without 
consideration. In other words, the supplier must allocate four more ve-
hicles in each period, resulting in an additional cost of 135 units to 
satisfy the customer requirements. Furthermore, the three groups of SE 
vehicles delivered commodities owing to the different transport times of 
the three transport modes in the Basic scenario. Among them, the 
earliest starting delivery time of SE vehicles was for the delivery of rigid 
commodities, followed by trailer commodities and then public com-
modities. In Scenario I, commodities were delivered uniformly, and the 
start time of unified distribution was regarded as the starting delivery 
time of public commodities by SE vehicles in the Basic scenario. As 
shown in Fig. 9, SE vehicles for rigid and trailer commodities, ac-
counting for an average of 77.2 % of all SE vehicles in the Basic scenario, 
could deliver earlier than SE vehicles for public commodities and Sce-
nario I. Therefore, although the heterogeneity of users increases the cost 
to the supplier, it better meets customer requirements from the 
perspective of time. 

Furthermore, we analyzed the performance of multiple transport 
modes versus a single transport mode by constructing three single-mode 
scenarios (Scenario II, Scenario III, and Scenario IV). The results ob-
tained for each transport mode are reported in Tables C4, C5, and C6 for 
rigid truck, trailer truck, and public transport, respectively. Fig. 10 
summarizes the performance of the total generalized costs for the 
different scenarios. The cost variation trend for each scenario with the 
size of instances was the same, and the cost of multiple transport modes 
(Basic scenario and Scenario I) essentially fell between the cost of rigid 
trucks (Scenario II) and the cost of trailer trucks (Scenario III). The cost 
of public transport (Scenario IV) was the lowest. However, the 
remaining capacity of public vehicles is limited in real life, and they 
cannot deliver all commodities. In addition, although the time required 
to use rigid trucks to transport commodities was the lowest, the cost was 
relatively high. Therefore, a multimodal transport service with rela-
tively moderate costs and the ability to satisfy diverse customer pref-
erences in terms of time and cost can be applied as an urban logistics 
service. 

5.2.3. Sensitivity analyses of city logistics service 
As described in this section, we investigated the impact of store 

distribution and vehicle capacity on the solutions, including the cost and 
number of vehicles. To perform the sensitivity analysis, we varied only 
one parameter at a time. The maximum number of iterations per 
instance was set to 500. We first analyzed the impact of store distribu-

Fig. 8. Cost and vehicles in the delivery stage between the Basic scenario and Scenario I.  
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tions, including random and cluster distributions, for an identical 
number of stores and commodities, as shown in Fig. 11. Fig. 11 presents 
the two distributions of the 5th period for Instance R_C_10. In the 
random distribution, the store locations were randomly distributed in 
the pickup stage. However, store locations are generally not fairly 
distributed in urban areas; thus, we also created a cluster store distri-
bution. In the cluster distribution, we generated two nonoverlapping 
areas of clusters. Each store was randomly located in the two clusters C1, 
C2 or in another random location, Cran. The likelihood of a store selecting 
a location was pC1 = pC2 = pCran = 1/3. Forty instances were gener-
ated, and the computational results are summarized in Table C7. 
Because changes in store distributions only affect operations in the 
pickup stage, we present the cost and number of SE vehicles in the 
pickup stage based on the different distributions in Table C7. Fig. 12 
shows the changes in the cost and number of SE vehicles. Compared with 
the random distribution, the cost of the cluster distribution could save 
13.02 % on average, yet the number of SE vehicles used did not change 
significantly. Therefore, although the number of vehicles in the cluster 
distribution was essentially the same, the cost was reduced. Concen-
tration and specialization are the primary methods for improving 

efficiency and reducing costs in the logistics industry (Liu, He, Cao, Li, & 
Jian, 2022). Thus, logistics services have the advantage of evolving into 
clusters. 

