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Summary

Advancements in aerial vehicles have presented new challenges for flight control system

design. The disturbed airflow caused by rotors and flapping wings and the nonlinearity

and uncertainty increased by morphing components impede the identification of a globally

accurate model of these vehicles. Additionally, complex components can increase the risk

of structural damage and faults and pursuing large wingspans and a high aspect ratio can

result in unstable flight dynamics because of structural flexibility. Moreover, current control

systems are limited in their ability to adapt to unanticipated or changing circumstances.

Given these challenges, the aerospace community has turned to intelligent methods to

enhance the autonomy of flight controllers. Reinforcement learning (RL) has been popu-

lar in recent years because it offers self-learning approaches that improve agent policies

through interaction with the environment. Fruitful cross-fertilization of RL and control

theory produced adaptive dynamic programming (ADP), which has been successfully ap-

plied to a wide range of nonlinear control systems, including aerial vehicles. ADP inherits

dynamic programming’s optimality while enabling adaptability. Furthermore, with the

facilitation of artificial neural networks (ANNs), ADP can handle complex control demands

and demonstrate the capability of online learning. Consequently, the main research goal of

this dissertation is:

To improve the adaptability and online learning capability of flight control
systems by designing nonlinear ADP approaches.

RL and ADP are relatively new in the field of flight control. Despite the promising

benefits, applying ADP to aerial vehicles in flight control presents challenges. Online

learning efficiency is a concern due to uncertainties, disturbances, and sudden faults during

flight. Imperfect measurements and partial observability further complicate the application

of ADP. The lack of a unified paradigm for different categories of ADP also hinders learning

efficiency. Therefore, these challenges lead to the first research sub-question:

1. How to synthesize and improve current online ACDs to cope with dynamic and mea-
surement uncertainties, partial observability, external disturbances and sudden faults?

This research question is answered through the development of global dual heuristic

programming (GDHP) with explicit analytical calculations and an incremental model,

which synthesizes current online ACDs without requiring prior knowledge of system dy-

namics. It uses a critic network to approximate the cost function and analytically computes

derivatives based on the approximation, while incorporating an incremental model to

estimate state transitions using instant and historical data sets. Through applications to

attitude control problems in a nonlinear aircraft, the proposed method demonstrates the

ability to handle imperfect measurements, unknown and time-varying dynamics, diverse

initial conditions, and sudden faults while maintaining efficient control.
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The second challenge in Adaptive Dynamic Programming (ADP) is ensuring online

learning stability for aerial vehicles. As system complexity increases, accurate modeling

becomes difficult, and control input constraints must be considered. However, theoretical

analysis of control stability is limited due to the complexity of Artificial Neural Networks

(ANNs). RL flight controllers also have a low success ratio in online learning control due

to stochastic processes. These challenges lead to the second research sub-question:

2. How to achieve optimality and stability of ADP for discrete-time (DT) and continuous-
time (CT) systems, while dealing with input constraints of aerial vehicles?

This research question is answered through the construction of an enhanced non-

quadratic integral utility function and a bounding layer in the actor network. The new

utility function allows for analytical calculations of constrained control inputs. A bounding

layer with activation functions is designed for DT systems, addressing asymmetric control

input constraints. Three solutions are proposed to enhance stability. Firstly, the incremental

model and improved GDHP technique enable quick online learning with a success ratio

exceeding 99%. Secondly, the iterative adaptive critic algorithm improves performance

through multiple iterations. Besides, simplified analytical calculations and the concept

of explainable GDHP (XGDHP) are introduced. Finally, for continuous-time nonlinear

systems, an improved update criterion eliminates the need for initial admissible control

while ensuring Lyapunov closed-loop stability considering network approximation errors.

The third challenge in online ADP flight control is the high computational load. This

dissertation introduces the event-triggered control (ETC) scheme to optimize computational

utilization, and applies ETC to aerial vehicles with intelligent optimal control. ETC reduces

update frequency and affects policy exploration, ultimately impacting control performance.

Therefore, the third research sub-question is formulated:

3. How to save computational and communication load by event-triggered ADP without
significantly affecting overall performance?

This research question is answered through the respective investigation of DT and CT

systems. This research combines ETC with XGDHP for DT systems, with ETC acting as

the outer loop of XGDHP. The triggering condition for stability is improved and a more

specific proof is provided. For CT systems, ETC is incorporated in the ADP algorithm

with a novel triggering condition considering input constraints. The Zeno phenomenon is

analyzed and avoided based on the derived triggering condition. The closed-loop stability

of the ETC scheme is theoretically proven and verified through simulation. Results show

that ADP benefits from ETC in terms of computational and communication load while

achieving comparable control performance.

In conclusion, this dissertation develops ADP flight control methods to enhance the

autonomy of aerial vehicles despite uncertainties and constraints, and successfully answers

the following main research question:

How can aerial vehicles benefit from ADP to improve autonomy and online
learning in an uncertain environment, while satisfying requirements on input
constraints, adaptability, stability and computational efficiency?
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1
Introduction

1.1 Autonomous Control in Aerial Vehicles
The last hundred years have witnessed an unprecedented surge of automated control in

various domains, ranging from household appliances to industrial manufacturing and

aerospace systems. Since the great industrial revolution, automation has now been widely

accepted and has freed people from tedious and monotonous physical activities and thus

decreased costs. In the information age, great importance has been attached to higher

automation for better economic benefits and a more comfortable life. These incentives

encourage increased automation in all social sectors.

The development of aerial vehicles is no exception to this trend. Since their first proto-

typical versions, which consisted only of mechanical components and depended heavily on

manual operations, a variety of aerial vehicles has been created for a multitude of usages,

as shown in Fig. 1.1. Taking Delft University of Technology (TU Delft) as an example,

there are various unmanned aerial vehicles (UAVs) and manned aircraft developed or under

development in recent years. In terms of UAVs, the Delfy Nimble bio-inspired ornithopter

(Fig. 1.1a) is one of the most famous, which imitates the tailless structure of the fruit fly

and can achieve agile flying [1]. As to manned aircraft, sustainable aviation is becoming a

concept recognized by more people, and therefore energy-efficient aircraft are receiving

more attention, such as the Flying-V prototype aircraft (Fig. 1.1b). In addition to these

complete aircraft, research on aircraft components is also underway. For instance, the

SmartX project develops a biomimetic seamless morphing wing (Fig. 1.1d) that can actively

optimize its shape, minimize the air resistance and thus save energy [2, 3]. Researchers

in other parts of the world also investigate novel aerial vehicles that can work in various

environments. For instance, for urban air mobility, Airbus develops the CityAirbus demon-

strator (Fig. 1.1c), which is a multi-passenger, autonomous piloted electric vertical takeoff

and landing vehicle [4]. For multimodal environments, scientists at Harvard University

developed an insect-scale robot with a pair of flapping wings, which is capable of hybrid

aerial and aquatic locomotion [5] (Fig. 1.1e).

Nonetheless, with the rise and success of these projects, they also become more complex

in terms of their structure and working environment and bring about new challenges for

the control system. For example, conventional flight control methods require piecewise
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(a) DelFly Nimble ornithopter [1] (b) Flying-V aircraft ©TU Delft (c) CityAirbus demonstrator [4]

(d) SmartX-Alpha seamless morphing wing ©T. Mkhoyan (e) Hybrid RoboBee robot [6]

Figure 1.1: Examples of recently developed aerial vehicles and components.

mathematical models of the physical system and generate control laws around each op-

erating point by appropriate methods such as stability analysis and manual tuning [7].

However, rotors and flapping wings disturb the airflow that interacts with the UAV body,

which impedes the analysis of the force and moment mechanisms. Simultaneously, mor-

phing components in the morphing wing also increase the nonlinearity and uncertainty,

which complicates the system identification. Therefore, constructing a globally accurate

model is intractable and often not practical for these structurally complex systems. Fur-

thermore, these complex components may also increase the risk of structural damage

and sudden faults [8], as presented in Fig. 1.2a. Moreover, although the high-precision

aerodynamics and kinematics of fixed-wing aircraft can be identified offline, the pursuit

of a large wingspan and a high aspect ratio for aerodynamic efficiency often leads to

structural flexibility. When encountered with moderate air turbulence, the interaction of

the structural and rigid-body modes can result in unstable flight dynamic modes [9] like the

phugoid mode, which in extreme situations can cause oscillations and even lead to a crash,

such as the loss of NASA’s Helios prototype aircraft [10] shown in Fig. 1.2b. Under these

unanticipated or changing circumstances, current control systems are seriously challenged

because they often lack the capability to adapt to situations for which they have not been

designed. Consequently, with the trend of designing novel and advanced aerial vehicles,

more stringent, improved and intelligent approaches to autonomous control are required

to deliver guaranteed performance and the satisfaction of prescribed targets, instead of

merely automated control.

The difference between automated control and autonomous control is not always clear
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(a) A quadcopter with a single rotor detached, ©S.

Sun

(b) Helios at high wing dihedral prior to struc-

tural failure and in-flight breakup, ©NASA

Figure 1.2: Examples of structural failure of aerial vehicles during flight.

due to the nearness of their definitions. They are overlapping but different concepts and

have already been distinguished by lots of researchers [11–14]. Specifically, automated

control can utilize limited logic or feedback to react accordingly to several predetermined

circumstances with limited-to-no human interaction. Autonomous control mentioned

in this dissertation encompasses forms of automated control but additionally allows for

decision making in circumstances that are not explicitly accounted for by designers or

can find solutions that are not predetermined or preprogrammed by designers [14]. In

other words, autonomous control extends the concept of automated control with aspects

of adaptive or online learning capability, which is also named as intelligence. Therefore,
autonomous control has more potential to overcome the challenges brought about by the

increase in the complexity of aerial vehicles.

Recent years have witnessed significant developments and innovations in artificial

intelligence (AI) and machine learning (ML), which provide promising solutions to the

increase of autonomy, and therefore the involvement of AI/ML in aerial vehicles has

become an active research field. For instance, the European Union Aviation Safety Agency

(EASA) has published a human-centric AI technical roadmap, intending to depict the

development prospect of AI in aviation [15]. As shown in Fig. 1.3, AI and ML play a vital

role in achieving more autonomous flight in this vision. Nonetheless, many ML approaches

rely on offline training with prior-collected data, which is limited when facing complex

unforeseen circumstances. Therefore, what if an intelligent approach exists to enable the

controller to adapt and learn online by interacting with the environment?

1.2 Reinforcement Learning
One solution to address the aforementioned issues is reinforcement learning (RL), a class

of ML algorithms that draws its inspiration from the way humans or animals learn [16].

In the context of this dissertation, the capability of adapting or online learning is defined

as that an agent can improve its policy and thus performance via experience gained from

interaction with its environment. RL by nature learns from the environment and therefore

this intelligent approach can empower the controller to be autonomous [17].
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Figure 1.3: Human-centric AI roadmap published by EASA in 2020 [15].

1.2.1 Working principle of RL
As the complexity of aerial vehicles increases, the need for the individual components to

work with each other is inevitable. Flight control systems thus tend to seek optimality

in terms of a specific performance indicator. Dynamic programming (DP) lays out the

fundamentals of optimal control and is an important theoretical support for early RL

theory [16, 18, 19]. However, DP is not natural for implementation in real time because

it is fundamentally an offline approach that requires an accurate model. Moreover, DP

calculates the policy in a time-backwards way and does not offer methods for solving

optimal decision problems online in a forward manner. Furthermore, traditional DP

approaches are devised for discrete state and action spaces by using a lookup table [16].

With real-world applications, in particular aerial vehicle control problems, traditional DP

approaches have been confronted with high-dimensional or continuous spaces, which can

result in the infamous "curse of dimensionality", a phenomenon where the number of states

and actions grows exponentially [7, 16, 19–22].

Fortunately, this issue can be handled by some RL methods. RL is closely linked with

optimal control, in that learning behaviour that gets maximum reward is equal to pursuing

a control policy that optimizes certain performance-based cost functions. The working

principle of RL is visualized in Fig. 1.4, where the agent, represented by a quadcopter, takes

an action that interacts with the environment, and then accordingly perceives the new

state and collects the feedback (reward or penalty) corresponding to the state transition

[16]. This process can be iterative and therefore provides the agent with a guideline to

learn rewarding behaviours online.

One family of online RL methods is built with the actor–critic structure, in which

the actor applies an action or a control policy to the environment, whereas the critic

assesses the value of that action [23]. With these two components, the temporal-difference

(TD) approach can be employed to perform time-forward calculations. Therefore, the

actor–critic structure is particularly well adapted for solving optimal decision problems
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in real time through RL techniques [21, 23]. Adaptive dynamic programming (ADP) is a

common alias of practical actor–critic methods for solving optimal control problems in real

time in the control engineering [22, 24]. For handling the curse of dimensionality, ADP

often utilizes function approximations to develop practical algorithms for complex systems

with disturbances and uncertain dynamics [23, 24]. As its name suggests, ADP not only

inherits the capability of DP for pursuing optimality, but also empowers the controller to

be adaptive. Developed by hybridization between RL and control theory, ADP has become

a key direction for future research in building autonomous systems.

𝑎𝑎 = 𝜋𝜋(𝑠𝑠𝑘𝑘)

𝑟𝑟(𝑠𝑠𝑘𝑘 ,𝜋𝜋 𝑠𝑠𝑘𝑘 , 𝑠𝑠𝑘𝑘+1)

𝑠𝑠𝑘𝑘

𝑠𝑠𝑘𝑘+1

Figure 1.4: Working principle of RL visualized by an example. In this representation, the quadcopter agent aims to

keep tracking shots of athletes steadily in a changing environment defined by everything included in the graph,

such as the ground, athletes, the football, birds and even the status of the quadcopter itself. The agent observes

its state in this environment and may receive rewards for successfully recording video meanwhile keeping a safe

flight, and subsequently decides what actions to take for transitioning its state in the environment.

1.2.2 Adaptive dynamic programming
When reviewing the literature, there is often confusion about ADP-related terminologies

due to its several synonyms [25], such as adaptive critic design [26], approximate dynamic

programming [27], neuro-dynamic programming [28, 29], relaxed dynamic programming

[30], actor-critic control [31] and also reinforcement learning [21, 32, 33]. Despite slight

differences in detail and emphasis, these terminologies are essentially the same type of

approach in the context of optimal control. This dissertation focuses on adaptability and

online learning of control systems. Therefore, to highlight adaptability and to distinguish

it from the larger concept of RL, this dissertation refers to such approaches uniformly as

adaptive dynamic programming (ADP) and gives its definition as follows:

Definition 1.1. Adaptive dynamic programming (ADP) is a class of adaptive optimal

control methods which use function approximations to approximate values or policies and

solve the Bellman equation in a time-forward way via a TD approach.
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It is noteworthy that the implementation of ADP shows differences when applied to

discrete-time (DT) and continuous-time (CT) in terms of dealingwith the time-bootstrapping

property, in that for CT systems the impact of bootstrapping is often neglected. To distin-

guish these situations, this dissertation exploits the adaptive critic design (ACD) to describe

the situation when the system or controller is DT, and this terminology is widely used in

previous work [7, 26, 34]. The taxonomy of these terminologies is visualized in Fig. 1.5.

ML

TD methods

ACD

RL

Unsupervised learningSupervised learning

ADP

Monte
Carlo

DP

Figure 1.5: Taxonomy of the different methodologies of ML, RL, ADP and ACD.

ADP falls within the scope of TD methods, as illustrated in Fig. 1.5, owing to their

shared foundational principles and iterative approaches in updating the value function.

Both ADP and TDmethods employ bootstrapping techniques, enabling online learning from

incomplete experiences. Throughout this dissertation, all developed ADP methodologies

adhere rigorously to Definition 1.1, which encapsulates the essential characteristics of

ADP as outlined in [21]: function approximation and TD-based approaches. Consequently,

ADP specifically encompasses a subset of TD methods that utilises approximators, such

as artificial neural networks (ANNs), to approximate solutions of the Bellman equation,

marking a key distinction within the broader TD framework.

All RL approaches, including ADP, are developed based on the Markov assumption.

Therefore, the mechanism depicted in Fig. 1.4 can accordingly be modeled as a Markov

decision process (MDP). Choose the DT system as an example. The Markov property

guarantees that the state transition towards a new state 𝑠𝑘+1 and the acquired reward 𝑟
depend uniquely on the current state 𝑠𝑘 and the action 𝑎𝑘 generated by current control

policy 𝜋(𝑠𝑘) [35]. Hence, the target of the controller is to maximize the total discounted

sum of future rewards (or to minimize the cost) and therefore a value function can be

implicitly expressed as follows:

𝑉 𝜋 (𝑠𝑘) = lim
𝑁→∞

𝐸𝜋 [

𝑁−1
∑
𝑙=𝑘

𝛾 𝑙−𝑘𝑟(𝑠𝑙 ,𝜋(𝑠𝑙 ), 𝑠𝑙+1)]
, 𝑘 ≥ 0 (1.1)

where 𝐸𝜋 [⋅] denotes the expected value of a random variable given that the agent follows

policy 𝜋 , and 𝛾 ∈ (0,1] is a discount factor determining to what extent future rewards can

affect current behaviour [16]. According to Bellman’s principle of optimality [16, 18, 19],
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the optimal value 𝑉 ∗(𝑠𝑘) is compliant with the Bellman equation:

𝑉 ∗(𝑠𝑘) = max
𝑎𝑘

(𝑟(𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1) + 𝛾𝑉 ∗(𝑠𝑘+1)), ∀𝑘. (1.2)

Solving Eq. (1.2) is the key procedure when designing an optimal controller, and it is

impossible for generic nonlinear systems to obtain the analytical solution. ADP solves it

iteratively based on the TD error by subdividing the Bellman equivalence into multiple

updates as:

𝑉 (𝑠𝑘) ← 𝑉 (𝑠𝑘) + 𝜂(𝑟(𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1) + 𝛾𝑉 (𝑠𝑘+1) −𝑉 (𝑠𝑘)), (1.3)

where 𝜂 denotes a learning rate whose role is to facilitate convergence [35]. At each update

step, the control policy 𝜋(𝑠𝑘) is also accordingly updated. These iterative procedures, updat-
ing value function and control policy, are called policy evaluation and policy improvement,

respectively [16], which rely on each other to gradually converge to the optimal policy.

From Eq. (1.3), it can be observed that the update process relies on the result from

the future, i.e., it is bootstrapping regarding time. To cope with this issue, the actor-critic

scheme is commonly employed with the facilitation of ANNs [36]. For DT systems, two

ANNs, namely actor network and critic network, are constructed to respectively generate

and evaluate the control policy. Policy improvement and policy evaluation procedures are

conducted when updating these ANNs. This kind of control approach is classified as ACDs

in this dissertation, which is a subclass of ADP.

For CT systems, when the time interval tends to 0, the update of states will also tend to
0, which approximately eliminates the impact of bootstrap and the control architecture can

be simplified. Specifically, only a single critic network is required for CT control systems to

evaluate the control policy, and building an actor network is often not necessary, because

the control policy can accordingly be computed through the critic network by solving the

Bellman equation [37].

1.3 Challenges of ADP for Flight Control
Unlike Monte Carlo methods that rely on sampling the whole episode and DP methods

that require a time-backwards calculation, ADP makes use of TD error and function

approximation to enable online learning. That is to say that ADP can accomplish the

objective of online intelligent optimal control. Nevertheless, ADP for flight control is often

confronted with three main challenges to be dealt with, as will be illustrated in this section.

1.3.1 The challenge of online learning efficiency
When arriving at a new situation or meeting with emergencies, humans can often adapt

quickly with very few iterations. ML approaches, however, usually require many samples.

In emergencies, it is vital to control the aircraft before it crashes, so there are not many

samples to learn from, which is the main reason why we need to improve the sample

efficiency.

When people talk about RL, it is often accompanied by the model-free concept because

some RL methods can directly learn from the environment without building a system

model to achieve direct adaptive optimal control [38], which can also be accomplished by

ADP. Nevertheless, being model-free does not mean that the system dynamics are totally
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uninvolved. Actually, the system and environment dynamics are implicitly incorporated

in the learned control policy in these approaches [39]. A typical example of model-free

RL is Q-learning [40, 41], which employs a 𝑄(𝑠𝑘 , 𝑎𝑘) function to calculate the quality of

a state–action combination instead of the value function 𝑉 (𝑠𝑘) formulated in Eq. (1.1).

Since the policy evaluation in these approaches is directly based on not only states but

also actions, in the ADP field, the class of methods is also called action-dependent (AD)

[26, 39, 42].

However, such direct learning approaches have drawbacks that decrease online learning

efficiency from both theoretical and practical perspectives. Since the control policy in

AD-ADP methods implicitly incorporates the system dynamics, the complexity of the critic

network [7] and also the sampling complexity of the algorithm are increased, particularly

when using high-dimensional function approximators, which tends to limit their appli-

cability to physical systems [40]. Furthermore, previous studies on ACD and AD-ACD

have reported that ACD outperforms its AD form in success ratio and adaptability [26, 39].

Consequently, another module is often constructed in the ADP scheme to approximate

the unknown system dynamics and provide state transition information, normally based

on ANNs [43–45]. Due to the demand for efficient online adaptability, the approximated

dynamics should be as accurate as possible. However, uncertainties, disturbances and even

sudden faults can happen during flight [8, 46], which requires fast adaptation of the ADP

controller, especially the identifier. Furthermore, conventional ADP assumes the availabil-

ity of full state feedback [39, 43–45]. However, either output feedback (OPFB) where there

exist unmeasurable inner states in deterministic systems [47, 48] or partial observability

(PO) that involves stochastic or time-varying dynamics [49, 50] can be encountered by

aerial vehicles. All of these factors bring about challenges in the system identification for

efficient online intelligent flight control.

Despite the importance of the learned network parameters, the network structure

plays a fundamental role. Compared to the actor network that maps states to actions, the

critic network is often more complex in the low-level control task because it bears the

responsibility for policy evaluation which instructs policy improvement. Based on different

targets to be approximated by the critic network, current ADP (especially ACD) methods

can be categorized into different types, such as heuristic dynamic programming (HDP)

[42], dual heuristic programming (DHP) [34, 36] and global DHP (GDHP) [43, 45]. Each

method has benefits and drawbacks, but all these methods do not share the same network

structure so they cannot directly be transferred to each other without being redesigned.

Therefore, a unified structure is needed to cope with complex situations, which will be

covered in this dissertation.

1.3.2 The challenge of online learning stability
The stability of the flight is crucial. For the flight controller, stability can be evaluated

separately from both theoretical and experimental perspectives. In this dissertation, a

controller is said to be stable if a control method is able to achieve a 100% success ratio

through simulation verification or if the closed-loop stability can pass a rigorous theoret-

ical analysis. It is noted that the success ratio depends on how realistic the simulation

environment is, and this dissertation will take the random and unanticipated factors that

affect the stability of online learning into consideration.
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When interacting with the real world, the automatic flight control system is significant

for preventing aerial vehicles from getting into dangerous situations. A traditional and

common solution is to build a simulation environment with accurate system dynamics

such that a primitive control policy can be trained offline to guarantee safety, after which,

online fine-tuning is implemented for better performance [51–53]. However, the reality

gap between simulation and the real world broadens as the system becomes complex.

As analyzed in Section 1.1, it is difficult to construct a globally accurate model for aerial

vehicles, let alone the unforeseen disturbances and faults. Consequently, enhancing online

learning stability is crucial in these situations.

In many cases, enhancing flight stability is consistent with learning efficiency in that

aerial vehicles can swiftly adjust to new conditions. Nevertheless, the prerequisite is that

the controller knows what the proper behaviour is. Therefore, designing a sound reward

is important, which however is still an open research topic in the RL field. Furthermore,

aerial vehicles always suffer from control input constraints [2], which should be considered

in the controller design. Because of the complexity of ANNs, literature in ADP-based flight

control rarely theoretically analyzes the control stability, which mostly is demonstrated

through tests [32, 34, 39, 42]. However, it is difficult to make comparisons among these

research works because of different systems and different ways to define success. Therefore,

this dissertation intends to enhance flight control stability by increasing the success ratio

compared to existing methods, or preferably by providing theoretical proof.

1.3.3 The challenge of computational load
One of the widely known shackles of AI is its high computational load. For instance, it

took the famous AlphaGo Zero 40 days of computations on multiple high-performance

processors to achieve its impressive performance [41]. The computational restrictions are

harsher for aerial vehicles because they are systems with limited resources and continuous

state and action spaces. For a quadcopter, months of training can be spent before a stable

flight RL-based controller is obtained [52]. This has seriously hampered the application

and dissemination of intelligent flight control methods.

Computational load is also closely related to learning efficiency. In addition to the

factors mentioned in Subsection 1.3.1, another cause of high computational load is the low

sampling efficiency that requires a huge amount of interactions [54]. Similar to other RL

approaches, ADP can suffer from low sampling efficiency, which may result in unbearable

computational costs or even infeasibility in online flight control applications. However,

different from those cases where the reward is sparse, such as the Go game in which, only

after the game ends, a reward can be collected [41], flight control, particularly low-level

control, often rich feedback is used to speed up learning. Rich feedback requires high

bandwidth sensors. Conventionally, the calculation regarding ANNs parameters update is

conducted once the feedback is obtained so as to evaluate and update the control policy.

However, if the performance is sufficiently good at present, continued update of the ANNs is

a waste of computational resources. So why not only calculate and update when necessary?

There exists such a technique called event-triggered control (ETC). Arising from net-

worked control systems, ETC was originally designed to enhance communication resource

utilization [55, 56]. Recently, it has been introduced to spacecraft control problems [57, 58],

but they are not solved with optimal control and the spacecraft is different from aerial ve-
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hicles in aerodynamics and disturbances. The application of event-triggered ADP methods

to aircraft has not yet been explored. Furthermore, ETC decreases the update frequency

and at the same time has an impact on policy exploration, which will ultimately affect

the control performance. Therefore, this dissertation will investigate the application of

event-triggered ADP to flight control.

1.4 ResearchQuestions, Methodology and Scope
This section illustrates the objectives, the contributions and the limitations of the disser-

tation. Sub-section 1.4.1 proposes the research goal and derives the research questions.

Then the research approaches and contributions in this dissertation are enumerated in

Sub-section 1.4.2. Finally, Sub-section 1.4.3 defines the research scope of the dissertation

and clarifies the limitations.

1.4.1 Research goal andqestions
This dissertation focuses on the control approach development for aerial vehicles with a

big-picture aim of an autonomous system. The challenges stated in Section 1.1 motivate

the main research goal of this dissertation:

Research goal

To improve the adaptability and online learning capability of flight control systems

by designing nonlinear ADP approaches.

While ADP offers promising benefits, effectively leveraging its potential in the context

of aerial vehicles requires addressing the challenges outlined in Section 1.3. Hence, the

main research question of this dissertation focuses on dealing with the challenges of ADP

and is formulated as follows:

Main research question

How can aerial vehicles benefit from ADP to improve autonomy and online learning

in an uncertain environment, while satisfying requirements on input constraints,

adaptability, stability and computational efficiency?

Specifying further, the main research question can be decomposed into 3 sub-questions

concerning the previously discussed challenges of ADP for flight control from different

aspects:

• learning efficiency,

• control stability,

• computational load.

Accordingly, the research sub-questions can be formulated as:
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Research sub-questions

RQ1: How to synthesize and improve current online ACDs to cope with dynamic and

measurement uncertainties, partial observability, external disturbances and sudden

faults?

RQ2: How to achieve optimality and stability of ADP for DT and CT systems, while

dealing with input constraints of aerial vehicles?

RQ3: How to save computational and communication load by event-triggered ADP

without significantly affecting overall performance?

Each of the sub-questions is answered in several chapters with a considerable overlap

in this dissertation, since by design each method or task usually corresponds to more than

one challenge.

1.4.2 Research approaches and contributions
This dissertation presents an online intelligent optimal controller design using the ADP

approach for DT and CT aerial systems respectively. Improvements are made in system

identification, algorithm training, computational reduction, constraint satisfaction and

stability enhancement. The contributions can be elaborated from two aspects. On the one

hand, it contributes to adaptive optimal control approaches:

• Proposal of a novel explainable global dual heuristic programming (XGDHP) ap-

proach for discrete-time (DT) aerospace systems. This method synthesizes and

improves current ACD techniques. (RQ 1)

• Development of the incremental model and theoretical proof regarding its conver-

gence. The incremental model is further combined with XGDHP to improve the

adaptability and online learning of the controller, even under some unanticipated or

changing circumstances. (RQ 1)

• Design of an incremental model-based XGHDP method to deal with tracking con-

trol problems of an aircraft with respect to full state measurements and partial

observability. (RQ 1)

• Improvement of ADPwith facilitation of ANNs to deal with nonlinear optimal control

problems and actuator saturation constraints for both DT and CT systems. (RQ 2)

• Introduction of the event-triggered control scheme to both DT and CT systems,

which can effectively decrease the computational burden and simultaneously save

communication load between the host computer and the actuator. (RQ 3)

The developed approaches can be directly applied to other nonlinear uncertain systems

complying with similar formulations and assumptions, i.e., the preceding contributions

are applicable to generic systems, not necessarily aerial vehicles. On the other hand, the

dissertation also makes contributions to flight control applications, which are listed as

follows:
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• Verification by simulations that the RL-based intelligent control framework can help

aircraft adapt to a wide range of dynamic and measurement uncertainties, external

disturbances, sudden faults and structural damages. (RQs 1-3)

• Design of an event-triggered constrained-input ADP controller for an aeroelastic sys-

tem to stabilize limit cycle oscillations. Via theoretical proof, the Zeno phenomenon

is avoided and the Lyapunov stability of the proposed method is guaranteed. (RQ 3)

1.4.3 Research scope and limitations
In order to achieve the research goal stated in Sub-section 1.4.1, the scope of this dissertation

is restricted as follows:

Validation methodology: In control, RL and aerospace engineering literature, it is com-

mon to employ simulations to prove the validity of an algorithm. This is because, for

theoretical development, simulations allow engineers to better understand the agent’s

behaviour under different circumstances. For physical systems, safety and cost also need

to be handled carefully. Consequently, as well as to reduce the complexity of research, the

approaches developed in this dissertation are investigated, tested and validated exclusively

via simulations.

Targeted applications: This dissertation focuses on low-level control. The proposed

approaches in this dissertation are originally designed for aerial vehicles, but the applica-

tions are not limited to this area. All aerial vehicle models utilized in this dissertation are

publicly accessible and do not involve any confidentiality.

Online learning control: RL is by nature learning online from interactions with the

environment. It can learn from rewards, penalties or even failures. In some literature, the

learning is episode-based. However, this dissertation places more stringent demands on

online learning, that at a single flight, the controller needs to update the control policy

online recursively and learn a feasible policy before failure. This is because, in this way,

the controller is able to adapt to unanticipated or changing circumstances. Nevertheless,

this does not mean that pre-training cannot be applied, but this is out of the scope of this

dissertation.

ANN: Every algorithm developed in this dissertation is facilitated by ANNs, which are

also important cornerstones of modern AI technology development. Different types of

ANNs have their specializations. For the low-level control problems in this dissertation,

no great importance needs to be attached to feature extraction and abstraction. Therefore,

simple feedforward neural networks with shallow layers are adopted, which are fast, easy

to analyse, and sufficient to achieve satisfying performance.

1.5 Outline of Dissertation
The outline of this dissertation is visualized in Fig. 1.6. The research is divided into terms

of DT and CT systems. Chapter 2 proposes a novel ACD algorithm for synthesizing and

improving current ACDs. Then, Chapters 3 and 4 enhance the algorithm with improved

incremental models to deal with imperfect measurements. Chapter 5 introduces the ETC
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Ch. 2
IGDHP

Ch. 1
Introduction

Ch. 3
IGDHP-PO

Ch. 4
IGDHP-OPFB

with input constraints

Ch. 5
Event-triggered

XGDHP

Ch. 7
Conclusion

Ch. 6
Event-triggered ADP
with input constraints

RQ 1

RQ 3

RQ 2DT systems

CT systems

Figure 1.6: Architecture of the chapters in the dissertation.

scheme into XGDHP based on the work in previous chapters. Chapter 6 expands on the

ETC scheme and the approach to dealing with input constraints in CT systems.

Chapter 2 proposes incremental model-based GDHP (IGDHP) to generate a self-learning

adaptive flight controller, in the absence of sufficient prior knowledge of system dynamics.

An incremental technique is employed for online local dynamics identification, instead

of the ANNs commonly used in GDHP, to enable fast and precise learning. This chapter

for the first time computes the derivatives of the performance function required by the

GDHP technique with explicit analytical calculations based on differential operations. This

chapter is based on full-state feedback (FSF) functions as a starting point for the rest of the

DT system part.

In Chapters 3 and 4, the IGDHP is further enhanced by incorporating the previous data

sets into the incremental model to deal with unmeasurable inner states. Chapter 3 expands

the idea of IGDHP to the partially observable control system, whose tracking reference is

assumed unknown, and the augmented incremental model is accordingly developed, whose

feasibility and convergence are theoretically analyzed. The performance of IGDHP-PO is

evaluated in multidimensional aspects such as different initial conditions, the presence of
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noises as well as sudden disturbances and faults. Chapter 4 investigates the OPFB situation

and incorporates the control input constraints into performance design. The technique to

cope with input constraints is inherited in the following chapters.

Chapter 5 combines the ETC scheme and ADP to deal with the nonlinear control

problems. ETC is able to decrease the amount of computation, and the stability analysis is

provided in this chapter, with fewer assumptions compared to most existing ACD studies

that investigate ETC for DT systems. Furthermore, this chapter simplifies the method to

calculate the required derivatives of performances which is proposed in Chapter 2 and

employed in Chapters 3 and 4, and originally proposes the concept of XGDHP. Besides, the

performance function is also improved to handle asymmetric input constraints.

Chapter 6 enhances the application section of ADP in that the approach is originally

designed particularly for an aeroelastic system with input constraints. This chapter designs

a CT ADP approach that uses a single critic network, with a novel triggering condition that

considers input constraints, avoiding the Lipschitz assumption on the inverse hyperbolic

tangent function. This chapter also employs an improved weight updating criterion, which

can eliminate the requirement of initial admissible control. Furthermore, the closed-loop

Lyapunov stability is guaranteed and the Zeno phenomenon is avoided through theoretical

proof.

Finally, Chapter 7 summarizes the results and findings of the previous chapters and

demonstrates how this dissertation addresses the research goal of improving the adaptability

and online learning of the flight control system through proposed ADP approaches. In

addition, this chapter proposes several points of further development for the autonomy of

aerial vehicles.

All of the chapters are created from published journal papers, which are listed as

follows:

• Chapter 2 is based on the following article:

B. Sun and E. van Kampen, "Incremental Model-Based Global Dual Heuristic Pro-

gramming with Explicit Analytical Calculations Applied to Flight Control", En-
gineering Applications of Artificial Intelligence, vol. 89, pp. 103425, 2020. Doi:

10.1016/j.engappai.2019.103425.

• Chapter 3 is based on the following article:

B. Sun and E. van Kampen, "Intelligent Adaptive Optimal Control Using Incremental

Model-Based Global Dual Heuristic Programming Subject to Partial Observability",

Applied Soft Computing, vol. 103, pp. 107153, 2021. Doi: 10.1016/j.asoc.2021.107153.

• Chapter 4 is based on the following article:

B. Sun and E. van Kampen, "Reinforcement-Learning-Based Adaptive Optimal Flight

Control with Output Feedback and Input Constraints", Journal of Guidance, Control,
and Dynamics, vol. 44, no. 9, pp. 1685-1691, 2021. Doi: 10.2514/1.G005715.

• Chapter 5 is based on the following article:

B. Sun and E. van Kampen, "Event-Triggered Constrained Control Using Explain-

able Global Dual Heuristic Programming for Nonlinear Discrete-Time Systems",

Neurocomputing, vol. 468, pp. 452-463, 2022. Doi: 10.1016/j.neucom.2021.10.046.
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• Chapter 6 is based on the following article:

B. Sun, X. Wang and E. van Kampen, "Event-Triggered Intelligent Critic Control with

Input Constraints Applied to A Nonlinear Aeroelastic System", Aerospace Science and
Technology, vol. 120, pp. 107279, 2022. Doi: 10.1016/j.ast.2021.107279.
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IGDHP with Explicit

Analytical Calculations
Applied to Flight Control

Incremental Model-Based Global Dual Heuristic Programming with Explicit Ana-
lytical Calculations Applied to Flight Control

The first research question of how to synthesize and improve current online adaptive critic
designs (ACDs) will be addressed in this chapter. As discussed in Chapter 1, there is a demand
for efficient online dynamics identification for flight control systems, and there is a lack of
a method of unifying existing ACDs that allows easy conversion between different methods.
Therefore, this chapter will first introduce an incremental model as the online local dynamics
identifier, instead of the common artificial neural networks (ANNs) to enable a fast and precise
identification. Then, a novel structure will be proposed in this chapter to synthesize ACDs,
called global dual heuristic programming (GDHP) with explicit analytical calculations. Finally,
this chapter will verify the method with numerical simulations on a tracking control task of a
nonlinear aerial vehicle, by taking measurement noises and sudden faults into consideration.

This chapter is based on the following article:

B. Sun and E. van Kampen, "Incremental Model-Based Global Dual Heuristic Programming with Explicit Analytical

Calculations Applied to Flight Control", Engineering Applications of Artificial Intelligence, vol. 89, pp. 103425, 2020.
Doi: 10.1016/j.engappai.2019.103425 [59].
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Abstract
A novel adaptive dynamic programming method, called incremental model-based global

dual heuristic programming, is proposed to generate a self-learning adaptive flight con-

troller, in the absence of sufficient prior knowledge of system dynamics. An incremental

technique is employed for online local dynamics identification, instead of the artificial

neural networks commonly used in global dual heuristic programming, to enable a fast and

precise learning. On the basis of the identified model, two neural networks are adopted to fa-

cilitate the implementation of the self-learning controller, by approximating the cost-to-go

and the control policy, respectively. The required derivatives of cost-to-go are computed by

explicit analytical calculations based on differential operations. Both methods are applied

to an online attitude tracking control problem of a nonlinear aerospace system and the

results show that the proposed method outperforms conventional global dual heuristic

programming in tracking precision, online learning speed, robustness to different initial

states and adaptability for fault-tolerant control problems.

2.1 Introduction
Controller design for aerospace systems, especially airplanes, is challenging for many

reasons. One of the most challenging parts is the difficulty of modeling the dynamics of

the system. Especially for complex, nonlinear vehicles, global plant information may be

impossible to obtain. The aircraft can be susceptible to uncertainties, sudden faults and

structural damages, which changes the real plant compared to the previously obtained

model [60]. To deal with these problems, one promising solution is to create learning or

adaptive controllers.

Reinforcement learning (RL), for instance, which links several bio-inspired artificial

intelligence techniques, can make a system learn desired policies without accurate models

of its dynamics or environment and can adapt to changing situations [16]. For these reasons,

there have been a number of RL methods developed to enable model-free flight control in

various types of aerospace systems [34, 52, 61–63]. However, different from ground robots,

it is difficult to employ end-to-end training approaches on aerospace systems because of

their special working environments. Consequently, a combination of RL and traditional

control theory is a promising strategy to improve adaptive flight control. The combination

of an actor-critic structure, dynamic programming, and neural networks, results in the

adaptive/ approximate dynamic programming (ADP) algorithm, which is regarded as an

effective technique to design adaptive optimal controllers and can achieve certain levels of

adaptiveness and fault-tolerance [25, 33, 64, 65]. According to optimal control theory, for a

nominal system, given a cost function, the analytical optimal solution can be obtained by

solving the Hamilton-Jacobi-Bellman (HJB) equation. However, for complex or nonlinear

systems, analytical solutions to the HJB equation can be difficult or even impossible to get,

let alone in real time. To conquer the difficulty of directly solving the HJB equation online

for general nonlinear systems, the adaptive critic framework and artificial neural networks

(ANNs) are often involved in order to approximate the HJB solution [25, 66, 67].

As a class of ADP methods, adaptive critic designs (ACDs), which separate policy

evaluation (critic) and policy improvement (actor), have shown great success in optimal

adaptive control of nonlinear aerospace systems [34, 36, 39, 62, 63]. ACDs can generally
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be categorized into several groups [26]: heuristic dynamic programming (HDP), dual

heuristic programming (DHP) and global dual heuristic programming (GDHP) and their

action-dependent (AD) versions. HDP is the most basic form and most often used structure,

which employs the critic to approximate the cost-to-go. The critic in DHP approximates

the derivatives of the cost-to-go with respect to the critic inputs, and in many practical

applications, it outperforms HDP in success rate and precision [68]. GDHP, which ap-

proximates both the cost-to-go and its derivatives so as to take advantage of two kinds

of information, has several different forms [26]. Among them, the straightforward form,

where the critic approximates the cost-to-go and its derivatives simultaneously [43, 63, 69],

is most commonly used because of its simple structure. In this architecture, two kinds of

outputs share the same inputs and hidden layers, making them strongly coupled. Although

these outputs have explicit mathematical relationships, without analytical calculations,

weight update processes can suffer from this coupling due to inconsistent errors, and

sometimes it even leads to instability. In this chapter, explicit analytical calculations of the

mixed second-order derivatives of the critic network outputs with respect to its input vector

and weight matrices are introduced for adaptive flight control. [26] and [70] illustrate how

to calculate these derivatives in an element-wise way. However, [71] clarifies that vectors

and matrices more often appear as a whole in practical applications rather than multi-

variable functions, and this holistic view is easier to obtain the chain rule. Therefore, one

contribution of this chapter is deriving a direct method based on differential operation [71]

to compute these second-order derivatives in a holistic way so as to tackle the inconsistent

errors between the approximated cost-to-go function and its derivatives.

ACDs can be model-free if the critic is an AD network, which means the control

signals are also introduced as network inputs [72, 73]. Nevertheless, to achieve model-free

application, an alternative is building a third module to approximate the plant dynamics

and ANNs are often regarded as the first choice [39, 43–45, 74]. [39] illustrates how this

three-network structure outperforms AD ones if rewards only depend on system states.

Although ANNs can approximate the nonlinear function with arbitrary precision, many

samples are required before the weights converge for online identification of complex plant

dynamics like aerospace systems, which can be dangerous especially at the start of training

because the critic and actor networks are then trained based on the incorrect model. For

these complex systems, offline training is normally involved to obtain a primary model

and it often remains constant in applications [39, 43, 44], which, however, cannot achieve

adaptive control when facing unforeseen uncertainties and sudden disturbances in realistic

application.

The main contribution of this chapter is an incremental model-based GDHP (IGDHP)

method that enables online model-free flight control based on our latest work [63]. Different

from conventional GDHP, an incremental model is involved for adaptive control to deal

with the absence of full system information. Assuming sufficiently high sampling rate

for discretization, incremental techniques are able to accurately identify system dynamics

online, preventing the controllers from initial failure, and have been successfully applied

to design adaptive flight controllers, such as incremental nonlinear dynamic inversion

(INDI) [75], incremental back-stepping (IBS) [76], incremental sliding mode control (ISMC)

[46, 76] and IADP [47, 50], IACDs [34, 42, 63]. However, these existing incremental methods

have some limitations. For instance, INDI, IBS and ISMC cannot deal with optimal control
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problems, and IADP requires linear quadratic reward and offline training process. Compared

to existed methods, IGDHP develops current IACDs to achieve online adaptive optimal

control. In summary, the primary advantages lie in that the novel algorithm speeds up

online policy learning without knowing system dynamics or offline training a model

network, and the analytical calculations make use of the information of cost-to-go function

and its derivatives without introducing inconsistent errors.

The remainder of this chapter is structured as follows. Section 2.2 presents the basic

formulation of three-network GDHP with explicit analytical calculations. Section 2.3

introduces the incremental method for online identification and uses it to simplify the

weight update process of the actor and critic networks. Then Section 2.4 provides the

necessary information for verification, where an F-16 Fighting Falcon model is built and

possible noises, faults and damages during flight are explained. Section 2.5 verifies the

approaches by applying both GDHP and IGDHP on a longitudinal attitude tracking task in

various conditions and analyzing their results. Finally Section 2.6 summarizes the chapter

and puts up possibilities for future research.

