
 
 

Delft University of Technology

How Far Ahead Should Autonomous Vehicles Start Resolving Predicted Conflicts?
Exploring Uncertainty-Based Safety-Efficiency Trade-Off

Li, Guopeng; Li, Zirui; Knoop, Victor Lambert; van Lint, J. W.C.

DOI
10.1109/TITS.2024.3393641
Publication date
2024
Document Version
Final published version
Published in
IEEE Transactions on Intelligent Transportation Systems

Citation (APA)
Li, G., Li, Z., Knoop, V. L., & van Lint, J. W. C. (2024). How Far Ahead Should Autonomous Vehicles Start
Resolving Predicted Conflicts? Exploring Uncertainty-Based Safety-Efficiency Trade-Off. IEEE Transactions
on Intelligent Transportation Systems, 25(10), 14183-14195. https://doi.org/10.1109/TITS.2024.3393641

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TITS.2024.3393641
https://doi.org/10.1109/TITS.2024.3393641


IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

How Far Ahead Should Autonomous Vehicles
Start Resolving Predicted Conflicts?

Exploring Uncertainty-Based
Safety-Efficiency Trade-Off

Guopeng Li , Zirui Li, Victor Lambert Knoop , and J.W.C. van Lint

Abstract— Resolving predicted conflicts is vital for safe and
efficient autonomous vehicles (AV). In practice, vehicular motion
prediction faces inherent uncertainty due to heterogeneous
driving behaviours and environments. This spatial uncertainty
increases non-linearly with prediction time horizons, leading AVs
to perceive more road space occupied by conflicting vehicles.
Reacting early to resolve predicted conflicts can ensure safety
but may adversely affect traffic efficiency. Therefore, determining
how far ahead AVs should start resolving predicted conflicts
based on safety and traffic efficiency constraints is crucial.
To answer this question, this study proposes a novel approach
to explore the trade-off between safety and traffic efficiency
considering prediction uncertainty. Firstly, a continuous-time
motion prediction framework is proposed for estimating the
spatial probability distribution of a vehicle’s future position at
any moment within the maximum time horizon. Subsequently,
average driver space and the corresponding traffic flow are
derived from the safety settings of AV and prediction uncertainty.
As such, the safety-efficiency trade-off can be quantified. Exper-
iments show that mandatory decision points, high speeds, and
traffic state transitions usually cause fast-increasing prediction
uncertainty. A case study of Intelligent Driver Models (IDM)
shows that traffic efficiency drops rapidly when AVs resolve
predicted conflicts longer than 1.5 seconds ahead. AVs can act
earlier on motorways for efficiency concerns but must be myopic
at urban intersections. Prediction uncertainty fundamentally con-
strains the safety-efficiency performance of AVs. These findings
are instructive for designing traffic-compatible AVs.

Index Terms— Uncertainty quantification, driver space, traffic
efficiency, traffic safety, autonomous vehicles.

I. INTRODUCTION

A. Background

MODELLING, predicting, and understanding human
driving behaviours is one of the central topics in

autonomous driving. In the context of mixed traffic, where
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autonomous vehicles (AV) co-exist with human-driving vehi-
cles (HV), AVs must interact with HVs and, to some extent,
learn from or adjust to human behaviours. Therefore, motion
prediction becomes an essential component of autonomous
driving systems [1]. Accurate and reliable predictions regard-
ing the motion of surrounding HVs can enhance the robustness
of decision-making and motion planning [2]. These application
values have attracted significant attention from researchers,
leading to a wide range of prediction models. Recently,
open large real-world AV datasets, such as Waymo [3],
nuScenes [4], and Argoverse-2 [5], have greatly expedited the
use of data-driven approaches, particularly deep-learning mod-
els. Relevant studies are numerous in the literature. We refer
the reader to Mozaffari et al. [6] and Huang et al. [7] for
comprehensive reviews.

However, besides accuracy, uncertainty holds equal impor-
tance for motion prediction [8]. Prediction uncertainty is a
key factor connecting safety and traffic efficiency. The spatial
prediction uncertainty increases with the temporal prediction
horizon. Meanwhile, vehicles keep desired space and act
ahead of time to guarantee safety in conflict resolution. The
spatial-temporal resonance between prediction uncertainty and
the safety setting of vehicles together determines traffic effi-
ciency. Generally speaking, acting earlier to resolve predicted
conflicts and keeping larger space can ensure safety but
reduce road capacities [9]. High prediction uncertainty also
damages traffic efficiency by enlarging the required driver
space. Therefore, quantifying how uncertainty changes with
the prediction time horizon is crucial for further study of when
AVs should start resolving predicted conflicts. By exploring
the interplay between safety settings, prediction uncertainty,
and traffic efficiency, we aim to address one critical concern:

Given safety and traffic efficiency constraints, how far in
advance should autonomous vehicles start resolving predicted
conflicts?

To answer this question, it is first essential to distinguish
between different sources of uncertainty and how uncertainty
in motion prediction impacts safety and traffic efficiency.

B. Uncertainty, Safety, and Traffic Efficiency

Human driving behaviour is stochastic. Uncertainty arises
principally from the lack of observability. In practice, the
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overall uncertainty has two sources: aleatoric uncertainty,
which stems from the inherent randomness of the process, and
epistemic uncertainty, which is caused by the limited available
data [10].

Aleatoric uncertainty pertains to the unpredictability of a
system due to the exclusion of certain unobservable state
variables that may influence the outcome. In motion predic-
tion, some environmental parameters and signals are usually
ignored due to limited sensing methods, such as road con-
ditions and vehicle signals (blinkers) [11]. Another source
of aleatoric uncertainty is the human factor [12], [13], [14].
In-vehicle information and driving styles are not always
observable. Conversely, epistemic uncertainty arises from the
limited observations of similar cases, leading to unreliable out-
comes due to the lack of knowledge. Near-collision behaviour
is an example [15]. Most motion datasets have few collisions.
Consequently, models trained on such datasets can provide nei-
ther reliable predictions nor accurate estimates of uncertainty
in near-collision behaviour. Having clarified these concepts,
we emphasize that this study focuses on aleatoric uncertainty
only.

Uncertainty in motion prediction has significant implica-
tions for both safety and traffic efficiency [16]. A basic
assumption is that a smaller microscopic driver space (at opti-
mal speeds) leads to higher macroscopic traffic efficiency [17],
but also to higher risk [18]. For stable traffic flows, such
as one-dimensional stable car-following, the Fundamental
Diagram (FD) derived from observed spacing and speed
directly represents the relationship between traffic efficiency
and spacing. This is a special case with perfect predictability
(no uncertainty). However, this stability assumption breaks
down when interactions arise to resolve conflicts. In conflict
resolution, the anchor point for spacing must shift from the
current state to the predicted future. In AVs’ eyes, the future
position of the conflicting vehicle becomes more uncertain
with longer prediction time horizons so this conflicting vehicle
occupies an increasingly larger road space. For example, the
Waymo motion prediction open challenge1 requires predic-
tions up to 8 s of future trajectories. We note that the miss rate
for predictions is approximately 15%, even with 6 predicted
trajectories using state-of-the-art models. This observation
implies that one vehicle can appear in a large area after 8 s
due to high prediction uncertainty. If AVs retain a larger time
buffer (act earlier), traffic efficiency will be lower due to
the larger required road space. Prediction uncertainty makes
the spatial and temporal safety settings of AVs entangled.
Therefore, quantifying how spatial uncertainty varies over
prediction time horizons is critical in deciding when to start
resolving conflicts.

