
 
 

Delft University of Technology

A Volume-of-Fluid method for multicomponent droplet evaporation with Robin boundary
conditions

Zamani Salimi, Salar; Scapin, Nicolò; Popescu, Elena Roxana; Costa, Pedro; Brandt, Luca

DOI
10.1016/j.jcp.2024.113211
Publication date
2024
Document Version
Final published version
Published in
Journal of Computational Physics

Citation (APA)
Zamani Salimi, S., Scapin, N., Popescu, E. R., Costa, P., & Brandt, L. (2024). A Volume-of-Fluid method for
multicomponent droplet evaporation with Robin boundary conditions. Journal of Computational Physics,
514, Article 113211. https://doi.org/10.1016/j.jcp.2024.113211

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.jcp.2024.113211
https://doi.org/10.1016/j.jcp.2024.113211


Journal of Computational Physics 514 (2024) 113211

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

A Volume-of-Fluid method for multicomponent droplet 

evaporation with Robin boundary conditions

Salar Zamani Salimi a,∗, Nicolò Scapin b,c, Elena-Roxana Popescu d, Pedro Costa e, 
Luca Brandt a,c

a Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
b Department of Mechanical and Aerospace Engineering, Princeton University, NJ, USA
c FLOW, Department of Engineering Mechanics, KTH, SE-10044 Stockholm, Sweden
d Flow Technology Group, SINTEF Industry, Trondheim, Norway
e Process & Energy Department, TU Delft, Leeghwaterstraat 39, 2628CB, Delft, the Netherlands
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We propose a numerical method tailored to perform interface-resolved simulations of evaporating 
multicomponent two-phase flows. The novelty of the method lies in the use of Robin boundary 
conditions to couple the transport equations for the vaporized species in the gas phase and the 
transport equations of the same species in the liquid phase. The Robin boundary condition is 
implemented with the cost-effective procedure proposed by Chai et al. [1] and consists of two 
steps: (1) calculating the normal derivative of the mass fraction fields in cells adjacent to the 
interface through the reconstruction of a linear polynomial system, and (2) extrapolating the 
normal derivative and the ghost value in the normal direction using a linear partial differential 
equation. This methodology yields a second-order accurate solution for the Poisson equation with 
a Robin boundary condition and a first-order accurate solution for the Stefan problem. The overall 
methodology is implemented in an efficient two-fluid solver, which includes a Volume-of-Fluid 
(VoF) approach for the interface representation, a divergence-free extension of the liquid velocity 
field onto the entire domain to transport the VoF, and the temperature equation to include thermal 
effects. We demonstrate the convergence of the numerical method to the analytical solution for 
multicomponent isothermal evaporation and observe good overall computational performance 
for simulating non-isothermal evaporating two-fluid flows in two and three dimensions.

1. Introduction

Multiphase flows that encompass heat and mass transfer play a pivotal role in diverse industrial applications, such as power 
generation, combustion engines, and cooling and refrigeration systems. Employing predictive simulations to unravel the intricate 
effects of phase change on these engineering systems is crucial because experiments still have limited access to the flow details. 
However, the simultaneous exchange of mass, momentum, and energy introduces considerable numerical complexities, amplifying 
the challenges associated with modeling interfacial flows. Moreover, the presence of multiple species in liquid droplets is more of 
a norm than an exception, prompting extensive investigations across various engineering applications. Existing models often hinge 
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on the assumption of spherical symmetry, typically overlooking the influence of surface tension and droplet deformation [2,3], and 
neglecting the mutual interactions of evaporating droplets in instances of larger initial volume fraction. While these simplifications 
prove suitable for scenarios involving droplets in microgravity and under dilute conditions, where buoyancy, deformation, and 
droplet-droplet interactions have negligible effects – such as in chemical reactions and combustion [4] – there persists a demand for 
multidimensional models. Such models are imperative to provide a more accurate depiction of phase transitions in turbulent flows, 
particularly in non-dilute conditions, where the inherent constraints of existing models become apparent.

Numerical methods for interfacial flow can be divided into two broad categories, interface-tracking and interface-capturing methods, 
and most of the approaches developed so far have been extended to account for phase change.

Interface-tracking (or front-tracking, FT) methods demonstrate the potential for achieving remarkable precision in computing the 
interface properties, i.e., normal vector and curvature, thanks to using Lagrangian markers to describe the interface motion. For this 
reason, the FT method has been adapted to study boiling films [5–8], evaporating droplets [9] even with chemical reactions [10]. 
However, the practical use of the FT methods in more complex configurations is currently limited by two drawbacks: (i) poor 
conservation properties for large mismatch in the thermophysical properties of the phases and for large topological changes of the 
interface [11,12] and (ii) difficulties in achieving parallel scalability in modern HPC architectures [13].

Interface-capturing methods, particularly those based on the Volume-of-Fluid (VoF) and the Level-Set (LS) method, have gained 
widespread application, owing to their implicit representation of interfaces and the ability to achieve improved conservation prop-

erties, especially in the presence of significant thermophysical properties mismatches between phases. Despite these advantages, 
challenges arise from the implicit interface representation and the lack of a precise interface position, necessitating specific treat-

ments for accurately computing mass and energy exchanges at the interface. One of the earliest applications of interface-capturing 
methods in phase-changing flows is based on a level-set method, notably in the context of film boiling [14]. The Level-Set method has 
become increasingly popular in this domain due to its coupling with the ghost fluid method, which facilitates the imposition of inter-

facial jump conditions [15–17]. This coupling is particularly advantageous in enhancing phase change predictions, especially when 
the interface is well-resolved. The application of the method has been extended to evaporating flows [18] and combined boiling and 
evaporation scenarios [19–21]. Despite its potential for high accuracy, the Level-Set function is not a conserved quantity, and issues 
related to poor conservation behavior have been reported [20], especially when the computational mesh lacks sufficient refinement 
to resolve liquid structures. Recent studies have addressed this issue with Level-Set methods (in the absence of phase change) by 
incorporating mass-correction steps. These consist of redistributing the lost mass in the vicinity of the interface, accounting for factors 
such as local interface curvature [22,23].

Another commonly employed technique for simulating multiphase flows is the VoF method, which is particularly advantageous 
because it potentially allows to achieve exact mass conservation properties irrespective of the employed grid resolution. Despite this 
advantage, the use of the VoF method for phase-changing flows has been limited by the intrinsic challenge in defining a suitable 
velocity to advect the VoF color function. Indeed, the presence of phase change introduces a discontinuity in the velocity field, 
which makes it unsuitable as interface velocity. Therefore, practically all the VoF-based methods developed so far had to devise a 
strategy to transport the interface stably and accurately. In the earliest attempts [24,25], the interface velocity has been obtained 
by combining the solution of the momentum equation with different compression schemes to avoid excessive interface smearing 
and distortion induced by the velocity discontinuity. A geometric-based VoF method was first employed to investigate evaporating 
droplets [26], where an iterative approach was developed to handle the calculation of a volume source due to mass transfer, applied 
locally in interface cells and without regularization. However, the velocity disparity between the interface and the liquid phase was 
overlooked. Later, the same group developed a consistent method to simulate evaporation processes for a large range of ambient 
conditions, from supercooled droplets to extreme environments with high evaporation rates [27]. For low gas diffusivities, a fixed-

point expression is introduced to establish consistency between the interface temperature, saturation pressure, the rate of phase 
change, and the rate of interfacial mass diffusion [28]. This is done by assuming an error function profile for the sub-grid scale 
temperature. The concept of consistency is also leveraged to apply the fixed-point iteration directly to a first-order discretization 
of the interfacial fluxes defined on the geometrically reconstructed interface, thereby achieving a discretely consistent prediction of 
phase change. In more recent studies, the problem of the velocity discontinuity and the suitable definition of the interface velocity 
has been circumvented using different strategies, either with the solution of an additional Poisson/Helmholtz equation to define 
an extended liquid velocity [29–33] or by shifting the Stefan flow away from the interfacial cell while keeping it within the first 
two-three layers of pure gas/liquid cells [34–36]. All these works have been primarily targeting thermally-induced or mass-transfer-

induced phase change of single-component droplets, which simplifies the calculation of the vaporization rate. At the same time, less 
effort has been devoted to considering the case of liquid droplets comprising multiple species.

Extending phase-change models to systems involving multiple components presents two main challenges: (a) the interfacial mass 
flux rate calculation is not trivial since the species mass fractions at the interface are not known a prior, even in an isothermal 
condition as in pure droplets; (b) the species mass fraction fields must be transported in both liquid and gas phases, considering 
boundary conditions for both vapor and liquid fields at the interface.

Here, we introduce a numerical model designed for conducting interface-resolved simulations of multicomponent phase-changing 
flows using the volume-of-fluid method. The novelty of the method lies in the strategy employed to couple the transport equations 
governing the vaporized species in the gas phase with the transport equations describing the species in the liquid phase. The first set 
of equations, i.e. vaporized species in the gas phase, are solved with a Dirichlet boundary condition at the interface. This condition is 
derived under thermodynamic equilibrium and computed from an appropriate equation of state, e.g. the Clausius-Clapeyron relation 
or Span-Wagner equation of state. The second set of equations, i.e. species in the liquid phase, is solved with a Robin boundary 
2

condition, which is constructed to ensure that each contribution to the total mass-flux from the individual vaporized species is 
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Fig. 1. 2D sketch of the physical domain. The two phases, evolving in the two disjoint subdomains Ω1 and Ω2 , are separated by an infinitesimally thin interface Γ.

accounted for. Note that Cipriano et al. [33] recently proposed a second-order accurate alternative procedure to couple the jump 
conditions for the vaporized species in the gas domain and the same species in the liquid domain with the corresponding transport 
equations. The method employs the information, i.e. the vaporized mass fraction and its interfacial gradients, at the previous timestep 
to compute each partial mass-flux and the total exchange mass-flux. In our work, this “explicit” coupling is made implicit by the 
use of the Robin boundary condition. The proposed methodology of this work is then coupled with the efficient two-fluid solver 
for single-component evaporating flows described in our previous work [29]. The solver consists of two parts. First, it includes an 
algebraic VoF function to capture the interface motion. The VoF function is advected with a smooth interface velocity that consists 
of two terms: a divergence-free extended liquid velocity field and an irrotational term attributed to phase change, following the 
approach in [29]. Next, it incorporates an efficient, FFT-based finite-difference Navier-Stokes solver [37]. The overall methodology 
is validated against benchmarks of increasing complexities. First, we verify the proposed algorithm for the Robin boundary condition 
against a Poisson and a Stefan problem. Next, we validate the overall numerical algorithm against an analytical solution for the 
isothermal evaporation of a static bi-component droplet. Finally, we demonstrate the ability of the method to simulate evaporating 
flows in two complex configurations: (a) a settling droplet under gravity, which undergoes evaporation and deformation near a 
solid boundary, (b) a three-dimensional evaporating droplet in homogeneous isotropic turbulence. This last configuration shows the 
potentialities of the method to tackle multiphase and multicomponent turbulent flows.

This paper is organized as follows. The mathematical model is described in section 2, while section 3 describes the numerical 
discretization of the different transport equations. The resulting model is validated against several benchmarks in section 4. Finally, 
conclusions are drawn in section 5.

2. Mathematical formulation

We consider a system comprising two immiscible Newtonian phases: a liquid phase, denoted by 1, and a gas phase, denoted by 2. 
The liquid phase is composed of 𝑁𝑣 liquid species, while the gas phase is an ideal mixture composed of 𝑁𝑣 vaporized species and an 
inert gas. These two phases are separated by an infinitesimally thin interface Γ, through which the transfer of energy, momentum, 
and mass occurs. The process of evaporation is driven by the partial pressure of each vaporized species in phase 2. As shown in 
Fig. 1, the two phases occupy two disjoint subdomains Ω1 and Ω2, separated by a lower dimensional interface Γ.

