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Abstract
Epidemic forecasts are only as good as the accuracy of epidemic measurements. Is epidemic data, particularly COVID-19 epidemic data, 
clean, and devoid of noise? The complexity and variability inherent in data collection and reporting suggest otherwise. While we cannot 
evaluate the integrity of the COVID-19 epidemic data in a holistic fashion, we can assess the data for the presence of reporting delays. In 
our work, through the analysis of the first COVID-19 wave, we find substantial reporting delays in the published epidemic data. Motivated 
by the desire to enhance epidemic forecasts, we develop a statistical framework to detect, uncover, and remove reporting delays in the 
infectious, recovered, and deceased epidemic time series. Using our framework, we expose and analyze reporting delays in eight regions 
significantly affected by the first COVID-19 wave. Further, we demonstrate that removing reporting delays from epidemic data by using 
our statistical framework may decrease the error in epidemic forecasts. While our statistical framework can be used in combination with 
any epidemic forecast method that intakes infectious, recovered, and deceased data, to make a basic assessment, we employed the 
classical SIRD epidemic model. Our results indicate that the removal of reporting delays from the epidemic data may decrease the 
forecast error by up to 50%. We anticipate that our framework will be indispensable in the analysis of novel COVID-19 strains and 
other existing or novel infectious diseases.

Keywords: COVID-19 pandemic, reporting delays, epidemic forecasts, parametric optimization, SIRD compartmental model, 
time series analysis

Significance Statement

Accurate forecasts constitute the first step toward controlling an epidemic outbreak. However, the accuracy of such forecasts strongly 
depends on input data. Here, we develop a statistical framework to identify and remove reporting delays from the epidemic data. 
We use this framework to de-noise epidemic data of the first COVID-19 wave in eight regions worldwide. We demonstrate that the 
removal of reporting delays may increase the accuracy of epidemic forecasts by up to 50%. We anticipate that our framework will 
be invaluable in the analysis and forecasts of existing and future epidemics.
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Introduction
The COVID-19 pandemic has been crippling the world’s health, 
economies, and quality of life for over 3 years. We are gradually 
understanding that COVID-19 is here to stay. Fast mutation rates 
of the virus and its overwhelming spreading capability make 
it extremely hard, if not impossible, to eradicate (1). COVID-19 is 
not the first and almost surely not the last pandemic to hit hu
manity. Therefore, in order to better prepare and withstand other 
contagious diseases in the future, we need to extract as many les
sons as possible from the COVID-19 pandemic.

Public awareness is, arguably, the first line of defense against 
any infectious disease. Efficient collection of epidemic data and 

accurate epidemic forecasts allow for timely containment of the 

spread or flattening of the curve to win time for the development 

of pharmaceutical treatment methods. Due to the success of net

work epidemiology and the broad availability of data, significant 

advances in epidemic modeling and forecast methods (2–6) have 

been achieved. However, the accuracy of epidemic forecasts strong

ly depends on the accuracy and timeliness of the input data.
Are epidemic data—especially in the short-time period after 

the onset of the epidemic—devoid of inaccuracies? Multiple sour

ces suggest the negative answer. Indeed, public health indicators 

are known to be biased, because they are sensitive to fluctuations 

in supply and demand for diagnostic testing (7–9). Likewise, in

equalities in geographic accessibility have been documented to 

adversely affect the coverage and timelines of health indicators 

(10, 11). It is now well understood that ignoring epidemic data in

accuracies may lead to delays in deploying intervention policies 

resulting in dire consequences of an epidemic on the population’s 

health (12, 13).
One prominent challenge is the existence of temporal delays in 

data reporting (14, 15), defined as the time difference between the 
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event when the person was affected by the virus and the time this 
event is accounted for. The reporting delays may occur due to 
many reasons, including patient hesitancy, medical testing de
lays, and reporting delays by public health authorities (16, 17). 
Consequently, reporting delays may vary not only across different 
diseases but also across different regions of interest. The median 
diagnosis delay for malaria is, for instance, approximately 4 days 
(18). Similarly, the research on the Middle East respiratory syn
drome coronavirus (MERS-CoV) found a time difference between 
the symptom onset and confirmation of approximately four 
days (19). Hepatitis A, measles, and mumps data are usually re
ported after eight days (16). Reporting delays for some diseases 
are significantly longer: Hepatitis B, Shigellosis, and Salmonella 
can take on average 2–3 weeks (16). Recent COVID-19 studies re
veal significant reporting delays of infections in China (20–25), 
Italy (26), Germany (27, 28), Singapore (29), the United States of 
America (30), and the United Kingdom (14).

While there is a plethora of scientific works aimed at the recon
struction of network data, including the reconstruction of net
work data for epidemic forecasts (31–33), we lack inference 
methods to assess and improve the accuracy of epidemic data it
self. Instead, the prevalent epidemic forecast philosophy is fo
cused either on data fusion (34–36)—or machine learning 
methods (37–39).