Although trading off safety and traffic efficiency concerns
from the uncertainty perspective is important, this topic has
not been discussed in depth due to two research gaps. Firstly,
precisely modelling the continuous change of the spatial
probability distribution of a vehicle’s future position with pre-
diction time horizons is challenging. Existing methods either
accurately learn the spatial distribution at a certain predicted

1https://waymo.com/open/challenges/2022/motion-prediction/

time horizon only, such as non-parametric goal-oriented deep
learning paradigms [19], [20], or consider simplified dis-
tributions for a series of discrete moments alone, such as
Gaussian models [21]. The prediction time horizon is not
explicitly considered a continuous variable in these models,
but rather a discrete time step. Therefore, exploring horizon
settings with an arbitrary resolution is not possible. Secondly,
embedding microscopic prediction uncertainty into macro-
scopic traffic efficiency assessment requires novel methods.
However, few studies directly and efficiently connect these
two aspects at different scales. Embedding uncertainty-aware
motion prediction models (particularly deep-learning models)
into macroscopic traffic simulators will cause unacceptable
computational complexity. On the other hand, although most
traffic-flow-theory-based methods are easy to apply, they rely
on the real-time spacing strategy instead of considering the
impact of (unknown) prediction uncertainty. This gap also
hinders engineers from considering traffic efficiency when
tuning the key safety parameters of AVs.

In summary, the two research gaps in modelling the con-
tinuous evolution of prediction uncertainty and effectively
linking this uncertainty to safety-efficiency trade-offs call for
a novel methodological solution. Such a framework offers
the opportunity to revisit the motion prediction task from a
comprehensive perspective.

C. Contributions and Outline

This study proposes an extendable framework for quan-
tifying the relationship between safety, traffic efficiency,
and motion prediction uncertainty. Firstly, we propose a
continuous-time probabilistic motion prediction model that can
estimate the time-horizon-dependent spatial uncertainty of a
vehicle. Next, a generic method that combines the prediction
model, driver space, and simulation is proposed to estimate
macroscopic traffic efficiency from the safety settings of AVs
and prediction uncertainty. The primary contributions of this
paper are summarized as follows:

• Propose a flexible motion prediction model that can
evaluate the continuous change of spatial uncertainty in
motion prediction.

• Connect the uncertainty in microscopic motion prediction
and safety setting of AVs to the formation of driver space,
and further to macroscopic traffic efficiency.

• Interpret that high speeds, mandatory decision points, and
traffic condition transitions make predictive uncertainty
increase rapidly.

• Give insights into how prediction uncertainty influences
the trade-off between safety settings and traffic efficiency
for AVs.

We first overview relevant studies in Section II. Next,
the proposed motion prediction model and the training strat-
egy are explained in Section III. Section IV presents the
generic method of assessing traffic efficiency from predic-
tive uncertainty and driving models. Then experiments are
carried out in Section V and the results are shown and
discussed in Section V. Finally, Section VII concludes this
paper.
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II. RELATED STUDIES

This section provides a brief overview of pertinent research
in the literature and then points out the novelty of this study.
Given the scope of this paper, particular attention will be
paid to two parts. The first part focuses on safety measures
and traffic efficiency assessment. The second part is about
uncertainty quantification in motion prediction.

How to measure safety depends on the interested scale.
Surrogate safety measures, such as Time-to-Collision (TTC),
Post-Encroachment Time (PET), and Proportion of Stopping
Distance (PSW), are widely used to evaluate microscopic
safety performance from time or space perspectives. Wang
et al. [22] systematically review surrogate safety measures
applied for connected and automated vehicles. As TTC is
derived from projected trajectories, it is the most common
safety setting in vehicles. For macroscopic or enforcement
purposes, Vogel [23] show that a shorter average (time or
space) headway generates more dangerous situations. Corre-
spondingly, cruising headway and critical TTC are two key
safety parameters for AVs. In contrast, traffic efficiency is a
macroscopic concept that is usually measured by maximum
traffic flow, which is determined by how the average spacing
changes with speed. The relationship between averaged flow,
space, and speed is the so-called Fundamental Diagram (FD).
Next, we overview how to assess traffic efficiency in different
scenarios.

For one-dimensional stable car-following, the impact of
AVs has been intensively studied since the birth of traffic
flow theory. For example, Bose and Ioannou [24] assume
a constant time headway for AVs and derive AV-involved
FDs and capacities. A shorter time headway means driving
more aggressively but can potentially benefit traffic efficiency.
In principle, any microscopic car-following model can yield an
FD [25]. More complexity can be added to this fundamental
model. For example, considering intra-platooning headway
strategy [26], different types of AVs [27], heterogeneity of
driving models [28], [29], name a few. Two-dimensional
interactive scenarios, such as intersections, have drawn more
attention recently. In general, the same efficiency-safety prin-
ciple holds. Reducing the average gap in all directions leads
to decreased safety but improved traffic efficiency [30], [31],
[32]. However, traffic streams can cross at intersections and
lanes have different passing priorities. Therefore, the use of
FD and capacity also needs to be adapted. For example,
Helbing [33] derive an FD from a simplified traffic flow model
at intersections. Wu et al. [34] propose a so-called arterial
FD to describe interrupted traffic flow. Different 2D spacing
models, e.g., Zhao et al. [32], lead to various safety-efficiency
relationships. It is useful to note that many 2D methods are
initially proposed to describe pedestrian flows, such as the
social force model [35] and the continuum model [36]. They
can also be adapted to vehicles. We refer to the review of
Vanumu et al. [37] for more information.

The studies above assess safety and traffic efficiency per-
formances from driving models or traffic flow properties. The
spacing strategy of vehicles is the key. Nevertheless, these
studies consider measured spacing only instead of how the
spacing (or driver space [38]) is generated in interactions

and conflict resolution. Particularly, how the uncertainty in
motion prediction influences spacing, which is crucial for AVs,
is ignored. Therefore, the second half of the review focuses
on deep-learning-based uncertainty quantification methods
applied for motion prediction. Three major approaches are
identified from the literature. They are random sampling,
parametric method, and non-parametric method.

Random sampling is a straightforward method for uncer-
tainty estimation. The basic concept is generating multiple
random predictions through Monte Carlo simulation, Bayesian
networks, multi-modal predictions etc. The diversity of predic-
tions, quantified by e.g. (co)variance, measures the uncertainty.
For example, Schreier et al. [39] propose a prediction model
containing inherent random parameters in how drivers execute
particular manoeuvres. Monte Carlo simulation is used to
estimate the collision risk from the output ensemble. Tran and
Firl [40] use similar methods to recognize manoeuvres and
predict driving behaviours at urban intersections. Instead of
running the same simulation multiple times, running multiple
models in parallel is also a common method. For instance,
Abbas et al. [41] utilise an ensemble of Extended Kalman
Filter (EKF) to predict a set of potential scenarios for the
future location of a vehicle.

The parametric method describes the output distribution
by a parametric prior, such as Gaussian [42] or mixture
Gaussian [43]. The uncertainty can be measured by the
covariance matrix or differential entropy. For instance, Deo
and Trivedi [44] propose a manoeuvre-based LSTM to predict
lane-changing behaviours. The output is a series of mixture
Gaussian distributions. Huang et al. [21] employ a variational
neural network equipped with a Gaussian Mixture Model
(GMM) layer to predict trajectories, also providing a measure
of confidence for various time horizons. Similar methods
involve Graph Vehicle-Pedestrian Attention Network (GVAT)
[45], Joint Time Series Model (JTSM) [46], to name a few.
To consolidate the estimation of mixture density distributions,
Zyner et al. [47] propose a clustering algorithm that recognizes
the drivable paths and ranks them based on their possibility
scores. Mercat et al. [48] further extend the GMM-based
method to the joint prediction of multi-agent trajectories and
show competitive performance. The parametric method can
track how uncertainty evolves with the horizon using a smaller
number of output parameters. However, assimilating the exact
components of MDN is numerically difficult. In many real
cases, the long-term positions of a vehicle cannot even be
approximated by GMM due to map constraints and surround-
ing agents.

