

Delft University of Technology

Fully neuromorphic vision and control for autonomous drone flight

Paredes-Vallés, F.; Hagenaars, J.J.; Dupeyroux, J.; Stroobants, S.; Xu, Y.; de Croon, G.C.H.E.

DOI
10.1126/scirobotics.adi0591
Publication date
2024
Document Version
Final published version
Published in
Science Robotics

Citation (APA)
Paredes-Vallés, F., Hagenaars, J. J., Dupeyroux, J., Stroobants, S., Xu, Y., & de Croon, G. C. H. E. (2024).
Fully neuromorphic vision and control for autonomous drone flight. Science Robotics, 9(90), Article
eadi0591. https://doi.org/10.1126/scirobotics.adi0591

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1126/scirobotics.adi0591
https://doi.org/10.1126/scirobotics.adi0591

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Paredes-Vallés et al., Sci. Robot. 9, eadi0591 (2024) 15 May 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

1 of 18

A U T O N O M O U S V E H I C L E S

Fully neuromorphic vision and control for autonomous
drone flight
F. Paredes-Vallés†, J. J. Hagenaars*†, J. Dupeyroux†, S. Stroobants, Y. Xu, G. C. H. E. de Croon

Biological sensing and processing is asynchronous and sparse, leading to low-latency and energy-efficient perception
and action. In robotics, neuromorphic hardware for event-based vision and spiking neural networks promises to ex-
hibit similar characteristics. However, robotic implementations have been limited to basic tasks with low-dimensional
sensory inputs and motor actions because of the restricted network size in current embedded neuromorphic pro-
cessors and the difficulties of training spiking neural networks. Here, we present a fully neuromorphic vision-to-
control pipeline for controlling a flying drone. Specifically, we trained a spiking neural network that accepts raw
event-based camera data and outputs low-level control actions for performing autonomous vision-based flight. The
vision part of the network, consisting of five layers and 28,800 neurons, maps incoming raw events to ego-motion
estimates and was trained with self-supervised learning on real event data. The control part consists of a single de-
coding layer and was learned with an evolutionary algorithm in a drone simulator. Robotic experiments show a
successful sim-to-real transfer of the fully learned neuromorphic pipeline. The drone could accurately control its
ego-motion, allowing for hovering, landing, and maneuvering sideways—even while yawing at the same time. The
neuromorphic pipeline runs on board on Intel’s Loihi neuromorphic processor with an execution frequency of
200 hertz, consuming 0.94 watt of idle power and a mere additional 7 to 12 milliwatts when running the network. These
results illustrate the potential of neuromorphic sensing and processing for enabling insect-sized intelligent robots.

INTRODUCTION
Over the past decade, deep artificial neural networks (ANNs) have
revolutionized the field of artificial intelligence. Among the success-
es has been the substantial improvement of visual processing, to an
extent that computer vision can now outperform humans on specific
tasks (1). The field of robotics has also benefited from this develop-
ment, with deep ANNs achieving state-of-the-art accuracy in tasks
such as stereo vision (2, 3), optical flow estimation (4–6), segmenta-
tion (7, 8), object detection (9–11), and monocular depth estimation
(12–14). However, this high accuracy typically relies on substantial
neural network sizes that require heavy and power-hungry process-
ing hardware [tens of watts, hundreds of grams (15)]. This limits the
number of tasks that can be performed by larger (ground) robots
and even prevents deployment on smaller robots with highly strin-
gent resource constraints, like small flying drones.

Neuromorphic hardware may provide a solution to this problem
because it mimics the energy-efficient, sparse, and asynchronous na-
ture of sensing and processing in biological brains (16, 17). For
example, the pixels in neuromorphic event-based cameras only
transmit information on brightness changes (18). Because typically
only a fraction of the pixels change in brightness substantially, this
leads to sparse vision inputs with subsequent events that are on the
order of a microsecond apart. The asynchronous and sparse nature of
visual inputs from event-based cameras represents a paradigm shift
compared with traditional, frame-based computer vision. Ideally,
processing would exploit these properties for quicker, more energy-
efficient processing. However, currently, learning-based approaches
to event-based vision involve accumulating events over a substantial
amount of time, creating an “event window” that represents extended
temporal information. This window is then processed similarly to a

traditional image frame with an ANN (19–22). Although there is
work that used much shorter event windows (23–25), latency could
be further reduced by processing events asynchronously as they
come in. This could be performed by neuromorphic processors de-
signed for implementing spiking neural networks (SNNs) (26, 27).
These networks have temporal dynamics more similar to biological
neurons. In particular, the neurons have a membrane voltage that
integrates incoming inputs and causes a spike when it exceeds a
threshold. The binary nature of spikes allows for more energy-
efficient processing than the floating point arithmetic in traditional
ANNs (28, 29). The energy gain is further improved by reducing the
spiking activity as much as possible, as is also a main property of bio-
logical brains (30). Coupling neuromorphic vision to neuromorphic
processing promises low-energy and low-latency visual sensing and
acting, as exhibited by agile animals such as flying insects (31).

However, to achieve these properties, several challenges related
to present-day neuromorphic sensing and processing have to be
overcome. For example, training is currently still much more diffi-
cult for SNNs than for ANNs (32, 33), mostly because of their
sparse, binary, and asynchronous nature. The most well-known dif-
ficulty of SNN learning is the non-differentiability of the spiking
activation function, which prevents naive application of back-
propagation. Currently, this is tackled successfully with the help of
surrogate gradients (34, 35), although longer sequences (as would
be the case for event-by-event processing) can still lead to gradient
vanishing. Moreover, although the richer neural dynamics can po-
tentially represent more complex temporal functions, they are also
harder to shape, and neural activity may saturate or dwindle during
training, preventing further learning. The causes for this are hard to
analyze because there are many parameters that can play a role. De-
pending on the model, the relevant parameters may range from
neural leaks and thresholds to recurrent weights and time constants
for synaptic traces. A solution may lie in learning these parameters
(36, 37), but this further increases the dimensionality of the learning
problem. Last, when targeting a robotics application, SNN training

Micro Air Vehicle Laboratory, Faculty of Aerospace Engineering, Delft University of
Technology, Delft, Netherlands.
*Corresponding author. Email: j.​j.​hagenaars@​tudelft.​nl
†These authors contributed equally to this work.

Copyright © 2024 The
Authors, some rights
reserved; exclusive
licensee American
Association for the
Advancement of
Science. No claim to
original U.S.
Government Works

D
ow

nloaded from
 https://w

w
w

.science.org at D
elft U

niversity on M
ay 29, 2024

mailto:j.​j.​hagenaars@​tudelft.​nl
http://crossmark.crossref.org/dialog/?doi=10.1126%2Fscirobotics.adi0591&domain=pdf&date_stamp=2024-05-15

Paredes-Vallés et al., Sci. Robot. 9, eadi0591 (2024) 15 May 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

2 of 18

and deployment are further complicated by the restrictions of exist-
ing embedded neuromorphic processing platforms. These restric-
tions were recently highlighted in a study on neuromorphic route
learning (38) and include hardware and software challenges such as
interfacing with neuromorphic cameras, the limitations of available
neural models, and—importantly—the still-limited numbers of
available neurons and synapses. To illustrate this latter point, the
ROLLS (Reconfigurable Online Learning Spiking) chip (39) accom-
modates 256 spiking neurons, the Intel Kapoho Bay [featuring two
Loihi chips (40) in a universal serial bus (USB) stick form factor]
features 262,100 neurons (41), and the SpiNNaker (SNN architec-
ture) version in (42) has 768,000 neurons. Although these chips dif-
fer in many more aspects than the number of neurons, this small
sample already shows that current state-of-the-art SNNs cannot be
easily embedded in robots. SNNs that have recently been trained on
visually complex tasks, such as optical flow determination (23, 24), still
featured network sizes far too large for implementation on current neu-
romorphic processing hardware for embedded systems. The smallest
size SNN in these studies is LIF-FireFlowNet (Leaky-Integrate and
Fire) for optical flow estimation (24), which still has 3.7 million neu-
rons (at an input resolution of 128 pixels by 128 pixels).

As a consequence, pioneering work in this area has been limited
in complexity. Very early work involved the evolution of SNN
connectivity to map the 16 visual brightness inputs of a wheeled
Kephera robot to its two motor outputs (43). The evolved SNN, sim-
ulated in software, allowed the robot to avoid the walls in a black-
and-white-striped environment. Most work exploring SNNs for
robotic vision focused on simulation. For example, in (44), the
events from a simulated event-based camera with 128 pixels by 128
pixels were accumulated into frames, compressing them over time
into eight-by-four Poisson input neurons. These inputs, which cap-
tured the clear white lines of the road border, were then directly
mapped to two output neurons for staying in the center of the road
with the help of reward-modulated spike time–dependent plasticity
(R-STDP) learning. Robotic examples of in-hardware neuromor-
phic processing for vision are more rare. An early example is the one
in (42), in which an event-based camera with 128 pixels by 128 pix-
els was connected to a SpiNNaker neuromorphic processor to allow
a driving robot to differentiate between two lights flashing at differ-
ent frequencies with a 128-neuron winner-takes-all network. In
(45), an SNN was designed for following a light target in the top half
of the field of view while avoiding regions with many events in the
bottom half of the field of view. This network was successfully im-
plemented in the ROLLS neuromorphic chip (39) and tested in an
office environment. Recent years have seen an increasing focus on
flying robots (drones) because they need to react quickly while be-
ing extremely restricted in size, weight, and power (SWaP). In (41),
an SNN was implemented on a bench-fixed dual rotor to align the
roll angle with a black-and-white disk located in front of the camera.
The SNN involved both a visual Hough transform (46) for finding the
line and a proportional-derivative (PD) controller for generating the
propeller commands. Last, in (47), an SNN was first evolved in
simulation and then implemented in Loihi for vision-based landing
of a flying drone. This control network only consisted of 35 neurons
because the visual processing was still performed with conventional,
frame-based computer vision methods. In addition, only the verti-
cal motion of the drone was controlled with the SNN; its lateral po-
sition was controlled using traditional control algorithms and an
external motion capture system. The current work represents a step

up in complexity by performing three-dimensional (3D) visual ego-
motion estimation and control of a flying drone with a fully neuro-
morphic vision-to-control pipeline.

In this article, we present a fully neuromorphic vision-to-control
pipeline for controlling a flying drone, demonstrating the potential
of neuromorphic hardware. The presented pipeline consists of an
SNN that was trained to accept raw event camera data and output
low-level control actions for performing autonomous vision-based
ego-motion estimation and control at approximately 200 Hz. A core
property of our learning setup is that it splits vision and control,
which provides two major advantages. First, it helps to prevent the
reality gap on the camera event input side because the vision part
was trained on the basis of raw events from the actual event camera
on the drone. We used self-supervised learning because this fore-
goes the need for ground-truth measurements that are difficult to
obtain for event-based vision. Second, because the output of the vi-
sion part is an ego-motion estimate, we can learn the control in a
simple and extremely fast simulator. This allows us to evade the
high-frequency generation of visually realistic images for event gen-
eration (48), something that would lead to excessive training times
in an end-to-end learning setup.

RESULTS
A fully neuromorphic solution to vision-based navigation
The fully neuromorphic vision-to-control pipeline, illustrated in
Fig. 1C, was implemented on the Loihi neuromorphic processor
(40) and used on board a small flying robot (see Fig. 1B) for vision-
based navigation. A schematic of the hardware setup used is shown
in Fig. 1A. The system successfully followed ego-motion set points
(target values) in a fully autonomous fashion, without any external
aids such as a positioning system. Figure 1D shows an example of a
landing experiment with our neuromorphic pipeline in the control
loop of the drone. The figure shows the smoothly decreasing height
of the drone above the ground (blue line) and the estimated optical
flow divergence (orange line), which is the vertical component of
the velocity vector divided by this height. The divergence curve is
typical of an optical flow divergence landing, first approaching the
set point −0.5 s–1 and then becoming more oscillatory when getting
very close to the ground (49).