We performed a further analysis on the impact of the capacity of 
vehicles consisting of SE vehicles, rigid trucks, and trailer trucks. Thus, 
we set three subsets of instances according to the varying capacity of the 
three vehicles and the Basic scenario with the capacity of the SE vehicle, 
rigid truck, and trailer truck was called C_30_50_100 for comparison 
purposes. All instances had the same store setting, including 408 stores 
and 4273 commodities. The computational results are presented in 
Table C8. Figs. 13, 14, and 15 show the changes in the cost and number 
of vehicles with different vehicle capacities, including those of SE ve-
hicles, rigid trucks, and trailer trucks. The results show that with an 
increase in vehicle capacity, the cost of the corresponding stage and the 
number of vehicles required decreased accordingly. Not surprisingly, 
there was an inverse relationship between vehicle capacity and the 
number of vehicles. Furthermore, we observed that an increase in the 
capacity of rigid trucks had no impact on the cost or number of vehicles 
when the capacity was within [60,70]. This indicates that the capacity of 
rigid trucks is no longer a constraint that limits transport costs. Thus, 

Fig. 9. Comparison of vehicles between the Basic scenario and Scenario I.  

Fig. 10. Total generalized costs under different scenarios.  
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when the quantity of commodities is fixed, there is an inverse rela-
tionship between vehicle capacity and the number of vehicles. However, 
logistics companies do not recommend blindly increasing vehicle ca-
pacity to reduce the number of vehicles and transport costs, especially 
when it reaches a critical threshold. 

6. Conclusions 

In this study, we introduced the MCM-2E-VRP as a new extension of 
the 2E-VRP by considering multiple transport modes and commodities. 
Specifically, commodities can be transported by rigid trucks, trailer 
trucks, or public transport in the first echelon. To capture the hetero-
geneity of users, we used a random utility discrete choice model to 
allocate commodities. Furthermore, we applied a many-to-one logistics 
setting in which multiple commodities can be collected from any store, 
and customers can obtain their commodities in a multi-period horizon. 
The objective is to minimize the total generalized costs while satisfying 
customer requirements. 

To address the MCM-2E-VRP, we divided this complex problem into 

three stages: pickup, transport, and delivery stages. Then, we formulated 
it as an integer linear programming model based on a space–time 
network, and the customers’ route-choice behavior at the transport stage 
was modeled using a mixed logit model. Some public commodities must 
be readjusted to other transport modes because of public vehicle ca-
pacity limitations. To achieve a demand–supply balance, this study 
considered that some of the public commodities were transported using 
trailer trucks. We further introduced an ALNS algorithm to the model to 
allow the handling of large applications. Because the 2E-VRP is a special 
case of the MCM-2E-VRP, we validated the quality of our proposed 
model and the ALNS algorithm by solving the 2E-VRP benchmark in-
stances. Furthermore, we assessed the performance of the proposed 
model and ALNS by solving newly generated MCM-2E-VRP instances 
and analyzing user heterogeneity for the MCM-2E-VRP. 

Extensive numerical experiments were conducted using the Beijing 
Yizhuang transportation network. The studies revealed that compared to 
Scenario I, the Basic scenario considering user heterogeneity introduced 
an increase in the cost to the supplier; however, it better met the cus-
tomers’ requirements from the perspective of time. Moreover, by 

Fig. 11. Two store distributions: (a) random and (b) cluster distributions.  

Fig. 12. Comparison of pickup cost and SE vehicles between the two distributions.  
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analyzing the performance of multiple transport modes (Basic scenario 
and Scenario I) versus the single-transport mode (Scenario II, Scenario 
III, and Scenario IV), we found that a multimodal transport service, with 
relatively moderate costs and the ability to meet diverse customer 
preferences regarding time and cost, could be applied as a logistics 
service in urban logistics. In addition, we investigated the impact of 
store distributions and found that compared with the random distribu-
tion, the cost of the cluster distribution could save 13.02 % on average in 
the pickup stage. The same managerial insights have been discussed: 
concentration and specialization are the primary methods for improving 
efficiency and reducing costs in the logistics industry (Liu et al., 2022). 
Finally, a typical inverse relationship exists between vehicle capacity 
and the number of vehicles. An expected outcome confirmed by 
analyzing studies on rigid truck capacity is that logistics companies do 
not recommend blindly increasing vehicle capacity to reduce the num-
ber of vehicles and transport costs, especially when it reaches a critical 
threshold. 