A phase indicator function 𝐻 is utilized to implicitly represent each phase at location 𝐱 and time 𝑡:

𝐻(𝐱, 𝑡) =
{

1 if 𝐱 ∈Ω1,

0 if 𝐱 ∈Ω2.
(1)

The function 𝐻 is governed by the following transport equation [38,8]:

𝜕𝐻

𝜕𝑡
+ 𝐮Γ ⋅∇𝐻 = 0, (2)

where 𝐮Γ = (𝑢Γ, 𝑣Γ, 𝑤Γ) is the interface velocity, which in the presence of phase change can be computed from the Rankine-Hugoniot 
relations:

𝑚̇ = 𝜌1(𝐮1 − 𝐮Γ) ⋅ 𝐧 = 𝜌2(𝐮2 − 𝐮Γ) ⋅ 𝐧. (3)

In expression (3), 𝐮𝑖=1,2 are the velocities on the two sides of the interface, 𝜌𝑖=1,2 are the mass densities and 𝐧 is the normal vector 
defined as 𝐧 = ∇𝐻∕|∇𝐻|. As commonly done in the one-fluid formulation for multiphase flow [38], the phase indicator 𝐻 is 
employed to define also the one-fluid velocity, i.e. 𝐮 = 𝐻𝐮1 + (1 − 𝐻)𝐮2, and the generic volumetric thermophysical property 𝜂
(the mass density 𝜌, the dynamic viscosity 𝜇, the thermal conductivity 𝜆 and the specific heat capacity at constant pressure 𝑐𝑝), 
3

which is evaluated using an arithmetic mean, i.e. 𝜂 = 𝜂1𝐻 + 𝜂2(1 −𝐻). In the present work, the bulk values of each 𝜂, i.e. 𝜂𝑖=1,2, 
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are assumed constant and uniform. This assumption can be relaxed as shown in [39,40] for single-component evaporation without 
major modifications of the algorithm described in the next sections.

2.1. Navier-Stokes equations

The interfacial mass flux, 𝑚̇, arising from phase change leads to a jump in the velocity field 𝐮, formally expressed in equation (3). 
This affects the velocity divergence (or divergence constrain), derived by taking the divergence operator of 𝐮, assuming uniform and 
constant bulk densities, and using equation (3). This constrain finally reads [38]:

∇ ⋅ 𝐮 = 𝑚̇

(
1
𝜌2

− 1
𝜌1

)
𝛿Γ, (4)

where 𝛿Γ ≡ 𝛿(𝐱 − 𝐱Γ) is a three-dimensional Dirac delta function, non-zero at the interface location 𝐱Γ. The flow is assumed to be 
incompressible and, therefore, the Navier-Stokes equation, representing the conservation of momentum in the system, can be written 
as follows:

𝜌

(
𝜕𝐮
𝜕𝑡

+ 𝐮 ⋅∇𝐮
)

= −∇𝑝+∇ ⋅
(

𝜇

(
∇𝐮+∇𝐮𝑇

))
+ 𝜌𝐠+ 𝜎𝜅𝛿Γ𝐧, (5)

where 𝑝 is the hydrodynamic pressure field and 𝐠 is the gravitational acceleration; the right-most term accommodates the disconti-

nuity in stress due to surface tension, which is computed via the standard continuum surface force (CSF) method with 𝜎 being the 
surface tension coefficient. The curvature surface field 𝜅 is defined using the normal vector, 𝜅 = ∇ ⋅ 𝐧 (pointing from the liquid to-

ward the gas). It should be noted that, for the model proposed here, the momentum equation (5) is coupled only with the divergence 
constraint (4), i.e. the density is only a function of the phase, and not directly of temperature. Accordingly, the velocity field must 
respect the constraint (4), which directly depends on the total interfacial mass flux.

2.2. Species transport equations

The liquid phase is composed of 𝑁𝑣 species, which can be both in liquid state, confined in the domain Ω1, and in a vapor state, 
confined in Ω2 together with the inert component. Therefore, for each species, we need two variables, 𝑌 𝑙

𝑘
and 𝑌 𝑔

𝑘
, which represent the 

mass of the species 𝑘 in the vapor and liquid state over the total mass contained in Ω1 and Ω2. Clearly, 
𝑁𝑣∑
𝑘=1

𝑌 𝑙
𝑘
= 1 and 

𝑁𝑣∑
𝑘=1

𝑌
𝑔

𝑘
+𝑌0 = 1

with 𝑌0 the mass fraction of the inert component, denoted with the index 0. It is also useful to define the corresponding molar mass 
fraction, which can be conveniently computed from 𝑌 𝑙,𝑔

𝑘
as

𝑋
𝑙,𝑔

𝑘
= 𝑌

𝑙,𝑔

𝑘

𝑀
𝑙,𝑔
𝑚

𝑀𝑘

, (6)

where 𝑀𝑘 is the molar mass of the species 𝑘 (in vapor or liquid phase) and 𝑀𝑙,𝑔
𝑚 is the molar mass of the mixture in the liquid (𝑙) 

or in the gas (𝑔). The mixture molar mass 𝑀𝑙,𝑔
𝑚 can be computed using a simple mixture rule (valid for ideal mixtures composed of 

ideal gases [41]). In particular, for 𝑀𝑙
𝑚 we have

𝑀𝑙
𝑚 =

(
𝑁𝑣∑
𝑘=1

𝑌 𝑙
𝑘

𝑀𝑘

)−1

, (7)

whereas for 𝑀𝑔
𝑚

𝑀𝑔
𝑚 =

(
𝑁𝑣∑
𝑘=1

𝑌
𝑔

𝑘

𝑀𝑘

+
𝑌0
𝑀0

)−1

. (8)

Note that equations (7), (8) simply differ for the inclusion of the inert species in the gas mixture. Each 𝑌 𝑔,𝑙

𝑘
is governed by the same 

standard convection-diffusion equation:

𝜕𝑌
𝑙,𝑔

𝑘

𝜕𝑡
+ 𝐮 ⋅∇𝑌

𝑙,𝑔
𝑘

=𝐷
𝑙,𝑔
𝑘

∇2𝑌 𝑙,𝑔
𝑘

, (9)

where 𝐷𝑙,𝑔

𝑘
is the diffusion coefficient in the liquid or gas phase, which we assume constant, as the other thermophysical properties. 

Clearly, the equations for 𝑌 𝑙
𝑘

is valid in Ω1, while 𝑌 𝑔

𝑘
is defined in Ω2. At the interface Γ, they are naturally coupled by the jump 

condition for the interfacial gradients, which reads [18,42,33]:
4

𝑚̇𝑘 = 𝑚̇𝑌 𝑙
𝑘,Γ + 𝜌𝑙𝐷

𝑙
𝑘
∇𝑌 𝑙

𝑘
⋅ 𝐧 = 𝑚̇𝑌

𝑔

𝑘,Γ + 𝜌𝑔𝐷
𝑔

𝑘
∇𝑌

𝑔

𝑘
⋅ 𝐧, (10)
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where 𝑚̇𝑘 is the partial mass-flux, 𝑚̇ is the total mass-flux and 𝑌 𝑙,𝑔

𝑘,Γ are the values of the mass fraction on the liquid and the gas 
side of the interface. Note that 𝑌 𝑙

𝑘,Γ and 𝑌 𝑔

𝑘,Γ are not necessarily equal. The total mass-flux 𝑚̇ in equation (10) can be computed by 

applying the summation operator 
𝑁𝑣∑
𝑘=1

to equation (10). Since 
𝑁𝑣∑
𝑘=1

𝑌
𝑙,𝑔
𝑘,Γ = 1 and 

𝑁𝑣∑
𝑘=1

𝜌𝑔𝐷
𝑙
𝑘
∇𝑌 𝑙

𝑘,Γ ⋅ 𝐧 = 0 by definition [42,33], after some 

manipulations 𝑚̇ can be written as

𝑚̇ =

𝑁𝑣∑
𝑘=1

𝜌𝑔𝐷
𝑔
𝑘
∇𝑌

𝑔
𝑘
⋅ 𝐧

1 −
𝑁𝑣∑
𝑘=1

𝑌
𝑔

𝑘,Γ

. (11)

𝑌
𝑔

𝑘,Γ in equations (10) and (11) is assumed fixed, through a Dirichlet boundary condition at the interface Γ, and evaluated under the 
assumption that the interface is at saturation. By introducing the saturation vapor pressure 𝑝𝑠𝑎𝑡

𝑘,Γ, the mass fraction at the interface 
𝑌

𝑔

𝑘,Γ for multicomponent liquids can be expressed as (see Appendix A for a derivation):

𝑌
𝑔
𝑘,Γ =

𝑝𝑠𝑎𝑡
𝑘,Γ𝑀𝑘𝑋

𝑙
𝑘,Γ

𝑝𝑡𝑀𝑔 +
𝑁𝑣∑
𝑘=1

𝑝𝑠𝑎𝑡
𝑘,Γ(𝑀𝑘 −𝑀0)𝑋𝑙

𝑘,Γ

,
(12)

where 𝑝𝑡 is the total pressure of the mixture and is taken equal to the thermodynamic pressure. It is important to remark that, as 
shown in equation (12), 𝑌 𝑔

𝑘,Γ, is not only a function of the partial pressure (as for single-component droplets), but also of the local 
concentration of the liquid species. Assuming thermodynamic equilibrium at the interface, it is possible to predict 𝑝𝑠𝑎𝑡

𝑘,Γ via the local 
interface temperature, 𝑇Γ, through an equation of state. In this work, we employ the Span-Wagner relation [43], which reads

𝑝𝑠𝑎𝑡
𝑘,Γ = 𝑝𝑐,𝑘 exp

[
(𝐴1𝜏𝑠𝑝 +𝐴2𝜏

1.5
𝑠𝑝 +𝐴3𝜏

2.5
𝑠𝑝 +𝐴4𝜏

5
𝑠𝑝)(1 − 𝜏𝑠𝑝)

]
, (13)

where 𝑝𝑐,𝑘 and 𝑇𝑐,𝑘 refer to the critical pressure and temperature of each species. In Eq. (13), 𝜏𝑠𝑝 = 1 − 𝑇Γ∕𝑇𝑐,𝑘 is the Span-Wagner 
parameter and the coefficients 𝐴𝑖=1,4 depend on the substance under consideration. Once 𝑚̇ and 𝑌 𝑔

𝑘,Γ are known, the partial mass-flux 
of each species 𝑚̇𝑘 is immediately available using equation (10) on the gas side of the interface. Conversely, the relation (10) is valid 
on the liquid side of the interface and serves a Robin boundary condition for the transport equations (9) for 𝑌 𝑙

𝑘
. Thus, the system 

of equations (9), (10), (11) and (12) provides a new strategy to handle multicomponent evaporation, which can be summarized as 
follows

• Solve 𝑁𝑣 equations of the form (7) for the mass fraction 𝑌 𝑔

𝑘
in the gas phase, Ω2, with a Dirichlet boundary condition at 

the interface Γ. The Dirichlet condition is provided by equation (12) together with an equation of state for the saturation 
pressure (13);

• Solve 𝑁𝑣 equations of the form (7) for the mass fraction 𝑌 𝑙
𝑘

in the liquid phase, with a Robin boundary condition at the interface 
Γ. The Robin condition is provided by the left-hand side of equation (10).