In our work, we develop a statistical framework to remove re
porting delays. We demonstrate that the removal of reporting de
lays may significantly improve the accuracy of epidemic 
forecasts. Our statistical framework can be used in combination 
with any epidemic forecast method that takes infectious, recov
ered, and deceased epidemic data as input. Our work is organized 
as follows. We first present the evidence for the presence of re
porting delays in the epidemic data extracted from the first 
COVID-19 wave. We then proceed to develop a statistical frame
work to remove reporting delays. After validating our framework 
on synthetic data, we move on to remove and analyze reporting 
delays in eight hotspots of the COVID-19 pandemic. We conclude 
our work with a discussion of the impact of delay removal on the 
accuracy of epidemic forecasts.

Results
Notation
Before presenting our findings, we introduce our notation for the 
epidemic data. Throughout the text, we operate with the infec
tious I, recovered R, and deceased D data. Each dataset is a time 
series of values, each corresponding to a specific observation 
time. For brevity, we refer to the triplet of infectious, recovered, 
and deceased data as Y = {I, R, D}. All values contained in the Y 
time series are fractions of individuals found in the corresponding 
state on a specific day. For instance, I[k] corresponds to the frac
tion of individuals who are infectious on day k. Since COVID-19 re
ported data often is advertised in the form of changes in the 
number of epidemic cases, we find it convenient to introduce 
the daily changes in epidemic data as ΔY[k] for Y = {I, R, D}. 
Further, in this work, we operate with reported epidemic data Ỹ 
and inferred data Ŷ. Since reported and inferred data are expected 
to differ from the true data Y, we need to distinguish the three. We 
summarize our notation in Table 1.

Evidence for reporting delays in epidemiological 
data
We begin the exposition by considering daily reports on 
the fractions of infected ΔĨ, recovered ΔR̃, and deceased ΔD̃ 

individuals in Spain. We used the daily epidemic reports in 
Spain to construct the fraction of infected individuals as 
Ĩ[k] =

􏽐k−1
ℓ=0 (ΔĨ[ℓ] − ΔR̃[ℓ] − ΔD̃[ℓ]). While both the infected Ĩ and 

the deceased data D̃ indicate that the first COVID-19 wave in 
Spain peaked in April 2020, the exact timings of the two peaks 
are, nevertheless, different. As observed in Fig. 1a,  reported new 
deceased cases Δ􏽥D reached their peak on 2020 April 1st, while 
the highest fraction of infectious individuals Ĩ was observed 22 
days later on 2020 April 23. This observation is not specific to 
Spain: the peaks in the number of reported new deceased cases 
Δ􏽥D precede those of infectious cases by more than 1 week in 
most regions, Fig. S1. We make similar observations for 
COVID-19 daily recovery reports Δ􏽥R, which exhibit their peaks 
after those of the deceased cases Δ􏽥D, Figs. 1a and S1. 
Furthermore, when plotted as a function of daily deceased cases 
Δ􏽥D, infectious cases Ĩ and daily recovered cases Δ􏽥R form “loop” 
patterns, see Figs. 1b, c and S2.

The patterns observed in Figs. 1a–c, S1, and S2 may indicate the 
presence of reporting delays. Indeed, epidemic models view recov
eries and deaths of patients as stochastic processes with effective 
rates proportional to the number of infected individuals I, 
ΔR[k] ∝ γrI[k], ΔD[k] ∝ γdI[k]. Since the SARS-CoV-2 virus has hardly 
changed during the first wave of the pandemic, we expect that re
covery γr and death γd rates are approximately constant during 
this period (40–42). This observation suggests that changes in 
the fractions of recovered ΔR, and deceased ΔD data are propor
tional to the fraction of infectious individuals I and, therefore, 
reach maximum values at the same time step, contradicting 
Fig. 1a–c.

We hypothesize that the disagreement between Δ􏽥R, Δ􏽥D, and 􏽥I is 
due to reporting delays. If each Δ􏽥R, Δ􏽥D, and 􏽥I time series are re
ported with different delays, their peaks are expected to differ. 
Likewise, the loop patterns of Fig. 1b, c may also be the result of 
an effective time shift between two nonmonotonous time series.

To check if reporting delays may result in the observed 
patterns, we consider the compartmental Susceptible-Infectious- 
Recovered-Deceased (SIRD) epidemic model. Within the SIRD 
model, the population is split into four compartments: susceptible 
S, infectious I, recovered R, and deceased D. Compartment S de
notes the fraction of susceptible individuals, who can be infected 
by infectious individuals. Compartment I denotes the fraction of 
individuals, who have been infected but have not recovered or 
are deceased. Compartments R and D are respectively the frac
tions of individuals, who have recovered or are deceased. The 
SIRD model assumes that recovered individuals become immune 
and cannot be infected by the virus in the future. Further, the SIRD 
model assumes the uniform mixing of the Infectious and 
Susceptible sub-populations. As a result, the discrete-time transi
tions between the compartments are governed by first-order dif
ference time equations

I[k + 1] − I[k] = βI[k]S[k] − (γr + γd)I[k],

R[k + 1] − R[k] = γrI[k],

D[k + 1] − D[k] = γdI[k],

S[k] + I[k] + R[k] + D[k] = 1,

(1) 

Table 1. Naming convention for the epidemic data, Y = {I, R, D}.

