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SUMMARY
The many functions of microbial communities emerge from a complex web of interactions between organ-
isms and their environment. This poses a significant obstacle to engineering microbial consortia, hindering
our ability to harness the potential of microorganisms for biotechnological applications. In this study, we
demonstrate that the collective effect of ecological interactions between microbes in a community can be
captured by simple statistical models that predict how adding a new species to a community will affect its
function. These predictive models mirror the patterns of global epistasis reported in genetics, and they
can be quantitatively interpreted in terms of pairwise interactions between community members. Our results
illuminate an unexplored path to quantitatively predicting the function of microbial consortia from their
composition, paving the way to optimizing desirable community properties and bringing the tasks of predict-
ing biological function at the genetic, organismal, and ecological scales under the same quantitative
formalism.
INTRODUCTION

Microbial communities carry out critical functions in both natural

and biotechnological settings, from nutrient cycling in the soils1

to biofuel production in industrial biorefineries.2 As hinted by the

latter example, finding sustainable and economically viable alter-

natives to non-renewable resources relies on our ability to

harness the useful capabilities of microbial communities. In

biotechnological applications, even moderate increases in func-

tion can dictate the viability of a technology. Thus, it is often not

enough to know whether a community will or will not carry out a

given function; rather, we need to quantitatively and accurately

identify optimal consortia. Given a list of candidate strains, which

ones should we combine together if we wish to maximize the

amount of biofuel produced in a bioreactor,2 the elimination of

toxic compounds,3,4 or the suppression of a pathogen?5 To

adequately answer these questions, we must be able to quanti-

tatively and accurately predict how including each of those

strains in a consortiumwill affect the desired function (Figure 1A).

Theprimarydrawbackofcurrent approaches foraddressing this

problem is that they struggle with interactions. The contribution of

a species toanydesiredcommunity functionemerges fromacom-

plexweb of interactionswith the other communitymembers, such
3108 Cell 187, 3108–3119, June 6, 2024 ª 2024 The Author(s). Publis
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as competition for resources, metabolic cross-feeding, or ecolog-

ical effects on gene expression, among others.7 This contribution

is thus often contingent on which other species are present7 (Fig-

ure 1A). Thenumberof suchpotential interactionsgrowsexponen-

tiallywith community size,making themhighly challenging tochar-

acterize in practice. For this reason, past models have only been

successful at identifying optimal consortia for very small commu-

nities where interactions are sparse,8–14 following statistical ap-

proaches that may encounter scalability issues in more complex

situations. For larger communities, predictive ecological frame-

works have been primarily concerned with explaining broad-

scale ecological patterns, such as those that exist between

biodiversity and ecosystem functioning (focusing generally on its

productivity).15–21 These models have provided valuable insights

into the functioning of natural ecosystems. However, they lack

the fine-grained predictive power required to identifywhich partic-

ular combination of microbial species will optimize any desired

community function (e.g., the production of a target molecule2,13).

A general, scalable solution to this latter question requires a

different approach to handling interactions.9,11–14

Interactions between biological components complicate the

construction of predictive models in other areas of biology be-

sides ecology. In genetics, for instance, the contribution of a
hed by Elsevier Inc.
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. An ecological parallel to global epistasis
(A) The central challenge of this work is predicting how a collective ecological function (in this illustration, the production of bioethanol) will change with the

addition of a particular species.

(B and C) Recent work in quantitative genetics has found that the fitness effect of a mutation is often predicted by the fitness of the genetic background where it

arises, following simple regressions. This phenomenon has been termed global epistasis. The slope and intercept of the regression vary across different mu-

tations. Data from Khan et al.6

(D) The fitness effect of a mutation can thus be broken down into two components: first, a global component that is predictable from the regression, and second,

an idiosyncratic component that is not predictable from the background fitness, represented by the residuals of the fits.

(E) We hypothesized the existence of an ecological parallel to global epistasis, where the addition of a focal species to a community might induce a change in a

community-level function that can be predicted from the function of the background community where the focal species is added.

(F) We inoculated different combinations of eight bacterial isolates in synthetic liquid medium. The functions of these consortia were quantified as the level of

pyoverdines secretion after 48 h of incubation (STAR Methods, Figure S1). We found that the ‘‘functional effect’’ of adding a species to an ‘‘ecological back-

ground’’ was well predicted by a simple regression linking it to the function of the background community. The background functions and functional effects were

quantified independently in three biological replicates; here we represent their averages (dots) and standard deviations (error bars).

See Figures S1–S3, S5–S9, and S22.
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locus to a quantitative phenotype depends on its genetic back-

ground via genetic (‘‘epistatic’’) interactions with other loci.22

Epistatic interactions can be widespread, and they may also

be highly complex, including pairwise as well as higher-order ef-

fects.23–28 Encouragingly, recent research has shown that the

aggregate effect of these genetic interactions often leads to
the emergence of simple statistical patterns, where the fitness

effect of a mutation is well predicted by the fitness of its

genetic background (Figures 1B–1D). The emergence of these

simple statistical patterns is a manifestation of ‘‘global epis-

tasis’’6,29–40—a phenomenon that includes (but is not limited

to) the common observation that beneficial mutations have
Cell 187, 3108–3119, June 6, 2024 3109
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smaller fitness effects in higher-fitness genetic backgrounds

(‘‘diminishing returns epistasis’’). As an illustration of global epis-

tasis, in Figure 1C, we reproduce previous results showing that

the fitness effects of four Escherichia colimutations are well pre-

dicted by the fitness of their genetic backgrounds through simple

linear regressions.6 These global epistasis patterns can be

determined from just a small number of empirical observations,

and theory has shown that they can be mechanistically inter-

preted in terms of gene-by-gene (g3g) interactions.38,39 Recent

studies have leveraged global epistasis to develop highly

promising methodologies for inferring full genotype-phenotype

maps in large combinatorial spaces from just a subset of

measurements.41–45

Inspired by recently established parallels between genetic and

functional ecological interactions,46–49 here we hypothesize that

an ecological analog to global epistasis might exist, where the

aggregate effect of all pairwise and higher-order ecological inter-

actions between species may be captured by simple regression

models that predict how including a species in a community will

affect its community-level function (Figure 1E). If such simple,

predictive models existed and could be interpreted in terms of

interspecies interactions (as is the case for global epistasis in ge-

netics), this would unlock our ability to predictively connect spe-

cies-level composition to quantitative function across a wide va-

riety of ecological systems.

Toevaluate themerits of this hypothesis, weconducted a series

of experiments using synthetic microbial communities and also

examined previously published data of bacterial, algal, and even

plant ecosystems, under distinct environmental conditions and

for a variety of collective functions. We found that a parallel

concept to global epistasis can indeed be formulated in all these

cases.Here,weshow that this allowsus tobuildpredictivemodels

to optimize ecological function that are simple, general, and highly

interpretable. Furthermore, we extend previous theoretical results

from the field of genetics to demonstrate that ecological global

epistasis-like patterns can be quantitatively linked to species-

by-species (s3s) interactions. Our findings argue that the same

general formalism can be applied to predict biological function

across widely different scales of organization, from molecules

and organisms to ecological communities.

RESULTS

An ecological parallel to global epistasis predicts the
functional effect of a species
Based on our hypothesis, we could define the functional effect of

a species by analogy with the fitness effect of a mutation, i.e., as

the difference in function between two communities that differ

solely in the presence or absence of such species (Figure 1E).

If our hypothesis were correct, we should observe that the func-

tional effect of a focal species would be well predicted by the

function of the (background) community where we include it,

following simple statistical models similar to those observed in

genetic global epistasis.

To test our hypothesis, we built a small library of eight soil bac-

terial isolates (STAR Methods), from which one could potentially

assemble 255 different consortia based on the presence/

absence of each member. The community-level function we
3110 Cell 187, 3108–3119, June 6, 2024
studied was the net production of pyoverdines. This represents

a good test case for an ecological function that is sensitive to

species interactions, as pyoverdine secretion is known to

respond to intra-species signaling50 and is also often controlled

by population size via quorum sensing.51 Five of our species

were Pseudomonas strains that produce pyoverdines in mono-

culture, while the remaining three were non-producing Entero-

bacteriaceae (Figure S1).