2.3. Heat transport equation

In the context of the one-fluid formulation, the principle of thermal energy conservation can be represented by the following 
equation:

𝜌𝑐𝑝

(
𝜕𝑇

𝜕𝑡
+ 𝐮 ⋅∇𝑇

)
=∇ ⋅ (𝜆∇𝑇 ) − 𝑚̇ℎ𝑙𝑣𝛿Γ +

𝑁𝑣∑
𝑘=1

𝜌𝐷
𝑔

𝑘
(𝑐𝑣𝑎𝑝

𝑝,𝑘
− 𝑐𝑝2)∇𝑇 ⋅∇𝑌𝑘(1 −𝐻), (14)

where viscous dissipation has been disregarded. In Eq. (14), 𝑇 represents the temperature field, 𝑐𝑣𝑎𝑝
𝑝,𝑘

denotes the specific heat capacity 
of vaporized liquid species, and 𝜆 refers to the thermal conductivity. The last two terms on the right-hand-side of equation (14)

quantify the discontinuity in enthalpy resulting from phase change, attributed primarily to latent heat ℎ𝑙𝑣, but also to the differences 
in specific heat between the inert gas and the vaporized liquid components. It is important to note that integrating Eq. (14) across Γ
yields a straightforward derivation of the jump in heat flux across the interface.

2.4. Non-dimensional parameters

The governing equations (4), (5), (9), (11) and (14) can be recast into a dimensionless form by introducing a reference velocity 
𝑢𝑟𝑒𝑓 , a reference length 𝑙𝑟𝑒𝑓 , and temperature 𝑇𝑟𝑒𝑓 . The resulting dimensionless governing parameters are

𝜌2𝑢𝑟𝑒𝑓 𝑙𝑟𝑒𝑓 𝜌2𝑢
2
𝑟𝑒𝑓

𝑙𝑟𝑒𝑓 𝑢2
𝑟𝑒𝑓 𝜇2𝑐𝑝2 𝑔 𝜇2
5

Re =
𝜇2

, We =
𝜎

, Fr =
𝑙𝑟𝑒𝑓 |𝐠| , Pr =

𝜆2
, Sc

𝑘
=

𝐷
𝑔

𝑘
𝜌2

,
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Sc𝑙
𝑘
=

𝜇1

𝐷𝑙
𝑘
𝜌1

, Ste =
𝑐𝑝2𝑇𝑟𝑒𝑓

ℎ𝑙𝑣

, 𝑟𝑀,𝑘 =
𝑀𝑘

𝑀0
, 𝑟𝜂 ≡ 𝜂1

𝜂2
,

where Re, We, Fr, Pr, Sc𝑔
𝑘
, Sc𝑙

𝑘
, Ste, 𝑟𝑀,𝑘 and 𝑟𝜂 are the Reynolds, Weber, Froude, Prandtl, gas phase Schmidt number (for each 

gas components), liquid phase Schmidt number (for each liquid components), Stefan number, Molar mass ratio (for individual liquid 
species) and the ratio of the different thermophysical properties, 𝑟𝜂 , where the property 𝜂 can be 𝜌, 𝜇, 𝑐𝑝 or 𝜆. Note again, that, in 
this study, all the thermophysical properties are assumed to be uniform and constant.

3. Numerical method

The numerical methodology proposed for solving the governing equations, presented in section 2, follows six steps: (1) the 
interface reconstruction and advancement with the volume-of-fluid method and the reconstruction with the Level-set method; (2)

the discretization of the vapor mass fraction equations and the calculation of the interfacial mass fluxes; (3) the solution of the liquid 
mass fraction transport equation using a Robin boundary condition; (4) the discretization of the energy equation; (5) the solution of 
the momentum equation with a pressure-correction method, (6) the reconstruction of the interface velocity. The governing equations 
are solved on a Cartesian regular grid with uniform grid spacing in the three directions 𝑥, 𝑦 and 𝑧. Note that the spacing along 𝑥 is 
computed as Δ𝑥 = 𝑙𝑥∕𝑁𝑥 with 𝑙𝑥 and 𝑁𝑥 the domain dimension and the number of grid cells in the 𝑥 direction, respectively. A similar 
definition applies to 𝑦 and 𝑧 directions. The flow variables are stored in the computational grid using a staggered arrangement, i.e. 
all scalar fields are stored at the cell centers, whereas the components of the velocity field are stored at the corresponding cell faces.

3.1. Interface representation

The first step of the time-marching algorithm consists of the interface transport. The volume fraction 𝜙 for each cell within the 
computational domain is defined using the indicator function 𝐻 as follows:

𝜙 = 1
𝑉𝑐 ∫

𝑉𝑐

𝐻(𝐱, 𝑡) 𝑑𝑉𝑐, (15)

where 𝑉𝑐 =Δ𝑥Δ𝑦Δ𝑧. By applying equation (15) to (1), the following advection equation for 𝜙 can be obtained

𝜕𝜙

𝜕𝑡
+∇ ⋅ (𝐻ℎ𝑡𝐮Γ) = 𝜙∇ ⋅ 𝐮Γ. (16)

The distinguishing characteristic of each VoF method resides in how to approximate the variable 𝐻ℎ𝑡. In this study, we utilize the 
algebraic volume-of-fluid (VoF) method, employing the Multi-dimensional Tangent Hyperbola reconstruction (MTHINC) [44]. The 
core concept of MTHINC is to approximate 𝐻ℎ𝑡 using a hyperbolic tangent function within the cell-containing interface:

𝐻ℎ𝑡(𝐱̂) = 1
2

[
1 + tanh

(
𝛽𝑡ℎ

(
ℙ(𝐱̂) + 𝑑𝑡ℎ

))]
, (17)

where 𝛽𝑡ℎ, 𝑑𝑡ℎ are the sharpness and the normalization parameter, respectively, and 𝐱̂ a local coordinate system 𝐱̂ = [(𝑥 −
𝑥
𝑖− 1

2
)∕Δ𝑥, (𝑦 − 𝑦

𝑗− 1
2
)∕Δ𝑦, (𝑧 − 𝑧

𝑘− 1
2
)∕Δ𝑧]. Initially, the phase indicator 𝐻ℎ𝑡 is approximated using a polynomial ℙ of an arbitrary 

order. Subsequently, the resulting interface between the two phases exhibits a controlled thickness (determined by 𝛽𝑡ℎ) while main-

taining smoothness. This controlled thickness enables accurate computation of the normal vector 𝐧 and the curvature tensor 𝜅
directly from the scalar function 𝜙. More detailed information on the selection of ℙ and the calculations of 𝑑𝑡ℎ, 𝐧 and 𝜅 are found 
in the original paper [44] and in the open source version of the method [45]. Following the reconstruction process, the interface is 
transported (from time step 𝑛 to 𝑛 + 1) using a directional splitting method [46,47]. This approach involves sequentially evaluating 
the numerical fluxes in each direction using, for each split, the latest estimation of the VoF field. Consequently, three preliminary 
fields 𝜙𝑚

𝑖,𝑗,𝑘
(with 𝑚 = [𝑥, 𝑦, 𝑧]) are first computed:

𝜙𝑚
𝑖,𝑗,𝑘

=
𝜙𝑠
𝑖,𝑗,𝑘

− 1
Δ𝑙𝑚

[
𝑓𝑚
+ (𝜙

𝑠
𝑖,𝑗,𝑘

) − 𝑓𝑚
− (𝜙

𝑠
𝑖,𝑗,𝑘

)
]

1 − Δ𝑡

Δ𝑙𝑚

(
𝑢𝑚Γ+

− 𝑢𝑚Γ−

)𝑛 , (18)

where Δ𝑡 is the time step, 𝑠 = [𝑛, 𝑥, 𝑦], [Δ𝑙𝑥, Δ𝑙𝑦, Δ𝑙𝑧] = [Δ𝑥, Δ𝑦, Δ𝑧], [𝑢𝑥Γ, 𝑢
𝑦
Γ, 𝑢

𝑧
Γ] = [𝑢Γ, 𝑣Γ, 𝑤Γ] with 𝑢𝑚Γ± the m-th interface velocity 

component. The numerical fluxes 𝑓± in equation (18) are evaluated using the hyperbolic tangent approximation of 𝐻ℎ𝑡 as detailed 
in Ii et al. [44]. Next, the divergence correction step is implemented to enforce volume conservation of both phases at a discrete 
level:

𝜙𝑛+1
𝑖,𝑗,𝑘

= 𝜙𝑧
𝑖,𝑗,𝑘

−
∑

𝑚=𝑥,𝑦,𝑧

Δ𝑡

Δ𝑙𝑚
𝜙𝑚
𝑖,𝑗,𝑘

(
𝑢𝑚Γ+

− 𝑢𝑚Γ−

)𝑛
. (19)

The correction term found on the right-hand side of eq. (19) corresponds to the adjustment employed in the conventional approach 
6

of directional splitting for a divergence-free advection velocity. In contrast to the original work, where the interface velocity is 
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Fig. 2. Computation of the derivative of the mass fraction 𝑌 𝑔

𝑘
at the interface with Dirichlet boundary condition 𝑌 𝑔

𝑘,Γ . Γ represents the interface location and 𝜃+
𝑥

is the 
normalized distance between the interface and the grid point 𝑥𝑖 .

continuous across the interface, the current study considers the presence of phase change. Consequently, an additional correction 
term is required to accurately account for the non-zero divergence of the interface velocity [29]. This correction term can be expressed 
as follows:

𝜙𝑛+1
𝑖,𝑗,𝑘

= 𝜙𝑧
𝑖,𝑗,𝑘

−
∑

𝑚=𝑥,𝑦,𝑧

Δ𝑡

Δ𝑙𝑚

(
𝜙𝑚
𝑖,𝑗,𝑘

− 𝜙𝑛+1
𝑖,𝑗,𝑘

)(
𝑢𝑚Γ+

− 𝑢𝑚Γ−

)𝑛
. (20)

The additional term incorporated into equation (20) can be understood as an implicit volume deflation step [29]. Its purpose is to 
ensure the utilization of the correct velocity divergence value when updating 𝜙 to the time level 𝑛 + 1. It can be easily shown that 
this term corresponds to the discrete divergence of 𝐮Γ at time level 𝑛; (∇ ⋅ 𝐮Γ)𝑛𝑖,𝑗,𝑘.

