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A U T O N O M O U S  V E H I C L E S

Fully neuromorphic vision and control for autonomous 
drone flight
F. Paredes-Vallés†, J. J. Hagenaars*†, J. Dupeyroux†, S. Stroobants, Y. Xu, G. C. H. E. de Croon

Biological sensing and processing is asynchronous and sparse, leading to low-latency and energy-efficient perception 
and action. In robotics, neuromorphic hardware for event-based vision and spiking neural networks promises to ex-
hibit similar characteristics. However, robotic implementations have been limited to basic tasks with low-dimensional 
sensory inputs and motor actions because of the restricted network size in current embedded neuromorphic pro-
cessors and the difficulties of training spiking neural networks. Here, we present a fully neuromorphic vision-to-
control pipeline for controlling a flying drone. Specifically, we trained a spiking neural network that accepts raw 
event-based camera data and outputs low-level control actions for performing autonomous vision-based flight. The 
vision part of the network, consisting of five layers and 28,800 neurons, maps incoming raw events to ego-motion 
estimates and was trained with self-supervised learning on real event data. The control part consists of a single de-
coding layer and was learned with an evolutionary algorithm in a drone simulator. Robotic experiments show a 
successful sim-to-real transfer of the fully learned neuromorphic pipeline. The drone could accurately control its 
ego-motion, allowing for hovering, landing, and maneuvering sideways—even while yawing at the same time. The 
neuromorphic pipeline runs on board on Intel’s Loihi neuromorphic processor with an execution frequency of 
200 hertz, consuming 0.94 watt of idle power and a mere additional 7 to 12 milliwatts when running the network. These 
results illustrate the potential of neuromorphic sensing and processing for enabling insect-sized intelligent robots.

INTRODUCTION
Over the past decade, deep artificial neural networks (ANNs) have 
revolutionized the field of artificial intelligence. Among the success-
es has been the substantial improvement of visual processing, to an 
extent that computer vision can now outperform humans on specific 
tasks (1). The field of robotics has also benefited from this develop-
ment, with deep ANNs achieving state-of-the-art accuracy in tasks 
such as stereo vision (2, 3), optical flow estimation (4–6), segmenta-
tion (7, 8), object detection (9–11), and monocular depth estimation 
(12–14). However, this high accuracy typically relies on substantial 
neural network sizes that require heavy and power-hungry process-
ing hardware [tens of watts, hundreds of grams (15)]. This limits the 
number of tasks that can be performed by larger (ground) robots 
and even prevents deployment on smaller robots with highly strin-
gent resource constraints, like small flying drones.

Neuromorphic hardware may provide a solution to this problem 
because it mimics the energy-efficient, sparse, and asynchronous na-
ture of sensing and processing in biological brains (16, 17). For 
example, the pixels in neuromorphic event-based cameras only 
transmit information on brightness changes (18). Because typically 
only a fraction of the pixels change in brightness substantially, this 
leads to sparse vision inputs with subsequent events that are on the 
order of a microsecond apart. The asynchronous and sparse nature of 
visual inputs from event-based cameras represents a paradigm shift 
compared with traditional, frame-based computer vision. Ideally, 
processing would exploit these properties for quicker, more energy-
efficient processing. However, currently, learning-based approaches 
to event-based vision involve accumulating events over a substantial 
amount of time, creating an “event window” that represents extended 
temporal information. This window is then processed similarly to a 

traditional image frame with an ANN (19–22). Although there is 
work that used much shorter event windows (23–25), latency could 
be further reduced by processing events asynchronously as they 
come in. This could be performed by neuromorphic processors de-
signed for implementing spiking neural networks (SNNs) (26, 27). 
These networks have temporal dynamics more similar to biological 
neurons. In particular, the neurons have a membrane voltage that 
integrates incoming inputs and causes a spike when it exceeds a 
threshold. The binary nature of spikes allows for more energy-
efficient processing than the floating point arithmetic in traditional 
ANNs (28, 29). The energy gain is further improved by reducing the 
spiking activity as much as possible, as is also a main property of bio-
logical brains (30). Coupling neuromorphic vision to neuromorphic 
processing promises low-energy and low-latency visual sensing and 
acting, as exhibited by agile animals such as flying insects (31).

However, to achieve these properties, several challenges related 
to present-day neuromorphic sensing and processing have to be 
overcome. For example, training is currently still much more diffi-
cult for SNNs than for ANNs (32, 33), mostly because of their 
sparse, binary, and asynchronous nature. The most well-known dif-
ficulty of SNN learning is the non-differentiability of the spiking 
activation function, which prevents naive application of back-
propagation. Currently, this is tackled successfully with the help of 
surrogate gradients (34, 35), although longer sequences (as would 
be the case for event-by-event processing) can still lead to gradient 
vanishing. Moreover, although the richer neural dynamics can po-
tentially represent more complex temporal functions, they are also 
harder to shape, and neural activity may saturate or dwindle during 
training, preventing further learning. The causes for this are hard to 
analyze because there are many parameters that can play a role. De-
pending on the model, the relevant parameters may range from 
neural leaks and thresholds to recurrent weights and time constants 
for synaptic traces. A solution may lie in learning these parameters 
(36, 37), but this further increases the dimensionality of the learning 
problem. Last, when targeting a robotics application, SNN training 
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and deployment are further complicated by the restrictions of exist-
ing embedded neuromorphic processing platforms. These restric-
tions were recently highlighted in a study on neuromorphic route 
learning (38) and include hardware and software challenges such as 
interfacing with neuromorphic cameras, the limitations of available 
neural models, and—importantly—the still-limited numbers of 
available neurons and synapses. To illustrate this latter point, the 
ROLLS (Reconfigurable Online Learning Spiking) chip (39) accom-
modates 256 spiking neurons, the Intel Kapoho Bay [featuring two 
Loihi chips (40) in a universal serial bus (USB) stick form factor] 
features 262,100 neurons (41), and the SpiNNaker (SNN architec-
ture) version in (42) has 768,000 neurons. Although these chips dif-
fer in many more aspects than the number of neurons, this small 
sample already shows that current state-of-the-art SNNs cannot be 
easily embedded in robots. SNNs that have recently been trained on 
visually complex tasks, such as optical flow determination (23, 24), still 
featured network sizes far too large for implementation on current neu-
romorphic processing hardware for embedded systems. The smallest 
size SNN in these studies is LIF-FireFlowNet (Leaky-Integrate and 
Fire) for optical flow estimation (24), which still has 3.7 million neu-
rons (at an input resolution of 128 pixels by 128 pixels).

As a consequence, pioneering work in this area has been limited 
in complexity. Very early work involved the evolution of SNN 
connectivity to map the 16 visual brightness inputs of a wheeled 
Kephera robot to its two motor outputs (43). The evolved SNN, sim-
ulated in software, allowed the robot to avoid the walls in a black-
and-white-striped environment. Most work exploring SNNs for 
robotic vision focused on simulation. For example, in (44), the 
events from a simulated event-based camera with 128 pixels by 128 
pixels were accumulated into frames, compressing them over time 
into eight-by-four Poisson input neurons. These inputs, which cap-
tured the clear white lines of the road border, were then directly 
mapped to two output neurons for staying in the center of the road 
with the help of reward-modulated spike time–dependent plasticity 
(R-STDP) learning. Robotic examples of in-hardware neuromor-
phic processing for vision are more rare. An early example is the one 
in (42), in which an event-based camera with 128 pixels by 128 pix-
els was connected to a SpiNNaker neuromorphic processor to allow 
a driving robot to differentiate between two lights flashing at differ-
ent frequencies with a 128-neuron winner-takes-all network. In 
(45), an SNN was designed for following a light target in the top half 
of the field of view while avoiding regions with many events in the 
bottom half of the field of view. This network was successfully im-
plemented in the ROLLS neuromorphic chip (39) and tested in an 
office environment. Recent years have seen an increasing focus on 
flying robots (drones) because they need to react quickly while be-
ing extremely restricted in size, weight, and power (SWaP). In (41), 
an SNN was implemented on a bench-fixed dual rotor to align the 
roll angle with a black-and-white disk located in front of the camera. 
The SNN involved both a visual Hough transform (46) for finding the 
line and a proportional-derivative (PD) controller for generating the 
propeller commands. Last, in (47), an SNN was first evolved in 
simulation and then implemented in Loihi for vision-based landing 
of a flying drone. This control network only consisted of 35 neurons 
because the visual processing was still performed with conventional, 
frame-based computer vision methods. In addition, only the verti-
cal motion of the drone was controlled with the SNN; its lateral po-
sition was controlled using traditional control algorithms and an 
external motion capture system. The current work represents a step 

up in complexity by performing three-dimensional (3D) visual ego-
motion estimation and control of a flying drone with a fully neuro-
morphic vision-to-control pipeline.