As mentioned, the main challenge of deploying such a pipeline
on embedded neuromorphic hardware is that, because of the pre-
liminary state of this technology, one has to work within very tight
limits regarding the available computational resources. In this proj-
ect, several design decisions were made to adapt to these limitations.
First, the vision processing pipeline assumes that the event-based
camera on the drone, the DVS 240 (Dynamic Vision Sensor) (50),
looks down at a static, texture-rich, flat surface. Knowing the struc-
ture of the visual scene in advance simplifies the estimation of the
ego-motion of the camera (and hence of the drone) with the help of
optical flow information, as in (47, 49, 51–53). Optical flow, or the
apparent motion of scene points in the image space, can be esti-
mated from the output of an event-based camera with a wide variety
of methods, ranging from sparse feature-tracking algorithms (54) to
dense (per-pixel) machine learning models (19, 21, 24). In the
search for an efficient and high-bandwidth vision pipeline that
achieves the desired 200-Hz operating frequency, the second design
decision was to reduce the spatial resolution of the event-based vi-
sion data by only processing information from the image corner

D
ow

nloaded from
 https://w

w
w

.science.org at D
elft U

niversity on M
ay 29, 2024

Paredes-Vallés et al., Sci. Robot. 9, eadi0591 (2024) 15 May 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

3 of 18

regions of interest (ROIs), rather than the entire image space, and to
limit the number of events to 90 per ROI. More specifically, as de-
picted in Figs. 1C and 2A, we propose the use of a small SNN that is
applied independently at each ROI, with each ROI being 16 pixels
by 16 pixels in size after a nearest-neighbor downsampling opera-
tion. Each network consists of 7200 neurons and 506,400 synapses
distributed over five spiking layers: one input layer, three self-
recurrent encoders, and a pooling layer. Its parameters (weights,
thresholds, and leaks) are identical for the four ROIs, and it esti-
mates the optical flow, in pixels per millisecond, of the correspond-
ing ROI. Because of the static and planar scene assumption, the
apparent motion of the scene points at the four corner ROIs encodes
nonmetric information about the velocity of the camera (divided by
the distance to the surface along the optical axis) and its rotational
rates in a linear manner (55).

On the basis of this information, the robot performs ego-motion
control. To keep the pipeline fully neuromorphic (minimum re-
quired processing happening outside of Loihi) and performant
(sending more spikes to Loihi decreases execution frequency), we

trained a linear controller in simulation and merged it with the de-
coding of the spikes coming from the vision network (representing
optical flow). In other words, the linear controller takes vision
spikes, a user-given ego-motion set point, and attitude of the drone
and maps these linearly to thrust and attitude control commands.
Although opting for a linear controller allows for a fully neuromor-
phic vision-to-control pipeline, it also means that we had to make
some assumptions. For instance, angles in pitch and roll should be
small, and the optical flow variables taken as input should be dero-
tated in pitch and roll (51, 56). Furthermore, we should keep in
mind that a linear controller will be unable to compensate for any
drift or steady-state offset through integration (as could be done by
a common proportional integral derivative, or PID, controller). We
show that, despite all this, we can successfully control a flying drone
to perform certain ego-motion maneuvers.

We split the training of our vision-to-control pipeline into two
separate frameworks. On the one hand, the vision part of the pipe-
line, in charge of mapping input events to optical flow, was trained
in a self-supervised fashion using the contrast maximization

Fig. 1. Overview of the proposed system. (A) Hardware overview showing the communication among event camera, neuromorphic processor, single-board computer,
and flight controller. RTPS and USB refer to the communication protocols used. (B) Quadrotor used in this work (total weight of 994 g; tip-to-tip diameter of 35 cm), with
numbers indicating the components from (A). (C) Pipeline overview showing events as input, processing by the vision network, and decoding into a control command.
(D) Composite picture and graph demonstrating the system for an optical flow constant divergence landing, with estimated divergence (solid orange line) oscillating
around a set point (dashed orange line) while height is decreasing (solid blue line).

D
ow

nloaded from
 https://w

w
w

.science.org at D
elft U

niversity on M
ay 29, 2024

Paredes-Vallés et al., Sci. Robot. 9, eadi0591 (2024) 15 May 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

4 of 18

framework (57, 58). The idea behind this approach is that, by com-
pensating for the spatiotemporal misalignments among the events
triggered by a moving edge (event deblurring), one can retrieve
accurate optical flow information. In this work, we used the formu-
lation proposed in (24) and shown in Fig. 2. Corner ROI events
within nonoverlapping temporal windows of 5 ms were processed
sequentially by our spiking networks, which provide optical flow
estimates at every time step. Only during training, we used the mo-
tion information of the four corner ROIs to parameterize a homog-
raphy transformation that, under the assumption of static planar
surface, allowed us to retrieve dense optical flow, as in (55, 59–61).
Following (24), we accumulated event and optical flow tuples over
multiple time steps for contrast maximization to be a robust self-
supervisory signal and only computed the deblurring loss function
and performed a backward pass through the networks (using back-
propagation through time) once 25 ms of event data were pro-
cessed. To cope with the non-differentiable spiking function of our
neurons, we used surrogate gradients (34).

On the other hand, the control part of the network, consisting of
a linear mapping from the motion of the four corner ROIs to thrust
and attitude control commands, was trained in a drone simulator
using an evolutionary algorithm. Evolutionary algorithms work by
evaluating all the individuals in a population, where the best-
performing (or fittest) individuals are varied upon to form the pop-
ulation of the next generation. Over generations, the individuals
will get an increasingly high fitness, which in our case means that
they became better at ego-motion control. Figure 3 gives an over-
view of the simulator setup as was used in evolution. To avoid the
need to incorporate an event-based vision pipeline in simulation,
we used the ground-truth state of the simulated drone to generate
the expected flows per corner ROI using the continuous homogra-
phy transform (62) and used these to construct the unscaled veloc-
ity (velocity divided by height above ground) and yaw rate estimates

that make up the visual observables of the camera’s ego-motion.
The velocity was divided by height because optical flow vectors cap-
ture the ratio of velocity and distance (51, 56). The inputs to the
linear control mapping were then these visual observables: absolute
roll and pitch (from the drone’s inertial measurement unit) and a
desired set point for the visual observables. The outputs of the con-
troller (desired collective thrust, pitch and roll angles, and yaw rate)
were subsequently applied to the simulated drone model to control
it. During evolution, the fitness of a controller was determined on
the basis of the accumulated visual observable error in an evalua-
tion. We evaluated each of the individuals in the population on a set
of (repeated) ego-motion set points representing horizontal and
vertical flight, created offspring through random mutations, and
selected the best individuals for the next generation. The trained
controller was transferred directly to the real robot, without any
retraining.

Because of the split between the vision and control parts of the
pipeline, we could evaluate their performance separately. The esti-
mated corner ROI flows of the vision part were compared against
ground-truth data obtained from a motion capture system, and the
control part was evaluated in simulation. After connecting vision
and control together, we then demonstrated the performance of
our fully neuromorphic vision-to-control pipeline through real-
world flight tests. To further illustrate the robustness of our vision-
based state estimation, we performed real-world tests with changing
ego-motion set points and tests in various lighting conditions. Last,
we compared energy consumption against possible onboard GPU
(graphics processing unit) solutions.

Vision-based state estimation
To prevent reality-gap issues when simulating an event-based cam-
era, we trained and evaluated the vision part of our pipeline using
real-world event sequences recorded with the same platform (drone

Fig. 2. Overview of the spiking vision network. Running at approximately 200 Hz, events are accumulated (max of 90 events per corner ROI) and then fed through the
vision network consisting of three encoders (kernel size three by three, stride 2) and a spiking pooling layer. Spikes are decoded into two floats representing flow for that
corner ROI. This network is replicated to the three other ROIs to end up with four ROI optical flow vectors. During training, these are used in a homography transformation
to derive dense flow, which is then used for the self-supervised loss. The full network was running on the neuromorphic processor during the real-world flight tests.

D
ow

nloaded from
 https://w

w
w

.science.org at D
elft U

niversity on M
ay 29, 2024

Paredes-Vallés et al., Sci. Robot. 9, eadi0591 (2024) 15 May 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

5 of 18

and downward-facing event-based camera) and in the same indoor
environment (static and planar, constant illumination). This dataset
(available in the Supplementary Materials) consists of approximately
40 min of event data, which we split into 25 min for training and
15 min for evaluation, and its motion distributions are shown in
Fig. 4A. In addition to the visual data, the ground-truth pose (posi-
tion and attitude) of the drone over time was provided at a rate of
180 Hz and was used solely for evaluation. Examples of this ground
truth, which can be converted to dense optical flow using the
camera calibration, are shown in Fig. 4A alongside the floor texture
of the indoor environment. Furthermore, to demonstrate that using
the same texture for training and evaluation does not lead to over-
fitting (and resulting degraded control performance), we performed
additional experiments with different types of texture that can be
found in the Supplementary Materials.

We trained our vision SNN with the self-supervised contrast max-
imization framework from (24) and a quantization-aware training
routine that simulates the neuron and synapse models in the target
neuromorphic hardware. Afterward, we evaluated the performance
of our spiking network on the task of planar event-based optical flow
estimation using sequences with varying amounts of motion. Quali-
tative results are presented in Fig. 4B, where the estimated visual ob-
servables (unscaled velocities and yaw rate, constructed from the
estimated optical flow vectors at the image corner ROIs) are com-
pared with their ground-truth counterparts. These results confirm
the validity of our approach. Despite the architectural limitations of

the proposed solution (for instance, lower resolution because of bi-
nary activations, limited field of view, only self-recurrency, weight,
and state quantization) and that it does not have access to ground-
truth information during training, it was able to produce optical flow
estimates that accurately capture the motion encoded in the input
event stream (the ego-motion of the camera), even for the fast rota-
tion of approximately 4 rad/s at the end of the shown sequence. Sim-
ilarly to any other optical flow–based state-estimation solution, our
SNN is subject to the aperture problem not only because of the lim-
ited receptive field of the corner ROIs but also because of the use of
event cameras as vision sensors (18).

In Fig. 4C, we show the internal spiking activity of our vision
SNN as it processes the top-left corner ROI from the fast sequence
shown in Fig. 4B, along with the decoded optical flow vectors. These
qualitative results provide insight into the type of processing carried
out by the proposed architecture, which is spike-based and there-
fore sparse and asynchronous. Despite the rapid motion in the input
sequence, all layers of the SNN maintained activation levels below
50% of the available neurons. The network was not explicitly trained
to promote sparse activations but could perhaps be rendered even
more energy efficient by including sparsity measures in the loss
function. Furthermore, we can distinguish layers with activity levels
that are highly correlated with the input activity (encoder 1 and
pooling) and layers that rely on their explicit recurrent connections
to maintain activity levels that are relatively independent of the in-
put statistics (encoder 2 and encoder 3). This observation could be

Fig. 3. Overview of the control pipeline for simulation and real-world tests. During training in simulation (A), we constructed visual observables (unscaled velocities
and yaw rate) from ground truth using the continuous homography transform. The control decoding takes these observables together with roll and pitch and an ego-
motion set point to output commands, which control the drone dynamics. We have trained the controller using evolution on the basis of a fitness signal that quantifies
how well the controller can follow ego-motion set points for horizontal and vertical flight. In the real world (B), we receive flows of the corner ROI from the vision network
and transform these to visual observables and control commands in a single matrix multiplication to send low-level control commands thrust and attitude to the autopilot.