Future research may consider the following. Because a random 
utility discrete choice model is utilized to allocate commodities, and a 

demand–supply balance must be achieved, the number of commodities 
must be predetermined. Thus, one research direction is to extend the 
problem by considering commodities as uncertain and dynamic. In 
addition, the number of SE vehicles used in the SE is relatively large. 
Hence, another promising research direction is the 2E-VRP with multi-
ple trips along the SE by SE vehicles for multiple SE routes. 
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Appendix A. Structures of destroy and repair operators 

The structure of destroy operators is provided in Algorithm 2.   

Algorithm 2 The structure of destroy operators 
Input: The current solution s, the predetermined removal number lr 
Output: A partial solution sp 

Initialize removal list Lr = ∅, r = 0 
While r < lr, do 
Applying a destroy operator to remove store node p 
Lr =Lr ∪ p 
r := r + 1 
Return removal list Lr and a partial solution sp  

The structure of repair operators is shown in Algorithm 3.   

Algorithm 3 The structure of repair operators 
Input: Partial solution sp, the removal list Lr 

Output: a new solution s′ 

For store node of the removal list p ∈ Lr , do 
Applying repair operator to insert store node p 
If store node p cannot be inserted into any path, constructing a new path. 
Return a new solution s′   

Fig. 15. Impact of trailer truck capacity.  
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Appendix B. Parameters in the proposed ALNS algorithm  

Table B1 
Parameter values in ALNS.  

Parameter Value/Percentage gaps 

Initial temperature parameter δ 0.1 
Cooling rate c 0.94 
The adaptive weights parameter η 0.2 
The ratio of random removal 0.1–0.3 
The number of worst removals 4–14 
First Shaw parameter μ1 0.5 
Second Shaw parameter μ2 0.3 
Third Shaw parameter μ3 0.2 
The ratio of Shaw removal 0.3 
The route removal number 1 
The route redistribution number 3 
Coefficient of regret-n 4 
Best new solution σ1 >0.1 25 >0.01 16 <0.01 9 
Improving solution σ2 5 4 3 
Deteriorating solution σ3 1 1 1  

Appendix C. Detailed computational results for the Beijing Yizhuang transportation network  

Table C1 
Computational results for the basic scenario.  

Instance S D Pickup stage Transport stage Delivery stage 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

B_1 282 2833  1036.09 1070  588.88 400  346.97 720  147.22  591.15 400  706.62 800  636.84 440 
B_2 285 2809  1014.62 1050  588.88 400  333.84 690  147.22  578.78 400  719.38 800  617.26 440 
B_3 288 3032  1046.44 1160  588.88 400  363.28 750  147.22  613.71 400  735.15 870  606.45 410 
B_4 295 2996  1065.46 1150  588.88 400  373.24 780  147.22  568.08 380  750.12 870  633.83 450 
B_5 316 3221  1201.60 1240  588.88 400  379.59 780  147.22  599.96 400  771.63 930  622.48 430 
B_6 333 3388  1334.07 1280  588.88 400  389.55 810  147.22  621.79 410  784.48 980  605.86 450 
B_7 333 3419  1301.54 1290  588.88 400  399.51 840  147.22  604.74 420  759.48 970  641.59 450 
B_8 334 3315  1356.22 1240  588.88 400  402.69 840  147.22  579.04 420  763.86 940  631.53 450 
B_9 346 3540  1304.04 1360  588.88 400  419.00 870  147.22  616.69 420  785.97 1030  636.32 470 
B_10 363 3732  1445.59 1390  588.88 400  461.57 960  147.22  614.41 400  797.30 1070  616.23 470 
B_11 389 3876  1476.78 1460  588.88 400  461.57 960  147.22  618.99 440  816.62 1160  628.59 500 
B_12 395 4058  1526.01 1550  588.88 400  474.71 990  147.22  633.19 450  833.25 1120  637.45 470 
B_13 396 4092  1536.80 1550  615.15 420  477.88 990  147.22  628.07 440  819.58 1190  627.34 490 
B_14 403 4177  1572.48 1580  641.41 440  487.84 1020  147.22  642.06 450  853.22 1200  644.83 470 
B_15 437 4428  1716.38 1660  615.15 420  553.08 1140  147.22  632.12 450  876.32 1270  613.94 470 
B_16 475 4923  1891.00 1900  667.68 460  595.66 1230  147.22  634.32 460  941.60 1410  624.01 480 
B_17 477 4933  1840.12 1890  615.15 420  615.15 1260  147.22  636.32 470  935.77 1430  607.49 520 
B_18 479 4954  1874.90 1880  720.22 500  582.53 1200  147.22  641.59 500  929.94 1330  622.11 490 
B_19 482 4997  1833.55 1910  720.22 500  579.35 1200  147.22  645.17 510  944.90 1350  624.39 500 
B_20 515 5332  2136.25 2030  641.41 440  654.55 1350  147.22  659.88 500  987.15 1450  631.34 510 
B_21 557 5693  2129.04 2150  799.02 560  680.81 1410  147.22  645.63 550  1042.71 1530  616.84 480 
B_22 566 5891  2087.49 2210  857.91 600  693.95 1440  147.22  637.58 550  1127.16 1580  632.05 530 
B_23 567 5737  2149.70 2150  805.37 560  693.95 1440  147.22  636.23 550  1033.00 1550  625.74 520 
B_24 568 5826  2230.52 2180  746.48 520  713.44 1470  147.22  639.89 540  1103.47 1600  616.30 490 