To overcome the limitations mentioned above, the
non-parametric method is proposed. The primary difference
is that the output distribution is not simplified to a para-
metric prior, but directly approximated by a two-dimensional
histogram. This approach is more realistic and flexible.
GoHome [19] and DenseTNT [20] are two representative mod-
els. Graph neural networks are used to extract input features
and subsequently map them onto a 2D mesh grid. Gilles
et al. [49] further apply this method to multi-agent trajectory
prediction. However, these models are goal-oriented because
of the large number of units in mesh grids. Only the spatial
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Fig. 1. The proposed model structure and the inference process. The red vehicle is the target vehicle to predict.

distribution at the last moment (e.g., after 3 s) is learnt. The
uncertainty through the entire predicted trajectory is unknown.
For safety and traffic efficiency assessment purposes, we need
an efficient novel single model to learn the continuous change
of spatial uncertainty with prediction time horizons.

To summarize, existing studies on traffic efficiency assess-
ment do not consider how prediction uncertainty influences
the spacing between vehicles. To include precise prediction
uncertainty in arbitrary time budget settings, the current
non-parametric uncertainty quantification approach needs to be
extended to continuous prediction time horizons. This paper
proposes a novel framework to fill these gaps and further
clarify the relationship between prediction uncertainty, safety,
and traffic efficiency.

III. MODEL

This section presents the proposed continuous-time motion
prediction model and the training strategy. This model is
fundamental for the following sections of traffic efficiency
assessment and trade-off relationship analysis.

A. Continuous-Time Prediction Model

We first formulate the continuous-time probabilistic tra-
jectory forecasting problem. Given the trajectories of all
surrounding road agents in the past 1 sec (noted as SSS) and the
environment variables (high-definite maps, traffic rules, traffic
lights, etc. noted as EEE). We aim to predict the joint distribution
of a target vehicle’s position (x, y) at any moment t within
the maximum prediction time horizon T :

pt (x, y) =M(SSS, EEE; t) ∀t ∈ (0, T ], t ∈ R (1)

Notice that the output is the posterior distribution that
marginalizes all possible interactions and intentions. The
model M is adapted from UQnet proposed in our previous
study [50]. UQnet is a goal-oriented model that improves
generalizability by adding a causation-based regularization
module. Because only aleatoric uncertainty is considered in

this paper, the causal regularization part is removed. To imbue
the model with complete awareness of uncertainty throughout
the prediction horizon, the model structure and the training
method are changed. Arbitrary prediction time horizon t is
explicitly included.

The model structure is presented in Fig.1. It follows the
compact vectorized representation proposed in VectorNet [51].
The model comprises an encoder and a decoder. The input to
the model consists of the current scenario and the arbitrary
prediction horizon t . The scenario is abstracted and decom-
posed into three parts, namely, the historical trajectories of
surrounding agents SSS, maps information EEE , and the spatial
mesh-grid CCC . Each trajectory and lane centerline is abstracted
into a series of end-to-head vectors (polylines). The value of
t is concatenated with lane features and mesh-grid features.
The three features are passed into three parallel sub-nets in
the encoder. An MLP is used to convert C into position
features. The Trajectory-subnet and the Lane-subnet are two
polyline-level graph neural networks [52] that encode the
historical motion of each agent and the characteristics of each
lane respectively. Lane features are processed by an additional
LaneGCN-like subnet [53] to capture the connectivity among
lanes. The outputs of the encoder are extracted map features
HMHMHM , agent features HSHSHS and position features HCHCHC .

The decoder takes the encoded information to generate the
predicted spatial distribution. The interaction module in the
decoder concatenates map feature HMHMHM with agent features HSHSHS
and learns the interaction among all the lanes and agents by
graph attention layers. Next, a cross-attention decoder projects
the output of the interaction module to each point of the mesh
grid queried by HCHCHC (note that prediction horizon t has already
been concatenated with HCHCHC ). Finally, an MLP converts the
feature dimension to 1 for each point. So the final output is
a 2D histogram (heatmap) that approximates the distribution
pt (x, y), denoted as Ŷ̂ŶY t .

In inference, users can pass a sequence of arbitrary time
horizons at any desired resolution and intervals into the
model. The model can return the predicted spatial distributions
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at the corresponding moments in batches. Overlapping the
heatmaps together gives a direct representation of how spatial
uncertainty changes with time horizons.

Considering that the model structure is not the focus of this
paper, we refer the readers to Li et al. [50] and the open-source
code2 for more details.

B. Training Strategy

The proposed model can predict evolving 2D distribu-
tions. However, the inclusion of the time horizon significantly
increases the complexity of the output space. For example,
if the spatial resolution is 1 m, the expected drivable space
is a 50 × 50 m2 area, the time resolution is 0.1 s. The
maximum prediction horizon is 3 s. Then the output space (the
spatiotemporal cube) has 50 × 50 × 30 = 75000 mesh units
(voxels) to query in the cross-attention decoder. To address this
computational challenge, a random sampling training strategy
is used.

First, the ground-truth trajectory (label) occupies a small
percentage of the total voxels (take the same example above,
the percentage is 30/75000 = 0.04%, we will use this example
in this subsection). Learning such sparse features is difficult.
To mitigate this sparsity, the label is enhanced by adding white
noise. For example, if the ground-truth position is (xt , yt ) at
moment t (a pixel on the heatmap), then a Gaussian noise
centred at the ground-truth with standard covariance matrix
ϵIII is added to this time slice. The voxel Yi, j,t at (xi , y j , t) in
the enhanced label is:

Yi, j,t =
1

2πσ 2
s

exp [−
(xi − xt )

2
+ (y j − yt )

2

2σ 2
s

] (2)

This method results in a significantly larger proportion of
non-zero voxels. In this study, σs = 0.4 m. Instead of con-
sidering all voxels in training, we use the following method.
First, a moment ts is randomly drawn between 0 and the
maximum horizon for each training sample. Next, only voxels
in a small spatiotemporal cube around the sampled ground
truth are considered in the overall loss function. For example,
if the sampled ts and the label (xts , yts ) are known, then
only those voxels (xc, yc, tc) fall in the following area are
considered:

tc ∈ [ts − τ, ts + τ ]

xc ∈ [xts − 1, xts + 1]

yc ∈ [yts − 1, yts + 1] (3)

Here τ and 1 control the spatiotemporal range. If we choose
τ = 0.5 s and 1 = 10 m, then only 20×20×10 = 4000 voxels
are queried in the decoder, which significantly decreases the
spatial complexity. For the validation of this training strategy,
we refer the readers to Appendix.A.

Focal loss [54] is the main loss function. Focal loss can
address the issue of imbalanced classes by adding a modu-
lating factor that reduces the contribution of easy cases but
focuses more on rare examples. If the predicted probability

2https://github.com/RomainLITUD/Uncertainty-based-safety-efficiency-
tradeoff

TABLE I
LIST OF NOTATIONS

at all selected voxels is denoted as a vector Ŷ̂ŶY and the
noise-enhanced ground truth vector is YYY , then the objective
function is (p is the indices of all selected voxels):

Lfl(Ŷ̂ŶY ,YYY ) = −
1
P

∑
p

(Yp − Ŷp)
2 f (Yp, Ŷp) (4)

f (Yp, Ŷp) =

{
ln Ŷp if Yp = 1
(1 − Yp)

4 ln(1 − Ŷp) else
(5)

As the current time and position of the predicted vehicles
are arbitrary and the prediction time horizon is specified in
the input, any desired temporal and spatial resolution can be
used for inference, as shown in Fig.1.

IV. TRAFFIC EFFICIENCY ASSESSMENT

Having the continuous-time motion prediction model, this
section explains how to assess the traffic efficiency from
the model output and the vehicle’s safety settings. We first
introduce the framework and then use IDM to showcase
parameter calibration. Notations are listed in Table.I.