From this library, we assembled a subset (N = 164) of all

possible unique species combinations, including an approxi-

mately even representation of pairs, trios, etc. (Methods S1).

Each of these consortia can be represented by a vector s, which

encodes the presence/absence of each species i (si = 1;0). To

form each consortium, we inoculated every member at a fixed

inoculum density in minimal liquid growth medium (STAR

Methods, Figure S1). We then incubated our consortia for 48 h

and measured their function (FðsÞ) as the concentration of pyo-

verdines in the spent media (STAR Methods, Figure S1). The

assembled consortia exhibited high variation in functional levels,

with pyoverdine concentrations ranging from 0 to 70 mM (Fig-

ure S1). In Figure 1F, we plot the functional effect of each species

(DFiðsÞ = Fðs + iÞ � FðsÞ for species i, Figure 1E) against the

function of its background consortia (FðsÞ).
Consistent with our hypothesis, we found that the

functional effects of all species in different community contexts

were well predicted by simple relationships of the form

DFiðsÞ = ai +biFðsÞ+ qiðsÞ (Figure 1F). We call this expression

the ‘‘functional effect equation’’ (FEE) of species i. The intercepts

(ai) and slopes (bi) of the FEEs differ across species, suggesting

that they are determined by specific interactions between each

individual species and the rest of its ecological partners (Fig-

ure S2). The terms qiðsÞ (i.e., the residuals of the fits) capture

the component of said interactions that is not predictable from

the statistical model itself. Consistent with our initial hypothesis,

these results indicate that a parallel to global epistasis exists in

this ecological system, which predicts how including a particular

species into different community contexts will affect their com-

munity-level function.

The ecological parallel to global epistasis is ubiquitous
across a wide range of ecological communities
To determine how general this phenomenon might be beyond

our particular experimental setting, we re-analyzed a collection

of already published datasets where the quantitative relationship

between community composition and function had been

measured in a similarmanner. Table S1 summarizes the datasets

we considered, all of which include multiple combinatorial as-

semblages of species from candidate pools of 4 to 25 species.

These datasets include synthetic bacterial communities formed

by either Gram-negative or Gram-positive bacteria,13,47,52 but

also plant53 and phytoplankton54 communities. These sets of

communities were assembled under widely different ecological

conditions, including the number of organismal generations,

the type and frequency of resource addition, and the form of

propagation. The functions were also different in each case,

ranging from the production of biomass to the net metabolic ac-

tivity and from the secretion of specific enzymes to the degrada-

tion of environmental polymers. As shown in Figure 2, simple
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Figure 2. Ecological global epistasis across

different communities and functions

The functional effect of a focal species can often be

predicted from a simple regression linking it to the

function of the background community where it is

included (red lines: negative slopes, blue lines:

positive slopes, black lines: near-zero slopes). This

is observed across communities formed by very

different organism types, under different ecological

conditions, and for different collective functions

(Table S1).

(A) Data from Kuebbing et al.53

(B) Data from Ghedini et al.54

(C) Data from Langenheder et al.52

(D) Data from Sanchez-Gorostiaga et al.47

(E) Data from Clark et al.13

See Figures S3–S9 and S22.
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statistical models predict the functional effect of species across

all datasets we investigated, explaining on average �75% of the

variance in a species’ functional effect (Figure S3).

Most species (�50% across all datasets) display negatively

sloped FEEs (red lines in Figure 2). This trend is also commonly

observed in population genetics: the fitness effect of a mutation

most often becomes either less beneficial (‘‘diminishing returns’’)

or more deleterious (‘‘increasing costs’’) as the fitness of the ge-

netic background increases.6,29,30,33,35,36 Often, species in-

crease community function when they are included in low-per-

forming ecological backgrounds but decrease it when the

background function is high. About 45% of all species exhibit

near-zero slopes (black lines in Figure 2). Note, however, that

these patterns are also informative for predictive purposes.

The magnitude of the deviations from the FEE (even if its slope

is zero) is useful to discern between (1) species whose contribu-

tion to ecosystem function is additive and largely independent of

their ecological background (i.e., those species for which the re-

siduals are small) or (2) species whose contribution to the com-

munity function depends on the specific composition of their

ecological background in a very idiosyncratic manner (i.e., those

with large residuals). Finally, a smaller number of species (�5%)
exhibit positively sloped FEEs (blue lines

in Figure 2), becoming more beneficial

(or less deleterious) in backgrounds

with higher functions. We refer to these

patterns as ‘‘increasing returns’’ (or

‘‘decreasing costs’’).

The reader will have noticed that

P. polymyxa displays two distinct types

of functional effects on the function

(amylolytic rate) of its background consor-

tia, each described by a different FEE (Fig-

ure 2D, rightmost panel). Closer examina-

tion of this species indicates that these

two ‘‘branches’’ are defined by the pres-

ence or absence of a second species

(B. thuringiensis) in the ecological back-

ground (Figure S4). We will address this ir-

regularity in more detail later in the text.
In Figures 1F and 2, we have represented the functional effect

of a species versus the function of the ecological background. It

is important to note that this type of representation can lead to

biased estimates of the strength of global epistasis. In short,

this is because the variable represented on the y axis (DF) explic-

itly depends on the variable represented on the x axis (FðsÞ), and
correlations between them can result from co-varying measure-

ment errors.37,55 Recent work in genetics has addressed this

issue by directly regressing the background fitness against the

fitness of the genotype where a focal mutation has been added

via total least-squares regression.37 In Figure S6, we adopt the

same strategy, directly representing Fðs + iÞ against FðsÞ, and
we find slopes different from 1 for a majority of species (Fig-

ure S7). Further analysis indicates that most of the empirical

FEEs we find across datasets are not a simple consequence of

measurement noise (Methods S1; Figures S7–S9).

Emergence of global functional interactions from
pairwise interactions between species
Our analyses suggest that ecological global epistasis is ubiqui-

tous across a wide range of communities. How should we

explain this mechanistically? And what factors determine
Cell 187, 3108–3119, June 6, 2024 3111
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(A) Mapping between the number of species and the functions of the communities in the Sanchez-Gorostiaga et al. experiment.47 Each node represents a

consortium, and edges connect consortia that differ in the presence of a single particular species.

(B) Detail showing an example where the inclusion of two species (i and j) in an ecological background results in lower function (solid lines) than the additive

expectation (dashed lines). This difference (eij ) indicates a functional interaction between the two species (either a direct one or an indirect one, e.g., mediated by

other community members). DFj is the functional effect of species j on the ecological background.

(C) Based on theoretical results from quantitative genetics, we hypothesized that the FEE slope of a species i may be explained by a sum of its effective in-

teractions with every other species j. The effective interaction of species iwith species j (denoted~eij ) is defined as~eijhCeijDCDFjD =
P

ksiCDFkD
2
(see Box 1), where the

averages are taken across all possible ecological backgrounds where both species i and j are not present.38,39

(D) We quantified all effective interactions for every species and dataset (STAR Methods) and used them to estimate the expected FEE slopes. The estimated

slopes are in agreement with the empirical fits in Figure 2 (R2 = 0:98).

(E–G) We show three examples of species with positive, zero, and negative slopes. Slopes are explained by the sign and magnitude of the effective interactions

between the focal species and its ecological partners.

See Figures S10–S16.
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whether a species will exhibit diminishing or accelerating re-

turns? In quantitative genetics, global epistasis patterns may

emerge from pairwise and higher-order epistatic interactions,

with the sign and magnitude of such interactions dictating the

strength and shape of global epistasis.38,39 If a similar relation-

ship held in ecology, we could connect the FEE of a species to

its functional interactions with other community members. In

our own experiment of pyoverdine-secreting communities, as

well as in the other datasets we analyzed, we found that species’

functional effects (Figure S10) and functional interactions be-

tween species (Figure S11) were of variable sign and magnitude.

