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A B S T R A C T   

System resilience denotes the capacity to uphold desired system performance in the face of disruptions. Evalu
ating the resilience of a process system necessitates a thorough consideration of the intricate interplay between 
its components and the pivotal role of process parameters in reflecting the repercussions of disruptions on the 
system. This paper introduces an integrated methodology that takes into account component interactions and 
leverages process data for the resilience assessment of a process system. The proposed methodology comprises 
four key components: system structure analysis, disruption impacts analysis, process simulation, and resilience 
assessment. Firstly, the system structure is meticulously scrutinized using a P-graph model. This analysis en
compasses the assessment of the significance and interplay of components, as well as the evaluation of how 
component failures affect the system’s overall processes. Secondly, a Markov model is devised to examine the 
state transition process of components and quantifies the maintenance time needed for failed components. 
Subsequently, a simulation model is formulated to acquire real-time process parameters in the presence of 
disruptive events. Finally, the system’s performance response function (PRF) is derived from the normalization of 
these process parameters. Building upon this foundation, a resilience assessment is conducted with a focus on the 
PRF. To illustrate the effectiveness of this methodology, an LNG terminal system is employed as an exemplar.   

1. Introduction 

Process systems are significant in meeting human energy demand 
and promoting social development with various goods and services. In 
recent years, the complexity of process systems has increased, leading to 
the intricate coupling and interdependence of components and processes 
[1–3]. A complex system is defined as “a system for which tightly 
coupled interacting phenomena yield a collective behavior” [4,5]. 
Looking from the failure side, this means that when a component 
functionality is disrupted by external disruptions (e.g., environmental 
factors, intentional attacks, and human factors from outside the system) 
or internal disruptions (e.g., technical factors and random failures), the 
changing state of this component may impact on the functionality of 

other components of the system and the holistic process [6,7]. 
Unfortunately, recurring process safety accidents show that disrup

tions are difficult to avoid completely [8–10]. Once a system is affected 
by disruptive events, its performance decreases, impacting system pro
ductivity and safety. To maintain system performance under disruptive 
conditions, the concept of resilience has attracted extensive attention 
[11–16]. 

The term ‘resilience’ originated from the ecology field [17]. As a 
fundamental concept in Material Science, resilience is used to describe 
the ability of a material to bounce back to its initial state after defor
mation [18]. Then, resilience is regarded as an emergent property 
describing the ability of a system to maintain its performance under 
disruptive events [19–22]. Various definitions of resilience have been 
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proposed. Haimes [23] defined resilience as the system’s ability to resist 
a significant disruption within acceptable degradation parameters and 
recover within an acceptable time and composite costs and risks. Francis 
and Bekera [24] regarded resilience as the system ability concerning 
four tasks: absorption, adaptation, restoration, and learning. The 
American Society of Mechanical Engineers (ASME) views resilience as 
the system’s ability to deal with external and internal disturbances 
without interrupting system functions. Hosseini et al. [13] surveyed 
papers published from 2000 to 2015. The results show that because 
different systems have different characteristics, there is no unified and 
standard concept of resilience. Cottam et al. [25] reviewed the engi
neered systems resilience literature from 1996 to 2018. They provided 
the following definition of system resilience: “successfully complete its 
planned mission(s) in the face of disruption(s) (environmental or 
adversarial), and has capabilities allowing it to complete future missions 
with evolving threats successfully”. 

Based on definitions of resilience, various resilience assessment 
methods have been developed according to system characteristics and 
resilience definition. Marino and Zio [11] proposed a generic framework 
and probabilistic methodology for resilience analysis of complex natural 
gas pipeline networks. The maximum gas supply capacity is regarded as 
the system performance indicator to assess the resilience of the system. 
Fang and Zio [26] developed an adaptive robust optimization-based 
framework for resilience assessment and improvement of interdepen
dent critical infrastructure systems The probability of failure and re
covery of system components is employed to analyze the impacts of a 
disruptions. Sun et al. [27] presented a DBN-based approach to assess 
safety barriers resilience for a process system. The system availability is 
considered a system performance indicator and used to assess the system 
resilience. An et al. [28] developed a comprehensive resilience assess
ment approach for an emergency response system. System-Theoretic 
Accident Model and Processes (STAMP) model is used to determine 
inappropriate control actions and develop dynamic Bayesian network 
(DBN) model. The system availability is regarded as the system perfor
mance indicator, which can be obtained from the DBN model. Kammouh 
et al. [29] introduced an indicator-based methodology to assess the 
resilience of engineering systems. Each indicator has different 
sub-indexed. Dynamic Bayesian network is utilized to describe the logic 
relationship between resilience, the indicators and the various 
sub-indexes. On the basis of that, the system resilience can be assessed. 
Tong and Gernay [22] proposed a probabilistic resilience assessment 
methodology for process industry facilities using DBN. The state of 
storage tanks is viewed as the system performance indicator, which can 
be quantified by DBN and probit model. The resilience of a storage tank 
farm is assessed based on the system performance. Cai et al. [30] 
introduced a DBN-based methodology to assess system resilience under 
different types of disruptions. The availability is defined as system 
performance indicator and estimated by a DBN model. Then, system 
resilience is obtained according to system performance. Zinetullina et al. 
[31] proposed an integrated resilience assessment approach for chemi
cal process systems based on Functional Resonance Analysis Method 
(FRAM) and DBN. FRAM is used to identify the critical coupling of the 
system. DBN is used to quantify system performance and system 
resilience. 