A. Method Framework

The traffic efficiency assessment method is based on the
concept of driver space. For safety and comfort reasons, drivers
maintain a speed-dependent minimum 2D spacing around the
vehicle [38]. Conflict is thus defined as one vehicle invading
another vehicle’s driver space in this context. To avoid poten-
tial collisions, AVs usually set a key parameter called critical
Time-to-Conflict, denoted as Tc. When an AV’s planned
trajectory intersects with another vehicle’s predicted driver
space within Tc, this AV starts acting to resolve the predicted
conflict. Note that the reaction time is also included. If the
predicted position of this target vehicle is uncertain, more
road space will be “occupied”. This concept is illustrated by
the example in Fig.2. In the early stage of lane-changing, the
intention is unclear, so the target vehicle’s predicted position
has bi-modality. If Tc is long, the target vehicle’s predicted
location will occupy both lanes and thus require double driver
space at this moment. AVs must react to avoid invading the
overall driver space. Or equivalently, one target vehicle creates
two “virtual” conflicting vehicles in AVs’ eyes.

For estimating the traffic efficiency conditioned on Tc,
we first define the instantaneous prediction-based traffic flow.
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Fig. 2. An example of lane-changing. The red spots are the predicted
spatial distribution of the target vehicle after Tc and vb is the predicted speed
(assumed the same for both modes). Blue polygons are required driver space
with a total area of S.

Given Tc, at moment τ , the predicted speed of the target
vehicle is denoted as vb and the required driver space is S,
the definition of this flow is:

q(τ |Tc) =
vb

S
(6)

The faster the speed is, and the smaller the required driver
space is, the higher the instantaneous efficiency is. This
definition is consistent with Edie’s flow [55] (or flux). If one
vehicle i is continuously tracked for a duration of Tmax and
predictions are performed for every moment, then its average
flow is:

q̄i (Tc) =
1

Tmax

∫ Tmax

0
qi (τ |Tc)dτ (7)

which measures this vehicle’s impact on traffic efficiency. For
example, if the lane change is not decisive, the bi-modality and
large driver space status will last longer so the average flow is
lower. If enough data is collected, comprising different traffic
conditions and diverse interactions (passing orders and driving
styles), then the average flow among all recorded vehicles can
give the estimate of macroscopic traffic efficiency. Here the
lane width wl converts the unit to conventional pcu/lane/h:

Q(Tc) = wl ×
1
N

N∑
i=1

q̄i (Tc) (8)

Notice that Eq.(6) is calculated from the minimum required
space in a short future, so Eq.(8) represents traffic efficiency
in an imaginary extreme situation where all vehicles resolve
conflicts according to the minimum spacing and the critical
TTC setting. If there is no uncertainty and no conflict, Eq.(8)
degrades to the basic stable car-following. This approach
is consistent with the methodology proposed by Shi and
Li [56], which constructs macroscopic traffic flows from
microscopic AV data. We further decompose the real-time
measures of spacing into its prediction-based generation pro-
cess in interactions.

The key step is determining the total required driver space
S at each moment and ensuring its consistency with measured
flows. For simplicity, we assume that the driver space of a
perfectly predictable vehicle is a square along the yaw direc-
tion. The longitudinal and lateral widths are denoted as dlon
and dlat respectively. First, we define the so-called preoccupied
area, which encompasses positions where probability density
is higher than a threshold β. In practice, β is set to cover
99.9% overall probability:

A(Tc) = {(x, y) | pTc (x, y)

≥ β s.t.
∫

pTc (x,y)≥β

pTc (x, y) dxdy > 0.999} (9)

A(Tc) represents where the target vehicle’s centre may appear
after Tc. For generality, we assume that AVs keep space
buffer to a potential conflict point (xc, yc) based on speeds,
probability density, and critical TTC:

dlon = flon(va, vb, Tc, pTc (xc, yc))

dlat = flat(va, vb, Tc, pTc (xc, yc)) (10)

Their specific forms depend on the driving models and the
interaction process. All points in A(Tc) must be considered to
ensure safety. Therefore, for all (xc, yc) ∈ A(Tc), driver spaces
are overlapped to generate the overall required driver space.
This area comprises both prediction uncertainty and conflict
resolution behaviours. Geometrically, this process equivalently
creates a “space buffer” around A(Tc).

For motorway corridors, this approach is straightforward.
The relationship between Q(Tc) and speed gives the funda-
mental diagram and road capacity. However, the road capacity
does not hold for intersections because traffic streams cross
and some lanes have the priority to pass. Thus, vehicles
on some lanes are mostly located at the low-flow end.
The maximum flow cannot correctly reflect the intersection’s
capacity. Many methods are proposed to solve this problem,
such as the classical gap acceptance calculation [57], conflict
techniques [58], and the fictive traffic light method [59]. In this
section, we directly use the overall average flow given in
Eq.(8) to measure traffic efficiency at intersections. This is
reasonable because the distribution of speed has negligible
shift when changing Tc on a given dataset (Time translation
does not change the observed velocity distribution). Therefore,
Q(Tc) measures the expectation of extreme traffic efficiency
under the same speed distribution (or traffic conditions). But
one must note that this efficiency is not necessarily the
conventional road “capacity”.

The description above gives how to estimate traffic effi-
ciency involving prediction uncertainty. The efficiency-safety
trade-off can be quantified by changing critical TTC settings
and estimating the corresponding traffic flow. A critical step
is determining the size of fundamental driver space dlon and
dlat. We emphasize that the objective of this study is not any
specific control algorithms. Therefore, in the next subsection,
Intelligent Driver Models (IDM) [60] is used as a case study
to show how to calibrate driver space in different driving
scenarios.

B. Case Study: IDM

First of all, the size of driver space depends on driving sce-
narios. All scenarios are categorized into two types, crossing
area, where vehicles coming from and going towards different
directions have intersected trajectories, and non-crossing area,
where only car-following, lane-changing, merging, diverging,
and over-taking are allowed. We further assume that dlon
and dlat are independent of pTc (xc, yc), which means that
AVs use the same spacing strategy for all points in the
preoccupied area. In other words, A(Tc) is considered a solid
obstacle.
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Fig. 3. Calculating required driver space from prediction models in
non-crossing areas. The longitudinal buffer is set as dlat/2 because the space
is shared by two vehicles.

The acceleration of an IDM (no reaction time) vehicle is
determined by:

a = α(1 − (
va

v0
)4

− (
s∗(va, 1v)

s
)2)

s∗(va, 1v) = s0 + vT +
va1v

2
√

αβ
(11)

Here va is the speed of AV, 1v is the speed difference, s is
the distance gap, and a is the output acceleration. IDM has
5 parameters. v0 is desired velocity, s0 is minimum gap, T is
desired time headway, α is maximum acceleration, and β is
comfortable deceleration.

For non-crossing areas, car-following is the fundamental
driving behaviour. The end of lane-changing, merging, and
diverging is also stable car-following on the target lane.
Therefore, dlon is set as the desired distance headway. Setting
1v = 0 and a = 0, we have:

dlon =

√
(s0 + vaT )2 · v4

0

v4
0 − v4

a
+ l (12)

where l is the vehicle length. When va ≪ v0, the relationship
is quasi-linear.

The lateral distance dlat is the width of lanes wl . All lanes
intersecting with A(Tc) are considered occupied, as shown
in Fig.3. This approximation is reasonable because uncertain
multi-modal intentions mainly cause the efficiency drop in
non-crossing areas. The impact of lateral movement is also
considered implicitly by the integration in Eq.(7). For example,
a predictable and decisive lane-changing is highly efficient
because the bi-modality and occupied dual lane status (both
require larger driver space) last shorter. Conversely, hesitating
and slow lane-changing can decrease traffic efficiency by
enlarging the average required driver space.

In crossing areas, dlon is set the same as Eq.(12). The
lateral space buffer involves two conflicting streams with
different speeds. Thus, dlat must be calibrated from controlled
simulations. Recall that dlat is the fundamental driver space
without prediction uncertainty. We hereby consider a simple
and fully deterministic experiment depicted in Fig.4. A black
AV and an orange vehicle are approaching a fixed crossing
point. Their initial speeds are va and vb, respectively.