D
ow

nloaded from
 https://w

w
w

.science.org at D
elft U

niversity on M
ay 29, 2024

Paredes-Vallés et al., Sci. Robot. 9, eadi0591 (2024) 15 May 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

6 of 18

Fig. 4. Overview of results for the vision-based state estimation. (A) Characteristics of the dataset for estimating planar optical flow. (i) Grayscale flower texture used
to cover the floor. (ii) Accumulated event windows showing the blur arising from motion, ground-truth flow fields as determined with a motion tracking system and based
on a flat floor assumption (only for evaluation) and the result when using the flow fields to deblur the event windows (only for illustration). (iii) Ground-truth optical flow
distributions for the training and test datasets. (B) Comparison of estimated and ground-truth visual observables for sequences with different motion speeds (slow, me-
dium, and fast). (C) Network activity resulting from the events in the top-left corner ROI in the fast motion sequence.

D
ow

nloaded from
 https://w

w
w

.science.org at D
elft U

niversity on M
ay 29, 2024

Paredes-Vallés et al., Sci. Robot. 9, eadi0591 (2024) 15 May 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

7 of 18

the starting point for a future investigation into how this type of
network determines optical flow [as in (63)].

In Table 1, we provide a quantitative comparison of our solution
with other similar recurrent architectures (that are not compatible
or do not fit in the Intel Kapoho Bay) on the basis of the average
endpoint error (EPE; the Euclidean distance between predicted and
ground-truth optical flow vectors averaged over all pixels in the im-
age). This evaluation not only demonstrates the accuracy of our
spiking network but also assesses the effect of each mechanism that
was incorporated into the pipeline to achieve a solution that could
be deployed on Loihi at the target frequency of 200 Hz (downsam-
pling the image space, only processing the events from the corner
ROIs, limiting the maximum number of processed events per cor-
ner, and adding quantization; see also Supplementary Methods).
Several observations could be made. First, the ANN outperformed
its spiking variants by a large margin. This is likely because of the
higher resolution of the floating point activations and the direct
relation between the backpropagation gradient and the output er-
ror. Second, self-recurrency (Self-RNN) was the weakest form of
explicit recurrency among those tested. The other networks seemed
to successfully exploit their capability of representing more com-
plex temporal functions. Third, deploying one architecture to each
image corner ROI instead of processing the entire image space at
once was beneficial for our architecture (lowering the EPE from
9.80 to 8.22) but had a slight detrimental effect on the baselines.
This may be due to the dataset containing ample texture on the
floor. A dataset with much less texture might have shown a different
result. Fourth, limiting the number of events that can be processed
at once to 90 per corner ROI was also helpful for the evaluated
SNNs because it helped reduce the internal activity levels. Last, the
incorporation of the Loihi-specific weight and state quantization
led to an error increase for our architecture.

Control through visual observables: From sim to real
Separately from the vision part, we trained and evaluated the con-
trol part of our pipeline. Because of limitations in the hardware set-
up (see Materials and Methods), this is a linear mapping from a
visual observable estimate, absolute roll and pitch, and a visual ob-
servable set point to thrust and attitude commands. The visual ob-
servable estimate is made up of unscaled velocity �̂ and yaw rate
ω̂


z
 ; the visual observable set point consists of the corresponding set

points in unscaled velocity �
sp

 and yaw rate ω

z,sp
 . A population of

these linear mappings was evolved in simulation for a set of 16 un-
scaled velocity and yaw rate set points. Each unscaled velocity set

point �
sp

 had at most one nonzero element ∈{ ±0.2, ±0.5, ±1.0} 1/s.
In other words, they represented hover, vertical flight in the form of
landing at three speeds (no ascending flight), and horizontal flight
in four directions at three speeds. Unless mentioned otherwise, the
set point for yaw rate ω

z,sp
= 0 . Figure 5 shows the performance of

the evolved linear network controller in simulation in terms of the
estimated unscaled velocities �̂ (Fig. 5A) and the world position
p over time (Fig. 5B) for all set points. The control performance
was satisfactory; the controller reached the set point in all cases and
was capable of keeping the unscaled velocities for the nonflight di-
rection close to zero. Especially for ν

∗,sp
= ±1.0 1/s, some overshoot

was witnessed, but this could be expected given that this is a linear
mapping without any kind of derivative control.

Figure 5 furthermore shows the results obtained by deploying
this controller in the real world and replacing the ground-truth vi-
sual observables with those estimated by the vision network (also
see movie S3). Overall, the results demonstrated successful deploy-
ment of the fully neuromorphic vision-to-control pipeline. Looking
at the unscaled velocity plots for the different set points, we see that
these became less noisy for higher set points and faster flight, as can
also be seen from the 3D position plots. This is due to the signal-to-
noise ratio of the vision-based state estimation increasing with mo-
tion magnitude (little motion means that most events are due to
noise, as can be seen in Fig. 4). In addition, the inertia of the drone
provided some stability at higher speeds. Nevertheless, apart from
several set points (for example, landings, ν

{x,y},sp
= ± 0.2 1/s), the

controller was not always able to reach the desired set point: The
steady-state error looked to be proportional to the set point magni-
tude. This could be attributed to the fact that although the controller
is a linear mapping, the relationship between attitude angle and re-
sulting forward/sideways velocity is nonlinear (especially at larger
attitude angles) and additionally affected by drag. Providing abso-
lute attitude input to the network and simulating the drag [as in
(64)] during training turned out not to be enough to compensate,
and small errors were accumulated over time. Furthermore, there
can be mismatches between the dynamics of the simulated drone
(body characteristics and motor dynamics) with which the control-
ler was trained and the real drone on which the flight tests were
performed, although we abstracted the control outputs to attitude
commands. Last, inaccuracies of the drag model can also be a source
of error (in this case, it seems that drag was higher in reality than in
simulation). A linear or proportional controller, such as we have
here, cannot integrate all these small errors into an additional

Table 1. Quantitative comparison between different architectures. The value in the bottom right corner (asterisk) indicates the final architecture.
Row-wise architecture choices and column-wise design decisions affected test accuracy in average EPE (Euclidean distance between predicted and ground-
truth vectors, averaged over all pixels in the image; lower is better) in pixels per input window (5 ms). Reported EPEs were averaged over the test sequences and
based on a single training run. Baseline architectures feature the same feedforward connectivity pattern as ours but vary the neuron model and the type of
recurrent connections. Values in the table should be multiplied by 10−2.

Full image +2× Down. +Corner ROI crop +Limit events +Loihi quant.

Conv-GRU ANN 5.88 5.56 5.61 5.72 –

Conv-RNN SNN 7.92 7.89 7.91 6.97 6.96

Self-RNN SNN (ours) 10.79 9.80 8.22 7.71 8.34*

D
ow

nloaded from
 https://w

w
w

.science.org at D
elft U

niversity on M
ay 29, 2024

Paredes-Vallés et al., Sci. Robot. 9, eadi0591 (2024) 15 May 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

8 of 18

control signal that compensates for them, leaving a steady-state er-
ror. The resulting drift in position and yaw for all runs in Fig. 5 were
quantified in Supplementary Results.

Last, Fig. 5 shows the results obtained by connecting a hand-
tuned proportional-integral (PI) controller to the vision-based state
estimation (also see movie S4). We compared this with the linear
network controller. Looking at all directions and set points, we see
that the PI controller reaches the set point faster than the network
controller. For horizontal flight, the network controller was not at all
able to reach the set point ν

{x,y},sp
= ±1.0 1/s and only just in the

case of ±0.5 1/s, supposedly because of the limitations of linear con-
trol. The PI controller did not have this problem because it could
increment its control command to eliminate the steady-state error.
For vertical flight, both the network and the PI controller had sub-
stantial overshoot for ν

z,sp
= −1.0 1/s. This had to do with the fact

that at such speeds from such heights (2.5 m), the drone barely
reached the set point before reaching the ground and therefore had
little time to compensate for any overshoot (see Fig. 5A, PI control-
ler for ν

z,sp
= −0.5 1/s, for which overshoot was similar but was cor-

rected shortly after).

Fig. 5. Comparison of results obtained in simulation and during real-world flight tests. (A) Estimated unscaled velocities �̂ for 16 different set points in three axes
across three scenarios: linear network controller in simulation and the real world and a hand-tuned PI controller in the real world. Real-world tests used the vision network
to obtain visual observable estimates. Set points were nonzero in one direction, indicated with dashed lines. Rows represent the different motion axes (X, Y, and Z).
(B) 3D world position trajectories p for the same flight tests. Each plot in (B) matches the plot in the corresponding location in (A).

D
ow

nloaded from
 https://w

w
w

.science.org at D
elft U

niversity on M
ay 29, 2024

Paredes-Vallés et al., Sci. Robot. 9, eadi0591 (2024) 15 May 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

9 of 18

Flickering, darkness, and squares: Examples of versatility
and robustness
Although our main goal is to show a functional fully neuromorphic
vision-to-control pipeline, for a broader applicability of this tech-
nology, it is informative to study the pipeline’s robustness and versa-
tility to conditions not encountered during learning. Figure 6 shows
the results for these tests for the combination of the vision-based
state estimation and linear network controller. Figure 6A displays
the user alternating through different unscaled velocity set points in

X and Y (while keeping yaw constant) to let the drone fly a square.
Apart from one section, the controller was able to reach the desired
set point quite quickly, allowing for sharp corners, while keeping
yaw drift small (0.06 rad).

Last, we have tested the robustness to lighting conditions for
maneuvers in different directions. Here, we show the results of
these experiments for the landing maneuver (see Supplementary
Results for the other directions). Because landing involves a wider
range of visual motion magnitudes than horizontal flight (flow is

A

B

Fig. 6. Additional results with vision network and linear network controller. (A) By alternating set points in X and Y, we could fly a square. Plots show the estimated
unscaled velocity �̂B (with set points shaded in blue and red), estimated yaw rate ω̂B

z
 , and position pWB . (B) Landing experiments with different lighting conditions. Plots

show the estimated and ground-truth unscaled velocity �̂B and νB, as well as the events received by the network in the top-left ROI. Although flickering lights led to many
more events, visual observable estimates (and hence control) only diverged when it was so dark that there were almost no events.

D
ow

nloaded from
 https://w

w
w

.science.org at D
elft U

niversity on M
ay 29, 2024

Paredes-Vallés et al., Sci. Robot. 9, eadi0591 (2024) 15 May 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

10 of 18

inversely proportional to height), it allowed us to better see the
effect of lower-light conditions. Furthermore, divergence-based
landings inherently lead to oscillations (49), which makes for a
more challenging scenario in the case of flickering lights. Fig-
ure 6B shows landing with divergence νB

z,sp
= −0.5 1/s for various

lighting conditions (quantified with lux measurements). With
these experiments, we aimed to investigate the robustness of the
approach to wildly varying event statistics. For instance, in a dark-
er environment, contrasts are less visible, which means that mo-
tion will generate many fewer events and that there will be more
spurious, noisy events—similar to our own human vision when we
walk in the dark. When lights are switched on and off, this gener-
ates massive numbers of events that are unrelated to motion, hence
violating the brightness constancy assumption underlying optical
flow determination. The events for the top left corner ROI are
shown in Fig. 6B. The results in the light and darkish settings look
alike, but flickering lights led to a large increase in events, and the
darkest setting gave almost no events. As Fig. 6B shows, despite the
challenging light conditions, the controller was able to track the set
point (black dashed line) well, and the estimated unscaled veloci-
ties approximated their ground truths. Only the darkest setting
posed a real problem for the state estimation: In that case, the esti-
mated unscaled velocities �̂ diverged too much from the ground-
truth unscaled velocities � to perform a successful landing. For
comparison, the flickering, darkness, and squares experiments
have also been performed with the PI controller, which can be
found in Supplementary Results.