S: number of stores; D: number of commodities; C1, C2: travel and fixed costs of SE vehicles in the pickup stage, respectively. In transport stage, C3, C4: travel and fixed 
costs of rigid trucks, C5, C6: travel and fixed costs of trailer trucks, respectively, and C7: travel cost of public vehicles. In the delivery stage, C8, C9: travel and fixed costs 
of SE vehicles for rigid commodities, respectively, C10, C11: travel and fixed costs of SE vehicles for trailer commodities, respectively, and C12, C13: travel and fixed 
costs of SE vehicles for public commodities, respectively.  

Table C2 
Detailed results for instance B_12.  

P S Rigid commodities Trailer commodities Public commodities Pickup Stage Transport stage Delivery stage 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

1 41 7;6;9;5;8;9;16 33;38;36;38;41;39;43 9;9;7;6;6;7;10  145.66 150  58.89 40  42.58 90  14.72  61.63 40  79.23 110  61.63 40 
2 39 10;8;5;5;9;9;5 35;32;33;27;31;38;38 14;13;13;12;9;12;11  128.58 140  58.89 40  45.75 90  14.72  61.63 40  72.91 90  67.13 50 
3 42 10;14;13;9;9;9;11 47;43;38;43;47;40;42 8;11;6;12;12;9;12  169.35 160  58.89 40  58.89 120  14.72  51.03 40  83.55 120  64.12 60 
4 40 13;9;8;12;8;8;13 41;49;37;43;36;46;36 8;14;17;12;11;6;9  172.17 170  58.89 40  42.58 90  14.72  67.13 50  87.69 110  63.80 60 
5 38 8;14;11;12;8;13;9 38;36;36;34;34;39;31 15;11;14;12;13;11;14  145.82 160  58.89 40  58.89 120  14.72  67.13 50  88.62 120  61.63 40 
6 39 13;8;8;10;7;8;12 41;40;38;43;33;40;36 10;10;12;7;7;10;11  163.03 160  58.89 40  42.58 90  14.72  61.63 40  79.23 110  61.63 40 
7 39 8;11;9;10;10;12;9 38;38;38;31;39;38;34 13;13;13;13;11;18;10  148.04 160  58.89 40  42.58 90  14.72  67.13 50  85.59 110  67.13 50 
8 38 8;11;7;11;9;14;11 33;35;29;38;28;37;38 9;13;11;12;11;15;11  140.23 150  58.89 40  42.58 90  14.72  67.13 50  79.23 110  61.63 40 
9 39 10;7;11;9;12;9;14 35;39;35;30;31;30;33 11;14;14;8;9;16;14  143.86 150  58.89 up40  42.58 90  14.72  61.63 40  73.28 100  67.13 50 
10 40 11;8;10;8;8;15;13 44;39;45;42;37;46;44 4;6;10;8;4;6;3  169.28 150  58.89 40  55.71 120  14.72  67.13 50  103.92 140  61.63 40 

P: Period; the other symbols are the same as those in Table C1.  
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Table C3 
Computational results for Scenario I.  