Fig. 4. Simulation at a fixed conflicting point. The black vehicle is an AV.
The conflict resolution process starts if one vehicle invades another vehicle’s
front driver space within Tc .

The passing order is determined immediately based on rules.
If both vehicles keep their speeds, the vehicle that arrives
earlier passes first. If they arrive at the same time, the vehicle
with a higher speed passes first. If speeds are also the same, the
AV always yields. Conflicts are defined as one vehicle invading
another vehicle’s front driver space within Tc. The conflict
resolution process is also rule-based. The first-go vehicle
passes at a constant speed. The yielding vehicle decelerates
to avoid predicted conflicts. The conflict point is regarded as
a standing object and the deceleration is determined by IDM.
The duration for both vehicles passing the conflicting point,
denoted as 1T , can be obtained by simulation. Therefore, the
flow for one conflict resolution process is (note that there are
2 vehicles and also two lanes):

qi =
2

2 × 1T × wl
(13)

For each combination of va , vb, and Tc, one can easily deter-
mine a range of initial positions that trigger conflict resolution.
Assuming that the probability distribution within this range is
uniform, we can quantify the average flow q̄(va, vb, Tc) from
Monte-Carlo simulations. Then using Eq.(6), we have:

dlat(va, vb, Tc) =
S

dlon
=

vb

dlon × q̄
(14)

where dlon is given in Eq.(12). Similar to non-crossing areas,
this driver space can be applied to all points in A(Tc) and
create a buffer around the preoccupied area A(Tc) as shown
in Fig.5.

This subsection shows an example of IDM. This can be
extended to whatever driving models (e.g. IDM with reaction
time, social force, deep-neural networks). We emphasize that
driver space is an empirical concept that can always be cali-
brated. For instance, one can consider interactive models rather
than this rule-based IDM, or use Monte-Carlo simulation
against human drivers to include heterogeneous negotiation
processes. If the driving model is unknown, one can also
make assumptions about desired driver space like in traffic
flow theory. This paper aims to present the concept. Studying
more possibilities is beyond the scope of the paper.

In summary, the advantage of this traffic efficiency assess-
ment method lies in two parts. First, uncertainty in motion
prediction is considered in the generation of driver space.
Second, simulations, traffic flow theory, and deep-learning
prediction models are combined to balance the computational
complexity and the utility of real-world data.
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Fig. 5. Calculating the total required driver space S in crossing areas.
The bottom figure shows that all driver spaces (rectangles) centred in the
preoccupied area are overlapped to form the overall required space. The size of
the rectangles is calibrated from simulation or computed from driving models.

V. EXPERIMENTS

The experiments require a dataset that provides smooth
and precise trajectories. Moreover, the dataset should include
labelled interactive scenarios without traffic lights (to have
more crossing conflicts). The INTERACTION dataset [61]
fulfils these requirements. This drone-based dataset gives high-
quality trajectories of vehicles, cyclists, and pedestrians in
different types of scenarios, including both motorways and
intersections. Trajectories observed in the past 1 s are given
and the maximum prediction time horizon is 3 s. The recording
frequency is 10Hz.

To normalize the input features, all trajectories and the maps
are re-oriented and centred to the target vehicle’s last observed
position (set as the origin of the coordinate system). The y-axis
points in the yaw direction. In training, the spatial resolution of
the mesh grid is set as 0.5 m. During inference, this resolution
can be set to a smaller value. The details of the models,
including the hyper-parameters setting, can be found in the
open-source code.

Accuracy benchmarking is not the objective of this study.
We refer the readers to Li et al. [50] for more details. To show
the reliability of uncertainty quantification, we only compare
the proposed model with the backbone UQnet. Three metrics
are used. Final Displacement Error (FDE) is the L2-squared
distance between the ground truth and the prediction at 3 s.
Average Displacement Error (ADE), similarly, is the average
L2-squared error along the predicted trajectory. Missing Rate
(MR) originates from the concept of risk field [62]. If the pre-
dicted position is outside of this area around the ground truth,
potential conflict may be triggered. This is called “missed”.
MR measures the percentage of missed predictions. The risk
field is assumed to be a rectangle for the INTERACTION
dataset. The lateral threshold is 1 m and the longitudinal

TABLE II
PERFORMANCE COMPARISON

threshold is a piece-wise function depending on the velocity:

th(v) =


1 v < 1.4 m s−1

1 +
v − 1.4
11 − 1.4

1.4 m s−1
≤ v ≤ 11 m s−1

2 v > 11 m s−1

(15)

For each prediction, 6 trajectories are sampled and the result
is measured as the one with the lowest error. Table.II shows
that using the proposed training strategy and extending the
goal-oriented scheme to a continuous-time scheme do not
damage the performance. The proposed model is on par with
the state-of-the-art so the following analysis is reliable.

VI. ANALYSIS AND DISCUSSION

This section focuses on analyzing the results. We will
present the uncertainty-horizon profile and discuss the
trade-off between safety, traffic efficiency, and prediction time
horizon.

A. Uncertainty-Horizon Profiles

This subsection first analyzes how spatial uncertainty
changes with the prediction time horizon. Besides preoccupied
area A(t), differential entropy is also used to measure the
amount of randomness in the random variable of predicted
locations, which is related to the lower bound of prediction
error [63]:

Ht (X, Y ) = −

∫
X ,Y

pt (x, y) ln pt (x, y)dxdy (16)

Fig.6 shows how the average preoccupied area Ā(t) and
the average entropy H̄(t) change with time horizons. The
uncertainty is almost 0 in the short term but increases rapidly
after 1-1.5 s. Fig.7 further presents the long-tail distributions
of A(t = 3 s) and H(t = 3 s). Most samples are located at the
low uncertainty end, which means that most cases are highly
predictable within 3 s.

According to the speed-threshold function in Eq.(15),
we hereby identify the critical moment when the predicted
occupied area surpasses the threshold (note that this is dif-
ferent from the critical TTC). After this moment, at least
two trajectories must be given to ensure 0 MR. This can
be regarded as a critical decision point. Similarly, we can
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Fig. 6. Relationships between (left) average occupied space, (right) average
differential entropy, and prediction horizon t .

Fig. 7. Distributions of preoccupied area A(t = 3 s) and differential entropy
H(t = 3 s).

Fig. 8. The distribution of estimated critical moments. The high column at
3 s means equal to or higher than 3 s.

identify the critical position, defined as where the vehicle will
most probably appear at the critical moment on the map. The
distribution of critical moments is presented in Fig.8. Around
20% of cases have critical moments that are equal to or longer
than 3 s. In all cases, trajectories are highly predictable within
1 s. The distribution shows the diversity of uncertainty profiles
from another aspect. Fig.9 shows 3 representative examples.
The upper two cases have strong multi-modality. Each mode
represents an intended direction. The uncertainty increases fast
after passing the decision point. In the bottom case, the red
vehicle is approaching a congested merging area at a relatively
high velocity. The vehicle will slow down soon. The future
position is thus sensitive to deceleration. The uncertainty also
increases fast after entering the merging zone. The 3 examples
represent the major factors causing high uncertainty, namely
the incoming decision point, braking with high initial speed,
and transition of traffic conditions.

B. The Trade-off Between Safety and Efficiency for IDM

This subsection presents the trade-off between safety and
efficiency using the model output and the IDM assumption.
Huang et al. [64] calibrated IDMs from the Waymo open
dataset [3] and we directly adapt the reported parameters. v0 is

Fig. 9. Examples of trajectory predictions and uncertainty profiles. The black
stars are identified as critical positions.

TABLE III
IDM PARAMETERS FOR WAYMO AV

changed to the speed limit in the INTERACTION dataset. The
used parameters are listed in Table.III. Eq.(12) and (14) give
dlon and dlat from va , vb, and Tc via calculation or controlled
simulations.