2.2 GDHP Implementation
GDHP, which combines the advantages of HDP and DHP, can be implemented as a model-

free technique with three ANNs, namely model, critic and actor. The variables or pathways

corresponding to these ANNs are denoted by the subscripts 𝑚, 𝑐 and 𝑎, respectively. The
architecture of GDHP with explicit analytical calculations is illustrated in Fig. 2.1. Based

on current states, the actor network generates an action to control both real system and

plant model. The model network estimates the states at the next time step, which are

connected to the critic network to approximate cost-to-go, whose derivatives are computed

analytically. All weights of the ANNs are updated in a back-propagation way according to

the gradient-descent algorithm [26].
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Figure 2.1: The architecture of GDHP with explicit analytical calculations, where solid lines represent the

feedforward flow of signals, and dashed lines represent the adaptation pathways.
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2.2.1 Global model
For a full-state feedback system, the inputs of the system model are the current state vector

𝑥𝑡 ∈ ℝ𝑛 and current control vector 𝑢𝑡 ∈ ℝ𝑚, while the output is the estimated next state

vector 𝑥̂𝑡+1 ∈ ℝ𝑛 . However, because the future true value of state vector 𝑥𝑡+1 is unavailable
at time step 𝑡 , the update is implemented with current and previous data, i.e. the network

weights are updated by minimizing the difference between the current measured state

vector 𝑥𝑡 and the estimated state vector 𝑥̂𝑡 :

𝐸𝑚(𝑡) =
1
2
𝑒T𝑚(𝑡)𝑄𝑚𝑒𝑚(𝑡), (2.1)

where 𝑒𝑚(𝑡) = 𝑥̂𝑡 −𝑥𝑡 , and𝑄𝑚 ∈ℝ𝑛×𝑛 is a positive definite matrix. For simplicity,𝑄𝑚 is usually

defined as a diagonal matrix, i.e. 𝑄𝑚 = diag(𝜁1, 𝜁2,⋯ ,𝜁𝑛), where the elements respectively

select and weigh the approximating errors.

The weights are updated by a gradient-descent algorithm:

𝑤𝑚(𝑡 + 1) = 𝑤𝑚(𝑡) − 𝜂𝑚 ⋅
𝜕𝐸𝑚(𝑡)
𝜕𝑤𝑚(𝑡)

(2.2)

where 𝜂𝑚 is the learning rate, and

𝜕𝐸𝑚(𝑡)
𝜕𝑤𝑚(𝑡)

=
𝜕𝐸𝑚(𝑡)
𝜕𝑥̂𝑡

⋅
𝜕𝑥̂𝑡

𝜕𝑤𝑚(𝑡)
= 𝑒T𝑚(𝑡) ⋅

𝜕𝑥̂𝑡
𝜕𝑤𝑚(𝑡)

. (2.3)

2.2.2 The critic network
GDHP combines HDP and DHP and requires the information of both the cost-to-go 𝐽 (𝑥𝑡 )
and its derivatives with respect to the network inputs 𝑥𝑡 , where 𝑥𝑡 = 𝑥̂𝑡 −𝑥ref𝑡 stands for

tracking error vector. The critic network only employs 𝐽 (𝑥𝑡 ) to approximate the true cost-

to-go 𝐽 (𝑥𝑡 , 𝑥ref𝑡 ), which is the cumulative sum of future rewards 𝑟𝑡 from any initial state

𝑥𝑡 :

𝐽 (𝑥𝑡 , 𝑥ref𝑡 ) =
∞
∑
𝑙=𝑡

𝛾 𝑙−𝑡𝑟𝑙 , (2.4)

where 𝛾 ∈ (0,1) is the discount factor, used to control the extent to which the short-term

cost or long-term cost is concerned. The derivative of the cost-to-go with respect to the

input vector 𝜆̂(𝑥𝑡 ) is shown in Appendix 2.A .

The goal of the experimental setup is to track the reference states contained in 𝑥ref𝑡 , so

a one-step cost function with a quadratic form is designed:

𝑟𝑡 = 𝑟(𝑥𝑡 , 𝑥ref𝑡 ) = (𝑥𝑡 −𝑥ref𝑡 )T𝑄𝑐(𝑥𝑡 −𝑥ref𝑡 ) = 𝑥T𝑡 𝑄𝑐𝑥𝑡 , (2.5)

where 𝑄𝑐 ∈ ℝ𝑛×𝑛 is a non-negative definite matrix.

Because future rewards are required, a temporal difference (TD) method is introduced

to iteratively update the critic network [16]. The principle is to minimize the temporal

difference error, the error between the current and successive estimates of the state value.

Similar to the model network, the weights of the critic network are updated with current

and previous data. The critic errors are as follows:

𝑒𝑐1(𝑡) = 𝐽 (𝑥𝑡−1) − 𝑟𝑡−1 −𝛾𝐽 (𝑥𝑡 ), (2.6)
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and

𝑒𝑐2(𝑡) =
𝜕[𝐽 (𝑥𝑡−1) − 𝑟𝑡−1 −𝛾𝐽 (𝑥𝑡 )]

𝜕𝑥𝑡−1
= 𝜆̂(𝑥𝑡−1) −

𝜕𝑟𝑡−1
𝜕𝑥𝑡−1

−𝛾 𝜆̂(𝑥𝑡 )
𝜕𝑥𝑡
𝜕𝑥𝑡−1

, (2.7)

where 𝑒𝑐1(𝑡) is the TD error of the estimated cost-to-go 𝐽 (𝑥𝑡−1) with current network

weights, while 𝑒𝑐2(𝑡) is the TD error of the computed derivatives 𝜆̂(𝑥𝑡−1) with current

network weights. 𝑟 denotes the estimated reward, because true states are unavailable to

evaluate updated control policy. GDHP combines both of them in an overall error function

𝐸𝑐(𝑡):
𝐸𝑐(𝑡) = 𝛽

1
2
𝑒2𝑐1(𝑡) + (1−𝛽)

1
2
𝑒T𝑐2(𝑡)𝑒𝑐2(𝑡), (2.8)

where 𝛽 is a scalar indicating the importance within a range of [0,1]. If 𝛽 = 1, then it

becomes pure HDP. If 𝛽 = 0, then the tuning of weights merely depends on the TD error of

computed derivatives 𝜆̂(𝑥𝑡 ) , and consequently it is equivalent to DHP, which is different

from the straight form in [43, 63, 69], where if 𝛽 = 0, the back-propagation channel of the

actor is cut.

The critic weights are updated using a gradient-descent algorithm with a learning rate

𝜂𝑐 to minimize the overall error 𝐸𝑐(𝑡):

𝑤𝑐(𝑡 + 1) = 𝑤𝑐(𝑡) − 𝜂𝑐 ⋅
𝜕𝐸𝑐(𝑡)
𝜕𝑤𝑐(𝑡)

, (2.9)

where

𝜕𝐸𝑐(𝑡)
𝜕𝑤𝑐(𝑡)

=
𝜕𝐸𝑐(𝑡)
𝜕𝐽 (𝑥𝑡−1)

⋅
𝜕𝐽 (𝑥𝑡−1)
𝜕𝑤𝑐(𝑡)

+
𝜕𝐸𝑐(𝑡)
𝜕𝜆̂(𝑥𝑡−1)

⋅
𝜕𝜆̂(𝑥𝑡−1)
𝜕𝑤𝑐(𝑡)

= 𝛽𝑒𝑐1(𝑡)
𝜕𝐽 (𝑥𝑡−1)
𝜕𝑤𝑐(𝑡)

+ (1−𝛽)𝑒T𝑐2(𝑡)
𝜕𝜆̂(𝑥𝑡−1)
𝜕𝑤𝑐(𝑡)

,

(2.10)

where 𝜕𝜆̂(𝑥𝑡−1)/𝜕𝑤𝑐(𝑡) represents the second-order mixed gradient of the estimated cost-to-

go 𝐽 (𝑥𝑡−1). An example of how to obtain it is illustrated in Appendix 2.A.

2.2.3 The actor network
The actor network outputs control action 𝑢𝑡 , which is an input of the model network, and

thus it will affect the critic outputs at the next time-step. The goal of the actor network

is to produce an optimal control policy by minimizing the error between the current

approximated cost-to-go 𝐽 (𝑥𝑡 ) and the ideal one 𝐽 ∗(𝑡), which depends on the given reward

function and is set to be zero in this chapter:

𝑢∗𝑡 = argmin
𝑢𝑡

𝐸𝑎(𝑡), (2.11)

where 𝐸𝑎(𝑡) is the overall actor error function and is defined as:

𝐸𝑎(𝑡) =
1
2
𝑒2𝑎(𝑡), (2.12)

where

𝑒𝑎(𝑡) = 𝐽 (𝑥𝑡 ) − 𝐽 ∗(𝑡). (2.13)

Different from the straight form in [43, 63, 69] where the actor network can be trained

through the pathways either leading from 𝐽 (𝑥𝑡 ) or carried out by 𝜆̂(𝑥𝑡 ), there is only one
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back-propagation way for GDHP with explicit analytical calculations to update the actor

weights and the information from both 𝐽 (𝑥𝑡 ) and 𝜆̂(𝑥𝑡 ) can be utilized. As illustrated in

Fig. 2.1, the actor weights are updated along the 4th back-propagation direction with a

learning rate 𝜂𝑎:

𝑤𝑎(𝑡 + 1) = 𝑤𝑎(𝑡) − 𝜂𝑎 ⋅
𝜕𝐸𝑎(𝑡)
𝜕𝑤𝑎(𝑡)

, (2.14)

where

𝜕𝐸𝑎(𝑡)
𝜕𝑤𝑎(𝑡)

=
𝜕𝐸𝑎(𝑡)
𝜕𝐽 (𝑥𝑡 )

⋅
𝜕𝐽 (𝑥𝑡 )
𝜕𝑥̂𝑡

⋅
𝜕𝑥̂𝑡
𝜕𝑢𝑡−1

⋅
𝜕𝑢𝑡−1
𝜕𝑤𝑎(𝑡)

= 𝐽 (𝑥𝑡 ) ⋅
𝜕𝐽 (𝑥𝑡 )
𝜕𝑥̂𝑡

⋅
𝜕𝑥̂𝑡
𝜕𝑢𝑡−1

⋅
𝜕𝑢𝑡−1
𝜕𝑤𝑎(𝑡)

. (2.15)

2.3 IGDHP Implementation
Aerospace systems have complex nonlinear dynamics for which ANNs can fail to achieve

accurate online identification fast enough. In this section, an incremental technique is

introduced to ensure a quick and accurate approximation using locally linearized mod-

els (Fig. 2.2). In addition to online learning and quick adaptation, it also reduces the

computational burden of the network weight update processes.
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Figure 2.2: The architecture of IGDHP with explicit analytical calculations, where solid lines represent the

feedforward flow of signals, and dashed lines represent the adaptation pathways.

2.3.1 Incremental model
Although most physical systems are continuous, modern processors work in a discrete way,

leading to discrete measurements and computations. With the assumption of sufficiently

high sampling frequency and relatively slow time-varying dynamics, one can represent

a continuous nonlinear plant with a discrete incremental model and retain high enough

precision. The derivation [34] can be generally given as follows:

Consider a nonlinear continuous system described by:

𝑥̇(𝑡) = 𝑓 (𝑥(𝑡),𝑢(𝑡)), (2.16)
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where 𝑓 [𝑥(𝑡),𝑢(𝑡)] ∈ ℝ𝑛 provides the dynamics of the state vector over time. The general

form can be used to describe dynamic and kinematic equations of complicated aerospace

systems.

By taking the first order Taylor series expansion of Eq. (2.16) around time 𝑡0 and omitting

higher-order terms, the system is linearized approximately as follows:

𝑥̇(𝑡) ≈ 𝑥̇(𝑡0) + 𝐹 (𝑥(𝑡0),𝑢(𝑡0))(𝑥(𝑡) − 𝑥(𝑡0)) +𝐺(𝑥(𝑡0),𝑢(𝑡0))(𝑢(𝑡) −𝑢(𝑡0)), (2.17)

where

𝐹 (𝑥(𝑡0),𝑢(𝑡0)) =
𝜕𝑓 (𝑥(𝑡),𝑢(𝑡))

𝜕𝑥(𝑡)
|𝑥(𝑡0),𝑢(𝑡0), (2.18)

𝐺(𝑥(𝑡0),𝑢(𝑡0)) =
𝜕𝑓 (𝑥(𝑡),𝑢(𝑡))

𝜕𝑢(𝑡)
|𝑥(𝑡0),𝑢(𝑡0), (2.19)

𝐹 (𝑥(𝑡0),𝑢(𝑡0)) ∈ ℝ𝑛×𝑛 is the system matrix and 𝐺(𝑥(𝑡0),𝑢(𝑡0)) ∈ ℝ𝑛×𝑚 is the control effective-

ness matrix. Assuming the states and state derivatives of the system are measurable, i.e.

Δ𝑥̇(𝑡), Δ𝑥(𝑡) and Δ𝑢(𝑡) are measurable, an incremental model can be used to describe the

above system:

Δ𝑥̇(𝑡) ≃ 𝐹 (𝑥(𝑡0),𝑢(𝑡0))Δ𝑥(𝑡) +𝐺(𝑥(𝑡0),𝑢(𝑡0))Δ𝑢(𝑡). (2.20)

With a constant, high sampling frequency, i.e. the sampling time Δ𝑡 is sufficiently small,

the plant model can be written approximately in a discrete form:

𝑥𝑡+1 −𝑥𝑡
Δ𝑡

≈ 𝐹𝑡−1 ⋅ (𝑥𝑡 −𝑥𝑡−1) +𝐺𝑡−1 ⋅ (𝑢𝑡 −𝑢𝑡−1), (2.21)

where 𝐹𝑡−1 = 𝜕𝑓 (𝑥,𝑢)
𝜕𝑥 |𝑥𝑡−1 ,𝑢𝑡−1 ∈ ℝ𝑛×𝑛 is the system transition matrix and 𝐺𝑡−1 = 𝜕𝑓 (𝑥,𝑢)

𝜕𝑢 |𝑥𝑡−1 ,𝑢𝑡−1 ∈
ℝ𝑛×𝑚 is the input distribution matrix at time step 𝑡 − 1 for the discretized systems. From

Eq. (2.21), the following incremental form of the new discrete nonlinear system can be

obtained:

Δ𝑥𝑡+1 ≈ 𝐹𝑡−1Δ𝑡Δ𝑥𝑡 +𝐺𝑡−1Δ𝑡Δ𝑢𝑡 . (2.22)

In this way, the continuous nonlinear global plant is simplified into a linear incremental

dynamic equation. The obtained local plant model can be identified online with the

recursive least squares (RLS) technique, to take advantage of its adaptability to cope with

time variations in the regression parameters and fast convergence speed [66], so as to avoid

training a complex ANN. Although some information is omitted, such as state variation

related nonlinear terms and higher-order terms in their Taylor series expansion, with the

identified 𝐹𝑡−1 and 𝐺̂𝑡−1 matrix, the next system state can be predicted:

𝑥̂𝑡+1 = 𝑥𝑡 +𝐹𝑡−1Δ𝑡Δ𝑥𝑡 + 𝐺̂𝑡−1Δ𝑡Δ𝑢𝑡 . (2.23)

2.3.2 Online identification using RLS
A RLS approach is applied to identify the system transition matrix 𝐹𝑡−1 and the input

distribution matrix 𝐺𝑡−1 online with the assumption of full-state feedback. The incremental

form of the states in Eq. (2.22) can be rewritten in a row-by-row form as follows:

Δ𝑥𝑡+1 ≈ [Δ𝑥T𝑡 Δ𝑢T𝑡 ] ⋅ [
𝐹T𝑡−1
𝐺T
𝑡−1]

⋅Δ𝑡. (2.24)
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Since all increments of the states share the same covariance matrix, the parameters can be

identified together asΘ𝑡−1 = [
𝐹T𝑡−1
𝐺T
𝑡−1]

∈ ℝ(𝑛+𝑚)×𝑛
[34]. Therefore, the state prediction equation

Eq. (2.23) can be rewritten as follows:

Δ𝑥̂𝑡+1 = 𝑋T
𝑡 Θ̂𝑡−1Δ𝑡, (2.25)

where 𝑋𝑡 = [
Δ𝑥𝑡
Δ𝑢𝑡]

∈ ℝ(𝑛+𝑚)×1
is the input information of the incremental model, and it is

assumed to be measured directly.

The main procedure of the RLS approach is presented as follows:

𝜖𝑡 = Δ𝑥T𝑡+1 −Δ𝑥̂
T
𝑡+1, (2.26)

Θ̂𝑡 = Θ̂𝑡−1 +
𝐶𝑜𝑣𝑡−1𝑋𝑡

𝛾𝑅𝐿𝑆 +𝑋T
𝑡 𝐶𝑜𝑣𝑡−1𝑋𝑡

⋅
𝜖𝑡
Δ𝑡
, (2.27)

𝐶𝑜𝑣𝑡 =
1

𝛾𝑅𝐿𝑆 (
𝐶𝑜𝑣𝑡−1 −

𝐶𝑜𝑣𝑡−1𝑋𝑡𝑋T
𝑡 𝐶𝑜𝑣𝑡−1

𝛾𝑅𝐿𝑆 +𝑋T
𝑡 𝐶𝑜𝑣𝑡−1𝑋𝑡 )

, (2.28)

where 𝜖𝑡 ∈ ℝ1×𝑛
stands for the prediction error, also called innovation, 𝐶𝑜𝑣𝑡 ∈ ℝ(𝑛+𝑚)×(𝑛+𝑚)

is the estimation covariance matrix and it is symmetric and semi-positive definite, and 𝛾𝑅𝐿𝑆
is the forgetting factor for this RLS approach.

For most ACD designs, sufficient exploration of the state space guarantees good per-

formance. Although RLS depends less on global exploration, it is better to satisfy the

persistent excitation (PE) condition [34] for identifying the incremental model. A 3211

disturbance signal is introduced to excite the system modes at the start of training.

2.3.3 Network update simplification
Considering Eq. (2.7), the last term −𝛾 𝜆̂(𝑥𝑡 ) 𝜕𝑥𝑡

̃𝜕𝑥 𝑡−1
needs to be dealt with carefully, because

there are two pathways for 𝑥𝑡−1 to affect 𝑥𝑡 . One is through the model network directly

(pathway 3.a), and another one firstly goes through the actor network and then through

the model network (pathway 3.b), as shown in both Figs. 2.1 and 2.2:

𝜕𝑥𝑡
𝜕𝑥𝑡−1

=
𝜕𝑥𝑡
𝜕𝑥𝑡−1

=
𝜕𝑥𝑡
𝜕𝑥𝑡−1

|𝑚
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

𝑝𝑎𝑡ℎ𝑤𝑎𝑦 (3.𝑎)

+
𝜕𝑥𝑡
𝜕𝑢𝑡−1

|𝑚 ⋅
𝜕𝑢𝑡−1
𝜕𝑥𝑡−1

|𝑎
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑝𝑎𝑡ℎ𝑤𝑎𝑦 (3.𝑏)

. (2.29)

In conventional GDHP, the two system model derivative terms in Eq. (2.29) are calculated

back through the global system model, while IGDHP introduces the identified incremental

model information directly to approximate them, whose computation burden is decreased

compared to GDHP:

𝜕𝑥𝑡
𝜕𝑥𝑡−1

≈ 𝐹𝑡−1 ⋅ Δ𝑡 + 𝐺̂𝑡−1 ⋅ Δ𝑡 ⋅
𝜕𝑢𝑡−1
𝜕𝑥𝑡−1

|𝑎 . (2.30)

Similarly, the actor weight update process can also be simplified by the incremental in-

formation. Specifically, the term
𝜕𝑥̂𝑡+1
𝜕𝑢𝑡 in Eq. (2.15) can be approximated by the identified
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input distribution matrix 𝐺̂𝑡−1 directly:

𝜕𝑥̂𝑡+1
𝜕𝑢𝑡

= 𝐺̂𝑡−1 ⋅ Δ𝑡. (2.31)

Therefore, with the identified system transition matrix 𝐹𝑡−1 and input distribution

matrix 𝐺̂𝑡−1, one can simplify the update processes of the critic network and actor network

and thus accelerate the learning.

References [46, 75, 76] demonstrate that under the assumption that the sampling rate

is sufficiently high, in other words, Δ𝑡 is small enough, the errors due to linearization and

discretization can be ignored. In this chapter, Δ𝑡 is set to be 1 ms, which is realistic and

accurate enough. The stability analysis of the GDHP method is investigated in [43, 69].

However, to the best of our knowledge, the theoretical assurance for the closed-loop

convergence of onlinemodel-free control algorithms is still an open problem. The parameter

convergence of control policy requires accurate and stable model information, which in turn

depends on the parameter convergence of the control policy, making a circular argument.

2.4 Numerical Experiments Setup
The first part in this section introduces a nonlinear longitudinal model of F-16 Fighting

Falcon for evaluation of the proposed algorithms. The second part briefly introduces some

potential uncertainties in practical flight. The third part discusses some related issues of

the network structures for implementation of the aforementioned algorithms, including

the activation function, the hierarchical actor network, etc.

2.4.1 Aerospace system model
IGDHP can be applied to nonlinear aerospace systems, whose dynamic and kinematic state

equations can be generally represented as:

𝑥̇(𝑡) = 𝑓 (𝑥(𝑡),𝑢(𝑡),𝑑(𝑡)), (2.32)

where 𝑑(𝑡) represents the disturbances and noises.

To verify the proposed method and compare the effect of these differences for a practical

case, a nonlinear longitudinal model of F-16 Fighting Falcon [77, 78] is introduced. The

model consists of the longitudinal force and moment equations, and it is a specific example

of Eq. (2.32):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑉̇ = 𝑔 sin(𝛼 −𝜃)+
cos𝛼
𝑚

𝑇 +
𝑞̄𝑆 cos𝛼

𝑚
𝐶𝑥,𝑣 +

𝑞̄𝑆 sin𝛼
𝑚

𝐶𝑥,𝑣 ,

𝛼̇ =
𝑔
𝑉
cos(𝛼 −𝜃)−

sin𝛼
𝑚𝑉

𝑇 + (1+
𝑞̄𝑆𝑐
2𝑚𝑉 2𝐶𝑥,𝛼 )𝑞 +

𝑞̄𝑆
𝑚𝑉

𝐶𝑧,𝛼 ,

𝑞̇ =
𝑞̄𝑆𝑐
2𝐼𝑦𝑦𝑉

𝐶𝑥,𝑞𝑞 +
𝑞̄𝑆𝑐
𝐼𝑦𝑦

𝐶𝑧,𝑞 ,

𝜃̇ = 𝑞,

ℎ̇ = 𝑉 sin(𝛼 −𝜃),

(2.33)
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in which

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐶𝑥,𝑣 = 𝐶𝑥 (𝛼,𝛿𝑒) +
𝑐
2𝑉

𝐶𝑥𝑞(𝛼)𝑞,

𝐶𝑧,𝑣 = 𝐶𝑧(𝛼,𝛿𝑒) +
𝑐
2𝑉

𝐶𝑧𝑞(𝛼)𝑞,

𝐶𝑥,𝛼 = 𝐶𝑧𝑞(𝛼)cos𝛼 −𝐶𝑥𝑞(𝛼)sin𝛼,
𝐶𝑧,𝛼 = 𝐶𝑧(𝛼,𝛿𝑒) cos𝛼 −𝐶𝑥 (𝛼,𝛿𝑒) sin𝛼,
𝐶𝑥,𝑞 = 𝑐𝐶𝑚𝑞(𝛼) + 𝑐(𝑋𝑐𝑔𝑟 −𝑋𝑐𝑔 )𝐶𝑧𝑞(𝛼),
𝐶𝑧,𝑞 = 𝐶𝑚(𝛼,𝛿𝑒) + (𝑋𝑐𝑔𝑟 −𝑋𝑐𝑔 )𝐶𝑥 (𝛼),

𝑞̄ =
1
2
𝜌𝑉 2,

(2.34)

where 𝑉 denotes the velocity, 𝛼 and 𝜃 denote angle of attack and pitch angle, 𝑞 denotes
pitch rate, 𝑇 denotes engine thrust, 𝛿𝑒 denotes elevator deflection, 𝑚 denotes aircraft

mass, 𝑞̄ denotes dynamic pressure, 𝜌 denotes air density, 𝑐 denotes mean aerodynamic

chord, 𝑆 denotes wing planform area, 𝐼 𝑦𝑦 denotes pitch moment of inertia, 𝑋𝑐𝑔 and 𝑋𝑐𝑔𝑟
denote centre of gravity (CG) location and reference CG location, 𝑔 denotes a gravitational

constant, 𝐶𝑥 , 𝐶𝑧 , 𝐶𝑥𝑞 , 𝐶𝑧𝑞 are aerodynamic force coefficients and 𝐶𝑚 , 𝐶𝑚𝑞 are aerodynamic

moment coefficients. All parameters are determined by simulating this model around a

steady wings-level flight condition at an altitude of approximately 15000𝑓 𝑡 with the speed

of 600𝑓 𝑡/𝑠 based on [78].

Although the model has multiple states, two main states are selected as identified

system states, which are the angle of attack, which is to be controlled and the pitch rate

𝑞, the basic inner state. In this chapter, only one control input, elevator deflection 𝛿𝑒, is
considered, and engine thrust 𝑇 is set to be constant. Before elevator deflection is practically

adjusted, the control signal that is generated by the actor 𝑢, or 𝛿 𝑐𝑒 in this attitude tracking

problem, has to go through the actuator, which consists of a command saturation and a

first-order filter with rate saturation, as shown in Fig. 2.3. 𝛿 𝑐𝑒 is bounded in the range of

[−25◦, 25◦] and changing rate of elevator deflection is limited in the range of [−60◦/𝑠,60◦/𝑠]
[78].

Command 

Saturation

Rate

Saturation

Band

width
e

c

e 1

s

Figure 2.3: The dynamics of the actuator, which is a first-order filter with command and rate saturation.

2.4.2 Uncertainties
In flight control system design, system uncertainties, such as measurement uncertainties,

unexpected changes in system dynamics or even sudden failures, need to be taken into

account [34, 46]. This section will introduce the uncertainties the system has to deal with.
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In practice, sensors have measurement uncertainties, and the magnitude of real-world

phenomena used in this chapter is illustrated in Table 2.1 [79]. The bias acting on the

feedback signals is based on the mean of the disturbances, while the noise acting on the

signals is based on the standard deviation of the disturbances.

Table 2.1: Sensor uncertainties of F16 aircraft (adapted from [79]).

Bias Noise

𝑞 [
◦/𝑠] 1.7 ⋅ 10−3 3 ⋅ 10−2

𝛼 [
◦
] 2.2 ⋅ 10−1 1.8 ⋅ 10−3

𝛿𝑒 [◦] 2.6 ⋅ 10−1 4 ⋅ 10−2

Sudden partial damages might be encountered during flight. The effects of the aircraft

structural damages have been investigated in [46]. It has been found that actuators, as

moving components, can be affected by unforeseen faults. The first actuator fault considered

in this chapter is the sudden decrease of elevator bandwidth, which is initially set to be

20.2 rad/s [76, 78]. The bandwidth, which numerically equals the reciprocal of the time

constant of the first-order filter, denotes the maximum frequency of sinusoidal command

that the elevator can follow. A smaller bandwidth may lead to a high gain control policy,

which can result in oscillation or divergence. Another actuator fault scenario considered is

the reduction of control effectiveness, which can be caused directly by actuator damages

or indirectly by structural damages that change aerodynamics.

For longitudinal dynamics, damage of the horizontal stabilizer needs to be taken into

consideration, which leads to significant loss in both static and dynamic stability on

the directional axis with an approximately linear relationship with the scale of tip loss,

whose effectiveness is reflected by the changes of the aerodynamic moment coefficients

𝐶𝑚 and 𝐶𝑚𝑞 . Besides, these structural damages are usually accompanied by mass loss,

instantaneously shifting the CG to a new location.

2.4.3 Network structure
ANNs, or more specifically multilayer perceptions (MLPs), are utilized to approximate the

actor, critic and global model. For simplicity, the introduced ANNs are fully connected and

consist of only three layers of nodes: an input layer, a hidden layer and an output layer.

The activation function 𝜎 in the nodes of the hidden layer is a sigmoid function:

𝜍(𝑜) =
1− 𝑒−𝑜

1+ 𝑒−𝑜
. (2.35)

It is anti-symmetric, zero-center and differentiable, with output bounded between −1 and
1. Its derivative is continuous, differentiable and positive at every point:

𝜕𝜍(𝑜)
𝜕𝑜

=
1
2
(1− 𝜍(𝑜))2 . (2.36)

The actor is implemented as a hierarchical structure, or specifically a cascaded actor

network [34, 39, 63], as shown in Fig. 2.4. The first sub-network outputs a virtual reference

signal of the pitch rate 𝑞, which is one input of the second sub-network, and the second
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sub-network produces the control command. Compared to the “flat” actor with only one

end-to-end network, the virtual reference signal 𝑞ref provides a more direct instruction.

This hierarchical structure takes advantage of the physical properties of the system, by

putting some prior knowledge into the design of the controller, which in theory will reduce

the complexity of the problem. To improve stability, the output layers of the actor sub-

networks adopt a sigmoid function as the activation function, to add restrictions to the

pitch rate reference and the control action, which is different from the global model and

the critic, where linear functions are employed. The pitch rate and the elevator deflection

commands are bounded in the range of [−20◦/𝑠,20◦/𝑠] and [−25◦, 25◦], respectively.

ANNa,1 ANNa,2


 q
ref

refq

ref,t tx x

tu

Figure 2.4: The architecture of the cascaded actor network [63], where the physical properties of aircraft dynamics

are utilized.

The critic and actor networks in both GDHP and IGDHP have the same settings.

The DHP technique generally surpasses HDP in tracking precision, convergence speed

and success rate because the costate function is employed [34, 67]. Therefore, to take

advantage of the information of derivatives, 𝛽 is set to be 0.01. More neurons will improve

approximation precision, but can also increase computational burden or even lead to

overfitting, which will decrease the robustness of the controller. As a trade-off, the number

of hidden layer neurons in the actor is 15, while in both the critic and the global system it is

25. Initial weights of the neural networks can have a great influence on the learning. In this

chapter, all weights are randomly initialized within a small range of [−0.01,0.01] to reduce

the impact of initialization, and bounded within the range of [−20,20] to prevent sudden

failure in the learning process. To guarantee effective learning, learning rates have to be

chosen carefully. A descending method is applied, which means that the initial learning

rates are set to be large numbers which gradually decrease as the weights are updated.

2.5 Results and Discussion
Both the GDHP and the IGDHP algorithms are applied to a simulation of controlling the F16

aircraft longitudinal model. First, the flight controller learns to track a changing reference

at different initial conditions. Then, these two methods are compared in the failure cases

where actuator faults and structural damages take place. All numerical experiments are

implemented in the presence of sensor uncertainties.

2.5.1 Different initial conditions
Figures 2.5-2.7 compare the performance of the IGDHP and GDHP approaches, when

applied to control the F16 aircraft to track a given reference signal online at different initial

states. To be more specific, the controllers are required to control the angle of attack 𝛼
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to track the reference signal 𝛼 ref, which is a sinusoidal wave with the amplitude of 10
degrees and the period of 4𝜋 seconds. The sub-figures on the top present how the angle of

attack 𝛼 tracks the reference signal 𝛼 ref using these two approaches respectively, while the
sub-figures on the bottom provide the tracking errors during these tasks.
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Figure 2.5: Online attitude tracking control with the zero initial state, 𝛼0 = 0◦ using GDHP and IGDHP approaches.
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Figure 2.6: Online attitude tracking control with a negative initial state, 𝛼0 = −2◦ using GDHP and IGDHP

approaches.

Take every two degrees as a scale to examine the influence of the initial states. When

the initial state 𝛼0 is ±2◦, both methods perform similarly to the simulation results with zero

initial states, as shown in Figs. 2.5 and 2.6. When the initial state is 4◦, although tracking

precision decreases for the GDHP method, both methods can successfully complete the

tracking task, as shown in Fig. 2.7. Nevertheless, compared to GDHP, IGDHP spends less

time finding a feasible actor, leading to a smaller settling time. These results imply that

incremental techniques can accelerate the learning process of the actor and critic networks.
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Figure 2.7: Online attitude tracking control with positive initial state, 𝛼0 = 4◦ using GDHP and IGDHP approaches.

Furthermore, when the initial state 𝛼0 is beyond the range of [−2◦, 4◦], the GDHP method

cannot track the reference signal without oscillation. On the other side, the IGDHP method

can deal with a wider range of initial states within [−10◦, 10◦] without the loss of precision.
As presented in Fig. 2.8, the angle of attack 𝛼 can follow the given reference signal 𝛼 ref in
less than 1 second in all initial conditions using the IGDHP approach, which shows that

IGDHP is more robust than GDHP to various initial states.
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Figure 2.8: Online attitude tracking control with different initial states using the IGDHP approach.

However, Figs. 2.5-2.8 only present the nominal results when the task is successfully

performed. Random factors, including initial weights of the neural networks and sensor

noises, can affect the performance and sometimes can even lead to failure. To compare

how robust the proposed algorithms are to these random factors, a concept of success ratio

is introduced to indicate their performance, which has been widely used in [34, 39, 63].

The success ratio used in this chapter is defined as that the angle of attack 𝛼 can track the
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given reference signal 𝛼 ref after one period of 𝛼 ref, 4𝜋 seconds, and the tracking errors will

not exceed ±2◦ hereafter. Without adjustment of parameters, 1000 times of Monte Carlo

simulation are implemented to evaluate the performance of algorithms.

The results are illustrated in Table 2.2. The reason why the highest success ratio

is not 100% lies in the difficulty of achieving optimal PE condition due to the circular

argument between PE condition, accurate system information and stable control policy.

Improving several factors can increase the success ratio and improve robustness, such as

the performance of sensors, exploration noise, parameter initialization and learning rates.

However, the improvement of these factors still remains an open problem and therefore this

chapter only concentrates on the comparison of robustness between different methods. As

presented in Table 2.2, the success ratios of IGDHP are higher than those of GDHP at any

initial state. When applied to non-zero initial states, success ratios decrease dramatically

for GDHP, which means that the global model is not robust enough for various initial

conditions. However, the success ratios of both IGDHP and GDHP degrade heavily due

to measurement uncertainties, and the impacts on IGDHP are even more severe. That

is because, to achieve the quick and high-precision identified model, the incremental

method adapts quickly to locally acquired data. Nevertheless, IGDHP still shows better

performance.

Table 2.2: Success ratio comparison for different initial states and measurement uncertainties situations with 1000

times of Monte Carlo simulation.

𝛼0/[◦] −2 0 2 4

Without

uncertainties

GDHP 1.1% 50.3% 1.9% 1.4%
IGDHP 32.4% 91.6% 41.3% 36.6%

With

uncertainties

GDHP 0.7% 43.9% 1.6% 1.0%
IGDHP 19.5% 54.3% 25.1% 19.8%

2.5.2 Fault-tolerant examination
The capability to adapt is one of the most important advantages of ACDs compared to other

traditional control techniques. It allows the controller to learn sound policies automatically

by tuning the weights of the networks and this merit makes ACDs suitable for fault-tolerant

control (FTC). Fault diagnosis is a significant part of the FTC area, but will not be discussed

in this chapter. It is assumed that when a sudden fault occurs, the controller can recognize

it immediately. One challenge of FTC is that the controller is unable to change its policy

quickly enough when faced with sudden changes in plant dynamics, while in this situation

the originally learned control policy may even increase the instability of the closed loop

plant. Therefore, in this chapter, the way the controller adapts to new situations is to reset

the actor weights to small random numbers within the range of [−0.01,0.01] and to increase
the corresponding learning rate as long as the fault is detected.

Figure 2.9 compares the online adaptability of the GDHP method and the IGDHP

method in the presence of the sudden decrease of elevator bandwidth to 18 rad/s. This
change is introduced after the convergence of the policy for the original system at 4𝜋 ,
4.5𝜋 and 5𝜋 seconds, respectively, which corresponds to different values of the reference
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signal. As shown in Fig. 2.9, GDHP shows poor adaptation performance and it results

in divergence in sub-figure (c). Although the GDHP method can adapt in sub-figures (a)

and (b), its tracking performance degrades and the adapted controller leads to unexpected

oscillations due to a higher gain control policy. On the contrary, IGDHP is able to adapt

to elevator faults, and continues to track the commands precisely. The adaptation of the

actor weights during this online FTC task is presented in Fig. 2.10. There are in total 60

weights belonging to two cascaded networks. Figure 2.10 demonstrates how the controller

achieves a convergent policy by adapting actor weights and sub-figures (b) and (c) take

a closer look at the main learning processes at the beginning and after the elevator fault

happens, respectively.
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Figure 2.9: Online fault-tolerant tracking control using GDHP and IGDHP approaches in the presence of a sudden

decrease of elevator bandwidth at 3 different times.

Figure 2.10: Convergence of the actor weights using the IGDHP approach when faced with a sudden decrease of

elevator bandwidth at 4𝜋 seconds.
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The second fault scenario considered is that the elevator suddenly loses 30% of its

effectiveness during flight at 4𝜋 , 4.5𝜋 and 5𝜋 seconds, respectively. As can be seen from

Fig. 2.11, only when this sudden fault happens at 4𝜋 seconds, GDHP can recover from this

situation, but it encounters slightly growing oscillations thereafter, making the tracking

errors have larger root mean square value. If the sudden damage occurs at the points where

𝛼 ref has a non-zero value, GDHP will suffer from divergence. On the other hand, IGDHP is

able to rapidly adapt to the elevator fault with smaller tracking errors.
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Figure 2.11: Online fault-tolerant tracking control using GDHP and IGDHP approaches in the presence of a

sudden reduction of control effectiveness at 3 different times.

The last fault scenario considered is that at the three different times mentioned above,

the left stabilator is damaged, while the right stabilator is still working normally. Accom-

panying the left stabilator damage, the CG shifts forward and to the right, producing both

rolling and pitching moment increments. However, only the effects of pitching moment

increments are considered for this longitudinal model and rolling effects are omitted. The

reduced longitudinal damping and stability margin are also influencing the closed-loop

system responses. The results are illustrated in Fig. 2.12, where at all three times, GDHP

fails to adapt to the new dynamics while IGDHP shows satisfying performance.

2.6 Conclusion
This chapter develops a novel approach, called incremental model-based global dual heuris-

tic programming (IGDHP), to generate an adaptive model-free flight controller. Different

from traditional global dual heuristic programming (GDHP), which often employs an

artificial neural network to approximate the global system dynamics, IGDHP adopts in-

cremental approaches instead to identify the local plant model online and to speed up

policy convergence. Besides, this chapter derives a direct method from a holistic viewpoint

based on differential operation, to explicitly analytically compute derivatives of cost-to-go

function with respect to the critic inputs, rather than utilize conventional neural network

approximation, so as to eliminate the inconsistent errors due to coupling.

Both methods are applied to an online longitudinal attitude tracking task of a nonlinear
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Figure 2.12: Online fault-tolerant tracking control using GDHP and IGDHP approaches when horizontal stabilizers

are partially damaged at 3 different times.

F-16 Fighting Falcon system, whose dynamics are unknown to the controller. The numerical

experiment results uniformly illustrate that, in comparison to conventional GDHP, IGDHP

improves tracking precision, accelerates the online learning process, has advantages in

robustness to different initial states and measurement uncertainties, and has increased

capability to adapt when faced with unforeseen sudden faults.

This study generalizes the basic form of the IGDHP but still has limitations for realistic

applications. Further research should, therefore, concentrate on the investigation of various

types of function approximators, the improvement of stability and success ratio, and

expansion to other application scenarios.

2.A Vector and Matrix Derivation
The following derivation process to calculate derivatives is based on differential operation

[71]. Consider a critic network with a single hidden layer architecture the numbers of

network inputs, neurons and outputs are 𝑛, 𝑝 and 1, respectively. For convenience, define
𝐼𝑟 as an identity matrix with a dimension of 𝑟 , where 𝑟 can be 𝑛, 𝑝 and 1, respectively.

2.A.1 Computation of 𝜆̂(𝑥𝑡 )
The feed-forward process of the three-layer critic network is given as:

𝐽 = 𝑤T
𝑐2𝜎(𝑤

T
𝑐1𝑥), (2.37)

where 𝑤𝑐1 denotes the weight matrix connecting the input layer and the hidden layer, 𝑤𝑐2
denotes the weight matrix connecting the hidden layer and the output layer, and 𝜎(⋅) is an
element-wise operation applied to the transfer function in the hidden layer. Compute the

differentials of both sides:

d𝐽 = d𝑤T
𝑐2𝜎(𝑤

T
𝑐1𝑥)+𝑤

T
𝑐2d𝜎(𝑤

T
𝑐1𝑥) = 𝑤

T
𝑐2(𝜎

′(𝑤T
𝑐1𝑥)⊙ (𝑤

T
𝑐1 ⋅ d𝑥)), (2.38)
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where ⊙ denotes Hadamard product, and 𝜎 ′(⋅) denotes the first order derivative of function
𝜎 . Perform trace operation on both sides:

tr(d𝐽 ) =d𝐽 = tr(𝑤T
𝑐2(𝜎

′(𝑤T
𝑐1𝑥)⊙ (𝑤

T
𝑐1 ⋅ d𝑥)))

=tr((𝑤𝑐2 ⊙𝜎 ′(𝑤T
𝑐1𝑥))

T(𝑤T
𝑐1d𝑥)) = tr((𝑤𝑐1(𝑤𝑐2 ⊙𝜎 ′(𝑤T

𝑐1𝑥)))
Td𝑥),

(2.39)

The relationship between the derivative of scalar with respect to vector and their

differentials, the first order derivative of critic network output with respect to its inputs, is:

𝜆̂(𝑥𝑡 ) =
𝜕𝐽
𝜕𝑥

= 𝑤𝑐1(𝑤𝑐2 ⊙𝜎 ′(𝑤T
𝑐1𝑥)). (2.40)

2.A.2 Computation of 𝜕𝜆̂(𝑥𝑡 )/𝜕𝑤𝑐
Since the critic network has two weight matrices, the second-order derivatives have to be

calculated separately. Perform the differential operation on both sides of Eq. (2.40):

d𝜆̂(𝑥𝑡 ) = d𝑤𝑐1(𝑤𝑐2 ⊙𝜎 ′(𝑤T
𝑐1𝑥)) +𝑤𝑐1 ⋅ d(𝑤𝑐2 ⊙𝜎 ′(𝑤T

𝑐1𝑥)). (2.41)

Firstly consider 𝜕𝜆̂(𝑥𝑡 )/𝜕𝑤𝑐2 and regard 𝑤𝑐1 as a constant matrix, then Eq. (2.41) can be

modified as:

d𝜆̂(𝑥𝑡 ) = 𝑤𝑐1 ⋅ d(𝑤𝑐2 ⊙𝜎 ′(𝑤T
𝑐1𝑥)) = 𝑤𝑐1(d𝑤𝑐2 ⊙𝜎 ′(𝑤T

𝑐1𝑥))𝐼1. (2.42)

Reshape both sides to column vectors:

vec(d𝜆̂(𝑥𝑡 )) =d𝜆̂(𝑥𝑡 ) = vec(𝑤𝑐1 ⋅ d(𝑤𝑐2 ⊙𝜎 ′(𝑤T
𝑐1𝑥))𝐼1)

=(𝐼1 ⊗𝑤𝑐1) ⋅ vec(d𝑤𝑐2 ⊙𝜎 ′(𝑤T
𝑐1𝑥)) = (𝐼1 ⊗𝑤𝑐1) ⋅ diag(𝜎 ′(𝑤T

𝑐1𝑥)) ⋅ vec(d𝑤𝑐2)
(2.43)

where vec(⋅) is vector reshaping function, diag(⋅) reshapes the vector to a diagonal matrix,

and ⊗ is Kronecker product. 𝜕𝜆̂(𝑥𝑡 )/𝜕𝑤𝑐2 is the derivative of the vector 𝜆̂(𝑥𝑡 ) with respect

to the matrix 𝑤𝑐2. Based on the relationship between 𝜕𝜆̂(𝑥𝑡 )/𝜕𝑤𝑐2 and the differentials of

𝜆̂(𝑥𝑡 ) and 𝑤𝑐2 [71], 𝜕𝜆̂(𝑥𝑡 )/𝜕𝑤𝑐2 can be obtained:

𝜕𝜆̂(𝑥𝑡 )
𝜕𝑤𝑐2

= ((𝐼1 ⊗𝑤𝑐1) ⋅ diag(𝜎 ′(𝑤T
𝑐1𝑥)))

T = diag(𝜎 ′(𝑤T
𝑐1𝑥))(𝐼1 ⊗𝑤

T
𝑐1). (2.44)

Then consider 𝜕𝜆̂(𝑥𝑡 )/𝜕𝑤𝑐1 and regard 𝑤𝑐2 as a constant matrix. Perform the differential

operation on both sides of Eq. (2.40):

d𝜆̂(𝑥𝑡 ) = d𝑤𝑐1(𝑤2 ⊙𝜎 ′(𝑤T
𝑐1𝑥)) +𝑤𝑐1(d𝑤𝑐2 ⊙𝜎 ′(𝑤T

𝑐1𝑥)+𝑤𝑐2 ⊙d𝜎 ′(𝑤T
𝑐1𝑥))

= 𝐼𝑛 ⋅ d𝑤𝑐1 ⋅ (𝑤𝑐2 ⊙𝜎 ′(𝑤T
𝑐1𝑥)) +𝑤𝑐1(𝑤𝑐2 ⊙d𝜎 ′(𝑤T

𝑐1𝑥))𝐼1.
(2.45)
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Recall Eq. (2.36) and reshape both sides to column vectors:

vec(d𝜆̂(𝑥𝑡 )) =d𝜆̂(𝑥𝑡 )

=((𝑤𝑐2 ⊙𝜎 ′(𝑤T
𝑐1𝑥))

T ⊗ 𝐼𝑛)vec(d𝑤𝑐1) + (𝐼1 ⊗𝑤𝑐1)vec(𝑤𝑐2 ⊙d(
1
2
(1−𝜎 ◦2(𝑤T

𝑐1𝑥))))

=((𝑤𝑐2 ⊙𝜎 ′(𝑤T
𝑐1𝑥))

T ⊗ 𝐼𝑛) ⋅ vec(d𝑤𝑐1)+

(𝐼1 ⊗𝑤𝑐1) ⋅ vec(𝑤𝑐2 ⊙ (−𝜎(𝑤T
𝑐1𝑥)⊙ (𝜎

′(𝑤T
𝑐1𝑥)⊙ ((d𝑤𝑐1)T𝑥))))

=((𝑤𝑐2 ⊙𝜎 ′(𝑤T
𝑐1𝑥))

T ⊗ 𝐼𝑛) ⋅ vec(d𝑤𝑐1)−

(𝐼1 ⊗𝑤𝑐1)diag(vec(𝑤𝑐2)) ⋅ diag(𝜎(𝑤T
𝑐1𝑥))diag(𝜎

′(𝑤T
𝑐1𝑥)))vec(𝐼𝑝(d𝑤𝑐1)T𝑥)

=((𝑤𝑐2 ⊙𝜎 ′(𝑤T
𝑐1𝑥))

T ⊗ 𝐼𝑛−

(𝐼1 ⊗𝑤𝑐1)diag(vec(𝑤𝑐2))diag(𝜎(𝑤T
𝑐1𝑥))diag(𝜎

′(𝑤T
𝑐1𝑥))(𝑥

T ⊗ 𝐼𝑝)K)vec(d𝑤𝑐1),
(2.46)

where ⋅◦2 is an element-wise square operation, and K is a commutation matrix of 𝑤𝑐1.