3.2. Transport of the vaporized species and interfacial mass flux

The vapor mass transport equation (9) is solved in Ω2 with the Dirichlet boundary condition imposed at 𝐱 = 𝐱Γ reported in 
eq. (12) (assuming saturation conditions at the interface Γ). The equation is advanced in time explicitly as follows:

𝑌
𝑔,𝑛+1
𝑘

− 𝑌
𝑔,𝑛

𝑘

Δ𝑡
= −𝐮𝑛 ⋅∇𝑌

𝑔,𝑛

𝑘
+𝐷

𝑔

𝑘
∇2𝑌 𝑔,𝑛

𝑘
. (21)

Because the mass fraction 𝑌 𝑔

𝑘
is not defined in Ω1, conventional finite differences are not suitable for directly approximating the 

interface gradient. To solve the transport equation, the advection term in Eq. (21) is discretized using an upwind scheme; see e.g. 
[48], and the gradients as below. We treat the spatial discretization in a dimension-by-dimension fashion, and illustrate the methods 
in the x-direction as an example:

𝐮 ⋅∇𝑌
𝑔
𝑘
=

(𝑢𝑖 + |𝑢𝑖|)
2

𝜕𝑌
𝑔

𝑘

𝜕𝑥

||||𝑖− 1
2

+
(𝑢𝑖 − |𝑢𝑖|)

2
𝜕𝑌

𝑔

𝑘

𝜕𝑥

||||𝑖+ 1
2

, (22)

where 𝑢𝑖 is the x-velocity component interpolated into the cell center (i.e. 𝑢𝑖 = (𝑢𝑖+1∕2,𝑗,𝑘 + 𝑢𝑖−1∕2,𝑗,𝑘)∕2). The gradient of 𝑌𝑘 at 𝑖 +1∕2
is computed as follows (the procedure for 𝑖 − 1∕2 is analogous):

𝜕𝑌
𝑔

𝑘

𝜕𝑥

||||𝑖+ 1
2

=
𝑌

𝑔

𝑘,𝑖+1 − 𝑌
𝑔
𝑘,𝑖

Δ𝑥
. (23)

When the interface crosses a grid cell it is necessary to adjust the spatial discretization near the interface to account for the interface 
Dirichlet boundary condition. To achieve this, the finite-difference stencil is adapted within grid cells adjacent to the interface. This 
adaptation involves the creation of a signed distance field (referred to as a level-set field) denoted as 𝜓 , constructed from 𝜙 using 
the technique introduced in [49,50]. In this context, values of 𝜓 > 0 correspond to region Ω1, while values of 𝜓 < 0 correspond to 
Ω2. Consider, for example, a one-dimensional case in which the interface is located between 𝑥𝑖 and 𝑥𝑖+1 as depicted in Fig. 2. The 
interface is located a distance (1 − 𝜃+𝑥 )Δ𝑥 from 𝑥𝑖+1 and 𝜃+𝑥Δ𝑥 from 𝑥𝑖, where 𝜃+𝑥 is the distance from the interface to 𝑥𝑖 normalized 
to the range [0, 1]. The derivative of 𝑌𝑘 at 𝑖 + 1∕2 is then calculated as follows:

𝜕𝑌
𝑔
𝑘

𝜕𝑥

||||𝑖+ 1
2

=
𝑌

𝑔
𝑘,Γ − 𝑌

𝑔
𝑘,𝑖

𝜃+𝑥Δ𝑥
, (24)

where 𝑌 𝑔

𝑘,Γ is computed from Eqs. (12)-(13), with the interface properties estimated from the neighboring values of 𝜓 :

+ 𝑓𝑖+1,𝑗,𝑘|𝜓𝑖,𝑗,𝑘|+ 𝑓𝑖,𝑗,𝑘|𝜓𝑖+1,𝑗,𝑘|

7

𝑓Γ,𝑥 = |𝜓𝑖,𝑗,𝑘|+ |𝜓𝑖+1,𝑗,𝑘| ; (25)
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in the expression above, 𝑓Γ can be interface temperature 𝑇Γ or interface liquid mass-fraction 𝑌 𝑙
𝑘,Γ. Using the level-set function, the 

coefficient 𝜃+𝑥 = (𝑥Γ − 𝑥𝑖)∕Δ𝑥 is computed as proposed in [51]:

𝜃+𝑥 =
|𝜓𝑖,𝑗,𝑘||𝜓𝑖+1,𝑗,𝑘|+ |𝜓𝑖,𝑗,𝑘| . (26)

In case of small values of 𝜃+𝑥 < 0.25, the point 𝑥𝑖 is removed from the one-sided difference stencil to prevent errors as it approaches 
a singular value [52]. This leads to the following expression for the derivative of 𝑌𝑘 :

𝜕𝑌
𝑔
𝑘

𝜕𝑥

||||𝑖+ 1
2

=
𝑌

𝑔

𝑘,Γ − 𝑌
𝑔

𝑘,𝑖−1

(𝜃+𝑥 + 1)Δ𝑥
. (27)

As an explicit temporal discretization of Eq. (21) is employed, the second derivatives in the diffusion term are discretized using the 
first derivatives, previously computed. Taking the term in 𝑥 as an example, the second derivative reads:

𝜕2𝑌 𝑔
𝑘

𝜕𝑥2
= 1

Δ𝑥

(
𝜕𝑌

𝑔
𝑘

𝜕𝑥

||||𝑖+ 1
2

−
𝜕𝑌

𝑔
𝑘

𝜕𝑥

||||𝑖− 1
2

)
. (28)

The above procedure is performed in a dimension-by-dimension manner for directions y and z. To use Eq. (25), the value of the 
liquid mass fraction field, 𝑌 𝑙

𝑘
, is required in the gas phase (Ω2), while this field inherently exists only in the liquid phase (Ω1). 

An extrapolation approach is therefore employed to extend this field into the gas phase, as detailed in section 3.3. The interfacial 
mass flux (10)-(11) is computed only in the gas region by projecting the interfacial gradient along the normal direction, wherein 
the gradient of 𝑌 𝑔

𝑘
is computed in a manner akin to the earlier description and adopting a dimension by dimension approach. Note 

that by employing the procedure here explained, the mass flux 𝑚̇ is available only on the grid nodes pertaining to the gas region. 
However, the values of 𝑚̇ are needed also in some grid points inside the liquid region [39]. Accordingly, 𝑚̇ is extrapolated over a 
narrow band around the interface to populate all cells where |∇𝜙|𝑖,𝑗,𝑘 ≠ 0.

3.3. Transport of the liquid species

The liquid mass fraction fields, denoted as 𝑌 𝑙
𝑘
, are defined exclusively in regions where 𝜓 > 0 (within the liquid phase subdomain). 

However, in order to discretize Eq. (9), ghost values are necessary as the finite difference stencil extends across the interface into 
the gas phase, i.e. where 𝜓 < 0. Ghost values are also required in Eq. (12) to compute the vapor mass fraction of the corresponding 
species at the interface, 𝑌 𝑔

𝑘,Γ. The procedure introduced here aims to provide the necessary ghost values to satisfy the following Robin 
boundary condition,

𝑎𝑌 𝑙
𝑘
+ 𝑏∇𝑌 𝑙

𝑘
⋅ 𝐧 = 𝑓, (29)

where 𝑎, 𝑏 and 𝑓 , in the context of multicomponent evaporation, correspond to 𝑎 = 𝑚̇, 𝑏 = 𝜌𝑔𝐷
𝑔

𝑘
and 𝑓 = 𝑚̇𝑘, as shown in equa-

tion (10). Note here that all the terms in (10) are evaluated at the new time-step 𝑛 + 1. Equation (9) is solved in Ω1 and discretized 
in time explicitly:

𝑌 𝑙,𝑛+1
𝑘

− 𝑌 𝑙,𝑛
𝑘

Δ𝑡
= −𝐮𝑛 ⋅∇𝑌 𝑙,𝑛

𝑘
+𝐷𝑙

𝑘
∇2𝑌 𝑙,𝑛

𝑘
. (30)

The advection term is discretized spatially using an upwind scheme. Taking the 1D discretization in 𝑥 as example, it reads:

𝑢
𝜕𝑌 𝑙

𝑘

𝜕𝑥
=

(𝑢𝑖 + |𝑢𝑖|)
2

𝜕𝑌 𝑙
𝑘

𝜕𝑥

||||𝑖− 1
2

+
(𝑢𝑖 − |𝑢𝑖|)

2
𝜕𝑌 𝑙

𝑘

𝜕𝑥

||||𝑖+ 1
2

, (31)

where the velocity field is interpolated linearly from the cell face to the cell center (i.e. 𝑢𝑖 = (𝑢𝑖+1∕2 + 𝑢𝑖−1∕2)∕2). The gradient of 𝑌 𝑙
𝑘

at 𝑖 + 1∕2 is computed as follows (the procedure for 𝑖 − 1∕2 is analogous):

𝜕𝑌 𝑙
𝑘

𝜕𝑥

||||𝑖+ 1
2

=
𝑌 𝑙
𝑘,𝑖+1 − 𝑌 𝑙

𝑘,𝑖

Δ𝑥
. (32)

The second derivatives in the diffusion term are discretized using the first derivatives, previously computed. Taking once more 
the term in x direction as an example, the second derivative reads:

𝜕2𝑌 𝑙
𝑘

𝜕𝑥2
= 1

Δ𝑥

(
𝜕𝑌 𝑙

𝑘

𝜕𝑥

||||𝑖+1∕2 − 𝜕𝑌 𝑙
𝑘

𝜕𝑥

||||𝑖−1∕2
)
. (33)

If the interface Γ falls between 𝑥𝑖+1 and 𝑥𝑖 as depicted in Fig. 3, the value 𝑌 𝑙
𝑘,𝑖+1 is not defined for the cell 𝑥1,𝑖+1. Hence, a ghost 

value 𝑌 𝑙,𝐺
𝑘,𝑖+1 should be provided to keep a uniform discretization of Eq. (31) and impose the Robin boundary condition, see [53,1]. 
8

This is done in two steps as follows.
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Fig. 3. 2D sketch of Cartesian cell crossed by the interface, Γ. In the plot, 𝑥̃ is the signed distance from the reference point on the interface and 𝑑 is the distance to 
the interface from the grid point inside the fluid domain. The Robin boundary condition is imposed at the interface location obtained with the reconstructed level-set 
field.

First, a linear polynomial reconstruction scheme is utilized to calculate the normal derivative of 𝑌 𝑙
𝑘

in cells adjacent to the 
interface. The linear reconstruction along the normal direction takes the form

𝑌 𝑙
𝑘
(𝑥̃) = 𝜔𝑥̃+ 𝜒, (34)

where 𝜔 and 𝜒 can be obtained by linear extrapolation of the value on the liquid phase to the interface:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑌 𝑙
𝑘
(𝑑) = 𝜔𝑑 + 𝜒 = 𝑌 𝑙

𝑘,𝑖
,

𝑌 𝑙
𝑘
(0) = 𝜒 = 𝑌 𝑙

𝑘,Γ,

𝑌 𝑙,′
𝑘
(0) = 𝜔 =

𝑎𝑌 𝑙
𝑘,Γ − 𝑓

𝑏
.

(35)

Here 𝑥̃ is the signed distance from the reference point on the interface, 𝑌 𝑙
𝑘,Γ is the concentration at the interface and 𝑑 the 

distance of the first point in the liquid side 𝑥𝑖 from the interface, see Fig. 3. Given that the normal vector points from the liquid 
phase (Ω1) toward the gas phase (Ω2), the required normal derivative is essentially identical to −𝑚, and can be easily obtained once 
the coefficients of the linear extrapolation are known from the system in (35), resulting in the following expression:

∇𝑌 𝑙
𝑘
⋅ 𝐧 = −𝜔 =

𝑓 − 𝑎𝑌 𝑙
𝑘,𝑖

𝑎𝑑 + 𝑏
. (36)

For the remaining cells, which are not adjacent to the interface, the normal derivative can be directly calculated using a second-order 
central difference scheme. Consequently, the scalar 𝑌 𝑙

𝑘,𝑛
can be computed inside the subdomain Ω1. Note that, in Eq. (36), 𝑑 can be 

replaced by the level-set value pertaining to the cells adjacent to the interface, 𝜓𝑖.