For non-crossing areas on motorways, derived fundamental
diagrams and road capacities are shown in Fig.10. In the left
figure, the black line represents theoretical stable car-following
with no interactions and perfect predictability. The capacity
can reach around 2400 pcu/lane/h at 20.6 m s−1. The blue
scatters are derived from the INTERACTION dataset using
the prediction model and predefined critical TTC, which is set
as 2.5 s as an example. The blue line is the corresponding fitted
fundamental diagram. We see that the capacity drops to around
1750 pcu/lane/h due to prediction uncertainty and conflict
resolution. The corresponding optimal speed is also reduced
to 16.6 m s−1 because prediction uncertainty increases more
rapidly at high speeds. This means that both road capacity and
average travel time decrease. The right figure directly shows
the trade-off between road capacity and critical TTC settings.
The capacity keeps horizontal when Tc is shorter than 1 s.
When Tc is longer than 1.5 s, traffic efficiency drops rapidly.

In crossing areas at intersections, as explained in
Sec.IV-A, average flow is used to measure traffic efficiency.
Fig.11 presents the trade-off relationship between flow and
critical TTC. Similarly, traffic efficiency starts decreasing
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Fig. 10. Left: comparison between stable CF and an example of 2.5 s
TTC setting. The efficiency-safety trade-off relationship in non-crossing areas,
measured by critical TTC and road capacity.

Fig. 11. The efficiency-safety trade-off relationship in crossing areas,
measured by critical TTC and average flow.

when the critical TTC setting is longer than 1.5 s. This 1.5 s
law is universal in mixed traffic, no matter what driving
models are used. The reason is that human behaviours are
almost perfectly predictable within this horizon, as shown
in Fig.6 and Fig.8. Nevertheless, compared to non-crossing
areas, traffic flow drops faster at intersections. Compared to
Tc = 0, when Tc = 3 s, traffic efficiency drops by 55% in
the crossing area but only by 30% in the non-crossing area.
This is because intersections involve more decision points so
uncertainty increases significantly faster, causing lower traffic
efficiency.

The results and analysis above confirm the significant role
of motion prediction uncertainty in quantifying the safety-
efficiency trade-off relationship. In summary. AVs cannot
always improve traffic efficiency by resolving nearer con-
flicts. When the critical horizon is shorter than 1.5 s, driving
more aggressively sacrifices safety but cannot gain traffic
efficiency. Additionally, due to traffic efficiency concerns, AVs
can forecast further ahead to resolve conflicts in non-crossing
scenarios but have to shorten the critical horizon (be myopic)
at intersections.

C. Implications for AV Design

In the previous section, the safety-efficiency trade-off is
quantified using one specific IDM. Now we consider a generic
inverse problem that is independent of the specific driving
model:

Amongst critical TTC, space-keeping strategy, and macro-
scopic traffic efficiency, with given constraints on one of them,
how to trade off the other two aspects when designing the key
parameters of AVs?

As motorway corridors have already been intensively stud-
ied in the literature, we are particularly interested in crossing
areas at unsignalized intersections.

Conceptually, we consider an average lateral space buffer to
represent the average loss of efficiency in resolving conflicts

Fig. 12. The relationship between average traffic flow, critical TTC Tc , and
an average lateral space buffer dlat. The blue line represents that conflicts
happen between two HVs; the red line represents HV-AV conflicts. These are
just two examples.

between two crossing streams (under a certain speed distri-
bution, such as in the used datasets). Such an average lateral
space always exists, which makes the flow estimated from this
average value the same as the one estimated using the spacing
in the real case (mean value theorem). Its value depends on
the driving model. Then the relationship between this average
lateral space, critical TTC, and traffic flow can be quantified
using the proposed method.

The heatmap in Fig.12 shows the result. The isolines
are almost vertical when the average lateral buffer is large.
It suggests that only excellent conflict resolution capability
can significantly benefit the efficiency of crossing streams
at intersections. This figure also shows the comprehensive
trade-off relationship between the involved three aspects. For
example, when traffic efficiency is constrained, the isolines
quantify how to balance lateral space-keeping and critical TTC
at intersections.

Li et al. [65] derive a conflict resolution dataset at
unsignalized intersections from the open Argoverse-2 AV
motion data [5]. The authors report that the traffic flows for
HV-HV and AV-HV conflict resolution cases are 663 and
576 pcu/lane/h, respectively. We lend these results and also
plot their isolines on the heatmap. Assume that the critical
TTC for Argoverse AV is 2.5 s, as the red star marks. If we
want to ensure that adding AVs to the traffic flow does
not make traffic efficiency worse, then there are two major
improvement directions. If critical TTC stays unchanged, then
the average lateral space buffer must be reduced from 8.8 m
to 5.8 m, which means that the crossing conflict resolution
efficiency needs to be improved by 34% on average to increase
the traffic flow from 576 to 663 pcu/lane/h (by 15% only,
the difference is caused by prediction uncertainty). The other
option is to sacrifice critical TTC, which requires faster and
more decisive actions. The exact choice depends on the
difficulty in both directions. This example illustrates how the
proposed method helps engineers design and tune AV’s key
parameters and performances considering macroscopic traffic
efficiency, which has been barely addressed in the literature.

To summarize, we come back to the primary research
question about when to resolve predicted conflicts. The answer
depends on three major factors, the desired traffic efficiency
(social and traffic requirements), the capability of AVs, and
different scenarios. Lower efficiency requirements and a more
aggressive space-keeping strategy necessitate earlier actions
(longer time horizon). Conversely, if we want to keep traffic
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efficiency when integrating AVs into the current traffic system,
Fig.12 gives insights into how to tune the parameters in an AV
control module for unsignalized intersections. Currently, AVs
have flaws in the perception module and the control algorithms
are safety-first. AVs hence prefer to drive more defensively and
act earlier. For example, Hu et al. [66] report that Waymo AVs
will potentially reduce traffic efficiency due to conservative
driving styles. Deploying this type of AV in current urban
traffic may reduce road capacity and cause more congestion.

VII. CONCLUSION AND PERSPECTIVE

In this paper, we propose a deep-learning model for esti-
mating the continuous-time spatial uncertainty in motion
prediction and reconsider how prediction uncertainty influ-
ences traffic efficiency and the safety setting of AVs.
Experiments show that the model can effectively identify
the time and the location of critical points and thus indi-
cate the maximum horizon that the prediction stays reliable.
In addition, we explored and built the quantitative trade-off
relationships between safety, traffic efficiency, and prediction
uncertainty by using prediction-based driver space and sim-
ulations. This study provides a fundamental and extendable
approach for deciding when to act to resolve conflicts.

More realistic and detailed models can be implemented into
this framework in further studies, for example, the impact of
the penetration rate of AVs. Most results in this paper give
the contribution of the AV-HV interaction component of the
overall traffic efficiency. If we calibrate a set of parameters for
interaction between different types of agents (AV-AV, HV-HV,
HV-AV) respectively, and find the relationship between their
ratios and the penetration rate of AVs, the overall traffic
efficiency can be assessed by, e.g., weighted average.

Based on these conclusions, we hereby suggest several
relevant research topics. First, the uncertainty quantification is
based on the currently available information provided by the
perception module of AVs. If AVs can effectively detect e.g.
turn signals, the prediction uncertainty is expected to decrease
so the efficiency-horizon trade-off can be improved. Studying
what information is indeed needed to forecast trajectories
is more important than modelling itself. Second, we admit
that this study simplifies the problem and focuses on normal
cases. How emergent cases and other dimensions, such as
the comfort of AVs, the string stability of car-following
behaviours, and the queuing at intersections may influence
the relationship needs more investigation. Finally, how the
proactive interactions between AVs and human drivers through
communication technology influence the conclusion also needs
deeper studies. They can be integrated into the proposed
framework. We believe that these research topics are critical
for helping integrate in-developing AVs into current urban
traffic and mitigate the negative impact.