Similar to 𝜕𝜆̂(𝑥𝑡 )/𝜕𝑤𝑐2, based on the relationship between the derivative of the vector 𝜆̂(𝑥𝑡 )
with respect to the matrix𝑤𝑐1, and the differentials of 𝜆̂(𝑥𝑡 ) and𝑤𝑐1, 𝜕𝜆̂(𝑥𝑡 )/𝜕𝑤𝑐1 is obtained

as follows:

𝜕𝜆̂(𝑥𝑡 )
𝜕𝑤𝑐1

=((𝑤𝑐2 ⊙𝜎 ′(𝑤T
𝑐1𝑥))

T ⊗ 𝐼𝑛 − (𝐼1 ⊗𝑤𝑐1)⋅

diag(vec(𝑤𝑐2))diag(𝜎(𝑤T
𝑐1𝑥)) ⋅ diag(𝜎

′(𝑤T
𝑐1𝑥))(𝑥

T ⊗ 𝐼𝑝)K)T

=(𝑤𝑐2 ⊙𝜎 ′(𝑤T
𝑐1𝑥)) ⊗ 𝐼𝑛 −K

T(𝑥 ⊗ 𝐼𝑝)⋅

diag(𝜎 ′(𝑤T
𝑐1𝑥))diag(𝜎(𝑤

T
𝑐1𝑥)) ⋅ diag(vec(𝑤𝑐2))(𝐼1 ⊗𝑤T

𝑐1).

(2.47)

Note that in order to obtain the derivative of a vector with respect to a matrix, tensor

operation is involved, which, however, reduces the dimensionality of the original matrix.

Therefore, after calculating the gradients of error with respect to weights (referring to

Eq. (2.15) by chain rule), dimensionality analysis is required to reshape the results.
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3
Intelligent Adaptive

Optimal Control Using
IGDHP with Partial

Observability

Intelligent Adaptive Optimal Control Using Incremental Model-Based Global Dual
Heuristic Programming Subject to Partial Observability

Chapter 2 developed an incremental model-based global dual heuristic programming (IGDHP)
in the full-state feedback (FSF) situation. The situation of partial observability (PO) that
involves immeasurable stochastic or time-varying dynamics will be further explored in this
chapter. The incremental model will be augmented using historical observations to approxi-
mate the unknown dynamics. Then, the approximation error of local linearization and the
convergence of the recursive least square algorithm that is used for updating the incremental
model will be analysed. Finally, this chapter will make numerical comparisons between FSF
and PO scenarios, and will verify the proposed algorithm under the circumstances of external
disturbances and sudden faults.

This chapter is based on the following article:

B. Sun and E. van Kampen, "Intelligent Adaptive Optimal Control Using Incremental Model-Based Global Dual

Heuristic Programming Subject to Partial Observability", Applied Soft Computing, vol. 103, pp. 107153, 2021. Doi:
10.1016/j.asoc.2021.107153 [80].

The identification method based on the incremental model developed in this chapter has been validated via an

experiment in the following article:

B. Sun, T. Mkhoyan, E. van Kampen, R. De Breuker and X. Wang, "Vision-Based Nonlinear Incremental Control

for A Morphing Wing with Mechanical Imperfections", IEEE Transactions on Aerospace and Electronic Systems, vol.
58, no. 6, pp. 5506–5518, 2022. Doi: 10.1109/TAES.2022.3175679 [3].
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Abstract
The scarcity of information regarding dynamics and full-state feedback increases the

demand for a model-free control technique that can cope with partial observability. To

deal with the absence of prior knowledge of system dynamics and perfect measurements,

this chapter develops a novel intelligent control scheme by combining global dual heuristic

programming with an incremental model-based identifier. An augmented system consisting

of the unknown nonlinear plant and unknown varying references is identified online using

a locally linear regression technique. The actor-critic is implemented using artificial neural

networks, and the actuator saturation constraint is addressed by exploiting a symmetrical

sigmoid activation function in the output layer of the actor network. Numerical experiments

are conducted by applying the proposed method to online adaptive optimal control tasks

of an aerospace system. The results reveal that the developed method can deal with

partial observability with performance comparable to the full-state feedback control, while

outperforming the global model-based method in stability and adaptability.

3.1 Introduction
Conventional controller design for aerospace systems is commonly based on the known

linearize models at different equilibrium or trimmed conditions and on PID controllers

with human-scheduled gains to cover the complete operating envelope [81]. However,

more complex demands such as optimization and adaptation have emerged recently, which

cannot be tackled within this traditional scheme. The demand for optimization involves

optimal control, in which the dynamic programming (DP) principle plays a fundamental

role [82], and the Hamilton-Jacobi-Bellman (HJB) equation is often involved [83]. However,

as a partial differential equation, the HJB equation is arduous to be solved analytically

due to its nonlinear nature. Besides, DP-based approaches are by nature offline planning

approaches in a backwards-in-time way and generally require the full knowledge of the

system dynamics [24]. However, for complex systems, sometimes not only the internal

dynamics, but also the information to infer its internal states can be unaccessible, i.e.,

full-state feedback (FSF) is no longer available[47, 50, 84]. These factors prevent traditional

optimal control methods from further applications. On the other hand, adaptive control is

another focal point of aerospace systems control [81, 85], which is generally considered a

separate paradigm from optimal control [86]. Adaptive control concentrates on how the

controller can adapt to uncertain system dynamics, and changing environments and tasks,

and does not feature optimality as its paramount target. Both optimal control and adaptive

control can be significant for aerospace systems. Therefore, the purpose of this chapter

is to develop an adaptive optimal control approach so as to improve the optimal tracking

performance without known system dynamics and perfect measurements.

Reinforcement learning (RL) is a class of bio-inspired artificial intelligence techniques,

by which the agent improves its policy to maximize the received reward (or minimize the

penalty) during interaction with the environment [16]. From a theoretical point of view, RL

is closely linkedwith adaptive optimal control methods [21, 38]. A fruitful cross-fertilization

of RL and control theory produces adaptive/approximate dynamic programming (ADP),

whose essential goal lies in approximating the solutions of DP [25, 87]. With two essential

ingredients of temporal difference (TD) error and value function approximation (VFA)
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[21], ADP is a class of effective approaches to deal with adaptive optimal control problems.

ADP divides the learning process into two parts, namely policy evaluation and policy

improvement, which, in comparison to conventional DP, enables the controller to be

computed forward in time and makes online computation feasible. Linear ADP (LADP)

is a widely used technique to deal with linear optimal control problems with a quadratic

performance index function [47, 50, 88, 89], and an explicit solution can be constructed [90].

Nevertheless, relying on the assumption that the dynamic system is linear time-invariant

(LTI), LADP is not suitable for dealing with nonlinear or time-varying systems [50]. What

is more, LADP is constricted to only employ a linear quadratic form cost, i.e., 𝑥T𝑄𝑥 +𝑢T𝑅𝑢,
where 𝑄 is a positive semi-definite weight matrix and 𝑅 is a positive definite weight matrix.

This prevents LADP from further applications with different demands, such as addressing

input saturation constraints [91–95], or releasing the input constraints [34, 59, 63, 84], i.e.,

𝑅 is positive semi-definite.

As an expansion of LADP, adaptive critic designs (ACDs) break the linear quadratic

constraints that exist in LADP, and have demonstrated impressive success in adaptive

optimal control problems [96, 97]. ACDs normally exploit artificial neural networks (ANNs)

to approximate evaluation (critic) and improvement (actor) of the control policy, and

consequently they can be applied to nonlinear system control problems with complicated

rewards. Based on the information utilized by the critic network, ACDs are generally

categorized as heuristic dynamic programming (HDP), dual heuristic programming (DHP),

and global dual heuristic programming (GDHP) [26]. Among them, GDHP combines

the information used by HDP and DHP and thus takes advantage of the two methods

[59, 63, 98–100]. There are several structures of the critic network for GDHP [26] and the

most widely used structure is the straightforward form that approximates the performance

index function and its derivatives simultaneously [63, 99, 100]. However, this structure

can introduce undesired inconsistent errors, so this chapter employs explicit analytical

calculations derived in [59] to eliminate these inconsistent errors.

Directly learning from unknown real systems usually requires a lot of trials or episodes

[97] and may even cause disasters such as misconvergence or even divergence in some

extreme cases [39]. Therefore, for complex and delicate systems, such as aerospace systems,

information about state transition is required. For instance, for a time-invariant affine

system, given the explicit information of control effectiveness, a convergent control policy

can be generated based on some assumptions [94, 101]. However, sometimes system

dynamics are completely unknown. Consequently, an extra structure, such as an ANN,

is introduced to approximate the system model in some literature [44, 45, 98, 100, 102].

Because training ANNs require some efforts before the parameters converge, the model

network is trained offline and kept unchanged for online application in [98, 100, 102], which

lacks the capability to adapt if the system is changed, whereas in [44, 45], the information

of partial system dynamics is still required for online identification.

To tackle the limits of learning global system models and to achieve online fast adap-

tation, an incremental model is introduced in this chapter. According to a local linear

regression (LLR) technique [103], the incremental model only approximates the local dy-

namics of the original nonlinear system instead of the global model, on the assumption of

sufficiently high sampling frequency [59]. The incremental technique has been successfully

combined with various classic control methods to obtain adaptive nonlinear control ap-
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proaches, such as incremental nonlinear dynamic inversion (INDI) ([104]) and incremental

sliding mode control (ISMC) [8, 46]. These approaches have shown success in the reduction

of the model dependency and fault tolerance, but have still not addressed the optimality.

On the other hand, the synthesis of incremental techniques and ACDs leads to the incre-

mental model-based adaptive critic designs (IACDs) ([34, 59, 63]. These approaches have

been applied to several flight control problems and performed well to generate adaptive

optimal controllers with FSF. Nevertheless, real applications are often more complex and

FSF can be unrealistic, which results in a partial observability (PO) problem. According

to [50, 105], the methods coping with deterministic systems and measurements are often

regarded as output feedback methods [45, 47, 48, 84, 86, 89, 106], whereas if stochastic

time-varying dynamics are involved, the control problems are linked with partially observ-

able Markov decision processes (POMDPs) [49, 50, 105, 107]. PO often occurs in aerospace

systems, whose internal dynamics can be difficult to obtain and may be time-varying or

stochastic, such as liquid sloshing in spacecraft with fuel tanks, infrared camera tracking

with unpredictable target maneuvering, and unforeseen damages to aircraft structures

changing system dynamics suddenly [50, 105]. In [50], the incremental model is for the

first time applied to a flight control problem with only tracking errors directly measurable

by improving LADP, and extends the approach by combining the HDP approach in [105].

However, HDP has shown inferiority in convergence speed and control precision compared

to DHP and GDHP[34, 59]. In addition, the convergence of the identification technique is

not analyzed in all existing literature adopting the incremental model.

The main contribution of this chapter is dealing with the PO condition in adaptive

optimal tracking control of unknown nonlinear systems by introducing an augmented

incremental model into the GDHP algorithm, such that an incremental model-based GDHP

(IGDHP) approach is developed. The principal advantage of the IGDHP approach lies in

that the incremental model accelerates online policy learning without knowing global

system dynamics or offline training a model network, which allows for quick adaptation

to system changes. Although some previous works are based on the incremental model

[34, 47, 50, 59, 63, 84, 98, 105], this chapter discusses the convergence of the identification

technique and achieves the highest 100% success ratio for the first time. The output layer

of the actor network exploits a symmetrical sigmoid activation function, to satisfy the

demands for tackling input saturation constraints, by multiplying an additive-determined

weight vector. Different from [59], this chapter focuses on the PO situation, and improves

the previous IGDHP approach by an augmented incremental model so as to deal with

the unavailability of the information referring to inner system states and the unknown

time-varying reference. The present research aims at bridging the gap between the dis-

cussed algorithms and real-world systems, by taking more realistic application scenarios

into consideration for verification, including sensor noises, fault-tolerant tasks, parame-

ter variations, load disturbances, and combination with other controllers in higher-level

control.

The remainder of this chapter is structured as follows. Section 3.1 presents the basic

formulation of the continuous optimal tracking control problem subject to input constraints.

In Section 3.3, the incremental technique is introduced for online identification in both

FSF and PO conditions. Section 3.4 presents the IGDHP algorithm with explicit analytical

calculations and addresses the input constraints via the actor network. Then Section 3.5
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verifies the developed IGDHP method by applying it to various control problems of an

aerospace system. Finally, the conclusion and future research are presented in Section 3.6.

3.2 Problem Statement
Consider a nonlinear continuous system described by:

𝑥̇ = 𝑓 (𝑥(𝑡),𝑢(𝑡)), (3.1)

where 𝑥(𝑡) ∈ ℝ𝑛, and 𝑢(𝑡) ∈ ℝ𝑚 are the state vector and control vector, respectively, and

𝑓 (𝑥(𝑡),𝑢(𝑡)) ∈ ℝ𝑛 provides the physical evaluation of the state vector over time. Assume

that 𝑓 is Lipschitz continuous on a set Ωs ⊂ ℝ𝑛 and that the system (3.1) is controllable on

Ωs.

The output of the nonlinear system is represented as:

𝑦(𝑡) = ℎ(𝑥(𝑡)), (3.2)

where 𝑦(𝑡) ∈ ℝ𝑝 , and ℎ[𝑥(𝑡)] ∈ ℝ𝑝 is the Lipschitz continuous output function. The system
is also assumed to be observable.

The problem investigated in this study is in the framework of optimal tracking control

problem, so the objective of the controller is to minimize the tracking error between system

output 𝑦(𝑡) and reference trajectory 𝑦ref(𝑡), which is defined as:

𝑒(𝑡) = 𝑦(𝑡) −𝑦ref(𝑡), (3.3)

where 𝑒(𝑡) ∈ ℝ𝑝 and 𝑦ref(𝑡) ∈ ℝ𝑝 .
In the ADP scheme, the performance index function, also called cost-to-go, of optimal

tracking control problem is usually presented as the cumulative sum of future costs from

any initial time 𝑡 :

𝐽 (𝑒(𝑡),𝑢(𝑡 ∶ ∞)) = ∫
∞

𝑡
𝛾 𝜏−𝑡𝑟(𝑒(𝜏 ),𝑢(𝜏 ))d𝜏 , (3.4)

where 𝑢(𝑡 ∶ ∞) = {𝑢(𝜏 ) ∶ 𝑡 ≤ 𝜏 < ∞} denotes the system control produced by control law

𝜇(𝑒(𝜏 )) ∈ ℝ𝑚 from time instant 𝑡 to ∞, 𝑟(𝑒(𝑡),𝑢(𝑡)) ∈ ℝ denotes the cost at the time instant

𝑡 , and 𝛾 ∈ (0,1] is the discount factor that indicates the extent to which the short-term

cost or long-term cost is concerned. For simplicity, 𝐽 (𝑒(𝑡),𝑢(𝑡 ∶ ∞)) is denoted by 𝐽 (𝑡) and
𝑟(𝑒(𝑡),𝑢(𝑡)) is denoted by 𝑟(𝑡) in the following part.

Input constraints are taken into account in this chapter, which cannot be tackled

merely by the linear quadratic cost. A non-quadratic functional is employed in [91, 93, 95]

for regulation optimal control problems with input constraints. Nevertheless, this non-

quadratic functional can relatively improve the complexity of the GDHP technique, in

that the backpropagation processes need to compute partial derivatives. Moreover, in the

existing standard solution to the optimal tracking control problems, a transformation is

conducted with the aid of a desired control input 𝑢d(𝑡) to build a regulation optimal control

formation concerning the tracking error 𝑒(𝑡) and the feedback input 𝑢𝑒(𝑡) = 𝑢(𝑡) − 𝑢d(𝑡).
However, as claimed in [92], it is impossible to encode the input constraints into this new

control problem simply by a non-quadratic functional, since only the feedback part of

the control input 𝑢𝑒(𝑡) can be directly obtained by minimizing the performance function.
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Therefore, a saturation function is directly imposed upon the control commands to satisfy

the input constraints, which will be addressed by modifying the structure of the actor

network in Section 3.4. In this way, the tracking problem is transformed into a regular

optimal control problem subject to input constraints.

Based on TD technique [21], the cost-to-go can also be represented as:

𝐽 (𝑡) = ∫
𝑡+𝑇

𝑡
𝑟(𝜏 )d𝜏 +𝛾𝐽 (𝑡 +𝑇 ), (3.5)

where 𝑇 > 0 is a time horizon. According to Bellman’s optimality principle, the optimal

cost-to-go is given as:

𝐽 ∗(𝑡) = min
𝑢(𝑡∶𝑡+𝑇 )(∫

𝑡+𝑇

𝑡
𝑟(𝜏 )d𝜏 +𝛾𝐽 ∗(𝑡 +𝑇 )), (3.6)

where 𝐽 ∗ stands for the optimal value of 𝐽 . Therefore, the optimal control law can be

expressed as:

𝜇∗(𝑒(𝑡)) = arg min
𝑢(𝑡∶𝑡+𝑇 )

𝐽 ∗(𝑡) = arg min
𝑢(𝑡∶𝑡+𝑇 )(∫

𝑡+𝑇

𝑡
𝑟(𝜏 )d𝜏 +𝛾𝐽 ∗(𝑡 +𝑇 )). (3.7)

For nonlinear systems, the solution of Eq. (3.6) is usually intractable to be obtained

analytically. Therefore, an IGDHP algorithm is introduced to iteratively solve this optimal

control problem.

3.3 Incremental Model Implementation
The IGDHP algorithm requires the information of the cost at the next time instant, so the

predictability of the system states is significant. This chapter considers a PO situation,

where although the system is observable, the only measurement is the tracking error

and even the reference can be unknown and changing. This scenario can happen in real

applications in aerospace systems control problems. For instance, the docking sensors for

automated transfer vehicles and the International Space Station are infrared cameras, which

only measure the relative distance and angles between them as the navigation information

[50]. Therefore, it is desired to build a new module to provide a mapping from the system

input to the observation, which will be dealt with using the incremental model in this

section.

3.3.1 Incremental model with FSF
The derivation of the incremental model starts from the FSF condition while for all incre-

mental techniques, the following assumption is a prerequisite:

Assumption 3.1. The sampling frequency is sufficiently high, i.e., the sampling time Δ𝑡 is
sufficiently small, and the system dynamics are relatively slowly time-varying.

Remark 3.1. There are two important parts referring to Assumption 3.1. Firstly, a discrete

incremental model can be introduced to represent a continuous nonlinear plant and retain

high enough precision. Secondly, the discrete model does not change the properties of the

original system, including controllability and observability.
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It is assumed that the system is first-order continuous with respect to time at around

time instant 𝑡 −Δ𝑡 (denoted by 𝑡0). Then, taking the first-order Taylor series expansion and

omitting higher-order terms, the system dynamics of Eq. (3.1) at around time instant 𝑡0 can
approximately be linearized as follows :

𝑥̇(𝑡) = 𝑥̇(𝑡0) + 𝐹 (𝑥(𝑡0),𝑢(𝑡0))(𝑥(𝑡) − 𝑥(𝑡0)) +𝐺(𝑥(𝑡0),𝑢(𝑡0))(𝑢(𝑡) −𝑢(𝑡0)) +𝑂((Δ𝑥(𝑡))2, (Δ𝑢(𝑡))2),
(3.8)

where 𝐹 (𝑥(𝑡0),𝑢(𝑡0)) = 𝜕𝑓 T(𝑥(𝑡),𝑢(𝑡))
𝜕𝑥(𝑡) |𝑥(𝑡0),𝑢(𝑡0) ∈ ℝ𝑛×𝑛 denotes the system transition matrix

and 𝐺(𝑥(𝑡0),𝑢(𝑡0)) = 𝜕𝑓 T(𝑥(𝑡),𝑢(𝑡))
𝜕𝑢(𝑡) |𝑥(𝑡0),𝑢(𝑡0) ∈ ℝ𝑛×𝑚 denotes the control effectiveness matrix.

𝐹 (𝑥(𝑡0),𝑢(𝑡0)) and 𝐺(𝑥(𝑡0),𝑢(𝑡0)) are bounded due to the Lipschitz continuity of 𝑓 in Eq. (3.1).

For ADP-based methods, the control policy cannot be determined in advance, and there-

fore the higher-order term can behave as a perturbation term to affect the closed-loop per-

formance. Nevertheless, as claimed in [46, 75], the higher-order term, 𝑂((Δ𝑥(𝑡))2, (Δ𝑢(𝑡))2)
satisfies:

lim
Δ𝑡→0

||𝑂((Δ𝑥(𝑡))2, (Δ𝑢(𝑡))2)||2 = 0, ∀𝑥 ∈ ℝ𝑛 , ∀𝑢 ∈ ℝ𝑚 , (3.9)

which means the norm value of the higher-order term is negligible given a sufficiently

high sampling frequency. Equation (3.9) also indicates that ∀𝑂̄ > 0, ∃Δ𝑡 > 0, satisfies that
for all 0 < Δ𝑡 ≤ Δ𝑡 , ∀𝑥 ∈ ℝ𝑛 , ∀𝑢 ∈ ℝ𝑚 ,∀𝑡 ≥ 𝑡0, ||𝑂((Δ𝑥(𝑡))2, (Δ𝑢(𝑡))2)||2 ≤ 𝑂̄, i.e., there exists a
Δ𝑡 that guarantees the boundedness of the higher-order term and the bound can be further

diminished with the increase of the sampling frequency. Besides, the LLR technique is

adopted and the linearization errors will not accumulate but only affect the local system

identification. Furthermore, the real-world experiments, including the ground robot [104]

and aerospace systems [8, 108], have been successfully carried out based on this lineariza-

tion process. Therefore, in the following part, the higher-order term is omitted for the

convenience of controller design.

Assuming the states and state derivatives of the system are measurable, i.e., Δ𝑥̇(𝑡),
Δ𝑥(𝑡), Δ𝑢(𝑡) are measurable, an incremental model can be utilized to describe the system

(3.8):

Δ𝑥̇(𝑡) ≈ 𝐹 (𝑥(𝑡0),𝑢(𝑡0))Δ𝑥(𝑡) +𝐺(𝑥(𝑡0),𝑢(𝑡0))Δ𝑢(𝑡). (3.10)

Despite the fact that physical systems are usually continuous, modern processors

work in a discrete way, leading to discrete measurements and computations [59, 63].

Consequently, given a sufficiently small sampling time Δ𝑡 , based on Assumption 3.1, the

plant model (3.10) can be represented approximately in a discrete form:

𝑥𝑡+1 −𝑥𝑡
Δ𝑡

−
𝑥𝑡 −𝑥𝑡−1

Δ𝑡
≈ 𝐹𝑡−1(𝑥𝑡 −𝑥𝑡−1) +𝐺𝑡−1(𝑢𝑡 −𝑢𝑡−1), (3.11)

in which the subscript 𝑡 stands for the current sampling time instant, 𝐹𝑡−1 = 𝜕𝑓 T(𝑥,𝑢)
𝜕𝑥 |𝑥𝑡−1 ,𝑢𝑡−1 ∈

ℝ𝑛×𝑛 and 𝐺𝑡−1 = 𝜕𝑓 T(𝑥,𝑢)
𝜕𝑢 |𝑥𝑡−1 ,𝑢𝑡−1 ∈ ℝ𝑛×𝑚 denote the system transition matrix and the input

distribution matrix at time instant 𝑡 − 1 for the discretized systems, respectively. From

Eq. (3.11), the following incremental form of the new discrete system can be obtained:

Δ𝑥𝑡+1 ≈ (𝐼𝑛 +𝐹𝑡−1Δ𝑡)Δ𝑥𝑡 +𝐺𝑡−1Δ𝑡Δ𝑢𝑡 , (3.12)

where 𝐼𝑛 denotes an identity matrix and subscript 𝑛 shows its dimension.
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In the FSF situation, matrices 𝐹𝑡−1 and 𝐺𝑡−1 can be identified online with a recursive

least square (RLS) algorithm [59] and each update only requires the latest data.

3.3.2 Augmented incremental model
This subsection will focus on the construction of the locally incremental model using

tracking error and input measurements based on the augmented state.

Considering Eq. (3.2), the output of the system around time instant 𝑡0 can be linearized

with Taylor expansion:

𝑦(𝑡) ≈ 𝑦(𝑡0) +𝐻(𝑥(𝑡0))(𝑥(𝑡) − 𝑥(𝑡0)), (3.13)

where 𝐻(𝑥(𝑡0)) = 𝜕ℎT(𝑥(𝑡))
𝜕𝑥(𝑡) |𝑥(𝑡0) ∈ ℝ𝑝×𝑛 denotes the observation matrix. Given a sampling

time Δ𝑡 , the incremental dynamics of the system output can be written as:

Δ𝑦𝑡+1 ≈ 𝐻𝑡Δ𝑥𝑡+1, (3.14)

in which 𝐻𝑡 = 𝜕ℎT(𝑥)
𝜕𝑥 |𝑥𝑡 ∈ ℝ𝑝×𝑛 denotes the discrete observation matrix. It has been examined

that, if a nonlinear system is completely observable with its output, then the system can

still be regarded as deterministic [47, 50], suggesting that the unmeasurable internal states

can be reconstructed with adequate observations to provide transition information [84].

Lemma 3.1. Given the measured input/output data over a long-enough time horizon, [𝑡 −
𝑁 +1, 𝑡], 𝑁 ≥ 𝑛/𝑝, the output increment Δ𝑦𝑡+1 can uniquely be determined as follows:

Δ𝑦𝑡+1 ≈ 𝐹 𝑡Δ𝑦𝑡,𝑁 +𝐺𝑡Δ𝑢𝑡,𝑁 , (3.15)

where 𝐹 𝑡 ∈ ℝ𝑝×𝑁𝑝 denotes the extended discrete system transition matrix, 𝐺𝑡 ∈ ℝ𝑝×𝑁𝑚 denotes
the extended discrete input distribution matrix, and Δ𝑢𝑡,𝑁 = [Δ𝑢T𝑡 ,Δ𝑢T𝑡−1,⋯ ,Δ𝑢T𝑡−𝑁+1]

T ∈ ℝ𝑁𝑚
and Δ𝑦𝑡,𝑁 = [Δ𝑦T𝑡 ,Δ𝑦T𝑡−1,⋯ ,Δ𝑦T𝑡−𝑁+1]

T ∈ ℝ𝑁𝑝 are the measured input/output data of 𝑁 previ-
ous steps, respectively.

Proof. Based on Assumption 3.1, the new discrete system described by Eqs. (3.12) and (3.14)

is observable. Then the detailed proof can be found in [47, 88] and is omitted here.

If the reference signal is slow-varying in comparison to the system dynamics, then

in the time horizon [𝑡 − 𝑁 + 1, 𝑡], the increment of the reference signal can be ignored.

Accordingly, considering Eqs. (3.3) and (3.15), the output tracking error at the next time

instant can be written as:

𝑒𝑡+1 = 𝑦𝑡+1 −𝑦ref𝑡+1

≈ 𝑦𝑡 +𝐹 𝑡Δ𝑦𝑡,𝑁 +𝐺𝑡Δ𝑢𝑡,𝑁 − (𝑦ref𝑡 +Δ𝑦ref𝑡+1)

≈ 𝑒𝑡 +𝐹 𝑡Δ𝑦𝑡,𝑁 +𝐺𝑡Δ𝑢𝑡,𝑁
≈ 𝑒𝑡 +𝐹 𝑡Δ𝑒𝑡,𝑁 +𝐺𝑡Δ𝑢𝑡,𝑁 ,

(3.16)

where 𝑒𝑡+1 ∈ ℝ𝑝 and 𝑦ref𝑡+1 ∈ ℝ𝑝 . However, it is impossible to directly identify Matrices 𝐹 𝑡
and 𝐺𝑡 since the reference is unknown, and put another way, the system output cannot
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be measured separately. Furthermore, the last approximation in Eq. (3.16) relies on the

assumption that the reference remains constant within the time horizon [𝑡 −𝑁 +1, 𝑡], which
can be invalid in numerous scenarios.

Consequently, a more general situation corresponding to POMDP is taken into account,

and the following assumption is given:

Assumption 3.2. The bandwidth of the reference signal is comparable with that of the system
dynamics, and the dynamics of the reference signal can be represented as:

𝑦̇ref = 𝑓 ref(𝑦ref(𝑡),𝑦(𝑡)), (3.17)

where 𝑓 ref is Lipschitz continuous on a set Ωr ⊂ 𝑅𝑝 , and differentiable almost everywhere
except for finite isolated points.

The reference signal is often independent of the system output, while in some other

cases the reference can partially be determined by the system output, such as moving targets

equipped with anti-tracking systems [50]. Equation (3.17) provides a general reference

description that can also be expressed by the time-based function, as long as the reference

signal is continuous and piecewise differentiable. Similar to Eq. (3.12), the reference signal

can be represented as a discrete incremental form by Taylor expansion and discretization:

Δ𝑦ref𝑡+1 ≈ (𝐼𝑝 +𝐹
ref

𝑡−1Δ𝑡)Δ𝑦
ref

𝑡 +𝐺ref

𝑡−1Δ𝑡Δ𝑦𝑡 , (3.18)

where 𝐹 ref𝑡−1 =
𝜕𝑓 ref T(𝑦ref ,𝑦)

𝑦ref |𝑦ref𝑡
∈ ℝ𝑝×𝑝 , and 𝐺ref

𝑡−1 =
𝜕𝑓 ref T(𝑦ref ,𝑦)

𝑦 |𝑦𝑡 ∈ ℝ𝑝×𝑝 . 𝐹 ref𝑡−1 and 𝐺ref

𝑡−1 can be

time-varying and since 𝑓 ref is Lipschitz continuous, 𝐹 ref𝑡−1 and 𝐺ref

𝑡−1 are bounded. If the

reference is independent of the controlled system, the matrix 𝐺ref

𝑡−1 is a zero matrix.

Accordingly, an augmented system that consists of the system state and reference

dynamics can be constructed by combining system representation Eqs. (3.12) and (3.14) and

reference representation Eq. (3.18) [89]. Define 𝑧𝑡 = [𝑥T𝑡 , 𝑦ref T𝑡 ]T and Δ𝑧𝑡 = [Δ𝑥T𝑡 ,Δ𝑦ref T𝑡 ]T,
and then the following augmented system can be obtained:

Δ𝑧𝑡+1 ≈ F𝑡−1Δ𝑧𝑡 +G𝑡−1Δ𝑢𝑡 , (3.19)

and

Δ𝑒𝑡+1 ≈ H𝑡Δ𝑧𝑡+1, (3.20)

where F𝑡−1 = [
𝐼𝑛 +𝐹𝑡−1Δ𝑡 0
𝐺ref

𝑡−1𝐻𝑡−1Δ𝑡 𝐼𝑝 +𝐹 ref𝑡−1Δ𝑡]
∈ ℝ(𝑛+𝑝)×(𝑛+𝑝)

, G𝑡−1 = [𝐺T
𝑡−1Δ𝑡,0]T ∈ ℝ(𝑛+𝑝)×𝑚

, and

H𝑡 = [𝐻𝑡 ,−𝐼𝑝] ∈ ℝ𝑝×(𝑛+𝑝).
Hence, given the current time instant 𝑡 , the increment of system state and output

reference can uniquely be represented by the historical data as an augmented state equation:

Δ𝑧𝑡+1 ≈ F̃𝑡−1,𝑡−𝑀Δ𝑧𝑡−𝑀+1 +U𝑀Δ𝑢𝑡,𝑀 , (3.21)

where F̃𝑡−𝑎,𝑡−𝑏 =∏𝑡−𝑏
𝑖=𝑡−𝑎 F𝑖 , and U𝑀 = [G𝑡−1,F𝑡−1G𝑡−2,⋯ , F̃𝑡−1,𝑡−𝑀+1G𝑡−𝑀 ] ∈ ℝ(𝑛+𝑝)×𝑚𝑀

. Simi-

larly, the tracking error can be represented by previous data:

Δ𝑒𝑡,𝑀 ≈ V̄𝑀Δ𝑧𝑡−𝑀+1 + T̄𝑀Δ𝑢𝑡,𝑀 , (3.22)
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in which Δ𝑒𝑡,𝑀 = [Δ𝑒T𝑡 ,Δ𝑒T𝑡−1,⋯ ,Δ𝑒T𝑡−𝑀+1]
T ∈ ℝ𝑝𝑀 , V̄𝑀 = [(H𝑡−1F̃𝑡−2,𝑡−𝑀 )T, (H𝑡−2F̃𝑡−3,𝑡−𝑀 )T,⋯ ,

H T
𝑡−𝑀 ]

T ∈ ℝ𝑝𝑀×(𝑛+𝑝)
and

T̄𝑀 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 H𝑡−1G𝑡−2 H𝑡−1F𝑡−2G𝑡−3 ⋯ H𝑡−1F̃𝑡−2,𝑡−𝑀+1 ⋅G𝑡−𝑀
0 0 H𝑡−2G𝑡−3 ⋯ H𝑡−2F̃𝑡−3,𝑡−𝑀+1 ⋅G𝑡−𝑀
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ H𝑡−𝑀+1 ⋅G𝑡−𝑀
0 0 0 ⋯ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∈ ℝ𝑝𝑀×𝑚𝑀 .

Vectors Δ𝑒𝑡,𝑀 and Δ𝑢𝑡,𝑀 are the increments of observation and input sequences over the

time interval [𝑡 −𝑀 +1, 𝑡], which represent the available measured data. Then the following

lemma is given:

Lemma 3.2. Let the augmented system described by Eqs. (3.19) and (3.20) be observable.
Then the increment of the system state and output reference is determined uniquely in terms of
the previous data sequences over a sufficiently long time horizon [𝑡 −𝑀 +1, 𝑡], 𝑀 ≥ (𝑛 +𝑝)/𝑝.

Proof. Since the augmented system is observable, there exists a 𝐾 , the observability index,

such that 𝑟𝑎𝑛𝑘(V̄𝑀 ) < 𝑛 + 𝑝 for 𝑀 < 𝐾 , and that 𝑟𝑎𝑛𝑘(V̄𝑀 ) = 𝑛 + 𝑝 for 𝑀 ≥ 𝐾 . Note that
𝐾 ≥ (𝑛 +𝑝)/𝑝. Therefore, let 𝑀 ≥ 𝐾 , and there exists a matrix 𝑀̄ ∈ ℝ(𝑛+𝑝)×𝑝𝑀

such that:

F̃𝑡−1,𝑡−𝑀 = 𝑀̄V̄𝑀 . (3.23)

Since V̄𝑀 has a full column rank, and its left inverse V̄ left

𝑀 is given by:

V̄ left

𝑀 = (V̄ T
𝑀 V̄𝑀)

−1
V̄ T
𝑀 , (3.24)

then

𝑀̄ = F̃𝑡−1,𝑡−𝑀 V̄ left

𝑀 +𝑍(𝐼𝑛+𝑝 − V̄𝑀 V̄ left

𝑀 ) ≡ 𝑀̄0 +𝑀̄1 (3.25)

holds for any matrix 𝑍 , with 𝑀̄0 denoting the minimum norm operator and 𝑃(ℝ⟂(V̄𝑀 )) =
𝐼𝑛+𝑝 − V̄𝑀 V̄ left

𝑀 being the projection onto a range perpendicular to V̄𝑀 [88].

Note that F̃𝑡−1,𝑡−𝑀Δ𝑧𝑡−𝑀+1 = 𝑀̄V̄𝑀Δ𝑧𝑡−𝑀+1 so that, according to Eq. (3.22),

F̃𝑡−1,𝑡−𝑀Δ𝑧𝑡−𝑀+1 = 𝑀̄V̄𝑀Δ𝑧𝑡−𝑀+1 ≈ 𝑀̄Δ𝑒𝑡,𝑀 −𝑀̄ T̄𝑀Δ𝑢𝑡,𝑀 , (3.26)

(𝑀̄0 +𝑀̄1)V̄𝑀Δ𝑧𝑡−𝑀+1 ≈ (𝑀̄0 +𝑀̄1)Δ𝑒𝑡,𝑀 − (𝑀̄0 +𝑀̄1)T̄𝑀Δ𝑢𝑡,𝑀 . (3.27)

Note, however, that 𝑀̄1V̄𝑀 = 0 so that 𝑀̄V̄𝑀Δ𝑧𝑡−𝑀+1 = 𝑀̄0V̄𝑀Δ𝑧𝑡−𝑀+1, and applying 𝑀̄1 to

Eq. (3.22) yields:

𝑀̄1Δ𝑒𝑡,𝑀 −𝑀̄1T̄𝑀Δ𝑢𝑡,𝑀 ≈ 0. (3.28)

Therefore,

F̃𝑡−1,𝑡−𝑀Δ𝑧𝑡−𝑀+1 = 𝑀̄0V̄𝑀Δ𝑧𝑡−𝑀+1 ≈ 𝑀̄0Δ𝑒𝑡,𝑀 −𝑀̄0T̄𝑀Δ𝑢𝑡,𝑀 (3.29)

independently of 𝑀̄1. Then from Eq. (3.21), it can be obtained that:

Δ𝑧𝑡+1 ≈ 𝑀̄0Δ𝑒𝑡,𝑀 + (U𝑀 −𝑀̄0T̄𝑀 )Δ𝑢𝑡,𝑀 . (3.30)

This result expresses the increment of the system state and reference Δ𝑧𝑡+1 in terms of

the inputs and observations from time instant 𝑡 −𝑁 +1 to time instant 𝑡 , which ends the

proof.
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Lemma 3.2 provides a deterministic relationship between the historical data and future

states. To build a direct mapping from the historical observations and inputs to the future

observations regardless of the inner states, the following theorem is presented based on

Lemma 3.2:

Theorem 3.1. Let the augmented system described by Eqs. (3.19) and (3.20) be observable.
The tracking error increment Δ𝑒𝑡+1 can be determined uniquely from the observations and
control inputs over a sufficiently long time horizon, [𝑡 −𝑀 +1, 𝑡], 𝑀 ≥ (𝑛 +𝑝)/𝑝:

Δ𝑒𝑡+1 ≈ F 𝑡Δ𝑒𝑡,𝑀 +G
𝑡
Δ𝑢𝑡,𝑀 , (3.31)

where F 𝑡 = H𝑡 F̃𝑡−1,𝑡−𝑀 V̄ left
𝑀 ∈ ℝ𝑝×𝑀𝑝 is the augmented transition matrix, and G

𝑡
= (H𝑡U𝑀 −

H𝑡 F̃𝑡−1,𝑡−𝑀 V̄ left
𝑀 T̄𝑀 ) ∈ ℝ𝑝×𝑀𝑚 is the augmented input distribution matrix.

Proof. Substitute Eq. (3.30) into Eq. (3.20) and the dynamics of the measurement can directly

be obtained:

Δ𝑒𝑡+1 ≈ H𝑡 F̃𝑡−1,𝑡−𝑀 V̄ left

𝑀 Δ𝑒𝑡,𝑀 + (H𝑡U𝑀 −H𝑡 F̃𝑡−1,𝑡−𝑀 V̄ left

𝑀 T̄𝑀 )Δ𝑢𝑡,𝑀 . (3.32)

This completes the proof.

Theorem 3.1 has a similar form to Lemma 3.1 but includes the reference signal in its

representation, which enables the incremental model to predict tracking error without

knowing the reference function. Matrices F 𝑡 and G
𝑡
in Eq. (3.31) can be identified using

the RLS algorithm and then the one-step prediction of the tracking error can be made as:

𝑒𝑡+1 = 𝑒𝑡 + F̂ 11,𝑡Δ𝑒𝑡 + F̂ 12,𝑡Δ𝑒𝑡−1,𝑀−1 + Ĝ
11,𝑡

Δ𝑢𝑡 + Ĝ
12,𝑡

Δ𝑢𝑡−1,𝑀−1, (3.33)

where ⋅̂ stands for the estimated or approximated value, F̂ 11,𝑡 ∈ ℝ
𝑝×𝑝

and F̂ 12,𝑡 ∈ ℝ
𝑝×(𝑀−1)𝑝

are partitioned matrices from F̂ 𝑡 , and Ĝ
11,𝑡

∈ ℝ𝑝×𝑚 and Ĝ
12,𝑡

∈ ℝ𝑝×(𝑀−1)𝑚
are partitioned

matrices from Ĝ
𝑡
.

In this way, the original continuous non-affine system is transformed approximately

into a new discrete affine system, based on which, the IGHDP algorithm can design the

control increment Δ𝑢𝑡 .

3.3.3 Online identification with RLS algorithm
A RLS algorithm is applied to the pending matrices F 𝑡 and G

𝑡
online [50, 59]. For conve-

nience, Eq. (3.31) is represented a row-by-row form as follows:

Δ𝑒T𝑡+1 ≈ [Δ𝑒
T
𝑡,𝑀 Δ𝑢T𝑡,𝑀] ⋅ [

F T
𝑡

GT
𝑡 ]
. (3.34)

Define 𝑥 𝑡 = [Δ𝑒T𝑡,𝑀 ,Δ𝑢
T
𝑡,𝑀 ]T ∈ ℝ𝑀(𝑝+𝑚)×1

as the input information of the augmented

incremental model identification, and Θ𝑡 = [F 𝑡 ,G 𝑡
]T ∈ ℝ𝑀(𝑝+𝑚)×𝑝

as the pending augmented

matrix to be determined using the RLS algorithm.