Secondly, to obtain the ghost values 𝑌 𝑙,𝐺
𝑘,𝑖+1, the normal derivative and the discrete variable, 𝑌 𝑙

𝑘
, are extrapolated in the normal 

direction using a combination of the linear polynomial reconstruction in the normal direction and a second-order PDE extrapolation 
approach [54]. This approach was originally proposed to extrapolate values from the known subdomain of 𝑌 𝑙

𝑘
to the unknown 

subdomain in the normal direction. It amounts to solving a series of sequential PDEs to the steady state:

𝜕𝑌 𝑙
𝑘,𝑛

𝜕𝜏
= −∇𝑌 𝑙

𝑘,𝑛
⋅ 𝐧𝑝𝑑𝑒, (37)

𝜕𝑌 𝑙
𝑘

𝜕𝜏
= −(∇𝑌 𝑙

𝑘
⋅ 𝐧𝑝𝑑𝑒 − 𝑌 𝑙

𝑘,𝑛
), (38)

where

𝑌 𝑙
𝑘,𝑛

=∇𝑌 𝑙
𝑘
⋅ 𝐧𝑝𝑑𝑒, (39)

is the directional derivative in the extrapolation direction with 𝐧𝑝𝑑𝑒 = 𝐧 for liquid-to-gas extrapolation and  is a Heaviside function 
that keeps the values in the known subdomain (Ω1) undisturbed and 𝜏 is a pseudo time used to advance eqs. (38)-(39) to the 
steady state solution. An upwind scheme is employed to discretize these PDEs. Once Eqs. (37) and (38) are solved to a steady state 
iteratively, we obtain the ghost value 𝑌 𝐺,𝑙

𝑘,𝑖+1 in the originally unknown subdomain; this will have a directional derivative equal to 
the extended 𝑌 𝑙

𝑘,𝑛
in Eq. (37). The numerical example presented in section 4 demonstrates that the ghost values are second-order 
9

accurate.
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3.4. Temperature equation

The temperature equation (14) is solved using a whole domain approach. First, a prediction temperature field 𝑇 ∗ is computed 
using the Adams–Bashforth method,

𝑇 ∗ = 𝑇 𝑛 +Δ𝑡𝑛+1
(
𝑓𝑡,1𝑛 − 𝑓𝑡,2𝑛−1

)
, (40)

where 𝑓𝑡,1 = (1 + 0.5Δ𝑡𝑛+1∕Δ𝑡𝑛) and 𝑓𝑡,2 = 0.5Δ𝑡𝑛+1∕Δ𝑡𝑛 are the coefficients of the Adams-Bashforth scheme. In equation (40), the 
operator  includes all the convective and diffusive terms and it is defined below in a semi-discrete form:

𝑛 = −∇ ⋅ (𝐮𝑛𝑇 𝑛) + 1
(𝜌𝑐𝑝)𝑛+1

∇ ⋅ (𝑘𝑛+1Δ𝑇 𝑛). (41)

Next, the source terms in Eq. (14) are included using a first-order Euler scheme,

𝑇 𝑛+1 − 𝑇 ∗

Δ𝑡𝑛+1
= −(𝑚̇𝛿Γ)𝑛+1

ℎ𝑙𝑣

(𝜌𝑐𝑝)𝑛+1
+

𝑁𝑣∑
𝑘=1

𝐷
𝑔

𝑘

( 𝑐
𝑣𝑎𝑝

𝑝,𝑘
− 𝑐𝑝2

𝑐𝑛+1𝑝

)
∇𝑇 ∗ ⋅∇𝑌

𝑔,𝑛+1
𝑘

(1 − 𝜙𝑛+1), (42)

where the arithmetic average is employed for the terms 𝜌𝑐𝑝 and 𝑐𝑝. The spatial discretization technique adopted in this study employs 
the 5th-order WENO scheme, as outlined in reference [55] and the diffusion term is treated using conventional central differences.

3.5. Interface velocity construction

As a consequence of phase change, the velocity 𝐮 in the one-fluid formulation experiences a discontinuity across the interface, 
which makes it unsuitable to transport the VoF function. Following the approach proposed in [29], we construct an interface velocity 
for the advection of 𝜙 in three steps:

1. The Stefan flow velocity 𝐮𝑠 is computed to account for the jump in the flow velocity 𝐮 across the interface:

⎧⎪⎨⎪⎩
∇2Ψ = 𝑚̇

(
1
𝜌2

− 1
𝜌1

)|∇𝜙|,
𝐮𝑠 =∇Ψ,

(43)

where Ψ denotes the velocity potential, and the Poisson equation for Ψ can be solved using an efficient FFT-based direct solver. 
The use of direct solvers for equation (43) allows for overcoming potential challenges of stiffness arising from high interfacial 
mass flux values.

2. The liquid velocity is extended into the gas subdomain by subtracting the Stefan velocity 𝐮𝑠 to the corrected velocity 𝐮:

𝐮1,𝑒 = 𝐮− 𝐮𝑠. (44)

Note that 𝐮1,𝑒 is divergence-free by construction.

3. The interface velocity 𝐮Γ is finally computed as:

𝐮Γ = 𝐮1,𝑒 −
𝑚̇

𝜌1
𝐧. (45)

The interface velocity 𝐮Γ, as obtained from (45), is then used to advect 𝜙, as described in section 3.1. Furthermore, it is 
worth noting that, similarly to what is commonly done in the prediction/correction procedure for the Navier-Stokes solver, the 
boundary conditions for Ψ and 𝐮1,𝑒 have to be prescribed consistently. They are set to be the same as those of the pressure and 
prediction velocity, respectively. Additionally, the same boundary conditions used for 𝐮1,𝑒 are employed for 𝐮Γ.

3.6. Pressure correction algorithm

The two-fluid Navier-Stokes solver employs a projection method [56] along with the pressure-splitting technique outlined in [57]. 
The primary advantage of this method is the reduction of the variable coefficient Poisson equation, which arises when solving the 
incompressible Navier-Stokes equations for two-fluid flows. By splitting the variable density pressure-gradient term, the equation 
can be reduced to a constant coefficient equation. This transformation allows us to use an FFT-based, fast Poisson solver, which is 
about one order of magnitude faster than a standard iterative solver [58]. It is important to highlight that the numerical model for 
evaporation proposed here can be readily applied to any conventional two-fluid solvers, without the need to utilize the pressure-

splitting technique.

The solution procedure employed in this study utilizes an Adams-Bashforth method to progress the solution from time step 𝑛 to 
𝑛 + 1. The semi-discrete form of the procedure is summarized as follows:(

𝐮∗∗ − 𝐮𝑛
)

𝑛 𝑛−1 (𝜎𝜅𝐧𝛿Γ + 𝜌̂𝐠)𝑛+1
10

Δ𝑡𝑛+1
= 𝑓𝑡,1 − 𝑓𝑡,2 +

𝜌𝑛+1
, (46)
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𝐮∗ = 𝐮∗∗ − Δ𝑡𝑛+1

𝜌0

[(
1 −

𝜌0

𝜌𝑛+1
∇𝑝̂

)
+∇𝑝𝑛

]
, (47)

∇2𝛿𝑝𝑛+1 =
𝜌0

Δ𝑡𝑛+1

[
∇ ⋅ 𝐮∗ − 𝑚̇𝑛+1

(
1
𝜌2

− 1
𝜌1

)
𝛿Γ

]
, (48)

𝐮𝑛+1 = 𝐮∗ − Δ𝑡𝑛+1

𝜌0
∇𝛿𝑝𝑛+1, (49)

𝑝𝑛+1 = 𝑝𝑛 + 𝛿𝑝𝑛+1, (50)

where 𝑛 and 𝑛−1 in equation (46) include the convective and diffusive terms in Eq. (5) computed at the current and previous 
time levels. 𝐮∗ denotes the predicted velocity, Δ𝑡𝑛+1 and Δ𝑡𝑛 represent the time step computed at time 𝑛 and 𝑛 + 1 to meet the 
temporal stability requirements, 𝜌0 = min(𝜌1, 𝜌2). The intermediate velocity 𝐮∗∗ is obtained with the contribution from the terms 
due to the pressure splitting. Note that 𝑝̂ represents the time-extrapolated pressure between the current and the old time-step, i.e. 
𝑝̂ = (1 +Δ𝑡𝑛+1∕Δ𝑡𝑛)𝑝𝑛 − (Δ𝑡𝑛+1∕Δ𝑡𝑛)𝑝𝑛−1. This system of equations is similar to that used in [58], except for the last term of Eq. (48)

which incorporates the contribution of phase change to the velocity divergence at the interface, i.e. Eq. (4), regularized over the 
grid cells where 𝛿 ≠ 0. The continuum surface force model (CSF) [59] is used for discretizing the surface tension term, which makes 
the final velocity field numerically differentiable. Nevertheless, due to significant variations in flow velocity across the interface, 
employing second-order central schemes for the spatial derivative of the convective terms in  is not preferable. Therefore, a 
QUICK scheme [60] is employed for the convective term, while second-order central differences are used for the diffusion terms. The 
constant coefficient Poisson equation (48)) is solved with a FFT-based solver [37] that can be employed for different combinations 
of homogeneous pressure boundary conditions. Finally, the velocity field is corrected as in equation (49) to impose the divergence 
constraint and the pressure is updated as in equation (50).

3.7. Overall solution procedure and time marching

We briefly outline the overall solution procedure in Algorithm 1 for clarity. Furthermore, it is important to note that following 
each iteration, the time step Δ𝑡𝑛+1 is updated based on the stability constraints of the entire system:

Δ𝑡𝑛+1 = CFL min(Δ𝑡𝑐 ,Δ𝑡𝜎 ,Δ𝑡𝜇,Δ𝑡𝑒,Δ𝑡𝑚)𝑛+1, (51)

where Δ𝑡𝑐 , Δ𝑡𝜎 , Δ𝑡𝜇 , Δ𝑡𝑒 and Δ𝑡𝑚 are the maximum allowable time steps due to convention, surface tension, momentum diffusion, 
thermal energy diffusion, and vapor (also liquid) mass diffusion. These are determined as suggested in [61]:

Δ𝑡𝑐 =

(|𝑢𝑥,𝑚𝑎𝑥|
Δ𝑥

+
|𝑢𝑦,𝑚𝑎𝑥|
Δ𝑦

+
|𝑢𝑧,𝑚𝑎𝑥|
Δ𝑧

)−1

,

Δ𝑡𝜎 =

(
(𝜌1 + 𝜌2)𝑚𝑖𝑛(Δ𝑥3,Δ𝑦3,Δ𝑧3)

4𝜋𝜎

)0.5

,

Δ𝑡𝜇 =

[
max

(
𝜇1
𝜌1

,
𝜇2
𝜌2

)(
2

Δ𝑥2
+ 2

Δ𝑦2
+ 2

Δ𝑧2

)]−1

,

Δ𝑡𝑒 =

[
max

(
𝑘1

𝜌1𝑐𝑝1
,

𝑘2
𝜌2𝑐𝑝2

)(
2

Δ𝑥2
+ 2

Δ𝑦2
+ 2

Δ𝑧2

)]−1

,

Δ𝑡𝑚 =

[
max

(
𝐷𝑙

𝑘
,𝐷

𝑔

𝑘

) ( 2
Δ𝑥2

+ 2
Δ𝑦2

+ 2
Δ𝑧2

)]−1

,

(52)

where |𝑢𝑖,𝑚𝑎𝑥| represents an estimation of 𝑖th component of the flow velocity. We have observed that selecting CFL = 0.25 provides 
a stable and accurate temporal integration.

Algorithm 1 Pseudo-code of the proposed methodology.

1: 𝜙, 𝐮, 𝑝, 𝑌 𝑙,𝑔

𝑘
, 𝑇 are initialized and 𝑛 is set to 0.

2: while 𝑡 < 𝑡𝑡𝑜𝑡 do

3: Set 𝑛 = 𝑛 + 1 and calculate Δ𝑡𝑛+1 using Eq. (51).

4: 𝜙𝑛+1 is calculated from Eq. (20). The generic 𝜂 and 𝜓 are updated using 𝜙𝑛+1 .

5: 𝑌
𝑔,𝑛+1
𝑘

, 𝑚̇𝑛+1 are calculated from Eq. (21) and Eq. (11), respectively.