APPENDIX A
VALIDATION OF THE TRAINING STRATEGY

For validating the proposed training strategy, we consider
the following methods and compare their prediction qualities.
The concept is illustrated in Fig.13.

Fig. 13. The proposed training strategy: a 2D projection. The colour map
represents the probability density. Red means high value and blue means low
value. σs is the standard variance of the added noise. rs is the width of the
selected area. ts is the randomly sampled prediction horizon.

S-1 The first strategy is that the moment ts is randomly
sampled between 0 and the maximum prediction time
during training. We only consider the voxels located on
this particular spatial slice. This method has the same
complexity as the goal-oriented approach (50 × 50 =

2500 voxels per sample). However, it is not efficient for
two primary reasons. First, it cannot ensure the continuity
of the distribution along the time axis. Second, due to the
sparsity of the sampled moments, longer training periods
are necessary to comprehensively cover every time step.

S-2 The second strategy is exclusively considering those
voxels located around the labels (the hatch area in Fig.13).
For example, if the range is rs = 5 m, this method
includes 5 × 5 × 30 = 750 voxels per sample. Due to
the reduced number of voxels that are all informative, this
training strategy exhibits faster convergence and smoother
distribution evolution. However, models trained by this
method tend to be over-fitted because of the local vision.

S-3 (Used) The third strategy involves a small spatiotemporal
range around the sampled ground truth (the rectangle in
Fig.13). The added rectangle area includes local voxels
from multiple adjacent timestamps and thus addresses
the efficiency and continuity issues of S-1. The involved
considerable number of zero-value voxels can mitigate
the over-fitting problem of S-2.

In addition to accuracy, it is imperative to compare the
continuity of the distribution series generated by various
training strategies over time. Considering the smoothness
of trajectories, the limited complexity of traffic rules and
road connectivity, as well as the short prediction horizon,
it is reasonable to presume that the mode series (positions
that maximize probability density) ought to be continuous
and smooth. So first, we sample the smooth mode series
through tri-cubic interpolation [67] and the Bezier smoothing
algorithm. Next, the acceleration of each of the generated
mode series is computed, and a comparison is made against
the predetermined limit (5.89 m s−2 from the training set) to
ascertain whether the maximum value exceeds the feasible
range. High acceleration means discontinuity. The percentage
of the mode series exhibiting excessively high acceleration
values serves as an indicator of the predictions’ continuity.
We call it the Anomaly ratio (noted as Anomaly%).

Table.IV shows the MR and the Anomaly% of 3 models
trained by different strategies after 10 epochs (the dataset
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TABLE IV
COMPARISON OF THE TRAINING STRATEGIES

is iterated 10 times). The MR is measured on the test set
and the Anomaly% is measured on the validation set only.
The regular MRs of the three methods are quite similar;
however, the generalizability MR (for cases from scenarios
that have not been seen in training) of S-2 is notably higher.
While S-2 and S-3 have similar Abnormal%, S-1 shows
relatively lower continuity. These findings indicate that S-3
can effectively address both the issues of over-fitting and
discontinuity, simultaneously using relatively lower memory
requirements.

REFERENCES

[1] W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and decision-
making for autonomous vehicles,” Annu. Rev. Control Robot. Auton.
Syst., vol. 1, no. 1, pp. 187–210, 2018.

[2] Y. Kuwata, J. Teo, S. Karaman, G. Fiore, E. Frazzoli, and J. How,
“Motion planning in complex environments using closed-loop predic-
tion,” in Proc. AIAA Guid., Navigat. Control Conf. Exhib., Aug. 2008,
p. 7166.

[3] P. Sun et al., “Scalability in perception for autonomous driving: Waymo
open dataset,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2020, pp. 2446–2454.

[4] H. Caesar et al., “nuScenes: A multimodal dataset for autonomous
driving,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 11621–11631.

[5] B. Wilson et al., “Argoverse 2: Next generation datasets for self-driving
perception and forecasting,” 2023, arXiv:2301.00493.

[6] S. Mozaffari, O. Y. Al-Jarrah, M. Dianati, P. Jennings, and
A. Mouzakitis, “Deep learning-based vehicle behavior prediction for
autonomous driving applications: A review,” IEEE Trans. Intell.
Transp. Syst., vol. 23, no. 1, pp. 33–47, Jan. 2020.

[7] Y. Huang, J. Du, Z. Yang, Z. Zhou, L. Zhang, and H. Chen, “A survey
on trajectory-prediction methods for autonomous driving,” IEEE Trans.
Intell. Vehicles, vol. 7, no. 3, pp. 652–674, Sep. 2022.

[8] C. Tang, Designing Explainable Autonomous Driving System for Trust-
worthy Interaction. Berkeley, CA, USA: Univ. California, Berkeley,
2022.

[9] A. Bazzi et al., “A Hardware-in-the-Loop evaluation of the impact of
the V2X channel on the traffic-safety versus efficiency trade-offs,” in
Proc. 14th Eur. Conf. Antennas Propag. (EuCAP), Mar. 2020, pp. 1–5.

[10] A. D. Kiureghian and O. Ditlevsen, “Aleatory or epistemic? Does it
matter?” Structural Saf., vol. 31, no. 2, pp. 105–112, Mar. 2009.

[11] J. Zhang, D. Kumor, and E. Bareinboim, “Causal imitation learning
with unobserved confounders,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 33, 2020, pp. 12263–12274.

[12] M. Saifuzzaman and Z. Zheng, “Incorporating human-factors in car-
following models: A review of recent developments and research needs,”
Transp. Res. C, Emerg. Technol., vol. 48, pp. 379–403, Nov. 2014.

[13] J. W. C. van Lint and S. C. Calvert, “A generic multi-level framework
for microscopic traffic simulation—Theory and an example case in
modelling driver distraction,” Transp. Res. B, Methodol., vol. 117,
pp. 63–86, Nov. 2018.

[14] A. Sarker et al., “A review of sensing and communication, human
factors, and controller aspects for information-aware connected and
automated vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 1,
pp. 7–29, Jan. 2020.

[15] R. West, D. French, R. Kemp, and J. Elander, “Direct observation of
driving, self reports of driver behaviour, and accident involvement,”
Ergonomics, vol. 36, no. 5, pp. 557–567, May 1993.

[16] S. Khaitan, Q. Lin, and J. M. Dolan, “Safe planning and control under
uncertainty for self-driving,” IEEE Trans. Veh. Technol., vol. 70, no. 10,
pp. 9826–9837, Oct. 2021.

[17] T U. Yokota, “Evaluation of ahs effect on mean speed by static method,”
in Proc. Towards New Horizon Together. 5th World Congr. Intell. Transp.
Syst., Held, Seoul South Korea, Oct. 1998, pp. 135–283, Paper 3201.

[18] B. Lewis-Evans, D. De Waard, and K. A. Brookhuis, “That’s close
enough—A threshold effect of time headway on the experience of risk,
task difficulty, effort, and comfort,” Accident Anal. Prevention, vol. 42,
no. 6, pp. 1926–1933, Nov. 2010.

[19] T. Gilles, S. Sabatini, D. Tsishkou, B. Stanciulescu, and F. Moutarde,
“GOHOME: Graph-oriented heatmap output for future motion esti-
mation,” in Proc. Int. Conf. Robot. Autom. (ICRA), May 2022,
pp. 9107–9114.

[20] J. Gu, C. Sun, and H. Zhao, “DenseTNT: End-to-end trajectory predic-
tion from dense goal sets,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.,
Oct. 2021, pp. 15303–15312.

[21] X. Huang, S. G. McGill, B. C. Williams, L. Fletcher, and G. Rosman,
“Uncertainty-aware driver trajectory prediction at urban intersections,”
in Proc. Int. Conf. Robot. Autom. (ICRA), May 2019, pp. 9718–9724.