Improved inference speed and energy consumption on
neuromorphic hardware
Table 2 shows a comparison in terms of power/energy and run time
between the Loihi neuromorphic processor and an NVIDIA Jetson
Nano for running the vision network (both SNN and equivalent
ANN) on sequences with varying amounts of motion and hence
varying input event density. The SNN ran in hardware on Loihi and
in software (PyTorch) on Jetson Nano. The tests for Loihi were per-
formed on a Nahuku board, which contains 32 Loihi chips. We
confirmed, insofar possible, that using two chips on Nahuku is rep-
resentative of a Kapoho Bay (at least in terms of execution time),
which is the two-chip form factor used on the drone. Still, neither
of these benchmarks is completely representative of the tests per-
formed in the real world: The benchmarks used data already loaded
in memory and therefore only quantified the processing by the net-
work without any bottlenecks because of input/output (I/O) and
preprocessing, whereas the flight tests involved streaming event
data that were coming in and being processed in an online fashion.
This showed in Loihi’s execution frequencies in Table 2, which were
well above the 200 inferences (with one inference being the pro-
cessing of one set of inputs by the network) per second (inf/s)
achieved during flight tests.

Table 2 shows the power when the processors were idle and when
they were running the networks. Because Jetson Nano does not pro-
vide static and dynamic power components, we compared the dif-
ference between idle and running power and used that to compute
energy per inference. A main observation is that the Nahuku 32
board consumed 0.95 W when running the SNN, whereas Jetson

Table 2. Approximate energy and power characteristics for various devices on three sequences: slow, medium, and fast. On average, slow has 28.6
events/inf, medium has 106.9 events/inf, and fast has 186.6 events/inf. Delta power is the difference between idle and running (total) power and was used to
compute energy per inference. Dynamic power is the power needed for switching and short-circuiting, and static power is due to leakage; together, they sum to
running (total) power as well. Nahuku is a board with 32 Loihi chips (Kapoho Bay has 2). A Nahuku configuration where no spikes were sent and only chips and
cores were allocated (no synapses) is included as “empty.” Jetson Nano has a low-power (5 W) and high-power (10 W) mode. One inference (inf) was the
processing of one set of inputs by the network, resulting in an output or prediction. On Jetson Nano, we tested both our vision SNN and the comparable
Conv-GRU ANN. Dash entries indicate unmeasured configurations.

Device Seq. Static (W) Dynamic (W) Idle (W) Running (W) Delta (W) inf/s mJ/inf

Nahuku 32
(empty)

Any 0.86 0.04 0.90 0.90 4 × 10−3 60,496 71 × 10−6

3*Nahuku 32:
SNN

Slow 0.90 0.05 0.94 0.95 12 × 10−3 1,637 7 × 10−3

Medium 0.90 0.04 0.94 0.95 8 × 10−3 411 21 × 10−3

Fast 0.90 0.04 0.94 0.95 7 × 10−3 274 27 × 10−3

3*Jetson Nano:
SNN (5 W)

Slow – – 1.05 2.23 1.18 14 86.11

Medium – – 1.03 2.25 1.22 14 85.58

Fast – – 1.03 2.24 1.21 14 86.19

3*Jetson Nano:
SNN (10 W)

Slow – – 1.04 2.98 1.93 26 75.25

Medium – – 1.06 2.98 1.92 26 75.35

Fast – – 1.04 2.99 1.95 25 76.52

3*Jetson Nano:
ANN (5 W)

Slow – – 1.05 2.66 1.61 59 27.46

Medium – – 1.07 2.64 1.57 56 27.91

Fast – – 1.06 2.64 1.58 57 27.52

3*Jetson Nano:
ANN (10 W)

Slow – – 1.04 3.30 2.27 83 27.36

Medium – – 1.07 3.33 2.26 80 28.09

Fast – – 1.07 3.30 2.23 80 27.80

D
ow

nloaded from
 https://w

w
w

.science.org at D
elft U

niversity on M
ay 29, 2024

Paredes-Vallés et al., Sci. Robot. 9, eadi0591 (2024) 15 May 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

11 of 18

Nano consumed ~2.98 W when running in 10-W mode. This is a
difference of a factor ~3.1×. Most of the energy expenditure of Loihi
consisted of idle power. Table 2 also shows the difference between
the idle power and the power when running the network (“Delta”).
When only considering this extra power required for the inference
of the network, Loihi outperformed Jetson Nano by three to four
orders of magnitude, depending on the sequence. Hence, any pos-
sible reduction of the idle power would substantially affect the neu-
romorphic chip’s energy efficiency advantages over other chips.

Moreover, Loihi provided a one- to two-order-of-magnitude im-
provement in execution frequency. Furthermore, the benefits of
neuromorphic processing show in Loihi’s increasing execution fre-
quency as event sparsity increased (from fast to slow motion se-
quences). Because a GPU like Jetson Nano is not optimized to
simulate SNNs, we also ran an equivalent ANN (Conv-GRU with
downsampling, corner crop ROI, and event limiting from Table 1).
The increased inference speed for the ANN on Jetson Nano con-
firms that this is a more suitable architecture for GPUs. Nonetheless,
although energy consumption per inference has decreased com-
pared with running the SNN on Jetson Nano, energy efficiency and
inference speed still did not come close to those of the SNN on Loihi.

DISCUSSION
We presented a fully neuromorphic vision-to-control pipeline for
controlling a flying drone. Specifically, we trained an SNN that
takes in raw event-based camera data and produces low-level con-
trol commands. Real-world experiments demonstrated a successful
sim-to-real transfer: The drone could accurately follow various
ego-motion set points, performing hovering, landing, and lateral
maneuvers—even under constant yaw rate.

Our study confirms the potential of a fully neuromorphic vision-
to-control pipeline by running on board with an execution frequency
of 200 Hz. Moreover, the chip spends 0.95 W, out of which 0.94 W
was idle power and only 7 to 12 mW were used for inference. Hence,
reducing the idle power can lead to substantial energy gains.

A major question is whether the energy gain of neuromorphic
processing will make a difference on a system level even if future
neuromorphic chips weigh on the order of grams and will have a
negligible idle power. Compared with the power required for hover-
ing, 277 W, a difference of a few watts (see Table 2) may seem like a
small difference. However, on flying robots, such small differences
can have substantial effects (65). A heavier, more power-consuming
computing unit not only requires more power from the battery but
also needs to be lifted in the air. This requires a bigger battery and
possibly bigger motors that themselves also have to be lifted. More-
over, as argued in (65), a lower latency, as attained with neuromor-
phic processing, allows for faster flight. This in turn leads to drones
accomplishing their missions with less flight time. Still, the main
point is not necessarily what is gained on a ~1-kg drone if switched
from a conventional embedded GPU to a lightweight neuromorphic
processor (which is not negligible) but that neuromorphic process-
ing will enable many more networks to run on such larger drones
and even enable deep neural networks on much lighter platforms
that cannot even carry an embedded GPU. An example of the latter
are 30-g flapping wing drones, which use ~6 W to fly (66).

A particularly promising avenue to autonomous flight of such
tiny drones is to make the entire drone sensing, processing, and ac-
tuation pipeline neuromorphic, from its accelerometer sensors to

the processor and motors, allowing for sparse and event-driven/
asynchronous computation all the way through. Because such hard-
ware is currently not available, we have limited ourselves to the
vision-to-control pipeline, ending at thrust and attitude commands.

Until then, advancements could come from improved I/O band-
width and interfacing options for the neuromorphic processor and
event camera. The current processor is limited to host boards with
an x86 architecture (preventing other potentially lighter but equally
performant architectures from being used) and can only be con-
nected directly via AER (address-event representation) to a specific
model of event-based camera (this is of course also a limitation on
the part of the available event cameras). Although the former is lim-
iting for all works implementing neuromorphic hardware on con-
strained systems like drones, the latter is especially relevant to our
advanced use case, where we reached the limits of the number of
spikes that can be sent to and received from the neuromorphic pro-
cessor at the desired high execution frequency of 200 Hz. To achieve
this frequency, we had to limit the number of events per input win-
dow to 90 per image corner ROI and limit ourselves to a linear net-
work controller, which avoids having to send additional input spikes
that encode the ego-motion set point and attitude. Improved inter-
facing could allow for more extensive vision processing and more
complex spiking neuron control networks. This could make the
vision-based ego-motion estimation more robust and considerably
increase the control performance—even if SNN controllers current-
ly perform worse than common PID controllers (67, 68). As long as
both the vision and control networks still use a learned encoding
and decoding, the proposed split-and-merge strategy would still
work (see Materials and Methods). Ultimately, further gains in
terms of efficiency might be obtained by moving from digital neuro-
morphic processors to mixed-signal hardware, but this will pose
even larger development and deployment challenges given the noise
sensitivity of such hardware (17, 69).

Despite the abovementioned limitations, the current work pres-
ents a substantial step toward neuromorphic sensing and processing
for drones. The results are encouraging because they show that neu-
romorphic sensing and processing may bring deep neural networks
within reach of small autonomous robots. In time, this may allow
them to approach the agility, versatility, and robustness of small ani-
mals such as flying insects.

MATERIALS AND METHODS
Here, we explain the main components of the proposed fully neuro-
morphic vision-to-control pipeline, starting with the neuron model
of our SNN and how this was trained in a self-supervised fashion
using real event camera data. Next, we describe how the vision-
based state estimate can be used for navigation and how we trained
a controller on top of it. Last, we discuss the real-world tests and
hardware and the performed energy benchmarks.

Neuromorphic state estimation: Spiking,
sequential processing
We used a spiking neuron model based on the current-based leaky-
integrate-and-fire (CUBA-LIF) neuron, whose membrane potential
U and synaptic input current I at time step t can be written as

Ut
i
= τU

(
1 − St−1

i

)
Ut−1

i
+ It

i (1)

D
ow

nloaded from
 https://w

w
w

.science.org at D
elft U

niversity on M
ay 29, 2024

Paredes-Vallés et al., Sci. Robot. 9, eadi0591 (2024) 15 May 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

12 of 18

where j and i denote presynaptic (input) and postsynaptic (output)
neurons within a layer, S ∈ {0,1} denotes a neuron spike, and wff and
wrec denote feedforward and self-recurrent connections (if any), re-
spectively. The decays (or leaks) of the two internal state variables of
this neuron model are learned and are denoted by τU and τI. A
neuron fires an output spike if the membrane potential exceeds a
threshold θ, which is also learned. The firing of a spike triggers a
hard reset of the membrane potential. Note that, in this work, all
neurons within a layer share the same decays and firing threshold.

Neurons on the Loihi neuromorphic processor also follow the
CUBA-LIF model (40); however, several considerations must be tak-
en into account to accurately simulate these on-chip neurons. First,
the state variables are quantized in the integer domain. Hence, the
parameters associated with these variables are also quantized in the
same way: w ∈ [−256  . .   256 − Δw], with Δw being the quantiza-
tion step for the synaptic weights; τ{U, I} ∈ [0  . .   4096] for the decays;
and θ ∈ [0  . .   131071] for the threshold. We follow this quantization
scheme with Δw = 8 (6-bit weights) in the simulation and training of
our neural networks. Second, to emulate the arithmetic left (bit) shift
operations carried out by the processor when updating the neuron
states, we performed a rounding-toward-zero operation after the ap-
plication of the decays. Taking these aspects into consideration, we
obtained a matching score of 100% between the simulated and
the on-chip spiking neurons. We used quantization-aware training
(quantized forward pass and floating point backward pass) to mini-
mize the performance loss of our SNN when deployed on Loihi. As a
surrogate gradient for the spiking function σ, we opt for the deriva-
tive of the inverse tangent (37)

with γ = 10 being the surrogate width.