We thus hypothesized that the different FEEs we found across

species could be explained by this variation.
3112 Cell 187, 3108–3119, June 6, 2024
To test this hypothesis, we define the ‘‘effective interaction’’

between species i and j as ~eijhCeijDCDFjD =
P

ksiCDFkD
2
(see Box

1). Here, CeijD denotes the average functional interaction between

species i and j, that is, the average difference in function between

a consortium where both species are present with respect to the

additive expectation from each species’ individual functional ef-

fect (Figure 3B). In turn, CDFjD denotes the average functional ef-

fect of species j across all ecological backgrounds that do not

contain species i nor j (Figure 3B). This definition follows from

recent work in quantitative genetics (we refer readers to Reddy

and Desai38 and Diaz-Colunga et al.39 for a detailed derivation

of this expression, here summarized in Methods S1), which

found that the slope bi of the global epistasis regression for a



Box 1. Glossary

Global epistasis. In genetics, the fitness effect of a mutation has often

been found to be correlated with the fitness of the genotype where the

mutation arises (usually called the ‘‘genetic background’’). This phe-

nomenon has been termed ‘‘global epistasis’’.6,29–40

Ecological background. An ecological community to which a focal

species i can be added. This is analogous to how a genetic back-

ground is usually defined, as a genotype that does not carry a given

focal mutation.

Functional effect.We define the ‘‘functional effect’’ of a focal species

as the quantitative difference in ecological function between two con-

sortia that differ solely in the presence or absence of that focal species.

Note that this definition is analogous to that of a mutation’s ‘‘fitness ef-

fect’’ (or ‘‘phenotypic effect’’) in the context of genetics. We denote the

functional effect of species i as DFi.

Functional interaction. We consider that two species engage in a

‘‘functional interaction’’ when including the two of them in a con-

sortium produces a change in a quantitative ecological function that

deviates from the sum of their two separate functional effects. If this

difference is positive (negative), we say the two species engage in a

positive (negative) functional interaction. We denote the functional

interaction between species i and j as eij.

Effective interaction. By the above definition, the functional interac-

tion between two species may vary depending on which other species

are present or absent in the consortium. We mathematically define an

‘‘effective interaction’’ between two species i and j, denoted ~eij as

~eijhCeijD
CDFjDP

ksiCDFkD
2

(Equation 1)

where CeijD represents the functional interaction between spe-

cies i and j averaged across all possible ecological back-

grounds, and CDFjD represents the average functional effect

of species j across that same set of ecological backgrounds.39
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mutation i could be approximated as the sum of its effective in-

teractions with all other mutations j. Applying the theory of global

epistasis to community function, we reasoned that the slope (bi)

of the FEE for species i may thus be written as (Figures 3A–3C):

biz
X
jsi

~eij (Equation 2)

From the expression above, we notice that species that

engage primarily in negative effective interactions will tend to

exhibit diminishing returns, whereas those that engage in posi-

tive effective interactions will exhibit increasing returns.39 Note

that, as defined, negative and positive effective interactions refer

to the average impact of a species pair on a community-level

function across all ecological backgrounds and need not

correspond to a direct positive or negative ecological interaction

between the two species.

To test whether this equation could explain the FEEs in Fig-

ures 1 and 2, we estimated the effective interactions between

all pairs of species in those experiments (STAR Methods). We

found that Equation 2 does an excellent job at explaining FEE

slopes across datasets (Figures 3D and S12), and it helps us

identify the mechanistic basis behind the different patterns of
global epistasis for each species. For instance, P. polymyxa

exhibits increasing returns, and this pattern is explained by its

predominantly positive effective interactions with other commu-

nity members (Figure 3E). In turn, the flat slope exhibited by

Sphingoterrabacterium sp. (Figure 3F) arises from its evenly

balanced positive and negative effective interactions, while the

negative slope of L. capitata (Figure 3G) can be attributed to its

negative effective interactions with all other species. Beyond

these three examples, in Figure S13, we show the sign and

magnitude of all effective interactions between every pair of

species across all datasets we examined.

Equation 2 also allows us to rationalize the two branches

observed in the FEE for P. polymyxa. As shown in Figures 2D

and S4, this species exhibits two distinct types of functional

effects. The apparent split of this FEE into two branches

can be explained by the particular interaction structure of

P. polymyxa with other community members. Specifically,

P. polymyxa exhibits a strong negative interaction with a second

species (B. thuringiensis) and positive interactions (~e> 0) with all

others. The presence or absence of this second species in the

ecological background determines the two branches observed

in this FEE. This phenomenon can be analyzed in light of

Equation 2 and the complementary equation that explains the

intercept (Figure S14; Methods S1).

The definition of an effective interaction, ~eij, results from aver-

aging the interaction between a pair of species i and j across all

ecological backgrounds where they may be included. In general,

the interaction between species i and j may vary depending on

the presence or absence of additional community members,

which they may engage in higher-order interactions (HOIs)

with. Figure 3 shows that averaging this variation is generally suf-

ficient to provide good estimates for the empirical FEE slopes,

but this does not mean that HOIs do not exist in the datasets

we considered. If HOIs were truly absent, we should be able to

accurately estimate FEE slopes by analyzing just the one- and

two-species communities, but this is not the case in general

(Methods S1; Figures S15 and S16).

The analysis presented in Figure 3 suggests that the FEE of a

species may potentially be explainable mechanistically in terms

of its average ecological interactions, which in turn can be under-

stood at the molecular level. For instance, as discussed above,

the positive slope of P. polymyxa results from several positive

effective interactions with its ecological partners. These positive

interactions have a known molecular basis: P. polymyxa is a

biotin auxotroph whose growth is facilitated via cross-feeding

by other members of the consortia.47 This observation highlights

the utility of defining effective functional interactions between

species in order to bridge the gap between molecular-level

mechanisms and the emergence of community-level functions.

FEEs can be leveraged to predict community-level
functions
At the outset of this paper, we argued that the ability to predict

the functional effects of a set of candidate species would allow

us to quantitatively link the composition and function of any con-

sortium onemay formwith them. In fact, FEEsmake it possible to

identify which of those consortia will optimize a community func-

tion. A simple visual inspection of the FEEs can be useful for this
Cell 187, 3108–3119, June 6, 2024 3113
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Figure 4. Ecological global epistasis can be leveraged to predict community functions

(A) We hypothesized that iteratively concatenating the functional effects of a set of species (here species i, j, and k) could serve to predict the function of an out-of-

sample community (s1) from that of an in-sample community (s0) (STAR Methods).

(B) We evaluated the performance of this method by assembling 61 new consortia (which served as the out-of-sample test set of communities) and comparing

their predicted and measured levels of pyoverdines secretion. We found a good agreement (R2 = 0:80) between the observations and the predictions. Dots and

error bars represent means and standard deviations across two biological replicates.

See Figures S17–S21.
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purpose. For instance, species that exhibit patterns of increasing

costs may be discarded due to their detrimental effect on com-

munity function, which is more pronounced in higher-performing

backgrounds. On the other hand, species exhibiting accelerating

returns could be more promising: they would act as functional

‘‘boosters’’ by bringing up the function of their background com-

munity, even more strongly when the background function is

already high. Because FEEs are easily and intuitively interpret-

able, this simple observation can help us narrow down the list

of potentially desirable species. Beyond these straightforward

guidelines, we reasoned that FEEs could serve to obtain quanti-

tative predictions of community function based on composition

and thus to identify optimal consortia.