In this article, we present a fully neuromorphic vision-to-control 
pipeline for controlling a flying drone, demonstrating the potential 
of neuromorphic hardware. The presented pipeline consists of an 
SNN that was trained to accept raw event camera data and output 
low-level control actions for performing autonomous vision-based 
ego-motion estimation and control at approximately 200 Hz. A core 
property of our learning setup is that it splits vision and control, 
which provides two major advantages. First, it helps to prevent the 
reality gap on the camera event input side because the vision part 
was trained on the basis of raw events from the actual event camera 
on the drone. We used self-supervised learning because this fore-
goes the need for ground-truth measurements that are difficult to 
obtain for event-based vision. Second, because the output of the vi-
sion part is an ego-motion estimate, we can learn the control in a 
simple and extremely fast simulator. This allows us to evade the 
high-frequency generation of visually realistic images for event gen-
eration (48), something that would lead to excessive training times 
in an end-to-end learning setup.

RESULTS
A fully neuromorphic solution to vision-based navigation
The fully neuromorphic vision-to-control pipeline, illustrated in 
Fig.  1C, was implemented on the Loihi neuromorphic processor 
(40) and used on board a small flying robot (see Fig. 1B) for vision-
based navigation. A schematic of the hardware setup used is shown 
in Fig. 1A. The system successfully followed ego-motion set points 
(target values) in a fully autonomous fashion, without any external 
aids such as a positioning system. Figure 1D shows an example of a 
landing experiment with our neuromorphic pipeline in the control 
loop of the drone. The figure shows the smoothly decreasing height 
of the drone above the ground (blue line) and the estimated optical 
flow divergence (orange line), which is the vertical component of 
the velocity vector divided by this height. The divergence curve is 
typical of an optical flow divergence landing, first approaching the 
set point −0.5 s–1 and then becoming more oscillatory when getting 
very close to the ground (49).

As mentioned, the main challenge of deploying such a pipeline 
on embedded neuromorphic hardware is that, because of the pre-
liminary state of this technology, one has to work within very tight 
limits regarding the available computational resources. In this proj-
ect, several design decisions were made to adapt to these limitations. 
First, the vision processing pipeline assumes that the event-based 
camera on the drone, the DVS 240 (Dynamic Vision Sensor) (50), 
looks down at a static, texture-rich, flat surface. Knowing the struc-
ture of the visual scene in advance simplifies the estimation of the 
ego-motion of the camera (and hence of the drone) with the help of 
optical flow information, as in (47, 49, 51–53). Optical flow, or the 
apparent motion of scene points in the image space, can be esti-
mated from the output of an event-based camera with a wide variety 
of methods, ranging from sparse feature-tracking algorithms (54) to 
dense (per-pixel) machine learning models (19, 21, 24). In the 
search for an efficient and high-bandwidth vision pipeline that 
achieves the desired 200-Hz operating frequency, the second design 
decision was to reduce the spatial resolution of the event-based vi-
sion data by only processing information from the image corner 
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regions of interest (ROIs), rather than the entire image space, and to 
limit the number of events to 90 per ROI. More specifically, as de-
picted in Figs. 1C and 2A, we propose the use of a small SNN that is 
applied independently at each ROI, with each ROI being 16 pixels 
by 16 pixels in size after a nearest-neighbor downsampling opera-
tion. Each network consists of 7200 neurons and 506,400 synapses 
distributed over five spiking layers: one input layer, three self-
recurrent encoders, and a pooling layer. Its parameters (weights, 
thresholds, and leaks) are identical for the four ROIs, and it esti-
mates the optical flow, in pixels per millisecond, of the correspond-
ing ROI. Because of the static and planar scene assumption, the 
apparent motion of the scene points at the four corner ROIs encodes 
nonmetric information about the velocity of the camera (divided by 
the distance to the surface along the optical axis) and its rotational 
rates in a linear manner (55).

On the basis of this information, the robot performs ego-motion 
control. To keep the pipeline fully neuromorphic (minimum re-
quired processing happening outside of Loihi) and performant 
(sending more spikes to Loihi decreases execution frequency), we 

trained a linear controller in simulation and merged it with the de-
coding of the spikes coming from the vision network (representing 
optical flow). In other words, the linear controller takes vision 
spikes, a user-given ego-motion set point, and attitude of the drone 
and maps these linearly to thrust and attitude control commands. 
Although opting for a linear controller allows for a fully neuromor-
phic vision-to-control pipeline, it also means that we had to make 
some assumptions. For instance, angles in pitch and roll should be 
small, and the optical flow variables taken as input should be dero-
tated in pitch and roll (51, 56). Furthermore, we should keep in 
mind that a linear controller will be unable to compensate for any 
drift or steady-state offset through integration (as could be done by 
a common proportional integral derivative, or PID, controller). We 
show that, despite all this, we can successfully control a flying drone 
to perform certain ego-motion maneuvers.

We split the training of our vision-to-control pipeline into two 
separate frameworks. On the one hand, the vision part of the pipe-
line, in charge of mapping input events to optical flow, was trained 
in a self-supervised fashion using the contrast maximization 

Fig. 1. Overview of the proposed system. (A) Hardware overview showing the communication among event camera, neuromorphic processor, single-board computer, 
and flight controller. RTPS and USB refer to the communication protocols used. (B) Quadrotor used in this work (total weight of 994 g; tip-to-tip diameter of 35 cm), with 
numbers indicating the components from (A). (C) Pipeline overview showing events as input, processing by the vision network, and decoding into a control command. 
(D) Composite picture and graph demonstrating the system for an optical flow constant divergence landing, with estimated divergence (solid orange line) oscillating 
around a set point (dashed orange line) while height is decreasing (solid blue line).
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framework (57, 58). The idea behind this approach is that, by com-
pensating for the spatiotemporal misalignments among the events 
triggered by a moving edge (event deblurring), one can retrieve 
accurate optical flow information. In this work, we used the formu-
lation proposed in (24) and shown in Fig.  2. Corner ROI events 
within nonoverlapping temporal windows of 5 ms were processed 
sequentially by our spiking networks, which provide optical flow 
estimates at every time step. Only during training, we used the mo-
tion information of the four corner ROIs to parameterize a homog-
raphy transformation that, under the assumption of static planar 
surface, allowed us to retrieve dense optical flow, as in (55, 59–61). 
Following (24), we accumulated event and optical flow tuples over 
multiple time steps for contrast maximization to be a robust self-
supervisory signal and only computed the deblurring loss function 
and performed a backward pass through the networks (using back-
propagation through time) once 25 ms of event data were pro-
cessed. To cope with the non-differentiable spiking function of our 
neurons, we used surrogate gradients (34).