Cumulative quantities Quantity increments

Y: fractions of cases ΔY: fractions of new cases
􏽥Y: fractions of reported cases Δ􏽥Y: fractions of reported new cases
Ŷ: fractions of predicted cases ΔŶ: fractions of predicted new cases
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where β, γr, and γd are the infection, the recovery, and the deceased 
probabilities, respectively. We used Eq. 1 to generate infectious 
I[k], recovered R[k], and deceased D[k] time series epidemic data, 
and then added synthetic delays to the time series data, see 
Fig. 1g–i and Supplementary Material B. Since reporting delays 
were manually added, we observe that ΔR[k + 1], ΔD[k + 1], and 
I[k] reach maxima at different time steps, Fig. 1g.

Upholding our hypothesis, we observe the formation of loop 
patterns in the Δ􏽥D[k + 1] vs. Ĩ[k] and Δ􏽥R[k + 1] vs. 􏽥D[k] in Fig. 1h, i, 
similar to those of Spain, Fig. 1b, c. The observed loop patterns 
are due to the effective horizontal shifts of the corresponding 
times series due to reporting delays. Indeed, let us split the obser
vation time window into three windows formed by the maxima of 
the Δ􏽥D[k + 1] and 􏽥I[k] curves, as shown in Fig. 1g. In window i, both 

􏽥I[k] and Δ􏽥D[k + 1] increase as a function of discrete time k. Since re
porting delays in the synthetic Δ􏽥D[k + 1] data are smaller than 
those in 􏽥I[k], this time window corresponds to the upper branch 
of the Δ􏽥D[k + 1] vs. 􏽥I[k] loop in Fig. 1h. In window ii, 􏽥I[k] increases 
while Δ􏽥D[k + 1] decreases. Thus, window ii corresponds to the 
top (decreasing) section of the Δ􏽥D[k + 1] vs. 􏽥I[k] loop, Fig. 1h. 
Finally, in window iii both Δ􏽥D[k + 1] and 􏽥I[k] decrease as a function 
of time step k resulting in the lowest section of the Δ􏽥D[k + 1] vs. 􏽥I[k] 
loop, Fig. 1h. Combined, all sections correspond to the loop pat
tern of Fig. 1h with points progressing in the clockwise direction. 
Similar considerations explain the counterclockwise loop pattern 
in the Δ􏽥R[k + 1] vs. D̃[k] scatter plot. The counterclockwise progres
sion of points in this loop pattern is due to Δ􏽥R[k] lagging behind the 
ΔD̃[k] time series, Fig. 1i.

a b d e

fc

g h j k

li

Fig. 1. Evidence for reporting delays in COVID-19 epidemic data. a) Reported infectious ̃I[k], recovered Δ􏽥R[k + 1] and deceased Δ􏽥D[k + 1] cases for the first 
COVID-19 wave in Spain. The k = 0 day corresponds to 2020 February 25. Note the difference in peaks of the reported data. b) and c) display pairwise 
color-coded scatter plots of Δ􏽥D[k + 1] vs. Ĩ[k], and Δ􏽥R[k] vs. Δ􏽥D[k] for Spain. Colors, from light to dark green, reflect different days in the data ranging, 
respectively, from k = 0 to k = 80. The scatter plots in b) and c) form, respectively, clockwise and counterclockwise loop patterns. d)–f) display the epidemic 
data in Spain after the removal of reporting delays. g) Synthetic epidemic data generated with the SIRD model by solving Eq. 1 with parameters β = 0.5, 
γr = 0.2, γd = 0.05, R[0] = D[0] = 0, I[0] = 10−6, and S[0] = 1 − I[0]. Synthetic reporting delays were generated with the Pólya-Aeppli distributions using Eq. 3
with parameters λI = 3.68, θI = 0.5, E[TI] = 7.36; λR = 9.46, θR = 0.4, E[TR] = 23.65; λD = 0.3, and θD = 0.3, E[TD] = 1. h) and i) display pairwise color-coded scatter 
plots of Δ􏽥D[k + 1] vs. Ĩ[k], and Δ􏽥R[k] vs. Δ􏽥D[k] for the SIRD epidemic data. j)–l) display the synthetic epidemic data after the removal of reporting delays.
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A null model for reporting delays
To uncover reporting delays, we employ the following null model: 
each individual i is endowed with random event time τYi 

of either 
getting infected, τIi , recovered, τRi

, or deceased, τDi
. Figure 2 depicts 

the random delay time for event Yi = {Ii, Ri, Di} as TYi
= {TIi , TRi

, TDi
} 

and the corresponding random reported time as KYi
= τYi

+ TYi
. 