6: Coefficients of Robin b.c are determined, and 𝑌 𝑙,𝑛+1
𝑘

is calculated from Eq. (30) as outlined in section 3.3.

7: 𝑇 𝑛+1 is calculated from Eq. (42).

8: Solve the two-fluid Navier-Stokes equations (5) using the pressure-correction Eqs. (46)-(50); (𝐮, 𝑝)𝑛+1 are obtained.

9: 𝐮𝑛+1
Γ is calculated from Eq. (45) using the constructed divergence-free liquid velocity 𝐮𝑛+1

1,𝑒 .

10: end while
11
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Fig. 4. Error analysis: 𝐿∞ norm (left) and 𝐿1 norm (right) of the error in the solution of the Poisson equation over a circular domain. The dashed lines are first and 
second-order visual guides. The slopes of the least-square fit of the 𝐿1 and 𝐿∞ error norms are −2.06 and −2.03.

4. Numerical verification and validation

In this section, we present the results of the validation of the proposed numerical algorithm. We first consider a Poisson and 
Stefan problem to validate the correct imposition of the Robin boundary condition at the interface. Next, we employ an analytical 
solution for the evaporation of binary droplets to validate the overall numerical algorithm. Furthermore, to test the ability of the 
code to handle droplet evaporation under deformation, we simulate a sedimenting droplet in a confining container. Finally, the 
three-dimensional simulation of an evaporating droplet in homogeneous isotropic turbulence is performed.

4.1. Poisson problem over a circular domain

In this test case, we prove that the proposed approach is second-order accurate in imposing a Robin boundary condition at a 
non-planar domain boundary. To this purpose, we perform a test similar to that in References [53,1]. Specifically, we solve a Poisson 
equation Δ𝜁 = 𝑔 over a circular subdomain Ω+ with radius 𝑅 = 0.75, which is placed at the center of the computational domain 
Ω = [−1, 1] × [−1, 1]. The exact solution 𝜁𝑒𝑥𝑎𝑐𝑡 = 𝑒𝑥𝑦 is set within Ω+ and should be extrapolated into a narrow band in Ω−. The 
Robin boundary condition in Eq. (29) is imposed on the interface with 𝑎 = 1 and 𝑏 = 1. The 𝑓 coefficient becomes in this case 
𝑓 = 𝑎𝜁𝑒𝑥𝑎𝑐𝑡 + 𝑏∇𝜁𝑒𝑥𝑎𝑐𝑡 ⋅ 𝑛. The evolution of the error, measured by the 𝐿1 and 𝐿∞ norm, upon grid refinement is reported in Fig. 4, 
where it can be seen that the solution is second-order accurate.

The 𝐿1 and 𝐿∞ norms are calculated as follows:

𝐿1 = |𝜁 − 𝜁𝑒𝑥𝑎𝑐𝑡‖1 = 𝑁𝑦∑
𝑗=1

𝑁𝑥∑
𝑖=1

|𝜁𝑖,𝑗 − 𝜁𝑒𝑥𝑎𝑐𝑡
𝑖,𝑗 |,

𝐿∞ = ‖𝜁 − 𝜁𝑒𝑥𝑎𝑐𝑡‖∞ =𝑚𝑎𝑥 (|𝜁𝑖,𝑗 − 𝜁𝑒𝑥𝑎𝑐𝑡
𝑖,𝑗 |), (53)

where 𝑁𝑥 and 𝑁𝑦 are the number of grid points along the 𝑥 and 𝑦 direction.

4.2. Two-dimensional Frank sphere problem with Robin boundary condition

The two-dimensional Frank sphere problem [62] is a classical Stefan problem that describes the growing solidification of a 
cylinder (in 2D) and a sphere (in 3D). Since it has an exact and explicit solution, the Frank sphere serves as a benchmark for a 
phase-changing solver where a Dirichlet boundary condition is imposed at the moving interface; however, following the approach 
proposed in [1], we reformulate the problem so that a Robin boundary condition is employed. The solidification process, where the 
phase interface expands outwards while keeping its shape, is driven by diffusion, and therefore, the temperature field is governed by 
the following equation:

𝜕𝑇

𝜕𝑡
= 𝑘∇2𝑇 . (54)

Here, we assume 𝑘 = 1 and 𝑇 = 0 in the solid phase, defined in Ω1. For the liquid phase, defined in Ω2, 𝑇 is given by(
𝐸1(𝑠2∕4)

)

12

𝑇 = 𝑇∞ 1 −
𝐸1(𝑠20∕4)

, (55)
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Fig. 5. Contour plot of the temperature fields at 𝑡 = 1 and 𝑡 = 2 for the Frank cylinder problem. The black contour represents the interface location. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

where 𝑠 = 𝑟𝑡−1∕2, 𝑟 =
√

𝑥2 + 𝑦2 and 𝐸1(𝑧) = ∫ ∞
𝑧 𝜉−1𝑒−𝜉𝑑𝜉, the error function. Note that the far-field temperature 𝑇∞ can be expressed 

in terms of the initial value of 𝑠,

𝑇∞ = −
𝑠20
4
𝐸1

(
𝑠20
4

)
𝑒

𝑠20
4 (56)

Once 𝑇∞ is known from (56), the normal derivative of the temperature can be computed as

∇𝑇 ⋅ 𝐧 =
2𝑇∞

𝐸1(𝑠20∕4)
𝑒−𝑠2∕4𝑠−1𝑡−1∕2. (57)

Accordingly, the interface velocity immediately follows

𝐮Γ = −

(
2𝑇∞

𝐸1(𝑠20∕4)
𝑒−𝑠2∕4𝑠−1𝑡−1∕2

)
⋅𝐧, (58)

then used to advect the interface using Eq. (16). See [62] for more details.

Here, we undertake a replication of an experiment akin to the one previously conducted in [53]. A solid disk with an initial radius 
of 𝑟 = 0.75 is positioned at the center of the computational domain Ω = [−3, 3] × [−3, 3]. The far-field temperature, denoted as 𝑇∞, 
is set to −0.246. Along the interface, we apply the Robin boundary condition described in equation (29), with the coefficients 𝑎 = 1
and 𝑏 = 1. The simulation is conducted over the time interval from 𝑡 = 1 to 𝑡 = 2. The temperature fields at time instances 𝑡 = 1 and 
𝑡 = 2, with a grid resolution of 2562, are visually compared in Fig. 5. The visualization shows the gradual transition of supercooled 
liquid into the solid state, accompanied by the expansion of the interface.

The accuracy of the numerical solution is presented in Figs. 6 and 7 in terms of liquid phase temperature and radius 𝑟 of the 
solid region. The radius of the cylinder is computed as 𝑟 =

√
𝐴∕𝜋, with 𝐴 the cross-sectional area retrieved from the VoF field. As 

expected, both the temperature and radius are first-order accurate due to the approach used to estimate the temperature gradient 
when estimating the interface velocity, which is also first-order accurate [1].

4.3. Binary droplet evaporation

The proposed methodology is now applied to our problem of interest, i.e. the evaporation of a bi-component droplet. For clarity, 
the physical parameters defining the different setups are displayed in Table 1. We consider two cases: (i) a static droplet in an 
isothermal environment in 4.3.1, (ii) a moving droplet which evaporates with thermal effects in 4.3.2.

All material properties in 4.3.1 are chosen to correspond to a Hexadecane-Heptane binary droplet in air at a temperature of 400𝐾
and pressure of 15 bar, except for the liquid component mass-diffusion rate, which is higher. This choice is made to ensure an almost 
homogeneous composition for the liquid phase, which is one of the assumptions of the analytical solution we compare our results 
13

against in the next subsection.
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Fig. 6. Error analysis in the 𝐿∞ norm (left) and 𝐿1 norm (right) of the liquid phase temperature for the Frank cylinder problem. The circular markers are numerical 
data and the dashed lines are first and second-order visual guides.

Fig. 7. Error analysis in the 𝐿∞ norm (left) and 𝐿1 norm (right) of the radius of the solid region for the Frank cylinder problem. The circular markers are numerical 
data and the dashed lines are first and second-order visual guides. The radius is computed by the integral of the VoF field over the whole domain.

Table 1

Governing parameters for the simulations of binary droplet evaporation. The definitions of the different non-dimensional parameters are given in Section 2.4. 
For all cases 𝑙𝑟𝑒𝑓 = 𝑑0 , where 𝑑0 is the initial droplet diameter. The mean vapor diffusion coefficient is 𝐷̂𝑙𝑔 = 𝑌 𝑙

1𝐷
𝑙
1 + (1 − 𝑌 𝑙

1 )𝐷
𝑙𝑔

2 , where 𝑌 𝑙
1 is the initial liquid 

mass fraction of the specie with lower volatility (i.e. heavier). The other liquid-phase thermophysical properties are calculated using the same analogy. 𝑇𝑔,0
denotes the initial gas temperature.

Sec. Re We Fr Pr Sc
𝑔

1 Sc
𝑔

2 Sc𝑙1 Ste r𝜌 r𝜇 r𝑐𝑝 r𝜆 r𝑀,1 r𝑀,2 u𝑟𝑒𝑓 T𝑟𝑒𝑓 Y𝑙
1

4.3.1 0.3 0.1 ∞ N/A 3.6 2.1 1.4 N/A 52 27 N/A N/A 7.8 3.4 𝐷̂𝑙𝑔∕𝑑0 N/A 0.9

4.3.2 2.06 0.08 1 0.7 3.6 2.1 var 1.33 30 18.28 4.16 3.23 7.8 3.4
√|𝐠|𝑑0 𝑇𝑔,0 0.1-0.9

4.3.3 - 0.01 N/A 0.7 3.6 2.1 1.0 1.33 48.5 18.28 4.16 3.23 7.8 3.4 𝑈𝑟𝑚𝑠 𝑇𝑔,0 0.5

4.3.1. Isothermal droplet evaporation

This test case considers a binary droplet undergoing isothermal phase change, where a difference between the species concentra-

tion at the interface and the domain boundary drives evaporation. Hence, we solve the vapor transport equation (9) with Dirichlet 
boundary conditions 𝑌 𝑔

𝑘,∞ = 0 at the domain boundaries and imposed 𝑌 𝑔

𝑘,Γ at the interface, which is computed from eq. (12). This 
simple configuration allows us to verify the numerical method for phase-changing two-fluid flows, decoupled from the energy trans-

port equation. The circular droplet has an initial diameter 𝐷0, it is centered in a square domain with dimensions [−2𝐷0, 2𝐷0]2, and 
zero-pressure outflow boundaries. The steady-state solution of the diffusion equation (9) with 𝐮 = 0 is used as an initial condition 
for 𝑌 𝑔

𝑘
. The other physical parameters are reported in Table 1. We validate our results against the analytical rapid-mixing model 
14

by Wilms [63], which provides an analytical solution for two-component droplet evaporation, yielding, in particular, an explicit 
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Fig. 8. Comparison of the numerical solution for a bi-component droplet evaporation in quiescent fluid with the analytical solution in [63] based on the rapid-mixing 
model. The dashed line denotes the dimensionless droplet diameter (𝐷∕𝐷0)2 and the dash-dotted line corresponds to the molar mass-fraction of the less volatile 
component, 𝑋𝑙

1 .

expression for the temporal evolution of the droplet diameter and the droplet composition. The theoretical approach is called the 
rapid-mixing model, as it assumes fast mixing of the different liquids within the droplet so that the liquid mixture is always homoge-

neous. For completeness, we report below the relations for the droplet diameter and the temporal evolution of droplet composition:

𝐷(𝑋𝑙
1)

𝐷0
=

[(
𝑋𝑙

1

𝑋𝑙
1,0

) 𝛾
1−𝛾

(1 −𝑋𝑙
1,0

1 −𝑋𝑙
1

) 1
1−𝛾

( 𝑋𝑙
1 −

1
1−𝜀

𝑋𝑙
1,0 −

1
1−𝜀

)] 2
3

, (59)

𝑡(𝑋𝑙
1) = −

𝐷2
0𝑅

𝑚𝑜𝑙𝑇

8𝐷𝑙𝑔

1 𝑝𝑠𝑎𝑡1,Γ𝑉
𝑚𝑜𝑙
1

[(
1

1 −𝑋𝑙
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(
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,

(60)

where 𝑋𝑙
1 represents the molar fraction of the heavier component, while 𝑋𝑙

1,0 denotes its initial molar fraction. The parameter 𝜀 is 
defined as the ratio of the molar volumes (𝑉 𝑚𝑜𝑙

1 ∕𝑉 𝑚𝑜𝑙
2 ) of the pure components and 𝛾 = (𝐷𝑔

2∕𝐷
𝑔

1)(𝑝
𝑠𝑎𝑡
2,Γ∕𝑝

𝑠𝑎𝑡
1,Γ). The analytical solution 

we refer to assumes the saturation of the species vapor pressure at the droplet interface. This condition is indeed met in our numerical 
model, where we enforce saturation vapor pressure as a Dirichlet boundary condition at the interface. The accuracy of the analytical 
solution hinges on the initial molar fraction of the heavier species. In essence, the lower the value of 𝑋𝑙

1,0, the more precise the 
analytical solution becomes, see [63] for more details. We, therefore, initialize the droplet composition with 𝑋𝑙

1,0 = 0.8 for our 
numerical experiment.