On the other hand, the control part of the network, consisting of 
a linear mapping from the motion of the four corner ROIs to thrust 
and attitude control commands, was trained in a drone simulator 
using an evolutionary algorithm. Evolutionary algorithms work by 
evaluating all the individuals in a population, where the best-
performing (or fittest) individuals are varied upon to form the pop-
ulation of the next generation. Over generations, the individuals 
will get an increasingly high fitness, which in our case means that 
they became better at ego-motion control. Figure 3 gives an over-
view of the simulator setup as was used in evolution. To avoid the 
need to incorporate an event-based vision pipeline in simulation, 
we used the ground-truth state of the simulated drone to generate 
the expected flows per corner ROI using the continuous homogra-
phy transform (62) and used these to construct the unscaled veloc-
ity (velocity divided by height above ground) and yaw rate estimates 

that make up the visual observables of the camera’s ego-motion. 
The velocity was divided by height because optical flow vectors cap-
ture the ratio of velocity and distance (51, 56). The inputs to the 
linear control mapping were then these visual observables: absolute 
roll and pitch (from the drone’s inertial measurement unit) and a 
desired set point for the visual observables. The outputs of the con-
troller (desired collective thrust, pitch and roll angles, and yaw rate) 
were subsequently applied to the simulated drone model to control 
it. During evolution, the fitness of a controller was determined on 
the basis of the accumulated visual observable error in an evalua-
tion. We evaluated each of the individuals in the population on a set 
of (repeated) ego-motion set points representing horizontal and 
vertical flight, created offspring through random mutations, and 
selected the best individuals for the next generation. The trained 
controller was transferred directly to the real robot, without any 
retraining.

Because of the split between the vision and control parts of the 
pipeline, we could evaluate their performance separately. The esti-
mated corner ROI flows of the vision part were compared against 
ground-truth data obtained from a motion capture system, and the 
control part was evaluated in simulation. After connecting vision 
and control together, we then demonstrated the performance of 
our fully neuromorphic vision-to-control pipeline through real-
world flight tests. To further illustrate the robustness of our vision-
based state estimation, we performed real-world tests with changing 
ego-motion set points and tests in various lighting conditions. Last, 
we compared energy consumption against possible onboard GPU 
(graphics processing unit) solutions.

Vision-based state estimation
To prevent reality-gap issues when simulating an event-based cam-
era, we trained and evaluated the vision part of our pipeline using 
real-world event sequences recorded with the same platform (drone 

Fig. 2. Overview of the spiking vision network. Running at approximately 200 Hz, events are accumulated (max of 90 events per corner ROI) and then fed through the 
vision network consisting of three encoders (kernel size three by three, stride 2) and a spiking pooling layer. Spikes are decoded into two floats representing flow for that 
corner ROI. This network is replicated to the three other ROIs to end up with four ROI optical flow vectors. During training, these are used in a homography transformation 
to derive dense flow, which is then used for the self-supervised loss. The full network was running on the neuromorphic processor during the real-world flight tests.
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and downward-facing event-based camera) and in the same indoor 
environment (static and planar, constant illumination). This dataset 
(available in the Supplementary Materials) consists of approximately 
40 min of event data, which we split into 25 min for training and 
15 min for evaluation, and its motion distributions are shown in 
Fig. 4A. In addition to the visual data, the ground-truth pose (posi-
tion and attitude) of the drone over time was provided at a rate of 
180 Hz and was used solely for evaluation. Examples of this ground 
truth, which can be converted to dense optical flow using the 
camera calibration, are shown in Fig. 4A alongside the floor texture 
of the indoor environment. Furthermore, to demonstrate that using 
the same texture for training and evaluation does not lead to over-
fitting (and resulting degraded control performance), we performed 
additional experiments with different types of texture that can be 
found in the Supplementary Materials.

We trained our vision SNN with the self-supervised contrast max-
imization framework from (24) and a quantization-aware training 
routine that simulates the neuron and synapse models in the target 
neuromorphic hardware. Afterward, we evaluated the performance 
of our spiking network on the task of planar event-based optical flow 
estimation using sequences with varying amounts of motion. Quali-
tative results are presented in Fig. 4B, where the estimated visual ob-
servables (unscaled velocities and yaw rate, constructed from the 
estimated optical flow vectors at the image corner ROIs) are com-
pared with their ground-truth counterparts. These results confirm 
the validity of our approach. Despite the architectural limitations of 

the proposed solution (for instance, lower resolution because of bi-
nary activations, limited field of view, only self-recurrency, weight, 
and state quantization) and that it does not have access to ground-
truth information during training, it was able to produce optical flow 
estimates that accurately capture the motion encoded in the input 
event stream (the ego-motion of the camera), even for the fast rota-
tion of approximately 4 rad/s at the end of the shown sequence. Sim-
ilarly to any other optical flow–based state-estimation solution, our 
SNN is subject to the aperture problem not only because of the lim-
ited receptive field of the corner ROIs but also because of the use of 
event cameras as vision sensors (18).

In Fig.  4C, we show the internal spiking activity of our vision 
SNN as it processes the top-left corner ROI from the fast sequence 
shown in Fig. 4B, along with the decoded optical flow vectors. These 
qualitative results provide insight into the type of processing carried 
out by the proposed architecture, which is spike-based and there-
fore sparse and asynchronous. Despite the rapid motion in the input 
sequence, all layers of the SNN maintained activation levels below 
50% of the available neurons. The network was not explicitly trained 
to promote sparse activations but could perhaps be rendered even 
more energy efficient by including sparsity measures in the loss 
function. Furthermore, we can distinguish layers with activity levels 
that are highly correlated with the input activity (encoder 1 and 
pooling) and layers that rely on their explicit recurrent connections 
to maintain activity levels that are relatively independent of the in-
put statistics (encoder 2 and encoder 3). This observation could be 

Fig. 3. Overview of the control pipeline for simulation and real-world tests. During training in simulation (A), we constructed visual observables (unscaled velocities 
and yaw rate) from ground truth using the continuous homography transform. The control decoding takes these observables together with roll and pitch and an ego-
motion set point to output commands, which control the drone dynamics. We have trained the controller using evolution on the basis of a fitness signal that quantifies 
how well the controller can follow ego-motion set points for horizontal and vertical flight. In the real world (B), we receive flows of the corner ROI from the vision network 
and transform these to visual observables and control commands in a single matrix multiplication to send low-level control commands thrust and attitude to the autopilot.
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Fig. 4. Overview of results for the vision-based state estimation. (A) Characteristics of the dataset for estimating planar optical flow. (i) Grayscale flower texture used 
to cover the floor. (ii) Accumulated event windows showing the blur arising from motion, ground-truth flow fields as determined with a motion tracking system and based 
on a flat floor assumption (only for evaluation) and the result when using the flow fields to deblur the event windows (only for illustration). (iii) Ground-truth optical flow 
distributions for the training and test datasets. (B) Comparison of estimated and ground-truth visual observables for sequences with different motion speeds (slow, me-
dium, and fast). (C) Network activity resulting from the events in the top-left corner ROI in the fast motion sequence.
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the starting point for a future investigation into how this type of 
network determines optical flow [as in (63)].

In Table 1, we provide a quantitative comparison of our solution 
with other similar recurrent architectures (that are not compatible 
or do not fit in the Intel Kapoho Bay) on the basis of the average 
endpoint error (EPE; the Euclidean distance between predicted and 
ground-truth optical flow vectors averaged over all pixels in the im-
age). This evaluation not only demonstrates the accuracy of our 
spiking network but also assesses the effect of each mechanism that 
was incorporated into the pipeline to achieve a solution that could 
be deployed on Loihi at the target frequency of 200 Hz (downsam-
pling the image space, only processing the events from the corner 
ROIs, limiting the maximum number of processed events per cor-
ner, and adding quantization; see also Supplementary Methods). 
Several observations could be made. First, the ANN outperformed 
its spiking variants by a large margin. This is likely because of the 
higher resolution of the floating point activations and the direct 
relation between the backpropagation gradient and the output er-
ror. Second, self-recurrency (Self-RNN) was the weakest form of 
explicit recurrency among those tested. The other networks seemed 
to successfully exploit their capability of representing more com-
plex temporal functions. Third, deploying one architecture to each 
image corner ROI instead of processing the entire image space at 
once was beneficial for our architecture (lowering the EPE from 
9.80 to 8.22) but had a slight detrimental effect on the baselines. 
This may be due to the dataset containing ample texture on the 
floor. A dataset with much less texture might have shown a different 
result. Fourth, limiting the number of events that can be processed 
at once to 90 per corner ROI was also helpful for the evaluated 
SNNs because it helped reduce the internal activity levels. Last, the 
incorporation of the Loihi-specific weight and state quantization 
led to an error increase for our architecture.