Instance Pickup stage Transport stage Delivery stage 

C1 C2 C3 C4 C5 C6 C7 MB C1 MB C2 

MB_1  1036.09 1070  588.88 400  346.97 720  147.22  886.19 1270 
MB_2  1014.62 1050  588.88 400  333.84 690  147.22  862.72 1230 
MB_3  1046.44 1160  588.88 400  363.28 750  147.22  952.27 1300 
MB_4  1065.46 1150  588.88 400  373.24 780  147.22  916.09 1310 
MB_5  1201.60 1240  588.88 400  379.59 780  147.22  1008.61 1350 
MB_6  1334.07 1280  588.88 400  389.55 810  147.22  1002.04 1470 
MB_7  1301.54 1290  588.88 400  399.51 840  147.22  1062.98 1440 
MB_8  1356.22 1240  588.88 400  402.69 840  147.22  1018.45 1380 
MB_9  1304.04 1360  588.88 400  419.00 870  147.22  1008.13 1470 
MB_10  1445.59 1390  588.88 400  461.57 960  147.22  1116.43 1470 
MB_11  1476.78 1460  588.88 400  461.57 960  147.22  1083.40 1530 
MB_12  1526.01 1550  588.88 400  474.71 990  147.22  1150.51 1620 
MB_13  1536.80 1550  615.15 420  477.88 990  147.22  1201.38 1650 
MB_14  1572.48 1580  641.41 440  487.84 1020  147.22  1180.18 1700 
MB_15  1716.38 1660  615.15 420  553.08 1140  147.22  1254.57 1710 
MB_16  1891.00 1900  667.68 460  595.66 1230  147.22  1344.15 1940 
MB_17  1840.12 1890  615.15 420  615.15 1260  147.22  1358.51 1950 
MB_18  1874.90 1880  720.22 500  582.53 1200  147.22  1375.41 1880 
MB_19  1833.55 1910  720.22 500  579.35 1200  147.22  1350.25 1940 
MB_20  2136.25 2030  641.41 440  654.55 1350  147.22  1438.06 2050 
MB_21  2129.04 2150  799.02 560  680.81 1410  147.22  1482.17 2170 
MB_22  2087.49 2210  857.91 600  693.95 1440  147.22  1549.98 2240 
MB_23  2149.70 2150  805.37 560  693.95 1440  147.22  1515.95 2190 
MB_24  2230.52 2180  746.48 520  713.44 1470  147.22  1460.22 2210 

MB C1, MB C2: travel and fixed costs of SE vehicles for all commodities, respectively. The other symbols are the same as those listed in Table 4.  

Table C4 
Computational results for Scenario II.  

Instance Pickup Stage Transport Stage Delivery Stage 

C1 C2 C3 C4 SRB C1 SRB C2 

SRB_1  1036.09 1070  1931.45 1340  886.19 1270 
SRB_2  1014.62 1050  1911.53 1320  862.72 1230 
SRB_3  1046.44 1160  2029.31 1400  952.27 1300 
SRB_4  1065.46 1150  2003.04 1380  916.09 1310 
SRB_5  1201.60 1240  2199.62 1520  1008.61 1350 
SRB_6  1334.07 1280  2284.78 1580  1002.04 1470 
SRB_7  1301.54 1290  2174.21 1520  1062.98 1440 
SRB_8  1356.22 1240  2193.27 1520  1018.45 1380 
SRB_9  1304.04 1360  2323.75 1600  1008.13 1470 
SRB_10  1445.59 1390  2572.01 1760  1116.43 1470 
SRB_11  1476.78 1460  2494.06 1720  1083.40 1530 
SRB_12  1526.01 1550  2651.66 1840  1150.51 1620 
SRB_13  1536.80 1550  2697.85 1880  1201.38 1650 
SRB_14  1572.48 1580  2697.85 1880  1180.18 1700 
SRB_15  1716.38 1660  2900.78 2020  1254.57 1710 
SRB_16  1891.00 1900  3129.12 2160  1344.15 1940 
SRB_17  1840.12 1890  3116.41 2160  1358.51 1950 
SRB_18  1874.90 1880  3161.74 2180  1375.41 1880 
SRB_19  1833.55 1910  3129.97 2180  1350.25 1940 
SRB_20  2136.25 2030  3254.10 2260  1438.06 2050 
SRB_21  2129.04 2150  3601.08 2500  1482.17 2170 
SRB_22  2087.49 2210  3698.94 2560  1549.98 2240 
SRB_23  2149.70 2150  3665.46 2520  1515.95 2190 
SRB_24  2230.52 2180  3620.99 2520  1460.22 2210 