Perhaps the simplest approach to predict the function of a

consortium would be to iteratively concatenate the FEEs of all

its members: if we wanted to predict the function of a particular

consortium (denoted s1, Figure 4A), we could start by identifying

a consortium s0 whose function had been measured empirically,

such that all species in s0 were also present in the target con-

sortium s1. In the example in Figure 4A, the target consortium

s1 contains all species in s0, plus three additional species, which

we generically denote i, j, and k. We could first use the FEE for

species i to estimate the functional effect of including species i

in the starting consortium s0, simply as DFiðs0Þzai +biFðs0Þ.
Then, the function of the resulting consortium (s0 + i) would be

estimated as Fðs0 + iÞ = Fðs0Þ+DFiðs0Þ. We can next estimate

the functional effect of including species j in this consortium from

the FEE of species j, as DFjðs0 + iÞzaj +bjFðs0 + iÞ, and iterate

this process one more time to estimate the effect of including

species k: DFkðs0 + i + jÞzak +bkFðs0 + i + jÞ.This will ultimately

give a prediction for the function of the target consortium s1
(Figure 4A).

It is important to note that this procedure will yield quantita-

tively different predictions depending on the order in which

FEEs are concatenated (e.g., i/j/k, j/k/i, etc.). One option

is to consider every possible order of concatenation and average
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the predictions across them. As an alternative, we propose a

method to infer the residuals of the FEEs, such that concate-

nating FEEs of the form DFiðsÞzai +biFðsÞ+ qiðsÞ (with qiðsÞ rep-
resenting the residual of the FEE for species i in background s)

results in identical predicted values regardless of the order of

concatenation—details on this residual inference procedure

can be found in Methods S1.

Despite its conceptual simplicity, this approach yields excel-

lent results at predicting the function of newly assembled com-

munities. For instance, in Figure 4B, we generated predictions

for the community-level pyoverdine production of a set of 61

new consortia, none of which had been assembled in our previ-

ous experiment (i.e., in Figure 1F). We then went back to the lab-

oratory, assembled those consortia de novo, andmeasured their

empirical function (STAR Methods, Figure S1). The agreement

between our predictions and the empirical measurements was

excellent (R2 = 0:80, Figure 4B). The success of this simple

approach is also remarkable across all of the other datasets

we had previously analyzed (Figure S17). Inferring FEE residuals

as explained in Methods S1 is not strictly necessary for predic-

tion (averaging across all possible orders of FEE concatenation

is enough for out-of-sample prediction), but it systematically re-

sulted in increased prediction accuracy across all datasets

(Methods S1). The method was also able to successfully identify

optimal consortia in our pyoverdines experiment as well as in all

the other datasets, even when FEEs were fit to very few data

points (Figures S18 and S19). Ourmethod for predicting commu-

nity functions yielded more precise predictions than alternative

state-of-the-art statistical models for the same purpose,14

particularly when predicting the function of the highest- and

lowest-performing consortia (Figure S20; Methods S1).

To further examine the performance of this predictive method,

we simulated a set of mappings between community composi-

tion and function. For each simulation, we considered ecological

interactions of variable sign, strength, and order. We found that

the sign and magnitude of the underlying pairwise interactions
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between species had a minor effect on the performance of the

method, but the quality of the predictions declined in the limit

where high-order interactions were both very strong and wide-

spread (Figure S21; Methods S1).

The observation that this very simple statistical approach can

quantitatively predict community-level functions highlights the

utility of characterizing the FEEs, as they provide a simple and

interpretable pathway toward linking community composition

and function. This also suggests that more sophisticated statis-

tical machinery, recently developed in genetics to quantitatively

predict phenotypes from genotypes,41–45 could be extended to

ecology to predictively connect the composition and function

of species assemblages.13,48

DISCUSSION

There is currently a growing interest in engineering microbial

communities to carry out biotechnologically relevant functions,

such as the fermentation of food and drinks,56 the production

of biofuel,2 the degradation of environmental pollutants,4 or the

exclusion of pathogens.5 Yet, building predictivemodels of com-

munity function that integrate the full complexity of functional

and ecological interactions is extremely challenging. Such

models have only been built in a small number of case

studies,8–10,13 but their parameterization required exhaustive

empirical work that was highly specific to the species, environ-

mental conditions, and functions being studied. Machine

learning strategies are more scalable,11,12 but extracting inter-

pretable biological information from them is generally difficult.

As an alternative, a common coarse-grained description of

ecological communities involves reducing community structure

to a scalar metric of biodiversity.21,57 When averaged across

multiple communities, biodiversity is often correlated with

ecosystem function, but the variation is typically high, and the

specific form of this relationship can vary in different ecological

contexts. The relationships between biodiversity and ecosystem

function provide valuable insights in natural settings, but they

cannot resolve which specific consortia one must form to maxi-

mize a function of interest.

Our findings suggest that these limitations can be overcome

by leveraging an ecological analog to the concept of global epis-

tasis, originally formulated in the context of genetics. We have

shown that simple linear regression models FEEs predict the

functional effect of a species in a given background community,

and they emerge ubiquitously across very different ecological

conditions and collective functions. Much like genetic global

epistasis patterns, FEEs can be characterized from a small sub-

set of empirical observations (even in large combinatorial

spaces) without the need for detailed information on the molec-

ular mechanisms governing the interaction between every pair of

species.

We propose that these FEEs may be interpreted as represen-

tations of emergent, coarse-grained species-by-community (s3

C) interactions. Historically, the study of ecological interactions

has broken them down as the sum of pairwise interactions (s3

s) andHOIs (e.g., s3s3s, etc.).46,49,58–62 This logic has paralleled

the way in which genetic interactions have been traditionally par-

titioned, as the sumof pairwise gene-by-gene (g3g) interactions,
third order interactions (g3g3g), fourth order, and so on.23–28

The observation of global epistasis in genetic systems has re-

vealed that epistasis can be instead partitioned into a global

component, described by a linear regression between the fitness

effect of a mutation and the fitness of the genetic background,

and an idiosyncratic component described by the residuals of

this fit. Building on recent analogies between genetic and func-

tional ecological interactions,46,47,49 here we have demonstrated

that the latter can be partitioned in the same manner, as the sum

of a global s3C interaction described by the FEEs, and an idio-

syncratic component captured by the residuals. Furthermore,

we have shown that the emergence of these global s3C interac-

tions can be explained in terms of specific species-by-species

interactions, expanding on recent theoretical results from the

field of quantitative genetics.38,39

Finally, we have shown that even a very simple statistical

approach, based on using FEEs to predict community function

out of sample, can predict ecological function with high preci-

sion. This observation paves the way for the development of

more advanced methods that leverage FEEs to predict and opti-

mize community-level functions (e.g., based on current method-

ologies that aim to predict organism-level phenotypes from

genotypes41–45).

Limitations of the study
Below, we highlight some of the limitations of our results,

together with potential avenues for further investigation.

Temporal variation of community composition and

function

The intrinsic ecological dynamics of a community can be gener-

ally expected to change its composition and function over time,

including the possibility of one or more species being competi-

tively excluded from a consortium63 (but note that even transient

species that eventually go extinct can induce long-lasting effects

on community-level properties64). The magnitude and sign of

species interactions may also be sensitive to temporal varia-

tion.65 Thus, the FEE for any given species may be expected to

change depending on the time point chosen to harvest the func-

tion of interest. Perhaps a reasonable expectation is that species

that are often competitively excluded will tend to exhibit near-

zero functional effects across backgrounds if the function is har-

vested many generations after inoculation. Both in our own

experiments and in the datasets we re-analyzed, community

functions were quantified after a single batch incubation. This

type of scenario is common in biotechnological applications:

food fermentation or biofuel production typically occurs in

closed bioreactors over a predetermined time period, much

like crop fields are generally harvested once plants reach

maturity. In other cases, one might want to engineer ecological

communities to be propagated in time, subject to environmental

variation or the influx of invader species. It is unclear whether

adding a new species to such communities (as opposed to

simultaneously co-inoculating the new species together with

the other members of its ecological background) may affect their

ecological functions in a predictable manner.