Within our discrete-time setting, these random times are discrete 
random variables. Assuming that the reporting delays TYi 

are in
dependent of the events Yi, we obtain for the reported time KYi

Pr KYi
= k

􏼂 􏼃
=
􏽘∞

y=0

􏽘∞

m=0

Pr τYi
= y

􏼂 􏼃
Pr TYi

= m
􏼂 􏼃

δy+m,k

=
􏽘k

m=0

Pr τYi
= k − m

􏼂 􏼃
Pr TY = m[ ]. (2) 

By taking the arithmetic mean of Eq. 2, we find that the expected 

reported fraction Δ􏽥Y[k] = 1
N

􏽐
i Pr [KYi

= k] of individuals in state Y is 

a discrete convolution

Δ􏽥Y[k] =
􏽘k

m=0

Pr TY = m[ ]ΔY[k − m], (3) 

where Y = {I, R, D}. Equation 3 serves as the foundation for uncov
ering reporting delays and improving epidemic forecasts.

Statistical framework to uncover reporting  
delays
The delay distribution Pr [TY = m] in (3) can be determined, in 
principle, as the solution of a large set of quadratic equations, 
deduced from the governing epidemic equations, as shown in 
Supplementary Material D, provided that we assume a same dis
tribution for each delay TYi

= {TIi
, TRi

, TDi
}. Since that solution is 

rather demanding, we propose a simplification. We assume that 
the delay distribution Pr [TY = m] is generated by a two-parameter 
probability distribution with parameters κ = {λ, θ}, which is suffi
ciently general to incorporate the real probability distribution of 
the delay.

We consider three families of two-parameter discrete probabil
ity distributions: the negative binomial distribution, the Neyman 
type A distribution, and the Pólya-Aeppli distribution, see 
Materials and methods A. These distributions are quite general 
and contain some well-known 1-parameter distributions as spe
cial cases. The logarithmic, geometric, and Poisson distributions 
are, for instance, all special cases of the negative binomial distri
bution (43). The three distributions are sufficiently general to gen
erate data with variable mean and variance and of varying 
skewness (43, 44)—properties expected of the epidemic delay 
data, see Materials and methods A. For brevity, we focus on the 
Pólya-Aeppli distribution in the main text and report the results 
for the other two distributions in Fig. S4.

In our statistical framework, we assume that the reporting de
lays correspond to three datasets, Y = {I, R, D}, which are all char
acterized by the Pólya-Aeppli distribution, albeit with different 
parameters κY ≡ {λY, θY}. Hence, there are in total six parameters 

for three Pólya-Aeppli distributions, κ = (λI, θI, λR, θR, λD, θD). With 
the choice of the Pólya-Aeppli distribution, the reporting delays 
Δ􏽥Y in our basic equation Eq. 3 can be determined in the parame
terized form Δ􏽥Yκ.

Given the incremental time series Δ􏽥Yκ, the cumulative time 
series 􏽥Yκ are given by

􏽥Iκ[k + 1] =􏽥Iκ[k] + Δ􏽥Iκ[k] − Δ􏽥Rκ[k] − Δ􏽥Dκ[k],

􏽥Rκ[k + 1] =􏽥Rκ[k] + Δ􏽥Rκ[k],

􏽥Dκ[k + 1] =􏽥Dκ[k] + Δ􏽥Dκ[k],

(4) 

for k ≥ 0, and 􏽥Iκ[0] = 􏽥Rκ[0] = 􏽦Dκ[0] = 0.
The main assumption of our reporting delay removal frame

work is that the increments in new recovered ΔR and deceased 
ΔD individuals are proportional to the cumulative fraction of in
fectious individuals I.

Therefore, we determine the “best” parameters κ̅ that maxi
mize the product of pairwise correlations among the three epi
demic time series in 􏽦Yκ:

Ob(􏽦Yκ) ≡ Ob(􏽥Iκ, Δ􏽥Rκ, Δ􏽦Dκ) = ρ(Δ􏽥Rκ, Δ􏽦Dκ)ρ(􏽥Iκ, Δ􏽥Rκ)ρ(􏽥Iκ, Δ􏽦Dκ), (5) 

where ρ(X, Y) is the Pearson correlation coefficient between time 

series X and Y. The objective function Ob(􏽦Yκ) in Eq. 5 reaches its 
maximum value of 1 when all three pairwise correlations among 

the 􏽥Iκ, Δ􏽥Rκ and Δ􏽦Dκ time series are 1, which we expect when recov
ery γr and deceased γd epidemic probabilities are constant. Due to 
the nature of the Pearson correlation coefficient, the objective 

function Ob(􏽦Yκ[k]) = Ob(􏽦Yκ[k − T]) is invariant under the constant 
time shift T of the epidemic data. As a result, we can only infer 
the reporting delays up to a constant time shift T.