Neuromorphic state estimation: Planar homography
Assuming that x̃ =

[
xT , 1

]T and x̃�

=

[
x

�T , 1
]T are two undistorted

corresponding points from a planar scene with pixel array coordi-
nates x = [x, y]T and x′ = [x′, y′]T expressed in homogeneous coor-
dinates and captured by a pinhole camera at different time instances,
a planar homography transformation is a linear projective transfor-
mation that maps x̃ ↔ x̃

� such that

where H is a three-by-three nonsingular matrix, further referred to
as the homography matrix, which is characterized by eight degrees
of freedom and is defined up to a scale factor λ and from which we
obtain the normalized form by setting h33 = 1.

From Eq. 5, we can formulate a system of linear equations for the
kth point correspondence

As shown in Fig. 2A, our vision network predicts the displace-
ment of the corner ROI pixels in a certain time window. Using this
information, we can solve for the components of the homography
matrix through

with A and b being the result of the concatenation of the individual
Ak and bk of each point correspondence ∀k ∈ {TL, TR, BR, BL},
resulting in a determined system of equations. This approach is re-
ferred to as the four-point parametrization of the homography
transformation (55), and it has proven to be successful in the event
camera literature for robotics applications (61, 70).

Once the homography matrix is estimated, we can estimate a
dense (per-pixel) optical flow map as follows

which encodes the displacement of pixel x in the time window of H.
(⋅)Eucl indicates the conversion from homogeneous to Euclidean
coordinates.

Neuromorphic state estimation: Self-supervised learning
To train our spiking architecture to estimate the displacement of the
pixels of the four corner ROIs in a self-supervised fashion, we used
the contrast maximization framework for motion compensation
(57, 58). Assuming constant illumination, accurate optical flow in-
formation is encoded in the spatiotemporal misalignments among
the events triggered by a moving edge (blur). To retrieve it, one has
to learn to compensate for this motion (deblur the event partition)
by transporting the events through space and time. Once we get a
per-pixel optical flow estimate u(x, H) from Eq. 11, we can propa-
gate the events to a reference time tref through the following linear
motion model

where t and tref are normalized relative to the time window between
x and x′. The result of aggregating the propagated events is the im-
age of warped events (IWE) at tref, and it having a high contrast in-
dicates good motion compensation/deblurring.

As loss function, we used the reformulation from (24) of the fo-
cus objective function based on the per-pixel and per-polarity aver-
age time stamp of the IWE (20, 71). The lower this metric, the better
the event deblurring and hence the more accurate the estimated

It
i
= τI I

t−1
i

+

∑
j

w
ff

ij
St
j
+ wrec

ii
St−1
i (2)

σ
�
(x) = aTan

�

= 1∕
(
1 + γx

2
)

(3)

x = u − θ (4)

λ

⎡
⎢⎢⎢⎣

x�

y�

1

⎤
⎥⎥⎥⎦
= H

⎡
⎢⎢⎢⎣

x

y

1

⎤
⎥⎥⎥⎦
; with H =

⎡
⎢⎢⎢⎣

h11 h12 h13

h21 h22 h23

h31 h32 h33

⎤
⎥⎥⎥⎦

(5)

Akh = bk (6)

Ak =

[
x y 1 0 0 1 −x�x −x�y

0 0 0 x y 1 −y�x −y�y

]
(7)

h =

[
h11 h12 h13 h21 h22 h23 h31 h32

]T (8)

bk =
[
x� y�

]
T (9)

h = A−1b (10)

u(x,H)=

�
u(x,H)

v(x,H)

�
=

⎛
⎜⎜⎜⎝
H

⎡
⎢⎢⎢⎣

x

y

1

⎤
⎥⎥⎥⎦

⎞⎟⎟⎟⎠Eucl
−

�
x

y

�
(11)

x
�

i
= xi + (tref − ti)u(xi,H) (12)

D
ow

nloaded from
 https://w

w
w

.science.org at D
elft U

niversity on M
ay 29, 2024

Paredes-Vallés et al., Sci. Robot. 9, eadi0591 (2024) 15 May 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

13 of 18

optical flow. We generated an image of the per-pixel average time
stamp for each polarity p′ via bilinear interpolation:

Following (24), we first scaled the sum of the squared temporal
images resulting from the warping process with the number of pix-
els with at least one warped event

where n(x′) denotes a per-pixel event count of the IWE. As in (20,
22, 24), we performed the warping process both in a forward ( tfw

ref
 )

and in a backward fashion ( tbw
ref

 ) to prevent temporal scaling issues
during backpropagation. The total loss used to train our event-based
optical flow networks is then given by

where smooth is a Charbonnier smoothness prior (72) applied in the
temporal domain to subsequent per-corner-ROI optical flow esti-
mates and � is a scalar balancing the effect of the two losses. We
empirically set this weight to � = 0.1.

As discussed in (24, 25), there has to be enough linear blur in the
accumulated input event partition for this loss function to be a ro-
bust supervisory signal (58, 73). Because we processed the event
stream sequentially, with only a few events being considered at each
forward pass, we defined the so-called training partition

which is a buffer that gets populated every forward pass with the
input events and their corresponding optical flow estimates. This is
illustrated in Fig. 2A. At training time, we performed a backward
pass with the content of the buffer using backpropagation through
time once it contained five successive event-flow tuples (25 ms of
event data), after which we updated the model parameters, de-
tached its states from the computational graph, and cleared the buf-
fer. The selection of input and training partition lengths represents
deliberate design choices (74) made in alignment with our target
execution frequency of 200 Hz, the fact that we do not have direct
connectivity between the event camera and the neuromorphic pro-
cessor, and the statistical attributes of our dataset. We used a batch
size of 16 and trained until convergence with the Adam optimizer
(75) and a learning rate of 1 × 10−4. We validated the quality of the
estimated optical flow against the ground-truth optical flow using
the average EPE metric, which is defined as the Euclidean distance
between predicted and ground-truth flow values averaged over all
pixels in the image

where I is the set of N pixels in the image and uGT is the ground-
truth flow.

From a vision-based state estimate to control
The corner ROI flows

[
uT
TL
, uT

TR
, uT

BR
, uT

BL

]T
∈ ℝ

8×1 resulting from
the vision-based state estimation can be used to control the drone.
More specifically, we can transform the flows to visual observable
estimates (51), consisting of unscaled velocities �̂C ∈ ℝ

3×1 and yaw
rate ω̂C

z
 in the camera frame  , as follows (56)

where u is the optical flow of a world point with pixel array coordi-
nate x = [x, y]T, and where it is assumed that the scene is static and
planar, angles in pitch and roll are small, and optical flow is dero-
tated in pitch and roll (meaning the observed flow is only due to
translation and yawing). Concatenating Eq. 19 for all four corners of
the field of view (uk, xk ∀ k ∈ {TL, TR, BR, BL}) allows us to do a
least-squares estimation of the unscaled velocities �̂C and the yaw
rate ω̂C

z
 , which can then be transformed to the body frame . To

perform control, we can let a user select visual observable set points,
�


sp
 and ω

z,sp
 , and use a trained or manually tuned controller to min-

imize the difference between the estimated visual observables and
their set points.

Because Eq. 19 is a linear transformation, it can be “merged”
with other transformations if these are also linear. This holds for the
decoding from spikes to corner ROI flows in the vision SNN, mean-
ing that we can use a single linear transformation from spikes to
control commands if we use a linear controller. In a similar fashion,
we can use this idea to connect separately trained SNNs, merging
their linear decodings and encodings. If both are implemented on
neuromorphic hardware, this would mean that no off-chip transfer
is necessary. Figure 7 illustrates these concepts.

Training control in simulation
We performed control by linearly transforming the visual observ-
able estimates �̂ ∈ ℝ

3×1 and ω̂

z
 , the drone’s absolute roll ∣ϕ∣ and

pitch ∣θ∣, and the unscaled velocity set point �
sp
∈ ℝ

3×1 to a control
command c ∈ ℝ4×1, which consists of an upward, mass-normalized
collective thrust offset from hover f 0,c in the body frame , a roll
angle ϕc and pitch angle θc, and a yaw rate ω

z,c
 , to reach a certain set

point of unscaled velocities �
sp

 and yaw rate ω

z,sp
 (always 0). The

control part was trained separately from the vision part because of
the cost of accurately simulating event-based camera inputs (this
needs subpixel displacements between frames, hence high frame
rate for fast motion). Simulation was done with a modified version
of the drone simulator Flightmare (76). To mimic the output of the
vision-based state-estimation network, we first computed the
ground-truth continuous homography (62, 77) from the state
of the drone

Tp�

�
x; u ∣tref

�
=

∑
j
�

κ

�
x−x�

j

�
κ

�
y−y�

j

�
tj

∑
j
�

κ

�
x−x�

j

�
κ

�
y−y�

j

�
+ϵ

κ(a)=max(0, 1− ∣a ∣)

j={i ∣pi =p�}, p� ∈{+, −}, ϵ≈0

(13)

contrast

�
tref

�
=

∑
x
T
+

�
x; u ∣ tref

�2
+T

−

�
x; u ∣ tref

�2
∑

x

�
n
�
x

�

�
>0

�
+ϵ

(14)

contrast = contrast

(
t
fw
ref

)
+ contrast

(
t
bw
ref

)
(15)

flow = contrast + λ

smooth (16)

�
train
k→k+K

≐

{(
�
inp

i
, ui

)}K

i=k
(17)

EPE =
1

N

N∑
i∈I

‖‖‖ui − u
GT

i

‖‖‖ (18)

u =

[
−1 0 x x

0 −1 y −y

][
�
C

ω
C

z

]
(19)

Ḣ = K

([
�


]
×
+

1

pWC
z

v

(
e
W

−z

)T)
K

−1

(20)

D
ow

nloaded from
 https://w

w
w

.science.org at D
elft U

niversity on M
ay 29, 2024

Paredes-Vallés et al., Sci. Robot. 9, eadi0591 (2024) 15 May 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

14 of 18

where Ḣ is the continuous homography, K is the camera intrinsic
matrix,

[
�


]
×
∈ ℝ

3×3 is a skew-symmetric matrix representing in-
finitesimal rotations, p

z is the Z component of the position vector
from the world frame W to the camera frame  (representing per-
pendicular distance from the ground plane to the camera), v is the
velocity of the camera, and e

−z
 is the unit vector in the negative Z

direction of the world frame. To obtain angular rates and velocities
in the camera frame, we used the camera extrinsics, consisting of a
rotation R and a translation T

where the right-hand sides of Eqs. 21 and 22 are known from the
simulator. Next, we used the continuous homography to get the flow
of the four corners (62, 77)

where uk is the flow in Euclidean coordinates, 1 is the identity ma-
trix, and x̃k = [xk , yk, 1]

T is the projection of the world points in the
corners of the field of view onto the pixel array in homogeneous co-
ordinates (so x̃BL = [0, 180, 1]T and x̃TR = [180, 0, 1]T ; note the dif-
ference with respect to Eq. 19). We added  (0, 0.025) noise to the
flows uk (based on a characterization of the vision SNN). Equa-
tion 19 was subsequently used to go from flows of the corner ROIs to
visual observables in the camera frame, which were then trans-
formed back to the body frame for control. Note that relating camera
motion to the motion of points in the image (flow) can equivalently
be done with the image Jacobian or feature sensitivity matrix (78).