A sliding window technique is employed to store sufficient historical data for online

identification [84, 103]. Considering the demands for fast computation, identification and
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adaptation, the width of the data window should be as small as possible with guaranteed

accuracy. Consequently, according to Lemma 3.2 and Theorem 3.1, let 𝑀 = (𝑛 +𝑝)/𝑝.
The main procedure of the RLS algorithm is presented as follows [63, 109]:

Δ𝑒T𝑡+1 = 𝑥
T
𝑡 Θ̂𝑡−1, (3.35)

𝜖𝑡 = Δ𝑒T𝑡+1 −Δ𝑒
T
𝑡+1, (3.36)

Θ̂𝑡 = Θ̂𝑡−1 +
Cov𝑡−1𝑥 𝑡

𝛾RLS +𝑥T𝑡 Cov𝑡−1𝑥 𝑡
𝜖𝑡 , (3.37)

Cov𝑡 =
1

𝛾RLS (
Cov𝑡−1 −

Cov𝑡−1𝑥 𝑡𝑥T𝑡 Cov𝑡−1
𝛾RLS +𝑥T𝑡 Cov𝑡−1𝑥 𝑡 )

, (3.38)

where 𝜖𝑡 ∈ ℝ𝑝 denotes the prediction error, Cov𝑡 ∈ ℝ(𝑝+𝑚)𝑀×(𝑝+𝑚)𝑀
stands for the estimation

covariancematrix, which is symmetric and positive definite, and 𝛾RLS ∈ (0,1] is the forgetting
factor in the RLS algorithm. It is noted that Δ𝑒𝑡+1 is approximated by Θ̂𝑡−1 during the

implementation because Θ̂𝑡 is obtained by the RLS algorithm after Δ𝑒𝑡+1 is observed.
Assumption 3.1 implies that in a certain horizon A = [1, 𝑡], 𝑀 ≤ 𝑡 ≤ 𝑃 , 𝑀 ≪ 𝑃 < ∞,

the slowly varying augmented system dynamics can be regarded as a linear plant with

constant pending parameters. Hence, based on the following assumption [109], the locally

approximate convergence of the RLS algorithm is analyzed.

Assumption 3.3. For the locally linear system (3.33), in the local domain A , the observed
vectors 𝑥𝑀 , ⋯, 𝑥 𝑡 constitute the samples of an ergodic process, such that the time averages can
be utilized. The unmodeled dynamics noises within one sliding window are formulated as a
zero-mean white noise vector as:

Δ𝑒T𝑡+1 = 𝑥
T
𝑡 Θ+𝑒𝑜,𝑡 , (3.39)

where 𝑒𝑜,𝑡 is the equivalent plant noise independent of the samples 𝑥 𝑡 .

Theorem 3.2. If Assumptions 3.1-3.3 hold, and the RLS algorithm is implemented using
Eqs. (3.35)-(3.38), the approximate augmented matrix Θ̂𝑡 has the trend of converging to the
locally optimal matrix Θ.

Proof. Because the optimal augmented matrix Θ is valid over A , the previous observations

can uniformly be written as:

Δ𝐸T𝑡+1 = 𝑥
T
𝑡 Θ+𝐸𝑜,𝑡 , (3.40)

where Δ𝐸𝑡+1 = [Δ𝑒𝑀+1,⋯ ,Δ𝑒𝑡+1], 𝑥 𝑡 = [𝑥𝑀 ,⋯ ,𝑥 𝑡 ], and 𝐸𝑜,𝑡 = [𝑒𝑜,𝑀 ,⋯ ,𝑒𝑜,𝑡 ]. The PE condition

is indispensable for convergence analysis, which guarantees 𝑥 𝑡𝑥T𝑡 is positive definite. Ac-
cording to [109], it can be obtained that Cov

−1
𝑡 = 𝑥 𝑡Γ𝑡𝑥T𝑡 , where Γ𝑡 = diag([𝛾 𝑡−𝑀RLS

, 𝛾 𝑡−𝑀−1
RLS

,⋯ ,1]),
and diag(⋅) reshapes the vector to a diagonal matrix. Therefore, the approximate augmented

matrix Θ̂𝑡 can be represented as:

Θ̂𝑡 = Θ+Θ̃𝑡 = Θ+Cov𝑡𝑥 𝑡Γ𝑡𝐸𝑜,𝑡 , (3.41)

where Θ̃𝑡 is the approximate error vector.
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Define the approximate error correlation matrix as:

𝐿̂𝑡 = 𝐸(Θ̃𝑡 Θ̃
T
𝑡 ), (3.42)

where 𝐸(⋅) is the expectation operation. Substituting Eq. (3.41) into Eq. (3.42), and noticing

both Cov𝑡 and Γ𝑡 are symmetrical matrices, we can obtain that:

𝐿̂𝑡 = 𝐸(Cov𝑡𝑥 𝑡Γ𝑡𝐸𝑜,𝑡𝐸
T
𝑜,𝑡Γ𝑡𝑥

T
𝑡 Cov𝑡 ). (3.43)

Recalling the independence of 𝑒𝑜,𝑡 and 𝑥 𝑡 , and the white noise property of 𝑒𝑜,𝑡 yields:

𝐿̂𝑡 = 𝐸(Cov𝑡𝑥 𝑡Γ𝑡𝐸(𝐸𝑜,𝑡𝐸
T
𝑜,𝑡 )Γ𝑡𝑥

T
𝑡 Cov𝑡 ) = 𝜎

2
𝑜 𝐸(Cov𝑡Cov

−1
2,𝑡Cov𝑡 ), (3.44)

where 𝜎2
𝑜 is the variance of 𝑒𝑜,𝑡 , and Cov

−1
2,𝑡 = 𝑥 𝑡Γ2𝑡 𝑥T𝑡 .

Rigorous evaluation of Eq. (3.44) is intractable. Hence, Assumption 3.3 is utilized to

facilitate an approximate evaluation of 𝐿̂𝑡 [109]. It can be found that Cov−1𝑡 is a weighted sum

of the outer products 𝑥 𝑡𝑥T𝑡 , ⋯, 𝑥𝑀𝑥T𝑀 . Therefore, based on Assumption 3.3, the following

approximation holds:

Cov
−1
𝑡 ≈

1−𝛾 𝑡−𝑀+1
RLS

1−𝛾RLS
𝐸𝑜 , (3.45)

where 𝐸𝑜 = 𝐸(𝑥 𝑡𝑥T𝑡 ) is the correlation matrix of observations. If the PE condition is satisfied,

𝑥 𝑡𝑥T𝑡 is positive definite and 𝐸−1𝑜 can be expected.

Substituting Eq. (3.45) into Eq. (3.44) yields:

𝐿̂𝑡 = 𝜎2
𝑜 (

1−𝛾RLS
1−𝛾 𝑡−𝑀+1

RLS

)

2

⋅
1 − 𝛾 2(𝑡−𝑀+1)

RLS

1−𝛾 2
RLS

𝐸−1𝑜 = 𝜎2
𝑜
1−𝛾RLS
1+𝛾RLS

⋅
1 + 𝛾 𝑡−𝑀+1

RLS

1−𝛾 𝑡−𝑀+1
RLS

𝐸−1𝑜 . (3.46)

In the steady state, i.e., 𝑡 → 𝑃 →∞, the following equation holds:

𝐿̂𝑃 = 𝜎2
𝑜
1−𝛾RLS
1+𝛾RLS

𝐸−1𝑜 . (3.47)

It can be found that if 𝛾RLS is very close to 1, then 𝐿̂𝑃 →0, which means the approximate

augmented matrix converges to the optimal matrix. This completes the proof.

3.4 The IGDHP Algorithm
Since the incremental model discretely identifies the system dynamics, it is also necessary

to design the controller in a discrete manner. It can be found that the optimal cost-to-go

(3.6) and optimal control law (3.7), which are presented in the continuous domain, have

similar forms of discrete representation [21]. Letting the time horizon in Eqs. (3.6) and (3.7)

be equivalent to the sampling time, i.e., 𝑇 = Δ𝑡 , we can discretize Eqs. (3.6) and (3.7) as:

𝐽 ∗𝑡 = min
𝑢𝑡

{𝑟𝑡 +𝛾𝐽 ∗𝑡+1}, (3.48)

and

𝜇∗(𝑒(𝑡)) = argmin
𝑢𝑡

𝐽 ∗𝑡 = argmin
𝑢𝑡

{𝑟𝑡 +𝛾𝐽 ∗𝑡+1}, (3.49)
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where 𝑟𝑡 is the one-step cost function of the discrete-time design and can still be formulated

as a linear quadratic form:

𝑟𝑡 = 𝑒(𝑡)T𝑄𝑒(𝑡) +𝑢(𝑡)T𝑅𝑢(𝑡), (3.50)

where both 𝑄 ∈ ℝ𝑛×𝑛 and 𝑅 ∈ ℝ𝑚×𝑚
are positive semi-definite. The weight matrix 𝑅 is used

to control the energy cost and note that it does not have to be positive definite.

With the incremental model technique, the IGDHP algorithm can iteratively solve

this discrete-time optimal control problem with an actor-critic scheme. Based on current

information, the actor network generates control inputs for both the real system and the

plant model. The incremental model predicts the tracking errors at the next time instant,

which are utilized by the critic network to approximate cost-to-go, whose derivatives are

computed analytically. The structure of the IGDHP algorithm is illustrated in Fig. 3.1.
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Figure 3.1: The architecture of the IGDHP algorithm with PO taken into consideration, where solid lines represent

the feedforward flow of signals, dashed lines are backpropagation pathways, and the thick arrow represents the

weight transmission.

For simplicity, the introduced ANNs in both the critic and actor networks are fully

connected and feedforward, and consist of only three layers of nodes: an input layer, a

hidden layer and an output layer. The activation function employed in the input layer is a

unit-proportion linear function and in the hidden layer is a symmetrical sigmoid function,

which is denoted by 𝜎 . In the following detailed implementations, the variables or pathways

corresponding to the critic and actor networks and the incremental model are denoted by

the subscripts 𝑐, 𝑎, and 𝑚, respectively.

3.4.1 The critic network
Although the one-step cost function consists of 𝑒𝑡 and 𝑢𝑡 , only 𝑒𝑡 is set to be the input of

the critic network. The main reason is that introducing 𝑢𝑡 as an input will significantly
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improve the complexity of the backpropagation. Besides, 𝑢𝑡 is also derived from 𝑒𝑡 by the

actor network, and can still affect the approximation in an indirect way through the cost

function. There is no bias term in the critic input, because the critic output is desired to be

0 when 𝑒𝑡 is a zero vector in this case.

In the structure with explicit analytical calculations, the critic network only directly

outputs the approximated cost-to-go 𝐽𝑡 , and its output layer utilizes a unit-proportion linear

activation function:

𝐽𝑡 = 𝑤T
𝑐2,𝑡𝜎(𝑤

T
𝑐1,𝑡𝑒𝑡 ), (3.51)

where 𝑤𝑐1,𝑡 and 𝑤𝑐2,𝑡 denote the critic weights between the input layer and the hidden

layer, and the weights between the hidden layer and the output layer, respectively, and 𝜎(⋅)
denotes the activation function of the hidden layer. Then explicit analytical calculations

[59] are carried out to compute 𝜆̂𝑡 directly using 𝐽𝑡 :

𝜆̂𝑡 =
𝜕𝐽𝑡
𝜕𝑒𝑡

= 𝑤𝑐1,𝑡 (𝑤𝑐2,𝑡 ⊙𝜎 ′(𝑤T
𝑐1,𝑡𝑒𝑡 )), (3.52)

where ⊙ is the Hadamard product, and 𝜎 ′(⋅) denotes the first order derivative of function
𝜎(⋅).

A TDmethod is introduced to iteratively update the critic network [16], whose principle

is trying to minimize the TD error, the error between the current and successive estimates

of the state value. Similar to the transformation of the optimal cost-to-go, Eq. (3.5) can also

be transformed into a discrete form:

𝐽𝑡 = 𝑟𝑡 +𝛾𝐽𝑡+1, (3.53)

Therefore the TD errors produced by the critic network are given as follows:

𝑒𝑐1,𝑡 = 𝐽𝑡 − 𝑟𝑡 −𝛾𝐽𝑡+1, (3.54)

and

e𝑐2,𝑡 =
𝜕[𝐽𝑡 − 𝑟𝑡 −𝛾𝐽𝑡+1]

𝜕𝑒𝑡
= 𝜆̂𝑡 −

𝜕𝑟𝑡
𝜕𝑒𝑡

−𝛾
𝜕𝑒𝑡+1
𝜕𝑒𝑡

𝜆̂𝑡+1, (3.55)

where 𝑒𝑐1,𝑡 denotes the TD error of the estimated cost-to-go 𝐽𝑡 with current network weights,
e𝑐2,𝑡 denotes the TD error of the computed derivatives 𝜆̂𝑡 with current network weights. It

is noted that 𝐽𝑡+1 and 𝜆̂𝑡+1 are predicted using the weights at time instant 𝑡 .
The computation of items in Eq. (3.55) is worth analyzing. Considering Eq. (3.50), the

second item on the right hand side of Eq. (3.55) can be computed by:

𝜕𝑟𝑡
𝜕𝑒𝑡

= (𝑄T +𝑄)𝑒𝑡 +
𝜕𝑢𝑡
𝜕𝑒𝑡

⋅ ((𝑅T +𝑅)𝑢𝑡 ), (3.56)

where 𝜕𝑢𝑡 /𝜕𝑒𝑡 goes through the actor network, which will be introduced in the next

subsection. Then 𝜕𝑒𝑡+1/𝜕𝑒𝑡 requires to be handled with care since there exist two pathways

for 𝑒𝑡 to influence 𝑒𝑡+1. As shown in Fig. 3.1, one pathway goes through the incremental
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model directly (pathway 3.a), while another pathway firstly passes through the actor

network and then goes through the incremental model (pathway 3.b):

𝜕𝑒𝑡+1
𝜕𝑒𝑡

=
𝜕𝑒𝑡+1
𝜕𝑒𝑡

|𝑚
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

pathway (3.𝑎)

+
𝜕𝑢𝑡
𝜕𝑒𝑡

|𝑎 ⋅
𝜕𝑒𝑡+1
𝜕𝑢𝑡

|𝑚
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

pathway (3.𝑏)

, (3.57)

Based on the Markov theory, the states at the time instant 𝑡 + 1 only have a relationship

with the states at the time instant 𝑡 . Therefore, according to Eq. (3.33), Eq. (3.57) can be

simplified by the incremental model as:

𝜕𝑒𝑡+1
𝜕𝑒𝑡

= (𝐼𝑝 + F̂
T

11,𝑡 ) +
𝜕𝑢𝑡
𝜕𝑒𝑡

⋅ ĜT

11,𝑡
, (3.58)

Then, IGDHP combines both kinds of TD errors in an overall error function 𝐸𝑐,𝑡 :

𝐸𝑐,𝑡 = 𝛽
1
2
𝑒2𝑐1,𝑡 + (1−𝛽)

1
2
eT𝑐2,𝑡e𝑐2,𝑡 , (3.59)

where 𝛽 is a scalar within a range of [0,1]. If 𝛽 = 1, then it becomes pure IHDP. If 𝛽 = 0,
then the tuning of weights merely depends on the TD error of computed derivatives 𝜆̂𝑡 ,
and consequently it is equivalent to IDHP.

Given a learning rate 𝜂𝑐 , the critic weights 𝑤𝑐𝑖 , where 𝑖 = 1,2, are updated with a

gradient-descent algorithm to minimize the overall error 𝐸𝑐,𝑡 :

𝑤𝑐𝑖,𝑡+1 = 𝑤𝑐𝑖,𝑡 −𝜂𝑐 ⋅
𝜕𝐸𝑐,𝑡
𝜕𝑤𝑐𝑖,𝑡

, (3.60)

where

𝜕𝐸𝑐,𝑡
𝜕𝑤𝑐𝑖,𝑡

=
𝜕𝐽𝑡
𝜕𝑤𝑐𝑖,𝑡

⋅
𝜕𝐸𝑐,𝑡
𝜕𝐽𝑡

+
𝜕𝜆̂𝑡
𝜕𝑤𝑐𝑖,𝑡

⋅
𝜕𝐸𝑐,𝑡
𝜕𝜆̂𝑡

= 𝛽
𝜕𝐽𝑡
𝜕𝑤𝑐𝑖,𝑡

⋅ 𝑒𝑐1,𝑡 + (1−𝛽)
𝜕𝜆̂𝑡
𝜕𝑤𝑐𝑖,𝑡

⋅ e𝑐2,𝑡 , (3.61)

in which, 𝜕𝜆̂𝑡 /𝜕𝑤𝑐𝑖,𝑡 represents the second-order mixed gradient of the estimated cost-to-go

𝐽𝑡 , and how to compute it is given without derivation [59] as follows:

If 𝑖 = 2, then
𝜕𝜆̂𝑡
𝜕𝑤𝑐2,𝑡

= diag(𝜎 ′(𝑤T
𝑐1,𝑡𝑒𝑡 ))(𝐼1 ⊗𝑤

T
𝑐1,𝑡 ), (3.62)

where ⊗ is the Kronecker product; and if 𝑖 = 1, denote 𝑛𝑐 as the number of neurons in the

hidden layer, and then

𝜕𝜆̂𝑡
𝜕𝑤𝑐1,𝑡

=(𝑤𝑐2,𝑡 ⊙𝜎 ′(𝑤T
𝑐1,𝑡𝑒𝑡 )) ⊗ 𝐼𝑝−

𝐾T(𝑒𝑡 ⊗ 𝐼𝑛𝑐 )diag(𝜎
′(𝑤T

𝑐1,𝑡𝑒𝑡 ))diag(𝜎(𝑤
T
𝑐1,𝑡𝑒𝑡 ))diag(vec(𝑤𝑐2,𝑡 ))(𝐼1 ⊗𝑤T

𝑐1,𝑡 ),
(3.63)

where 𝐾 is a commutation matrix of 𝑤𝑐1,𝑡 , and vec(⋅) is a vector reshaping function. Note

that the tensor operation can reduce the dimensionality of a matrix, and therefore dimen-

sionality analysis is involved to reshape the results after computing 𝜕𝜆̂𝑡 /𝜕𝑤𝑐𝑖,𝑡 .
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3.4.2 The actor network
Although in [102] a single critic network structure is utilized, since the IGDHP algorithm

is actually implemented in a discrete way, an actor network is required for approximating

the optimal control. Safety is vital for real physical systems and thus some restrictions

are usually added to system control. In this chapter, the output layer of the actor network

employs a symmetrical sigmoid activation function, and is multiplied by an additive

unchanged weight vector 𝑢𝑏 = [𝑢𝑏1,⋯ ,𝑢𝑏𝑚]T, where 𝑢𝑏𝑖 ≥ 0, for 𝑖 = 1,⋯,𝑚, so that the

system control 𝑢𝑡 = [𝑢1,𝑡 ,⋯ ,𝑢𝑚,𝑡 ]T outputted by the actor network is bounded by 𝑢𝑏 , i.e.,
|𝑢𝑖,𝑡 | < 𝑢𝑏𝑖 for 𝑖 = 1,⋯,𝑚, as shown in Fig. 3.2. Consequently, the actor network is presented

as:

𝑢𝑡 = 𝑢𝑏 ⊙𝜎(𝑤T
𝑎2,𝑡𝜎(𝑤

T
𝑎1,𝑡 [𝑒

T
𝑡 , 𝑏𝑎]

T)), (3.64)

where 𝑏𝑎 is a constant bias term, which is introduced because the system control may

not be a zero vector given zero tracking error, 𝑤𝑎1,𝑡 and 𝑤𝑎2,𝑡 are the weights of the actor

network, and the way to define them is similar to that of 𝑤𝑐1,𝑡 and 𝑤𝑐2,𝑡 .

Hidden layerInput layer Output layer

ab

tu

te

bu1,a tw 2,a tw

Figure 3.2: The structure of the actor network, where the input layer employs a unit-proportion linear activation

function while the hidden and output layers exploit a symmetrical sigmoid activation function.

The purpose of the actor network is to generate a near-optimal control policy to

minimize the future approximated cost-to-go 𝐽𝑡+1:

𝑢∗𝑡 = argmin
𝑢𝑡

𝐸𝑎,𝑡 = argmin
𝑢𝑡

1
2
e2𝑎,𝑡 , (3.65)

where 𝐸𝑎,𝑡 denotes the overall error and e𝑎,𝑡 stands for the error between the approximated

future cost-to-go 𝐽𝑡+1 and the target 0 cost-to-go, i.e., e𝑎,𝑡 = 𝐽𝑡+1.
The system control 𝑢𝑡 is also an input of the incremental model, so even though 𝑢𝑡 does

not appear in the reward function, i.e., 𝑅 is zero, it has an influence on the critic output

at the next time instant. Therefore, a gradient-descent algorithm can be implemented

to iteratively solve Eq. (3.65) by the 4th pathway starting from 𝐽𝑡+1 through 𝑒𝑡+1 to 𝑢𝑡 .
Different from the straightforward form, whose back-propagation pathways of the actor

network can start from either 𝐽𝑡+1 or 𝜆̂𝑡+1, there is only one back-propagation pathway

for IGDHP with explicit analytical calculations to update the actor weights. Nevertheless,

this explains exactly why the structure with explicit analytical calculations surpasses the

straightforward structure, in that it releases the the restriction of scalar 𝛽 of being 0 or 1.
Specifically, for the straightforward form, if 𝛽 = 0, then the elements in 𝑤𝑐2 linked to 𝐽𝑡+1
will never be updated, and if the actor network is trained through the pathway leading from
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𝐽𝑡+1, the back-propagation cannot be carried out. Similarly, if the back-propagation channel

of the actor network starts from 𝜆̂𝑡+1, then 𝛽 ≠ 1 is mandatory for the straightforward form.

On the contrary, the structure with explicit analytical calculations has no such limitations

on 𝛽 , because even though 𝛽 = 0, the critic network can still be trained.

As presented in Fig. 3.1, the actor weights are updated along the 4th back-propagation

pathway with a learning rate 𝜂𝑎:

𝑤𝑎𝑖,𝑡+1 = 𝑤𝑎𝑖,𝑡 −𝜂𝑎 ⋅
𝜕𝐸𝑎,𝑡
𝜕𝑤𝑎𝑖,𝑡

, (3.66)

where 𝑖 = 1,2, and

𝜕𝐸𝑎,𝑡
𝜕𝑤𝑎𝑖,𝑡

=
𝜕𝑢𝑡
𝜕𝑤𝑎𝑖,𝑡

⋅
𝜕𝑒𝑡+1
𝜕𝑢𝑡

⋅
𝜕𝐽𝑡+1
𝜕𝑒𝑡+1

⋅
𝜕𝐸𝑎,𝑡
𝜕𝐽𝑡+1

=
𝜕𝑢𝑡
𝜕𝑤𝑎𝑖,𝑡

⋅ ĜT

11,𝑡
⋅ 𝜆̂𝑡+1 ⋅ 𝐽𝑡+1. (3.67)

So far the implementation of the proposed IGDHP with PO control scheme has been

introduced. The procedure is briefly summarized in the following Algorithm 3.1, where

line 6 is the dividing line between the current time instant and the next time step.

Algorithm 3.1: Design procedure of the IGDHP with PO control scheme.

1 Initialization: initialize system states, and parameters of the identifier, the critic

network and the actor network;

2 while terminal condition is not triggered do
3 compute the control input 𝑢𝑡 using the actor network (Eq. (3.64)) with the

current observation;

4 predict the one-step observation 𝑒𝑡+1 using the identifier (Eq. (3.32)) with the

stored data;

5 evaluate the current control policy using the critic network (Eqs. (3.51) and

(3.52));

6 sample the real one-step observation 𝑒𝑡+1 by applying 𝑢𝑡 to the real plant;

7 update the weights of the actor and critic networks via the backpropagation

technique (Eqs. (3.60) and (3.66));

8 if sufficient samples are stored in the sliding window then
9 update the identifier using the RLS algorithm (Eqs. (3.36)-(3.38));

10 else
11 continue;

12 end
13 update the stored data in the sliding window;

14 end

Remark 3.2. The convergence analysis of the online identification has been presented

in Section 3.3.3, and the convergence analysis of the ADP scheme has been investigated

in [98, 99]. However, as stated in [59], it is currently unfeasible to theoretically prove the

closed-loop stability of the IGDHP algorithm due to its completely online implementation.

Accordingly, repeating numerical experiments are carried out in the next section for

verification.
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3.5 Numerical Experiments
This section assesses the developed IGDHP algorithm on a practical aerospace application.

Firstly, traditional GDHP with PO (GDHP-PO), IGDHP with FSF (IGDHP-FSF) and IGDHP

with PO (IGDHP-PO) are compared by applying them on an attitude tracking control task.

Then the IGDHP-PO algorithm is adopted for an altitude control problem in combination

with a hierarchy technique and PID controller.

3.5.1 Aerospace system model
A nonlinear model of aircraft is set up utilizing the public data [78] and only the longitudinal

dynamics are taken into consideration. All parameters without special explanation in this

chapter are determined by trimming the aerodynamic model in a steady wings-level flight

condition at 15000 ft and 600 ft/s, which will be referred to as the benchmark condition.

In this longitudinal control problem, there are 6 states, namely altitude ℎ, airspeed 𝑣,
pitch angle 𝜃 , angle of attack (AOA) 𝛼 , flight path angle 𝛾𝐹 and pitch rate 𝑞. Nevertheless,
for a specific task, it is feasible to select only some main states to reduce computation. For

instance, for the AOA tracking task, which is an attitude control problem, only pitch rate

𝑞, the basic state in the rate loop, is chosen as the additional feature state in [59], while

other states are considered as parts of the black box to be identified.

For the longitudinal aerodynamic model, there are 3 control inputs, namely leading

edge flap deflection 𝛿𝑙𝑒𝑓 , engine thrust 𝑇 and elevator deflection 𝛿𝑒 . The control surface of
the leading edge flap cannot be directly changed by the pilot [78], and therefore is regarded

as an inner unknown dynamics. Out of simplicity for implementation and convenience

for analysis, a simple PID thrust control to maintain the airspeed is designed in a separate

control loop [46], such that only one control input, elevator deflection 𝛿𝑒 , is taken into

concern and a mapping between one control input and one final output can be constructed.

Before the elevator deflection is practically adjusted, the system control 𝑢𝑡 generated by

the actor, or called elevator deflection command 𝛿 𝑐𝑒 in this aerospace application, has to

go through the actuator, which is modeled as a first-order system with rate and position

constraints, as illustrated in Fig. 3.3 [59]. The bandwidth of actuator is 20.2 rad/s, deflection
cannot exceed the range of [−25 deg,25 deg] and its changing rate is bounded in the range

of [−90 deg/s,90 deg/s] [46, 78].

Command 

Saturation

Rate

Saturation

Band

width
e

c

e 1

s

Figure 3.3: The dynamics of the actuator, a first-order system with rate and position limits [59].

In real-world applications, noise is unavoidable, and unforeseen changes in system

dynamics or even sudden failures might be encountered. Consequently, there is a need to

approximately model these uncertainties for verification of the developed method. Non-

zero mean white measurement noise acting on the feedback signals and the actuator is

taken into account, and the magnitude of real-world phenomena utilized for simulation is

given in Table 3.1 [79]. This noise can have impacts on the performance of the controller,
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but can also act as exploration noise to better satisfy the persistent excitation (PE) condition

[59]. It is noted that only PO methods requires to consider measurement noise, while in

the FSF condition, the acquired data is assumed noise-free.

Table 3.1: Magnitude of the noises having impacts on controller design (adapted from [79]).

ℎ [m] 𝜃 , 𝛼 , 𝛾𝐹 [deg] 𝑞 [deg/s] 𝛿𝑒 [deg]

Mean 1 2.2 × 10−1 1.7 × 10−3 2.6 × 10−1
Standard deviation 8×10−2 1.8 × 10−3 3×10−2 4×10−2

Sudden structural damages may be encountered during flight, which require fault-

tolerant control (FTC) [87]. Fault diagnosis is a significant part of FTC, but will not be

discussed in this chapter. Several kinds of sudden faults and their aftermath have been

scrutinized in [46]. It has been investigated that moving mechanisms, such as actuators,

are more likely to be affected by unexpected faults. There are four faults taken into

consideration, namely the reduction of bandwidth, strengthening of rate limitation, output

deviation and reduction of control effectiveness, while the last situation can also be triggered

by the structural damages changing aerodynamics [59]. As to the faults of static structure,

damage of the horizontal stabilizer is selected to be investigated. This damage has a

significant impact on both static and dynamic stability for longitudinal dynamics, and mass

loss is often encountered simultaneously, which will instantaneously change the center of

gravity.

3.5.2 Simulation results
An AOA tracking problem is firstly taken into consideration. How to implement the GDHP

method can be found in [59] and is omitted here. For better comparison, the settings in

IGDHP-FSF, IGDHP-PO and GDHP-PO are as consistent as possible and the best possible

parameters are ascertained by repeating the experiment. The actor, critic and model

networks are all fully connected and consist of three layers of nodes. For balancing the

accuracy with the computational efficiency, we experimentally set the number of hidden

layer neurons in all three networks as 25 and a sigmoid function is adopted as the activation

function. Both actor network and model network introduce a bias term as an input, and

𝑏𝑎 = 𝑏𝑚 = 0.01. Large random initial weights can significantly affect learning performance,

whereas small ones will decrease initial exploration efficiency. Therefore, as a trade-off, All

weights are randomly initialized within a small range of [−0.1,0.1], and bounded within

the range of [−20,20]. With the information of derivatives, the DHP technique generally

surpasses HDP in tracking precision, convergence speed and success rate [50] and therefore

𝛽 is chosen to be 0.1 to take advantage of the derivative information. We experimentally

choose 𝑄 = 8, 𝑅 = 1 and 𝛾 = 0.99995 to formulate the critic network. It should be noted that

𝑅 can also be 0, but for the purpose of decreasing energy cost, it is set positive definite. As

mentioned above, the system state only includes AOA and pitch angle, and therefore the

minimum width of the sliding window is 3. To enhance the stability, the window width

is set to 4 for IGDHP-PO and IGDHP-FSF, and 5 sets of data are utilized by GDHP-PO to

ensure the same level of data use, in that both IGDHP-PO and IGDHP-FSF employ the

increment information, which is acquired from 5 time instants. F̂ 𝑡 is initialized to be
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composed by 4 identity matrices and Ĝ
𝑡
starts from a zero matrix. 𝛾RLS is chosen to be

0.99995. Cov𝑡 originally is a diagonal matrix with all main diagonal elements chosen to be

107 [109], since the trace of Cov𝑡 indicates the magnitude of the estimated errors, which

can initially be infinite due to insufficient or incorrect knowledge of the system [110].

Besides, a descending method is applied to guarantee effective learning, which suggests

that the learning rates are initially set to be large numbers and gradually decrease at each

time step by being multiplied by a descending coefficient until the bound is reached, and

the corresponding parameters are given in Table 3.2. All experiments are carried out with

a sampling frequency of 1kHz and computed using Euler’s method. In order to achieve the

PE condition, a probing signal is introduced at the initial exploration stage. How to design

a good probing signal is still an open problem, but for this chapter a 3211 disturbance signal

that changes its sign over time as a particular proportion [47, 59] is introduced to excite

the system modes.

Table 3.2: Parameters about the descending learning rates.

𝜂𝑎 𝜂𝑐1 𝜂𝑐2 𝜂𝑚

Initial value 2 1 0.2 1
Descending coefficient 0.999995 0.9995 0.995 0.999995
Lower bound 10−2 10−4 10−4 10−2

Firstly, the system is supposed to track a human-designed AOA reference signal online

using IGDHP-FSF, IGDHP-PO and GDHP-PO, respectively. The AOA reference signal varies

around the trimmed condition, namely 2.6638 deg. The comparison of the performance

is given in Fig. 3.4, where the system is initialized to be at the benchmark condition. If

successfully implemented, all three methods can complete the tracking task. Among them,

IGDHP-FSF shows the best performance, with a control policy that converges fast. In the

PO condition, both IGDHP-PO and GDHP-PO methods can track the reference after a

small period of vibration and get similar performances. The settling time of IGDHP-PO is

slightly smaller than that of the GDHP-PO method but it can be ignored in the practical

applications. Due to the influence of measurement noises, the tracking precision of these

PO-based methods is lower than IGDHP-FSF. As presented in subfigure (b), the tracking

errors (denoted by Δ𝛼) of IGDHP-PO and GDHP-PO keep oscillating around the mean

value of the AOA sensor noise, while the tracking error of IGDHP-FSF is approximately 0
at the stable stage.

Figure 3.5 illustrates the elevator deflection command produced by the IGDHP-PO

method starting from the benchmark condition. From the inset, it can be seen that a

3211 disturbance signal, is applied to kick off the learning process. The control input

command turns to be nearly 0 after the probing signal vanishes since the initial weights of

the actor network are tiny random values, as presented in Fig. 3.6. Then both critic and

actor networks are excited and the actor-critic scheme behaves as a high-gain controller

during the exploration stage until the weights converge. The learning process is performed

totally online and will continue even after the policy has converged.

In addition, the initial condition can have an impact on the controller while the proposed

IGDHP-PO approach can deal with a wide range of initial states within [−10 deg,15 deg]
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Figure 3.4: Online AOA tracking control with initial benchmark condition.
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Figure 3.5: Elevator deflection command produced by the IGDHP-PO method starting from the benchmark

condition.

without loss of precision. As presented in Fig. 3.7, the AOA can track the given reference

signal 𝛼 ref in less than 2 seconds for all initial conditions using the IGDHP-PO approach,

which is indicative of its competent adaptability and robustness.

Nevertheless, only when the task is successfully carried out, can the results presented

above make sense. Random factors, such as initial weights of ANNs and measurement

noises, can have impact on the performance and occasionally even trigger divergence

and failure. To compare the robustness of these algorithms to various aspects, a concept

of success ratio is introduced as a performance index. For a successful implementation,

the amplitude of the AOA trajectory cannot transcend a range of [−15 deg,20 deg] over
the whole control period, the system is supposed to be able to track the reference signal

after 2𝜋 seconds, and the tracking errors will not exceed 1 deg hereafter. Remaining all

parameters unchanged except for the probing signal, 1000 Monte Carlo simulations are

implemented to assess the performance of these approaches.

The experiment is executed with 7 different initial AOAs and equal reference to evaluate
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Figure 3.6: Convergence of the actor weights using the IGDHP-PO approach with initially benchmark condition.

the robustness of these approaches towards initial tracking errors and the results regarding

success ratio are illustrated in Table 3.3. Both IGDHP-FSF and IGDHP-PO have a success

ratio of 100% in the benchmark condition, which implies these approaches are stable

for this tracking control problem. On the other hand, the success ratio of GDHP-PO in

the benchmark condition is merely 51.2% and for all initial states, the success ratios of

IGDHP-FSF and IGDHP-PO outclass those of GDHP-PO, demonstrating the incremental

technique can significantly improve system identification compared to the traditional

global ANN-based model in this online application. The success ratios of IGDHP-PO are

generally smaller than those of IGDHP-FSF, which is intuitively predictable, while the

differences are less than 1% for more than half of initial states and this shows that the

IGDHP-PO can cope with PO situations. It is shown that the success ratios with 𝛼0 = −5 deg
and 𝛼0 = 0 deg decrease by 35.5% and 21.5% for IGDHP-FSF and by 53.7% and 26.5% for

IGDHP-PO compared to the benchmark condition, respectively. Besides the algorithms

themselves, this reduction of success ratio can also be caused by the collective effect of the

nominal reference signal and inherent dynamics of the system. Besides, it should also be

noted that in multiple cases the success ratio is not 100%, which is owing to the fact that it

is arduous to accomplish optimal PE condition due to the circular argument between PE

condition, accurate system information and stable control policy [59]. Although some cases

can achieve a success ratio of 100%, random factors prevent the controller from consistently

perfect tracking. Nevertheless, there is still the prospect of full success and the results

presented in Table 3.3 are obtained based on current settings. The development of various

aspects can benefit the stability and improve success ratio, such as sensor precision, probing

signal, parameter initialization and learning rates. It is still an open problem to improve

these factors and therefore this chapter concentrates on the assessment of robustness

between IGHDP-FSF, IGDHP-PO and GDHP-PO.
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Figure 3.7: Online AOA tracking control with different initial states using the IGDHP-PO approach.

Table 3.3: Success ratio comparison for different initial states with 1000 times of Monte Carlo simulation.

𝛼0[deg] −10 −5 0 2.6638a 5 10 15

IGDHP-FSF 100% 64.5% 78.5% 100% 100% 99.1% 99.4%
IGDHP-PO 92.7% 46.3% 73.5% 100% 99.3% 99.2% 99.6%
GDHP-PO 25.7% 38.2% 45.3% 51.2% 44.3% 41.4% 50.5%
a
AOA value in the benchmark condition.

The adaptability is one of the most significant aspects through which ACD approaches

show their superiority over other conventional optimal control methods. Sound policies

can be learned automatically by updating the weights of the networks, which enables ACDs

to be applied to FTC problems. Therefore, the following part investigates and compares the

capability to adapt of IGDHP-FSF, IGDHP-PO and GDHP-PO by applying them to two fault

scenarios, where the system is supposed to track a sinusoidal reference signal. Considering

the moment when the faults happen can have an influence to the results, the faults are

designed to take place at the instants of 4𝜋 seconds and 5𝜋 seconds, respectively.

The first fault scenario examined is that the elevator actuator is partially damaged.

Specifically, the elevator suddenly loses 30% of its effectiveness and 50% of its bandwidth,

and the bound of deflection rate degrades by 1/3 to [-60 deg/s, 60 deg/s]. Besides, there is a
constant disturbance acting on the actuator, making the real deflection 2 deg larger than the

produced commands. The results are illustrated in Figs. 3.8 and 3.9, where the malfunction

of the actuator does not exceedingly affect the performance of these adaptive controllers,

especially for IGDHP-FSF, which acts completely to normal after a small oscillation, without

significant increase of tracking errors. The impacts of the sudden damage on IGDHP-PO

and GDHP-PO are more obvious, which escalates their tracking errors to varying degrees.

It can be seen that the tracking errors of both approaches increase after encountering

instantaneous damage, while IGDHP-PO relatively surpasses GDHP-PO since the latter

has larger errors. Nevertheless, all approaches are capable of handling this fault scenario.

The second fault scenario investigated is the damage of the left horizontal stabilizer.

With an intact right horizontal stabilizer, the center of gravity inevitably shifts from the
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Figure 3.8: Online AOA tracking control with a malfunction of the actuator occurring at the 4𝜋 seconds.
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Figure 3.9: Online AOA tracking control with a malfunction of the actuator occurring at the 5𝜋 seconds.

normal position, which will lead to an increment of pitching moment. This structural

damage can also affect the closed-loop performance by degrading longitudinal damping

and stability margin. As presented in Figs. 3.10 and 3.11, the static structural fault caused

by damage of the horizontal stabilizer demonstrates a bigger impact compared to the

considered actuator fault. At large positive values of AOA, the tracking performance of all

three approaches significantly degrades to different extents. On the whole, all approaches

can adapt to this sudden fault in that their performance is improving with the time. IGDHP-

PO still outperforms GDHP-PO in adaptation since after one period of reference signal,

the tracking errors of IGDHP-PO has declined to less than 1.5 deg while tracking errors
of GDHP are beyond 2 deg. Synthesizing two fault scenarios, it can be concluded that

the incremental technique has an advantage of quick adaptation over the conventional

ANN-based global model.

Then, more practical application scenarios are investigated, where the altitude control

loop assisted with the PID controller is introduced to generate a more realistic reference
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Figure 3.10: Online AOA tracking control with the left horizontal stabilizer damaged at the 4𝜋 seconds.
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Figure 3.11: Online AOA tracking control with the left horizontal stabilizer damaged at the 5𝜋 seconds.

signal. The pitch angle of the system is selected as the controlled variable of the intermediate

loop, i.e., from the outer loop to the inner loop, the controlled variables are altitude, pitch

angle and AOA, respectively, as illustrated in Fig. 3.12. Other system states are regarded

as the unmeasured inner states. Although flight path angle is more widely used as the

intermediate variable, in this experiment, choosing pitch angle shows a better performance,

which is also feasible in the real world. In practice, proportional control is often applied

alone, and in this chapter, 𝑘ℎ = 3, 𝑘𝜃 = 5, while all other parameters are kept unchanged.

Parameter variations can affect the dynamic response of the control system. Hence,

different discounting factors are examined to further verify the robustness of the developed

IGDHP-PO algorithm. Figures 3.13 and 3.14 demonstrate the tracking performance with

different discounting factors, where the subscript 1, 2, and 3 respectively stands for the

case of 𝛾 = 0.99995, 𝛾 = 0.9, and 𝛾 = 0.85. As can be seen, if successfully implemented,

comparable performance can be obtained with different discounting factors. Because

of the initially random policy and totally online learning, the tracking performance at
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Figure 3.12: Altitude and pitch angle control loops used to generate AOA reference signal.

the beginning is also imperfect. Due to the measurement uncertainties and proportional

controllers, the generated AOA reference oscillates over the altitude control task. Despite

this, the developed approach manages to keep the tracking errors mostly within 1 deg
and controls the system to track the designed altitude reference. Nevertheless, it is also

observed that with other parameters unchanged, different discounting factors can lead to

different success ratios, specifically 99.1% for 𝛾 = 0.99995, 97.3% for 𝛾 = 0.9, and 70.7% for

𝛾 = 0.85. This shows that the developed IGDHP-PO approach is robust to the forgetting

factor to a certain extent.
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Figure 3.13: Altitude and pitch angle control loops used to generate AOA reference signal.

In addition, load disturbance is often encountered in flight control due to turbulence.

Therefore, the tracking performance with the presence of sudden load disturbance is

examined. Although the turbulence can act on the whole aircraft, out of the purpose of

simplicity and reproducibility, the considered load disturbance is set as an equivalent square

wave disturbance acting on the real elevator deflection, i.e. 𝛿𝑒 . As presented in Figs. 3.15 and
3.16, although sudden disturbance has an impact on tracking performance, the proposed

IGHDP-PO approach can adapt with a fast-changing deflection command. The largest

impact happens at the instant when the disturbance load appears for the first time. When

an equivalent 5 deg deflection disturbance is encountered, the controller tries to generate

an opposite action to stabilize it. Due to the overshoot, oscillations are initiated, but the

AOA signal manages to track the reference. After the onset, the subsequent changing

disturbance becomes less influential, which demonstrates the robustness and the online

learning property of the proposed method.
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Figure 3.14: Online AOA tracking control with the reference provided by altitude tracking control task.
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Figure 3.15: Online AOA tracking control with the presence of sudden load disturbance.
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Figure 3.16: Evolution of the elevator deflection command and the sudden load disturbance.
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3.6 Conclusion
this chapter develops an incremental model-based global dual heuristic programming

(IGDHP) approach by combining global dual heuristic programming (GDHP) and aug-

mented incremental techniques, which solves the partial observability problem. Moreover,

the input saturation constraint is overcome by utilizing a symmetrical sigmoid function as

the output layer activation function of the actor network, which frees the matrix 𝑅 in the

reward from having to be positive definite.

Various numerical simulation studies are conductedwith an aerospace system, including

attitude control problems with different initial states and sudden structural changes, and

an altitude control problem combined with PID controller and hierarchy technique. The

results uniformly demonstrate that the developed IGDHP algorithm can effectively deal

with partial observability and surpass conventional GDHP in online stability, robustness

to different initial states, and adaptability when encountering unforeseen faults. The

applications to altitude control demonstrate that the developed IGDHP algorithm is robust

to parameter variations and load disturbance, and has the potential to be applied to realistic

complex scenarios combined with other techniques.

Future research should continue working on bridging the gap between the algorithms

and real-world systems, and approaches and skills to better satisfy the persistence excitation

(PE) condition are especially recommended.
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4
Reinforcement Learning

Control with Output
Feedback and Input

Constraints

Reinforcement-Learning-Based Adaptive Optimal Flight Control with Output Feed-
back and Input Constraints

Chapters 2 and 3 answered the research sub-question 1 in the sense of full-state feedback (FSF)
and partial observability (PO). It was found in 3 that historical measurements can be used to
identify system dynamics despite immeasurable inner states. This chapter will investigate the
output feedback (OPFB) situation in which the system to be identified is deterministic. This
chapter will build a bridge between research sub-questions 1 and 2, by taking control input
constraints into consideration. A non-quadratic performance function, as well as a bounding
actor network, will be introduced to handle input constraints. Finally, numerical simulations
will be executed to verify the novel algorithm.

This chapter is based on the following article:

B. Sun and E. van Kampen, "Reinforcement-Learning-Based Adaptive Optimal Flight Control with Output

Feedback and Input Constraints", Journal of Guidance, Control, and Dynamics, vol. 44, no. 9, pp. 1685-1691, 2021.
Doi: 10.2514/1.G005715 [111].
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Abstract
This chapter aims at improving the present incremental model-based global dual heuristic

programming algorithm proposed in the recent work [59] by taking the output-feedback

situation and input constraints into consideration. Different from the common incremental

model that is based on full-state feedback, an extended incremental model utilizing previous

input/output data is introduced to identify locally linearized system dynamics for nonlinear

systems. A non-quadratic performance function combined with a constrained-output actor

network guarantees that the produced control input command satisfies actuator saturation

constraints. Through numerical simulations, the effectiveness and the feasibility of the

proposed method are verified.