To maximize Ob(􏽦Yκ), the random search (45) method is applied: 
we conduct a large set of independent random iterations, 
ℓ = 1, . . . , L. At each iteration ℓ, we select the elements of the par
ameter vector ̅κ uniformly at random from the prescribed domain 
of values. Further, at each iteration ℓ, we use the selected param
eter set ̅κℓ to reconstruct the original epidemic data Δ􏽥Yκ̅ℓ by solving 
Eq. 3 and convert incremental data Δ􏽥Yκ̅ℓ to cumulative data 􏽥Yκ̅ℓ by 
solving Eq. 4. We then compute the pairwise correlations in 􏽥Yκ̅ℓ to 
obtain the objective function Ob(􏽥Yκ̅ℓ ). After completing all random 
search iterations, the resulting delay parameter κ̂ is the one maxi
mizing the objective function, κ̂ = argmaxκ̅ℓOb(􏽥Yκ̅ℓ ), see Materials 
and methods B.

Tests on synthetic data
Before uncovering reporting delays in real epidemic data, we test 
our framework on synthetic datasets, which we generate with the 
SIRD compartmental model, Eq. 1.

To test our framework, we generated 50 SIRD epidemic model 
datasets with different epidemic parameters and added synthetic 
reported delays to the obtained times series, as prescribed by Eq. 3. 
The resulting delay-perturbed synthetic data is fed to our statis
tical framework that infers the reported synthetically added de
lays. Figure 1d–f and j–l display, respectively, the reconstructed 

Fig. 2. A schematic representation of epidemic events and corresponding delay times.
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real and synthetic epidemic data. We find strong correlations be
tween the reconstructed ΔR̃, ΔD̃, and Ĩ data. Further, Fig. 3a, b in
dicate that the inferred delay parameters are in good agreement 
with the true parameters that generated the datasets. Figure 3 il
lustrates that the inference errors decrease fast as a function of 
the number of iteration steps saturating at the value of 2 days 
after 107 iterations. To assess the robustness of the inference pro
cedure, we have conducted cross-inference experiments by gener
ating synthetic data with one delay distribution and inferring 
delays using another distribution, arriving at similar results in 
Fig. S4.

Uncovering reporting delays in real data
After testing our inference framework on synthetic data, we 
moved on to uncover reporting delays in real epidemic data that 
we have collected from eight regions worldwide, Supplementary 
Material A. Figure 1d–f and j–l display the reconstructed epidemic 
data for Spain and for synthetic SIRD model after the identifica
tion and removal of reporting delays, see Table S1 for the inferred 
parameters. Consistent with our expectations, the reconstructed 
time series of infected I[k], new recovered ΔR[k + 1], and new 
deceased ΔD[k + 1] individuals are strongly correlated, Fig. 1e, 
f and k, l, and their peaks co-occur, as seen in Fig. 1d, j.

We summarize the properties of uncovered reporting delays in 
the eight regions in Table 2. We find that the infectious and recov
ered data delays are longer than those for deceased cases and vary 

from several days to several weeks. This observation is hardly sur
prising. Indeed, there are several factors contributing to the delays 
of infectious cases. One factor is the delay between an individual 
becoming infectious, and the symptom onset (46). Another factor, 
particularly significant in the first COVID-19 wave, is the delay be
tween the symptom onset and the test result (47). In their turn, de
lays in the recovered events are likely caused by hospital 
discharge policies. Indeed, the recovered data are usually derived 
from hospital discharge events, which occur after the patient’s 
recovery.

Based on the expected delay values, one can naturally split the 
eight ROIs into three categories: (i) large infectious and small re
covered delays: Romania, Germany, and Denmark, (ii) small infec
tious and large recovered delays: Italy and Spain, and (iii) large 
infectious and recovered delays: Wuhan, Hubei, and Turkey.

Small infectious delays imply that COVID-19 tests are timely 
and accurate. This seems to be the case for Italy, which executed 
more tests per capita in April 2020 than other countries (48). 
On the contrary, the testing ability of the Hubei province was 
significantly insufficient during the first wave of the COVID-19 
outbreak.

Large delays in the recovered data may be attributed to strict 
hospital discharge policies. Discharge policy in Italy, for instance, 
was based on the negative test (49), and it has been shown that 
COVID-19 tests may stay positive for an extended time after 
COVID-19 symptoms disappear. In contrast, discharge policies 

a c

b d

Fig. 3. Uncovering reporting delays in synthetic data. We generate epidemic data using the SIRD model, Eq. 1 with parameters β = 0.23, γr = 0.079, and 
γd = 0.11 and variable delay parameters. The schematics on top illustrates the process of generation and inference on synthetic data. a) The mean 
absolute inference errors as functions of the number of iteration steps in the random search. Due to the nature of the Pearson correlation coefficient, it is 
only possible to infer relative delays, E[TR] − E[TD], E[TI] − E[TD], and E[TR] − E[TI]. b) The relationship between the true and the inferred values of delay 
parameters. c, d) An example of an SIRD synthetic data c) before and d) after the removal of synthetic reporting delays.
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in Denmark were based not on the negative test but on patient 
symptoms (49), likely leading to shorter reporting delays in the re
covered data.

Large standard deviations in the reporting delays may indi
cate irregularities in reporting mechanisms. As an example, 
Hubei province expanded its daily testing capacity from 200 to 
2,000 individuals from the beginning of the pandemic until 
January 27th (50). As a result, fewer individuals were tested 
late at the end of the first COVID-19 wave compared to its begin
ning, likely resulting in the large standard deviation of infectious 
data delays.