SRB C1, SRB C2: travel and fixed costs of SE vehicles in the delivery stage, respectively. The other symbols are the same as those listed in Table 4.  

Table C5 
Computational results for Scenario III.  

Instance Pickup stage Transport stage Delivery stage 

C1 C2 C5 C6 STB C1 STB C2 

STB_1  1036.09 1070  536.77 1110  886.19 1270 
STB_2  1014.62 1050  549.91 1140  862.72 1230 
STB_3  1046.44 1160  582.53 1200  952.27 1300 
STB_4  1065.46 1150  566.22 1170  916.09 1310 
STB_5  1201.60 1240  621.93 1290  1008.61 1350 

(continued on next page) 
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Table C5 (continued ) 

Instance Pickup stage Transport stage Delivery stage 

C1 C2 C5 C6 STB C1 STB C2 

STB_6  1334.07 1280  651.37 1350  1002.04 1470 
STB_7  1301.54 1290  628.71 1320  1062.98 1440 
STB_8  1356.22 1240  638.24 1320  1018.45 1380 
STB_9  1304.04 1360  654.55 1350  1008.13 1470 
STB_10  1445.59 1390  703.48 1440  1116.43 1470 
STB_11  1476.78 1460  683.99 1410  1083.40 1530 
STB_12  1526.01 1550  749.66 1560  1150.51 1620 
STB_13  1536.80 1550  762.79 1590  1201.38 1650 
STB_14  1572.48 1580  749.66 1560  1180.18 1700 
STB_15  1716.38 1660  792.24 1650  1254.57 1710 
STB_16  1891.00 1900  854.30 1770  1344.15 1940 
STB_17  1840.12 1890  854.30 1770  1358.51 1950 
STB_18  1874.90 1880  870.61 1800  1375.41 1880 
STB_19  1833.55 1910  847.95 1770  1350.25 1940 
STB_20  2136.25 2030  893.70 1860  1438.06 2050 
STB_21  2129.04 2150  965.72 2010  1482.17 2170 
STB_22  2087.49 2210  982.03 2040  1549.98 2240 
STB_23  2149.70 2150  975.25 2010  1515.95 2190 
STB_24  2230.52 2180  995.17 2070  1460.22 2210 

STB C1, STB C2: travel and fixed costs of SE vehicles in the delivery stage, respectively. The other symbols are the same as those listed in Table 4.  

Table C6 
Computational results for Scenario IV.  

Instance Pickup Stage Transport Stage Delivery Stage 

C1 C2 C7 SPB C1 SPB C2 

SPB_1  1036.09 1070  561.45  886.19 1270 
SPB_2  1014.62 1050  553.08  862.72 1230 
SPB_3  1046.44 1160  628.28  952.27 1300 
SPB_4  1065.46 1150  603.81  916.09 1310 
SPB_5  1201.60 1240  635.06  1008.61 1350 
SPB_6  1334.07 1280  697.12  1002.04 1470 
SPB_7  1301.54 1290  653.17  1062.98 1440 
SPB_8  1356.22 1240  666.09  1018.45 1380 
SPB_9  1304.04 1360  688.97  1008.13 1470 
SPB_10  1445.59 1390  715.02  1116.43 1470 
SPB_11  1476.78 1460  730.17  1083.40 1530 
SPB_12  1526.01 1550  767.77  1150.51 1620 
SPB_13  1536.80 1550  761.20  1201.38 1650 
SPB_14  1572.48 1580  821.68  1180.18 1700 
SPB_15  1716.38 1660  826.66  1254.57 1710 
SPB_16  1891.00 1900  923.15  1344.15 1940 
SPB_17  1840.12 1890  939.46  1358.51 1950 
SPB_18  1874.90 1880  924.73  1375.41 1880 
SPB_19  1833.55 1910  934.69  1350.25 1940 
SPB_20  2136.25 2030  944.44  1438.06 2050 
SPB_21  2129.04 2150  1140.80  1482.17 2170 
SPB_22  2087.49 2210  1101.40  1549.98 2240 
SPB_23  2149.70 2150  1125.86  1515.95 2190 
SPB_24  2230.52 2180  1087.10  1460.22 2210 