4.1 Introduction
Reinforcement learning (RL) has become a promising tool for improving autonomy in

various types of aerospace systems [36, 47, 50, 59, 112, 113] because of its self-learning prop-

erty sprouting from psychological and neuroscientific perspectives on animal behaviour

[16]. By interacting with the environment, RL can make a system learn optimal policies to

achieve goals with limited or no priori knowledge of its dynamics or environment, and

have the capability of adapting to changing situations [16, 112]. These advantages enable

RL to provide a normative solution to adaptive optimal control [38].

One branch of RL is adaptive dynamic programming (ADP), which is developed from

dynamic programming (DP), and it is performed in a forward-in-time way that allows for

an online implementation [98]. ADP is often implemented with artificial neural networks

(ANNs) and the actor-critic scheme [21], leading to adaptive critic design (ACD) [34],

whose simple diagram is depicted in Fig. 4.1. ACDs not only handle the well-known "curse

of dimensionality" [21], but also have a stronger generalization capability to deal with

nonlinearity [27, 37, 92, 98, 114]. According to the information that the critic network

approximates, ACDs can generally be categorized into three groups: heuristic dynamic

programming (HDP) [39, 84], dual HDP (DHP) [34, 115], and global DHP (GDHP) [59,

63, 98]. Among them, GDHP combines the information utilized by HDP and DHP, i.e.,

the performance function and its derivatives. The conventional GDHP utilizes a straight-

forward form [63], where two kinds of outputs of the critic network share the same input

and hidden layers, which brings in couplings. Furthermore, due to the approximating

property, inconsistent errors exist between these outputs. Nevertheless, the structure

with explicit analytical calculations proposed in [59] can overcome these limitations and

therefore it is investigated in this chapter.

Although [38] claims that RL can perform in a direct manner with no need of identifying

the system dynamics, as shown in Fig. 4.1, a third model module, next to the actor and

critic networks, is often introduced to provide system transition information and thus

to speed up learning and increase the success ratio [39]. By convention, ACDs rely on

an ANN to approximate the global system dynamics [39, 98], which can be intractable to

obtain for complex aerospace systems and can face difficulties when changing conditions

are encountered [34, 59, 115]. Consequently, an incremental model (IM) is utilized in

[34, 47, 50, 59, 115] to identify the locally linearized dynamics online so as to reduce the

dependency on global models. As an improved version of GDHP, the IM-based GDHP
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Figure 4.1: The simple diagram of ACDs, where the actor network generates the control policy that is evaluated

by the critic network, and the model network is utilized to approximate system dynamics. Solid lines are the

feedforward flow of signals, the dashed line denotes the updating pathway. 𝑥 and 𝑢 respectively denotes the

system state and the control input, 𝑥̂𝑡+1 is the estimated value of 𝑥𝑡+1, and the subscript denotes the time instant.

(IGDHP) has shown better performance in optimal tracking control problems (OTCPs) in

the full-state feedback (FSF) condition [59].

Nevertheless, for real systems, sometimes not only the system dynamics, but also

the measurements of some internal states are not available [84], which leads to output-

feedback (OPFB) problems that cannot be tackled by the current IGDHP method. Although

some ADP algorithms have been developed for OPFB [47, 50, 88], these algorithms are

derived in a linear form with a quadratic performance function. These existing algorithms

depend on solving a linear Riccati equation, and therefore are unable to handle complex

nonlinear demands in the optimal control task, such as input constraints. However, handling

input constraints is a common demand for control systems in many applications such as

aerospace systems [116, 117]. A non-quadratic performance function is introduced to cope

with actuator saturation constraints for optimal regulation control problems (ORCPs) [93],

but cannot directly be applied to OTCPs [92]. Although an augmented system is proposed

for HDP in [92, 114] to tackle this limitation, introducing the reference signal in addition

to the tracking error into the actor and critic networks can slow down learning.

Motivated by overcoming the limitations existing in the current IGDHP method, this

chapter first of all develops an extended incremental model to deal with OPFB problems.

Then, a non-quadratic performance function as well as a bounding actor network is intro-

duced to handle input constraints. Finally, numerical simulations are executed to verify

the novel IGDHP method.

4.2 Incremental Model with Output Feedback
The situation investigated in this chapter is that the system dynamics are unknown and

only input/output information can be acquired, so an incremental model is constructed to

approximate the state transformation.

Consider an affine nonlinear discrete system represented by:

𝑥𝑡+1 = 𝑓 (𝑥𝑡 ) + 𝑔(𝑥𝑡 )𝑢(𝑥𝑡 ), (4.1)

𝑦𝑡 = ℎ(𝑥𝑡 ), (4.2)
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where 𝑥𝑡 ∈ ℝ𝑛, 𝑢𝑡 ∈ ℝ𝑚 and 𝑦𝑡 ∈ ℝ𝑝 are the system state vector, control input vector and

measurable output state vector at the time instant 𝑡 , respectively, 𝑓 (𝑥𝑡 ) ∈ ℝ𝑛 , 𝑔(𝑥𝑡 ) ∈ ℝ𝑛×𝑚
and ℎ(𝑥𝑡 ) denote the drift dynamics, input dynamics and output dynamics of the system,

respectively. It is assumed that 𝑓 (𝑥𝑡 ), 𝑔(𝑥𝑡 ) and ℎ(𝑥𝑡 ) are Lipschitz continuous on their

domains. The nonlinear system is assumed to be both controllable and observable. For

simplicity, 𝑢(𝑥𝑡 ) is represented by 𝑢𝑡 in the rest of this paper.

According to [34, 59], if the system is full-state feedback, around time instant 𝑡 − 1, the
nonlinear system (4.1) can approximately be written into the following linear equation by

taking the first order Taylor series expansion and omitting second and higher-order terms:

𝑥𝑡+1 ≈ 𝑓 (𝑥𝑡−1) + 𝐹𝑡−1(𝑥𝑡 −𝑥𝑡−1) + 𝑔(𝑥𝑡−1)𝑢𝑡−1 +𝐺𝑡−1(𝑢𝑡 −𝑢𝑡−1)
= 𝑥𝑡 +𝐹𝑡−1(𝑥𝑡 −𝑥𝑡−1) +𝐺𝑡−1(𝑢𝑡 −𝑢𝑡−1),

(4.3)

where 𝐹𝑡−1 = 𝜕𝑓 T(𝑥𝑡−1)
𝜕𝑥𝑡−1 ∈ ℝ𝑛×𝑛 and 𝐺𝑡−1 = 𝜕𝑔T(𝑥𝑡−1)

𝜕𝑥𝑡−1 ∈ ℝ𝑛×𝑚 are the state transition matrix and

the input distribution matrix, respectively. 𝐹𝑡−1 and 𝐺𝑡−1 are bounded due to the Lipschitz

continuity of 𝑓 (𝑥𝑡 ) and 𝑔(𝑥𝑡 ) in Eq. (4.1).

Equation (4.3) can be rewritten as:

Δ𝑥𝑡+1 ≈ 𝐹𝑡−1Δ𝑥𝑡 +𝐺𝑡−1Δ𝑢𝑡 . (4.4)

Similarly, the system output equation (4.2) can also be linearized using Taylor expansion

around time instant 𝑡 :
𝑦𝑡+1 ≈ 𝑦𝑡 +𝐻𝑡 (𝑥𝑡+1 −𝑥𝑡 ), (4.5)

where 𝐻𝑡 = 𝜕ℎT(𝑥𝑡 )
𝜕𝐱𝐭 ∈ ℝ𝑝×𝑛 denotes the observation matrix. Equation (4.5) can be rewritten

as:

Δ𝑦𝑡+1 ≈ 𝐻𝑡Δ𝑥𝑡+1, (4.6)

To identify and control the new incremental model presented by Eqs. (4.4) and (4.6), the

following two assumptions are required.

Assumption 4.1. The linearization does not change the property of controllability and
observability of the original system given by Eqs. (4.1) and (4.2), i.e. (𝐹𝑡−1,𝐺𝑡−1) is controllable
and (𝐹𝑡−1,𝐻𝑡 ) is observable.

Assumption 4.2. The system is deterministic within the range of 𝑀 steps, where 𝑀 ≥ 𝑛/𝑝.

Remark 4.1. Assumption 4.2 is the prerequisite that the system can be identified via

input/output data. It has practical significance in that real systems are often influenced by

stochastic factors such as measurement noises, unmodeled states and unforeseen distur-

bances, while in a small range of time horizon, the impact is small enough to be ignored.

Assumption 4.2 can be satisfied when the sampling frequency is high enough.

It has been proved that for a deterministic observable system, the unmeasurable internal

states (full states) can be reconstructed uniquely with adequate previous observations and

control inputs [47, 50, 88]. Therefore, provided the input/output data over a sufficiently

long time horizon, [𝑡 −𝑁 +1,𝑁 ], 𝑛/𝑝 ≤ 𝑁 ≤ 𝑀 , we can construct a new system called the
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extended system. The extended system regards the previous increments of the input/output

data as its system states. It can determine the next output increment Δ𝑦𝑡+1 uniquely as

follows:

Δ𝑦𝑡+1 ≈ 𝐹 𝑡Δ𝑦𝑡,𝑁 +𝐺𝑡Δ𝑢𝑡,𝑁
= 𝐹 11,𝑡Δ𝑦𝑡 +𝐹 12,𝑡Δ𝑦𝑡−1,𝑁−1 +𝐺11,𝑡Δ𝑢𝑡 +𝐺12,𝑡Δ𝑢𝑡−1,𝑁−1,

(4.7)

where 𝐹 𝑡 ∈ ℝ𝑝×𝑁𝑝 and 𝐺𝑡 ∈ ℝ𝑝×𝑁𝑚 are the transition matrix and input distribution matrix

of the extended discrete system, respectively, Δ𝑢𝑡,𝑁 = [Δ𝑢T𝑡 ,Δ𝑢T𝑡−1,⋯ ,Δ𝑢T𝑡−𝑁+1]
T ∈ ℝ𝑁𝑚

and Δ𝑦𝑡,𝑁 = [Δ𝑦T𝑡 ,Δ𝑦T𝑡−1,⋯ ,Δ𝑦T𝑡−𝑁+1]
T ∈ ℝ𝑁𝑝 are the measured input/output data from 𝑁

previous steps, respectively, 𝐹 11,𝑡 ∈ ℝ𝑝×𝑝 and 𝐹 12,𝑡 ∈ ℝ𝑝×(𝑁−1)𝑝
are partitioned matrices from

𝐹 𝑡 , and 𝐺11,𝑡 ∈ ℝ𝑝×𝑚 and 𝐺12,𝑡 ∈ ℝ𝑝×(𝑁−1)𝑚
are partitioned matrices from 𝐺𝑡 . Assume that

the generalised inverse of 𝐺11,𝑡 exists such that 𝐺−1
11,𝑡𝐺11,𝑡 = 𝐼𝑚 ∈ ℝ𝑚×𝑚

, where 𝐼𝑚 denotes

the identity matrix and the subscript 𝑚 gives the dimensionality.

In this way, the original nonlinear system is approximated by a locally linear incremental

model and a direct mapping from the control input at the time instant 𝑡 to the output

at the time instant 𝑡 + 1 is built. Then, a recursive least squares (RLS) approach using a

sliding window technique [84] is adopted to identify the matrices 𝐹 𝑡 and 𝐺𝑡 online. Rewrite

Eq. (4.7) in a vector form as:

Δ𝑦𝑡+1 ≈ [Δ𝑦
T
𝑡,𝑁 Δ𝑢T𝑡,𝑁 ][

𝐹T𝑡
𝐺T
𝑡 ]
. (4.8)

Define 𝑌 𝑡 = [Δ𝑦
T
𝑡,𝑁 ,Δ𝑢

T
𝑡,𝑁 ]

T

∈ ℝ𝑁(𝑝+𝑚)×1
, which is the input information of the extended

incremental model identification, and Θ𝑡 = [𝐹 𝑡 ,𝐺𝑡 ]
T ∈ ℝ𝑁(𝑝+𝑚)×𝑝

, which is the extended

matrix to be determined using the RLS algorithm. Therefore, the output prediction equation

can presented as follows:

Δ𝑦̂𝑡+1 = 𝑌
T
𝑡 ⋅ Θ̂𝑡 , (4.9)

where Θ̂𝑡 = [𝐹̂ 𝑡 , 𝐺̂𝑡]
T

is the approximated value of Θ𝑡 , and the symbol ⋅̂ denotes the approx-
imated/estimated value.

The sliding window is utilized to store historical data 𝑌 𝑡 for determining Θ̂𝑡 in each

time step, and the main procedure of the RLS approach is given as follows [84]:

𝜖𝑡 = Δ𝑦T𝑡+1 −Δ𝑦̂
T
𝑡+1, (4.10)

Θ̂𝑡 = Θ̂𝑡−1 +
Cov𝑡−1𝑌 𝑡

𝛾RLS +𝑌
T
𝑡 Cov𝑡−1𝑌 𝑡

𝜖𝑡 , (4.11)

Cov𝑡 =
1

𝛾RLS (
Cov𝑡−1 −

Cov𝑡−1𝑥𝑡𝑥T𝑡 Cov𝑡−1
𝛾RLS +𝑥T𝑡 Cov𝑡−1𝑥𝑡 )

, (4.12)

where 𝜖𝑡 ∈ ℝ𝑝 denotes the prediction error, Cov𝑡 ∈ ℝ(𝑝+𝑚)𝑁×(𝑝+𝑚)𝑁
is the estimation covari-

ance matrix , and 𝛾RLS denotes the forgetting factor. As to initialization settings of the RLS

approach, we set 𝐹̂ 0 = [𝐼𝑝 , 0], and 𝐺̂0 as a zero matrix. The covariance matrix is initialized

as an identity matrix multiplied by a large positive value [50] and we choose 107 in this

chapter, i.e., Cov0 = 107𝐼(𝑝+𝑚)𝑁 .
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4.3 Optimal Tracking Control Problem (OTCP)
This section deals with the input constraints in the OTCP by designing a non-quadratic

function. The OTCP aims to find the optimal control policy 𝑢∗𝑡 such that the system

described by (4.1) and (4.2) can track the reference trajectory 𝑦ref𝑡 ∈ ℝ𝑝 in an optimal

manner by minimizing a predefined performance function. Furthermore, the control input

must be constrained by a bound vector 𝑢b, i.e. |𝑢𝑖,𝑡 | ≤ 𝑢b𝑖 for ∀𝑢b𝑖 > 0, 𝑖 = 1,⋯,𝑚, where

𝑢𝑖,𝑡 and 𝑢𝑏𝑖 denotes the elements of 𝑢𝑡 and 𝑢b, respectively.
To simplify the derivation and implementation of the algorithm, the reference trajectory

𝑦ref𝑡 is supposed to satisfy the following assumption [50]:

Assumption 4.3. The reference signal is slow-varying in comparison to the system dynamics,
such that the increment of the reference signal between two-time instants can be ignored.

Accordingly, considering Eq. (4.7), the output tracking error at the time instant 𝑡 + 1
can be presented as:

𝑒𝑡+1 = 𝑦𝑡+1 −𝑦ref𝑡+1

≈ 𝑦𝑡 +𝐹 𝑡Δ𝑦𝑡,𝑁 +𝐺𝑡Δ𝑢𝑡,𝑁 − (𝑦ref𝑡 +Δ𝑦ref𝑡+1)

≈ 𝑒𝑡 +𝐹 𝑡Δ𝑦𝑡,𝑁 +𝐺𝑡Δ𝑢𝑡,𝑁
≈ 𝑒𝑡 +𝐹 𝑡Δ𝑒𝑡,𝑁 +𝐺𝑡Δ𝑢𝑡,𝑁 .

(4.13)

Based on Assumption 4.3 and Eq. (4.13), the effect caused by the dynamics of the reference

signal is approximately shielded between two sampling instants. Therefore, the original

OTCP is transformed into an ORCP, so that the non-quadratic performance function used

in [37, 92, 93, 114] can be adopted to generate constrained control input.

Then the following performance function is introduced for this new input-constrained

ORCP:

𝐽 (𝑒𝑡 ,𝑢𝑡 ) =
∞
∑
𝑙=𝑡

𝛾 𝑙−𝑡𝑐(𝑒𝑙 ,𝑢𝑙 ), (4.14)

where 𝛾 is the discount factor with 0 < 𝛾 ≤ 1 and 𝑐(𝑒𝑙 ,𝑢𝑙 ) is the one-step cost function that

is defined as:

𝑐(𝑒𝑡 ,𝑢𝑡 ) = 𝑒T𝑡 𝑄𝑒𝑡 +𝑌 (𝑢𝑡 ), (4.15)

where 𝑄 ∈ ℝ𝑝×𝑝 is positive semi-definite and is set to be a diagonal matrix in this chapter,

and 𝑌 (𝑢𝑡 ) is a positive-definite integral function defined as:

𝑌 (𝑢𝑡 ) = 2
𝑚
∑
𝑖=1

∫
𝑢𝑖,𝑡

0
𝑢𝑏𝑖𝜓−1(𝜐𝑖/𝑢𝑏𝑖)𝑅𝑖𝑑𝜐𝑖 , (4.16)

where 𝜓(⋅) is a bounded element-wise function satisfying |𝜓 (⋅)| ≤ 1, and is a monotonic odd

function with its derivative bounded by a constant 𝜓𝑀 , i.e. ||𝑑𝜓 (𝑠)/𝑑𝑠|| ≤ 𝜓𝑀 , ∀𝑠 ∈ ℝ, and
𝑅𝑖 denotes the element of the positive definite weight matrix 𝑅 = diag([𝑅1,⋯ ,𝑅𝑚]) ∈ ℝ𝑚×𝑚

,

in which diag(⋅) reshapes the vector to a diagonal matrix. Without loss of generality, the

well-known hyperbolic tangent function 𝜓(⋅) = tanh(⋅) is chosen as the bounding function.

Note that 𝑌 (𝑢𝑡 ) is positive definite since 𝜓−1(⋅) is a monotonic odd function and 𝑅 is positive

definite. For simplicity, 𝐽 (𝑒𝑡 ,𝑢𝑡 ) is denoted by 𝐽𝑡 and 𝑐(𝑒𝑡 ,𝑢𝑡 ) is denoted by 𝑐𝑡 hereafter.
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According to Bellman’s principle of optimality, the optimal performance function 𝐽 ∗𝑡 is
time-invariant and satisfies the discrete-time Hamilton-Jacobi-Bellman (DTHJB) equation:

𝐽 ∗𝑡 = min
𝑢𝑡

(𝑐𝑡 +𝛾𝐽 ∗𝑡+1). (4.17)

Differentiate the right-hand side of Eq. (4.17) along the control input 𝑢𝑡 and the following

equation should be satisfied for the optimal control 𝑢∗𝑡 [27]:

𝜕𝐜𝑡
𝜕𝑢𝑡

+𝛾
𝜕𝑒T𝑡+1
𝜕𝑢𝑡

𝜆∗𝑡+1 = 0. (4.18)

where 𝜆∗𝑡+1 =
𝜕𝐽 ∗𝑡+1
𝜕𝑒𝑡+1 . Then substituting Eqs. (4.15) and (4.16) in Eq. (4.18) yields [37, 92, 93]:

𝑢∗𝑖,𝑡 = −𝑢𝑏𝑖 tanh(𝐷∗
𝑖,𝑡 ), 𝑖 = 1,⋯,𝑚, (4.19)

and 𝐷∗
𝑖,𝑡 is given as:

𝐷∗
𝑖,𝑡 =

𝛾
2𝑢𝑏𝑖

𝑅−1𝑖 𝑔T𝑖,11,𝑡𝜆
∗
𝑡+1, (4.20)

where 𝑔𝑖,11,𝑡 is the 𝑖th column vector of 𝐺11,𝑡 . The control input 𝑢∗𝑖,𝑡 is bounded within its

permitted range [−𝑢b𝑖 ,𝑢b𝑖], 𝑖 = 1,⋯,𝑚. The nonquadratic cost (4.16) for 𝑢∗𝑡 is:

𝑌 (𝑢∗𝑡 ) =
𝑚
∑
𝑖=1

[𝑢𝑏𝑖𝛾𝜆∗T𝑡+1𝑔𝑖,11,𝑡 tanh(𝐷
∗
𝑖,𝑡 ) +𝑢

2
𝑏𝑖𝑅𝑖 ln(1− tanh

2(𝐷∗
𝑖,𝑡 ))]. (4.21)

By substituting Eq. (4.21) into Eq. (4.17), the DTHJB equation becomes:

𝐽 ∗𝑡 = 𝑒
T
𝑡 𝑄𝑒𝑡 +

𝑚
∑
𝑖=1

[𝑢𝑏𝑖𝛾𝜆∗T𝑡+1𝑔𝑖,11,𝑡 tanh(𝐷
∗
𝑖,𝑡 ) +𝑢

2
𝑏𝑖𝑅𝑖 ln(1− tanh

2(𝐷∗
𝑖,𝑡 ))] + 𝛾 𝐽

∗
𝑡+1. (4.22)

In this way, the original OTCP is recast as a new ORCP subject to input constraints.

The DTHJB equation (4.22) cannot be solved analytically in the generally nonlinear cases,

and therefore the IGDHP algorithm is introduced to iteratively solve the OTCP in the next

section.

4.4 IGDHP Implementation
The IGDHP algorithm is introduced in this section with the IM and ANNs facilitating the

implementation: the IM reflects the local dynamics of the nonlinear plant and the ANNs

are utilized to build the critic network and the actor network. The architecture of the

IGDHP algorithm is shown in Fig. 4.2. The reference signal at the time instant 𝑡 + 1, 𝑦ref𝑡+1,

is unavailable at the time instant 𝑡 . To obviate the need for this information, the actor

and critic networks are updated with the information from the time instants 𝑡 and 𝑡 − 1
[59, 114].

4.4.1 The critic network
The IGDHP technique makes use of both the approximation of performance function 𝐽𝑡
and its derivative with respect to the network input 𝑒𝑡 , which is denoted by 𝜆̂𝑡 . As shown
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Figure 4.2: The architecture of the IGDHP algorithm, where solid lines represent the feedforward flow of signals,

dashed lines are backpropagation pathways, and the thick arrows represent the weight transmission.

in Fig. 4.3, the critic network is utilized to approximate the performance function (4.14)

with the facilitation of an ANN, which employs a feedforward structure with single hidden

layer as follows:

𝐽𝑡 = 𝑤T
𝑐2,𝑡𝜎(𝑤

T
𝑐1,𝑡𝑒𝑡 ), (4.23)

where 𝑤𝑐1,𝑡 and 𝑤𝑐2,𝑡 are weight matrices between different layers and the activation

function 𝜎 is chosen to be a sigmoid function. By taking the explicit analytical calculations

[59], 𝜆̂𝑡 is given as:

𝜆̂𝑡 =
𝜕𝐽𝑡
𝜕𝑒𝑡

= 𝑤𝑐1,𝑡 (𝑤𝑐2,𝑡 ⊙𝜎 ′(𝑤T
𝑐1,𝑡𝑒𝑡 )), (4.24)

where ⊙ is the Hadamard product, a.k.a. the element-wise product, and 𝜎 ′(⋅) is the first
order derivative of 𝜎(⋅).

Hidden layerInput layer Output layer

Explicit

Analytical

Calculations

ˆ
tJ ˆ

tte

1,c tw 2,c tw

Figure 4.3: The architecture of the critic network, in which an ANN is utilized to approximate performance

function and then explicit analytical calculations are taken to compute first-order derivatives.
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Referring to the DTHJB equation (4.17), the approximation error of the performance

function produced by the critic network is given as:

𝑒𝑐1,𝑡 = 𝐽𝑡−1 −𝑐𝑡−1 −𝛾𝐽𝑡 , (4.25)

and the approximation error of the derivative is given as:

e𝑐2,𝑡 =
𝜕(𝐽𝑡−1 −𝑐𝑡−1 −𝛾𝐽𝑡 )

𝜕𝑒𝑡−1
= 𝜆̂𝑡−1 −

𝜕𝑐𝑡−1
𝜕𝑒𝑡−1

−𝛾
𝜕𝑒𝑡
𝜕𝑒𝑡−1

𝜆̂𝑡 . (4.26)

The second item on the right-hand side of Eq. (4.26) has an explicit calculation as follows:

𝜕𝑐𝑡−1
𝜕𝑒𝑡−1

= 2𝑄𝑒𝑡−1 +2
𝜕𝑢𝑡−1
𝜕𝑒𝑡−1

[𝑅(tanh−1(𝑢𝑡−1 ⊙𝑢◦−1b ) ⊙𝑢b)], (4.27)

where
𝜕𝑢𝑡−1
𝜕𝑒𝑡−1 is derived by the actor network in the next subsection, and 𝑢◦−1b stands for the

element-wise inverse of the vector 𝑢b. 𝜕𝑒𝑡
𝜕𝑒𝑡−1 in the last item in Eq. (4.26) is composed of two

parts [34, 59, 98]: one part is directly derived from the incremental model (pathway 3.a),

whereas the other part starts from the incremental model and uses the control input 𝑢𝑡−1
as the intermediate auxiliary (pathway 3.b):

𝜕𝑒𝑡
𝜕𝑒𝑡−1

= 𝐼𝑝 +𝐹T11,𝑡−2⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
pathway (3.𝑎)

+
𝜕𝑢𝑡−1
𝜕𝑒𝑡−1

𝐺T
11,𝑡−2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
pathway (3.𝑏)

, (4.28)

where 𝐹 11,𝑡−2 ∈ ℝ𝑝×𝑝 is the upper-left partitioned matrix from 𝐹 𝑡−2 and 𝐺11,𝑡−2 ∈ ℝ𝑝×𝑚 is the

upper partitioned matrix from 𝐺𝑡−2.

Accordingly, the overall error of the critic network combines two kinds of approximation

error as:

𝐸𝑐,𝑡 = 𝛽
1
2
𝑒2𝑐1,𝑡 + (1−𝛽)

1
2
eT𝑐2,𝑡e𝑐2,𝑡 , (4.29)

where 𝛽 is a scalar within a range of [0,1].
The weights of the critic network are updated by a gradient-descent algorithm with a

learning rate 𝜂𝑐 to minimize the overall error 𝐸𝑐,𝑡 :

𝑤𝑐,𝑡+1 = 𝑤𝑐,𝑡 −𝜂𝑐
𝜕𝐸𝑐,𝑡
𝜕𝑤𝑐,𝑡

, (4.30)

and

𝜕𝐸𝑐,𝑡
𝜕𝑤𝑐,𝑡

=
𝜕𝐽𝑡
𝜕𝑤𝑐,𝑡

⋅
𝜕𝐸𝑐,𝑡
𝜕𝐽𝑡

+
𝜕𝜆̂𝑡
𝜕𝑤𝑐,𝑡

⋅
𝜕𝐸𝑐,𝑡
𝜕𝜆̂𝑡

= 𝛽
𝜕𝐽𝑡
𝜕𝑤𝑐,𝑡

𝑒𝑐1,𝑡 + (1−𝛽)
𝜕𝜆̂𝑡
𝜕𝑤𝑐,𝑡

e𝑐2,𝑡 , (4.31)

where 𝜕𝜆̂𝑐,𝑡 /𝜕𝑤𝑐,𝑡 is the second-order mixed gradient of 𝐽𝑡 , and the detailed explicit calcula-

tions can be found in [59].
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4.4.2 The actor network
The pathway 3.b needs to compute

𝜕𝑢𝑡−1
𝜕𝑒𝑡−1 , which cannot be calculated exactly. Conse-

quently, an actor network is introduced to produce the control input 𝑢𝑡 and to facilitate

backpropagation.

In this chapter, the output layer of the actor network employs a bounded element-wise

function as Eq. (4.16) to be the activation function, and is multiplied by the bound vector 𝑢𝑏 ,
so that the system control 𝑢𝑡 output of the actor network is bounded within the constraints,

as shown in Fig. 4.4. The actor network is also constructed as a single-hidden-layer

feedforward ANN:

𝑢𝑡 = 𝑢𝑏 ⊙𝜓(𝑤T
𝑎2,𝑡𝜎(𝑤

T
𝑎1,𝑡𝑒𝑡 )), (4.32)

where 𝑤𝑎1,𝑡 and 𝑤𝑎2,𝑡 are weight matrices between different layers of the actor network.

Hidden layerInput layer Output layer

2,a tw1,a tw
bu

te tu

Figure 4.4: The architecture of the actor network, in which the output is constrained by the bounded activation

function and the bound vector.

It is noted that the control input 𝑢𝑡 outputted by the actor network is directly introduced
to the IM and the real system, and that the actor network performs as a global approximation,

so
𝜕𝑢𝑡−1
𝜕𝑒𝑡−1 = 𝜕𝑢𝑡

𝜕𝑒𝑡 given the same actor weights. The actor network is supposed to approximate

a target control input 𝑢tar𝑡−1 which is obtained by substituting 𝜆̂𝑡 into Eq. (4.20) and then

Eq. (4.19) as follows:

𝑢tar𝑡−1 = −𝑢b ⊙ tanh(𝐷̂𝑡−1), (4.33)

and

𝐷̂𝑡−1 =
𝛾
2
𝑢◦−1b ⊙ (𝑅−1𝐺T

11,𝑡−2𝜆̂𝑡 ). (4.34)

It can be seen that both the target control input 𝑢tar𝑡−1 and the real control input 𝑢𝑡 are
bounded by 𝑢b. Therefore, the actor network is aiming at minimizing the following error:

𝐸𝑎,𝑡 =
1
2
𝑒T𝑎,𝑡𝑒𝑎,𝑡 , (4.35)

where

𝑒𝑎,𝑡 = 𝑢𝑡−1 −𝑢tar𝑡−1. (4.36)

As illustrated in Fig. 4.2, the actor weights are updated along the 4th pathway with a

learning rate 𝜂𝑎:

𝑤𝑎,𝑡+1 = 𝑤𝑎,𝑡 −𝜂𝑎
𝜕𝐸𝑎,𝑡
𝜕𝑤𝑎,𝑡

= 𝑤𝑎,𝑡 −𝜂𝑎
𝜕𝑢𝑡
𝜕𝑤𝑎,𝑡

𝑒𝑎,𝑡 (4.37)
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4.5 Flight Control Simulation
In order to assess the performance of the developed novel IGDHP algorithm, the longitudinal

dynamics of a nonlinear aircraft [59, 78, 118] are taken into account. The initial altitude

and speed of the aircraft are set to be 15000 ft and 600 ft/s, respectively, based on which,

the aerodynamic model is trimmed. To simply and clearly compare different methods,

only short-period control is considered and the elevator deflection command is artificially

bounded within [−5 deg,5 deg]. The control system, discretized with a sampling frequency

of 100 Hz, targets for controlling the angle of attack (AOA) of the aircraft to track a

sinusoidal signal, namely 𝛼 ref = 10sin(0.5𝑡) deg.
Zero-mean white noises with a standard deviation of 4×10−2 deg and 1.8 ×10−3 deg are

added onto the bounded elevator deflection command and measured AOA, respectively.

A 3211 disturbance signal is employed to kick off the learning at the beginning so as to

better satisfy the persistent excitation (PE) condition [59, 63]. Three methods are utilized

for comparison, namely GDHP with input constraints, IGDHP with input constraints, and

IGDHP without input constraints. All methods are implemented in the OPFB condition

with the sliding window width of 3. GDHP employs a model network with previous

states and control inputs as its inputs to approximate system dynamics, whereas IGDHP

approaches utilize an incremental model. All ANNs adopt the fully connected feed-forward

architecture with a single hidden layer. The number of hidden layer neurons is 10 for

the actor and critic networks and 20 for the model network. All weights are initialized

randomly within [−0.1,0.1] to decrease the impact of initialization. For IGDHP without

input constraints, the performance function is set to a quadratic form and the output layer

of the actor network employs a unit linear activation function. To compare the robustness

of these approaches, Monte Carlo simulations are also conducted, and the randomness

is introduced by aforementioned noises and initial weights. A concept of success ratio

[34, 39, 59] is introduced to indicate the performance. A successful implementation in this

chapter is defined by the tracking errors remaining within [−4 deg,4 deg] after the first 20
seconds. The simulations are carried out on an Intel Core i7-8550U @ 1.80 GHz processor,

and 8 GB RAM.

The comparison of AOA trajectories and tracking error is illustrated in Fig. 4.5. It can

be seen that although all methods can follow the reference after short online learning

stage, GDHP with input constraints takes more time to get satisfying performance and

the tracking error is the largest overall. The reason causing this phenomenon lies in that

GDHP utilizes a model network to identify the global system model which requires more

data to update weights. Without well-approximated dynamics, the control policy cannot

be appropriately generated, which in turn can have impacts on the identification of the

global model, i.e. Assumption 4.2 is not satisfied. A detailed view can be found in Fig. 4.6,

which shows the weights between the input layer and hidden layer of the actor network

𝑤𝑎1. The update of 𝑤𝑎1 requires information from the critic network, system dynamics

and actor network, and therefore the trajectory of 𝑤𝑎1 can be used to indicate the overall

learning performance. It is clearly shown in Fig. 4.6 that the learning of GDHP is slower

in comparison to the IGDHP methods, which results in a more conservative policy at the

beginning stage, as presented in Fig. 4.7. Furthermore, due to the inaccurate information

regarding system state transition, GDHP has the lowest success ratio for 1000 Monte Carlo

simulations, which is merely 46.4%, compared with 99.4% and 98.0% for IGDHP with and
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without input constraints, respectively.

As to IGDHP methods, after the weights have converged, both methods have a similar

tracking performance, which is better than that of GDHP. Nevertheless, the developed

IGDHP with input constraints has a slightly higher success ratio, and the benefit is brought

by the collective effect of the non-quadratic performance function and the bounded actor

network. With these measures, input constraints can be overcome. As shown in Fig. 4.6, it

is clear that the weight update of IGDHP without input constraints can be more radical

at the beginning when the policy has not converged yet. During this exploration stage,

IGDHP without input constraints performs similar to "bang-bang" control, with larger

control command that easily causes overshoot and oscillation. To further investigate the

influence of the measures to deal with input constraints, the policies directly produced

by the actor network are compared between the IGDHP methods with and without input

constraints. As presented in Fig. 4.8, given the random data of AOA and its reference

within the range of [−2 deg,2 deg], the methods can plot a mesh surface to illustrate their

learned policy at 8s. Compared to IGDHP with input constraints thus having a smooth

surface, IGDHP without input constraints has a sharper surface and tends to produce a

large control command. The learned policy of GDHP with input constraints is similar to

that of IGDHP with input constraints, and therefore its plot is omitted.
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Figure 4.5: The tracking performance of the online AOA tracking control task. Three methods are compared and

IGDHP with input constraints is the contribution of this chapter.
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Figure 4.6: The weights between the input layer and hidden layer of the actor network, 𝑤𝑎1. The plots of three
approaches are presented, and the middle one refers to the proposed approach which is the contribution of this

chapter.

To further verify the robustness of the designed control approach when tracking

fast-varying reference signals, a simulation experiment in which the frequency of the
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Figure 4.7: The deflection command of the elevator. The plots of three approaches are presented, and the middle

one refers to the proposed approach which is the contribution of this chapter.
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Figure 4.8: The change of the policy directly produced by the actor network from the initial stage to 8𝜋 s. The
first subfigure is the random initial policy, and the middle subfigure refers to the proposed approach which is the

contribution of this chapter.

reference signal keeps increasing is performed. The initial reference frequency is the same

as the one in the above simulation experiments, and the control input is bounded within

[−25 deg,25 deg]. As illustrated in Fig. 4.9, after the initial exploration stage, the controlled

AOA can track the given reference signal when it is slow-varying, and the tracking error is

growing as the reference frequency is increasing. Specifically, when the reference frequency

is around 5.3 times of the initial value, the tracking error for the first time exceeds 2 deg,
and when the reference frequency is near 7.0 times of the initial value, the tracking error

starts exceeding 4 deg. The results clarify the significance of Assumption 4.3 to a certain

extent. Besides, it is noted that at the final stage of the simulation, the control input comes

close to the input constraints but does not exceed the bound. Due to the existence of input

constraints, when the reference frequency is too high, the aircraft cannot successfully

complete the tracking task and the tracking error is large. Nevertheless, the simulation

results demonstrate the developed IGDHP with input constraints is robust to the reference

signal within a range of frequencies.
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Figure 4.9: The tracking performance of the developed IGDHP with input constraints when tracking a reference

signal with its frequency keeping increasing.

4.6 Conclusions
This chapter improves the current incremental model-based global dual heuristic program-

ming (IGDHP) method for more complex application scenarios, including dealing with

output feedback (OPFB) and input constraints. Different from the GDHP method that uti-

lizes a neural network to identify the global system dynamics, the developed novel IGDHP

method exploits an extended incremental model to approximate locally linear system dy-

namics via the previous input/output data at several previous time instants. The numerical

simulation shows that the developed novel IGDHP method outperforms GDHP in the

convergent speed of parameters, tracking precision, and success ratio. Moreover, the input

saturation constraint is overcome by combining a non-quadratic performance function and

bound activation function in the output layer of the actor network. The original IGDHP

method employs a quadratic performance function and unit linear activation function, and

compared to it, the developed novel IGDHP method has a smoother policy surface and

slightly higher success ratio. In addition, through a simulation experiment, the robustness

of the developed IGDHP with input constraints is verified for reference signals with a

range of frequencies. The simulation results collectively demonstrate the effectiveness and

the feasibility of the proposed method. Further research on better satisfying the persistent

excitation (PE) condition so as to achieve a non-failure control is recommended.
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5
Event-Triggered

Constrained Control Using
XGDHP for Discrete-Time

Systems

Event-Triggered Constrained Control Using Explainable Global Dual Heuristic Pro-
gramming for Nonlinear Discrete-Time Systems

In previous chapters, a novel global dual heuristic programming (GDHP) algorithm is developed
with explicit analytical calculations to synthesize and improve current online adaptive critic
designs (ACDs). This chapter will simplify these calculations by eliminating matrix dimension-
ality transformations, and propose the concept of explainable GDHP (XGDHP). In Chapter 4,
symmetric input constraints were addressed by the combination of the non-quadratic cost
function and the bounding layer of the actor network. This chapter will for the time overcome
the asymmetric control input constraints for zero-equilibrium-point stabilization problems by
involving a novel segmented utility function. Furthermore, to answer research sub-question
3, an event-triggered control (ETC) scheme will be introduced. The triggering condition will
be derived and proved to be able to guarantee the input-to-state stability and asymptotic
stability of the ETC system. The mechanism of multiple iterations at one time instant will be
introduced to enhance the system stability using XGDHP. Finally, numerical simulations on
two general nonlinear systems will be conducted to demonstrate the comparable performance
of event-triggered XGDHP with the time-based approach.

This chapter is based on the following article:

B. Sun and E. van Kampen, "Event-Triggered Constrained Control Using Explainable Global Dual Heuris-

tic Programming for Nonlinear Discrete-Time Systems", Neurocomputing, vol. 468, pp. 452-463, 2022. Doi:

10.1016/j.neucom.2021.10.046 [119].
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Abstract
This chapter develops an event-triggered optimal control method that can deal with asym-

metric input constraints for nonlinear discrete-time systems. The implementation is based

on an explainable global dual heuristic programming (XGDHP) technique. Different from

traditional GDHP, the required derivatives of the cost function in the proposed method

are computed by explicit analytical calculations, which makes XGDHP more explainable.

Besides, the challenge caused by the input constraints is overcome by the combination of a

piece-wise utility function and a bounding layer of the actor network. Furthermore, an

event-triggered mechanism is introduced to decrease the amount of computation, and the

stability analysis is provided with fewer assumptions compared to most existing studies that

investigate event-triggered discrete-time control using adaptive dynamic programming.

Two simulation studies are carried out to demonstrate the applicability of the constructed

approach. The results present that the developed event-triggered XGDHP algorithm can

substantially reduce the computational load, while maintaining comparable performance

with the time-based approach.

5.1 Introduction
Optimality is one of the most significant properties of a control system. The optimal control

problem can be solved using the Hamilton-Jacobi-Bellman (HJB) equation. However, until

now, there is no effective way to analytically solve the HJB equation for nonlinear systems

[120, 121]. Nevertheless, adaptive dynamic programming (ADP) offers a promising tool to

attain satisfying numerical solutions by incorporating artificial neural networks (ANNs),

which has been applied to a wide range of nonlinear industrial applications [50, 59, 122–

124]. As a branch of reinforcement learning (RL), ADP approximately addresses optimal

control problems by iterations between policy improvement and policy evaluation [16, 125].

When dealing with the discrete-time (DT) optimal control problem, obtaining the current

control policy usually relies on the control performance at the next time step [16, 50]. This

bootstrapping property [16] can be addressed by the actor-critic scheme using two separate

ANNs that respectively improves and evaluates the policy.

When multiple ANNs are involved, ADP is often called adaptive critic design (ACD)

[50]. Based on the information utilized by the critic network, ACDs can be categorized

into heuristic dynamic programming (HDP), dual HDP (DHP), and global DHP (GDHP)

[50, 59]. GDHP combines the information of cost function and its derivatives, and recently

has attained much attention [59, 69, 80, 99]. The most common architecture of GDHP is the

straightforward form that approximates the cost function and its derivatives simultaneously

[69, 99]. However, as claimed in [59], in this structure two kinds of outputs of the critic

network share the same input and hidden layers, making them strongly coupled. Without

analytical calculations, the approximated cost function and its derivatives can suffer from

inconsistent errors. With the development of artificial intelligence (AI), there is an emerging

need for understanding how strategies are made by AI methods, which arouses explainable

AI (XAI) [126]. Following this idea, [59] introduces explicit analytical calculations to the

GDHP technique, which makes it more explainable to designers because the approximate

cost derivatives are explicitly computed from the approximate cost function. This explain-

able GDHP (XGDHP) algorithm has shown its applicability in aerospace control systems
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[59, 80, 111]. However, matrix dimensionality transformations, a.k.a. tensor operations,

are involved in these studies, making them complicated to implement.

Besides, in practical applications, due to physical limitations or safety considerations,

handling input constraints is a common demand for control systems [127]. A classic

approach is to design a non-quadratic cost function, such that the control inputs obtained

by solving the HJB equation are limited by a symmetric bounded function [91]. However,

although there are many researches aiming at dealing with symmetric input constraints

in nonlinear optimal control problems [80, 91, 127–129], little attention has been paid to

the situation subject to asymmetric input constraints. Motivated by the industrial need,

Yang et al [130] managed to cope with the asymmetric input constraints by adjusting the

cost function with the mean and range of the control input constraints. However, there

are two limitations in their proposed method: 1) when the system states go to zero, the

control inputs are still non-zero values, specifically, the mean values of the constraint

range; 2) when the control inputs go to zero, the cost caused by the control inputs is not

zero. Consequently, this approach is not applicable to the stabilization problem with an

origin equilibrium point, which inspires our study.

Furthermore, in order to maintain the system stability, a significant number of itera-

tions within a sampling interval are normally required for ACDs, which result in a high

computational cost [131]. To enhance resource utilization and reduce the computational

burden, event-triggered control (ETC) has evolved as an alternate control paradigm and

acquired more attention in recent days [121, 131]. ETC is originally proposed in the net-

worked system to deal with the limitation of communication bandwidth [56, 132–134].

These researches target solving communication issues such as synchronization, time delays

and disturbances, rather than pursuing optimality or tackling control input constraints. A

cross-fertilization of ETC and ACD leads to the event-triggered ACD that targets solving

optimal control problems in an event-driven manner [121, 125]. Most event-triggered

studies focus on continuous-time systems [135–137] and only a few articles discuss the DT

system. The HDP algorithm is combined with the ETC in [131, 138–140] and [121, 129]

describe the event-triggered DHP algorithm. Although [69] applies the event-triggered

GDHP algorithm to a network control scenario, till now there is no related research on

event-triggered XGDHP. Among them, only [129] attempts to deal with symmetric input

constraints merely using the non-quadratic cost function, which however is not rigorous

because the control input is directly generated by the actor network that is not bounded.

Furthermore, the essence of the ETC scheme lies in that a task is executed only if a prede-

fined triggered condition is satisfied. Therefore, defining a sound triggering condition is

always the primary task for the ETC scheme. For the nonaffine system, the same triggering

condition is employed in [69, 121, 129, 138] and among them [121, 129, 138] provide the

stability analysis regarding the triggering condition. However, in [121] an extra assumption

that the state norm is bounded by the supremum of control input norm is required, whereas

in [129, 138] the input-to-state stability (ISS) Lyapunov function is directly assumed to

exist without pointing out its specific form and additional hyperparameters are involved in

[129]. These limitations prevent the proposed triggering condition from wider applications.