Control through visual observables: From sim to real
Separately from the vision part, we trained and evaluated the con-
trol part of our pipeline. Because of limitations in the hardware set-
up (see Materials and Methods), this is a linear mapping from a 
visual observable estimate, absolute roll and pitch, and a visual ob-
servable set point to thrust and attitude commands. The visual ob-
servable estimate is made up of unscaled velocity �̂ and yaw rate 
ω̂


z
 ; the visual observable set point consists of the corresponding set 

points in unscaled velocity �
sp

 and yaw rate ω

z,sp
 . A population of 

these linear mappings was evolved in simulation for a set of 16 un-
scaled velocity and yaw rate set points. Each unscaled velocity set 

point �
sp

 had at most one nonzero element ∈{ ±0.2, ±0.5, ±1.0} 1/s. 
In other words, they represented hover, vertical flight in the form of 
landing at three speeds (no ascending flight), and horizontal flight 
in four directions at three speeds. Unless mentioned otherwise, the 
set point for yaw rate ω

z,sp
= 0 . Figure 5 shows the performance of 

the evolved linear network controller in simulation in terms of the 
estimated unscaled velocities �̂ (Fig. 5A) and the world position 
p over time (Fig. 5B) for all set points. The control performance 
was satisfactory; the controller reached the set point in all cases and 
was capable of keeping the unscaled velocities for the nonflight di-
rection close to zero. Especially for ν

∗,sp
= ±1.0 1/s, some overshoot 

was witnessed, but this could be expected given that this is a linear 
mapping without any kind of derivative control.

Figure  5 furthermore shows the results obtained by deploying 
this controller in the real world and replacing the ground-truth vi-
sual observables with those estimated by the vision network (also 
see movie S3). Overall, the results demonstrated successful deploy-
ment of the fully neuromorphic vision-to-control pipeline. Looking 
at the unscaled velocity plots for the different set points, we see that 
these became less noisy for higher set points and faster flight, as can 
also be seen from the 3D position plots. This is due to the signal-to-
noise ratio of the vision-based state estimation increasing with mo-
tion magnitude (little motion means that most events are due to 
noise, as can be seen in Fig. 4). In addition, the inertia of the drone 
provided some stability at higher speeds. Nevertheless, apart from 
several set points (for example, landings, ν

{x,y},sp
= ± 0.2 1/s), the 

controller was not always able to reach the desired set point: The 
steady-state error looked to be proportional to the set point magni-
tude. This could be attributed to the fact that although the controller 
is a linear mapping, the relationship between attitude angle and re-
sulting forward/sideways velocity is nonlinear (especially at larger 
attitude angles) and additionally affected by drag. Providing abso-
lute attitude input to the network and simulating the drag [as in 
(64)] during training turned out not to be enough to compensate, 
and small errors were accumulated over time. Furthermore, there 
can be mismatches between the dynamics of the simulated drone 
(body characteristics and motor dynamics) with which the control-
ler was trained and the real drone on which the flight tests were 
performed, although we abstracted the control outputs to attitude 
commands. Last, inaccuracies of the drag model can also be a source 
of error (in this case, it seems that drag was higher in reality than in 
simulation). A linear or proportional controller, such as we have 
here, cannot integrate all these small errors into an additional 

Table 1. Quantitative comparison between different architectures. The value in the bottom right corner (asterisk) indicates the final architecture.  
Row-wise architecture choices and column-wise design decisions affected test accuracy in average EPE (Euclidean distance between predicted and ground-
truth vectors, averaged over all pixels in the image; lower is better) in pixels per input window (5 ms). Reported EPEs were averaged over the test sequences and 
based on a single training run. Baseline architectures feature the same feedforward connectivity pattern as ours but vary the neuron model and the type of 
recurrent connections. Values in the table should be multiplied by 10−2.

Full image +2× Down. +Corner ROI crop +Limit events +Loihi quant.

Conv-GRU ANN 5.88 5.56 5.61 5.72 –

Conv-RNN SNN 7.92 7.89 7.91 6.97 6.96

Self-RNN SNN (ours) 10.79 9.80 8.22 7.71 8.34*
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control signal that compensates for them, leaving a steady-state er-
ror. The resulting drift in position and yaw for all runs in Fig. 5 were 
quantified in Supplementary Results.

Last, Fig.  5 shows the results obtained by connecting a hand-
tuned proportional-integral (PI) controller to the vision-based state 
estimation (also see movie S4). We compared this with the linear 
network controller. Looking at all directions and set points, we see 
that the PI controller reaches the set point faster than the network 
controller. For horizontal flight, the network controller was not at all 
able to reach the set point ν

{x,y},sp
= ±1.0 1/s and only just in the 

case of ±0.5 1/s, supposedly because of the limitations of linear con-
trol. The PI controller did not have this problem because it could 
increment its control command to eliminate the steady-state error. 
For vertical flight, both the network and the PI controller had sub-
stantial overshoot for ν

z,sp
= −1.0 1/s. This had to do with the fact 

that at such speeds from such heights (2.5 m), the drone barely 
reached the set point before reaching the ground and therefore had 
little time to compensate for any overshoot (see Fig. 5A, PI control-
ler for ν

z,sp
= −0.5 1/s, for which overshoot was similar but was cor-

rected shortly after).

Fig. 5. Comparison of results obtained in simulation and during real-world flight tests. (A) Estimated unscaled velocities �̂ for 16 different set points in three axes 
across three scenarios: linear network controller in simulation and the real world and a hand-tuned PI controller in the real world. Real-world tests used the vision network 
to obtain visual observable estimates. Set points were nonzero in one direction, indicated with dashed lines. Rows represent the different motion axes (X, Y, and Z). 
(B) 3D world position trajectories p for the same flight tests. Each plot in (B) matches the plot in the corresponding location in (A).
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Flickering, darkness, and squares: Examples of versatility 
and robustness
Although our main goal is to show a functional fully neuromorphic 
vision-to-control pipeline, for a broader applicability of this tech-
nology, it is informative to study the pipeline’s robustness and versa-
tility to conditions not encountered during learning. Figure 6 shows 
the results for these tests for the combination of the vision-based 
state estimation and linear network controller. Figure 6A displays 
the user alternating through different unscaled velocity set points in 

X and Y (while keeping yaw constant) to let the drone fly a square. 
Apart from one section, the controller was able to reach the desired 
set point quite quickly, allowing for sharp corners, while keeping 
yaw drift small (0.06 rad).

Last, we have tested the robustness to lighting conditions for 
maneuvers in different directions. Here, we show the results of 
these experiments for the landing maneuver (see Supplementary 
Results for the other directions). Because landing involves a wider 
range of visual motion magnitudes than horizontal flight (flow is 

A

B

Fig. 6. Additional results with vision network and linear network controller. (A) By alternating set points in X and Y, we could fly a square. Plots show the estimated 
unscaled velocity �̂B (with set points shaded in blue and red), estimated yaw rate ω̂B

z
 , and position pWB . (B) Landing experiments with different lighting conditions. Plots 

show the estimated and ground-truth unscaled velocity �̂B and νB, as well as the events received by the network in the top-left ROI. Although flickering lights led to many 
more events, visual observable estimates (and hence control) only diverged when it was so dark that there were almost no events.
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inversely proportional to height), it allowed us to better see the 
effect of lower-light conditions. Furthermore, divergence-based 
landings inherently lead to oscillations (49), which makes for a 
more challenging scenario in the case of flickering lights. Fig-
ure 6B shows landing with divergence νB

z,sp
= −0.5 1/s for various 

lighting conditions (quantified with lux measurements). With 
these experiments, we aimed to investigate the robustness of the 
approach to wildly varying event statistics. For instance, in a dark-
er environment, contrasts are less visible, which means that mo-
tion will generate many fewer events and that there will be more 
spurious, noisy events—similar to our own human vision when we 
walk in the dark. When lights are switched on and off, this gener-
ates massive numbers of events that are unrelated to motion, hence 
violating the brightness constancy assumption underlying optical 
flow determination. The events for the top left corner ROI are 
shown in Fig. 6B. The results in the light and darkish settings look 
alike, but flickering lights led to a large increase in events, and the 
darkest setting gave almost no events. As Fig. 6B shows, despite the 
challenging light conditions, the controller was able to track the set 
point (black dashed line) well, and the estimated unscaled veloci-
ties approximated their ground truths. Only the darkest setting 
posed a real problem for the state estimation: In that case, the esti-
mated unscaled velocities �̂ diverged too much from the ground-
truth unscaled velocities � to perform a successful landing. For 
comparison, the flickering, darkness, and squares experiments 
have also been performed with the PI controller, which can be 
found in Supplementary Results.