SPB C1, SPB C2: travel and fixed costs of SE vehicles in the delivery stage, respectively. The other symbols are the same as those listed in Table 4.  

Table C7 
Computational results for different distribution.  

Instance S D Random distribution Cluster distribution 

Pickup cost SE vehicles Pickup cost SE vehicles 

R_C_1 292 3029  2365.38 115  1957.46 114 
R_C_2 295 2946  2225.00 114  1937.37 111 
R_C_3 297 2992  2252.09 115  1970.28 113 
R_C_4 304 3095  2333.55 120  1971.52 117 
R_C_5 328 3332  2567.89 125  2179.24 126 
R_C_6 335 3297  2521.47 123  2193.77 125 
R_C_7 344 3566  2751.49 136  2366.72 132 
R_C_8 345 3580  2708.53 137  2306.55 136 
R_C_9 394 3973  3101.45 153  2616.62 149 
R_C_10 397 4005  3084.84 152  2583.34 151 
R_C_11 398 4090  3131.18 156  2711.94 159 
R_C_12 399 4064  3108.63 152  2674.81 153 

(continued on next page) 
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Table C7 (continued ) 

Instance S D Random distribution Cluster distribution 

Pickup cost SE vehicles Pickup cost SE vehicles 

R_C_13 474 4856  3673.76 182  3234.73 182 
R_C_14 477 4969  3676.89 186  3307.61 185 
R_C_15 478 4925  3684.18 185  3399.24 186 
R_C_16 479 4979  3876.51 190  3263.44 186 
R_C_17 555 5735  4325.57 215  3870.63 210 
R_C_18 557 5662  4223.84 212  3857.71 212 
R_C_19 558 5657  4207.89 211  3787.00 209 
R_C_20 563 5873  4426.49 220  3926.10 218 

S: number of stores; D: number of commodities.  

Table C8 
Computational results for different vehicle capacities.  

Instance S D Pickup Stage Transport Stage Delivery Stage 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