The small standard deviation in the delays of recovered data 
observed in Hubei and its capital Wuhan is likely the consequence 
of the strict discharge criteria (51). Although strict discharge pol
icies cause significant delays, these delays are similar, resulting 
in relatively smaller σR values. In contrast to Chinese regions, 
the recovery data for Germany are not reported directly but in
stead are estimated by a not explained algorithm (52), resulting 
in large errors and, consequently, larger σR values. Based on the 
optimized values Ob(Y̅) as shown in Table S2, the optimization per
formances of our algorithm for Italy, Spain, and Turkey are better 
than the other countries.

Improving epidemic forecasts
Is accounting for reporting delays likely to improve epidemic 
forecasts? To answer this question, we designed two experi
ments. Experiment 1 aims to forecast the epidemics ignoring 
reporting delays and serves as a baseline for Experiment 2, 
which uncovers reporting delays prior to forecasting epidemic 
data.

In both experiments, we split the reported epidemic data into 
two parts, which we call the training and the testing sets, respect
ively, see Fig. 4a. In Experiment 1, we fit the training set with the 
SIRD epidemic model, obtaining model parameters β, γr + γd, and 
the fraction of initial infected cases I[0]. We then use the SIRD 
model with the obtained parameters to forecast the epidemic 
data, Supplementary Material C.

In Experiment 2, we first use the reported data 􏽥Y in the training 
set to infer the parameters of the delay distributions κ̅. We rely on 
these parameters to remove reporting delays from the testing set 
and obtain reconstructed data Δ̅I. In the next step, we fit the re
constructed data Δ̅I with the SIRD model, obtaining β, γr + γd and 
I[0] spreading parameters. We use these spreading parameters 
to forecast the epidemic data ΔÎ, which we compare to the re
ported data Δ􏽥I in the testing set. Since Δ􏽥I in the testing set contains 
the reporting delays, while the forecast ΔÎ does not, we added the 
inferred reporting delays back to the ΔÎ using Eq. 3, obtaining ΔÎ∗, 
See Fig. 4a and Supplementary Material C.

Figure 4b, c presents the results of the forecast experiments for 
Spain, indicating that correcting for reporting delays does improve 
the forecast accuracy. To evaluate the forecast errors in a system
atic way, we evaluated the root mean square errors between the 
forecasts IF and the testing IT sets:

RMSE(IF, IT) =
1
n

􏽘n−1

k=0

(IF[k] − IT[k])2
􏼢 􏼣1

2

, (6) 

where n is the size of the testing set. Further, to quantify the ben
efits of accounting for reporting delays, we used the ratio of the 
root mean square errors measured in forecasts with and without 

reporting delays, ϵ ≡ RMSE(Î∗2, I)

RMSE(Î1, I)
, where Î1 and Î∗2 are the epidemic 

forecasts obtained in experiments 1 and 2, respectively. The 
smaller the ratio, the smaller the relative forecast error.

We measured the accuracy of epidemic forecasts with different 
start dates for Spain in Germany. While we did observe a substan
tial improvement in forecast accuracy for Spain, Fig. 4d, this was 
not the case for Germany, where the removal of reporting delays 
only improved the forecasts by a small margin, Fig. 4e. On a broader 
scale, we observed that the benefits of correction for reporting de
lays vary across all regions of interest, Figs. 4f, S5, and S6. While 
there is nearly a two-fold improvement in the forecast accuracy 
for Denmark, there is little improvement for Wuhan and Hubei.

Apart from only measuring and testing a small part of 
the population—which might be too small or not sampled 
adequately—there are at least two factors that may hinder epi
demic forecast accuracy. The first factor is the insufficient accur
acy of reporting delay removals. The second one is the inability of 
the SIRD model to reproduce the COVID-19 dynamics accurately. 
We can quantify the former by the maximum attained value of 
the objective function Ob(Y̅)max that we aim to maximize when re
moving reporting delays. While there is no direct way to quantify 
the goodness of the SIRD model in epidemic forecasts, as an indir
ect measure, we fit the training set with the SIRD model and com
pute the fitting error.

Figure 4g shows that the forecast error is strongly correlated 
with the SIRD fitting error, Pearson r = 0.89, p < 10−27, indicating 
that the highest epidemic forecast accuracy is attained when 
the model fit is accurate. The forecast error ratio depends both 
on the Ob(Y̅)max and SIRD model fitting, Fig. 4h. We observe the lar
gest error ratio ϵ in Wuhan, Hubei, and Romania, Fig. 4h. Wuhan 
and Hubei correspond to the largest SIRD fitting errors, while 
Romania corresponds to the lowest SIRD fitting errors. At the 
same time, all three regions are quantified by the lowest 
Ob(Y̅)max values. The other five regions, corresponding to smaller 
error ratios, are characterized by significantly larger Ob(Y̅)max val
ues, Fig. 4g and Table S2.

Table 2. Inferred reporting delays.