Motivated to tackle the limitations existing in the literature, we conduct this research

by concentrating on the event-triggered XGDHP algorithm subject to asymmetric input

constraints. The contributions are summarized as follows:
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1. XGDHP is developed to solve optimal control problems online. Compared to [59], the

XGDHP approach developed in this chapter simplifies the calculation by eliminating

matrix dimensionality transformations.

2. To the best of our knowledge, it is the first time that the asymmetric control input

constraints are overcome for zero-equilibrium-point stabilization problems. The

combination of a novel segmented utility function and the bounding layer of the

actor network guarantees strictly bounded inputs without affecting stability.

3. An event-triggered mechanism is introduced to save computational and communi-

cation load. It is the first time that ETC has been combined with XGDHP for DT

systems. Compared to existing literature, fewer assumptions are required to guar-

antee the stability of the triggering condition and a more specific proof is provided,

which demonstrates the advantage for wider applications.

The remainder of this chapter is organized as follows: Section 5.2 states the event-

triggered optimal control problem with asymmetric input constraints for the general

nonlinear DT system. The triggering condition and the stability analysis of the system

are provided in Section 5.3. Section 5.4 introduces the iterative XGDHP algorithm with

the facilitation of three ANNs. The simulation verification is presented in Section 5.5 by

applying the proposed approach to two nonlinear DT systems and Section 5.6 summarizes

this chapter and discusses further research.

5.2 Problem Description
Consider a general nonlinear DT system described by:

𝑥𝑡+1 = 𝑓 (𝑥𝑡 ,𝑢𝑡 ), 𝑡 ∈ ℕ, (5.1)

where 𝑡 denotes the time instant, 𝑥𝑡 ∈ Ω ⊂ ℝ𝑛 is the state vector, and 𝑢𝑡 ∈ Ω𝑢 is the control

input vector. Ω𝑢 = {𝑢|𝑢 ∈ ℝ𝑚 ,𝑢min < 𝑢𝑖 < 𝑢max, 𝑖 = 1,…,𝑚}, with 𝑢min < 0 and 𝑢max > 0
denoting the minimum and maximum constraint of 𝑢𝑖 , respectively. |𝑢min| ≠ |𝑢max|, i.e., the
input constraints are asymmetric.

Assumption 5.1. System (5.1) is controllable and observable. 𝑓 ∶ ℝ𝑛 ×ℝ𝑚 →ℝ𝑛 is a Lipschitz
continuous function and assumed unknown. The origin 𝑥𝑡 = 0 is the unique equilibrium point
of the system (5.1) under 𝑢𝑡 , i.e., 𝑓 (0,0) = 0.

Assumption 5.1 implies that there exists a continuous state feedback control policy

𝑢𝑡 = 𝜇(𝑥𝑡 ), 𝜇 ∶ Ω→Ω𝑢 that can stabilize system (5.1) to the equilibrium point.

Considering the event-triggered scheme, we define a sequence of triggering instants

{𝑠𝑘}∞𝑘=0, with 𝑠𝑘 satisfying 𝑠𝑘 < 𝑠𝑘+1, 𝑘 ∈ ℕ. The control input is only updated at the

triggering instant when a certain triggering condition is satisfied, and remains constant

during the time interval [𝑠𝑘 , 𝑠𝑘+1) by involving a zero-order hold (ZOH) [138, 139]. Therefore,
a gap function can be defined using the event error:

𝑒𝑡 = 𝑥𝑠𝑘 −𝑥𝑡 , ∀𝑡 ∈ [𝑠𝑘 , 𝑠𝑘+1), (5.2)
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where 𝑥𝑡 is the current state and 𝑥𝑠𝑘 is the triggering state held by the ZOH. Subsequently,

the feedback control policy can be represented as:

𝑢𝑡 = 𝜇(𝑥𝑠𝑘 ) = 𝜇(𝑒𝑡 +𝑥𝑡 ). (5.3)

Accordingly, system (5.1) takes the form:

𝑥𝑡+1 = 𝑓 (𝑥𝑡 , 𝜇(𝑒𝑡 +𝑥𝑡 )). (5.4)

Considering the characteristics of system (5.4), we introduce a discounted cost formu-

lated as:

𝐽 (𝑥𝑡 ) =
∞
∑
𝑙=𝑡

𝛾 𝑙−𝑡𝑈 (𝑥𝑙 , 𝜇(𝑥𝑠𝑘 )), (5.5)

where 𝛾 ∈ (0,1] is the discount factor, and 𝑈 (𝑥𝑡 , 𝜇(𝑥𝑠𝑘 )) is the utility function. For the

regulation task, 𝑈 (𝑥𝑡 , 𝜇(𝑥𝑠𝑘 )) is supposed to satisfy 𝑈 (𝑥,𝜇) ≥ 0 and 𝑈 (0,0) = 0. Therefore,
we define 𝑈 (𝑥𝑡 , 𝜇(𝑥𝑠𝑘 )) as followings:

𝑈 (𝑥𝑡 , 𝜇(𝑥𝑠𝑘 )) = 𝑥
T
𝑡 𝑄𝑥𝑡 +𝑌 (𝜇(𝑥𝑠𝑘 )), (5.6)

where 𝑄 ∈ ℝ𝑛×𝑛 is a symmetrical positive definite matrix, and 𝑌 (𝜇(𝑥𝑠𝑘 )) is a positive semi-

definite function that satisfies 𝑌 (𝜇(𝑥𝑠𝑘 )) ≥ 0.

Remark 5.1. The discount factor 𝛾 indicates the extent to which the short-term cost or

long-term cost is concerned [59, 80]. For the regulation task, given Assumption 5.1, 𝛾 ≤ 1
can hold because of the origin equilibrium point, whereas for tasks where the equilibrium

point is not the origin, 𝛾 < 1 must be satisfied to guarantee the cost function is finite

[114, 141].

The input constraints are asymmetric, which cannot be handled by the integrand

function utilized in [91, 93, 127], and for the regulation task, the modified function proposed

in [130] is not applicable. Inspired by these studies, we design 𝑌 (𝜇(𝑥𝑠𝑘 ))) as the following
novel piece-wise integrand function:

𝑌 =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

2𝑢max ∫
𝜇(𝑥𝑠𝑘 )

0
tanh−T(𝜐/𝑢max)𝑅𝑑𝜐, 𝜇(𝑥𝑠𝑘 ) > 0,

2|𝑢min| ∫
𝜇(𝑥𝑠𝑘 )

0
tanh−T(𝜐/|𝑢min|)𝑅𝑑𝜐, 𝜇(𝑥𝑠𝑘 ) ≤ 0,

(5.7)

where tanh−T(⋅) stands for (tanh−1(⋅))T, and tanh−1(⋅) is the inverse function of the hyper-

bolic tangent function tanh(⋅), both of which are monotonic odd. 𝑅 = diag([𝑟1,⋯ , 𝑟𝑚]) ∈
ℝ𝑚×𝑚

is a positive definite weight matrix, where diag(⋅) reshapes the vector to a diag-

onal matrix. It is worth mentioning that although 𝑌 (𝜇(𝑥𝑠𝑘 )) is piece-wise, it is at least
second-order continuous with respect to 𝜇(𝑥𝑠𝑘 ), and that only when 𝜇(𝑥𝑠𝑘 ) = 0, 𝑌 (𝜇(𝑥𝑠𝑘 )) = 0.

Our target is to search for a feedback control law 𝜇 to minimize the designed discounted

cost function (5.5). On the basis of Bellman’s principle of optimality [27], the optimal cost

function 𝐽 ∗(𝑥𝑡 ) conforms to the DTHJB equation:

𝐽 ∗(𝑥𝑡 ) = min
𝜇(𝑥𝑠𝑘 )

{𝑈 (𝑥𝑡 , 𝜇(𝑥𝑠𝑘 )) + 𝛾 𝐽
∗(𝑥𝑡+1)}. (5.8)
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The optimal control law 𝜇∗(𝑥𝑠𝑘 ) at time instant 𝑡 is accordingly defined as:

𝜇∗(𝑥𝑠𝑘 ) = arg min
𝜇(𝑥𝑠𝑘 )

{𝑈 (𝑥𝑡 , 𝜇(𝑥𝑠𝑘 )) + 𝛾 𝐽
∗(𝑥𝑡+1)}. (5.9)

It is worth mentioning that 𝜇∗(𝑥𝑠𝑘 ) is the optimal feedback control law for the sampled

state 𝑥𝑠𝑘 at the triggering instant 𝑠𝑘 , instead of the current state 𝑥𝑡 . To obtain appropriate

triggering instants for system (5.4), we define a triggering condition as follows:

||𝑒𝑡 || > 𝑒Thr, (5.10)

where 𝑒Thr is the threshold to be determined. Therefore, it is a primary task for event-

triggered control to design a sound threshold, which will be discussed in the next section.

5.3 Event-Triggered System Analysis
In this section, the triggering condition for the DT system is developed and the ISS analysis

is carried out. First of all, the following assumption is necessary [121, 138]:

Assumption 5.2. For system (5.4), there exists a positive constant 𝐶 ∈ (0,0.5) guaranteeing
the following equation:

||𝑓 (𝑥𝑡 , 𝜇(𝑒𝑡 +𝑥𝑡 ))|| ≤ 𝐶||𝑥𝑡 || +𝐶||𝑒𝑡 ||, (5.11)

and ||𝑒𝑡 || satisfies ||𝑒𝑡 || ≤ ||𝑥𝑡 ||.

Lemma 5.1. If Assumption 5.2 holds, the triggering condition can be defined as follows:

||𝑒𝑡 || > 𝑒Thr = 𝐶
1− (2𝐶)𝑡−𝑠𝑘
1−2𝐶

||𝑥𝑠𝑘 ||. (5.12)

Proof. Regard 𝑠𝑘 as the last triggered instant. According to Assumption 5.2, for each

𝑡 ∈ [𝑠𝑘 , 𝑠𝑘+1), we have:
||𝑒𝑡+1|| = ||𝑥𝑠𝑘 −𝑥𝑡+1|| ≤ ||𝑥𝑡+1||. (5.13)

Substituting Eq. (5.11) into Eq. (5.13) yields:

||𝑒𝑡+1|| ≤ 𝐶||𝑥𝑡 || +𝐶||𝑒𝑡 ||. (5.14)

With Eq. (5.2), Eq. (5.14) can be rewritten as:

||𝑒𝑡+1|| ≤ 2𝐶||𝑒𝑡 || +𝐶||𝑥𝑠𝑘 ||. (5.15)

Therefore, by conducting back-forward recursion, we obtain the following inequality:

||𝑒𝑡 || ≤ 2𝐶||𝑒𝑡−1|| +𝐶||𝑥𝑠𝑘 || +⋯ ≤ (2𝐶)𝑡−𝑠𝑘 ||𝑒𝑠𝑘 || + (2𝐶)
𝑡−𝑠𝑘−1𝐶||𝑥𝑠𝑘 || +⋯+ (2𝐶)𝐶||𝑥𝑠𝑘 || +𝐶||𝑥𝑠𝑘 ||.

(5.16)

By solving Eq. (5.16) with initial condition 𝑒𝑠𝑘 = 0, we attain:

||𝑒𝑡 || ≤ 𝐶
1− (2𝐶)𝑡−𝑠𝑘
1−2𝐶

||𝑥𝑠𝑘 ||. (5.17)

If Eq. (5.17) is violated, i.e., Eq. (5.12) is satisfied, the event is triggered. This completes the

proof.
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It is noted that the threshold value 𝑒Thr is not unique since it is influenced by the

triggered state 𝑥𝑠𝑘 and the designed constant 𝐶 that is usually chosen experimentally.

Subsequently, inspired by [140], we proceed to prove the system (5.4) is asymptotically

stable under the triggering condition (5.12).

Definition 5.1. [121] A continuous function 𝑉 ∶ ℝ𝑛 → ℝ+ is called an ISS Lyapunov

function for the system (5.4), if there exist ∞ functions 𝛼1, 𝛼2, and 𝛼3, and a  function 𝜌,
such that:

𝛼1(||𝑥𝑡 ||) ≤ 𝑉 (𝑥𝑡 ) ≤ 𝛼2(||𝑥𝑡 ||), (5.18)

𝑉 (𝑓 (𝑥𝑡 , 𝜇(𝑒𝑡 +𝑥𝑡 ))) −𝑉 (𝑥𝑡 ) ≤ −𝛼3(||𝑥𝑡 ||) + 𝜌(||𝑒𝑡 ||), (5.19)

hold for all 𝑥𝑡 ∈ ℝ𝑛 and 𝑒𝑡 ∈ ℝ𝑛 .

Theorem 5.1. With Assumption 5.2 and the triggering condition (5.12), the event-triggered
system is input-to-state stable and is asymptotically stable.

Proof. The following proof only takes the situation that the event is not triggered at the

time instant 𝑡 + 1 into consideration, because when the event is triggered, the control input

will be updated, and it will be equivalent to the time-based control at 𝑡 + 1. According to
the optimal control theory, stability can be guaranteed at this single instant.

We firstly define a Lyapunov function as follows:

𝑉 (𝑥𝑡 ) = 𝑥T𝑡 𝑄𝑥𝑡 +𝑌 (𝜇(𝑥𝑡 )). (5.20)

Then, we define a series of functions as follows:

𝛼1(||𝑥𝑡 ||) = 𝑥T𝑡 𝑄1𝑥𝑡 +𝑌 (𝜇(𝑥𝑡 )), (5.21)

𝛼2(||𝑥𝑡 ||) = 𝑥T𝑡 𝑄2𝑥𝑡 +𝑌 (𝜇(𝑥𝑡 )), (5.22)

𝛼3(||𝑥𝑡 ||) = ||𝑞||2(1−2𝐶2)||𝑥𝑡 ||2, (5.23)

𝜌(||𝑒𝑡 ||) = 2𝐶2||𝑞||2||𝑒𝑡 ||2, (5.24)

where 𝑄1 and 𝑄2 can be selected to satisfy Eq. (5.18), and the vector 𝑞 in Eqs. (5.23) and

(5.24) can be determined from Eq. (5.6) as 𝑄 = 𝑞𝑞T. Therefore, 𝑥T𝑡 𝑄𝑥𝑡 = 𝑥T𝑡 𝑞𝑞T𝑥 = ||𝑥T𝑞||2.
Subsequently, the proof is conducted by presenting that Eq. (5.20) is an ISS Lyapunov

function and it is non-increasing, i.e., Δ𝑉 = 𝑉 (𝑥𝑡+1) −𝑉 (𝑥𝑡 ) ≤ 0.
For all 𝑡 ∈ [𝑠𝑘 , 𝑠𝑘+1), according to the ETC mechanism, 𝜇(𝑥𝑡+1) = 𝜇(𝑥𝑡 ) = 𝜇(𝑥𝑠𝑘 ), and

therefore, we have

Δ𝑉 = 𝑥T𝑡+1𝑄𝑥𝑡+1 +𝑌 (𝜇(𝑥𝑡+1)) − (𝑥
T
𝑡 𝑄𝑥𝑡 +𝑌 (𝜇(𝑥𝑡 ))) = 𝑥

T
𝑡+1𝑄𝑥𝑡+1 −𝑥

T
𝑡 𝑄𝑥𝑡 . (5.25)

Substituting Eq. (5.11) into Eq. (5.25) yields:

Δ𝑉 ≤ ||𝑞||2((𝐶||𝑥𝑡 || +𝐶||𝑒𝑡 ||)2 − ||𝑥𝑡 ||2). (5.26)

According to the Cauchy-Schwarz inequality, Eq. (5.26) becomes:

Δ𝑉 ≤||𝑞||2(2𝐶2||𝑥𝑡 ||2 +2𝐶2||𝑒𝑡 ||2 − ||𝑥𝑡 ||2)

=(2𝐶2 −1)||𝑞||2||𝑥𝑡 ||2 +2𝐶2||𝑞||2||𝑒𝑡 ||2

=−𝛼3(||𝑥𝑡 ||) + 𝜌(||𝑒𝑡 ||).
(5.27)
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Consequently, referring to Definition 5.1, Eq. (5.20) is an ISS Lyapunov function. According

to [121, 129], a system is input-to-state stable if it admits a smooth ISS Lyapunov function.

Then, considering Eqs. (5.2) and (5.17), Eq. (5.27) continues as:

Δ𝑉 ≤(4𝐶2 −1)||𝑞||2||𝑒𝑡 ||2 + (2𝐶2 −1)||𝑞||2||𝑥𝑠𝑘 ||
2

≤[(4𝐶
2 −1)𝐶

1− (2𝐶)𝑡−𝑠𝑘
1−2𝐶

+ (2𝐶2 −1)] ||𝑞||
2||𝑥𝑠𝑘 ||

2,
(5.28)

Since 𝐶 < 0.5 and 4𝐶2 − 1 = (2𝐶 − 1)(2𝐶 + 1), the last inequality in Eq. (5.28) can be

rewritten as:

Δ𝑉 = −[(2𝐶 +1)𝐶(1− (2𝐶)𝑡−𝑠𝑘 ) + (1−2𝐶2)]||𝑞||2||𝑥𝑠𝑘 ||
2 ≤ 0, (5.29)

where Δ𝑉 = 0 if and only if ||𝑥𝑠𝑘 || = 0, which implies that the system has been stabilized

since the time instant 𝑠𝑘 .
Overall, we can conclude that the event-triggered system (5.4) is input-to-state stable

and is asymptotically stable with the triggering condition (5.12), which completes the

proof.

Remark 5.2. The triggering condition (5.12) has the same form as that in some existing

literature [69, 121, 129, 138]. Nevertheless, different from them, fewer assumptions are

required to guarantee asymptotic stability. Furthermore, [129, 138] assume the existence of

an ISS Lyapunov function without providing its specific formula, whereas in this chapter

the ISS Lyapunov function is specifically defined by Eqs. (5.20) - (5.24).

The simple diagram of the ETC scheme is illustrated in Fig. 5.1. Only when an event is

triggered, will the XGDHP algorithm be activated and the control input be updated. In the

next section, the detailed implementation of the XGDHP algorithm will be presented.

Figure 5.1: Simple diagram of the ETC scheme incorporating the XGDHP algorithm.

5.4 Event-Triggered Iterative ACD with XGDHP
In this section, according to the universal approximation property of ANNs [131], we first

construct a model network, represented by subscript 𝑚, to identify the system dynamics.

Then, the event-triggered iterative adaptive critic algorithm is introduced, and the actor

and critic networks, respectively represented by subscript 𝑎 and 𝑐, are built to facilitate
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the implementation. The XGDHP technique is developed based on explicit analytical

computations in the critic network, and the asymmetric input constraints are addressed by

modifying the output layer of the actor network.

All ANNs are constructed with the full-connected feed-forward architecture, and their

hidden layers respectively has 𝑙𝑚 , 𝑙𝑎 , and 𝑙𝑐 neurons, all of which adopt a sigmoid function

as the activation function:

𝜎(𝜏) =
1− 𝑒−𝜏

1+ 𝑒−𝜏
, (5.30)

whose derivative is 𝜎 ′(𝜏 ) = 0.5(1− (𝜎(𝜏 ))2).

5.4.1 The model network
Since the system dynamics is unknown, a model network is built and trained in advance

before implementing the XGDHP technique. The model network is constructed offline to

identify the dynamics and predict the next state as follows:

𝑥𝑡+1 = 𝑤T
𝑚2𝜎([

𝑤𝑚1,𝑥
𝑤𝑚1,𝑢]

T

[
𝑥𝑡
𝑢𝑡]

)+ 𝜀𝑚,𝑡 , (5.31)

in which 𝑤𝑚2 ∈ ℝ𝑙𝑚×𝑛,𝑤𝑚1,𝑥 ∈ ℝ𝑛×𝑙𝑚 , and 𝑤𝑚1,𝑢 ∈ ℝ𝑚×𝑙𝑚
are ideal weight matrices of the

model network, and 𝜀𝑚,𝑡 ∈ ℝ𝑛 is the reconstruction error. Subsequently, by defining 𝑤𝑚1 =
[𝑤T

𝑚1,𝑥 ,𝑤T
𝑚1,𝑢]T, the identification scheme is described as:

𝑥̂𝑡+1 = 𝑤̂T
𝑚2𝜎(𝑤̂

T
𝑚1[𝑥

T
𝑡 ,𝑢

T
𝑡 ]

T), (5.32)

where 𝑥̂𝑡+1, 𝑤̂𝑚1, and 𝑤̂𝑚2 are the estimations of 𝑥𝑡+1, 𝑤𝑚1, and 𝑤𝑚2, respectively.

The model network is supposed to minimize the identification error 𝑥𝑚,𝑡+1 = 𝑥̂𝑡+1 −𝑥𝑡+1,
and therefore the target performance measure is defined as:

𝐸𝑚,𝑡 =
1
2
𝑥T𝑚,𝑡+1𝑥𝑚,𝑡+1. (5.33)

The weight tuning law is designed to obey a gradient-descent algorithm:

Δ𝑤̂𝑚2 = −𝜂𝑚
𝜕𝑥̂𝑡+1
𝜕𝑤̂𝑚2,𝑡

𝜕𝐸𝑚,𝑡
𝜕𝑥̂𝑡+1

,

Δ𝑤̂𝑚1 = −𝜂𝑚
𝜕𝑥̂𝑡+1
𝜕𝑤̂𝑚1,𝑡

𝜕𝐸𝑚,𝑡
𝜕𝑥̂𝑡+1

,
(5.34)

where 𝜂𝑚 > 0 is the learning rate, and Δ𝑤̂𝑚1 and Δ𝑤̂𝑚2 are the differences of two subsequent

updating steps.

After a sufficient training session, the model network can achieve a satisfying precision,

with the weight matrix converging to a constant value. It is important to note that after

training, the model weight matrix is kept unchanged for controller design. With the model

network, the necessary partial derivative information can be obtained for training critic

and actor networks.
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Considering the event-triggered framework, by replacing 𝑢𝑡 with 𝜇(𝑥𝑠𝑘 ) in Eq. (5.32)

and taking the partial derivative with respect to 𝑥𝑡 and 𝜇(𝑥𝑠𝑘 ), respectively, we get:

𝜕𝑥̂𝑡+1
𝜕𝑥𝑡

= 𝑤̂𝑚1,𝑥 (𝜎 ′(𝑤̂T
𝑚1[𝑥

T
𝑡 , 𝜇

T(𝑥𝑠𝑘 )]
T) ⊙ 𝑤̂𝑚2), (5.35)

𝜕𝑥̂𝑡+1
𝜕𝜇(𝑥𝑠𝑘 )

= 𝑤̂𝑚1,𝑢(𝜎 ′(𝑤̂T
𝑚1[𝑥

T
𝑡 , 𝜇

T(𝑥𝑠𝑘 )]
T) ⊙ 𝑤̂𝑚2). (5.36)

By denoting 𝐹𝑡 = 𝜕𝑥̂T𝑡+1/𝜕𝑥𝑡 and 𝐺𝑡 = 𝜕𝑥̂T𝑡+1/𝜕𝜇(𝑥𝑠𝑘 ), we can approximate Eq. (5.4) as a new

affine system:

𝑥̂𝑡+1 = 𝐹𝑡𝑥𝑡 +𝐺𝑡𝜇(𝑥𝑠𝑘 ). (5.37)

With Eq. (5.37), the optimal event-triggered control law 𝜇∗(𝑥𝑠𝑘 ) can accordingly be approxi-

mated as:

𝜇̂∗(𝑥𝑠𝑘 ) = 𝜙(𝐷̂
∗(𝑥𝑠𝑘 )), (5.38)

where 𝜙(⋅) is a one-to-one piece-wise function defined as:

𝜙(𝜏) =
{
𝑢max tanh(𝜏/𝑢max), 𝜏 > 0,
|𝑢min| tanh(𝜏/𝑢min), 𝜏 ≤ 0,

(5.39)

and 𝐷̂∗(𝑥𝑠𝑘 ) is described by:

𝐷̂∗(𝑥𝑠𝑘 ) = −
𝛾
2
𝑅−1𝐺T

𝑠𝑘 𝜆̂
∗(𝑥̂𝑠𝑘+1), (5.40)

in which 𝜆̂∗(𝑥̂𝑠𝑘+1) = 𝜕𝐽
∗(𝑥̂𝑠𝑘+1)/𝜕𝑥̂𝑠𝑘+1 is the costate function. It can be found that 𝜙(⋅) is at

least second-order continuous. Accordingly, the approximate DTHJB equation takes the

form:

𝐽 ∗(𝑥𝑡 ) = 𝑈 (𝑥𝑡 , 𝜇̂∗(𝑥𝑠𝑘 )) + 𝛾 𝐽
∗(𝐹𝑡𝑥𝑡 +𝐺𝑡 𝜇̂∗(𝑥𝑠𝑘 )). (5.41)

5.4.2 Iterative adaptive critic algorithm
Through Eqs. (5.38) and (5.41), it can be found that the computation of 𝐽 ∗(𝑥𝑡 ) and 𝜇̂∗(𝑥𝑠𝑘 )
requires the future information. Clearly, although the system dynamics has been identified,

this bootstrapping phenomenon [16] makes it intractable or impossible to obtain the ana-

lytical solution of the DTHJB equation for nonlinear systems. Consequently, we introduce

an iterative adaptive critic algorithm with the XGDHP technique to iteratively solve it.

The procedure of the DT iterative adaptive critic algorithm is briefly depicted in Al-

gorithm 5.1, where 𝑏Δ𝐽 > 0 is a designed threshold and 𝑖 ∈ ℕ denotes the iteration index.

It is worth mentioning that only the situation that ||𝑒𝑡 || > ||𝑒Thr||, i.e., 𝑡 = 𝑠𝑘 , is considered,
because the control input is updated only at the triggered instant. The main idea is to

construct two iterative sequences {𝐽 (𝑖)(𝑥𝑠𝑘 )} and {𝜇(𝑖)(𝑥𝑠𝑘 )} to perform the value iteration

process so as to achieve approximately optimal values [16, 121].

The convergence analysis of the DT iterative adaptive critic algorithm has been carried

out in [27, 128, 142] and thus is omitted here. The core procedure is to prove that {𝐽 (𝑖)(𝑥𝑠𝑘 )}
is a non-decreasing sequence with an upper bound 𝑏𝐽 , i.e.,

𝐽 (0)(⋅) ≤ 𝐽 (1)(⋅) ≤ ⋯ ≤ 𝐽 (∞)(⋅) ≤ 𝑏𝐽 . (5.44)
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Algorithm 5.1: Iterative Adaptive Critic Algorithm

1 Initialization: Choose 𝑏Δ𝐽 , and set 𝑖 = 0 and 𝐽 (0)(⋅) = 0;
2 while |𝐽 (𝑖+1)(𝑥𝑠𝑘 ) − 𝐽

(𝑖+1)(𝑥𝑠𝑘 )| > 𝑏Δ𝐽 do
3 compute the iterative control input as

𝜇(𝑖)(𝑥𝑠𝑘 ) = arg min
𝜇(𝑥𝑠𝑘 )

{𝑈 (𝑥𝑠𝑘 , 𝜇(𝑥𝑠𝑘 )) + 𝛾 𝐽
(𝑖)(𝑥̂𝑠𝑘+1)} = 𝜙(𝐷̂

(𝑖)
𝑠𝑘 (𝑥𝑠𝑘 )) (5.42)

4 update the iterative cost function as

𝐽 (𝑖+1)(𝑥𝑠𝑘 ) = min
𝜇(𝑥𝑠𝑘 )

{𝑈 (𝑥𝑠𝑘 , 𝜇
(𝑖)(𝑥𝑠𝑘 )) + 𝛾 𝐽

(𝑖)(𝑥̂𝑠𝑘+1)}

= 𝑈 (𝑥𝑠𝑘 , 𝜇
(𝑖)(𝑥𝑠𝑘 )) + 𝛾 𝐽

(𝑖)(𝐹𝑠𝑘𝑥𝑠𝑘 +𝐺𝑠𝑘𝜇(𝑥𝑠𝑘 ));
(5.43)

5 i=i+1;

6 end
7 Results: Obtain the near optimal control law 𝜇̂∗(𝑥𝑠𝑘 ).

Accordingly, we can further derive that the iteration between the sequences (5.42) and

(5.43) guarantees the convergence to the optimal values for both sequences, i.e., 𝐽 (𝑖)(𝑥𝑠𝑘 )
→ 𝐽 (∞)(𝑥𝑠𝑘 ) = 𝐽

∗(𝑥𝑠𝑘 ) and 𝜇
(𝑖)(𝑥𝑠𝑘 ) → 𝜇̂∗(𝑥𝑠𝑘 ) as 𝑖 →∞ [121, 143].

Remark 5.3. Since 𝐽 (𝑖)(𝑥𝑠𝑘 )→ 𝐽 ∗(𝑥𝑠𝑘 ) as 𝑖→∞, by denoting 𝜆(𝑖)(𝑥𝑠𝑘 ) = 𝜕𝐽
(𝑖)(𝑥𝑠𝑘 )/𝜕𝑥𝑠𝑘 , we can

conclude that the costate function sequence {𝜆(𝑖)(𝑥𝑠𝑘 )} is also convergent with 𝜆(𝑖)(𝑥𝑠𝑘 ) →
𝜆̂∗(𝑥𝑠𝑘 ) as 𝑖 → ∞. Nevertheless, in practical implementation, the satisfying convergent

results can already be observed when the iteration index 𝑖 is sufficiently large, rather than

infinite.

Subsequently, for carrying out the iterative adaptive critic algorithm, the actor and

critic networks are constructed to respectively approximate the control law and the cost

function in the following subsections. The derivation presents the calculations in one

iteration step and therefore the superscript is omitted for simplicity.

5.4.3 The actor network
For building a direct differentiable mapping from the state to the control input, the actor

network is constructed, whose output is directly introduced to the model network and the

real system. Inspired by [80, 111, 114], to guarantee the asymmetric input constraints, a

bounding layer is connected to the original output layer of the three-layer network. In this

bounding layer, the aforementioned function 𝜙(⋅) that is defined in Eq. (5.39) is adopted as

the activation function. Figure 5.2 illustrates the architecture of the actor network, and its

output is presented as:

𝜇̂(𝑥𝑠𝑘 ) = 𝜙(𝑤̂
T
𝑎2𝜎(𝑤̂

T
𝑎1𝑥𝑠𝑘 )), (5.45)

where 𝑤̂𝑎1 ∈ ℝ𝑛×𝑙𝑎 and 𝑤̂𝑎2 ∈ ℝ𝑙𝑎×𝑚 are the estimations of the ideal weight matrices 𝑤𝑎1 ∈
ℝ𝑛×𝑙𝑎 and 𝑤𝑎2 ∈ ℝ𝑙𝑎×𝑚 , respectively.
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Figure 5.2: The structure of the actor network, where the input layer and the output layer employ a unit-proportion

linear activation function, while the hidden layer and the bounding layer exploit aforementioned 𝜎(⋅) and 𝜙(⋅) as
their activation functions, respectively.

Based on Eqs. (5.42) and (5.45), the performance to be minimized for the actor network

can be defined as:

𝐸𝑎,𝑠𝑘 =
1
2
[𝜇̂(𝑥𝑠𝑘 ) − 𝜇(𝑥𝑠𝑘 )]

T[𝜇̂(𝑥𝑠𝑘 ) − 𝜇(𝑥𝑠𝑘 )]. (5.46)

Similarly, with a learning rate 𝜂𝑎 > 0, the weight matrices are updated by:

Δ𝑤̂𝑎2 = −𝜂𝑎
𝜕𝜇̂(𝑥𝑠𝑘 )
𝜕𝑤̂𝑎2

𝜕𝐸𝑎,𝑠𝑘
𝜕𝜇̂(𝑥𝑠𝑘 )

,

Δ𝑤̂𝑎1 = −𝜂𝑎
𝜕𝜇̂(𝑥𝑠𝑘 )
𝜕𝑤̂𝑎1

𝜕𝐸𝑎,𝑠𝑘
𝜕𝜇̂(𝑥𝑠𝑘 )

.
(5.47)

Remark 5.4. The combination of the segmented utility function and the bounding layer

of the actor network is one of the highlights of this chapter. With the segmented utility

function, a target policy within the designed asymmetric range is provided to the actor

network to learn. Besides, the bounding layer is necessary because the signal 𝜇̂(𝑥𝑠𝑘 ), which
is an output of the actor network, is directly utilized to control the system.

5.4.4 The critic network
For the conventional GDHP technique, the critic network outputs the approximation of

cost function and its derivatives simultaneously [69, 99], whose description is as follows:

[
𝐽 (𝑥𝑠𝑘 )
𝜆̂(𝑥𝑠𝑘 )]

= [
𝑤̂𝑐2,𝐽
𝑤̂𝑐2,𝜆]

T

𝜎(𝑤̂T
𝑐1𝑥𝑠𝑘 ), (5.48)

where 𝑤̂𝑐1 ∈ ℝ𝑛×𝑙𝑐 , 𝑤̂𝑐2,𝐽 ∈ ℝ𝑙𝑐 , and 𝑤̂𝑐2,𝜆 ∈ ℝ𝑙𝑐×𝑛 respectively denotes the estimation of the

ideal weights 𝑤𝑐1 ∈ ℝ𝑛×𝑙𝑐 𝑤𝑐2,𝐽 ∈ ℝ𝑙𝑐 , and 𝑤𝑐2,𝜆 ∈ ℝ𝑙𝑐×𝑛. However, due to the inevitable

approximation error, 𝐽 (𝑥𝑠𝑘 ) and 𝜆̂(𝑥𝑠𝑘 ) approximated in this way cannot exactly provide the

derivative relationship, which is called suffering from the inconsistency error [59].

Therefore, inspired by [59, 80], a novel XGDHP technique that takes advantage of

explicit analytical calculations is developed, with the critic network only approximating

the cost function as follows:

𝐽 (𝑥𝑠𝑘 ) = 𝑤̂
T
𝑐2𝜎(𝑤̂

T
𝑐1𝑥𝑠𝑘 ), (5.49)
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where 𝑤̂𝑐2 ∈ ℝ𝑙𝑐 is the estimation of the ideal weight matrix 𝑤𝑐2 ∈ ℝ𝑙𝑐 . By taking the explicit
analytical calculations, we obtain 𝜆̂(𝑥𝑠𝑘 ) as:

𝜆̂(𝑥𝑠𝑘 ) =
𝜕𝐽 (𝑥𝑠𝑘 )
𝜕𝑥𝑠𝑘

= 𝑤𝑐1(𝑤̂𝑐2 ⊙𝜎 ′(𝑤T
𝑐1𝑥𝑠𝑘 )), (5.50)

where ⊙ is the Hadamard product.

XGDHP makes use of the cost function and its derivative information, so recalling

Eq. (5.43), the critic network is expected to minimize the following performance measure:

𝑒𝑐1,𝑠𝑘 = 𝐽 (𝑥𝑠𝑘 ) −𝑈 (𝑥𝑠𝑘 , 𝜇̂(𝑥𝑠𝑘 )) − 𝛾 𝐽 (𝑥̂𝑠𝑘+1), (5.51)

𝑒𝑐2,𝑠𝑘 =
𝜕[𝐽 (𝑥𝑠𝑘 ) −𝑈 (𝑥𝑠𝑘 , 𝜇̂(𝑥𝑠𝑘 )) − 𝛾 𝐽 (𝑥̂𝑠𝑘+1)]

𝜕𝑥𝑠𝑘
, (5.52)

𝐸𝑐,𝑠𝑘 =𝛽
1
2
𝑒2𝑐1,𝑠𝑘 + (1−𝛽)

1
2
𝑒T𝑐2,𝑠𝑘 𝑒𝑐2,𝑠𝑘 , (5.53)

where 𝛽 is a scalar within a range of [0,1]. If 𝛽 = 1, it becomes pure HDP, whereas if 𝛽 = 0,
then the weight matrix is tuned merely based on the computed derivatives 𝜆̂(𝑥𝑠𝑘 ), and
consequently it is equivalent to DHP [80].

Different from [69, 121], we also take the partial derivative of 𝜇̂(𝑥𝑠𝑘 ) with respect to 𝑥𝑠𝑘
into consideration in the critic network updating procedure for more precise calculations.

According to the chain rule, Eq. (5.52) can further be derived as:

𝑒𝑐2,𝑠𝑘 = 𝜆̂(𝑥𝑠𝑘 ) − 2𝑄𝑥𝑠𝑘 −
𝜕𝜇̂(𝑥𝑠𝑘 )
𝜕𝑥𝑠𝑘

𝜕𝑌 (𝜇̂(𝑥𝑠𝑘 ))
𝜕𝜇̂(𝑥𝑠𝑘 )

− 𝛾 (
𝜕𝑥̂𝑠𝑘+1
𝜕𝑥𝑠𝑘

+
𝜕𝜇̂(𝑥𝑠𝑘 )
𝜕𝑥𝑠𝑘

𝜕𝑥̂𝑠𝑘+1
𝜕𝜇̂(𝑥𝑠𝑘 ))

𝜆̂(𝑥𝑠𝑘+1), (5.54)

where 𝜕𝜇̂(𝑥𝑠𝑘 )/𝜕𝑥𝑠𝑘 is computed with the facilitation of the actor network, while 𝜕𝑥̂𝑠𝑘+1/𝜕𝑥𝑠𝑘
and 𝜕𝑥̂𝑠𝑘+1/𝜕𝜇̂(𝑥𝑠𝑘 ) are computed through the model network.

Given a learning rate 𝜂𝑐 > 0, the weight updating algorithm is conducted by:

Δ𝑤̂𝑐2 = −𝜂𝑐
𝜕𝐸𝑐,𝑠𝑘
𝜕𝑤̂𝑐2

, Δ𝑤̂𝑐1 = −𝜂𝑐
𝜕𝐸𝑐,𝑠𝑘
𝜕𝑤̂𝑐1

, (5.55)

and

𝜕𝐸𝑐,𝑠𝑘
𝜕𝑤̂𝑐2

=𝛽
𝜕𝐽 (𝑥𝑠𝑘 )
𝜕𝑤̂𝑐2

𝑒𝑐1,𝑠𝑘 + (1−𝛽)
𝜕𝜆̂(𝑥𝑠𝑘 )
𝜕𝑤̂𝑐2

e𝑐2,𝑠𝑘 ,

𝜕𝐸𝑐,𝑠𝑘
𝜕𝑤̂𝑐1

=𝛽
𝜕𝐽 (𝑥𝑠𝑘 )
𝜕𝑤̂𝑐1

𝑒𝑐1,𝑠𝑘 + (1−𝛽)
𝜕𝜆̂(𝑥𝑠𝑘 )
𝜕𝑤̂𝑐1

e𝑐2,𝑠𝑘 ,

(5.56)

where 𝜕𝜆̂(𝑥𝑠𝑘 )/𝜕𝑤̂𝑐2 and 𝜕𝜆̂(𝑥𝑠𝑘 )/𝜕𝑤̂𝑐1 are the second-order mixed gradients of the cost func-

tion 𝐽 (𝑥𝑠𝑘 ). To compute 𝜕𝜆̂(𝑥𝑠𝑘 )/𝜕𝑤̂𝑐2 and 𝜕𝜆̂(𝑥𝑠𝑘 )/𝜕𝑤̂𝑐1, Kronecker product and thus tensor

operations are involved in [59, 80, 111], which result in the need for matrix dimensionality

transformation. In this chapter, we develop a simpler computation method as follows:

𝜕𝜆̂(𝑥𝑠𝑘 )
𝜕𝑤̂𝑐2

𝑒𝑐2,𝑠𝑘 =(𝑤̂
T
𝑐1e𝑐2,𝑠𝑘 ) ⊙𝜎

′(𝑤̂T
𝑐1𝑥𝑠𝑘 ),

𝜕𝜆̂(𝑥𝑠𝑘 )
𝜕𝑤̂𝑐1

𝑒𝑐2,𝑠𝑘 =𝑒𝑐2,𝑠𝑘 (𝑤̂𝑐2 ⊙𝜎 ′(𝑤̂T
𝑐1𝑥𝑠𝑘 ))

T −𝑥𝑠𝑘 (𝑤̂
T
𝑐1𝑥𝑠𝑘 ⊙ 𝑤̂𝑐2 ⊙𝜎(𝑤̂T

𝑐1𝑥𝑠𝑘 ) ⊙𝜎
′(𝑤̂T

𝑐1𝑥𝑠𝑘 ))
T.

(5.57)
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Through mathematical derivation, it can be found that Eq. (5.57) is equivalent to the method

proposed in [59].

The closed-loop stability and the convergence of weights of ANNs can be found in [138].

Note that the weights between the input layer and the hidden layer of these networks are

also updated, which is the same as in [69, 99, 114, 121, 129] but different from [138, 139]

where they are fixed after the initialization. Nevertheless, the update behaviours in these

methods obey the same gradient descent logic and similar rules. The update is proved

successful through the simulation studies in this chapter and others [69, 99, 114, 121, 129].

In practice, one can manually set a constraint for the weights to guarantee boundedness

and safety.

Overall, the structural diagram of the present XGDHP implementation is depicted in

Fig. 5.3 to clarify the design procedure, where DER is given by:

DER =
𝜕𝑥̂𝑠𝑘+1
𝜕𝑥𝑠𝑘

+
𝜕𝜇̂(𝑥𝑠𝑘 )
𝜕𝑥𝑠𝑘

𝜕𝑥̂𝑠𝑘+1
𝜕𝜇̂(𝑥𝑠𝑘 )

. (5.58)
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Analytical
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DER

Explicit 
Analytical

Calculations

Critic
Network

Model
Network

Compute Target
Control Using (42)

Actor
Network

Signal Line
Back-propagation Path
Weight Transmission 

Figure 5.3: Structural diagram of the developed XGDHP algorithm.

5.5 Simulation Studies
In this section, two simulation studies are carried out to illustrate the feasibility of the

developed approach and compare the performance of the event-triggered XGDHP with the

time-based approach.

5.5.1 Example 1
Consider the following nonlinear affine mass-spring system [128]:

{
𝑥1,𝑡+1 = 𝑥1,𝑡 +0.05𝑥2,𝑡 ,

𝑥2,𝑡+1 = −0.0005𝑥1,𝑡 −0.0335𝑥31,𝑡 +𝑥2,𝑡 +0.05𝑢𝑡 ,
(5.59)
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where 𝑥𝑡 = [𝑥1,𝑡 , 𝑥2,𝑡 ]T ∈ ℝ2
and 𝑢𝑡 ∈ Ω𝑢 = {𝑢𝑡 |𝑢𝑡 ∈ ℝ,−0.5 < 𝑢𝑡 < 0.2}. The parameters in

the utility function are selected as 𝑄 = 𝐼2 and 𝑅 = 1, and the forgetting factor is chosen as

𝛾 = 0.995.
In what follows, we perform the proposed event-triggered XGDHP algorithm with the

facilitation of ANNs. All ANNs are constructed with 8 hidden neurons, i.e., 𝑙𝑚 = 𝑙𝑐 = 𝑙𝑎 = 8.
Their weight matrices between the input layer and the hidden layer are initialized within

[−1,1], and the weights between the hidden layer and the output layer are randomly

initialized with the uniform distribution within [−0.01,0.01]. The initial weights of the
actor and the critic networks utilized to present results are provided in Appendix 5.A. The

learning rates are experimentally set as 𝜂𝑚 = 𝜂𝑐 = 𝜂𝑎 = 0.01.
First of all, we employ 500 data samples to train the model network for 500 times, and

then utilize another 500 data samples for testing. The identification errors of the model

network of testing samples are illustrated in Fig. 5.4, from which, we can see that the mean

sum of squares of the identification errors is below 1.4 × 10−3. Therefore, we can say that

the model network with high accuracy has been obtained. After training, the weights of

the model network are kept unchanged for controller design.

Next, we start the controller design procedure. It is noted that the simulation of the

control algorithm is conducted in an online manner, which means that the control policy

improves as it is applied to the real system. Through setting 𝐶 = 0.12, we can accordingly

obtain the triggering threshold 𝑒Thr as:

𝑒Thr = 0.12 ⋅
1− (0.24)𝑡−𝑠𝑘
1−0.24

||𝑥𝑠𝑘 ||. (5.60)

If the condition ||𝑒𝑡 || > ||𝑒Thr|| is satisfied, the controller will be updated, and the triggering

state 𝑥𝑠𝑘 is reset with the current state. Before the occurring the next triggering event, the

control input 𝑢𝑡 is remained by ZOH as 𝑢𝑠𝑘 . Different from all other works that apply ETC to

DT systems using ADP algorithms [69, 121, 129, 138–140], the actor and critic networks are

not updated until an event is triggered in this chapter so as to further reduce computational

burden. For the XGDHP technique, we set 𝛽 = 0.5 to combine the information of the cost

function and its derivatives. For ensuring sufficient learning, the prespecified accuracy 𝑏Δ𝐽
is set to be 10−4, and during each time step that is triggered, at most 1000 internal cycles
for training the critic and actor networks are included to achieve satisfying performance.