C_20_50_100 408 4273  1704.11 2670  641.41 440  507.33 1050  147.22  673.82 590  1148.25 1640  624.90 590 
C_25_50_100 408 4273  1630.93 1930  641.41 440  507.33 1050  147.22  638.97 520  939.47 1400  617.82 550 
C_30_50_100 408 4273  1566.23 1610  641.41 440  507.33 1050  147.22  643.38 470  840.04 1220  626.05 520 
C_35_50_100 408 4273  1509.61 1360  641.41 440  507.33 1050  147.22  627.29 420  810.06 1130  608.10 410 
C_40_50_100 408 4273  1445.85 1230  641.41 440  507.33 1050  147.22  621.79 410  765.12 1000  608.10 410 
C_45_50_100 408 4273  1422.41 1070  641.41 440  507.33 1050  147.22  616.30 400  740.91 880  602.60 400 
C_50_50_100 408 4273  1415.38 980  641.41 440  507.33 1050  147.22  616.30 400  712.82 800  602.60 400 
C_30_30_100 408 4273  1584.32 1620  1047.28 720  507.33 1050  147.22  643.38 470  840.04 1220  626.05 520 
C_30_35_100 408 4273  1550.35 1620  864.26 600  507.33 1050  147.22  643.38 470  840.04 1220  626.05 520 
C_30_40_100 408 4273  1578.21 1620  779.10 540  507.33 1050  147.22  643.38 470  840.04 1220  626.05 520 
C_30_45_100 408 4273  1581.89 1610  667.68 460  507.33 1050  147.22  643.38 470  840.04 1220  626.05 520 
C_30_50_100 408 4273  1566.23 1610  641.41 440  507.33 1050  147.22  643.38 470  840.04 1220  626.05 520 
C_30_55_100 408 4273  1566.75 1630  615.15 420  507.33 1050  147.22  643.38 470  840.04 1220  626.05 520 
C_30_60_100 408 4273  1565.72 1610  588.88 400  507.33 1050  147.22  643.38 470  840.04 1220  626.05 520 
C_30_65_100 408 4273  1560.70 1610  588.88 400  507.33 1050  147.22  643.38 470  840.04 1220  626.05 520 
C_30_70_100 408 4273  1562.97 1620  588.88 400  507.33 1050  147.22  643.38 470  840.04 1220  626.05 520 
C_30_50_60 408 4273  1575.55 1620  641.41 440  821.68 1710  147.22  643.38 470  840.04 1220  626.05 520 
C_30_50_70 408 4273  1547.24 1630  641.41 440  713.44 1470  147.22  643.38 470  840.04 1220  626.05 520 
C_30_50_80 408 4273  1556.25 1630  641.41 440  654.55 1350  147.22  643.38 470  840.04 1220  626.05 520 
C_30_50_90 408 4273  1597.17 1620  641.41 440  625.10 1290  147.22  643.38 470  840.04 1220  626.05 520 
C_30_50_100 408 4273  1566.23 1610  641.41 440  507.33 1050  147.22  643.38 470  840.04 1220  626.05 520 
C_30_50_110 408 4273  1569.07 1630  641.41 440  491.02 1020  147.22  643.38 470  840.04 1220  626.05 520 
C_30_50_120 408 4273  1556.14 1620  641.41 440  474.71 990  147.22  643.38 470  840.04 1220  626.05 520 
C_30_50_130 408 4273  1566.11 1620  641.41 440  445.26 930  147.22  643.38 470  840.04 1220  626.05 520 
C_30_50_140 408 4273  1567.66 1620  641.41 440  419.00 870  147.22  643.38 470  840.04 1220  626.05 520  

The symbols are the same as those in Table C1. 
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Bayliss, C., Bektaş, T., Tjon-Soei-Len, V., & Rohner, R. (2023). Designing a multi-modal 
and variable-echelon delivery system for last-mile logistics. European Journal of 
Operational Research, 307(2), 645–662. 

Belgin, O., Karaoglan, I., & Altiparmak, F. (2018). Two-echelon vehicle routing problem 
with simultaneous pickup and delivery: Mathematical model and heuristic approach. 
Computers & Industrial Engineering, 115, 1–16. 

Boccia, M., Crainic, T. G., Sforza, A., & Sterle, C. (2018). Multi-commodity location- 
routing: Flow intercepting formulation and branch-and-cut algorithm. Computers & 
Operations Research, 89, 94–112. 

Breunig, U., Schmid, V., Hartl, R. F., & Vidal, T. (2016). A large neighbourhood based 
heuristic for two-echelon routing problems. Computers & Operations Research, 76, 
208–225. 

Cebeci, M. S., Tapia, R. J., Kroesen, M., de Bok, M., & Tavasszy, L. (2023). The effect of 
trust on the choice for crowdshipping services. Transportation Research Part A: Policy 
and Practice, 170, Article 103622. 

Crainic, T. G., Ricciardi, N., & Storchi, G. (2009). Models for evaluating and planning city 
logistics systems. Transportation science, 43(4), 432–454. 

Crainic, T. G., Errico, F., Rei, W., & Ricciardi, N. (2016). Modeling demand uncertainty in 
two-tier city logistics tactical planning. Transportation Science, 50(2), 559–578. 

Cuda, R., Guastaroba, G., & Speranza, M. G. (2015). A survey on two-echelon routing 
problems. Computers & Operations Research, 55, 185–199. 

Dellaert, N., Van Woensel, T., Crainic, T. G., & Saridarq, F. D. (2021). A multi-commodity 
two-echelon capacitated vehicle routing problem with time windows: Model 
formulations and solution approach. Computers & Operations Research, 127, Article 
105154. 

Fontaine, P., Crainic, T. G., Jabali, O., & Rei, W. (2021). Scheduled service network 
design with resource management for two-tier multimodal city logistics. European 
Journal of Operational Research, 294(2), 558–570. 
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