Effect of inoculum size

In our analyses, we have assessed the effects of including a

given species in a community at a fixed density. It is reasonable
Cell 187, 3108–3119, June 6, 2024 3115
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to expect that the same species, inoculated at different starting

population sizes, will have different effects on community

function. Perhaps a reasonable expectation is that a particular

species, when inoculated at very low initial density, will have a

minor effect on the function of the consortium when grown

over a single batch period, leading to a FEE with a slope and

intercept of zero. By contrast, if the same species is inoculated

at an initial density that is much higher than those of the other

members of the consortium, the consortium may approximate

the behavior of a monoculture of the new species, which would

then exhibit a FEE slope close to � 1. Additional theoretical and

empirical work will be needed to assess how inoculum size may

affect the FEE of a given species.

Complexity of the target ecological function

Here we have studied qualitatively simple community functions,

which can be carried out to some degree by individual commu-

nity members in isolation. Many applications may require the

optimization of more complex functions (e.g., the simultaneous

secretion of two or more metabolites or the removal of multiple

environmental pollutants).

Effect of interspecies interactions

Our work indicates that the sign and magnitude of the interac-

tions between community members do not affect the predictive

power of FEEs, except when high-order interactions are strong

and widespread (Figure S21; Methods S1). Recent work has

suggested that high-order interactions may be relatively sparse

in microbial communities,14,66 but the generality of this observa-

tion remains an open question.

Effect of environmental variation

Interactions between species are known to be affected by envi-

ronmental abiotic factors, such as temperature,67 pH,68 or

nutrient availability.69 Thus, we may expect the FEE of a species

to be sensitive to these and other environmental variables, much

like the global epistasis pattern of a mutation may change when

environmental conditions are altered.37,70,71 Further work is

needed to assess how species-by-environment interactions

may shape FEEs and our ability to predict ecological function

across environments.

Scalability of FEE-based prediction approaches

In this study, we have analyzed ecological communities made up

by relatively few (4–25)member species. Empirical datasetswhere

a quantitative function is mapped to the presence or absence of a

set of species are still scarce, possibly because the bottom-up as-

sembly of large collections of microbial consortia remains a labor-

intensive process. Future work will need to explore whether FEEs

may be characterized and ultimately leveraged to predict ecolog-

ical function in larger combinatorial spaces.

Alternative statistical methods for predicting ecological

function

To illustrate that FEEs could be leveraged to predictively connect

the composition and function of microbial consortia, we de-

ployed the simplest approach we could think of, which relies

on concatenating the FEEs of all member species (Figure 4).

There are many ways to improve upon this methodology, in

particular related to self-consistency (i.e., dealing with the lack

of commutativity in the order in which the FEEs are concate-

nated). The strategy we have followed here is merely a first

pass, but we hope that its success at predicting community
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functions out of sample (already surpassing state-of-the-art ap-

proaches in community ecology14) will stimulate the develop-

ment of more sophisticated statistical methodologies leveraging

global epistasis for learning ecological structure-function maps.

Several such strategies have been developed in genetics for

inferring genotype-phenotype maps from subsets of empirical

observations.41–45

Clearly, the limitations of our study highlight that additional

theoretical and empirical work will be needed to exploit the full

potential of global epistasis for engineering microbial consortia.

This is likely to require generating combinatorial datasets map-

ping community structure to function with larger sets of species

than the ones currently available. Yet, our observation that global

epistasis-like patterns emerge in ecological communities has

clear and immediate practical uses for community-level engi-

neering. Perhapsmost importantly, our results argue that predic-

tively linking biological structure to function can be attained

through a common, general quantitative formalism across scales

of organization—from molecules and organisms to ecological

communities.
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L., Isbell, F., Levine, J., Lüscher, A., et al. (2013). An improved model to

predict the effects of changing biodiversity levels on ecosystem function.

J. Ecol. 101, 344–355. https://doi.org/10.1111/1365-2745.12052.

20. Wagg, C., Bender, S.F., Widmer, F., and Van Der Heijden, M.G.A. (2014).

Soil biodiversity and soil community composition determine ecosystem

multifunctionality. Proc. Natl. Acad. Sci. USA 111, 5266–5270. https://

doi.org/10.1073/pnas.1320054111.

21. Midgley, G.F. (2012). Ecology. Biodiversity and ecosystem function. Sci-

ence 335, 174–175. https://doi.org/10.1126/science.1217245.

22. Bank, C. (2022). Epistasis and adaptation on fitness landscapes. Annu.

Rev. Ecol. Evol. Syst. 53, 457–479. https://doi.org/10.1146/annurev-

ecolsys-102320-112153.

23. Taylor, M.B., and Ehrenreich, I.M. (2015). Higher-order genetic interac-

tions and their contribution to complex traits. Trends Genet. 31, 34–40.

https://doi.org/10.1016/j.tig.2014.09.001.

24. Sailer, Z.R., and Harms, M.J. (2017). Detecting high-order epistasis in

nonlinear genotype-phenotype maps. Genetics 205, 1079–1088. https://

doi.org/10.1534/genetics.116.195214.

25. Sailer, Z.R., and Harms, M.J. (2017). High-order epistasis shapes evolu-

tionary trajectories. PLoS Comput. Biol. 13, e1005541. https://doi.org/

10.1371/journal.pcbi.1005541.

26. Weinreich, D.M., Lan, Y., Jaffe, J., and Heckendorn, R.B. (2018). The influ-

ence of higher-order epistasis on biological fitness landscape topography.

J. Stat. Phys. 172, 208–225. https://doi.org/10.1007/s10955-018-1975-3.

27. Bank, C., Matuszewski, S., Hietpas, R.T., and Jensen, J.D. (2016). On the

(un)predictability of a large intragenic fitness landscape. Proc. Natl. Acad.

Sci. USA 113, 14085–14090. https://doi.org/10.1073/pnas.1612676113.

28. Yang, G., Anderson, D.W., Baier, F., Dohmen, E., Hong, N., Carr, P.D., Ka-

merlin, S.C.L., Jackson, C.J., Bornberg-Bauer, E., and Tokuriki, N. (2019).

Higher-order epistasis shapes the fitness landscape of a xenobioticde-

grading enzyme. Nat. Chem. Biol. 15, 1120–1128. https://doi.org/10.

1038/s41589-019-0386-3.

29. MacLean, R.C., Perron, G.G., and Gardner, A. (2010). Diminishing returns

from beneficial mutations and pervasive epistasis shape the fitness land-

scape for rifampicin resistance in Pseudomonas aeruginosa. Genetics

186, 1345–1354. https://doi.org/10.1534/genetics.110.123083.

30. Chou, H.H., Chiu, H.C., Delaney, N.F., Segrè, D., and Marx, C.J. (2011).
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Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Alvaro Sanchez
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Materials availability
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Data and code availability
All original data and code is publicly available via the GitHub repository: https://github.com/jdiazc9/eco_global_epist. Any additional

information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Bacterial species isolation from environmental samples
Bacterial isolates were obtained from the communities described in Diaz-Colunga et al.72 In short, environmental samples (soil,

leaves...) were collected from different geographical locations and used to inoculate eight identical synthetic habitats containing

500 mL of minimal medium with citrate as the only supplied carbon source. Communities were stabilized by serial passaging for 7

cycles of 48 h growth and 1:125 dilution such that species unable to grow in these conditions were filtered out. Communities
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were then diluted to 10�6 and streaked out on chromogenic agar plates (CHROMagar Mastitis GN). Eight individual colonies were

selected such that they were distinguishable from one another in their color and morphology. Isolates were streaked out two

more times to filter out potential contamination from different species. Isolates were identified at the genus level via Sanger

sequencing of the 16S rRNA gene (Table S2) — all 16S sequences were less than 97% similar.