Improved inference speed and energy consumption on 
neuromorphic hardware
Table 2 shows a comparison in terms of power/energy and run time 
between the Loihi neuromorphic processor and an NVIDIA Jetson 
Nano for running the vision network (both SNN and equivalent 
ANN) on sequences with varying amounts of motion and hence 
varying input event density. The SNN ran in hardware on Loihi and 
in software (PyTorch) on Jetson Nano. The tests for Loihi were per-
formed on a Nahuku board, which contains 32 Loihi chips. We 
confirmed, insofar possible, that using two chips on Nahuku is rep-
resentative of a Kapoho Bay (at least in terms of execution time), 
which is the two-chip form factor used on the drone. Still, neither 
of these benchmarks is completely representative of the tests per-
formed in the real world: The benchmarks used data already loaded 
in memory and therefore only quantified the processing by the net-
work without any bottlenecks because of input/output (I/O) and 
preprocessing, whereas the flight tests involved streaming event 
data that were coming in and being processed in an online fashion. 
This showed in Loihi’s execution frequencies in Table 2, which were 
well above the 200 inferences (with one inference being the pro-
cessing of one set of inputs by the network) per second (inf/s) 
achieved during flight tests.

Table 2 shows the power when the processors were idle and when 
they were running the networks. Because Jetson Nano does not pro-
vide static and dynamic power components, we compared the dif-
ference between idle and running power and used that to compute 
energy per inference. A main observation is that the Nahuku 32 
board consumed 0.95 W when running the SNN, whereas Jetson 

Table 2. Approximate energy and power characteristics for various devices on three sequences: slow, medium, and fast. On average, slow has 28.6 
events/inf, medium has 106.9 events/inf, and fast has 186.6 events/inf. Delta power is the difference between idle and running (total) power and was used to 
compute energy per inference. Dynamic power is the power needed for switching and short-circuiting, and static power is due to leakage; together, they sum to 
running (total) power as well. Nahuku is a board with 32 Loihi chips (Kapoho Bay has 2). A Nahuku configuration where no spikes were sent and only chips and 
cores were allocated (no synapses) is included as “empty.” Jetson Nano has a low-power (5 W) and high-power (10 W) mode. One inference (inf ) was the 
processing of one set of inputs by the network, resulting in an output or prediction. On Jetson Nano, we tested both our vision SNN and the comparable 
Conv-GRU ANN. Dash entries indicate unmeasured configurations.

Device Seq. Static (W) Dynamic (W) Idle (W) Running (W) Delta (W) inf/s mJ/inf

Nahuku 32 
(empty)

Any 0.86 0.04 0.90 0.90 4 × 10−3 60,496 71 × 10−6

3*Nahuku 32: 
SNN

Slow 0.90 0.05 0.94 0.95 12 × 10−3 1,637 7 × 10−3

Medium 0.90 0.04 0.94 0.95 8 × 10−3 411 21 × 10−3

Fast 0.90 0.04 0.94 0.95 7 × 10−3 274 27 × 10−3

3*Jetson Nano: 
SNN (5 W)

Slow – – 1.05 2.23 1.18 14 86.11

Medium – – 1.03 2.25 1.22 14 85.58

Fast – – 1.03 2.24 1.21 14 86.19

3*Jetson Nano: 
SNN (10 W)

Slow – – 1.04 2.98 1.93 26 75.25

Medium – – 1.06 2.98 1.92 26 75.35

Fast – – 1.04 2.99 1.95 25 76.52

3*Jetson Nano: 
ANN (5 W)

Slow – – 1.05 2.66 1.61 59 27.46

Medium – – 1.07 2.64 1.57 56 27.91

Fast – – 1.06 2.64 1.58 57 27.52

3*Jetson Nano: 
ANN (10 W)

Slow – – 1.04 3.30 2.27 83 27.36

Medium – – 1.07 3.33 2.26 80 28.09

Fast – – 1.07 3.30 2.23 80 27.80
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Nano consumed ~2.98 W when running in 10-W mode. This is a 
difference of a factor ~3.1×. Most of the energy expenditure of Loihi 
consisted of idle power. Table 2 also shows the difference between 
the idle power and the power when running the network (“Delta”). 
When only considering this extra power required for the inference 
of the network, Loihi outperformed Jetson Nano by three to four 
orders of magnitude, depending on the sequence. Hence, any pos-
sible reduction of the idle power would substantially affect the neu-
romorphic chip’s energy efficiency advantages over other chips.

Moreover, Loihi provided a one- to two-order-of-magnitude im-
provement in execution frequency. Furthermore, the benefits of 
neuromorphic processing show in Loihi’s increasing execution fre-
quency as event sparsity increased (from fast to slow motion se-
quences). Because a GPU like Jetson Nano is not optimized to 
simulate SNNs, we also ran an equivalent ANN (Conv-GRU with 
downsampling, corner crop ROI, and event limiting from Table 1). 
The increased inference speed for the ANN on Jetson Nano con-
firms that this is a more suitable architecture for GPUs. Nonetheless, 
although energy consumption per inference has decreased com-
pared with running the SNN on Jetson Nano, energy efficiency and 
inference speed still did not come close to those of the SNN on Loihi.

DISCUSSION
We presented a fully neuromorphic vision-to-control pipeline for 
controlling a flying drone. Specifically, we trained an SNN that 
takes in raw event-based camera data and produces low-level con-
trol commands. Real-world experiments demonstrated a successful 
sim-to-real transfer: The drone could accurately follow various 
ego-motion set points, performing hovering, landing, and lateral 
maneuvers—even under constant yaw rate.

Our study confirms the potential of a fully neuromorphic vision-
to-control pipeline by running on board with an execution frequency 
of 200 Hz. Moreover, the chip spends 0.95 W, out of which 0.94 W 
was idle power and only 7 to 12 mW were used for inference. Hence, 
reducing the idle power can lead to substantial energy gains.

A major question is whether the energy gain of neuromorphic 
processing will make a difference on a system level even if future 
neuromorphic chips weigh on the order of grams and will have a 
negligible idle power. Compared with the power required for hover-
ing, 277 W, a difference of a few watts (see Table 2) may seem like a 
small difference. However, on flying robots, such small differences 
can have substantial effects (65). A heavier, more power-consuming 
computing unit not only requires more power from the battery but 
also needs to be lifted in the air. This requires a bigger battery and 
possibly bigger motors that themselves also have to be lifted. More-
over, as argued in (65), a lower latency, as attained with neuromor-
phic processing, allows for faster flight. This in turn leads to drones 
accomplishing their missions with less flight time. Still, the main 
point is not necessarily what is gained on a ~1-kg drone if switched 
from a conventional embedded GPU to a lightweight neuromorphic 
processor (which is not negligible) but that neuromorphic process-
ing will enable many more networks to run on such larger drones 
and even enable deep neural networks on much lighter platforms 
that cannot even carry an embedded GPU. An example of the latter 
are 30-g flapping wing drones, which use ~6 W to fly (66).

A particularly promising avenue to autonomous flight of such 
tiny drones is to make the entire drone sensing, processing, and ac-
tuation pipeline neuromorphic, from its accelerometer sensors to 

the processor and motors, allowing for sparse and event-driven/
asynchronous computation all the way through. Because such hard-
ware is currently not available, we have limited ourselves to the 
vision-to-control pipeline, ending at thrust and attitude commands.