Although various resilience assessment approaches have been pro
posed, the intricate interaction and coupling relationships between 
system components are rarely considered. In addition, according to the 
above literature review, the resilience assessment is carried out by using 
availability/reliability-based performance indicator. However, the 
source of reliability data is uncertain. For example, the data comes from 
a reliability history database or expert opinion. Although a variety of 
methods to deal with data uncertainty have been proposed, the influ
ence of uncertainty on results cannot be completely eliminated. Besides, 
the process parameters of process systems have multi-dimensional 
characteristics, and the process parameters change complicated after 
being affected by disruptions. Reliability/availability cannot accurately 

quantify and express the complex dynamic response mechanism of 
various parameters under the influence of disruptive events. 

Towards this end, to surmount the deficiency of existing methods, we 
introduce a process parameters-based performance indicator to conduct 
resilience assessment of process systems from techno-centric perspec
tive. Compare to availability/reliability-based performance indicator, it 
has three advantages: (1) it can be obtained from the time-dependent 
data of the system, which means that the impact of data uncertainty 
can be largely avoided; (2) the process parameters are able to intuitively 
reflect the impact of disruptive events on system performance. (3) 
resilience refers not only to the system’s ability to maintain operational 
functionality in the face of disruptions (a perspective closely associated 
with reliability) but also encompasses the system’s capacity to adapt and 
recover from such events, restoring its original state or evolving into a 
new, more robust state. 

The proposed methodology aims to assess the resilience of a process 
system considering components interactions and the impact of disrup
tions directly on the system process parameters. Firstly, a P-graph model 
is developed to describe the interactions between components and 
qualitatively evaluate the impact of component failure caused by dis
ruptions. Then, a Markov process model is introduced for reflecting the 
state transition process of components and quantify the required 
maintenance time for those affected by disruption. Thirdly, a process 
simulation model is constructed and run to obtain the process parame
ters of the system during the absorption, adaptation, and restoration 
phases under a disruption. By normalization of the system time- 
dependent process parameters, the system performance response func
tion (PRF) is obtained. Finally, a resilience metric is proposed to assess 
the resilience of the process system based on PRF. 

The main contributions of the study are:  

(1) The interactions between components are analyzed by using a P- 
graph model, which offers an effective way to represent the 
impact of a component failure on the system process and to 
qualitatively determine the importance of each component.  

(2) To avoid the impact of data uncertainty and directly reflect the 
impact of disruptions on the system performance, a process 
parameters-based indicator is proposed to represent system per
formance based on time-dependent system process data.  

(3) Different combinations of system performance response function 
and recovery time may give a similar resilience value [32]. We 
propose a procedure to compare system resilience. 

The remainder of the paper is organized as follows. The proposed 
resilience assessment methodology, including the P-graph model, 
simulation model and the resilience metric, is presented in Section 2. A 
case study is conducted in Section 3, Finally, Section 4 concludes the 
paper. 

2. The proposed methodology 

Fig. 1 presents the framework of the proposed methodology, which 
mainly includes four steps, as follows. 

Step I: System structure analysis. The P-graph method is used to 
identify interactions of components and analyze the system structure 
according to the process flow of the system. Then, the functions and 
redundancy settings of each component are determined. Subsequently, 
the impact on the system of the failure of each component is analyzed to 
qualitatively determine the importance of each component. The more 
important a component is, the greater the impact on the system if it fails. 
On this basis, the results of system structure analysis can be used to help 
operators identify potential disruptive events. 

Step II: Disruption impacts analysis. According to the qualitative 
importance analysis in step I, the impacts of potential disruptions are 
assessed. A Markov model is employed to represent the degradation and 
maintenance processes, and the maintenance time required by a 
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component after disruptions is computed. 
Step III: Process simulation using HYSYS. The maintenance time 

after component failure obtained from Step II is used as the input of 
process simulation, and the time-dependent parameters of the system 
during this period and its change over time are obtained and analyzed by 

the process simulation software. In this paper, the process simulation 
software, HYSYS, is employed to obtain time-dependent process data 
under disruptive events. 

Step IV: Resilience assessment. The system PRF can be generated 
by normalizing time-dependent process data obtained from Step III. 

Fig. 1. The proposed methodology for assessing the system resilience.  
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Based on the PRF, we propose a novel resilience assessment methodol
ogy to assess and manage system resilience. Subsequently, the targeted 
measurements of improving system resilience are developed. 

2.1. System structure analysis based on P-graph method 

Analyzing the structure of a process system and identifying the 
important component play a key role in resilience assessment and 
management. The P-graph method is an effective way to analyze the 
structure of process systems [33]. According to process flow diagram 
(PFD), it enables to present complex production processes and the 
redundancy settings of the various system components in the form of 
network diagrams. In other words, P-graph is the simplified version of 
PFD. Compared with PFD, it can intuitively present the relationship 
between the various components of the system and the redundancy 
situation, which is convenient to analyze the interactions of system 
components and impact of disruptions on the system process. 

P-graph consists of four main elements: raw material nod, operation 
unit node, production node, and material transfer arc. An example of the 
P-graph method is shown in Fig. 2. As can be seen from Fig. 2, two 
streams of raw materials F1 and F2 enter components C1 and C7 
respectively. F1 is transported to components C2, C3, C5 and C6 after 
being processed by component C1, and then mixed with materials of 
component C9. Finally, production M is produced after being processed 
by C9. The solid black line in Fig. 2 shows the production process under 
normal operating conditions of the system. The black dotted line in
dicates the working flow of redundant devices. When C3, C7, and C9 are 
malfunctioning, the corresponding redundant device is activated to 
ensure the normal operation of the system. However, when a non- 
redundant design device fails (such as C1), it can interrupt the produc
tion process of the system and affect the delivery of production M. The P- 
graph method can be employed to express the structure of a complex 
system in an intuitive way and analyze the complex interactions be
tween components and display the redundancy settings of each 
component in the system. On this basis, the importance of component 
and potential disruptive events can be determined. 