Regions E[TR] − E[TD] E[TI] − E[TD] σI σR σD ρ(ΔR̅, ΔD̅) ρ(̅I, ΔR̅) ρ(̅I, ΔD̅) Ob(Y̅)

Italy 28.52 6.59 5.08 27.79 0.72 0.91 0.94 0.99 0.84
Spain 22.66 6.36 8.63 28.39 0.73 0.99 0.99 1.00 0.98
Wuhan 14.80 20.64 51.67 16.13 23.87 0.78 0.89 0.91 0.63
Turkey 14.13 24.85 43.89 12.47 11.21 0.91 0.95 0.98 0.85
Hubei 9.96 21.07 78.62 10.89 54.14 0.85 0.90 0.92 0.71
Romania 3.30 19.05 43.08 90.12 0.29 0.81 0.89 0.97 0.70
Germany 2.72 16.55 39.25 106.89 4.31 0.87 0.88 0.99 0.76
Denmark 0.17 25.07 36.90 2.71 28.25 0.83 0.93 0.94 0.72

The table displays the inferred differences between the expected delay times E[TR] − E[TD], E[TI] − E[TD], standard deviations σI, σR and σD, and optimized values for the 
objective function Ob(Y̅). See Tables S1 and S2 for the corresponding parameters of the Pólya-Aeppli distributions.
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d e

f g
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Fig. 4. Accounting for reporting delays improves epidemic forecasts. a) The schematic diagram for the two forecast experiments. b), c) display the results 
of epidemic forecasts in Spain with different forecast start dates. The forecasts of experiment 2 (yellow) are closer to the reported data (red) than the 
forecasts of experiment 1 (blue). The forecast results for all eight countries or regions are shown in Figs. S5 and S6. d), e) All forecast results for Spain and 
Germany. Shown are the RMSE forecast errors and their ratios. h) Average forecast errors ϵ for the 8 regions. The benefits of removing reporting delays 
vary by region. g) The average RMSE forecast error of experiment 2 as a function of SIRD model fitting error for all experiments. h) The mean relative 
forecast error as a function of SIRD model fitting error for all experiments.
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These observations indicate that Ob(Y̅)max may be used as an 
early indicator of the benefit of delay removals. Indeed, lower 
Ob(Y̅)max values may indicate that reporting delays were not re
moved successfully or the initial assumption of the proportional
ity among I, ΔR, and ΔD times series does not hold. We note that 
high Ob(Y̅)max values correspond to high benefits of delay removals 
regardless of the SIRD fitting error. In the case of Romania, for in
stance, SIRD fitting errors are among the smallest, resulting in low 
forecast errors. Yet, the removal of reporting delays does not re
sult in even lower forecast errors.

There might be multiple reasons for suboptimal reporting de
lay removals in the case of Hubei, Wuhan, and Romania. One 
possibility is the nonstationary nature of delays. The main as
sumption of our framework is that delay times are independent 
and drawn from the same distribution. While COVID-19 did not 
significantly mutate over the short time span of the first wave, 
our ability to handle the infections improved significantly. The 
PCR test capacity in China has grown remarkably during the 
first COVID wave, possibly explaining the limited effect of re
porting delays on improving epidemic forecasts in Hubei and 
Wuhan.

Discussion
Data delays are ubiquitous in data sciences and adversely affect 
data analysis (53). The unique property of the epidemic data, 
enabling us to identify and filter out reporting delays, is the pro
portionality between the number of infectious individuals I and 
the rates of change in the deceased ΔD and the recovered ΔR 
individuals.

We relied on this proportionality property to develop a para
metric statistical framework to uncover reporting delays in the 
first COVID-19 wave and applied it to eight regions significantly af
fected during the first COVID-19 wave. The character of uncov
ered delays varies across studied regions and can be explained 
by region-specific medical capacities and epidemic policies.

Concerning the epidemic forecasts, we found that the benefits of 
using curated epidemic data, as opposed to the raw data, are maxi
mized in situations when reporting delays are removed efficiently. 
One of the main factors hindering the efficiency of delay removal 
—the nonstationarity of reporting delays—can be caused by either 
varying spreading properties of the virus or by rapid changes in 
medical capacities or epidemic restrictions across the regions. 
While the spreading properties of COVID-19 did not change signifi
cantly during the first wave of the pandemic, both medical capaci
ties and epidemic policies were the subjects of constant updates 
as the communities learned how to handle the pandemic.

We expect that our framework will prove most useful in the 
early stages of an epidemic when accurate epidemic forecasts 
are essential to plan intervention strategies and raise public 
awareness. Common sense dictates that data collection and re
porting challenges are the most significant during that time.

Our statistical framework is based on the assumption that 
transition probabilities γr and γd quantifying transitions from 
the infectious to the recovered, I→ R and the infections to the 
deceased, I→ D states, respectively are constant across the 
population and do not change over the observational period. 
While these assumptions are approximations, we expect them 
to hold better in early epidemic stages than in later stages. In 
the later stages, the population becomes more heterogeneous, 
e.g. due to natural or vaccine-induced immunity (54). In these 
situations, our framework can be generalized by splitting the in
fectious compartment I into sub-compartments and considering 
different rates, e.g.