Until then, advancements could come from improved I/O band-
width and interfacing options for the neuromorphic processor and 
event camera. The current processor is limited to host boards with 
an x86 architecture (preventing other potentially lighter but equally 
performant architectures from being used) and can only be con-
nected directly via AER (address-event representation) to a specific 
model of event-based camera (this is of course also a limitation on 
the part of the available event cameras). Although the former is lim-
iting for all works implementing neuromorphic hardware on con-
strained systems like drones, the latter is especially relevant to our 
advanced use case, where we reached the limits of the number of 
spikes that can be sent to and received from the neuromorphic pro-
cessor at the desired high execution frequency of 200 Hz. To achieve 
this frequency, we had to limit the number of events per input win-
dow to 90 per image corner ROI and limit ourselves to a linear net-
work controller, which avoids having to send additional input spikes 
that encode the ego-motion set point and attitude. Improved inter-
facing could allow for more extensive vision processing and more 
complex spiking neuron control networks. This could make the 
vision-based ego-motion estimation more robust and considerably 
increase the control performance—even if SNN controllers current-
ly perform worse than common PID controllers (67, 68). As long as 
both the vision and control networks still use a learned encoding 
and decoding, the proposed split-and-merge strategy would still 
work (see Materials and Methods). Ultimately, further gains in 
terms of efficiency might be obtained by moving from digital neuro-
morphic processors to mixed-signal hardware, but this will pose 
even larger development and deployment challenges given the noise 
sensitivity of such hardware (17, 69).

Despite the abovementioned limitations, the current work pres-
ents a substantial step toward neuromorphic sensing and processing 
for drones. The results are encouraging because they show that neu-
romorphic sensing and processing may bring deep neural networks 
within reach of small autonomous robots. In time, this may allow 
them to approach the agility, versatility, and robustness of small ani-
mals such as flying insects.

MATERIALS AND METHODS
Here, we explain the main components of the proposed fully neuro-
morphic vision-to-control pipeline, starting with the neuron model 
of our SNN and how this was trained in a self-supervised fashion 
using real event camera data. Next, we describe how the vision-
based state estimate can be used for navigation and how we trained 
a controller on top of it. Last, we discuss the real-world tests and 
hardware and the performed energy benchmarks.

Neuromorphic state estimation: Spiking, 
sequential processing
We used a spiking neuron model based on the current-based leaky-
integrate-and-fire (CUBA-LIF) neuron, whose membrane potential 
U and synaptic input current I at time step t can be written as

Ut
i
= τU

(
1 − St−1

i

)
Ut−1

i
+ It

i (1)
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where j and i denote presynaptic (input) and postsynaptic (output) 
neurons within a layer, S ∈ {0,1} denotes a neuron spike, and wff and 
wrec denote feedforward and self-recurrent connections (if any), re-
spectively. The decays (or leaks) of the two internal state variables of 
this neuron model are learned and are denoted by τU and τI. A 
neuron fires an output spike if the membrane potential exceeds a 
threshold θ, which is also learned. The firing of a spike triggers a 
hard reset of the membrane potential. Note that, in this work, all 
neurons within a layer share the same decays and firing threshold.

Neurons on the Loihi neuromorphic processor also follow the 
CUBA-LIF model (40); however, several considerations must be tak-
en into account to accurately simulate these on-chip neurons. First, 
the state variables are quantized in the integer domain. Hence, the 
parameters associated with these variables are also quantized in the 
same way: w ∈ [−256  . .   256 − Δw], with Δw being the quantiza-
tion step for the synaptic weights; τ{U, I} ∈ [0  . .   4096] for the decays; 
and θ ∈ [0  . .   131071] for the threshold. We follow this quantization 
scheme with Δw = 8 (6-bit weights) in the simulation and training of 
our neural networks. Second, to emulate the arithmetic left (bit) shift 
operations carried out by the processor when updating the neuron 
states, we performed a rounding-toward-zero operation after the ap-
plication of the decays. Taking these aspects into consideration, we 
obtained a matching score of 100% between the simulated and 
the on-chip spiking neurons. We used quantization-aware training 
(quantized forward pass and floating point backward pass) to mini-
mize the performance loss of our SNN when deployed on Loihi. As a 
surrogate gradient for the spiking function σ, we opt for the deriva-
tive of the inverse tangent (37)

with γ = 10 being the surrogate width.

Neuromorphic state estimation: Planar homography
Assuming that x̃ =

[
xT , 1

]T and x̃�

=

[
x

�T , 1
]T are two undistorted 

corresponding points from a planar scene with pixel array coordi-
nates x = [x, y]T and x′ = [x′, y′]T expressed in homogeneous coor-
dinates and captured by a pinhole camera at different time instances, 
a planar homography transformation is a linear projective transfor-
mation that maps x̃ ↔ x̃

� such that

where H is a three-by-three nonsingular matrix, further referred to 
as the homography matrix, which is characterized by eight degrees 
of freedom and is defined up to a scale factor λ and from which we 
obtain the normalized form by setting h33 = 1.

From Eq. 5, we can formulate a system of linear equations for the 
kth point correspondence

As shown in Fig. 2A, our vision network predicts the displace-
ment of the corner ROI pixels in a certain time window. Using this 
information, we can solve for the components of the homography 
matrix through

with A and b being the result of the concatenation of the individual 
Ak and bk of each point correspondence ∀k ∈ {TL, TR, BR, BL}, 
resulting in a determined system of equations. This approach is re-
ferred to as the four-point parametrization of the homography 
transformation (55), and it has proven to be successful in the event 
camera literature for robotics applications (61, 70).

Once the homography matrix is estimated, we can estimate a 
dense (per-pixel) optical flow map as follows

which encodes the displacement of pixel x in the time window of H. 
(⋅)Eucl indicates the conversion from homogeneous to Euclidean 
coordinates.

Neuromorphic state estimation: Self-supervised learning
To train our spiking architecture to estimate the displacement of the 
pixels of the four corner ROIs in a self-supervised fashion, we used 
the contrast maximization framework for motion compensation 
(57, 58). Assuming constant illumination, accurate optical flow in-
formation is encoded in the spatiotemporal misalignments among 
the events triggered by a moving edge (blur). To retrieve it, one has 
to learn to compensate for this motion (deblur the event partition) 
by transporting the events through space and time. Once we get a 
per-pixel optical flow estimate u(x, H) from Eq. 11, we can propa-
gate the events to a reference time tref through the following linear 
motion model

where t and tref are normalized relative to the time window between 
x and x′. The result of aggregating the propagated events is the im-
age of warped events (IWE) at tref, and it having a high contrast in-
dicates good motion compensation/deblurring.

As loss function, we used the reformulation from (24) of the fo-
cus objective function based on the per-pixel and per-polarity aver-
age time stamp of the IWE (20, 71). The lower this metric, the better 
the event deblurring and hence the more accurate the estimated 

It
i
= τI I

t−1
i

+

∑
j

w
ff

ij
St
j
+ wrec
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i (2)

σ
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optical flow. We generated an image of the per-pixel average time 
stamp for each polarity p′ via bilinear interpolation:

Following (24), we first scaled the sum of the squared temporal 
images resulting from the warping process with the number of pix-
els with at least one warped event

where n(x′) denotes a per-pixel event count of the IWE. As in (20, 
22, 24), we performed the warping process both in a forward ( tfw

ref
 ) 

and in a backward fashion ( tbw
ref

 ) to prevent temporal scaling issues 
during backpropagation. The total loss used to train our event-based 
optical flow networks is then given by

where smooth is a Charbonnier smoothness prior (72) applied in the 
temporal domain to subsequent per-corner-ROI optical flow esti-
mates and � is a scalar balancing the effect of the two losses. We 
empirically set this weight to � = 0.1.