Fig. 8 presents the grid convergence study for the time history of the molar mass-fraction of the heavier component with lower 
volatility, 𝑋𝑙

1, and of the evolution of droplet diameter. The numerical results show excellent agreement with the analytical solution, 
even for relatively coarse grids. The figure highlights a notable trend: as the concentration of the less volatile component increases, 
the evaporation rate of the droplet mixture decreases. This process continues until the droplet mainly consists of the low-volatility 
component (the molar fraction of the heavier component approaches 1), effectively becoming a monocomponent droplet. Thereafter, 
the decrease of the droplet area (𝐷∕𝐷0)2 becomes linear. A grid convergence study is performed with the global mass conservation 
error as the target parameter. The global mass conservation error of each species is defined as

𝜀𝑚,𝑘 =
|||||
Δ𝑀

𝑙𝑖𝑞
𝑘

+Δ𝑀
𝑣𝑎𝑝
𝑘

𝑀
𝑙𝑖𝑞

𝑘,0

|||||, (61)

where Δ𝑀
𝑙𝑖𝑞

𝑘
and Δ𝑀

𝑣𝑎𝑝

𝑘
denote the species “𝑘” variations as part of the mass of the liquid droplet and in the vapor mass, respec-
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tively. These are computed as Δ𝑀
𝑙𝑖𝑞

𝑘
=𝑀

𝑙𝑖𝑞

𝑘,0 −𝑀
𝑙𝑖𝑞

𝑘,𝑡
and Δ𝑀

𝑣𝑎𝑝

𝑘
=𝑀

𝑣𝑎𝑝

𝑘,0 −𝑀
𝑣𝑎𝑝

𝑘,𝑡
, where 𝑀𝑙𝑖𝑞

𝑘
and 𝑀𝑣𝑎𝑝

𝑘
are the species liquid and 
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Fig. 9. The mass conservation error of the light (left) and heavy species (right) for different grid resolutions, showing the grid convergence as the grid is refined. The 
insets show the order of accuracy of the method at 𝑡∕𝐷2

0 = 3.5 × 107 .

vapor masses. The subscript ‘0’ denotes the initial values, and ‘𝑡’ the corresponding variables at time instant 𝑡. The mass of each 
species in the liquid phase is computed as

𝑀
𝑙𝑖𝑞

𝑘
=∫

𝑉

𝜌𝑙𝜙𝑌
𝑙
𝑘
𝑑𝑉 (62)

and the mass of the species in the gas phase as

𝑀
𝑔𝑎𝑠

𝑘
=∫

𝑉

𝜌𝑔(1 − 𝜙)𝑌 𝑔

𝑘
𝑑𝑉 +

𝑡

∫
0
∮
𝑆

(
𝜌𝑔𝑌

𝑔

𝑘
𝐮+ 𝜌𝑔𝐷

𝑔

𝑘
∇𝑌

𝑔

𝑘

)
⋅ 𝐧 𝑑𝑆 (63)

which also accounts for the integration of the convective and diffusive mass fluxes across the domain boundaries. Fig. 9 illustrates 
the temporal evolution of global mass conservation errors for both the light and heavy components using different grid resolutions. 
As the grid is refined, the error converges towards zero, highlighting the consistency and grid convergence of our numerical model. 
Additionally, the insets in the figure display the order of convergence for this particular test case, demonstrating convergence rates 
above first order.

Next, we display in Fig. 10(a) a visualization of the non-dimensional vapor mass of both species from the simulation at the 
highest resolution (256 × 256). The vapor mass fields are only defined within the gas phase, with the highest level of vapor mass at 
the interface. The results also reveal a higher level of vapor mass for species 2, attributed to its lower Schmidt number. The gradients 
of these fields are used to compute the interfacial mass flux, which is then extrapolated over a band of about 6Δ𝑙 around the interface, 
see Fig. 10(b) where we depict the dimensionless mass flux. This field is employed to advect the interface in the subsequent step and 
as a source term in the pressure Poisson equation. Panel (b) also shows the expected velocity field 𝐮, with an obvious jump across 
the interface, Γ. Finally, Fig. 10(c) reports the extrapolated liquid mass fraction of the light component, 𝑌 𝑙,𝑒

1 . This field remains 
undisturbed and is equal to the liquid mass fraction field inside the droplet; in the gas phase, it is determined through the approach 
detailed in section 3.3. This extrapolated field is used to update the value of the interfacial vapor mass fraction 𝑌 𝑔

1,Γ at the next 
time-step through Eq. (12). The data in panel (c) also confirms the validity of the assumption of a homogeneous droplet mixture.

4.3.2. Two-dimensional sedimenting droplet in a confined container

In this section, we consider a two-dimensional sedimenting bicomponent droplet, which evaporates under the action of gravity 
and deformation. This setup has been proposed in [29], and we reproduce it here in the case of a multicomponent droplet. The 
purpose is to show that the method has the ability to handle the evaporation of bi-component droplets under deformation, close 
hydrodynamic interactions with solid boundaries, and large temperature gradients.

The droplet is initially at rest in a domain with dimensions [0, 2.5𝑑0] × [0, 20𝑑0], off-center at the top of the container, with center 
of mass location 𝐱𝑐 = [0.625, 18]𝑑0. No-slip and no-penetration boundary conditions are imposed at all the boundaries, except for the 
top boundary, where a zero-pressure outlet is prescribed. Dirichlet boundary conditions for temperature (𝑇𝑤) and vapor mass fraction 
(𝑌

𝑔

𝑘
= 0) are prescribed at the walls, and (zero) Neumann at the outlet. Additionally, Neumann boundary conditions are enforced on 

all boundaries for the liquid mass fraction (𝑌 𝑙
𝑘
). The initial temperature field is uniform (𝑇0 = 0.75𝑇 𝑠𝑎𝑡 < 𝑇𝑤), and the initial mass 

fraction field is set as in the previous section. The remaining relevant flow properties are reported in Table 1. Three configurations of 
16

different evaporation rates are studied. In the first two cases, a constant wall temperature is maintained while decreasing the liquid 
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Fig. 10. Isothermal evaporation of a static droplet. (a): contours of the normalized vapor mass fraction fields 𝑌 ∗
𝑘
= (𝑌 𝑔

𝑘
− 𝑌

𝑔

𝑘,∞)∕(𝑌 𝑔

1,Γ − 𝑌
𝑔

𝑘,∞), where 𝑘 = 1 corresponds 
to the heavy component and 𝑘 = 2 to the light component; (b): velocity field with contours of the dimensionless interfacial mass flux 𝑚̇∗ = 𝑚̇𝑑0∕(𝜌2𝐷̂𝑔 ) and, (c): 
contours of the extrapolated liquid mass fraction field at 𝑡𝐷̂𝑙𝑔∕𝑑2

0 = 0.545. The interface location (i.e. 𝜙 = 0.5) is depicted by the solid white line.

mass fraction of the heavier component (𝑌 𝑙
1 ), shifting from 0.9 in the initial case to 0.1 in the second case. In the last case, we set 

𝑌 𝑙
1 = 0.1 but with a higher wall temperature. To better characterize the flow condition, we introduce a wall Stefan Ste𝑤 number 

based on the difference between the imposed wall temperature and the initial temperature, i.e., Ste𝑤 ≡ 𝑐𝑝,2(𝑇𝑤 − 𝑇0)∕ℎ𝑙𝑣. Note that 
Ste𝑤 is fixed to 0.026 for the first two cases, while it is increased to Ste𝑤 = 0.26 in the last third case.

Fig. 11(a) illustrates the time history of the droplet position during sedimentation for the three scenarios under examination. Due 
to the droplet-wall interactions in this confined geometry and the inertia of the droplet, all examples exhibit an oscillatory trajectory. 
Indeed, the evaporating flow is quenched by the wall, leading to a force on the droplet directed away from it. As the concentration 
of the droplet’s more volatile component increases (first and second case), the evaporation rate also rises, resulting in a stronger 
wall-repelling force and, consequently, increased droplet oscillation. This effect is especially pronounced in the case with Ste𝑤 = 0.26
and 𝑌 𝑙

1 = 0.1, where the droplet exhibits significantly greater horizontal displacement compared to the other cases, as depicted in 
panel (b) where we report the x-coordinate of the droplet center of mass.

Fig. 11(c) shows the time evolution of the droplet total mass, and as expected, the case with higher Ste𝑤 and lower 𝑌 𝑙
1 exhibits 

the highest evaporation rate. The temperature on the side of the droplet closest to the wall is larger than that on the opposite side 
at early times (as depicted in Fig. 12), hence a stronger Stefan flow, which generates a stronger wall-repelling force. After a while, 
heat conduction smears out the temperature gradients in the gaseous phase, and the droplet oscillation reduces. Finally, during the 
later stages, the droplet reaches the bottom of the container with a notable reduction in mass. Nevertheless, the resultant Stefan 
flow attains a level capable of supporting the droplet’s weight, thus causing the droplet to persist in a suspended state similar to the 
Leidenfrost effect observed in several experiments.

The grid convergence study is shown in Fig. 13 for the configuration with the largest evaporation rate, i.e. Ste𝑤 = 0.26 and 
𝑌 𝑙
1 = 0.1. The results confirm that a resolution of 256 × 2048 grid points (about 100 grid points over the initial droplet diameter) is 

necessary to fully resolve the problem.