We used a mutation-only evolutionary algorithm with a popula-
tion size of 100 to evolve the weights of the linear controller matrix
∈ℝ4×9, whose initial values were drawn from U(−0.1, 0.1) . More

specifically, we generated offspring by adding mutations drawn
from  (0, 0.001) to all parameters of each parent and then evalu-
ated the fitness of both parents and offspring. The next generation
was composed of the best 100 individuals, and we repeated this pro-
cess until convergence (approximately 25,000 generations). We used
Flightmare to assess fitness at flying various visual observable set
points: Every individual was evaluated across a set of 16 set points,
with each unscaled velocity set point �

sp
 having at most one nonzero

element ∈{ ±0.2, ±0.5, ±1.0} 1/s, skipping the positive set points for
the Z direction, and including hover. The yaw rate set point was set
to ω

z,sp
= 0 for all. Each set point was repeated 10 times, meaning a

total of 160 evaluations per individual. Fitness F was computed as

Here, Neval is the number of evaluations, Nsteps = 1000 is the number
of steps per evaluation, and w = [1,1, wz]T is a vector weighing the
fitness for different axes, where we set wz = 10 for set points where
ν


z,sp
= 0 . Note that, for the Z direction, we used the ground-truth

unscaled velocity in the world frame ν
z

 instead of the one in the
body frame because the latter was zero in the case of the drone as-
cending or descending at a slope equal to its attitude and would
hence go unpunished, leading to extra vertical drift. Furthermore, if
the simulated drone went out of bounds or crashed before the end of
an evaluation, it would be reset without any additional fitness penalty.

We used domain randomization (79) to obtain a more robust
controller and reduce the reality gap: For each of the 10 repeats, a
random constant bias U(−0.001, 0.001) rad was added to the abso-
lute pitch and roll received by the control layer. This bias was shared
among the population to keep things fair. Furthermore, for each of
the 160 evaluations per individual, we randomly varied the initial

�

= R


�

 (21)

v

= R


(
v

+

[
�


]
×
T


)

(22)

uk =

(
−

(
1− x̃k

(
e


−z

)T)
Ḣx̃k

)
Eucl

(23)

F=
1

Neval

�
i∈Neval

�
j∈Nsteps

w ⋅

⎛⎜⎜⎜⎝
�


sp,i
−

⎡⎢⎢⎢⎣

ν̂


x

ν̂


y

ν


z

⎤⎥⎥⎥⎦
j

⎞⎟⎟⎟⎠

2

+

�
ω̂


z

�2

(24)

Fig. 7. Merging linear transformations. (A) We go directly from output spikes s of the vision network to control commands c in a single linear decoding by multiplying
the involved linear transformation matrices. This is not possible for the matrices used for encoding (shown faded), so we leave these as is. (B) The same principle can be
applied to connect two separately trained spiking networks in a spiking manner, from spikes s to currents x, suitable for neuromorphic hardware.

D
ow

nloaded from
 https://w

w
w

.science.org at D
elft U

niversity on M
ay 29, 2024

Paredes-Vallés et al., Sci. Robot. 9, eadi0591 (2024) 15 May 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

15 of 18

position p
= [0, 0, 2]T + U

3×1(− 1, 1) m (except for horizontal
flight, where we fixed p

z
 to 1.5 m, because of the linear nature

of the controller we have here, as explained later), initial ve-
locity v

∼ U
3×1(−0.02, 0.02) m/s, initial attitude quaternion

q
∼ U

4×1(−0.02, 0.02) (normalized), and initial angular rates
�


∼ U

3×1(−0.02, 0.02) rad/s.
We modified Flightmare to include drag fdrag occurring as a re-

sult of translational motion, and we took it to be acting in the so-
called “flat-body” frame ′, which is the body frame rotated by the
roll and pitch of the drone such that the z axis is aligned with the
world z axis. Following (64), we used a drag model that is linear with
respect to velocity in x and y but using a drag coefficient kv,x = kv,y =
0.5. This results in the following

The outputs of the linear controller c ∈ ℝ4×1 were clamped to
[−1,1] and fed to different parts of the cascaded low-level (thrust,
attitude, and rate) controllers. To accommodate some of the short-
comings of the linear controller, we compensated thrust for the
attitude of the drone.

All dynamics equations were integrated with fourth-order Runge-
Kutta with a time step of 2.5 ms. The frequency of the simulation was
50 Hz. All remaining details can be found in Supplementary Methods.

From simulation to the real world
We achieved successful sim-to-real transfer through several strate-
gies. One is domain randomization (79), which we did by adding
noise to the observed flows, through a random bias on the attitude
estimate, and by varying the initial conditions of the simulated
quadrotor. Another is abstraction (80), which we did by making use
of low-level controllers to go from thrust and attitude to rotor
speeds and by calibrating the attitude and hover thrust biases before
each flight to ensure that they were small/zero (as in the simulator).
Last, we smoothed (low-pass filter) and scaled the computed visual

observables and tuned the gains scaling the control layer outputs in
the real world.

Equation 19 was used to transform the flows of the corner ROIs
coming from the vision network into visual observables (unscaled
velocities �̂ and yaw rate ω̂

z
 ), absolute roll ∣ϕ∣ and pitch ∣θ∣ were

taken from the drone’s accelerometers, and the unscaled velocity set
point �

sp
 was provided by the user. The yaw rate set point ω

z,sp
= 0

was fixed.
Extra experiments were performed by connecting the vision net-

work to a hand-tuned PI controller. All remaining details can be
found in Supplementary Methods.

Hardware setup
Real-world experiments were performed with a custom-built quadro-
tor carrying the event-based camera (DVS 240), a single-board com-
puter (UP Squared), and a neuromorphic processor (Intel Kapoho
Bay with two Loihi neuromorphic research chips). A high-level over-
view can be found in Fig. 1, with all components listed in Table 3. We
used PX4 as autopilot firmware and ROS (Robot Operating System)
for communication. More specifically, events coming from the event-
based camera were passed to the UP Squared over USB using ROS1.
These events were processed (downsampling, cropping, and limiting
to 90 per image corner ROI) on the UP Squared and sent as spikes to
the vision network running on the Kapoho Bay over USB. After pro-
cessing, the output spikes were sent back over USB to the UP Squared,
where they were decoded into flows for each corner ROI. The ROI
flows were then published by an ROS1 node and sent to ROS2 over a
ROS1-ROS2 bridge. The linear controller (or PI controller, for that
matter) and the processing around it, running as a ROS2 node, took
the ROI flows together with the attitude estimate coming from PX4
(IMU) and the ego-motion set point provided by the user and output
the control command. This command was then sent over ROS2 to
PX4 and processed by the low-level controllers there. ROS2 makes
use of RTPS (real-time publish-subscribe) for communication,
which allows for high-frequency and high-bandwidth messaging
between the UP and PX4, meaning that our entire pipeline can run at
200 Hz—approximately the frequency of PX4’s attitude controller.

f


drag
= − R


�

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

kv,x

kv,y

0

⎤
⎥⎥⎥⎦
◦R


�

v


⎞
⎟⎟⎟⎠

(25)

Table 3. List of hardware components used for the real-world test flights. Power consumption estimates were obtained from the Loihi energy benchmark*,
a real-world hover test with the drone†, or component datasheets‡. Dash entries indicate components not using any power.

Component Product Mass (g) ∼Power (W)

Frame GEPRC Mark 4 225 mm

Motor Emax 2306 Eco II Series

Propellor Ethix S5 5 inch 508 259†

Flight controller Pixhawk 4 Mini

ESC SpeedyBee 45A BL32 4in1

Battery Tattu FunFly 1800 mAh 4S 195 –

Single-board computer UP Squared ATOM Quad Core 08/64 202 18‡

Event-based camera DVS 240 27 1‡

Neuromorphic processor Intel Loihi, Kapoho Bay form factor 62 1*

D
ow

nloaded from
 https://w

w
w

.science.org at D
elft U

niversity on M
ay 29, 2024

Paredes-Vallés et al., Sci. Robot. 9, eadi0591 (2024) 15 May 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

16 of 18

This attitude control frequency was a major driver for our choice to
run the neuromorphic pipeline at the same frequency. This choice
also depended on various other factors, ranging from the trade-off
between a fast execution frequency and good optical flow estimation
to the limitations of the spike interfacing over USB. A 5-ms event
window turned out to give accurate optical flow estimates, as well as
a very fast execution frequency (see Supplementary Methods). More-
over, this frequency could be attained reliably, and Table 2 shows that
Intel’s Loihi inference time was consistently faster than 5 ms. For po-
sition control between test runs and as failsafe, we used an OptiTrack
motion capture system.

We estimated power required for hover flight by flying with a fully
charged battery until a certain voltage, keeping track of time, and
estimating spent milliampere hour using the value from the charger.
During this flight, the UP Squared was powered on (needed for con-
trol), and we estimated a power consumption of 277 W. Subtracting
the estimated 18 W for the UP Squared results in 259 W for the
remaining components in Table 3. For the Kapoho Bay, we used the
numbers from the performed energy benchmark, given that running
power is almost equal to idle power. We got power estimates for the
UP Squared (version UPS-APLX7-A20-0864) and DVS 240 from on-
line available datasheets.

Energy benchmark
Energy benchmarks for Loihi were performed on a Nahuku board
(host machine: Intel Xeon Platinum 8280 CPU at 2.7 GHz, 126 GB
RAM, Ubuntu 20.04, NxSDK 1.0.0), which contains 32 Loihi chips,
because Kapoho Bay does not support energy probing. These (soft-
ware) probes report a variety of power measurements, as well as ex-
ecution times. Following the documentation, static power is due to
transistor leakage, dynamic power is due to switching, idle power is
measured while the embedded CPU cores on Loihi are still clocked
but the neuromorphic cores are inactive, and total/running power is
due to all components together. Kapoho Bay does support probing
execution times, which we used to confirm that these are almost
identical between Nahuku and Kapoho Bay. Furthermore, docu-
mentation states that Nahuku shuts down unused chips, meaning
that it can emulate energy consumption of a Kapoho Bay (which has
two chips) with minimal overhead. Still, these benchmarks are not
very representative of actual use on a drone because that involves
receiving and processing streaming data in an online fashion,
whereas here all data were loaded to memory beforehand and then
processed as quickly as possible. Therefore, what these benchmarks
represent is not the energy consumption and execution speed of the
whole pipeline but rather that of the network alone, without any
bottlenecks and influences because of I/O and preprocessing. This
also explains the much higher execution frequencies of Loihi with
respect to real world tests, where this was always around 200 inf/s.

On Jetson Nano, we simulated the SNN and ANN in PyTorch
(ARM Cortex-A57 CPU at 1.43 GHz, 4 GB RAM, Ubuntu 20.04,
PyTorch 1.12.0). Jetson Nano has two power modes: a low-power
(5 W) mode and a max-power (10 W) mode, the difference being
the number of active CPU cores (two versus four) and the frequen-
cies of the active CPU and GPU cores. Power consumption was
measured using the tegrastats utility, and execution time was mea-
sured in Python code. The split between static and dynamic power
cannot be made here because these are not available as measure-
ments. Idle power was measured for a period of time after running
the benchmarks.

Statistical analysis
Unless mentioned otherwise, figures and tables show individual
runs without any statistical method applied. Reported EPEs (as in
Table 1) are averaged over sequences in the test dataset. Reported
drifts (as in tables S2 to S4) are averaged over all runs in a certain
flying direction. For investigating the influence of the tether on the
drone dynamics (see Supplementary Results), we performed a Z test
with sampling distributions created using bootstrapping (81), and a
confidence interval of 95% was used to determine significance.

Supplementary Materials
This PDF file includes:
Results
Methods
Tables S1 to S6
Figs. S1 to S6
References (82–88)

Other Supplementary Material for this manuscript includes the following:
Movies S1 to S4

REFERENCES AND NOTES
	 1.	 D. Cireşan, U. Meier, J. Masci, J. Schmidhuber, A committee of neural networks for traffic

sign classification, in Proceedings of the 2011 International Joint Conference on Neural
Networks (IEEE, 2011), pp. 1918–1921.

	 2.	 X. Cheng, Y. Zhong, M. Harandi, Y. Dai, X. Chang, H. Li, T. Drummond, Z. Ge, Hierarchical
neural architecture search for deep stereo matching, in Advances in Neural Information
Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, H. Lin, Eds. (Curran
Associates, 2020), vol. 33, pp. 22158–22169.