As discussed in (24, 25), there has to be enough linear blur in the 
accumulated input event partition for this loss function to be a ro-
bust supervisory signal (58, 73). Because we processed the event 
stream sequentially, with only a few events being considered at each 
forward pass, we defined the so-called training partition

which is a buffer that gets populated every forward pass with the 
input events and their corresponding optical flow estimates. This is 
illustrated in Fig. 2A. At training time, we performed a backward 
pass with the content of the buffer using backpropagation through 
time once it contained five successive event-flow tuples (25 ms of 
event data), after which we updated the model parameters, de-
tached its states from the computational graph, and cleared the buf-
fer. The selection of input and training partition lengths represents 
deliberate design choices (74) made in alignment with our target 
execution frequency of 200 Hz, the fact that we do not have direct 
connectivity between the event camera and the neuromorphic pro-
cessor, and the statistical attributes of our dataset. We used a batch 
size of 16 and trained until convergence with the Adam optimizer 
(75) and a learning rate of 1 × 10−4. We validated the quality of the 
estimated optical flow against the ground-truth optical flow using 
the average EPE metric, which is defined as the Euclidean distance 
between predicted and ground-truth flow values averaged over all 
pixels in the image

where I is the set of N pixels in the image and uGT is the ground-
truth flow.

From a vision-based state estimate to control
The corner ROI flows 

[
uT
TL
, uT

TR
, uT

BR
, uT

BL

]T
∈ ℝ

8×1 resulting from 
the vision-based state estimation can be used to control the drone. 
More specifically, we can transform the flows to visual observable 
estimates (51), consisting of unscaled velocities �̂C ∈ ℝ

3×1 and yaw 
rate ω̂C

z
 in the camera frame  , as follows (56)

where u is the optical flow of a world point with pixel array coordi-
nate x = [x, y]T, and where it is assumed that the scene is static and 
planar, angles in pitch and roll are small, and optical flow is dero-
tated in pitch and roll (meaning the observed flow is only due to 
translation and yawing). Concatenating Eq. 19 for all four corners of 
the field of view (uk, xk ∀ k ∈ {TL, TR, BR, BL}) allows us to do a 
least-squares estimation of the unscaled velocities �̂C and the yaw 
rate ω̂C

z
 , which can then be transformed to the body frame . To 

perform control, we can let a user select visual observable set points, 
�


sp
 and ω

z,sp
 , and use a trained or manually tuned controller to min-

imize the difference between the estimated visual observables and 
their set points.

Because Eq.  19 is a linear transformation, it can be “merged” 
with other transformations if these are also linear. This holds for the 
decoding from spikes to corner ROI flows in the vision SNN, mean-
ing that we can use a single linear transformation from spikes to 
control commands if we use a linear controller. In a similar fashion, 
we can use this idea to connect separately trained SNNs, merging 
their linear decodings and encodings. If both are implemented on 
neuromorphic hardware, this would mean that no off-chip transfer 
is necessary. Figure 7 illustrates these concepts.

Training control in simulation
We performed control by linearly transforming the visual observ-
able estimates �̂ ∈ ℝ

3×1 and ω̂

z
 , the drone’s absolute roll ∣ϕ∣ and 

pitch ∣θ∣, and the unscaled velocity set point �
sp
∈ ℝ

3×1 to a control 
command c ∈ ℝ4×1, which consists of an upward, mass-normalized 
collective thrust offset from hover f 0,c in the body frame , a roll 
angle ϕc and pitch angle θc, and a yaw rate ω

z,c
 , to reach a certain set 

point of unscaled velocities �
sp

 and yaw rate ω

z,sp
 (always 0). The 

control part was trained separately from the vision part because of 
the cost of accurately simulating event-based camera inputs (this 
needs subpixel displacements between frames, hence high frame 
rate for fast motion). Simulation was done with a modified version 
of the drone simulator Flightmare (76). To mimic the output of the 
vision-based state-estimation network, we first computed the 
ground-truth continuous homography (62, 77) from the state 
of the drone

Tp�
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where Ḣ is the continuous homography, K is the camera intrinsic 
matrix, 

[
�


]
×
∈ ℝ

3×3 is a skew-symmetric matrix representing in-
finitesimal rotations, p

z  is the Z component of the position vector 
from the world frame W to the camera frame  (representing per-
pendicular distance from the ground plane to the camera), v is the 
velocity of the camera, and e

−z
 is the unit vector in the negative Z 

direction of the world frame. To obtain angular rates and velocities 
in the camera frame, we used the camera extrinsics, consisting of a 
rotation R and a translation T

where the right-hand sides of Eqs. 21 and 22 are known from the 
simulator. Next, we used the continuous homography to get the flow 
of the four corners (62, 77)

where uk is the flow in Euclidean coordinates, 1 is the identity ma-
trix, and x̃k = [xk , yk, 1]

T is the projection of the world points in the 
corners of the field of view onto the pixel array in homogeneous co-
ordinates (so x̃BL = [0, 180, 1]T and x̃TR = [180, 0, 1]T ; note the dif-
ference with respect to Eq. 19). We added  (0, 0.025) noise to the 
flows uk (based on a characterization of the vision SNN). Equa-
tion 19 was subsequently used to go from flows of the corner ROIs to 
visual observables in the camera frame, which were then trans-
formed back to the body frame for control. Note that relating camera 
motion to the motion of points in the image (flow) can equivalently 
be done with the image Jacobian or feature sensitivity matrix (78).

We used a mutation-only evolutionary algorithm with a popula-
tion size of 100 to evolve the weights of the linear controller matrix 
∈ℝ4×9, whose initial values were drawn from U(−0.1, 0.1) . More 

specifically, we generated offspring by adding mutations drawn 
from  (0, 0.001) to all parameters of each parent and then evalu-
ated the fitness of both parents and offspring. The next generation 
was composed of the best 100 individuals, and we repeated this pro-
cess until convergence (approximately 25,000 generations). We used 
Flightmare to assess fitness at flying various visual observable set 
points: Every individual was evaluated across a set of 16 set points, 
with each unscaled velocity set point �

sp
 having at most one nonzero 

element ∈{ ±0.2, ±0.5, ±1.0} 1/s, skipping the positive set points for 
the Z direction, and including hover. The yaw rate set point was set 
to ω

z,sp
= 0 for all. Each set point was repeated 10 times, meaning a 

total of 160 evaluations per individual. Fitness F was computed as

Here, Neval is the number of evaluations, Nsteps = 1000 is the number 
of steps per evaluation, and w = [1,1, wz]T is a vector weighing the 
fitness for different axes, where we set wz = 10 for set points where 
ν


z,sp
= 0 . Note that, for the Z direction, we used the ground-truth 

unscaled velocity in the world frame ν
z

 instead of the one in the 
body frame because the latter was zero in the case of the drone as-
cending or descending at a slope equal to its attitude and would 
hence go unpunished, leading to extra vertical drift. Furthermore, if 
the simulated drone went out of bounds or crashed before the end of 
an evaluation, it would be reset without any additional fitness penalty.

We used domain randomization (79) to obtain a more robust 
controller and reduce the reality gap: For each of the 10 repeats, a 
random constant bias U(−0.001, 0.001) rad was added to the abso-
lute pitch and roll received by the control layer. This bias was shared 
among the population to keep things fair. Furthermore, for each of 
the 160 evaluations per individual, we randomly varied the initial 
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Fig. 7. Merging linear transformations. (A) We go directly from output spikes s of the vision network to control commands c in a single linear decoding by multiplying 
the involved linear transformation matrices. This is not possible for the matrices used for encoding (shown faded), so we leave these as is. (B) The same principle can be 
applied to connect two separately trained spiking networks in a spiking manner, from spikes s to currents x, suitable for neuromorphic hardware.
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position p
= [0, 0, 2]T + U

3×1( − 1, 1) m (except for horizontal 
flight, where we fixed p

z
 to 1.5 m, because of the linear nature 

of the controller we have here, as explained later), initial ve-
locity v

∼ U
3×1(−0.02, 0.02) m/s, initial attitude quaternion 

q
∼ U

4×1(−0.02, 0.02) (normalized), and initial angular rates 
�


∼ U

3×1(−0.02, 0.02) rad/s.
We modified Flightmare to include drag fdrag occurring as a re-

sult of translational motion, and we took it to be acting in the so-
called “flat-body” frame ′, which is the body frame rotated by the 
roll and pitch of the drone such that the z axis is aligned with the 
world z axis. Following (64), we used a drag model that is linear with 
respect to velocity in x and y but using a drag coefficient kv,x = kv,y = 
0.5. This results in the following

The outputs of the linear controller c ∈ ℝ4×1 were clamped to 
[−1,1] and fed to different parts of the cascaded low-level (thrust, 
attitude, and rate) controllers. To accommodate some of the short-
comings of the linear controller, we compensated thrust for the 
attitude of the drone.