2.2. Disruption impacts analysis based on Markov process modelling 

Let Y(t) be a random process with a set of performance states S={S0, 
S1, …, Sk}. S0 represents the highest performance state of the system and 
Sk refers to the lowest performance state of the system. Assume the 

system performance state at time t is Y(t)=i; then, the probability that 
system performance state is j at time t + 1 is: 

P{Y(t+1) = j|Y(t),Y(t − 1), ⋅⋅⋅,Y(t2),Y(t1)} (1)  

As well known, if Eq. (1) satisfies Eq. (2), then the process is regarded as 
a Markov process. The future state of a random process with Markov 
properties is only related to its current state and not to the past state: 

P{Y(t+1)= j|Y(t),Y(t − 1), ⋅⋅⋅,Y(t2),Y(t1)} = P{Y(t+1)= j|Y(t)= i}
(2)  

The system state changes following disruptive events and maintenance 
activities. If the system is affected by disruptions, the system state may 
degrade from Si to Sj with rate λi, j. The maintenance activities are 
conducted when the system performance state transfers to failure state 
[34]. When the system is repaired, the state of the system may jump back 
from Sj to Si with rateµj, i. The state transition rate matrix A of the system 
can be expressed as Eq. (3): 

A =

⎡

⎢
⎢
⎣

q1,1q1,2⋯q1,k
q2,1q2,2⋯q2,k
⋮⋮⋱⋮
qk,1qk,2⋯qk,k

⎤

⎥
⎥
⎦ (3) 

The state transition probability matrix P(t) of the system is as Eq. (4): 

P(t) =

⎡

⎢
⎢
⎣

P1,1(t)P1,2(t)⋯P1,k(t)
P2,1(t)P2,v2(t)⋯P2,k(t)
⋮⋮⋱⋮
Pk,1(t)Pk,2(t)⋯Pk,k(t)

⎤

⎥
⎥
⎦ (4)  

qi,j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λi,j, i < j

−

(
∑i− 1

j=0
μi,j +

∑k

j=i+1
λi,j

)

, i = j

μi,j, i > j

(5)  

where, qi, j represents the transition rate from state Si to state Sj, which is 
determined by failure rate λ and repair rate µ. Pi, j represents the tran
sition probability from state Si to state Sj and Pi,i(t) = 1 −

∑k
j=0,j∕=iPi,j(t), 

qi,i =
∂Pi,i(t)

∂t and qi,j =
∂Pi,j(t)

∂t [35]. 
Taking a component with four states as an example, as shown in 

Fig. 3. According to Eqs. (3) and (5), the state transition rate matrix of 
the component can be expressed as: 

Fig. 2. Illustrative example of a P-graph.  
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A =

⎡

⎢
⎢
⎣

q1,1q1,2q1,3q1,4
q2,1q2,2q2,3q2,4
q3,1q3,2q3,3q3,4
q4,1q4,2q4,3q4,4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

− λ1,2λ1,200
μ2,1 − μ2,1 − λ2,3λ2,30
0μ3,2 − μ3,2 − λ3,4λ3,4
00μ4,3 − μ4,3

⎤

⎥
⎥
⎦ (6)  

2.3. Process simulation 

The structure of process systems is complex. In addition, a large 
number of dangerous substances are involved in the process of pro
duction, processing and storage. The physical experiment to explore the 
impact of disruptions on process system is accompanied by great risks 
and costs. Based on the process flow, the process simulation software can 
be used to "reproduce" the process system by compiling the physical 
parameters, state functions, differential and integral functions of the 
whole process flow through computer language [36]. In particular, 
Aspen HYSYS is widely used in petrochemical, biopharmaceutical and 
energy fields [37,38]. 

Real-time values of the system process parameters (e.g., pressure, 
temperature, liquid level, and etc.) under disruptive events can be ob
tained from HYSYS simulations. Since the performance of the process 
system is represented by the system process parameters, it is necessary to 
normalize the real-time data to determine system performance curve. 
According to the expected value, actual value and upper and lower limit 
values of the system performance indicator, the real-time data is pro
cessed by Eq. (7) when Prt is greater than P*. Otherwise, the real-time 
data is processed by Eq. (8) when Prt is less than P*. The normalized 
data is the real-time performance data of the system, and the perfor
mance range is [0, 1]. 0 indicates that the system is in the failure state, 
and 1 represents that the system is in the highest performance state. 

ψ(t) = 1 −
Prt − P∗

PMax − P∗
(7)  

ψ(t) = 1 −
P∗ − Prt

P∗ − PMin
(8)  

whereψrefers to system performance after normalization, Prt is the 
measured value of the system parameters; P* is the expected value for 
normal working conditions; PMax is the maximum acceptable upper 
limit, beyond which serious safety or production problems can be 
caused; PMin is the minimum acceptable lower limit. 

2.4. Resilience assessment 

As explained in the previous section, the system performance curve 
(Fig. 4), can be obtained from process simulation and normalization. In 
some studies, resilience is indicated by the ratio of the area under the 
performance curve P(t) to the area under the initial performance curve 
from T0 (disruption occurrence time) to TR (time to recovery to a new 
equilibrium state) [15,27,39,40]. 

Accordingly, the instantaneous resilience can be expressed as: 

Я
(
t
⃒
⃒ej) =

Φ
(
t
⃒
⃒el
)
− Φ

(
td
⃒
⃒el
)

Φ(t0) − Φ(td|el)
(9)  

where Я(t|ej) indicates system resilience at time t; Φ(t|el) represents 
system performance at time t; Φ(td|el) is the lowest performance of the 
system; Φ(t0) indicates the initial performance of the system before the 
occurrence of the disruption. Eq. (9) can be changed to Eq. (10) by 
integrating over time: 

Я(Tx) =

∫ Tx
T0

P(t)dt
∫ Tx

T0
P0dt

=

∫ Tx
T0

P(t)dt
P0(Tx − T0)

(10)  

where Я(Tx) refers to the resilience of the system over the considered 
time position; P0 indicates the system initial performance before dis
ruptions occur; PE indicates a new equilibrium performance of the sys
tem; Tx is the time between T0 and TR (T0< Tx < TR); T0 represents the 
occurrence time of the disruption. 