METHOD DETAILS

Combinatorial community assembly
Experiments were done using M9 minimal medium containing 4.65 g/L Na2HPO4 3 2H2O (Sigma-Aldrich), 3 g/L KH2PO4 (Fisher

Scientific), 1 g/L NH4Cl (Fisher Scientific), 0.5 g/L NaCl (Fisher Scientific) supplemented with 2.5 g/L sodium citrate (Sigma-

Aldrich), 0.1mMCaCl2 (Sigma-Aldrich), 2mMMgSO4 (Fisher Scientific) and 1% tracemineral supplement (v/v; ATCC; stock contains

0.5 g/L Ethylenediaminetetraacetic acid [EDTA], 3 g/L MgSO4 3 7H2O, 0.5 g/L MnSO4 3 H2O, 1 g/L NaCl, 0.1 g/L FeSO4 3 7H2O,

0.1 g/L Co[NO3]2 3 6H2O, 0.1 g/L CaCl2 [anhydrous], 0.1 g/L ZnSO4 3 7H2O, 0.01 g/L CuSO4 3 5H2O, 0.01 g/L AlK[SO4]2 [anhy-

drous], 0.01 g/L H3BO3, 0.01 g/L Na2MoO4 3 2H2O, 0.001 g/L Na2SeO3 [anhydrous], 0.01 g/L Na2WO4 3 2H2O and 0.02 g/L

NiCl2 3 6H2O). Starter cultures were prepared by resuspending a single colony of each isolate into individual 50 mL conical tubes

(Falcon) containing 20 mL of medium, and allowing them to grow for 48 h at 30�C. Cultures were then fully homogenized, and com-

munities were assembled in 96-deep well U-bottom plates (Greiner Bio-One) filled with 500 mL of medium per well by inoculating 1 mL

of each starter monoculture into the corresponding wells — further details can be found in the Methods S1. Communities were then

incubated still at 30�C for 48 h. The experiment was independently replicated three times, by the same researcher on different days.

Quantification of pyoverdines concentration
After incubation, cultures were fully homogenized and growth was tracked bymeasuring the optical density (OD) at 620 nm of 100 mL

of culture in an AccuSkan FC plate reader (Fisher Scientific). Cells were then pelleted by centrifuging the plates at 3000 rpm for

25 min. Supernatants were collected and filtered through multi-well 0.2 mm filters (Pall Corporation) by centrifuging at 3500 rpm

for 5 min. The OD at 405 nm of 100 mL of the supernatants was quantified in the same plate reader. OD values were converted to

units of concentration using a value of 1.9 3 104 M�1cm�1 for the extinction coefficient of pyoverdines at 405 nm.73

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification of functional effective interactions
For each dataset we analyzed, the effective interaction between species j and j (~eij) was quantified as explained in Figures 3A–3C and

in the Methods S1, that is:

~eijhCeijD
CDFjDBðiÞP
ksiCDFkD

2

BðiÞ
(Equation 3)

The term eij represents the deviation between the function of a community that contains both species i and j with respect to the

additive expectation that they do not interact (Figure 3B), that is, that the difference in function between communities s and s+

i+ j is the sum of the separate contributions of species i and j. Mathematically, this means:

eij = Fðs+i+jÞ|fflfflfflfflffl{zfflfflfflfflffl}
function of community

containing both
species i and j

� ½FðsÞ+DFiðsÞ+DFjðsÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
additive

expectation

(Equation 4)
eij = Fðs + i + jÞ �

2
64FðsÞ + ½Fðs+iÞ � FðsÞ�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

DFiðsÞ

+ ½Fðs+jÞ � FðsÞ�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
DFjðsÞ

3
75 (Equation 5)
eij = Fðs + i + jÞ � Fðs + iÞ � Fðs + jÞ+FðsÞ (Equation 6)

To quantify the average CeijD as it appears in Equation 3, we applied Equation 6 to every possible background community s not con-

taining species i nor j, and took the average over all eij. Note that not every dataset we analyzed is combinatorially complete, so in

many instances some of the terms in Equation 6 might be unknown. In those cases, we computed the average over only the known

values of eij.

The terms DFj in Equation 3 represent the functional effect of species j as defined in the main text, calculated simply as Fðs + jÞ �
FðsÞ. In Equation 3, these values appear averaged across those background communities that do not contain species i (nor,
Cell 187, 3108–3119.e1–e3, June 6, 2024 e2
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naturally, species j)— this set of backgrounds is denoted asBðiÞ. Like before, whenever therewere unknown terms due to incomplete

data we averaged across the known values only.

Iterative concatenation of FEEs to predict community functions
We call s0 one of the empirically tested consortia (henceforth an in-sample community). Onemay then want to predict the function of

an out-of-sample consortium (which we denote as s1). In the example shown in Figure 4A, the out-of-sample consortium contains

three more species (i, j, and k) than the in-sample one. Including the first species i in the starting consortium s0 will have an effect in

function that we can estimate from the linear FEE for species i: DFiðs0Þ = ai +biFðs0Þ. The function of the consortium resulting from

the addition of species i to s0 would then simply be Fðs0 + iÞ = Fðs0Þ+DFiðs0Þ = ai + ð1 +biÞFðs0Þ. We can next estimate the func-

tional effect of including species j on the ‘‘updated’’ background consortium s0 + i, and finally the functional effect of species k on s0 +

i+ j (Figure 4A):

Fðs1Þ = Fðs0Þ|fflffl{zfflffl}
starting in-sample
community function

+ DFiðs0Þ|fflfflfflffl{zfflfflfflffl}
functional effect of

species i
on community s0

+ DFjðs0+iÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
functional effect of

species j
on community s0+i

+ DFkðs0+i+jÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
functional effect of

species k
on community s0+i+j

(Equation 7)

This iterative procedure ultimately gives a prediction for the out-of-sample community function Fðs1Þ. By estimating the residuals

of the FEEs, we can refine predictions and ensure that the order of species addition (e.g., i/j/k, or k/i/j, or j/i/k, etc.) does

not affect the predicted value — this is further discussed in the Methods S1.

Data selection
The datasets re-analyzed in this work have been previously used in studies aiming to connect the species-level composition with the

function of ecological communities.14,74 We re-analyzed all datasets we could find which were peer-reviewed and publicly available,

where a quantitative function had been mapped to the presence or absence of each species, where four or more species were

considered, and where data were sufficiently complete so that each FEE could be fit to at least five data points.

Data analysis
All analyses were performed using R version 4.3.1.75
e3 Cell 187, 3108–3119.e1–e3, June 6, 2024
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Figure S1. Assembly of microbial consortia in synthetic laboratory conditions, related to Figure 1

(A) We isolated eight bacterial species from environmental samples and identified them at the genus level (STAR Methods). Five of them exhibited secretion of

pyoverdines when grown in monoculture in minimal M9 citrate medium (STAR Methods).

(B) We assembled 164 consortia by inoculating combinations of these eight species into minimal M9 citrate medium and incubated them for 48 h. We then

collected the spent media and quantified the concentration of pyoverdines in them (STAR Methods).

(C) We found variable levels of pyoverdines secretion, with the concentrations in the supernatants ranging from 0 to roughly 70 mM. About 20% of the as-

semblages exhibited higher function than the consortium formed by all five pyoverdines secretors.
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Figure S2. FEE slopes and intercepts vary across species, related to Figure 1

Each species in our pyoverdine experiment exhibits a different FEE, characterized by its slope and intercept. Error bars represent standard deviations of the linear

fit coefficients in Figure 1F of the main text.
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Figure S3. FEEs explain a high fraction of the variation in the functional effect of a species, related to Figures 1 and 2

We fit a linear functional effect equation (FEE) to every species in each of the datasets described in the main text. The quality of the fits is here quantified as 1 �
s2fit=s

2, where s2 is the variance of the distribution of functional effects across all species in the dataset, and s2fit is the variance of the residuals of the fit for a given

species. This is a metric of the degree to which the functional effect of a species is predictable from its FEE.
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Figure S4. Branching in the functional effect equation of a species, related to Figure 2

The effect on the amylolytic activity47 of a community induced byP. polymyxa follows a different scaling with the function of the ecological background depending

on whether B. thuringiensis is present (filled dots) or absent (hollow dots) in the background.
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Figure S5. Ecological function with and without a focal species across datasets, related to Figures 1 and 2

Representing the functional effect DF versus the background function FðsÞ (as we do in Figures 1F and 2 in the main text) may lead to biased estimates of the

degree of global epistasis since DF explicitly depends on FðsÞ: DF = Fðs + iÞ � FðsÞ.55 Here we represent the function of the background consortium, FðsÞ,

(legend continued on next page)
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directly against the function of the consortium where the focal species i has been added, Fðs + iÞ, for every focal species across datasets. Colored lines

correspond to total least squares regressions to the data (blue: slope greater than 1; red: slope lower than 1). Gray lines indicate y = x. Data sources:

(A) This study. Dots and error bars represent means and standard deviations across three biological replicates.