All dynamics equations were integrated with fourth-order Runge-
Kutta with a time step of 2.5 ms. The frequency of the simulation was 
50 Hz. All remaining details can be found in Supplementary Methods.

From simulation to the real world
We achieved successful sim-to-real transfer through several strate-
gies. One is domain randomization (79), which we did by adding 
noise to the observed flows, through a random bias on the attitude 
estimate, and by varying the initial conditions of the simulated 
quadrotor. Another is abstraction (80), which we did by making use 
of low-level controllers to go from thrust and attitude to rotor 
speeds and by calibrating the attitude and hover thrust biases before 
each flight to ensure that they were small/zero (as in the simulator). 
Last, we smoothed (low-pass filter) and scaled the computed visual 

observables and tuned the gains scaling the control layer outputs in 
the real world.

Equation 19 was used to transform the flows of the corner ROIs 
coming from the vision network into visual observables (unscaled 
velocities �̂ and yaw rate ω̂

z
 ), absolute roll ∣ϕ∣ and pitch ∣θ∣ were 

taken from the drone’s accelerometers, and the unscaled velocity set 
point �

sp
 was provided by the user. The yaw rate set point ω

z,sp
= 0 

was fixed.
Extra experiments were performed by connecting the vision net-

work to a hand-tuned PI controller. All remaining details can be 
found in Supplementary Methods.

Hardware setup
Real-world experiments were performed with a custom-built quadro-
tor carrying the event-based camera (DVS 240), a single-board com-
puter (UP Squared), and a neuromorphic processor (Intel Kapoho 
Bay with two Loihi neuromorphic research chips). A high-level over-
view can be found in Fig. 1, with all components listed in Table 3. We 
used PX4 as autopilot firmware and ROS (Robot Operating System) 
for communication. More specifically, events coming from the event-
based camera were passed to the UP Squared over USB using ROS1. 
These events were processed (downsampling, cropping, and limiting 
to 90 per image corner ROI) on the UP Squared and sent as spikes to 
the vision network running on the Kapoho Bay over USB. After pro-
cessing, the output spikes were sent back over USB to the UP Squared, 
where they were decoded into flows for each corner ROI. The ROI 
flows were then published by an ROS1 node and sent to ROS2 over a 
ROS1-ROS2 bridge. The linear controller (or PI controller, for that 
matter) and the processing around it, running as a ROS2 node, took 
the ROI flows together with the attitude estimate coming from PX4 
(IMU) and the ego-motion set point provided by the user and output 
the control command. This command was then sent over ROS2 to 
PX4 and processed by the low-level controllers there. ROS2 makes 
use of RTPS (real-time publish-subscribe) for communication, 
which allows for high-frequency and high-bandwidth messaging 
between the UP and PX4, meaning that our entire pipeline can run at 
200 Hz—approximately the frequency of PX4’s attitude controller. 

f


drag
= − R


�

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

kv,x
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0

⎤
⎥⎥⎥⎦
◦R


�

v


⎞
⎟⎟⎟⎠

(25)

Table 3. List of hardware components used for the real-world test flights. Power consumption estimates were obtained from the Loihi energy benchmark*, 
a real-world hover test with the drone†, or component datasheets‡. Dash entries indicate components not using any power.

Component Product Mass (g) ∼Power (W)

Frame GEPRC Mark 4 225 mm

Motor Emax 2306 Eco II Series

Propellor Ethix S5 5 inch 508 259†

Flight controller Pixhawk 4 Mini

ESC SpeedyBee 45A BL32 4in1

Battery Tattu FunFly 1800 mAh 4S 195 –

Single-board computer UP Squared ATOM Quad Core 08/64 202 18‡

Event-based camera DVS 240 27 1‡

Neuromorphic processor Intel Loihi, Kapoho Bay form factor 62 1*
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This attitude control frequency was a major driver for our choice to 
run the neuromorphic pipeline at the same frequency. This choice 
also depended on various other factors, ranging from the trade-off 
between a fast execution frequency and good optical flow estimation 
to the limitations of the spike interfacing over USB. A 5-ms event 
window turned out to give accurate optical flow estimates, as well as 
a very fast execution frequency (see Supplementary Methods). More-
over, this frequency could be attained reliably, and Table 2 shows that 
Intel’s Loihi inference time was consistently faster than 5 ms. For po-
sition control between test runs and as failsafe, we used an OptiTrack 
motion capture system.

We estimated power required for hover flight by flying with a fully 
charged battery until a certain voltage, keeping track of time, and 
estimating spent milliampere hour using the value from the charger. 
During this flight, the UP Squared was powered on (needed for con-
trol), and we estimated a power consumption of 277 W. Subtracting 
the estimated 18 W for the UP Squared results in 259 W for the 
remaining components in Table 3. For the Kapoho Bay, we used the 
numbers from the performed energy benchmark, given that running 
power is almost equal to idle power. We got power estimates for the 
UP Squared (version UPS-APLX7-A20-0864) and DVS 240 from on-
line available datasheets.

Energy benchmark
Energy benchmarks for Loihi were performed on a Nahuku board 
(host machine: Intel Xeon Platinum 8280 CPU at 2.7 GHz, 126 GB 
RAM, Ubuntu 20.04, NxSDK 1.0.0), which contains 32 Loihi chips, 
because Kapoho Bay does not support energy probing. These (soft-
ware) probes report a variety of power measurements, as well as ex-
ecution times. Following the documentation, static power is due to 
transistor leakage, dynamic power is due to switching, idle power is 
measured while the embedded CPU cores on Loihi are still clocked 
but the neuromorphic cores are inactive, and total/running power is 
due to all components together. Kapoho Bay does support probing 
execution times, which we used to confirm that these are almost 
identical between Nahuku and Kapoho Bay. Furthermore, docu-
mentation states that Nahuku shuts down unused chips, meaning 
that it can emulate energy consumption of a Kapoho Bay (which has 
two chips) with minimal overhead. Still, these benchmarks are not 
very representative of actual use on a drone because that involves 
receiving and processing streaming data in an online fashion, 
whereas here all data were loaded to memory beforehand and then 
processed as quickly as possible. Therefore, what these benchmarks 
represent is not the energy consumption and execution speed of the 
whole pipeline but rather that of the network alone, without any 
bottlenecks and influences because of I/O and preprocessing. This 
also explains the much higher execution frequencies of Loihi with 
respect to real world tests, where this was always around 200 inf/s.

On Jetson Nano, we simulated the SNN and ANN in PyTorch 
(ARM Cortex-A57 CPU at 1.43 GHz, 4 GB RAM, Ubuntu 20.04, 
PyTorch 1.12.0). Jetson Nano has two power modes: a low-power 
(5 W) mode and a max-power (10 W) mode, the difference being 
the number of active CPU cores (two versus four) and the frequen-
cies of the active CPU and GPU cores. Power consumption was 
measured using the tegrastats utility, and execution time was mea-
sured in Python code. The split between static and dynamic power 
cannot be made here because these are not available as measure-
ments. Idle power was measured for a period of time after running 
the benchmarks.

Statistical analysis
Unless mentioned otherwise, figures and tables show individual 
runs without any statistical method applied. Reported EPEs (as in 
Table 1) are averaged over sequences in the test dataset. Reported 
drifts (as in tables S2 to S4) are averaged over all runs in a certain 
flying direction. For investigating the influence of the tether on the 
drone dynamics (see Supplementary Results), we performed a Z test 
with sampling distributions created using bootstrapping (81), and a 
confidence interval of 95% was used to determine significance.

Supplementary Materials
This PDF file includes:
Results
Methods
Tables S1 to S6
Figs. S1 to S6
References (82–88)

Other Supplementary Material for this manuscript includes the following:
Movies S1 to S4
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