Clearly, different combinations of P(t) and TR may lead to the same 
resilience value Я(TR) [32], although with different characteristics of 
system resilience. To address this issue, we propose a resilience com
parison procedure, which can be seen Step IV in Fig. 1. Resilience con
sists of three primary capacities: absorption, adaptation and restoration 
[41,42]: 

Fig. 3. The illustrative example of Markov model.  

Fig. 4. The two different system performance curves.  
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• Absorption is the intrinsic ability of the system to resist damage of 
disruptions. The absorption capacity is dependent on system struc
ture. It can absorb effects of disruptions on system and mitigate the 
consequences. High absorption capacity can reduce the probability 
of system failure and mitigate system performance loss. The stronger 
the absorption capacity of the system, the less the system is affected 
by disruptions.  

• Adaptation is the ability of a system to adapt to disruptions. High 
adaptation capacity indicates a higher level of performance after 
disruption.  

• Restoration capacity refers to the ability of a system to restore its 
performance to a new equilibrium state after being affected by dis
ruptions. It is dependent on external maintenance resources. 

It can be seen from descriptions of three different capacities, ab
sorption and adaptation capacity depend on system structure and or
ganization ([43]; Sun et al., 2022). If the system has a strong absorption 
and adaptation capacity, it can reduce the impact of disruptions on the 
system performance and reduce the dependence of the system on the 
restoration capacity. Absorption and adaptation belong to the intrinsic 
capacities of the system. On the contrary, restoration capacity depends 
on external maintenance resources. From the perspective of intrinsic 
safety, the absorption and adaptation capacity are given higher priority 
than the recovery capacity. 

When different combinations of P(t) and TR lead to simialr resilience 
values Я(TR), absorption and adaptation capacity can be used to 
differentiate system resilience. Take system performance curve P1(t) and 
P2(t) of Fig. 4 as an example. For P1(t), the disruption occurrence time is 
T0; the process of absorption and adaptation is from T0 and T1; the 
restoration period is between T1 and TR, 1; the absorption and adaptation 
capacity Я(T1) can be represented by the ratio of the area under the 
performance curve P1(t) to the area under the initial performance curve 
from T0 to T1. For P2(t), the disruption occurrence time is T0; the process 
of absorption and adaptation is from T0 and T2; the restoration process is 
between T2 and TR, 2; the absorption and adaptation capacity Я(T2) can 
be represented by the ratio of the area under the performance curve P2(t) 
to the area under the initial performance curve from T0 to T2. Therefore, 
when different combinations of P(t) and TR have a same resilience value 
Я(TR), the resilience of the system can be differentiated by comparing 
the values of Я(T1) and Я(T2): 

Я(T1) =

∫ T1
T0

P1(t)dt
∫ T1

T0
P0dt

(11)  

Я(T2) =

∫ T2
T0

P2(t)dt
∫ T2

T0
P0dt

(12)  

When Я(T1) is greater than Я(T2), it means that P1(t) is better than P2(t) 
in the view of intrinsic safety, and vice versa. However, there are also 
cases in which Я(T1) equals Я(T2). In this situation, restoration capacity 
is compared to differentiate the system resilience. For this, Sharma et al. 
(2020) proposed Center of Resilience and Resilience Bandwidth based 
on probability theory and mechanics. The recovery curve Q(τ) is defined 
as Cumulative Resilience Function (CRF). When the CRF is a continuous 
function of time, the Instantaneous Rate of the Recovery Progress (IRRP) 
can be obtained by the time derivative of the CRF. IRRP is regarded as q 
(τ)=dQ/dτ for all τ∈[0, TR], which is called Resilience Density Function 
(RDF). TR indicates the whole recovery time. Then, the recovery process 
over any time interval (τu, τv] ⊆ [0, TR] is shown in Eq. (13). When the 
CRF is a step function or a combination of continuous function and step 
function of time, the recovery process over any time interval can be seen 
as: 

Q(τu < τ< τv) =

∫τv

τu

q(τ)dτ (13) 

The Center of Resilience ρQ, which combines residual performance 
and recovery time, is defined as: 

ρQ :=

∫ TR
0 τq(τ)dτ
∫ TR

0 q(τ)dτ
=

Qres

Qtar
ρQ,res +

Qres1

Qtar
ρQ,res1 (14)  

where Qres represents the residual performance of system, Qtar equals to 
Q(TR), ρQ,res=τ0, Qres1= Qtar - Qres. Due to τ0 = 0, Eq. (14) can be con
verted into Eq. (15): 

ρQ =
Qres1

Qtar
ρQ,res1 (15) 

The Resilience Bandwidth χQ, as a measure of dispersion of recovery, 
is defined as: 

χQ
2 :=

∫ TR
0 (τ − ρQ)

2q(τ)dτ
∫ TR

0 q(τ)dτ
(16) 

A small value of χQ means that the recovery process is finished during 
a short period around ρQ; on the contrary, a large value indicates that the 
recovery process is spread over a long time. Once the system function
ality curve is obtained, the ρQ and χQ can be determined based on Eqs. 
(15) and (16). 

3. Case study 

Due to its easy storage and transportation, large gas-liquid expansion 
ratio and high energy efficiency, Liquefied Natural Gas (LNG) is known 
as the cleanest fossil energy on Earth [44,45]. The LNG terminal system 
comprises four key components: the unloading system, storage system, 
Boil Off Gas (BOG) treatment system and gasification system. The role of 
the unloading system is to transfer the LNG on board to the storage tank 
through the unloading arms. To manage BOG and prevent overpressure 
in the storage tank, the BOG treatment system comes into play. Its pri
mary role involves compressing BOG and harnesses the cold energy of 
LNG to condense BOG back into LNG, minimizing production losses. The 
recondensed LNG, along with the LNG in the storage tank, is then 
transported to the LNG gasification system to transform the LNG into 
natural gas. This conversion serves to meet the energy requirements of 
downstream users [46]. 