(B) Kuebbing et al.53

(C) Ghedini et al.54

(D) Langenheder et al.52

(E) Sanchez-Gorostiaga et al.47

(F) Clark et al.13
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Figure S6. Slopes of Fðs + iÞ versus FðsÞ regressions across datasets, related to Figures 1 and 2

We represent the slope of the total least squares (TLS) regressions to Fðs + iÞ versus FðsÞ (shown in Figure S5) for all species across datasets. Gray horizontal lines

correspond to a slope of 1. Recent work in genetics37 has quantified the degree of global epistasis by studying whether the slopes of such TLS regressions differ

from 1.
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Figure S7. Comparison between null models and empirical FEE for Pseudomonas sp. 02, related to Figures 1 and 2

The empirical FEE observed for Pseudomonas sp. 02 is not compatible with a null model.

(A) Empirical FEE for Pseudomonas sp. 02 (see Figure 1F in main text).

(B) We consider a family of null models where the function F of a consortium is given by a composition of an additive contribution plus random noise (seeMethods

S1 for details). The parameter a controls the amount of noise (a = 1 corresponds to the strictly additive case, a = 0 corresponds to the case where F is dominated

by noise and the mapping between community composition and function becomes random). Different FEEs emerge within this family of null models.

(C) We quantified the slope, intercept, and R2 of the FEEs that emerged in 1,000 null models (only 100 are represented here for visual clarity) with different values

for a (colored dots). We compare these quantities with those corresponding to the empirical FEE for Pseudomonas sp. 02 (black square).

(D) Same as previous panel, but here we represent the projections on the x-y, x-z, and y-z planes.
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Figure S8. Empirically observed FEEs are often not compatible with a null model, related to Figures 1 and 2

We repeated the analysis shown in Figure S7D for every species and dataset. Here we plot the projections in the 3-dimensional space defined by the FEE slope,

intercept, and R2, of the FEEs corresponding to the null models (colored dots) and empirical FEEs (black squares). Data sources:

(A) This study.

(legend continued on next page)
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(B) Kuebbing et al.53

(C) Ghedini et al.54

(D) Langenheder et al.52

(E) Sanchez-Gorostiaga et al.47

(F) Clark et al.13
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Figure S9. FEE slopes depending on compatibility with a null model, related to Figures 1 and 2

FEEs compatible with the null model (left) tend to have smaller slopes than those not compatible with the null model (right). See Methods S1 for details on the

formulation of the null model.

ll
OPEN ACCESSTheory



0

50

Enterobacter sp.

Klebsiella sp.

Pseudomonas sp. 01

Pseudomonas sp. 02

Pseudomonas sp. 03

Pseudomonas sp. 04

Pseudomonas sp. 05

Raoultella sp.Fu
nc

tio
na

l e
ffe

ct
, ∆

F 
[a

.u
.]

0

5

10

A. m
illefolium

L. capitata

L. cuneata

L. vulgare

P. pratense

P. virginianum

P. vulgaris

S. nutansFu
nc

tio
na

l e
ffe

ct
, ∆

F 
[a

.u
.]

0

2

A. carterae

D. te
rtio

lecta

Synechococcus sp.
T. lu

tea

Tetraselmis sp.

−0.5

0.0

0.5

1.0

Bacteroidetes sp.

Burkholderia sp.

Flavobacterium sp.

Rhodoferax sp.

S. ya
noikuyae

Sphingoterrabacterium sp.

0

20

B. cereus

B. m
egaterium

B. m
ojavensis

B. subtilis

B. th
uringiensis

P. polymyxa

0

50

A. caccae

B. adolescentis

B. caccae

B. cellulosilyticus

B. fra
gilis

B. hydrogenotrophica

B. lo
ngum

B. ovatus

B. pseudocatenulatum

B. th
etaiotaomicron

B. uniformis

B. vulgatus

C. aerofaciens

C. asparagiforme

C. comes

C. hiranonis

D. fo
rmicigenerans

D. lo
ngicatena

D. piger
E. le

nta

E. re
ctale

F. p
rausnitzii

P. copri

P. jo
hnsonii

R. in
testinalisFu

nc
tio

na
l e

ffe
ct

, ∆
F 

[a
.u

.]
Fu

nc
tio

na
l e

ffe
ct

, ∆
F 

[a
.u

.]
Fu

nc
tio

na
l e

ffe
ct

, ∆
F 

[a
.u

.]
Fu

nc
tio

na
l e

ffe
ct

, ∆
F 

[a
.u

.]

Bacterial
pyoverdines secretion

Bacterial
butyrate secretion

Bacterial
starch hydrolysis

Bacterial
xylose oxidation

Phytoplankton biomass

Above-ground
plant biomass

A

B

C

D

E

F

Figure S10. Distributions of species’ functional effects, related to Figure 3

We quantify the functional effect of species i as DFiðsÞ = Fðs + iÞ � FðsÞ, where FðsÞ denotes the function of a community s which does not contain species i,

and Fðs + iÞ denotes the function when species i is included in the consortium. Here we represent the distributions of functional effects for all species across the

empirical datasets we examined. Data sources:

(legend continued on next page)
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(A) This study.

(B) Kuebbing et al.53

(C) Ghedini et al.54

(D) Langenheder et al.52

(E) Sanchez-Gorostiaga et al.47

(F) Clark et al.13
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Figure S11. Distributions of epistatic effects between species, related to Figure 3

We quantify the interaction eij between species I and j as the deviation in function between a community containing both species with respect to the sum of their

respective additive functional effects; that is: eijðsÞ = Fðs + i + jÞ � Fðs + iÞ � Fðs + jÞ+FðsÞ, where s is an arbitrary community not containing i nor j. Here we

(legend continued on next page)
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represent the distributions of interactions (i.e., the distributions of epistatic effects) between all pairs of species across the empirical datasets we examined (note

that empty panels correspond to missing data since many of the datasets are combinatorially incomplete). Data sources:

(A) This study.

(B) Kuebbing et al.53

(C) Ghedini et al.54

(D) Langenheder et al.52

(E) Sanchez-Gorostiaga et al.47

(F) Clark et al.13
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Figure S12. Effective interactions estimate FEE slopes across datasets, related to Figure 3

We define the effective interaction of species i with species j as ~eijhCeijDCDFjD =
P

ksiCDFk D
2
as indicated in the main text. The FEE slope for species i can be

estimated as the sum of its effective interactions with all other potential community members: biz
P

jsi~eij . Here we compare the slopes estimated using this

approximation with the empirically fit FEE slopes for each species, showing each dataset separately (bottom panels). The reported R2 correspond to the y = x

model, that is, R2 = 1 � P
nðyn � xnÞ2=

P
nðyn � CyDÞ2.
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Figure S13. Effective interactions between all pairs of species, related to Figure 3

We define the effective interaction ~eij of species i with species j as ~eijhCeijDCDFjD =
P

ksiCDFk D
2
, where the averages are taken across all possible ecological

backgrounds where both species i and j are not present (seemain text and STARMethods). Herewe represent themagnitude of~eij for every pair of species i (focal)

and j across all datasets we examined. Gray indicates that the dataset was not sufficiently complete to quantify the effective interaction. Data sources:

(A) This study.