[22] C. Wang, Y. Xie, H. Huang, and P. Liu, “A review of surrogate safety
measures and their applications in connected and automated vehicles
safety modeling,” Accident Anal. Prevention, vol. 157, Jul. 2021,
Art. no. 106157.

[23] K. Vogel, “A comparison of headway and time to collision as safety
indicators,” Accident Anal. Prevention, vol. 35, no. 3, pp. 427–433,
May 2003.

[24] A. Bose and P. Ioannou, “Mixed manual/semi-automated traffic: A
macroscopic analysis,” Transp. Res. C, Emerg. Technol., vol. 11, no. 6,
pp. 439–462, Dec. 2003.

[25] Z. Vander Laan and P. Schonfeld, “Modeling heterogeneous traffic with
cooperative adaptive cruise control vehicles: A first-order macroscopic
perspective,” Transp. Planning Technol., vol. 43, no. 2, pp. 113–140,
Feb. 2020.

[26] J. B. Michael, D. N. Godbole, J. Lygeros, and R. Sengupta, “Capacity
analysis of traffic flow over a single-lane automated highway system,”
J. Intell. Transp. Syst., vol. 4, nos. 1–2, pp. 49–80, 1998.

[27] C. Zhao, L. Li, X. Pei, Z. Li, F.-Y. Wang, and X. Wu, “A comparative
study of state-of-the-art driving strategies for autonomous vehicles,”
Accident Anal. Prevention, vol. 150, Feb. 2021, Art. no. 105937.

[28] Q. Wang, Z. Li, and L. Li, “Investigation of discretionary lane-change
characteristics using next-generation simulation data sets,” J. Intell.
Transp. Syst., vol. 18, no. 3, pp. 246–253, Jul. 2014.

[29] A. Ghiasi, O. Hussain, Z. Qian, and X. Li, “A mixed traffic capacity
analysis and lane management model for connected automated vehi-
cles: A Markov chain method,” Transp. Res. B, Methodol., vol. 106,
pp. 266–292, Dec. 2017.

[30] H. Yang and K. Oguchi, “Intelligent vehicle control at signal-free inter-
section under mixed connected environment,” IET Intell. Transp. Syst.,
vol. 14, no. 2, pp. 82–90, 2020.

[31] R. Hult, M. Zanon, S. Gros, H. Wymeersch, and P. Falcone,
“Optimisation-based coordination of connected, automated vehicles at
intersections,” Vehicle Syst. Dyn., vol. 58, no. 5, pp. 726–747, May 2020.

[32] J. Zhao, V. L. Knoop, and M. Wang, “Microscopic traffic modeling
inside intersections: Interactions between drivers,” Transp. Sci., vol. 57,
no. 1, pp. 135–155, Jan. 2023.

[33] D. Helbing, “Derivation of a fundamental diagram for urban traffic flow,”
Eur. Phys. J. B, vol. 70, no. 2, pp. 229–241, Jul. 2009.

[34] X. Wu, H. X. Liu, and N. Geroliminis, “An empirical analysis on the
arterial fundamental diagram,” Transp. Res. B, Methodol., vol. 45, no. 1,
pp. 255–266, Jan. 2011.

[35] X. Chen, M. Treiber, V. Kanagaraj, and H. Li, “Social force models
for pedestrian traffic–state of the art,” Transp. Rev., vol. 38, no. 5,
pp. 625–653, Sep. 2018.

[36] S. P. Hoogendoorn, F. L. M. van Wageningen-Kessels, W. Daamen,
and D. C. Duives, “Continuum modelling of pedestrian flows: From
microscopic principles to self-organised macroscopic phenomena,” Phys.
A, Stat. Mech. Appl., vol. 416, pp. 684–694, Dec. 2014.

[37] L. D. Vanumu, K. R. Rao, and G. Tiwari, “Fundamental diagrams of
pedestrian flow characteristics: A review,” Eur. Transp. Res. Rev., vol. 9,
no. 4, pp. 1–13, Dec. 2017.

[38] Y. Jiao, S. C. Calvert, S. van Cranenburgh, and H. van Lint, “Inferring
vehicle spacing in urban traffic from trajectory data,” Transp. Res. C,
Emerg. Technol., vol. 155, Oct. 2023, Art. no. 104289.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: TU Delft Library. Downloaded on May 22,2024 at 10:01:02 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: HOW FAR AHEAD SHOULD AV START RESOLVING PREDICTED CONFLICTS? 13

[39] M. Schreier, V. Willert, and J. Adamy, “Bayesian, maneuver-based, long-
term trajectory prediction and criticality assessment for driver assistance
systems,” in Proc. 17th Int. IEEE Conf. Intell. Transp. Syst. (ITSC),
Qingdao, China, Oct. 2014, pp. 334–341.

[40] Q. Tran and J. Firl, “Online maneuver recognition and multimodal trajec-
tory prediction for intersection assistance using non-parametric regres-
sion,” in Proc. IEEE Intell. Vehicles Symp., Jun. 2014, pp. 918–923.

[41] M. T. Abbas, M. A. Jibran, M. Afaq, and W. Song, “An adaptive
approach to vehicle trajectory prediction using multimodel Kalman
filter,” Trans. Emerg. Telecommun. Technol., vol. 31, no. 5, May 2020,
Art. no. e3734.

[42] L. Hewing, E. Arcari, L. P. Fröhlich, and M. N. Zeilinger, “On
simulation and trajectory prediction with Gaussian process dynamics,”
2019, arXiv:1912.10900.

[43] J. Wiest, M. Höffken, U. Kresel, and K. Dietmayer, “Probabilistic
trajectory prediction with Gaussian mixture models,” in Proc. IEEE
Intell. Vehicles Symp., Jun. 2012, pp. 141–146.

[44] N. Deo and M. M. Trivedi, “Multi-modal trajectory prediction of
surrounding vehicles with maneuver based LSTMs,” in Proc. IEEE
Intell. Vehicles Symp. (IV), Jun. 2018, pp. 1179–1184.

[45] S. Eiffert, K. Li, M. Shan, S. Worrall, S. Sukkarieh, and E. Nebot,
“Probabilistic crowd GAN: Multimodal pedestrian trajectory prediction
using a graph vehicle-pedestrian attention network,” IEEE Robot. Autom.
Lett., vol. 5, no. 4, pp. 5026–5033, Oct. 2020.

[46] Y. Xing, C. Lv, and D. Cao, “Personalized vehicle trajectory prediction
based on joint time-series modeling for connected vehicles,” IEEE Trans.
Veh. Technol., vol. 69, no. 2, pp. 1341–1352, Feb. 2020.

[47] A. Zyner, S. Worrall, and E. Nebot, “Naturalistic driver intention and
path prediction using recurrent neural networks,” IEEE Trans. Intell.
Transp. Syst., vol. 21, no. 4, pp. 1584–1594, Apr. 2020.

[48] J. Mercat, T. Gilles, N. El Zoghby, G. Sandou, D. Beauvois, and
G. P. Gil, “Multi-head attention for multi-modal joint vehicle motion
forecasting,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2020,
pp. 9638–9644.

[49] T. Gilles, S. Sabatini, D. Tsishkou, B. Stanciulescu, and F. Moutarde,
“THOMAS: Trajectory heatmap output with learned multi-agent sam-
pling,” 2021, arXiv:2110.06607.

[50] G. Li, Z. Li, V. Knoop, and H. van Lint, “UQNet: Quantifying
uncertainty in trajectory prediction by a non-parametric and gener-
alizable approach,” 2022. [Online]. Available: https://papers.ssrn.com/
sol3/papers.cfm?abstract_id=4241523

[51] J. Gao et al., “VectorNet: Encoding HD maps and agent dynamics
from vectorized representation,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2020, pp. 11525–11533.
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