3.1. System structure analysis 

Taking the LNG terminal system as an example, the P-graph method 
is utilized to analyze the structure of the system, as shown in Fig. 5. The 
material F1 (LNG) enters the storage tank C1, and the BOG generated in 
C1 is compressed by the compressor C2 and C3 (C4 is the standby 
compressor) and then transported to the condenser C5. The cold energy 
of LNG is utilized to reliquefy the compressed BOG into LNG in C5. The 
liquefied LNG and the LNG in C1 are transported to the vaporizer C11 
(C12 is the standby vaporizer) through high pressure pump C6 (C7 is the 
standby pump). After heat exchange in the vaporizer C11 with seawater 
transported by sea water pumps C8 and C9 (C10 is the standby sea water 
pump), the low-temperature LNG is changed into product M (natural 
gas), thus meeting the energy needs of downstream users. The P-graph 
analysis process is shown in Fig. 5, and the meanings of symbols in Fig. 5 
are shown in Table 1. 

Fig. 5 shows the system production process and the redundancy of 
each component. According to the production process, composition and 
redundancy of each component of the LNG terminal system, the influ
ence of each component failure on the system is analyzed. When C1 fails, 
the whole process will be terminated, as shown in Fig. 6. With no source 
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of feedstock, the entire LNG processing and transportation process is 
terminated, and the product M cannot be generated. Therefore, ensuring 
the safety of LNG storage tanks is the basis for ensuring the safe pro
duction of LNG terminal systems. The high pressure, low pressure and 
high liquid level inside the LNG tank of the LNG terminal are the main 
causes of the LNG storage tank accidents, and the consequences of the 
accidents are severe. Therefore, when analyzing the LNG terminal sys
tem, the change of physical parameters such as the pressure and liquid 
level in the LNG tank with time should be considered. 

To deal with the BOG in the LNG tank, there are three compressors in 
the compressor system. The number of working compressors is deter
mined by the LNG tank pressure during normal operation. If the tank 
pressure rise caused by BOG is under normal level, only one compressor 
C2 is needed. If the tank pressure rise due to BOG is too large, the two 
compressors C2 and C3 should be activated at the same time to ensure 
the efficiency of handling BOG. C4 is the backup compressor in case of 
the simultaneous failure of C2 and C3. BOG is discharged through flare 
system or safety valve when the whole compressor system fails. The 

startup and shutdown of the compressor are controlled by the pressure 
controller according to the pressure inside the tank. Compressor failure 
scenarios can be divided into three categories: compressor C2 fails, 
compressor C2 and C3 fail, and compressor C2, C3 and standby 
compressor C4 fail simultaneous. The system structure analysis of three 
different scenarios is shown in Fig. 7. 

We also analyze the impact of other component fault (e.g., high- 
pressure pump fault and sea water pump) on the system process. The 
results show that those scenarios can cause production disruptions, but 
they do not lead to serious accidents. 

From the above analysis, it can be seen that LNG tank is the pivot of 
the entire production process. If an LNG storage tank accident occurs, it 
will not only interrupt the production but also cause serious casualties, 
property losses and environmental damage. Therefore, it is critical to 
ensure the safety of LNG tanks. Since compressor failure may lead to 
tank overpressure accidents, compressor failure is regarded as the 
disruptive event for the LNG terminal system, and the resilience of the 
LNG terminal system under different failure combinations is evaluated. 

3.2. Disruption impacts analysis 

The P-graph method is used to analyze the system structure, in
teractions between components, and determine the potential disruption 
(i.e., compressors fail). On this basis, the Markov model is established to 
analyze and quantify the state transition and required maintenance time 
after the disruptive events. After that, the time required for the com
pressors to return to normal operation can be obtained. The time is taken 
as the time point to restart the compressors. 

The Markov model of the compressor state transition is shown in 
Fig. 8. The compressor has four states: S indicates that the device is in a 
safe state; D1 and D2 represent the intermediate states of the degrada
tion process. The state of D2 is worse than that of D1, but the compressor 
can still run when it is in the D1 and D2 states. F refers to fault state, 
which means that the compressor cannot run properly. The transition 
process between the various states of the compressor is determined by 
the failure rate λ and the repair rate µ, as shown in Fig. 8. It is assumed 
that failure rate λ and repair rate µ follow exponential distributions [30, 
47]. 

According to Eqs. (5) and (6), the state transition rate matrix A of 
compressor can be depicted as: 

A =

⎡

⎢
⎢
⎣

qS,SqS,D1qS,D2qS,F
qD1,SqD1,D1qD1,D2qD1,F
qD2,SqD2,D1qD2,D2qD2,F
qF,SqF,D1qF,D2qF,F

⎤

⎥
⎥
⎦ (17)  

A =

⎡

⎢
⎢
⎣

− (λ1 + λ4 + λ5)λ4λ5λ1
μ4 − (λ2 + λ6 + μ4)λ6λ2
μ5μ6 − (λ3 + λ5 + μ6)λ3
μ1μ2μ3 − (μ1 + μ2 + μ3)

⎤

⎥
⎥
⎦ (18)  

The disruptive event of the system is the compressor failure. After 
compressor failure, a certain response time is required, that is, the time 
required for resource allocation. When all the preparatory work is 
completed, maintenance activities are conducted to repair the mal
functioning compressor. The time required for the compressor to recover 
from the failure state F to the safe state S is determined by the Markov 
process model. The repair rate of the compressor can be derived from 
OREDA database and related literature [48,49]. According to the rele
vant data, the repair rate µ of the compressor is 0.076/h. Because the 
failure rate λ and repair rate µ follow exponential distributions [30], the 
time required to repair the malfunctioning compressor to a safe state can 
be depicted as Eq. (19): 

t = −
ln(1 − PFS)

μ (19)  

Fig. 5. Structure analysis of LNG terminal system based on P-graph method.  