4.3.3. Evaporating droplet in isotropic turbulence

Finally, we perform a simulation for non-isothermal evaporation, initializing a single droplet with an initial diameter of 𝐷0
in homogeneous isotropic turbulence (HIT), where the flow Reynolds number based on the Taylor length-scale is 𝑅𝑒𝜆 ≈ 75. The 
simulation is conducted in a three-dimensional triply periodic domain of size 𝑥 × 𝑦 × 𝑧 = 4𝐷0 × 4𝐷0 × 4𝐷0, discretized with a 
uniform grid of size 256 ×256 ×256. A forcing term is added to the right-hand side of eq. (5) to sustain turbulence by injecting energy 
17

at large scales. Specifically, we use here the Arnold–Beltrami–Childress (ABC) forcing [64]
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Fig. 11. (a) Trajectory of the droplet’s center of mass (red dashed line) for the case of a sedimenting droplet in a confining container from simulations with grid 
resolution 256 ×2048. From left to right, the three cases are defined by the liquid mass fraction of species 1 and Stefan number with 𝑌 𝑙

1 = 0.9 and Ste𝑤 = 0.026; center 
panel 𝑌 𝑙

1 = 0.1; Ste𝑤 = 0.026, and 𝑌 𝑙
1 = 0.1; Ste𝑤 = 0.26. The interface is shown by the solid blue lines with a time interval equal to 0.85√𝑑0∕|𝐠|. (b) x-component of 

the trajectory, (c) history of the droplet mass.

⎧⎪⎪⎨⎪⎪⎩
𝑓𝑥 =𝐴 sin𝑘0𝑧+𝐶 cos𝑘0𝑦,

𝑓𝑦 = 𝐵 sin𝑘0𝑥+𝐴 cos𝑘0𝑧,

𝑓𝑧 = 𝐶 sin𝑘0𝑦+𝐵 cos𝑘0𝑥,

(64)

with 𝑥, 𝑦, 𝑧 ∈ [0, 𝑥] and 𝐴 = 𝐵 = 𝐶 = 1. Energy is injected at wavenumber 𝑘0 = 2𝜋∕𝑥 = 2. The initial temperature field is uniform 
with 𝑇0 = 0.75𝑇 𝑠𝑎𝑡, and the mass fraction field is initialized using the steady state solution of equation (9), as in the previous cases. 
The surface tension, 𝜎, between the two fluids is selected to achieve an initial turbulent Weber number 𝑊 𝑒𝑟𝑚𝑠 = 𝜌2𝑈

2
𝑟𝑚𝑠𝐷0∕𝜎 = 0.01, 

chosen to prevent drop breakup. The remaining governing parameters are detailed in Table 1. In this specific test scenario, we 
consider constant and uniform density for the gas phase and periodic boundary conditions, which implies a closed system. Hence, 
given the constant density of each phase, mass conservation requires that ∫𝑉 ∇ ⋅ 𝐮𝑑𝑉 = 0. To force the integral of the divergence to 
be zero in the presence of phase change, we introduce a uniform source term

𝑆𝑣 = − 1
𝑉 ∫

𝑉

𝑚̇

(
1
𝜌2

− 1
𝜌1

)
𝛿Γ 𝑑𝑉 , (65)
18

as a forcing term in the divergence constraint (4)
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Fig. 12. Isocontour of the normalized temperature (𝑇 ∗ = (𝑇 − 𝑇0)∕(𝑇𝑤 − 𝑇0)) for the case of a sedimenting bi-component droplet (𝑌 𝑙
1 = 0.1), in a confining container 

at Ste𝑤 = 0.26 on a 256 × 2048 grid. The snapshots are extracted at (from left to right): 𝑡√|𝐠|∕𝑑0=1.20, 3.80, 12.52, 17.66 and 20.79. The interface location is 
represented by the solid white line.

Fig. 13. Grid convergence test for the sedimenting droplet in a confining container with Ste𝑤 = 0.26 and 𝑌 𝑙
1 = 0.1, (a) time history of the droplet mass, and (b) 

x-component of the center of mass location, showing oscillations along the container centerline.

∇ ⋅ 𝐮 = 𝑚̇

(
1
𝜌2

− 1
𝜌1

)
𝛿Γ +𝑆𝑣, (66)

which effectively prescribes constant mass in the closed system. Note that this approach is akin to what is often done for prescribing 
zero net acceleration or no net heating in periodic turbulent channel flows [see, e.g. 65]. For consistency, the same compensation 
19

term is added to the right-hand side of the velocity potential Poisson equation, Eq. (43).
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Fig. 14. The translucent surface of normalized vapor mass fraction (𝑌 𝑔,∗
1 = 𝑌

𝑔

1 ∕𝑌
𝑔

1,Γ) for the heavy component at two time-instants (from left to right): 𝑡𝐷𝑙𝑔

1 ∕𝐷
2
0 = 0.007

and 0.307. The solid surface (green) represents the droplet interface (𝜙 = 0.5 contour).

Fig. 15. The time evolution of: (a) the total kinetic energy in the computational domain, 𝐾 , normalized by its initial value 𝐾0 , (b) the heavy component mass fraction 
𝑌 𝑙
1 , and (c) the normalized droplet mass 𝑀∕𝑀𝑡=0 , from simulations with constant droplet composition and variable droplet composition.

We first report a flow visualization. Specifically, we display in Fig. 14 the contours of vapor mass fraction for the heavy component 
at two different time instants. At the early stage of the simulation, large flow structures disperse vapor around the droplet, enhancing 
the vapor gradients at the interface and consequently accelerating the evaporation rate. As time evolves, the turbulence decays, as 
illustrated in Fig. 15(a); hence, the convective transport reduces while the vapor concentration approaches saturation, two effects 
leading to lower evaporation rates. At the same time, the droplet composition changes until it consists almost uniquely of the heavy 
component, as indicated by the time history of the droplet composition in Fig. 15(b). The combination of reduced turbulence and 
slow diffusion of the heavy component almost suppresses the evaporation and the droplet mass reaches a steady configuration, which 
is illustrated in Fig. 15(c). This figure also compares the evolution of the droplet mass from the simulation introduced above with the 
results of a similar simulation, where we assume a constant droplet composition. To keep the droplet composition unchanged over 
time, we decouple Eq. (9) from the rest of the system of equations. As expected, the evaporation rate is faster when the composition 
is not allowed to change, highlighting the significant role of droplet composition in the evaporation rate. It is important to emphasize 
that in both simulations, the initial configurations of the liquid mass fraction fields are identical, with the droplet composed of 
an equal mixture of heavy and light species. Additionally, for the simulation with constant composition, we initialized the droplet 
properties exactly as in the fully-coupled simulation, where the droplet properties are determined by a composition-weighted average.

Fig. 16 depicts the global mass conservation errors for both light and heavy components over time for different grid resolutions. As 
the grid is refined, the error steadily decreases, indicating the consistency and grid convergence of our numerical model. Moreover, 
the insets in the figure indicate the convergence order for this specific test scenario, showcasing convergence rates exceeding first 
20

order.
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Fig. 16. The mass conservation error of light (left) and heavy species (right) for different grid resolutions, showing grid convergence as the mesh is refined. The insets 
show the order of accuracy of the method at 𝑡𝐷𝑙𝑔

1 ∕𝐷
2
0 = 0.1.

5. Conclusion

In this study, we present a novel numerical approach for conducting interface-resolved simulations of multicomponent evapora-

tion in liquid-gas systems. The novelty of the work lies in the approach to couple the transport equations for the vaporized species in 
the gas phase and the transport equations of the same species in the liquid phase. The first set of equations, valid in the gas phase, 
is solved with a Dirichlet boundary condition at the moving interface, with the imposed value derived assuming thermodynamic 
equilibrium at the interface and an equation of state for the local partial pressure (Span-Wagner for the results presented here). 
The second set of equations for the liquid phase is solved with a Robin boundary condition at the interface, which is formulated to 
accurately consider the contribution of each vaporized species to the total mass flux. Note that the proposed approach is independent 
of the chosen method for the interface representation and can be directly employed in other VoF classes, as well as in the level-set 
and the front-tracking formulations. The algorithm is integrated into an efficient two-fluid solver for evaporating flows, encompass-

ing (1) the transport of the color function for the interface description based on an algebraic VoF method, (2) the solution of the 
temperature equation, (3) the transport of the vaporized species in the gas phase, (4) the transport of species in the liquid phase, (5) 
the solution of the momentum equation with a pressure-correction algorithm, and (6) the construction of a smooth interface velocity 
for the stable and accurate transport of the color function.

The numerical method is rigorously verified against various benchmarks of increasing complexity. Initially, we validate the 
method using exact solutions for the Poisson and Stefan problem with Robin boundary conditions. Next, we demonstrate excellent 
agreement between numerical results and analytical solutions for the isothermal evaporation of a binary droplet. Furthermore, we 
showcase the method’s capability to handle large deformations for a droplet evaporating in the presence of walls and demonstrate 
its potential for three-dimensional simulations of evaporating flows in turbulent environments.

This model provides a distinctive capability for simulating the evaporation of complex liquid mixtures, incorporating thermal 
effects, and enabling massively parallel simulations of multicomponent evaporating droplets in laminar and turbulent environments. 
It is noteworthy that enhancing the current implementation by incorporating a conservative form of the energy equation and adopting 
a momentum-preserving method, as demonstrated in [66], could improve efficiency in solving problems at high-density ratios. 
Additionally, in line with previous works on single-component evaporation [39,40], relaxing the assumption of constant and uniform 
thermophysical properties can be considered by adopting a zero-Mach formulation of the governing equations.
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Appendix A. Derivation of the interface condition for 𝒀 𝒈

𝒌,𝚪

The vaporized mass fraction at the gas side of the interface, 𝑌 𝑔

𝑘,Γ , can be generally defined as:

𝑌
𝑔

𝑘,Γ =
𝑚

𝑔

𝑘,Γ

𝑚0,Γ +
𝑁𝑣∑
𝑘=1

𝑚
𝑔

𝑘,Γ

, (A.1)

where 𝑚𝑔

𝑘,Γ and 𝑚0,Γ are the absolute mass of the species 𝑘 and of the inert component, both evaluated on the gas side of the interface. 
If we assume that the mixture of vaporized species behaves as ideal, each absolute mass can be replaced by the corresponding partial 
pressure 𝑝𝑘 using the ideal-gas equation of state, i.e. 𝑝𝑘𝑉 = (𝑚𝑔

𝑘,Γ∕𝑀𝑘)𝑅𝑢𝑇 where 𝑉 is the volume of the mixture, 𝑅𝑢 is the ideal gas 
constant and 𝑇 the temperature. As a result, equation (A.1) reduces to

𝑌
𝑔

𝑘,Γ =
𝑝𝑘𝑀𝑘

𝑝0𝑀0 +
𝑁𝑣∑
𝑘=1

𝑝𝑘𝑀𝑘

. (A.2)

Using Dalton’s law, the partial pressure of the inert 𝑝0 reads 𝑝0 = 𝑝𝑡 −
𝑁𝑣∑
𝑘=1

𝑝𝑘 with 𝑝𝑡 the total pressure of the mixture, which is taken 

equal to the thermodynamic pressure. Moreover, since the interface is assumed at saturation, 𝑝𝑘 can be related to the partial pressure 
at saturation 𝑝𝑠𝑎𝑡

𝑘,Γ by Raoult’s law [41], i.e. 𝑝𝑘 =𝑋𝑙
𝑘,Γ𝑝

𝑠𝑎𝑡
𝑘,Γ. Accordingly, equation (A.2) finally becomes:

𝑌
𝑔

𝑘,Γ =
𝑝𝑠𝑎𝑡
𝑘,Γ𝑋

𝑙
𝑘,Γ𝑀𝑘

𝑝𝑡𝑀0 +
𝑁𝑣∑
𝑘=1

𝑝𝑠𝑎𝑡
𝑘,Γ(𝑀𝑘 −𝑀0)𝑋𝑙

𝑘,Γ

. (A.3)

Note that 𝑝𝑠𝑎𝑡
𝑘,Γ can be computed as a function of 𝑇Γ using an equation of state, e.g. the Clausius-Clapeyron relation or the Span-Wagner 

equation of state [41].
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