	 3.	 X. Gu, Z. Fan, S. Zhu, Z. Dai, F. Tan, P. Tan, Cascade cost volume for high-resolution
multi-view stereo and stereo matching, in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (IEEE, 2020), pp. 2495–2504.

	 4.	E . Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, T. Brox, FlowNet 2.0: Evolution of
optical flow estimation with deep networks, in Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (IEEE, 2017), pp. 2462–2470.

	 5.	 D. Sun, X. Yang, M.-Y. Liu, J. Kautz, PWC-Net: CNNs for optical flow using pyramid,
warping, and cost volume, in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (IEEE, 2018), pp. 8934–8943.

	 6.	 Z. Teed, J. Deng, RAFT: Recurrent all-pairs field transforms for optical flow, in Computer
Vision—ECCV 2020, Lecture Notes in Computer Science (Springer, 2020), vol. 12347,
pp. 402–419.

	 7.	 Y. Yuan, X. Chen, X. Chen, J. Wang, Segmentation transformer: Object-contextual
representations for semantic segmentation, in Computer Vision—ECCV 2020, Lecture
Notes in Computer Science (Springer, 2020), vol. 12347, pp. 173–190.

	 8.	 Z. Liu, H. Hu, Y. Lin, Z. Yao, Z. Xie, Y. Wei, J. Ning, Y. Cao, Z. Zhang, L. Dong, F. Wei, B. Guo,
Swin transformer V2: Scaling up capacity and resolution, in Proceedings of the 2022 IEEE/
CVF Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2022),
pp. 12009–12019.

	 9.	 R. Girshick, Fast R-CNN, in Proceedings of the 2015 IEEE International Conference on
Computer Vision (ICCV) (IEEE, 2015), pp. 1440–1448.

	 10.	 J. Redmon, A. Farhadi, YOLOv3: An incremental improvement. arXiv:1804.02767 [cs.CV]
(2018).

	 11.	 M. Xu, Z. Zhang, H. Hu, J. Wang, L. Wang, F. Wei, X. Bai, Z. Liu, End-to-end semi-supervised
object detection with soft teacher, in Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV) (IEEE, 2021), pp. 3060–3069.

	 12.	 R. Garg, V. K. B.G., G. Carneiro, I. Reid, Unsupervised CNN for single view depth estimation:
Geometry to the rescue, in Computer Vision—ECCV 2016, Lecture Notes in Computer
Science (Springer, 2016), vol. 9912, pp. 740–756.

	 13.	C . Godard, O. Mac Aodha, G. J. Brostow, Unsupervised monocular depth estimation with
left-right consistency, in Proceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (IEEE, 2017), pp. 270–279.

	 14.	 W. Yuan, X. Gu, Z. Dai, S. Zhu, P. Tan, NeW CRFs: Neural window fully-connected CRFs for
monocular depth estimation, in Proceedings of the 2022 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (IEEE, 2022), pp. 3916–3925.

	 15.	N VIDIA embedded systems for next-gen autonomous machines; https://nvidia.com/
en-us/autonomous-machines/embedded-systems/.

	 16.	 G. Indiveri, R. Douglas, Neuromorphic vision sensors. Science 288, 1189–1190
(2000).

D
ow

nloaded from
 https://w

w
w

.science.org at D
elft U

niversity on M
ay 29, 2024

Paredes-Vallés et al., Sci. Robot. 9, eadi0591 (2024) 15 May 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

17 of 18

	 17.	 Y. Sandamirskaya, M. Kaboli, J. Conradt, T. Celikel, Neuromorphic computing hardware
and neural architectures for robotics. Sci. Robot. 7, eabl8419 (2022).

	 18.	 G. Gallego, T. Delbrück, G. Orchard, C. Bartolozzi, B. Taba, A. Sensi, S. Leutenegger,
A. J. Davidson, J. Conradt, K. Daniilidis, D. Scaramuzza, Event-based vision: A survey. IEEE
Trans. Pattern Anal. Mach. Intell. 44, 154–180 (2020).

	 19.	A . Z. Zhu, L. Yuan, K. Chaney, K. Daniilidis, EV-FlowNet: Self-supervised optical flow
estimation for event-based cameras, in Robotics: Science and Systems XIV (Robotics:
Science and Systems Foundation, 2018).

	 20.	A . Z. Zhu, L. Yuan, K. Chaney, K. Daniilidis, Unsupervised event-based learning of optical
flow, depth, and egomotion, in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPRW) (IEEE, 2019), pp. 989–997.

	 21.	 M. Gehrig, M. Millhäusler, D. Gehrig, D. Scaramuzza, E-RAFT: Dense optical flow from
event cameras, in 2021 International Conference on 3D Vision (3DV) (IEEE, 2021),
pp. 197–206.

	 22.	 F. Paredes-Valles, G. C. H. E. de Croon, Back to event basics: Self-supervised learning of
image reconstruction for event cameras via photometric constancy, in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2021),
pp. 3446–3455.

	 23.	 F. Paredes-Vallés, K. Y. W. Scheper, G. C. H. E. de Croon, Unsupervised learning of a
hierarchical spiking neural network for optical flow estimation: From events to global
motion perception. IEEE Trans. Pattern Anal. Mach. Intell. 42, 2051–2064 (2020).

	 24.	 J. Hagenaars, F. Paredes-Vallés, G. C. H. E. de Croon, Self-supervised learning of
event-based optical flow with spiking neural networks, in Advances in Neural Information
Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, J. Wortman
Vaughan, Eds. (Curran Associates, 2021), vol. 34, pp. 7167–7179.

	 25.	 F. Paredes-Vallés, K. Y. W. Scheper, C. De Wagter, G. C. H. E. de Croon, Taming contrast
maximization for learning sequential, low-latency, event-based optical flow.
arXiv:2303.05214 [cs.CV] (2023).

	 26.	 W. Maass, Networks of spiking neurons: The third generation of neural network models.
Neural Netw. 10, 1659–1671 (1997).

	 27.	A . Grüning, S. M. Bohte, Spiking neural networks: Principles and challenges, in ESANN
2014 Proceedings. European Symposium on Artificial Neural Networks (ESANN, 2014).

	 28.	 M. Davies, A. Wild, G. Orchard, Y. Sandamirskaya, G. A. F. Guerra, P. Joshi, P. Plank,
S. R. Risbud, Advancing neuromorphic computing with Loihi: A survey of results and
outlook. Proc. IEEE 109, 1–24 (2021).

	 29.	 F. Ottati, C. Gao, Q. Chen, G. Brignone, M. R. Casu, J. K. Eshraghian, L. Lavagno, To spike or
not to spike: A digital hardware perspective on deep learning acceleration. IEEE J. Emerg.
Sel. Top. Circuits Syst. 13, 1015–1025 (2023).

	 30.	 P. Sterling, S. Laughlin, Principles of Neural Design (MIT Press, 2015).
	 31.	 F. T. Muijres, M. J. Elzinga, J. M. Melis, M. H. Dickinson, Flies evade looming targets by

executing rapid visually directed banked turns. Science 344, 172–177 (2014).
	 32.	 M. Pfeiffer, T. Pfeil, Deep learning with spiking neurons: Opportunities and challenges.

Front. Neurosci. 12, 774 (2018).
	 33.	A . Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, A. Maida, Deep learning in

spiking neural networks. Neural Netw. 111, 47–63 (2019).
	 34.	E . O. Neftci, H. Mostafa, F. Zenke, Surrogate gradient learning in spiking neural networks:

Bringing the power of gradient-based optimization to spiking neural networks. IEEE
Signal Process. Mag. 36, 51–63 (2019).

	 35.	 F. Zenke, T. P. Vogels, The remarkable robustness of surrogate gradient learning for
instilling complex function in spiking neural networks. Neural Comput. 33, 1–27
(2021).

	 36.	 S. S. Chowdhury, C. Lee, K. Roy, Towards understanding the effect of leak in spiking neural
networks. Neurocomputing 464, 83–94 (2021).

	 37.	 W. Fang, Z. Yu, Y. Chen, T. Masquelier, T. Huang, Y. Tian, Incorporating learnable membrane
time constant to enhance learning of spiking neural networks, in Proceedings of the 2021
IEEE/CVF International Conference on Computer Vision (ICCV) (IEEE, 2021), pp. 2661–2671.

	 38.	L . Zhu, M. Mangan, B. Webb, Neuromorphic sequence learning with an event camera on
routes through vegetation. Sci. Robot. 8, eadg3679 (2023).

	 39.	N . Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Stefanini, D. Sumislawska, G. Indiveri, A
reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons
and 128K synapses. Front. Neurosci. 9, 141 (2015).

	 40.	 M. Davies, N. Srinivasa, T. H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi,
N. Imam, S. Jain, Y. Liao, C. K. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse,
G. Venkataramanan, Y. H. Weng, A. Wild, Y. Yang, H. Wang, Loihi: A neuromorphic
manycore processor with on-chip learning. IEEE Micro 38, 82–99 (2018).

	 41.	A . Vitale, A. Renner, C. Nauer, D. Scaramuzza, Y. Sandamirskaya, Event-driven vision and
control for UAVs on a neuromorphic chip, in 2021 IEEE International Conference on
Robotics and Automation (ICRA) (ICRA) (IEEE, 2021), pp. 103–109.

	 42.	 F. Galluppi, C. Denk, M. C. Meiner, T. C. Stewart, L. A. Plana, C. Eliasmith, S. Furber,
J. Conradt, Event-based neural computing on an autonomous mobile platform, in 2014
IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2014), pp.
2862–2867.

	 43.	 D. Floreano, C. Mattiussi, Evolution of spiking neural controllers for autonomous
vision-based robots, in Evolutionary Robotics. From Intelligent Robotics to Artificial Life,
Lecture Notes in Computer Science (Springer, 2001), vol. 2217, pp. 38–61.

	 44.	 Z. Bing, C. Meschede, K. Huang, G. Chen, F. Rohrbein, M. Akl, A. Knoll, End to end learning
of spiking neural network based on R-STDP for a lane keeping vehicle, in Proceedings of
the 2018 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2018),
pp. 4725–4732.

	 45.	 M. B. Milde, H. Blum, A. Dietmüller, D. Sumislawska, J. Conradt, G. Indiveri,
Y. Sandamirskaya, Obstacle avoidance and target acquisition for robot navigation using a
mixed signal analog/digital neuromorphic processing system. Front. Neurorobot. 11, 28
(2017).

	 46.	 D. H. Ballard, Generalizing the Hough transform to detect arbitrary shapes. Pattern
Recognit. 13, 111–122 (1981).

	 47.	 J. Dupeyroux, J. J. Hagenaars, F. Paredes-Vallés, G. C. H. E. de Croon, Neuromorphic
control for optic-flow-based landing of MAVs using the Loihi processor, in 2021 IEEE
International Conference on Robotics and Automation (ICRA) (IEEE, 2021), pp. 96–102.

	 48.	H . Rebecq, D. Gehrig, D. Scaramuzza, ESIM: An open event camera simulator, in
Conference on Robot Learning (MLResearchPress, 2018), pp. 969–982.

	 49.	 G. C. H. E. de Croon, Monocular distance estimation with optical flow maneuvers and
efference copies: A stability-based strategy. Bioinspir. Biomim. 11, 016004 (2016).

	 50.	C . Brandli, R. Berner, M. Yang, S.-C. Liu, T. Delbruck, A 240 × 180 130 dB 3 μs latency global
shutter spatiotemporal vision sensor. IEEE J. Solid State Circuits 49, 2333–2341 (2014).

	 51.	 G. C. H. E. de Croon, H. W. Ho, C. De Wagter, E. van Kampen, B. Remes, Q. P. Chu, Optic-flow
based slope estimation for autonomous landing. Int. J. Micro Air Veh. 5, 287–297
(2013).