Table 1 
Meaning of the symbols in the LNG terminal system structure analysis diagram.  

Symbols Description Symbols Description 

F1 LNG C6, C7 High pressure pumps 
F2 Sea water C8, C9, C10 Sea water pumps 
C1 LNG tank C11, C12 Vaporizers 
C2, C3, C4 Compressors M Natural gas 
C5 Condenser — —  

Fig. 6. Structure analysis of the system in the case C1 fails.  
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where the PFS indicates the probability of transition of from state F to S. 
The results show that it takes 30.30 h to repair the compressor from 

the failure state F back to the safe state S. The compressor availability to 
recover from the failure state F to the safe state S over time is shown in 
Fig. 9. After the maintenance time is determined, the maintenance time 
is used as the restart time of the compressor in the process simulation to 
investigate the impact of disruptive events on the performance of the 
LNG terminal system and to quantify the system resilience. 

3.3. System simulations 

On the basis of determining the system parameters, the LNG terminal 
system simulation model is established by using the process simulation 
software ASPEN HYSYS, as shown in Fig. 10. The main input data, 

detailed settings and LNG compositions information are shown in Ta
bles 2 and 3. According to the analysis in Section 3.1, compressor failure 
will lead to the accumulation of BOG in the LNG tank and the rise of 
pressure in the LNG tank, thus affecting the system safety. Therefore, the 
pressure in the LNG tank is selected as the safety performance indicator 
of the system. On this basis, the proposed resilience assessment method 
is applied to quantify the resilience of the LNG terminal system. 

Without loss of generality, assume that the required response time of 
the system is 4 h, to complete task of the fault detection, disruption 
investigation and solution development and maintenance resources 
allocation. Due to the required maintenance time is 30.30 h, and thus the 
total time from the failure to the maintenance of the compressor to the 
safe state is 34.30 h. Compressor failure scenarios consist of three 
different types according to different failure combinations (i.e., scenario 
1: minor disruption, compressor C2 failure; scenario 2: moderate 
disruption, simultaneous failure of C2 and C3; scenario 3: severe 

Fig. 7. Structure analysis of different compressor fails.  

Fig. 8. The Markov model for the compressor state transition process.  

Fig. 9. Schematic diagram of maintenance time and availability of compressor.  
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disruption, compressor system failure). Different scenarios have 
different disruption intensity and different impacts on system 
performance. 

For the compressor failure scenario, the internal pressure of LNG 
tank is regarded as the performance indicator of the system, and the real- 
time data of LNG tank pressure under the disruptive condition is ob
tained by the process simulation software. The upper limit of the oper
ating pressure of the LNG tank is 126 kPa, thus 126 kPa is viewed as the 
maximum acceptable pressure of the tank. Assuming that the disruptive 
event occurs at time 0. When the compressor C2 fails and the compressor 
C2 and C3 fail simultaneously, the tank pressure changes with time are 
shown in Fig. 11. 

As can be seen from Fig. 11, when compressor C2 fails (scenario 1), 
the pressure inside the tank will not be affected by this disruption due to 
the presence of backup compressor C4. However, when C2 and C3 fail at 
the same time (scenario 2), only C4 can process the BOG generated in the 
tank, and the processing capacity is greatly affected. The BOG that is not 
processed in time exists in the tank, resulting in the tank pressure rising 

over time. At the 34.30 h when the compressor recovery to work is 
completed, the maximum tank pressure caused by the compressor fail
ure is 122.57 kPa, which is lower than the maximum operating pressure 
of 126 kPa, as shown in Fig. 11. According to the simulation results, it 
takes 60.70 h for the tank pressure to recover to the initial value. 
Therefore, the total time required for the tank pressure to recover to the 
original value due to the disruptive event (scenario 2) is 95 h. The 
changes of the pressure in the tank during the whole process are shown 
in Fig. 11(a). Eq. (7) is applied to normalize the real-time data of tank 
pressure. The normalized data is used to generate the system perfor
mance curve, which can be seen in Fig. 11(b). 

For a compressor system failure (Scenario 3), the tank pressure 
changes over time are shown in Fig. 12(a). As can be seen from the 
Figure, since the BOG generated in the LNG tank could not be processed 
in time, the tank pressure increases dramatically over time, and reaches 
the maximum operation pressure 126 kPa at 24.17 h. The maintenance 
time required for the compressor is 30.30 h, which is longer than the 
time required for the tank pressure to reach the maximum acceptable 
pressure of 126 kPa. If the flare system and safety valve fail in this 
scenario, the pressure of the tank will reach the maximum design 
pressure of the tank 130 kPa at the 35th hour. Under this scenario, the 
pressure in the tank will rise rapidly, and the failure of the compressor 
system will lead to the overpressure accident of the LNG tank. The 
system performance over time is shown in Fig. 12(b). 

3.4. Quantification of the system resilience 

(1) System resilience assessment under different disruptive 
events 

According to the established resilience assessment method of process 
system, the system resilience under three different scenarios is evaluated 
based on the obtained system performance curve. Since the system takes 
different lengths of time to recover to the safe state under the three 
various scenarios, it is necessary to calculate and compare the system 
resilience under different scenarios. 

Fig. 10. The simulation model of the LNG terminal system.  

Table 2 
Main operation parameters of LNG terminal system.  