ΔR[k] = γ1,rI1[k] + γ2,rI2[k],

ΔD[k] = γ1,dI1[k] + γ2,dI2[k],

I[k] = I1[k] + I2[k],

(7) 

where I1[k] and I2[k] are two infectious sub-compartments char
acterized by different recovery and death probabilities.

At the same time, we stress that our statistical framework does not 
make strong assumptions about the spreading mechanisms of a 
pathogen and can be used in combination with any forecasting meth
od that requires infectious, recovered, and deceased data as input.

In conclusion, our framework can be used as a preliminary fil
ter for any epidemic forecast tool that takes infected, recovered, 
and deceased data as input. Our framework holds for any com
partmental epidemic model, provided that each compartment 
can be measured, because a time series of each compartment is 
indispensable. Accurate and timely epidemic forecasts are of im
mense value for society and policymakers to minimize the ad
verse effects of the virus.

Materials and methods
Types of distributions
To determine the family of reporting delay distributions that best 
suit our data, we consider three different two-parameter discrete 
distributions (55) below:

(I) Negative binomial distribution.

Pr [T = m] =
m + r − 1

m

􏼒 􏼓

(1 − p)mpr. (8) 

The negative binomial distribution with parameters r > 0 and 
p ∈ [0, 1] has mean value E[T] = r(1 − p)/p and variance 

Var[T] = r(1 − p)/p2.
(II) Pólya-Aeppli distribution is also known as the geometric 

Poisson distribution.

Pr [T = m] =

􏽘m

j=1

e−λ λj

j!
(1 − θ)m−jθj m − 1

j − 1

􏼒 􏼓

, m > 0

e−λ, m = 0

⎧
⎪⎨

⎪⎩
. (9) 

The Pólya-Aeppli distribution with parameters λ > 0 and θ ∈ [0, 1] 

has mean value E[T] = λ/θ and variance Var[T] = λ(2 − θ)/θ2.
(III) Neyman type A distribution.

Pr [T = m] =
μme−ξ

m!

􏽘∞

j=0

(ξe−μ)j

j!
jm. (10) 

The Neyman type A distribution with parameters ξ > 0 and μ > 0 
has mean value E[T] = ξμ and variance Var[T] = ξμ(1 + μ).

Inferring reporting delays
To uncover reporting delays in epidemic data, we determine pa
rameters of delays distributions κY maximizing the pairwise cor
relations between the epidemic time series, Eq. 5. This 
optimization problem can be compactly written as:

arg max
κ

Ob(Y) ≡ ρ(ΔR, ΔD)ρ(I, ΔR)ρ(I, ΔD)

s.t. ΔI = Ψ−1
I Δ􏽥I, ΔR = Ψ−1

R Δ􏽥R, ΔD = Ψ−1
D Δ􏽥D,

min (ΔI[k], ΔR[k], ΔD[k], I[k]) ≥ 0, for k = 1, . . . , T.

(11) 

Here T is the size of epidemic time series, 􏽥Y ≡ {􏽥I,􏽥R, 􏽥D} and 
Y ≡ {I, R, D} are reported and reconstructed epidemic data, 
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respectively, while ΔY = Ψ−1
Y Δ􏽥Y are the matrix solutions of Eq. 3. 

Indeed, Eq. 3 can be written in the matrix form as Δ􏽥Y = ΨYΔY for 
Y = {I, R, D}, where

ΨYi,j W
Pr[TY = i − j] if i ≥ j.

0 otherwise.

􏼚

, 

Then, Ψ−1 is the inverse of ΨY and ΔY = Ψ−1
Y Δ􏽥Y.

In the main text, we assume that reporting delays are iid ran
dom variables drawn from three Pólya-Aeppli distributions, 
Eq. 9, with distinct parameters {λI, θI}, {λR, θR}, and {λD, θD}. In the 
case of Pólya-Aeppli distributions, the parameter vector takes 
the form of κ ≡ {λI, θI, λR, θR, λD, θD}. We solve the optimization 
problem given by Eq. 11 and the random search (45). For each iter
ation ℓ = 1, . . . , L, we treat the expected values of the Pólya-Aeppli 
distributions, E[TY] = λY/θY, as iid random variables and draw from 
the uniform pdfs U[0, 30] for Y = {I, R, D}. Similarly, we draw θY pa
rameters independently at random from uniform pdfs U[0, 1] and 
then determine λY parameters as λY = θYE[TY], obtaining κℓ. In our 
experiments, we set the maximum number of search iterations to 
L = 107.

For each κℓ, we use Eq. 3 to reconstruct original data Yℓ, which 
we then use to compute the objective function Ob(Yℓ). After com
pleting all iterations, the thought parameter vector κ̂ describing 
reporting delays is the one corresponding to the maximum 
Ob(Yℓ) value, κ̂ = arg maxκ Ob(Y).

Supplementary Material
Supplementary material is available at PNAS Nexus online.
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