(B) Kuebbing et al.53

(C) Ghedini et al.54

(D) Langenheder et al.52

(E) Sanchez-Gorostiaga et al.47

(F) Clark et al.13
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Figure S14. Effective interactions explain the branching observed in the FEE for P. polymyxa, related to Figure 3
(A) When we fit a single FEE for all backgrounds, we observe a negative slope. This can be explained by a strong negative effective interaction of P. polymyxawith

B. thuringiensis.

(B and C) When backgrounds are split by the presence/absence of B. thuringiensis, the effective interactions of P. polymyxa with the remaining species are

positive, which gives rise to the positive FEE slopes in each branch. Dashed lines represent FEEs estimated using Equation 2 and Equation S4 (see main text and

Methods S1), solid lines are empirical linear fits to the data.
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Figure S15. Effective interactions estimated from one- and two-species communities versus averaging across ecological backgrounds,

related to Figure 3

We define the effective interaction of species i with species j as ~eijhCeijDCDFjD =
P

ksiCDFk D
2
as indicated in the main text. We alternatively define 4ijh

eijð0ÞFjð0Þ =
P

ksiF
2
k ð0Þ, whereDFjð0Þ denotes the function of themonoculture of species j and eijð0Þ denotes the deviation between the co-culture of species i and j

(in the absence of additional community members) with respect to the sum of the monoculture functions (see Methods S1). The 4ij are estimated just from the

functions of the monocultures and two-species communities, whereas ~eij are estimated by averaging interactions and functional effects across ecological

backgrounds. In this figure, we compare the degree to which 4ij matches~eij for every interaction where both could be quantified across datasets. The reported R2

correspond to the y = xmodel, that is,R2 = 1 � P
nðyn � xnÞ2=

P
nðyn � CyDÞ2. A highR2 indicates small higher-order effects (as is the case, for instance, for the

Kuebbing et al. dataset for plant biomass53).
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Figure S16. Estimating FEE slopes from one- and two-species communities, related to Figure 3

We define 4ij as 4ijheijð0ÞFjð0Þ =
P

ksiF
2
k ð0Þ, where Fjð0Þ denotes the function of the monoculture of species j and eijð0Þ denotes the deviation between the co-

culture of species i and j (in the absence of additional community members) with respect to the sum of the monoculture functions (see Methods S1). Here we

quantify the extent to which FEE slopes (bi for species i) can be estimated as biz
P

jsi4ij . The reported R2 correspond to the y = x model, that is, R2 = 1 �P
nðyn � xnÞ2=

P
nðyn � CyDÞ2. A good agreement between estimated and empirically fit FEE slopes indicates a minor role of higher-order interactions or,

alternatively, that higher-order effects ‘‘cancel out’’ when the sum of all 4ij is carried over all species j.
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Figure S17. Predicting community function across datasets, related to Figure 4

We evaluated the ability of our statistical method (Figure 4A, STARMethods) to predict community functions in all datasets (summarized in Table S1). For that, we

left 20% of the communities in the datasets out of the sample, we used the remaining 80% to fit FEEs, and we applied our method to predict the function of the

out-of-sample consortia. We quantified the accuracy of the method as the R2 between the predictions and the observations. We repeated the same process 500

times, each leaving a different subset of communities out of sample (randomly chosen). Main plots show an example of predicted against observed functions for

one of the runs. Insets show histograms of the R2 between predictions and observations across the 500 runs.

(A) Data from Kuebbing et al.53 Hollow/filled dots and bars correspond to native/invasive plants (note that this dataset is divided into two subsets: one of four

invasive plants and another of four native plants, see Table S1).

(B) Data from Ghedini et al.54

(C) Data from Langenheder et al.52

(D) Data from Sanchez-Gorostiaga et al.47

(E) Data from Clark et al.13
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Figure S18. Predictions rely on the ability to accurately characterize FEEs, related to Figure 4

We considered all the communities in our pyoverdine experiment. We left a subset of the communities out of the sample; the remaining (in-sample) communities

were used to fit FEEs, and our predictive statistical method (STAR Methods, Figure 4A) was used to predict the function of the out-of-sample communities. The

quality of the predictions was quantified as the R2 between the predicted and observed functions of the out-of-sample communities (black line). We also

evaluated the empirically measured function of the assemblage predicted to be optimal (here denoted as sopt), that is, to have the highest function out of those

that we tested empirically (note that there are only 225 communities tested in our dataset—164 in our first experiment and 61 additional ones in our second

experiment—out of 255 total possible assemblages). We compared the measured function of this assemblage, FðsoptÞ, with the true functional maximum, Fmax

(red line).

(A) The prediction method declines in accuracy as fewer communities are left in-sample, however, even for small sample sizes the signal remains strong and the

predicted optimal community is either the true functional maximum or functionally close to it. Dots represent means, and error bars represent 95% confidence

intervals across 500 runs.

(B) For the smallest sample sizes, the FEEs had to be estimated from a very small number of observations (N � 4 data points).

(C) For larger sample sizes, FEEs were estimated from a high number of observations.
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Figure S19. Prediction accuracy across datasets and sample sizes, related to Figure 4

We repeated the analysis in Figure S18 for the three other datasets with the largest combinatorial size. We represent the number of data points used to fit each

FEE, averaged across all species, against the R2 between the predicted and measured functions of the out-of-sample communities (black), and against the

function of the predicted functional maximum (FðsoptÞ) relative to the true maximum function (Fmax) across all measured assemblages (red).

(A) Data from Langenheder et al.52

(B) Data from Sanchez-Gorostiaga et al.47

(C) Data from Clark et al.13
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Figure S20. Predictions of community function based on FEE concatenation are more accurate than alternative methods, related to Figure 4

We performed leave-one-out cross-validations across various datasets to compare the performance of our predictive method with respect to first- and second-

order regression models.

(legend continued on next page)
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(A) Each column of the grid corresponds to a different dataset, and each row corresponds to a different method for predicting out-of-sample community

functions. Note that in the Kuebbing et al. dataset53 there are two subsets of species (a set of 4 native plants and another set of 4 invasive plants, see Table S1),

which were treated as separate datasets despite being represented together (with hollow/filled dots and bars, respectively).

(B) The performance of each method was quantified as the R2 between the predicted and observed values for the functions. Our method consistently performed

better than, or as good as, first- and second-order regressions.

(C and D) Absolute and relative prediction error of each model (blue: first- and second-order regression, red: FEE concatenation) within the set of communities

with the highest or lowest functions (top and bottom 10%).
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Figure S21. Performance of FEE-based prediction method on simulated data, related to Figure 4

We simulated a set of mappings between community composition and function where ecological interactions were of variable sign, magnitude, and order.

(A) Formulation of the model from which community structure-function mappings were simulated.

(B) Modulating the magnitude of the terms HðsÞ allows us to vary the fraction of variance across community functions, which can be attributed to higher-order

interactions (HOIs).

(C) We quantify the performance of our FEE-based method as the R2 between the true and predicted functional values (via leave-one-out cross-validation).

(D)We show the estimated percentage of functional variance due to higher-order interactions in the empirical datasetswe examined in this study. This percentage

was computed by fitting a second-order regression model to each full dataset and quantifying the fraction of variance unexplained by the model.

(E) Example of FEEs emerging in a simulated dataset where we consider a single, strong high-order interaction between species 1, 2, and 3. Note that FEEs can

still predict the functional effect of each species, but the FEE for species 1, 2, and 3 appears ‘‘split’’ into two branches—each branch is defined by the presence

(hollow dots) or absence (filled dots) of the three species involved in the HOI.
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Figure S22. Optimal communities across datasets, related to Figures 1 and 2

For each dataset, we represent the functions of the monocultures (black dots) with respect to the maximum function observed across all consortia (Fmax).

Whenever the functional maximum corresponds to a multi-species assemblage, it is also represented in red. Note that not all datasets are combinatorially

complete, so the possibility that a multi-species community is the true functional maximum (which was not empirically tested) cannot be ruled out even if the one

represented here is a monoculture.
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