Parameters Temperature/ 
◦C 

Pressure/ 
kPa 

Flow rate/ 
(kg⋅h− 1) 

Input of LNG tank − 161 116 1.07 × 106 

Output of LNG tank − 158.5 116 1.046 × 106 

Output of BOG − 158.5 116 2.4 × 104 

Input of compressor − 158.5 116 1.2 × 104 

Output of compressor − 70.73 700 1.2 × 104 

Input of low-pressure 
pump 

− 158.5 116 1.046 × 106 

Output of low-pressure 
pump 

− 158.5 800 1.046 × 106 

Input of high-pressure 
pump 

− 153.4 600 1.069 × 106 

Output of high-pressure 
pump 

− 149.4 7800 1.069 × 106  

Table 3 
LNG compositions information.  

Compositions Methane Ethane Propane Normal butane Isobutane Pentane and others Nitrogen 

Molar percentage (Mol%) 89.39 5.76 3.3 0.66 0.78 0.00 0.11  
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Scenario 1: Minor disruption (compressor C2 failure). In this sce
nario, the system performance curve is shown in Fig. 11(b), and the 
expression of the performance response curve P1(t) is shown in Eq. (20). 
On this basis, Eq. (10) is used to calculate the system resilience under 
this scenario. Since the performance of the system did not change after 
C2 failure, the system resilience is 1, as shown in Fig. 13: 

P1(t) = 1, 0 ≤ t ≤ 34.3h (20) 

Scenario 2: Moderate disruption (simultaneous failure of compres
sors C2 and C3). Fig. 11(b) shows the system performance curve when 
C2 and C3 are faulty at the same time. When C2 and C3 fail simulta
neously, the backup compressor C4 is activated to deal with the BOG in 
the tank. In this situation, however, the processing efficiency is lower 
than before, resulting in an increase in tank pressure during this period 
and a decrease in system performance. When C2 and C3 are repaired to a 
safe state, the processing efficiency of the BOG returns to the initial 
value, and the pressure in the tank gradually returns to the expected 
value. The expression of the system performance curve P2(t) under this 
scenario is obtained by using the fitting technique, as shown in Eq. (21). 
According to Eq. (10), the system resilience within 95 h is 0.664, as 
shown in Fig. 13. 

P2(t) =
{

1.00074 − 0.02624⋅t + 2.01791 × 10− 4⋅t2, 0 ≤ t < 34.3h
− 0.39269 + 0.02531⋅t − 1.12636 × 10− 4⋅t2, 34.3 ≤ t < 95h

(21) 

Scenario 3: Severe disruption (the whole compressor system failure). 

When the compressor system is faulty, BOG accumulates in the storage 
tank. If the flare system and safety valve fail to work, the LNG tank 
pressure reaches the maximum operating pressure in 24.17 h, and the 

Fig. 11. Tank pressure (a) and performance (b) change with time in scenario 2.  

Fig. 12. Real-time values of the tank pressure (a) and system performance curve (b) after compressor system failure.  

Fig. 13. System resilience in different disruption events.  
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system performance decreases to 0. Fig. 12(b) shows the performance 
response curve of this scenario. In order to accurately quantify the sys
tem resilience, the mathematical expression of the performance 
response curve was obtained by using data fitting technology, as shown 
in Eq. (22). On this basis, Eq. (10) is applied to quantify the system 
resilience, as shown in Fig. 13: 

P3(t) =
{

0.97812 − 0.04118t, 0 ≤ t ≤ 24.17h
0,24.17 ≤ t ≤ 95h (22) 

As can be seen from Figs. 11–13, when C2 compressor fails, the 
redundant structure of the system can fully absorb the disruption, so that 
the performance of the system is not affected by the disruptive event 
(Scenario 1). When C2 and C3 fail simultaneously (Scenario 2), the 
absorption capacity of the system can partially absorb the impact caused 
by the disruption, so that the system can continue to run, and the re
sidual effects of the disruption need to be dealt with through adaptation 
and restoration. When the entire compressor system fails (Scenario 3), 
the intensity of the disruptive event exceeds the absorption capacity of 
the system, leading to the pressure in the tank rising rapidly in a short 
time. As a result, the system performance declines rapidly, and if the 
safety valve and flare system fail to work, it will cause a serious accident. 
Those three different scenarios provide insights into the system’s 
thresholds and the effectiveness of different resilience-enhancing stra
tegies under severe stress conditions. Good resilience is characterized by 
minimal performance degradation following disruptions and a rapid 
return to a new equilibrium state. Essentially, a highly resilient system 
experiences less fluctuation in performance during disruptive events. 

The intensity of different disruptive events is different, leading to 
various impact degrees on the system performance. The absorption ca
pacity of the system can reduce the impact of disruptions on the system 
performance. When the disruption intensity is within the processing 
range of the system absorption capacity, the absorption capacity can 
fully or partially resist the influence of the disruptive event, reduce the 
performance loss of the system, and thus reduce the dependence of the 
system on the adaptation and restoration capacity. The absorption ca
pacity of the system is dependent on the system structure. The absorp
tion capacity of the system will change with the structure of the system. 
System structures can be optimized to improve the system’s ability to 
cope with disruptive events, so as to improve the resilience of the system 
and ensure the system safety and production continuity. 

When the disruption intensity is too large, the disruption will cause 
serious impact on the system performance, and even make the whole 
system fail. In this case of serious disruption, absorption and adaptation 
capacity have little impact on the system resilience. For example, in 
scenario 3, the compressor system fails, and the BOG in the LNG tank 
cannot be handled in time, resulting in increasing pressure in the tank. If 
the safety valve and flare system also fail, it may lead to the occurrence 
of overpressure accidents in the tank. In this situation, the system 
resilience depends on the restoration capacity of the system. The 
stronger the restoration capacity, the faster the failed compressor can be 
restored to the safe state, so as to timely deal with the BOG and prevent 
the occurrence of overpressure accidents. 