With the initial state chosen as 𝑥0 = [1,−1]T, we conduct the proposed event-triggered

XGDHP algorithm in comparison to the time-based XGDHP algorithm. Both control

algorithms share the same settings and parameters except for the triggering mechanism.

The simulation results corresponding to the systems state and the control input are depicted

in Figs. 5.5 and 5.6, respectively. Due to the event-triggered mechanism, the event-triggered

XGDHP algorithm presents a stair-steeping control input signal. With the piece-wise

integral function (5.7) and the bounding layer in the actor network, it can be observed that

the control input is bounded within the range of (−0.5,0.2). Therefore, we can say that the

asymmetric control input constraints have been addressed. The evolution of the weights of

ANNs is depicted in Fig. 5.7, where solid lines denote the weights between the input layer

and the hidden layer while the weights between the hidden layer and the output layer are

represented by dashed lines. It can be observed that all weights eventually converge to

constant values during the online learning process. The evolution of the one-step cost and
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the accumulative cost in the learning process is demonstrated in Fig. 5.8. Utilizing fewer

data samples, the event-triggered XGDHP requires 3 more steps to control the system

achieving the stage where the one-step cost is kept below 0.05, and 7 more steps below

0.01. Because of the delayed control, the event-triggered XGDHP shows a greater overshot,

which results in a larger accumulative cost. Nevertheless, in many practical scenarios where

saving computational resources is preferred, this depletion of the control effectiveness is

acceptable.
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Figure 5.4: The mean sum of squares of the identifica-

tion errors for Example 1.
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Figure 5.5: Evolution of the system state in the online

learning process for Example 1. Controllers aim at

stabilizing system states initially from 𝑥0 = [1,−1]T to

0.
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Figure 5.6: Evolution of the control input in the online

learning process for Example 1.
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Figure 5.7: Evolution of the weights of ANNs in the

online earning process for Example 1. Subscripts c and

a denote the critic and actor networks, respectively.

Subscripts 1 and 2 denote the weights between the

input and the hidden layers and the weights between

the hidden and output layers, respectively.

In addition, the evolution curve of the triggering threshold is depicted in Fig. 5.9,

which converges to around zero along with the event error. The inter-execution time is
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illustrated in Fig. 5.10, which presents the time interval between two triggered instants.

It is worth mentioning that the time-based controller requires every sample in this 100-
step task, whereas the proposed event-triggered approach only utilizes 60 samples. Since

at each triggered instant, the critic and actor networks are trained for 1000 steps, the

event-triggered approach greatly reduces the computational burden up to 40%.
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Figure 5.8: Evolution of the one-step and accumulative

cost in the online learning process for Example 1.
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Figure 5.9: Evolution of the triggering condition in the

online learning process for Example 1.

Remark 5.5. The simulation results show that the system is gradually stabilized. Never-

theless, it is noted that due to the asymptotic stability property, the system states may not

exactly converge to zero, which makes the ETC scheme keep working during the whole

presented time range, as depicted in Figs. 5.9 and 5.10. This phenomenon is because the

triggering condition described by Eq. (5.12) is dependent on the system states. As the

stabilization continues, the triggering threshold will accordingly adapt to a stricter value to

guarantee precision. In practice, a threshold can be set for the controller, such that, when

the system states reach a certain range, the controller can be deactivated to further save

resources.

5.5.2 Example 2
The second numerical example considered is a nonlinear multiple-input-multiple-output

nonaffine system [121] described by:

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑥1,𝑡+1 = 𝑥1,𝑡 +0.1𝑥2,𝑡 ,
𝑥2,𝑡+1 = −0.17sin(𝑥1,𝑡 ) + 0.98𝑥2,𝑡 +0.1𝑢1,𝑡 ,
𝑥3,𝑡+1 = 0.1𝑥1,𝑡 +0.2𝑥2,𝑡 +𝑥3,𝑡 cos(𝑢2,𝑡 ),

(5.61)

where 𝑥𝑡 = [𝑥1,𝑡 , 𝑥2,𝑡 , 𝑥3,𝑡 ]T ∈ ℝ3
and 𝑢𝑡 ∈ Ω𝑢 = {𝑢𝑡 |𝑢𝑡 ∈ ℝ2,−4 < 𝑢𝑖,𝑡 < 2, 𝑖 = 1,2}.

The settings for the second system are similar to those in example 1. The parameters

in the utility function are chosen as 𝑄 = 𝐼3 and 𝑅 = 0.01𝐼2, and the forgetting factor is set as

𝛾 = 0.95. According to the dimensions of 𝑥𝑡 and 𝑢𝑡 , the model network is established with

the structure of 5-10-3 while both of the critic and actor networks are built as 3-10-2, i.e.,
𝑙𝑚 = 𝑙𝑐 = 𝑙𝑎 = 10. The weights of all three networks are initialized within [−0.1,0.1]. The
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initial weights of the actor and the critic networks utilized to present results are provided in

Appendix 5.A. Letting 𝜂𝑚 = 0.01, we train the model network for 1000 times using 1000 data
samples and examine its performance on a testing data set of another 500 samples. From

Fig. 5.11, it is evidently observed that the mean sum of squares of the identification errors

has been decreased to less than 6×10−4, which indicates the high accuracy of identification.
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Figure 5.10: Evolution of the inter-execution time in

the online learning process for Example 1.
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Figure 5.11: The mean sum of squares of the identifica-

tion errors for Example 2.

For the implementation of the XGDHP technique, we set 𝛽 = 0.5 and 𝑏Δ𝐽 = 5 × 10−6,
and train the critic and actor networks for at most 1000 steps with the learning rates of

𝜂𝑐 = 𝜂𝑎 = 0.001 at the triggered instant. The triggering threshold is obtained by setting

𝐶 = 0.15 as:
𝑒Thr = 0.15 ⋅

1− (0.3)𝑡−𝑠𝑘
1−0.3

||𝑥𝑠𝑘 ||. (5.62)

By initializing the system state as 𝑥0 = [0.5,0.5,0.5]T, we carry out the online control

simulation to verify the performance of the proposed event-triggered XGDHP algorithm.

The state trajectories of the event-triggered approach and the time-based approach are

displayed in Fig. 5.12. Comparing the event-triggered and time-based approaches, we can

observe that, although the event-triggered XGDHP algorithm involves fewer calculations,

the state eventually converges to the equilibrium point without obviously deteriorating the

converge rate. The control inputs are bounded within [−4,2], whose curves are depicted in

Fig. 5.13. As depicted in Fig. 5.14, the weights of both critic and actor networks are initialized

randomly and updated as the controller works, and all weights eventually converge to

constant values.

As to the optimal control performance, the event-triggered XGDHP takes 10 more

steps to keep the one-step cost below 0.1 and 7 more steps below 0.01. Different from that

in Example 1, although the time-based approach converges faster, the accumulative cost

of the event-triggered XGDHP is less than the time-based approach. This phenomenon

is because the second example requires more oscillations before be stabilized. Since the

time-based approach exerts control in each time step, due to the near-optimal property, it

shows more aggressive strategies and leads to larger accumulative cost, as illustrated in

Fig. 5.15. Remarkably, the control input is only updated 64 times in a total of 200 simulation
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steps with the event-triggered approach, saving up to 68% of computational load, which

improves the resource utilization. The evolution curves of the triggering threshold and the

inter-execution time are illustrated in Figs. 5.16 and 5.17, respectively. All the simulation

results uniformly verify the effectiveness of the event-triggered XGDHP control algorithm

proposed in this chapter.
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Figure 5.12: Evolution of the system state in the online learning process for Example 2. Controllers aim at

stabilizing system states initially from 𝑥0 = [0.5,0.5,0.5]T to 0.
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Figure 5.13: Evolution of the control input in the online

learning process for Example 2.

0 50 100 150 200

-2

-1

0

1

2

C
ri
ti
c

w
ei
g
h
t

wc1

wc2

0 50 100 150 200
Time steps

-2

-1

0

1

2

A
ct

or
w
ei
gh

t

wa1

wa2

Figure 5.14: Evolution of the weights of ANNs in the

online earning process for Example 2. Subscripts c and

a denote the critic and actor networks, respectively.

Subscripts 1 and 2 denote the weights between the

input and the hidden layers and the weights between

the hidden and output layers, respectively.
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Figure 5.15: Evolution of the one-step and accumula-

tive cost in the online learning process for Example 2.
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Figure 5.16: Evolution of the triggering condition in

the online learning process for Example 2.
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Figure 5.17: Evolution of the inter-execution time in the online learning process for Example 2.

5.6 Conclusion
In this chapter, we develop an event-triggered optimal control algorithm that can deal with

asymmetric input constraints for unknown nonlinear discrete-time systems. The stability

of the event-triggered control system is analyzed based on the triggering condition with

fewer assumptions than existing literature. Besides, the asymmetric input constraints are

coped with by the combination of a piece-wise integral function and a bounding layer

of the actor network. In addition, with the facilitation of artificial neural networks, the

explainable global dual heuristic programming (XGDHP) algorithm is developed to online

solve the nonlinear optimal control problem, and the calculations for the derivative of the

cost function are simplified without matrix dimensionality transformations.

Two numerical studies are included to illustrate the feasibility and effectiveness of

the proposed method. The experimental results present that the nonlinear system can

successfully be stabilized with the asymmetric input constraints handled. Furthermore,

compared to the conventional time-based approach, the developed event-triggered approach

can stabilize these nonlinear systems with at most 10 time steps delayed, while significantly
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reducing computational burden up to 40% and 68%, respectively. The communication load

between the controller and the plant can also be saved. The results collectively demonstrate

the applicability of the proposed approach.

This chapter utilizes a triggering condition that is derived based on the state feedback

scheme. However, in many practical systems, full-state feedback is infeasible. Therefore,

further investigation into output-feedback control approaches is highly recommended.

5.A Initial Weights
The initial weights for Example 1 are as follows:

𝑤𝑎1 = [
0.3575,0.4863,0.3110,0.4121,−0.4462,−0.8057,0.3897,0.9004

0.5155,−0.2155,−0.6576,−0.9363,−0.9077,0.6469,−0.3658,−0.9311] ,

𝑤𝑎2 = [−0.0012,−0.0024,0.0053,0.0059,−0.0063,−0.0002,−0.0011,0.0029]T,

𝑤𝑐1 = [
0.6294,−0.7460,0.2647,−0.4430,0.9150,−0.6848,0.9143,0.6006
0.8116,0.8268,−0.8049,0.0938,0.9298,0.9412,−0.0292,−0.7162] ,

𝑤𝑐2 = [−0.0016,−0.0083,0.0058,0.0092,0.0031,−0.0093,−0.0070,0.0087]T.

The initial weights for Example 2 are as follows:

𝑤𝑎1 =
⎡
⎢
⎢
⎣

−0.0154,−0.0058,0.0277,−0.0361,−0.0185,0.0937,−0.0789,−0.0153,−0.0693,0.0054
−0.0812,0.0392,−0.0933,0.0062,0.0640,0.0063,0.0222,−0.0818,−0.0438,−0.0085
0.0197,0.0400,−0.0862,0.0309,0.0437,−0.0350,0.0058,−0.0467,−0.0120,0.0751

⎤
⎥
⎥
⎦
,

𝑤𝑎2 = [
0.0036,0.0887,0.0275,0.0915,−0.0519,0.0352,−0.0422,0.0344,0.0390,−0.0864

−0.0490,−0.0552,0.0336,0.0689,−0.0311,0.0561,0.0351,−0.0987,0.0204,−0.0226]

T

,

𝑤𝑐1 =
⎡
⎢
⎢
⎣

−0.0935,0.0338,−0.0079,0.0711,−0.0618,−0.0759,−0.0231,−0.0419,0.0649,−0.0312
0.0122,−0.0619,0.0963,0.0290,−0.0143,0.0179,0.0166,0.0234,0.0965,0.0168

0.0764,−0.0262,−0.0687,−0.0247,−0.0036,−0.0548,−0.0496,−0.0469,0.0460,−0.0784

⎤
⎥
⎥
⎦
,

𝑤𝑐2 = [0.0813,0.0759,0.0636,−0.0479,0.0189,−0.0955,−0.0149,−0.0375,−0.0677,−0.0642]T.
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6
Event-Triggered Intelligent

Critic Control with Input
Constraints

Event-Triggered Intelligent Critic Control with Input Constraints Applied to A
Nonlinear Aeroelastic System

In previous chapters, research sub-questions 2 and 3 were answered with respect to discrete-time
(DT) systems. The optimality and stability were persuaded while dealing with the control
input constraints of aerial vehicles, and event-triggered control (ETC) was introduced to save
computational and communication load. In this chapter, the progress will be extended to
the continuous-time (CT) system. A single-critic-network adaptive dynamic programming
(ADP) algorithm will be introduced. Different from DT systems where the ETC loop is designed
separately, in CT systems ETC is incorporated into ADP. Therefore, this chapter will design a
novel triggering condition with control input constraints considered and the infamous Zeno
phenomenon in the ETC field will be analysed and avoided. To further enhance the system
stability, an improved weight updating criterion will be designed to eliminate the requirement
of initial admissible control. Then, the Lyapunov stability of the closed-loop system will be
analysed. Finally, the proposed method will be applied to an aeroelastic wing section for
verification.

This chapter is based on the following article:

B. Sun, X. Wang and E. van Kampen, "Event-Triggered Intelligent Critic Control with Input Constraints Ap-

plied to A Nonlinear Aeroelastic System", Aerospace Science and Technology, vol. 120, pp. 107279, 2022. Doi:
10.1016/j.ast.2021.107279 [144].
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Abstract
In this chapter, we establish an event-triggered intelligent control scheme with a single

critic network, to cope with the optimal stabilization problem of nonlinear aeroelastic

systems. The main contribution lies in the design of a novel triggering condition with input

constraints, avoiding the Lipschitz assumption on the inverse hyperbolic tangent function.

Based on an improved weight updating criterion that eliminates the requirement of initial

admissible control, the control law is obtained approximately by online training of a single

critic network. The Lyapunov stability and the Zeno phenomenon of the closed-loop

system are analysed. The feasibility of the established algorithm is verified by applying

it to an optimal stabilization task of a nonlinear aeroelastic system. The results reveal

that the developed approach can handle input-constrained optimal control problems, with

performance comparable to the time-based method that updates control inputs at each

instant, while reducing the computational and communication load.

6.1 Introduction
Aeroelastic systems exhibit a variety of unstable phenomena, such as flutter and limit-

cycle oscillations (LCOs), which can significantly degrade the flight performance of an

aircraft [145–147]. For this reason, stable controller design for aeroelastic systems has been

receiving considerable attention for decades in aerospace engineering research groups [146,

148–150]. Most current controllers are designed based on feedback linearization approaches

[148]. However, with the rapid development of aviation technologies, these traditional

methods show their limitations in dealing with stronger nonlinearities. Input nonlinearities

such as saturation constraints commonly exist in real systems [37, 111], but they are rarely

investigated for aeroelastic systems in the existing literature. Furthermore, complex systems

usually involve multiple control loops closed through some communication mediums,

which brings a growing interest in enhancing resource utilization [151]. Motivated by

the demands for tackling these challenges, this chapter aims to develop a constrained-

input optimal control approach with reduced computational and communication costs for

nonlinear aeroelastic systems.

Optimal control problems pursue optimal control policies for dynamical systems by

maximizing/minimizing a pre-defined performance function that captures desired ob-

jectives [125]. When dealing with optimal control problems, it is common to solve the

Hamilton-Jacobi-Bellman (HJB) equation, but there are few effective approaches to obtain

its analytical solutions for nonlinear systems [125, 152]. Adaptive dynamic programming

(ADP) provides a promising method to acquire numerical solutions of general HJB equa-

tions. By incorporating artificial neural networks (ANNs), ADP acquires a more powerful

generalization capability and has been successfully applied to a variety of aerospace systems

[50, 59, 80, 105, 153, 154]. As a branch of reinforcement learning (RL), the principle of ADP

lies in the effective iterations between policy improvement and policy evaluation [16, 125],

which are sometimes approximated by an actor network and a critic network, respectively

[50, 59, 105]. However, for continuous-time (CT) systems, by solving the HJB equation, the

single critic network (SCN) architecture is able to perform ADP with lower computational

cost and eliminate the approximation error introduced by the actor network [37, 155].

Different from the actor-critic architecture, where the input saturation constraints are
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addressed by the bounded output neurons of the actor network [59], the SCN structure

ordinarily utilizes a non-quadratic cost function, such that the control inputs derived from

the solution of HJB equation can be bounded by a hyperbolic tangent function [37, 91, 156].

Although time-based ADP approaches provide a mature and normative solution to

nonlinear optimal control problems, the need for reducing transmitted data is not fully

satisfied. Arising from networked control systems [55, 157], event-triggered control (ETC)

has attained a lot of attention in recent years because of its ability to reduce computational

and communication load [125]. A cross-fertilization of ETC and ADP produces event-

triggered ADP, which has successfully been implemented for optimal stabilization of

both discrete-time systems [119, 131] and CT systems [158, 159]. The key attribute of

the event-triggered mechanism lies in that the control signals are updated only when a

certain condition is triggered [119]. Therefore, designing a sound triggering condition

is the principal task of ETC. For CT systems adopting ETC methods, the inter-execution

time can be zero, resulting in the accumulation of event times. This is the infamous

Zeno phenomenon that must be avoided in the controller design. The related analysis is

conducted in [136, 160] without incorporating ANNs and in [151] without taking the input

constraints into account. Based on these studies, the closed-loop analysis is carried out to

ensure that the Zeno phenomenon is inapplicable to the proposed method.

Developing from the time-based ADP, event-triggered ADP methods inherit and con-

tinue most of the properties and techniques of the time-based ADP, including the technique

for handling input constraints with a non-quadratic cost function [136, 161]. However,

in most existing literature, the triggering condition is derived by involving a Lipschitz

constant of the inverse hyperbolic tangent function without effectively narrowing its

domain. Although satisfying experimental results can be obtained in certain circumstances,

this derivation is not mathematically rigorous. According to [162], in which the actor-

critic structure is adopted, this chapter replaces this Lipschitz constant using meticulously

mathematical transformations with the SCN architecture.

In addition, the initial admissible control is a requirement for both time-based and

event-triggered ADP methods, which weakens their application, especially for closed-loop

online learning control. Inspired by [136, 151, 163], an improved weight updating rule is

designed by adding a stabilizing term based on the Lyapunov stability theory, such that

the requirement of initial admissible control is eliminated.

The contributions of this chapter are summarized as follows:

1. It is the first time that an ADP-based controller is developed for a nonlinear aeroelastic

system. This chapter develops a general control method that can be applied directly

without making coordinate transformations.

2. A novel triggering condition incorporating input constraints is derived without

requiring the Lipschitz assumption on the inverse hyperbolic tangent function.

3. The demand for the initial admissible control is relaxed by an improved critic weight

updating criterion.

4. The Zeno phenomenon is analysed and avoided regarding the closed-loop system

with the event-triggered control strategy.



6

108 6 Event-Triggered Intelligent Critic Control with Input Constraints

The remainder of this chapter is organized as follows: Section 6.2 states the constrained-

input optimal control problem for a CT nonlinear aeroelastic system under the event-

triggered framework. Section 6.3 provides the implementation of the event-triggered

controller using ANN, and analyses the closed-loop stability as well as avoids the Zeno

phenomenon. The simulation verification is presented in Section 6.4, and Section 6.5

summarizes this chapter and states further research.

The main notations used in what follows are listed. ℕ is the set of all natural numbers.

ℝ denotes the set of all real numbers. ℝ𝑛 indicates the Euclidean space of all 𝑛-dimensional

real vectors. ℝ𝑛×𝑚 is the space of all 𝑛 ×𝑚 real matrices. | ⋅ | is the scalar absolute value
and || ⋅ || is the norm of the corresponding vector or matrix. (⋅)− denotes the left continuity
and (⋅)T represents the transpose operation. 𝐼𝑛 denotes the 𝑛 ×𝑛 identity matrix and 𝟏 is
a column vector with all elements equal to one. 𝜆(⋅) and 𝜆(⋅) respectively represents the

maximal and minimal eigenvalues of a matrix. Denote Ω as a compact subset of ℝ𝑛 , Ω𝑢 as

a compact subset of ℝ𝑚, and A (Ω) as the set of admissible controllers on Ω. The symbol

∇(⋅) ≜ 𝜕(⋅)/𝜕𝑥 stands for the gradient operator.

6.2 Problem Description
A typical aeroelastic wing section plant with two degrees of freedom is modeled in this

section. Then, we describe the constrained-input optimal control problem of general

nonlinear systems, and present the event-triggered control mechanism.

6.2.1 Aeroelastic wing section model
With the wide usage of composite materials, high aspect-ratio aircraft wings can suffer

from aeroelastic instability phenomena, including the LCOs [147, 164]. If not suppressed

by active control, LCOs can lead to structural failure and even flight accidents [146].

The schematic of an aeroelastic wing section controlled by a single trailing-edge flap is

illustrated in Fig. 6.1 [148], where c.m. is the abbreviation of center of mass. It has two

degrees of freedom: the plunge displacement ℎ and the pitch angle 𝜃 . In this problem, it is

assumed in the undisturbed case, that the freestream is along the airfoil chord, and thus

pitch angle 𝜃 is equal to the angle of attack 𝛼 . Consequently, the governing expressions of

motion are presented as [148, 150]:

[
𝑚𝑡 𝑚𝑤𝑥𝛼𝑏

𝑚𝑤𝑥𝛼𝑏 𝐼𝛼 ][
ℎ̈
𝛼̈]+ [

𝑐ℎ 0
0 𝑐𝛼][

ℎ̇
𝛼̇]+ [

𝑘ℎ(ℎ) 0
0 𝑘𝛼 (𝛼)][

ℎ
𝛼] = [

−𝐿
𝑀 ], (6.1)

where 𝑘ℎ(ℎ) and 𝑘𝛼 (𝛼) respectively represents the plunge and pitch stiffness, which can be

formulated by nonlinear polynomials as [146]:

𝑘ℎ = 2844(1+0.9ℎ2)

𝑘𝛼 = 2.82(1−22.1𝛼 +1315.5𝛼2 −8580𝛼3 +17289.7𝛼4),
(6.2)
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and the remaining constant parameters are listed in Table 6.1; 𝐿 and𝑀 respectively denotes

the aerodynamic force and moment, which are formulated in a quasi-steady form as [148]:

𝐿 = 𝜌𝑈 2𝑏𝑐𝐿𝛼(𝛼 +
ℎ̇
𝑈

+𝑎𝑏
𝛼̇
𝑈 )+𝜌𝑈 2𝑏𝑐𝐿𝛽𝛽,

𝑀 = 𝜌𝑈 2𝑏2𝑐𝑚𝛼(𝛼 +
ℎ̇
𝑈

+𝑎𝑏
𝛼̇
𝑈 )+𝜌𝑈 2𝑏2𝑐𝑚𝛽𝛽,

(6.3)

where 𝑎 = 0.5 − 𝑎, and 𝛽 is the control surface deflection. As presented by (6.1) - (6.3),

the motion dynamics of the aeroelastic system are nonlinear. To describe the system

more profoundly, the properties of a simplified linear system are provided. By neglecting

the nonlinear terms in (6.2), the flutter speed of the resulting linear aeroelastic system

is 12.41 m/s. The natural frequencies of the corresponding linear undamped aeroelastic

system are 9.11 rad/s and 13.28 rad/s.

Figure 6.1: An two-degree-of-freedom aeroelastic system with one control surface (adapted from [148]).

The complete flight control system often involves the actuator, which can be described

as a first-order component [59]:

𝛽̇ − 𝑘𝛽𝛽 = 𝑘𝛽𝛽𝑐 , (6.4)

where 𝛽𝑐 is the deflection command directly generated by the controller. In this case,

the complete state vector is 𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5]T = [ℎ,𝛼, ℎ̇, 𝛼̇ , 𝛽]T, and the control input is

𝑢 = 𝛽𝑐 . Besides, due to mechanical limitations, the control surface deflection always has

constraints, which should be taken into consideration in the controller design process.

6.2.2 Optimal control design with input constraints
To provide a general description, we consider a class of nonlinear CT systems formulated

by:

𝑥̇(𝑡) = 𝑓 (𝑥(𝑡)) + 𝑔(𝑥(𝑡))𝑢(𝑥(𝑡)), (6.5)

where 𝑥(𝑡) ∈ Ω ⊂ ℝ𝑛 is the state vector and 𝑢(𝑥(𝑡)) ∈ Ω𝑢 is the control signal vector, and

Ω𝑢 = {𝑢|𝑢 ∈ ℝ𝑚 , |𝑢𝑖 | < 𝑢𝑏 , 𝑖 = 1,…,𝑚}, in which 𝑢𝑏 is the control saturating bound. 𝑓 (⋅) is
Lipschitz continuous in Ω satisfying 𝑓 (0) = 0. The initial state at 𝑡 = 0 is 𝑥(0) = 𝑥0, and 𝑥 = 0
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Table 6.1: CONSTANT PARAMETERS FOR THE AEROELASTIC SYSTEM

Symbol Meaning Value

𝑎 nondimensional distance from

the midchord to the elastic axis

−0.6847

𝑏 wing semichord 0.135 m
𝑚𝑡 total mass of the wing and the flap 12.387 kg
𝑚𝑤 mass of the wing 2.049 kg

𝑥𝛼
nondimensional distance from

the elastic axis to the c.m.

(0.0873− (𝑏 +𝑎𝑏))/𝑏

𝐼𝛼 moment of inertia 𝑚𝑤𝑥2𝛼𝑏2 +0.0517 kg ⋅m
𝑐ℎ plunge damping coefficient 27.43 kg/s
𝑐𝛼 pitch damping coefficient 0.036 kg ⋅m2/s
𝑐𝐿𝛼 lift coefficient per 𝛼 6.28
𝑐𝑚𝛼 moment coefficient per 𝛼 (0.5+𝑎)𝑐𝐿𝛼
𝑐𝐿𝛽 lift coefficient per 𝛽 3.358
𝑐𝑚𝛽 moment coefficient per 𝛽 −1.94
𝜌 density of air 1.225 kg/m3

𝑈 freestream velocity 15m/s

is the equilibrium point of the system. System (6.5) is generally assumed to be controllable.

For simplicity, we denote 𝑥(𝑡) by 𝑥 hereafter.

For system (6.5), an infinite-horizon cost function can be defined as:

𝐽 (𝑥) = ∫
∞

𝑡
𝑥T𝑄𝑥 +𝑌 (𝑢)d𝜏 , (6.6)

where 𝑄 ∈ ℝ𝑛×𝑛 is positive semi-definite and is set to be a diagonal matrix in this chapter,

and 𝑌 (𝑢) is a positive semi-definite integrand function utilized to handle control input

constraints. We denote 𝑈 (𝑥,𝑢(𝑥)) = 𝑥T𝑄𝑥 + 𝑌 (𝑢) as the utility function, and 𝑈 (𝑥,𝑢(𝑥))
satisfies 𝑈 (𝑥,𝑢) ≥ 0 and 𝑈 (0,0) = 0. Inspired by [37, 91], we define 𝑌 (𝑢) as:

𝑌 (𝑢) = 2𝑢𝑏 ∫
𝑢

0
tanh−T(𝜐/𝑢𝑏)𝑅d𝜐 = 2𝑢𝑏

𝑚
∑
𝑖=1

∫
𝑢𝑖

0
tanh−T(𝜐𝑖/𝑢𝑏)𝑟𝑖d𝜐𝑖 , (6.7)

where tanh−T(⋅) stands for (tanh−1(⋅))T, and tanh−1(⋅) is the inverse hyperbolic tangent

function, which is a monotonic odd function; 𝑅 = diag([𝑟1,⋯ , 𝑟𝑚]) ∈ ℝ𝑚×𝑚
is a positive

definite weight matrix, where diag(⋅) reshapes the vector to a diagonal matrix. 𝑌 (𝑢) satisfies
𝑌 (𝑢) ≥ 0, and only when 𝑢 = 0, 𝑌 (𝑢) = 0.

Admissible control is a prerequisite of optimal feedback stabilization, such that the cost

function 𝐽 (𝑥) is guaranteed to be finite. Choosing an admissible control law 𝑢(𝑥) ∈ A (Ω),
and accordingly the Hamiltonian is defined as:

𝐻(𝑥,𝑢(𝑥),∇𝐽 (𝑥)) = 𝑈 (𝑥,𝑢(𝑥)) +∇𝐽T(𝑥)[𝑓 (𝑥) +𝑔(𝑥)𝑢(𝑥)]. (6.8)

The optimal value of the cost function given in (6.6) is:

𝐽 ∗(𝑥) = min
𝑢(𝑥)∈A (Ω)∫

∞

𝑡
𝑈 (𝑥(𝜏 ),𝑢(𝑥(𝜏 )))d𝜏 , (6.9)
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and it satisfies the HJB equation:

0 = min
𝑢(𝑥)∈A (Ω)

𝐻(𝑥,𝑢(𝑥),∇𝐽 ∗(𝑥)). (6.10)

By making 𝜕𝐻(𝑥,𝑢(𝑥),∇𝐽 (𝑥))/𝜕𝑢(𝑥) = 0, the corresponding optimal feedback control solu-

tion is derived by:

𝑢∗(𝑥) = arg min
𝑢(𝑥)∈A (Ω)

𝐻(𝑥,𝑢(𝑥),∇𝐽 ∗(𝑥))

= −𝑢𝑏 tanh(𝐷∗),
(6.11)

where tanh(⋅) denotes the hyperbolic tangent function, and 𝐷∗
is given by:

𝐷∗ =
1
2𝑢𝑏

𝑅−1𝑔T(𝑥)∇𝐽 ∗(𝑥). (6.12)

The control input 𝑢∗ is bounded by 𝑢𝑏 , and the nonquadratic cost (6.7) regarding 𝑢∗ is:

𝑌 (𝑢∗(𝑥)) = 𝑢𝑏∇𝐽 ∗T(𝑥)𝑔(𝑥) tanh(𝐷∗) +𝑢2𝑏𝑅 ln(𝟏− tanh
2(𝐷∗)), (6.13)

where ∇𝐽 ∗T(𝑥) denotes (∇𝐽 ∗(𝑥))T and 𝑅 = [𝑟1,⋯ , 𝑟𝑚]T. Substituting (6.11) and (6.12) into the

HJB equation produces:

0 = 𝑥T𝑄𝑥 +𝑢2𝑏𝑅 ln(𝟏− tanh
2(𝐷∗)) +∇𝐽 ∗T(𝑥)𝑓 (𝑥), (6.14)

with 𝐽 ∗(0) = 0 that leads to 𝐻(𝑥,𝑢∗(𝑥),∇𝐽 ∗(𝑥)) = 0.

6.2.3 Event-triggered scheme design
Considering the event-triggered scheme, we define a sequence of triggering instants {𝑠𝑘}∞𝑘=0,
where 𝑠𝑘 satisfies 𝑠𝑘 < 𝑠𝑘+1 with 𝑘 ∈ ℕ. The output of the sampled-data module is 𝑥(𝑠𝑘) ≜ 𝑥𝑘
for all 𝑡 ∈ [𝑠𝑘 , 𝑠𝑘+1). Subsequently, we define the gap function using the event error:

𝑒𝑘(𝑡) = 𝑥𝑘 −𝑥,∀𝑡 ∈ [𝑠𝑘 , 𝑠𝑘+1). (6.15)

We denote 𝑒𝑘(𝑡) briefly by 𝑒𝑘 hereafter. Every time when a certain triggering condition

is satisfied, the event-triggered state vector is updated and the event error 𝑒𝑘 is reset to
zero. At every triggering instant (instead of time instant), the state feedback control law

𝑢(𝑥(𝑠𝑘)) = 𝑢(𝑥𝑘) is accordingly updated. By introducing a zero-order holder (ZOH), the

control sequence {𝑢(𝑥𝑘)}∞𝑘=0 actually turns to be a piecewise signal that remains constant

during the time interval [𝑠𝑘 , 𝑠𝑘+1), ∀𝑘 ∈ ℕ. Based on the control signal 𝑢(𝑥𝑘), system (6.5)

takes the form:

𝑥̇ = 𝑓 (𝑥) +𝑔(𝑥)𝑢(𝑥 + 𝑒𝑘),∀𝑡 ∈ [𝑠𝑘 , 𝑠𝑘+1). (6.16)

Considering the event-triggered framework, combined with (6.12), the feedback control

function (6.11) becomes:

𝑢∗(𝑥𝑘) = −𝑢𝑏 tanh(𝐷∗
𝑘), (6.17)

where 𝐷∗
𝑘 is given as:

𝐷∗
𝑘 =

1
2𝑢𝑏

𝑅−1𝑔T(𝑥𝑘)∇𝐽 ∗(𝑥𝑘). (6.18)
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For system (6.5), with the infinite-horizon cost function represented by (6.6), we define

a triggering condition as follows:

||𝑒𝑘 ||2 > ||𝑒𝑇 ||2, (6.19)

where 𝑒𝑇 is the threshold to be determined. We say the event is triggered if (6.19) is satisfied,

and in the following section, we present the details of how to determine the threshold.

6.3 Intelligent Critic Control Implementation
Since (6.14) is a nonlinear partial differential equation intractable to be solved analytically,

in this section an ANN with an improved updating rule is used to approximate the optimal

control policy. Then, the system stability is analysed and the Zeno phenomenon is avoided

regarding the closed-loop system.

6.3.1 Improved neural control implementation
In light of the powerful generalization property of ANNs, the optimal cost function can be

reconstructed as follows:

𝐽 ∗(𝑥) = 𝑤T
𝑐 𝜎𝑐(𝑥) + 𝜀𝑐(𝑥), (6.20)

where 𝑤𝑐 ∈ ℝ𝑙𝑐 stands for the ideal weight, 𝑙𝑐 is the number of neurons, 𝜎(𝑥)𝑐 ∈ ℝ𝑙𝑐 de-
notes the activation function, and 𝜀𝑐(𝑥) ∈ ℝ represents the neural approximation error.

Accordingly, the gradient vector of the optimal cost is:

∇𝐽 ∗(𝑥) = ∇𝜎T
𝑐 (𝑥)𝑤𝑐 +∇𝜀𝑐(𝑥). (6.21)

Since the ideal weight vector is unavailable in advance, a critic network is constructed

to approximate the cost function with an estimated weight vector 𝑤̂𝑐 ∈ ℝ𝑙𝑐 such that:

𝐽 ∗(𝑥) = 𝑤̂T
𝑐 𝜎𝑐(𝑥). (6.22)

Similarly, we determine:

∇𝐽 ∗(𝑥) = ∇𝜎T
𝑐 (𝑥)𝑤̂𝑐 . (6.23)

Considering the ANN formulation (6.21), (6.18) can be rewritten as:

𝐷∗
𝑘 =

1
2𝑢𝑏

[𝑅−1𝑔T(𝑥𝑘)(∇𝜎T
𝑐 (𝑥𝑘)𝑤𝑐 +∇𝜀𝑐(𝑥))]. (6.24)

Based on the mean-value theorem [91], we can accordingly rewrite (6.17) as:

𝑢∗(𝑥𝑘) = −𝑢𝑏 tanh(𝐷𝑘) + 𝜀𝑢∗𝑘 , (6.25)

where 𝐷𝑘 = 1/(2𝑢𝑏)(𝑅−1𝑔T(𝑥𝑘)∇𝜎T
𝑐 (𝑥𝑘)𝑤𝑐), and 𝜀𝑢∗𝑘 = −1/2(𝟏− tanh2(𝜉 ))𝑅−1𝑔T(𝑥𝑘)∇𝜀, where

𝜉 ∈ ℝ𝑚 is selected between 𝐷𝑘 and 𝐷∗
𝑘 .

Hence, according to (6.17) and (6.23), the event-triggered approximate optimal policy

can be formulated as:

𝑢̂(𝑥𝑘) = −𝑢𝑏 tanh(𝐷̂𝑘), (6.26)
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and 𝐷̂𝑘 is modulated as:

𝐷̂𝑘 =
1
2𝑢𝑏

(𝑅−1𝑔T(𝑥𝑘)∇𝜎T
𝑐 (𝑥𝑘)𝑤̂𝑐). (6.27)

Substituting (6.25) into the Hamiltonian (6.8) yields that:

𝐻(𝑥,𝑢∗(𝑥𝑘),𝑤𝑐) = 𝑤T
𝑐 ∇𝜎𝑐(𝑥)[𝑓 (𝑥) +𝑔(𝑥)𝑢

∗(𝑥𝑘)] + 𝑥T𝑄𝑥 +𝑌 (𝑢∗(𝑥𝑘)) ≜ 𝑒𝑐𝐻 , (6.28)

where 𝑢∗(𝑥𝑘) = 𝑢𝑏 tanh(𝐷∗
𝑘), and 𝑒𝑐𝐻 = −∇𝜀T𝑐 (𝑥)[𝑓 (𝑥)+𝑔(𝑥)𝑢∗(𝑥𝑘)] is the residual error brought

by the ANN. Utilizing (6.23), the approximate Hamiltonian is presented as:

𝐻̂ (𝑥,𝑢∗(𝑥𝑘), 𝑤̂𝑐) = 𝑤̂T
𝑐 ∇𝜎𝑐(𝑥)[𝑓 (𝑥) +𝑔(𝑥)𝑢

∗(𝑥𝑘)] + 𝑥T𝑄𝑥 +𝑌 (𝑢∗(𝑥𝑘)) ≜ 𝑒𝑐 . (6.29)

Defining the critic error vector as 𝑤̃𝑐 = 𝑤𝑐 − 𝑤̂𝑐 and combining (6.28) with (6.29), we obtain

an equivalent expression of 𝑒𝑐 :

𝑒𝑐 = 𝑒𝑐𝐻 − 𝑤̃T
𝑐 ∇𝜎𝑐(𝑥)[𝑓 (𝑥) +𝑔(𝑥)𝑢

∗(𝑥𝑘)]. (6.30)

Hence, the aim of training the critic network is to obtain an appropriate weight vector

𝑤̂𝑐 such that the objective function 𝐸𝑐 = (1/2)𝑒T𝑐 𝑒𝑐 is minimum. It is worth mentioning that

the actual control law utilized during the learning process is the approximated control

(6.26). In [161], a direct gradient-descent method is applied to adjust the critic weight

vector:

̇̂𝑤𝑐,trad = −𝜂𝑐
𝜕𝑒𝑐
𝜕𝑤̂𝑐

𝑒𝑐 = −𝜂𝑐𝜙𝑒𝑐 , (6.31)

where 𝜂𝑐 > 0 is the learning rate parameter, and 𝜙 = ∇𝜎𝑐(𝑥)(𝑓 (𝑥) +𝑔(𝑥)𝑢̂(𝑥𝑘)).
The admissible control is essential for the general ADP-based optimal control design but

is intractable to obtain in advance. To overcome this challenge, inspired by [136, 151, 163],

we bring in an extra stabilizing term to improve the direct gradient-descent method and

adopt it to enhance the ANN weight updating. Similar to [91, 151, 163], we make the

following assumption:

Assumption 6.1. Consider system (6.5) with the cost function (6.6) and its closed-loop form
governed by the event-triggered optimal controller (6.17) and (6.24). Let 𝐽𝑠(𝑥) be a continuously
differentiable Lyapunov function candidate satisfying:

𝐽 ∗𝑠 (𝑥) = ∇𝐽T𝑠 (𝑥)[𝑓 (𝑥) +𝑔(𝑥)𝑢
∗(𝑥𝑘)] < 0.

Then, there exists a positive definite matrix𝑀 ∈ ℝ𝑛×𝑛 such that the following inequality holds:

𝐽 ∗𝑠 (𝑥) = ∇𝐽T𝑠 (𝑥)𝑀∇𝐽𝑠(𝑥) ≤ −𝜆(𝑀)||∇𝐽𝑠(𝑥)||2. (6.32)

When adopting the event-triggered approximate optimal control (6.26), we should

exclude the following case to guarantee the system stability:

𝐽𝑠(𝑥) = ∇𝐽T𝑠 (𝑥)[𝑓 (𝑥) +𝑔(𝑥)𝑢̂(𝑥𝑘)] > 0.
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Hence, the learning performance is reinforced by adjusting the time derivative of 𝐽𝑠(𝑥)
along the direction of the negative gradient, which is modulated as follows:

̇̂𝑤𝑐,stab = −𝜂𝑠
𝜕∇𝐽T𝑠 (𝑥)[𝑓 (𝑥) +𝑔(𝑥)𝑢̂(𝑥𝑘)]

𝜕𝑤̂𝑐

=
1
2
𝜂𝑠∇𝜎(𝑥𝑘)𝑔(𝑥𝑘)𝑅−1(𝟏− tanh2(𝐷̂𝑘))𝑔T(𝑥)∇𝐽𝑠(𝑥),

(6.33)

where 𝜂𝑠 > 0 is the designed learning rate. By combining the stabilizing term (6.33) and the

traditional rule (6.31), we established the improved ANN learning criterion as follows:

̇̂𝑤𝑐 = ̇̂𝑤𝑐,trad +Ξ(𝑥, 𝑢̂(𝑥𝑘)) ̇̂𝑤𝑐,stab, (6.34)

where Ξ(𝑥, 𝑢̂(𝑥𝑘)) is a sign function utilized to eliminate the effect of the reinforced term

when the system is already stable, which is defined as:

Ξ(𝑥, 𝑢̂(𝑥𝑘)) =
{
0,when 𝐽𝑠(𝑥) < 0,
1,elsewhere.

(6.35)

Remark 6.1. The improved updating rule (6.34) with the reinforced term relaxes the

demand for initial admissible control, which implies that the critic weight vector can

initially be set as any random vector.

6.3.2 Closed-loop stability analysis
We firstly construct the error dynamics of the critic network by defining 𝑤̃𝑐 = 𝑤𝑐 − 𝑤̂𝑐 and

finding that
̇̃𝑤𝑐 = − ̇̂𝑤𝑐 . Consequently, the critic error dynamics is presented as:

̇̃𝑤𝑐 = −𝜂𝑐𝜙(𝜙T𝑤̃𝑐 −𝑒𝑐𝐻 ) −
1
2
𝜂𝑠Ξ(𝑥, 𝑢̂(𝑥𝑘))∇𝜎(𝑥𝑘)𝑔(𝑥𝑘)𝑅−1(𝟏− tanh2(𝐷̂𝑘))𝑔T(𝑥)∇𝐽𝑠(𝑥). (6.36)

Remark 6.2. The persistent excitation (PE) assumption is required. If the PE condition

holds, we easily derive 𝜆(𝜙𝜙T) > 0 [158], which is of great significance for stability analysis.

A common approach to achieve PE is introducing a probing noise to excite the system

[59, 136, 163].

Subsequently, we study the closed-loop stability based on the approximate event-

triggered feedback control incorporating the weight estimation dynamics. Before pro-

ceeding, the following assumptions are required, which are commonly employed in ADP

literature, such as [91, 136, 151, 157].

Assumption 6.2. 𝑔(𝑥) is Lipschitz continuous rendering ||𝑔(𝑥)−𝑔(𝑥𝑘)|| ≤ 𝐿𝑔 ||𝑒𝑘 ||, and is upper
bounded as ||𝑔(𝑥)|| ≤ 𝑏𝑔 , where 𝐿𝑔 are 𝑏𝑔 are positive real constants.

Assumption 6.3. Denote 𝐿∇𝜎𝑐 , 𝑏∇𝜎𝑐 , 𝑏∇𝜀𝑐 , 𝑏𝜀𝑢∗ , and 𝑏𝑒𝑐𝐻 as positive real constants. ∇𝜎𝑐(𝑥) is
Lipschitz continuous guaranteeing ||∇𝜎𝑐(𝑥) −∇𝜎𝑐(𝑥𝑘)|| ≤ 𝐿∇𝜎𝑐 ||𝑒𝑘 ||. ∇𝜎𝑐(𝑥), ∇𝜀(𝑥), 𝜀𝑢∗𝑘 , and 𝑒𝑐𝐻
are all upper bounded, such that ||∇𝜎𝑐(𝑥)|| ≤ 𝑏∇𝜎𝑐 , ||∇𝜀(𝑥)|| ≤ 𝑏∇𝜀𝑐 , ||𝜀𝑢∗𝑘 || ≤ 𝑏𝜀𝑢∗ , and |𝑒𝑐𝐻 | ≤ 𝑏𝑒𝑐𝐻 .