	 52.	B . J. Pijnacker Hordijk, K. Y. W. Scheper, G. C. H. E. de Croon, Vertical landing for micro air
vehicles using event-based optical flow. J. Field Robot. 35, 69–90 (2018).

	 53.	 J. J. Hagenaars, F. Paredes-Vallés, S. M. Bohté, G. C. H. E. de Croon, Evolved neuromorphic
control for high speed divergence-based landings of MAVs. IEEE Robot. Autom. Lett. 5,
6239–6246 (2020).

	 54.	 R. Benosman, S.-H. Ieng, C. Clercq, C. Bartolozzi, M. Srinivasan, Asynchronous frameless
event-based optical flow. Neural Netw. 27, 32–37 (2012).

	 55.	 S. Baker, A. Datta, T. Kanade, “Parameterizing homographies” (Tech. Rep. CMU-RI-TR-06-11,
Robotics Institute, 2006).

	 56.	H . C. Longuet-Higgins, K. Prazdny, The interpretation of a moving retinal image. Proc. R.
Soc. Lond. B Biol. Sci. 208, 385–397 (1980).

	 57.	 G. Gallego, H. Rebecq, D. Scaramuzza, A unifying contrast maximization framework for
event cameras, with applications to motion, depth, and optical flow estimation, in
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(IEEE, 2018), pp. 3867–3876.

	 58.	 G. Gallego, M. Gehrig, D. Scaramuzza, Focus is all you need: Loss functions for
event-based vision, in Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (IEEE, 2019), pp. 12280–12289.

	 59.	 D. DeTone, T. Malisiewicz, A. Rabinovich, Deep image homography estimation.
arXiv:1606.03798 [cs.CV] (2016).

	 60.	T . Nguyen, S. W. Chen, S. S. Shivakumar, C. J. Taylor, V. Kumar, Unsupervised deep
homography: A fast and robust homography estimation model. IEEE Robot. Autom. Lett.
3, 2346–2353 (2018).

	 61.	N . J. Sanket, C. M. Parameshwara, C. D. Singh, A. V. Kuruttukulam, C. Fermüller,
D. Scaramuzza, Y. Aloimonos, EVDodgeNet: Deep dynamic obstacle dodging with event
cameras, in Proceedings of the 2020 IEEE International Conference on Robotics and
Automation (ICRA) (IEEE, 2020), pp. 10651–10657.

	 62.	 Y. Ma, S. Soatto, J. Košecká, S. S. Sastry, An Invitation to 3-D Vision: From Images to
Geometric Models (Springer, 2004).

	 63.	 D. B. de Jong, F. Paredes-Vallés, G. C. de Croon, How do neural networks estimate optical
flow? A neuropsychology-inspired study. IEEE Trans. Pattern Anal. Mach. Intell. 44,
8290–8305 (2021).

	 64.	C . De Wagter, F. Paredes-Vallés, N. Sheth, G. de Croon, The sensing, state-estimation, and
control behind the winning entry to the 2019 Artificial Intelligence Robotic Racing
Competition. Field Robot. 2, 1263–1290 (2022).

	 65.	B . Boroujerdian, H. Genc, S. Krishnan, W. Cui, A. Faust, V. Reddi, MAVBench: Micro aerial
vehicle benchmarking, in 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO) (IEEE, 2018), pp. 894–907.

	 66.	 M. Karásek, F. T. Muijres, C. De Wagter, B. D. Remes, G. C. De Croon, A tailless aerial robotic
flapper reveals that flies use torque coupling in rapid banked turns. Science 361,
1089–1094 (2018).

	 67.	 R. K. Stagsted, A. Vitale, A. Renner, L. B. Larsen, A. L. Christensen, Y. Sandamirskaya,
Event-based PID controller fully realized in neuromorphic hardware: A one DoF study, in
Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (IEEE, 2021), pp. 10939–10944.

	 68.	 S. Stroobants, J. Dupeyroux, G. De Croon, Design and implementation of a parsimonious
neuromorphic PID for onboard altitude control for MAVs using neuromorphic processors,

D
ow

nloaded from
 https://w

w
w

.science.org at D
elft U

niversity on M
ay 29, 2024

Paredes-Vallés et al., Sci. Robot. 9, eadi0591 (2024) 15 May 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

18 of 18

in Proceedings of the International Conference on Neuromorphic Systems 2022 (ACM, 2022),
pp. 1–7.

	 69.	C . Frenkel, D. Bol, G. Indiveri, Bottom-up and top-down approaches for the design of
neuromorphic processing systems: Tradeoffs and synergies between natural and artificial
intelligence. Proc. IEEE 111, 623–652 (2023).

	 70.	T . Ozawa, Y. Sekikawa, H. Saito, Accuracy and speed improvement of event camera
motion estimation using a bird’s-eye view transformation. Sensors 22, 773
(2022).

	 71.	A . Mitrokhin, C. Fermüller, C. Parameshwara, Y. Aloimonos, Event-based moving object
detection and tracking, in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (IEEE, 2018), pp. 1–9.

	 72.	 P. Charbonnier, L. Blanc-Feraud, G. Aubert, M. Barlaud, Two deterministic half-quadratic
regularization algorithms for computed imaging, in Proceedings of 1st International
Conference on Image Processing (IEEE, 1994), pp. 168–172.

	 73.	T . Stoffregen, L. Kleeman, Event cameras, contrast maximization and reward functions:
An analysis, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (IEEE, 2019), pp. 12300–12308.

	 74.	 J. L. Valerdi, C. Bartolozzi, A. Glover, Insights into batch selection for event-camera motion
estimation. Sensors 23, 3699 (2023).

	 75.	 D. P. Kingma, J. Ba, Adam: A method for stochastic optimization. arXiv:1412.6980v9
[cs.LG] (2017).

	 76.	 Y. Song, S. Naji, E. Kaufmann, A. Loquercio, D. Scaramuzza, Flightmare: A flexible
quadrotor simulator, in Conference on Robot Learning (MLResearch Press, 2020).

	 77.	 S. Zhong, P. Chirarattananon, Direct visual-inertial ego-motion estimation via iterated
extended kalman filter. IEEE Robot. Autom. Lett. 5, 1476–1483 (2020).

	 78.	 P. Corke, Robotics, Vision and Control, vol. 73 of Springer Tracts in Advanced Robotics
(Springer, 2011).

	 79.	 J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, P. Abbeel, Domain randomization for
transferring deep neural networks from simulation to the real world, in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2017),
pp. 23–30.

	 80.	 K. Y. W. Scheper, G. C. H. E. de Croon, Abstraction, sensory-motor coordination, and the
reality gap in evolutionary robotics. Artif. Life 23, 124–141 (2017).

	 81.	 P. R. Cohen, Empirical Methods for Artificial Intelligence, Vol. 139 (MIT Press, 1995).
	 82.	 M. Denninger, D. Winkelbauer, M. Sundermeyer, W. Boerdijk, M. Knauer, K. H. Strobl,

M. Humt, R. Triebel, BlenderProc2: A procedural pipeline for photorealistic rendering.
J. Open Source Softw. 8, 4901 (2023).

	 83.	 Y. Hu, S.-C. Liu, T. Delbruck, V2e: From video frames to realistic DVS events, in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
(IEEE, 2021), pp. 1312–1321.

	 84.	A . Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. Van Der Smagt,
D. Cremers, T. Brox, FlowNet: Learning optical flow with convolutional networks, in

Proceedings of the IEEE International Conference on Computer Vision (ICCV) (IEEE, 2015),
pp. 2758–2766.

	 85.	E . Ilg, T. Saikia, M. Keuper, T. Brox, Occlusions, motion and depth boundaries with a
generic network for disparity, optical flow or scene flow estimation, in Proceedings of the
European Conference on Computer Vision (ECCV), vol. 11216 of Lecture Notes in Computer
Science (Springer, 2018), pp. 614–630.

	 86.	 R. J. Bouwmeester, F. Paredes-Vallés, G. C. H. E. de Croon, NanoFlowNet: Real-time dense
optical flow on a nano quadcopter, in 2023 IEEE International Conference on Robotics and
Automation (ICRA) (IEEE, 2023), pp. 1996–2003.

	 87.	N . J. Sanket, C. D. Singh, C. Fermüller, Y. Aloimonos, Ajna: Generalized deep uncertainty
for minimal perception on parsimonious robots. Sci. Robot. 8, eadd5139 (2023).

	 88.	E . Kaufmann, L. Bauersfeld, D. Scaramuzza, A benchmark comparison of learned control
policies for agile quadrotor flight, in 2022 IEEE International Conference on Robotics and
Automation (ICRA) (IEEE, 2022).

Acknowledgments: We are grateful to the Intel Neuromorphic Computing Lab and the Intel
Neuromorphic Research Community for their support with Loihi. Funding: This work was
supported with funding from NWO (grants NWA.1292.19.298 and TOP grant 612.001.701), the
Air Force Office of Scientific Research (award number FA8655-20-1-7044), and the Office of
Naval Research Global (award number N629092112014). Author contributions: All authors
contributed to the conception of the study and to the analysis and interpretation of the
results. F.P.-V. and Y.X. created the approach and software for the self-supervised learning of
optical flow estimation and performed the vision learning experiments. J.J.H. set up the
training pipeline in simulation for learning the control policy and performed the control
learning experiments. F.P.-V., G.C.H.E.d.C., and J.J.H. devised the approach to link the vision and
control network together. F.P.-V. and J.D. developed the software for implementing the spiking
neural networks in the Intel Loihi and modeling the neural dynamics for simulation. J.D. and
S.S. made the drone hardware. J.J.H. and S.S. developed the software for performing the
real-world experiments. J.J.H., S.S., F.P.-V., and J.D. performed the robotic experiments. J.J.H.
performed the experiments comparing energy expenditure on Loihi and Jetson Nano. J.J.H.
and S.S. processed the flight experiment data. F.P.-V., J.J.H., and G.C.H.E.d.C. wrote the first draft
of the article. F.P.-V. and J.J.H. made the illustrations. All authors contributed to the reviewing of
all drafts and gave final approval for publication. Competing interests: The authors declare
that they have no competing interests. Data and materials availability: All data needed to
evaluate the conclusions in the paper are present in the paper or the Supplementary Materials.
Videos, code, and data can be found at the project webpage https://mavlab.tudelft.nl/
fully_neuromorphic_drone and at https://doi.org/10.34894/QTFHQX.

Submitted 3 April 2023
Accepted 17 April 2024
Published 15 May 2024
10.1126/scirobotics.adi0591

D
ow

nloaded from
 https://w

w
w

.science.org at D
elft U

niversity on M
ay 29, 2024

https://mavlab.tudelft.nl/fully_neuromorphic_drone
https://mavlab.tudelft.nl/fully_neuromorphic_drone
https://doi.org/10.34894/QTFHQX

	Fully neuromorphic vision and control for autonomous drone flight
	INTRODUCTION
	RESULTS
	A fully neuromorphic solution to vision-based navigation
	Vision-based state estimation
	Control through visual observables: From sim to real
	Flickering, darkness, and squares: Examples of versatility and robustness
	Improved inference speed and energy consumption on neuromorphic hardware

	DISCUSSION
	MATERIALS AND METHODS
	Neuromorphic state estimation: Spiking, sequential processing
	Neuromorphic state estimation: Planar homography
	Neuromorphic state estimation: Self-supervised learning
	From a vision-based state estimate to control
	Training control in simulation
	From simulation to the real world
	Hardware setup
	Energy benchmark
	Statistical analysis

	Supplementary Materials
	This PDF file includes:
	Other Supplementary Material for this manuscript includes the following:

	REFERENCES AND NOTES
	Acknowledgments
	AbstractOne-sentence summary:
	Editor’s summary