It is worth noting that although the disruptive events are equipment 
failures, there are also human and organizational factors involved in 
how to adapt and recover from the failure state to normal operation after 
disruptions. For example, the emergency response time and repair rate 
are dependent on human and organizational factors. With good training 
and timely emergency response, the system can quickly recover from 
disruptions to new equilibrium state. 

(2) Sensitivity analysis: Analysis of the influence of different 
restoration capacities on system resilience 

Sensitivity analysis is an important step to verify the stability of the 
proposed methodology. Since scenario 3 has a large disruption intensity 
and a serious impact on the system, scenario 3 is selected to explore the 
effects of different absorption, adaptation and restoration capabilities on 

system performance and resilience. The system resilience is composed of 
absorption, adaptation and restoration capabilities, and the absorption 
capacity depends on the system structure. Since the resilience of the 
system under the different compressor failure combination scenarios in 
the LNG terminal system has been analyzed, as shown in Fig. 13, the 
influence of different absorption capacities on the system resilience will 
not be analyzed here. 

Adaptation capacity determines the response time, and different 
response times determine the time from the moment of failure to the 
start of maintenance of the compressor. However, the maintenance time 
of the compressor is 30.30 h, whereas under the influence of scenario 3, 
the system performance drops to 0 in 24.17 h. Even if timely emergency 
response is carried out under scenario 3, the maintenance task is still 
unable to be completed before 24.17 h. Under this disruption, restora
tion capacity has the greatest impact on system resilience. Therefore, the 
effects of different restoration capacities on system performance and 
resilience are mainly explored here. 

Under normal condition, the compressor repair rate μ is 0.076/h, and 
the time required to repair the faulty compressor to the safe state is 30.3 
h. With the improvement of restoration capability, the compressor 
repair rate increases. The corresponding maintenance time for different 
repair rates is shown in Table 4. 

Under the condition that the absorption and adaptation capacity of 
the system remain unchanged, the influence of different restoration 
capacities on tank pressure, system performance and resilience is 
explored by changing repair rate from 1 to 3 times. The results are 
shown in Figs. 14 and 15. 

The influences of different restoration capabilities on tank pressure 
and system performance are shown in Fig. 14. It can be seen from 
Fig. 14, when the compressor repair rate is μ and 1.5μ, the total resto
ration time is 34.40 h and 24.20 h, respectively. The maintenance task 
cannot be completed before the maximum acceptable pressure inside the 
tank reaches 126 kPa. Under these two restoration capabilities, the 
system performance decreases to zero at 24.17 h. Based on Eq. (10), the 
system resilience is 0.127 under these two restoration capabilities. With 
the increase of restoration capability, the time for the failed compressor 
to recover to the safe state decreases. When the repair rate is 2μ, 2.5μ 
and 3μ, the time required for the compressor from fault occurrence to 
restart is 19.15 h, 16.12 h and 14.10 h, respectively. The failed 
compressor is brought back to safety in a timely manner from the 
disruptive event, so that the accumulated BOG in the tank can be dealt 
with and the tank overpressure can be prevented. With the restart of 
compressors, the tank pressure gradually decreases over time, as shown 
in Fig. 14. 

The influence of varying restoration capacities on system resilience is 
graphically represented in Fig. 15. The value of resilience depicted in 
Fig. 15 represent a composite index of resilience, incorporating aspects 
such as absorption, adaptation and restoration capacities. Initially, with 
a system resilience of 0.127, attempts to enhance system restoration 
capacity through an increased repair rate of 1.5μ reveal minimal effec
tive change in the system’s performance curve. Consequently, the sys
tem resilience remains at 0.127 with this repair rate. However, as the 
repair rate of the compressor is progressively elevated, the system’s 
resilience exhibits a corresponding increase. Notably, when the 
compressor repair rate reaches 2μ, 2.5μ, and 3μ, the system’s resilience 
surges by factors of 2.93, 3.47, and 3.87, respectively. This underscores 
that augmenting the system’s restoration capacity allows for more rapid 
recovery from disruptive events, ultimately ensuring the safety of system 
production. 

Table 4 
Compressor maintenance time corresponding to different repair rates.  

Repair rate μ 1.5μ 2μ 2.5μ 3μ 

Repair time/h 30.30 20.20 15.15 12.12 10.10 
Total restoration time/h 34.30 24.20 19.15 16.12 14.10  
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4. Conclusions 

Resilience should be a core consideration in the early stages of sys
tem design, enabling designers to harness this capacity to enhance the 
system’s robustness. For established process systems, the path to 
bolstering resilience lies in a comprehensive assessment of the system’s 
existing resilience. 

This work proposed a methodology for resilience assessment of 
process systems. Towards the objective of evaluating and enhancing the 
resilience against abnormal events of process systems, the proposed 
methodology comprises four integral components: system structure 
analysis, analysis of disruption impacts, process simulation, and resil
ience assessment. Specifically, a process parameters-based performance 
indicator is introduced to reduce the data uncertainty. Simulations are 
conducted on a practical LNG terminal system to acquire time- 
dependent process parameters and to quantify the complex dynamic 
response mechanism of various parameters under the influence of 
disruptive events. The results show that the proposed methodology can 
not only reduce the data uncertainty, but also reflect the influence of 
disruptive events on the system explicitly. Furthermore, to improve 
system resilience under different types of disruptive events, targeted 
strategies (e.g., different redundancies, maintenance resources) are 

investigated and developed accordingly. Finally, sensitivity analysis is 
carried out to validate the proposed methodology. 

In the realm of future research, a diverse array of internal factors 
(such as human elements, and external disruptions, including natural 
disasters and cyberattacks) will be investigated. This exploration aims to 
construct a comprehensive and systematic resilience assessment for 
process systems. By doing so, the safety of process systems under 
disruptive events can be enhanced. This endeavor not only advances the 
field but also offers a solid theoretical foundation for ensuring safe 
production and informed decision-making. 
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