Theorem 6.1. Considering Assumptions 6.1-6.3, utilizing the formula (6.34) to update the
critic network, and with the event-triggered approximate optimal control policy (6.26), the
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closed-loop system is asymptotically stable while the weight error dynamics is ultimately
uniformly bounded (UUB) if

||𝑒𝑘 ||2 ≤
(1−𝜂)𝜆(𝑄)||𝑥||2 +𝑌 (𝑢∗(𝑥𝑘))

1||𝑤̂𝑐 ||2
≜ ||𝑒𝑇 ||2, (6.37)

and ||𝑤̃𝑐 ||2 ≥ , where 𝜂 ∈ (0,1), 1 and  are given in the proof.

Proof. We construct a Lyapunov function candidate as:

 = 𝐿𝑥 +𝐿𝑥𝑘 +𝐿𝑤̃𝑐 +𝐿𝐽𝑠 , (6.38)

where 𝐿𝑥 = 𝐽 ∗(𝑥), 𝐿𝑥𝑘 = 𝐽
∗(𝑥𝑘), 𝐿𝑤̃𝑐 = (1/2)𝑤̃T

𝑐 𝑤̃𝑐 , and 𝐿𝐽𝑠 = 𝜂𝑠𝐽𝑠(𝑥). The proof consists of two
situations conforming to whether the event is triggered or not.

Situation 1: the events are not triggered, i.e., ∀𝑡 ∈ [𝑠𝑘 , 𝑠𝑘+1). Computing the time deriva-

tive of the Lyapunov function, the second term is 𝐿̇𝑥𝑘 = 0.
Considering the closed loop system using the approximate feedback control (6.26), and

the optimal HJB equation (6.14), the first term can be derived as:

𝐿̇𝑥 =𝐽 ∗(𝑥) = ∇𝐽 ∗T(𝑥)[𝑓 (𝑥) +𝑔(𝑥)𝑢̂(𝑥𝑘)]

=−𝑥T𝑄𝑥 −𝑢2𝑏𝑅 ln(𝟏− tanh
2(𝐷∗)) +∇𝐽 ∗T(𝑥)𝑔(𝑥)𝑢̂(𝑥𝑘).

(6.39)

According to the definition of the utility function, the second term of (6.39) is converted

into:

𝑢2𝑏𝑅̄ ln(𝟏− tanh
2(𝐷∗)) = ∫

𝑢∗(𝑥)

𝑢̂(𝑥𝑘 )
2𝑢𝑏 tanh−T(𝜐/𝑢𝑏)𝑅d𝜐 +𝑌 (𝑢̂(𝑥𝑘)) −𝑢𝑏∇𝐽 ∗T(𝑥)𝑔(𝑥) tanh(𝐷∗).

(6.40)

Besides, (6.11) and (6.12) imply that:

∇𝐽 ∗T(𝑥𝑘)𝑔(𝑥) = −2𝑢𝑏 tanh−T(𝑢∗(𝑥)/𝑢𝑏)𝑅. (6.41)

Therefore, the last term in (6.39) can be rewritten as:

∇𝐽 ∗T(𝑥)𝑔(𝑥)𝑢̂(𝑥𝑘) = ∫
𝑢̂(𝑥𝑘 )

𝑢∗(𝑥)
2𝑢𝑏𝐷∗T(𝑥)𝑅d𝜐 −𝑢𝑏∇𝐽 ∗T(𝑥)𝑔(𝑥) tanh(𝐷∗(𝑥)). (6.42)

Substituting (6.40) and (6.42) into (6.39) yields:

̇𝑥 = −𝑥T𝑄𝑥 −𝑌 (𝑢̂(𝑥𝑘)) +∫
𝑢̂(𝑥𝑘 )

𝑢∗(𝑥)
2𝑢𝑏[tanh−1(𝜐/𝑢𝑏) +𝐷∗]T𝑅d𝜐. (6.43)

Letting 𝜐 = −𝑢𝑏 tanh(𝜔), the last term in (6.43) is written as:

∫
𝑢̂(𝑥𝑘 )

𝑢∗(𝑥)
2𝑢𝑏[tanh−1(𝜐/𝑢𝑏) +𝐷∗]T𝑅d𝜐 = ∫

𝐷̂𝑘

𝐷∗
2𝑢2𝑏(𝜔 −𝐷∗)T𝑅[1− tanh2(𝜔)]d𝜔

≤ 𝑢2𝑏(𝐷̂𝑘 −𝐷
∗)T𝑅(𝐷̂𝑘 −𝐷∗).

(6.44)
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Therefore, (6.43) satisfies:

𝐿̇𝑥 ≤ −𝑥T𝑄𝑥 −𝑌 (𝑢̂(𝑥𝑘)) +
1
4
𝜆(𝑅)||𝑔T(𝑥𝑘)∇𝐽 (𝑥𝑘) − 𝑔T(𝑥)∇𝐽 ∗(𝑥)||2, (6.45)

where ∇𝐽 (𝑥𝑘) = ∇𝜎T(𝑥𝑘)𝑤̂𝑐 . According to Assumptions 6.2 and 6.3, we obtain:

||𝑔T(𝑥𝑘)∇𝐽 (𝑥𝑘) − 𝑔T(𝑥)∇𝐽 ∗(𝑥)||2

=||(𝑔T(𝑥)∇𝜎T
𝑐 (𝑥) −𝑔

T(𝑥𝑘)∇𝜎T
𝑐 (𝑥𝑘))𝑤̂𝑐 +𝑔T(𝑥)(∇𝜎T

𝑐 (𝑥)𝑤̃𝑐 +∇𝜀𝑐(𝑥))||2

≤2||∇𝜎𝑐(𝑥)𝑔(𝑥) −∇𝜎𝑐(𝑥𝑘)𝑔(𝑥𝑘)||2||𝑤̂𝑐 ||2 +2𝑏2𝑔 (𝑏
2
∇𝜎𝑐 ||𝑤̃𝑐 ||2 +𝑏2∇𝜀𝑐 ),

(6.46)

in which

||∇𝜎 𝑐(𝑥)𝑔(𝑥) −∇𝜎𝑐(𝑥𝑘)𝑔(𝑥𝑘)||2

≤2||∇𝜎𝑐(𝑥)(𝑔(𝑥) −𝑔(𝑥𝑘))||2 +2||(∇𝜎𝑐(𝑥) −∇𝜎𝑐(𝑥𝑘))𝑔(𝑥𝑘)||2

≤2(𝑏2∇𝜎𝑐𝐿
2
𝑔 +𝐿

2
∇𝜎𝑐𝑏

2
𝑔 )||𝑒𝑘 ||

2.
(6.47)

Therefore (6.45) continues as:

𝐿̇𝑥 ≤ 1||𝑤̂𝑐 ||2||𝑒𝑘 ||2 +2||𝑤̃𝑐 ||2 +3 −𝑌 (𝑢̂(𝑥𝑘)) − 𝜂𝜆(𝑄)||𝑥||2 − (1−𝜂)𝜆(𝑄)||𝑥||2, (6.48)

where 1 = 𝜆(𝑅)(𝑏2∇𝜎𝑐𝐿
2
𝑔 +𝐿2∇𝜎𝑐𝑏

2
𝑔 ), 2 = 1

2𝜆(𝑅)𝑏
2
𝑔𝑏2∇𝜎𝑐 , and 3 = 1

2𝜆(𝑅)𝑏
2
𝑔𝑏2∇𝜀𝑐 .

Then, we investigate the last two terms in (6.38). By taking the definition of Ξ(𝑥, 𝑢̂(𝑥𝑘))
into consideration, two scenarios are examined separately.

I: Ξ(𝑥, 𝑢̂(𝑥𝑘)) = 0. We have 𝐿̇𝐽𝑠 < 0 and

𝐿̇𝑤̃𝑐 = −𝜂𝑐𝑤̃T
𝑐 𝜙(𝜙

T𝑤̃𝑐 +𝑒𝑐𝐻 ) ≤ −4||𝑤̃𝑐 ||2 +5, (6.49)

where 4 = 1
2𝜂𝑐𝜆(𝜙𝜙

T) and 5 = 1
2𝜂𝑐𝑒

2
𝑐𝐻 . Combining (6.48) and (6.49), we observe:

̇ =𝐿̇𝑥 + 𝐿̇𝑤̃𝑐
≤1||𝑤̂𝑐 ||2||𝑒𝑘 ||2 +2||𝑤̃𝑐 ||2 +3 −4||𝑤̃𝑐 ||2 +5 −𝜂𝜆(𝑄)||𝑥||2 − (1−𝜂)𝜆(𝑄)||𝑥||2 −𝑌 (𝑢̂(𝑥𝑘)).

(6.50)

By choosing an appropriate 𝜂𝑐 , we can achieve 4 > 2. Therefore, when ||𝑤̃𝑐 ||2 ≥ (3 +
5)/(4 −2) ≜1 and ||𝑒𝑘 ||2 < ||𝑒𝑇 ||2, we have ̇ < 0, ∀𝑥 ≠ 0.

II: Ξ(𝑥, 𝑢̂(𝑥𝑘)) = 1. We combine 𝐿̇𝐽𝑠 with the stabilization term of 𝐿̇𝑤̃𝑐 as:

𝐿̇′ =𝐿̇𝐽𝑠 + 𝐿̇
′
𝑤̃𝑐

=𝜂𝑠∇𝐽T𝑠 (𝑥)[𝑓 (𝑥) +𝑔(𝑥)𝑢̂(𝑥𝑘)] −
1
2
𝜂𝑠𝑤̃T

𝑐 ∇𝜎(𝑥𝑘)𝑔(𝑥𝑘)𝑅
−1(𝟏− tanh2(𝐷̂𝑘))𝑔T(𝑥)∇𝐽𝑠(𝑥)

=𝜂𝑠∇𝐽T𝑠 (𝑥)𝑓 (𝑥) −𝜂𝑠∇𝐽
T
𝑠 (𝑥)𝑔(𝑥)[𝑢𝑏 tanh(𝐷̂𝑘) +

1
2
(𝟏− tanh2(𝐷̂𝑘))𝑅−1𝑔T(𝑥𝑘)𝜎T(𝑥𝑘)𝑤̃𝑐].

(6.51)

By taking the first-order Taylor series expansion of tanh(𝐷𝑘), we obtain:

tanh(𝐷𝑘) =
1
2𝑢𝑏

(𝟏− tanh2(𝐷̂𝑘))𝑅−1𝑔T(𝑥𝑘)𝜎T(𝑥𝑘)𝑤̃𝑐 + tanh(𝐷̂𝑘) + 𝑜[(𝐷𝑘 − 𝐷̂𝑘)2], (6.52)
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where 𝑜[(𝐷𝑘 − 𝐷̂𝑘)2] has a bound, which is denoted by 𝑏𝑜𝐷 [91]. Substituting (6.52) into

(6.25) and then (6.51) yields:

𝐿̇′ =𝜂𝑠𝐽 ∗𝑠 (𝑥) −𝜂𝑠∇𝐽
T
𝑠 (𝑥)𝑔(𝑥)𝜀𝑢∗𝑘 +𝜂𝑠∇𝐽

T
𝑠 (𝑥)𝑔(𝑥)𝑢𝑏𝑜[(𝐷𝑘 − 𝐷̂𝑘)

2]

≤−𝜂𝑠𝜆(𝑀)||∇𝐽𝑠(𝑥)||2 +𝜂𝑠6||∇𝐽𝑠(𝑥)||

=−𝜂𝑠𝜆(𝑀)(||∇𝐽𝑠(𝑥)|| −
6

2𝜆(𝑀))

2

+7,

(6.53)

where 6 = 𝑏𝑔 (𝑏𝜀𝑢∗ +𝑢𝑏𝑏𝑜𝐷), and 7 = 𝜂𝑠2
6 /(4𝜆(𝑀)). Accordingly, we obtain:

̇ =𝐿̇𝑥 + 𝐿̇𝑤̃𝑐 + 𝐿̇𝐽𝑠
≤−𝜂𝜆(𝑄)||𝑥||2 − (1−𝜂)𝜆(𝑄)||𝑥||2 −𝑌 (𝑢̂(𝑥𝑘))

+1||𝑤̂𝑐 ||2||𝑒𝑘 ||2 +2||𝑤̃𝑐 ||2 +3 −4||𝑤̃𝑐 ||2

+5 −𝜂𝑠𝜆(𝑀)(||∇𝐽𝑠(𝑥)|| −
6

2𝜆(𝑀))

2

+7.

(6.54)

Therefore, when ||𝑤̃𝑐 ||2 ≥ (3 +5 +7)/(4 −2) ≜ 2 and ||𝑒𝑘 ||2 < ||𝑒𝑇 ||2, we have ̇ < 0,
∀𝑥 ≠ 0.

Consequently, combining I and II, we can conclude that, if the event is not triggered,

i.e., ||𝑒𝑘 ||2 < ||𝑒𝑇 ||2, if ||𝑤̃𝑐 ||2 ≥ max{1,2} ≜ is satisfied, then we have ̇ < 0, ∀𝑥 ≠ 0.
Situation 2: the events are triggered, i.e., ∀𝑡 = 𝑠𝑘+1. Utilizing (6.38), the difference terms

are derived as:

Δ =Δ𝐿𝑥 +Δ𝐿𝑥𝑘 +Δ𝐿𝑤̃𝑐 +Δ𝐿𝐽𝑠
=𝐽 ∗(𝑥𝑘+1) − 𝐽 ∗(𝑥(𝑠−𝑘+1)) + 𝐽

∗(𝑥𝑘+1) − 𝐽 ∗(𝑥𝑘)

+
1
2
𝑤̃T
𝑐 (𝑥𝑘+1)𝑤̃𝑐(𝑥𝑘+1) −

1
2
𝑤̃T
𝑐 (𝑥(𝑠

−
𝑘+1))𝑤̃𝑐(𝑥(𝑠−𝑘+1)) + 𝜂𝑠𝐽𝑠(𝑥𝑘+1) − 𝜂𝑠𝐽𝑠(𝑥(𝑠

−
𝑘+1)).

(6.55)

From Situation 1, we find that if ||𝑒𝑘 ||2 ≤ ||𝑒𝑇 ||2 and ||𝑤̃𝑐 ||2 ≥ , ̇ < 0, ∀𝑡 ∈ [𝑠𝑘 , 𝑠𝑘+1). Since
the states and cost function are both continuous, according to the property of the limit, we

have Δ𝐿𝑥 +Δ𝐿𝑤̃𝑐 +Δ𝐿𝐽𝑠 < 0 and then obtain Δ < Δ𝐿𝑥𝑘 ≤ −𝜅(||𝑒𝑘+1 −𝑒𝑘 ||), in which 𝜅(⋅) is a
class-𝜅 function [165]. Hence, (6.38) is still decreasing when ∀𝑡 = 𝑠𝑘+1.

In summary, if ||𝑒𝑘 ||2 ≤ ||𝑒𝑇 ||2 and ||𝑤̃𝑐 ||2 ≥ hold, we can reach the conclusion that the

closed-loop state is asymptotically stable while the critic error dynamics is UUB, which

ends the proof.

6.3.3 Analysis of Zeno phenomenon in the closed-loop system
For nonlinear CT systems with event-triggered control inputs, the inter-execution time

is denoted as Δ𝑠 = 𝑠𝑘+1 − 𝑠𝑘 , and the minimal inter-execution time Δ𝑠min = min𝑘∈ℕ{𝑠𝑘+1 −
𝑠𝑘} might be zero, which can lead to the accumulation of event times, a.k.a., the Zeno

phenomenon. Hence, the condition of Δ𝑠 > 0 should be guaranteed such that the undesired

Zeno phenomenon is avoided.
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Theorem 6.2. Considering the closed-loop form of the nonlinear system (6.5) governed by
the event-triggered approximate optimal control (6.26), the 𝑘-th inter-execution time Δ𝑠𝑘
determined by (6.37) has a lower bound as:

Δ𝑠𝑘 ≥
1
𝑘𝑓

ln (
𝑘𝑓 ||𝑒𝑇 ||

𝑘𝑓 ||𝑒𝑘 || + 𝑏𝑔𝑢𝑏
+1) > 0, 𝑘 ∈ ℕ, (6.56)

where 𝑘𝑓 is a positive constant.

Proof. We apply the approximate optimal control (6.26) to formulate the closed-loop dy-

namics as follows:

𝑥̇ = 𝑓 (𝑥) −𝑔(𝑥)𝑢̂(𝑥𝑘). (6.57)

By noticing the fact that 𝑢̂(𝑥𝑘) is upper bounded by 𝑢𝑏 , and according to Assumption 6.2,

we can derive that:

||𝑥̇ || = ||𝑓 (𝑥) −𝑔(𝑥)𝑢̂(𝑥𝑘)|| ≤ 𝑘𝑓 ||𝑥|| + 𝑏𝑔𝑢𝑏 . (6.58)

Considering (6.15), we can further derive that:

||𝑒̇𝑘 || ≤ 𝑘𝑓 ||𝑥𝑘 || + 𝑘𝑓 ||𝑒𝑘 || + 𝑏𝑔𝑢𝑏 , ∀𝑡 ∈ [𝑠𝑘 , 𝑠𝑘+1). (6.59)

Since 𝑒𝑘(𝑠𝑘) = 𝑥𝑘 −𝑥(𝑠𝑘) = 0, by employing the comparison lemma [151, 165] to solve (6.59),

for any 𝑡 ∈ [𝑠𝑘 , 𝑠𝑘+1), we have:

||𝑒𝑘 || ≤
𝑘𝑓 ||𝑒𝑘 || + 𝑏𝑔𝑢𝑏

𝑘𝑓
(𝑒𝑘𝑓 (𝑡−𝑠𝑘 ) −1) . (6.60)

Therefore, the 𝑘-th inter-execution time Δ𝑠𝑘 satisfies:

Δ𝑠𝑘 = 𝑠𝑘+1 − 𝑠𝑘 ≥
1
𝑘𝑓

ln (
𝑘𝑓 ||𝑒𝑇 ||

𝑘𝑓 ||𝑒𝑘 || + 𝑏𝑔𝑢𝑏
+1). (6.61)

According to (6.37), ||𝑒𝑇 || > 0. In summary, Δ𝑠𝑘 > 0 for any 𝑥𝑘 ≠ 0, i.e., Δ𝑠min > 0, which ends

the proof.

Overall, the structural diagram of the present control implementation is depicted in

Fig. 6.2 to clarify the design procedure.

6.4 Simulation Study
Finally, we verify the effectiveness of the proposed control approach through the numerical

simulation experiments based on the nonlinear aeroelastic system demonstrated above.

Considering the cost function (6.6) from 𝑡 = 0, we choose 𝑄 = 𝐼5 and 𝑅 = 1 as a trade-off
between fast stabilizing and avoiding aggressive control, and set the deflection constraint as

𝑢𝑏 = 10 deg. For the purpose of simulation, we set the simulation frequency as 1 kHzwhereas
the sensing frequency as 100 Hz. Let the initial state vector be 𝑥0 = [−0.01 m,10 deg,0,0,0]T.
In what follows, we implement the event-triggered intelligent critic control with the

facilitation of an ANN.
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Figure 6.2: Structural diagram of the developed event-triggered ADP control method, where solid lines represent

the feed-forward flow of signals and the dashed line is the back-propagation path.

A critic network is constructed to approximate the optimal cost function. The number

of neurons and the nonlinearity of the activation function positively correlate with the ap-

proximation precision. However, more neurons with higher nonlinearities can also increase

the computational load and cause overfitting that harms the control robustness [59]. For bal-

ancing control accuracy and computational complexity, we choose the activation function

as 𝜎𝑐(𝑥) = [𝑥1𝑥2, 𝑥1𝑥3, 𝑥1𝑥4, 𝑥1𝑥5, 𝑥2𝑥3, 𝑥2𝑥4, 𝑥2𝑥5, 𝑥3𝑥4, 𝑥3𝑥5, 𝑥4𝑥5]T. We choose 𝐽𝑠(𝑥) = 0.5𝑥T𝑥
to enhance stability and experimentally set 𝜂𝑐 = 0.05, 𝜂𝑠 = 0.001, 𝜂 = 0.1, and 1 = 250. As
claimed in Remark 6.2, an exploration noise 𝑢𝑒 is introduced to satisfy the PE condition. The

probing noise is designed as a composition of decaying sinusoidal functions, whose formula

is 𝑢𝑒 = −0.05𝑒−20𝑡 (sin2(100𝑡)cos(100𝑡) + sin2(2𝑡)cos(0.1𝑡) + sin2(1.2𝑡)cos(0.5𝑡) + sin5(𝑡)) deg.
Only at the instant when it is triggered, will 𝑢𝑒 really be added to the control command.

Since the critic network has different hidden neurons, the weights can initially be set as zero.

Recalling the triggering condition in (6.37), we find that ||𝑤̂𝑐 || appears in the denominator,

which can cause a large time interval of control at the beginning. Therefore, we manually

set an upper bound for the inter-execution time as Δ𝑠max = 0.1 s. This configuration is set in

the engineering sense for safety guarantee, and does not affect the theoretical completeness.

The simulation is conducted in an online manner, which means that the control policy

improves in a closed-loop way. For presenting the advantage of the ETC scheme, a time-

based approach is adopted for comparison, whose settings are exactly the same as the

proposed intelligent critic control approach except for the event-triggered scheme, i.e., the

time-based control approach updates the control input at each time instant. We can observe

from Fig. 6.3 that the convergence of the weight vector occurs around 1 s. Subsequently,
we display the trajectory of the approximated cost function in Fig. 6.4, which presents the

direct performance of the controller. Due to the initial zero values of the weight vector, the

initial approximate cost is zero, and subsequently grows as the learning continues. Then
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because of the convergence of the weight vector, the approximate cost function swiftly

decreases to a low level. Furthermore, the triggering threshold trajectory is displayed in

Fig. 6.5, which presents a trend to zero along with the event error. The inter-execution

time is depicted in Fig. 6.6. It is worth mentioning that 800 samples are utilized by the

time-based controller, whereas the proposed event-triggered approach only requires 366

samples. Therefore, the event-triggered method reduces the control updates in the learning

process up to 54.25%, and thus improves the resource utilization.
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Figure 6.3: Convergence process of the critic weights.
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Figure 6.4: Evolution of the approximate cost function.
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Figure 6.5: Evolution of the triggering condition.
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Figure 6.6: Evolution of the inter-execution time.

Figs. 6.7 and 6.8 present the aeroelastic system states trajectory divided into plunge

and pitch motion, respectively. We compare the results between the event-triggered and

time-based approaches, and observe that, although the event-triggered controller utilizes

fewer data samples, the state variables eventually converge to a small vicinity of zero

without deteriorating the converge rate. Figs. 6.9 and 6.10 respectively presents the control

command directly generated by the controller, 𝑢 (𝛽𝑐 ), and the real deflection of the control

surface, 𝑥5 (𝛽). The developed event-triggered approach has an overall comparable curve

to the time-based approach. Due to the event-triggered mechanism, the control command
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signal is stepwise. Nevertheless, the control command signal has to go through an actuator

and the real deflection is adequately smooth for the wing surface control. Furthermore,

we observe that the control command (incorporating exploration noise) is bounded by the

pre-designed saturation constraints, i.e., |𝑢| < 𝑢𝑏 . Therefore, we conclude that the control
input constraints problem has been overcome.
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Figure 6.7: Evolution of the plunge motion states.
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Figure 6.8: Evolution of the pitch motion states.
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Figure 6.10: Real deflection of the control surface.

The phase portraits of plunge and pitch motions are illustrated in Figs. 6.11 and 6.12,

respectively. As can be observed, the trajectories of the proposed method and the open-loop

simulation almost coincide at the beginning. This phenomenon is due to the collective

effect caused by LCOs and the initial unlearned policy, and disappears quickly as the weight

vector updates. Then all states are stabilized to a small vicinity of the equilibrium point.

To further verify its performance, robustness tests are carried out with different

freestream velocities using the proposed event-triggered intelligent optimal control strat-

egy. In addition to nominal velocities, the freestream is also assumed to be disturbed. The

uncertain freestream is modeled as a composition of white noise with unit variance and
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Figure 6.11: Phase portrait of the plunge motion states.
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Figure 6.12: Phase portrait of the pitch motion states.

a sinusoidal gust 0.5cos(4𝜋𝑡 + 0.3𝜋) m/s. With other settings unchanged, the results are

depicted in Figs. 6.13 - 6.15, in which the nominal freestream velocity 𝑈 respectively equals

to 12 m/s, 15 m/s and 27 m/s.
For simplicity, the plunge displacement is selected as a representative to show the state

evolution, as illustrated in Fig. 6.13. It can be observed that in all conditions, the controller

manages to stabilize the plunge displacement within 8 s. The situations with and without

uncertainties demonstrate similar performance for 𝑈 = 15 m/s and 𝑈 = 27 m/s, whereas
for 𝑈 = 12 m/s, the control performance is even better with uncertainties involved. The

reason behind this phenomenon lies in that when 𝑈 = 12 m/s the flutter frequency is low

and it is difficult to fully excite the system. The velocity uncertainties disturb the system

but meanwhile provide stronger excitation and thus speed up the learning process. In fact,

this acceleration phenomenon also takes place in the other two situations though it is more

obvious with lower freestream velocity, which illustrates the robustness of the proposed

control method to uncertainties. With lower incoming flow speed (𝑈 = 12 m/s), the control
effectiveness is also lower, and therefore it requires a larger deflection of the control

surface to generate sufficient control torque, leading to the aggressive but saturated control

command shown in Fig. 6.14 (a). When the freestream velocity is higher (𝑈 = 27 m/s), the
flutter frequency is higher, which provides more excitations at the initial stage. Therefore,

it can be seen from Fig. 6.14 (c) that the control command becomes effective earlier than

for the other two conditions. However, it is remarkable that if 𝑈 < 12 m/s or 𝑈 > 27 m/s,
the controller is capable of stabilizing the system within 8 s with current settings due

to the insufficient control effectiveness or the excessive flutter frequency, respectively.

Nevertheless, this can be improved by adapting hyperparameters.

Fig. 6.15 compares the root means square (RMS) of critic weights with 3 different

freestream velocities in the presence of uncertainties. Consistent with the above, the

convergence speed is faster when the freestream velocity is higher because of the stronger

excitation. These curves are different in that the control policy is learned online, and

therefore the controller adapts to different conditions in real time, which validates the

adaptability of the proposed control approach. The simulation results collectively verify

the feasibility and effectiveness of the event-triggered intelligent optimal control approach

developed in this chapter.
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Figure 6.13: Evolution of plunge displacements with

different freestream velocities.

Figure 6.14: Control commands generated by the con-

troller with different freestream velocities.
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Figure 6.15: Convergence process of the RMS of critic weights with different freestream velocities.

6.5 Conclusion
In this chapter, we develop an event-triggered intelligent optimal control scheme, and apply

it to an aeroelastic system control problem. Taking the input constraints into account,

we derive a novel triggering condition without making the Lipschitz assumption on the

inverse hyperbolic tangent function. The controller is conducted by adopting the adaptive

dynamic programming (ADP) technique with a single critic network.

The theoretical analysis of the closed-loop system shows that, with the derived event-

triggered controller, the system states can be guaranteed asymptotically stable, while

the Zeno phenomenon is also avoided during the learning phase. The simulation results

demonstrate that the nonlinear aeroelastic system is successfully stabilized with input

saturation constraints handled. Besides, compared to the conventional time-based ADP

method, the present event-triggered ADP method can achieve comparable performance

with reduced control updates, which presents the advantages of the developed method

in saving the computational and communication load. Furthermore, the robustness tests

demonstrate that the designed controller is able to adapt online to different situations and

has robustness to uncertainties to some extent.
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At the current stage, we concentrate on the control algorithm development based on

the known system dynamics and perfect measurements. Due to the fact that uncertainties

generally exist in the real world, further investigation into robust control methods is

recommended. Besides, due to the limitation of actuator power, the deflection rate of the

control surface should also be constrained, which can be studied in the future.
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7
Conclusions and

Recommendations

This dissertation has been dedicated to enhancing the autonomy of flight control systems

using reinforcement learning (RL) methods. At the beginning of the dissertation, the devel-

opment of autonomous control in the aerial vehicle was reviewed, the basic principles and

promising applications of RL and adaptive dynamic programming (ADP) were introduced,

and some challenges in ADP for flight control were accordingly posed: learning efficiency,

control stability and computational load. In view of these challenges, the main research

goal of the dissertation was formulated as:

Research goal

To improve the adaptability and online learning capability of flight control systems

by designing nonlinear ADP approaches.

To achieve this research goal, a main research question and three sub-questions were

raised in Chapter 1. These research questions have been investigated in Chapters 2-6

and their answers will be presented in Sub-section 7.1.1. Based on the findings through

implementations, the final conclusions will be drawn in Sub-section 7.1.2. Finally, several

recommendations for future work and my personal prospects for the RL research in the

flight control field are depicted in Section 7.2.

7.1 Findings and Conclusions
This section summarizes the research findings through implementation and answers the

raised research questions, and then the final conclusions of this dissertation are reached.

7.1.1 Answers to researchqestions
The task of achieving efficient learning presents a challenge for the flight control of

unknown, nonlinear systems, particularly in cases where the system is time-varying,
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disturbed, or imperfectly measurable. Although there exists some work on adaptive critic

designs (ACDs) concerning these aspects, there is no paradigm that synthesizes them,

which comes up with the first research sub-question:

RQ1: How to synthesize and improve current online ACDs to cope with dynamic and

measurement uncertainties, partial observability, external disturbances and sudden

faults?

This research question is addressed by developing the global dual heuristic programming
(GDHP) approach, incorporating explicit analytical calculations and the incremental model.
ACDs are typically classified as heuristic dynamic programming (HDP), dual heuristic

programming (DHP), and GDHP, based on the information used by the critic network

[26]. Among them, GDHP combines the information utilized by HDP and DHP with

a 𝛽 parameter to indicate the composition ratio and therefore takes advantage of both

approaches. Conventionally, the critic network of GDHP adopts a straightforward form

that approximates the cost function and its derivatives simultaneously at its outputs [43, 63].

However, this structure can introduce undesired inconsistent errors because two kinds

of outputs share the same network except for the output layer. Furthermore, the back-

propagation path of the actor network starting from the approximated cost function is

different from that starts from cost derivatives. Consequently, this dissertation focuses on

the development of a novel GDHP approach to synthesize current online ACDs.

Chapter 2 proposes an online incremental model-based GDHP with explicit analyti-

cal calculations, called IGDHP, to synthesize current online ACDs and enable an online

learning controller without prior knowledge of the system dynamics. The critic network

of this method only directly approximates the cost function, based on which its derivatives

are calculated through the critic network in an explicit analytical way. Therefore, the

approximated error of cost derivatives is consistent with the approximated cost error.

Furthermore, the back-propagation path of the actor network in this approach always

starts from the cost function, but the information on derivatives can also be fully utilized.

If 𝛽 = 1, it represents pure HDP, whereas if 𝛽 = 0, the adjustment of weights relies solely on

the computed derivatives, which therefore is equivalent to DHP. This property outperforms

the conventional straight form where if 𝛽 is incompatible with the back-propagation path

outset, for example, if 𝛽 = 0 and the back-propagation path originates from the cost func-

tion, the back-propagation channel of the actor network will be invalid. The incremental

model also plays an important role in accelerating online learning by approximating the

locally linearized system dynamics. The simulation results of IGDHP on an aerial vehicle

attitude tracking control problem demonstrate that compared to GDHP, IGDHP has higher

precision, online learning speed, robustness to different initial states and adaptability for

fault-tolerant control problems.

Chapter 3 extends the IGDHP method proposed in Chapter 2 by augmenting the

incremental model with historical data sets to deal with the partial observability (PO) issue

that involves stochastic or time-varying dynamics [49, 50]. Compared to full-state feedback

(FSF) and output feedback (OPFB), PO provides a more strict demand for the controller

because of the stochastic factors. In the control problem of this chapter, the only observation

is the tracking error that incorporates a changing and immeasurable reference signal, which
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makes the system partially observable. The incremental model is augmented to build a new

system with the observations as the system states. In this way, historical information can

be utilized to provide observation transitions. The precision and convergence of the online

identification method using the incremental model have also been theoretically proven.

Chapter 4 continues the approach of extending the incremental model to cope with an

OPFB tracking control problem with input constraints well handled. The presented results

indicate that the methods proposed adeptly handle imperfect measurements with precision

and adaptability while retaining efficient control, despite unknown and time-varying

dynamics, different initial conditions and even sudden faults.

Overall, GDHP with explicit analytical calculations proposed in Chapter 2 is able to

synthesize current online ACDs in one paradigm, and the augmented incremental model

developed in Chapter 3 and Chapter 4 can adaptively provide precise system transition

information to enable an online control. Chapter 4 also performs as a bridge connecting

RQ1 and RQ2.

RQ2: How to achieve optimality and stability of ADP for discrete-time (DT) and

continuous-time (CT) systems, while dealing with input constraints of aerial vehicles?

This research question is answered through the construction of the enhanced non-
quadratic integral utility function and the bounding layer in the actor network. In Chapter 4

an enhanced utility function is developed, in which the traditional quadratic utility function

of the control input part is replaced with a non-quadratic integral function, whose upper

limit is the current control input. The integrand is also particularly designed with the

facilitation of the inverse of an identity bounding function, such as the hyperbolic tangent

function. By solving Hamilton-Jacobi-Bellman (HJB) equation, an analytical solution of

control input that is constrained by the bounding function can accordingly be obtained.

Due to the bootstrap, an actor network is required by the DT system and the analytical

computed control input is supposed to perform as the target control to update the actor

network. Therefore, a bounding layer is designed in the actor network before the signal

goes to the output, in which the activation function is chosen as the bounding function

same as the one used for bounding the target input. The weights between the bounding

layer and the output layer are element-wise based on given constraints. The proposed

method is eligible for dealing with different constraints for each control channel. The

incremental model and the improved GDHP technique support quick online learning and

promote the success ratio to more than 99%.
Chapter 5 improves the techniques developed in Chapter 4 by extending the non-

quadratic integral utility function to a piece-wise one, and the activation function in the

bounding layer is also piece-wise based on the constraint distribution on both sides of the

origin. In this way, the proposed algorithm is able to handle asymmetric control input

constraints. In Chapter 5, to enhance the control stability, the iterative adaptive critic

algorithm is introduced so that multiple iterations are conducted at each time instance

to achieve a satisfying performance. The convergence of the iterative adaptive critic

algorithm can be guaranteed as long as the iteration is sufficient, which is different from

the one update in Chapter 2 - Chapter 4. Furthermore, the calculation procedure of the
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cost derivatives in the improved GDHP has been simplified in this chapter, and the concept

of explainable GDHP (XGDHP) is for the first time proposed.

Chapter 6 investigates a CT nonlinear system subject to input constraints. By assuming

that the measurement is also continuous in time, the bootstrapping property in the DT

system is not an issue anymore, and therefore a single critic network is adequate. Conse-

quently, the target control input in Chapters 3 and 4 can directly be introduced to the real

system with no need for an actor network, which simplifies the algorithm. An improved

update criterion of the critic network is proposed, such that the requirement of the initial

admissible control is eliminated. Specifically, in addition to the conventional error function,

a second Lyapunov function is defined and utilized for enhancing the computation of

the weight gradient based on the update direction. Furthermore, the closed-loop stability

incorporating the network approximation error is analyzed and guaranteed in the sense of

Lyapunov. The application regarding wing section stabilization demonstrates the proposed

method can achieve both optimality and stability with input constraints well handled.

Overall, to deal with input constraints, Chapter 4 provides a paradigm that includes the

enhanced non-quadratic integral utility function and the bounding layer in the actor net-

work. Especially, for CT systems only the integral utility function is required as presented

in Chapter 6. The combination of incremental model and improved GDHP can promote

the success ratio and the iterative adaptive critic algorithm with multiple iterations in

Chapter 5 can further enhance the stability. For the CT system, the closed-loop stability is

theoretically proven and the improved update criterion developed in Chapter 6 is adopted

to enhance the network update.

RQ3: How to save computational and communication load by event-triggered ADP

without significantly affecting overall performance?

In Chapter 5 it is the first time that ETC is combined with XGDHP for DT systems. ETC

performs as the outer loop of the XGDHP, and therefore the networks are not updated until

an event is triggered. Although for DT systems, the triggering condition usually takes the

same formulation, Chapter 5 decreases the amount of the required assumptions to guarantee

the stability of the triggering condition and provides a more specific proof compared to

existing literature. The proposed method has been verified on general nonlinear systems

to demonstrate its advantage of saving computation and communication load.

Chapter 6 introduces the ETC scheme into CT systems in combination with the ADP

algorithm. Different from DT systems, ETC is incorporated in ADP for CT systems. In

Chapter 6 a novel triggering condition considering input constraints is derived without

requiring the Lipschitz assumption on the inverse hyperbolic tangent function. ETC

for CT systems may suffer from the Zeno phenomenon where the triggering interval is

no more than 0 and infinite events can be encountered. Therefore, Chapter 6 conducts

the rigorous theoretical analysis of the Zeno phenomenon and avoids it concerning the

derived triggering condition. Furthermore, the closed-loop stability of the ETC scheme is

theoretically proven and verified through simulation on an aeroelastic system. The results

demonstrate that event-triggered ADP can produce stair-wise control commands, which

however are smoothed by the filter-like actuator.
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Overall, the ETC scheme respectively developed for DT and CT systems in Chap-

ters 5 and 6 can save computational and communication load and meanwhile can achieve

comparable control performance with common ADP approaches.

7.1.2 Final conclusions
In conclusion, several ADP approaches have been developed to improve the autonomy and

online learning of aerial vehicles. Therefore, the research goal is achieved by answering

the main research question from 3 different aspects:

Main research question

How can aerial vehicles benefit from ADP to improve autonomy and online learning

in an uncertain environment, while satisfying requirements on input constraints,

adaptability, stability and computational efficiency?

Improve the leaning efficiency

• The GDHP approach is improved with explicit analytical calculations, which can

take away the inconsistencies in the existing literature and make the method more

explainable.

• The incremental model is used to online identify the locally linear dynamics despite

output feedback (OPFB) and partial observability (PO), which provides precise state

transitions.

Enhance the control stability

• The developed algorithms generally outperform existing incremental model-based

ACDs for flight control, significantly improving the success ratio. In the specific

research cases of this dissertation, the success ratio has been enhanced to over 99%,
compared to 86.7% for IHDP [42] and 95.5% for IDHP [34].

• Two approaches without online identification are proposed in Chapters 5 and 6.

These approaches ensure stability in the sense of Lyapunov despite input constraints

and event-triggered applications, as guaranteed by theoretical analysis.

• An improved update criterion is developed to eliminate the requirement for initial

admissible control while facilitating the weight update.

Reduce computational load

• The ETC scheme is introduced to DT and CT ADP approaches, and the triggering

condition is designed, respectively. For CT systems, the Zeno phenomenon is also

theoretically avoided.

These benefits can support ADP flight controllers to achieve higher autonomy despite

uncertainties and constraints. Moreover, this dissertation bridges the gap between method

development and application scenarios in the ADP field and builds a link between the

aerospace community and the intelligent control community.
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7.2 Recommendations and Outlook
As an active research area, online intelligent flight control keeps attracting attention in the

future and reinforcement learning will play an important role. Consequently, this section

provides some potential areas for exploration and gives some personal prospects for this

area.

7.2.1 Recommendations for future study
Although aerial vehicles can benefit from the proposed methods to improve autonomy and

online learning in an uncertain environment, while taking input constraints, adaptability,

stability and computational efficiency into consideration, there is still much space for

improvement before a realistic flight. The developed approaches are also not limited to

the application scenarios in this dissertation. Hereby the following insights for further

research are provided:

• This dissertation concentrates on the online learning ability of aerial vehicles. At

each run, the control policy is learnt from scratch. Nevertheless, offline learning is

often more stable and sometimes can provide initial admissible control for online

learning, which can accelerate online convergence. Consequently, the combination

with offline training techniques such as imitation learning [166] is recommended.

• Similar to other intelligent algorithms, the approaches developed in this dissertation

require well-tuned hyperparameters to achieve satisfying performance. In this

dissertation, both grid search and manual search are utilized. However, manual

work requires a significant amount of effort in the development process. Therefore,

exploring autonomous hyperparameter-tuning techniques, such as using tools like

random search [167], Bayesian optimisation [168], genetic algorithms [169], or

automated machine learning (AutoML) platforms [170], could be an interesting

avenue for further research.

• In this dissertation ADP serves as the main and only control algorithm. It is also

possible to combine ADP with other classic control approaches, such as PID [171],

MPC [172] and NDI [173] because these well-known approaches have demonstrated

their stability and swift action in practical applications.

• In this dissertation, only low-level control problems are investigated because the

low-level control capability lays a foundation for high-level guidance and navigation

of aerial vehicles. However, reinforcement learning and ADP are not limited to

low-level control. In combination with various artificial neural networks (ANNs), RL

and ADP have the potential to deal with complex high-level tasks, especially for off-

policy RL methods, such as soft actor-critic (SAC) [174, 175] and deep deterministic

policy gradient (DDPG) [176].

• A cascaded actor network is adopted in Chapter 2 to make use of the physical

information. This hierarchical idea can be further extended to multiple levels of

guidance, navigation and control (GNC) in aerial vehicles.
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• The efficacy of the incremental model has been demonstrated through an experiment

[3] on the morphing wing shown in Fig. 1.1d. In this experiment, a NDI controller is

employed. To validate the performance of ADPmethods proposed in this dissertation,

two experiments have been carried out on a wing section with the Low-Turbulence

Tunnel at TU Delft, and the experimental equipment is shown in Fig. 7.1. Although

the experimental results met expectations, we noticed that due to the weight and

structure limitations, the power of current ADP methods has been limited. However,

the most promising theoretical and technical solution for autonomous flight GNC

may rely on complicated ANNs that can capture complex features. Therefore, the

integration of more sampling and computation-efficient approaches may move RL

for aerial vehicles from the lab to the real world.

• Only a single agent is considered in this dissertation. In fact, RL and ADP are eligible

for solving multi-agent problems, which sometimes can incorporate game theory.

Therefore, further research on information control or swarm using the developed

approaches is recommended.

• Although the approaches in this dissertation are particularly developed for aerial

vehicles, they are all general approaches that can be applied to general nonlinear

systems without complicated transformations. It is therefore suggested to apply

them to other physical systems for an extension.

(a) Aeroelastic system (b) Whole experimental equipment

Figure 7.1: Wing section (aeroelastic system) and Low-Turbulence Tunnel. All computations of control law

and data transmissions are carried out on an embedded microcontroller attached to the wing section, which

shows limited computational capacity. In these experiments, both DT and CT ADP approaches proposed in this

dissertation have been tested. Publications about these experiments are expected.

7.2.2 prospects for research field
As we embark on a journey towards the future of Online Intelligent Flight Control using

Reinforcement Learning (RL), my vision is one where advanced technology and human

expertise converge to create safer, more efficient, and sustainable aerial vehicles.
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I see a future where intelligent flight control systems are not only able to analyze vast

amounts of data but also interpret and act on it in real time. These systems will be equipped

with advanced algorithms and sensors that can detect and respond to any changes in the

flight environment, making aerial vehicles more reliable. In this vision, RL plays a crucial

role in training intelligent flight control systems and allows them to learn from experience

and adapt to new situations. With this approach, flight control systems can make more

informed decisions about how to control aircraft.

In addition, I expect that autonomous flight control systems will be able to collabo-

rate with each other in real time. These systems will be able to learn from each other’s

experiences and adapt their behavior accordingly. By incorporating RL algorithms into the

decision-making of multiple agents, we can improve the efficiency of aerial vehicle flow

and reduce congestion.

As we move forward, I also anticipate that autonomous flight control systems will

extend beyond individual aircraft and into other areas of aviation such as air traffic control,

aircraft maintenance or specific practical tasks including inspection and rescue. This will

require new training programs and protocols for aviation professionals that incorporate

intelligent flight control systems, ensuring that they are able to work effectively alongside

these systems. I also expect the integration of explainable AI will be essential to ensure

transparency and understanding of the decisions made by these advanced systems.

Overall, I believe that the future of Online Intelligent Flight Control using Reinforce-

ment Learning holds tremendous potential. With continued investment in research and

development, we can unlock the full potential of RL and will see significant advancements

in this field in the years to come. My hope is that these advancements will lead to safer,

more efficient, and environmentally conscious aerial vehicles that benefit society as a

whole.
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