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ABSTRACT
With the integration of AI systems into our daily lives, human-AI
collaboration has become increasingly prevalent. Prior work in this
realm has primarily explored the effectiveness and performance
of individual human and AI systems in collaborative tasks. While
much of decision-making occurs within human peers and groups
in the real world, there is a limited understanding of how they
collaborate with AI systems. One of the key predictors of human-AI
collaboration is the characteristics of the task at hand. Understand-
ing the influence of task characteristics on human-AI collaboration
is crucial for enhancing team performance and developing effective
strategies for collaboration. Addressing a research and empirical
gap, we seek to explore how the features of a task impact decision-
making within human-AI group settings. In a 2×2 between-subjects
study (𝑁 = 256) we examine the effects of task complexity and un-
certainty on group performance and behaviour. The participants
were grouped into pairs and assigned to one of four experimen-
tal conditions characterized by varying degrees of complexity and
uncertainty. We found that high task complexity and high task
uncertainty can negatively impact the performance of human-AI
groups, leading to decreased group accuracy and increased disagree-
ment with the AI system. We found that higher task complexity led
to a higher efficiency in decision-making, while a higher task uncer-
tainty had a negative impact on efficiency. Our findings highlight
the importance of considering task characteristics when designing
human-AI collaborative systems, as well as the future design of
empirical studies exploring human-AI collaboration.

CCS CONCEPTS
•Human-centered computing→ Empirical studies in HCI;
User studies.
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1 INTRODUCTION
The increasing capabilities of AI systems to perform tasks with high
accuracy have led to increasing interest in incorporating these sys-
tems into human decision-making processes across various fields,
such as finance [24, 32, 42, 44], healthcare [37, 62, 65, 84], and the
legal domain [6, 71, 76, 106]. The main goal of such collaboration is
to leverage the complementary strengths of humans and the AI sys-
tems to improve overall performance [12, 60, 94, 105]. Human-AI
collaboration is also crucial for mitigating potential issues that may
arise from relying solely on AI systems [66–68, 73, 93]. Empirical
research in the HCI community has investigated factors that affect
human-AI collaborative decision-making. This includes exploring
the impact of human expertise [70, 82, 91], the level of human trust
and reliance on the AI systems [18, 33, 103, 106], and the context
of decision-making tasks [5, 41, 69].

Numerous studies have focused on group recommendation sys-
tems and AI support for individual decision-making. However,
there is still a gap in the research concerning how AI can as-
sist in group decision-making processes, specifically regarding
task characteristics and their impact on the decision-making pro-
cess [23, 54, 77, 112]. For instance, in healthcare, AI systems can
assist multidisciplinary teams of doctors in diagnosing and plan-
ning treatment for patients, while in group trip-planning scenarios,
individuals may rely on AI advice to make itinerary decisions. The
dynamics of group decision-making can be complex, with various
social and cognitive factors influencing the process and outcomes
which need to be carefully considered when designing human-AI
collaborative systems [9, 39, 74, 80, 112]. It is important to under-
stand how human-AI collaboration can be fostered effectively in
group decision-making settings, where multiple individuals interact
with one or several AI systems to make joint decisions. Understand-
ing these aspects can also offer insights into designing AI systems
and interventions to promote effective collaboration among group
members with AI systems, enhancing the overall outcomes.

In this paper, we aim to explore the potential of human-AI collab-
oration in group decision-making by investigating the role of task
characteristics on group dynamics and outcomes. Task features
are the predictor factors that could impact group decision-making
performance [3, 101, 102]. While existing research has examined
the role of task characteristics within individual human-AI decision-
making realm [11, 41, 69, 103], there is a limited understanding of
how these factors influence human-AI group decision-making pro-
cesses. In our work, we specifically examine the influence of task
complexity and task uncertainty on the performance and inter-
action between human peers and AI systems. These elements have
been recognized as crucial factors in determining the effectiveness
of group decision-making processes [56, 102, 104]. Prior studies
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have also shown that people tend to need a group to collectively
make a decision when faced with complex and uncertain decision-
making scenarios [52]. Task complexity is defined by the amount
of information that needs to be processed due to task features, such
as the number of variables, interdependencies, and decision con-
straints [109]. On the other hand, task uncertainty pertains to the
degree of unpredictability linked with the outcome of a task [27].
To the best of our knowledge, this is the first study that explicitly
investigates the role of task characteristics in human-AI collabora-
tion within a group decision-making context. We thereby address
the following research questions in our study:

RQ1: How does task complexity influence user behaviour and performance
in AI-assisted collaborative decision-making?

RQ2: How does task uncertainty influence user behaviour and performance
in AI-assisted collaborative decision-making?

To address these research questions, we selected the real-world
context of group trip-planning as our study domain. This complex
decision-making scenario is characterized by numerous variables
and elements of uncertainty, requiring peers to identify the most
efficient route from a set of options by relying on an imperfect
AI system or exercising their group judgments. We conducted a
2 × 2 between-subjects study with 256 participants randomly as-
signed to one of the four experimental conditions, manipulating
task complexity (high vs. low) and task uncertainty (low vs. high).
The complexity levels were determined by considering the differ-
ent number of constraints in the task, while task uncertainty was
altered by giving participants precise value of task constraints as
opposed to probabilities or likelihood estimates. For instance, in
low uncertainty conditions, participants would know the specific
values of traffic conditions and weather forecasts, whereas in high
uncertainty conditions, participants would only be provided with
probabilities or a potential range of values corresponding to these
variables.

We found that task complexity and task uncertainty significantly
influence user behaviour and performance when collaborating with
an AI system in a group setting. Performance of groups in the high
complexity or uncertainty conditions was significantly lower com-
pared to the low complexity or uncertainty conditions. Moreover,
incorporating of AI advice for final decisions resulted in increased
performance compared to the initial decisions across all conditions,
specifically in high complexity tasks. This performance gain is not
attributed to the higher agreement with the AI advice but rather to
the ability of participants to integrate the AI advice with their own
judgment and resulting in more informed decisions. Interestingly,
participants demonstrated a higher level of efficiency in tasks with
high complexity, while task uncertainty was detrimental to group
efficiency as it led to longer discussion times after receiving AI
advice.

Original contributions: Our study contributes to the under-
standing of how task complexity and uncertainty impact group
trip-planning when collaborating with an AI system. The context of
group planning serves as an application-grounded evaluation [30],
focusing on the individuals that such systems are designed to assist
in making real-life decisions. To the best of our knowledge, this is
the first study to explore the combined effects of task complexity
and uncertainty on user behaviour and performance in a group

setting with AI collaboration. Our study also provides empirical ev-
idence that integrating AI advice with human groups can enhance
performance and efficiency, particularly in high complexity tasks.
Our work highlights the importance of considering task complexity
and uncertainty when designing AI systems for group collaboration,
and has important implications for the UMAP community.

2 RELATEDWORK
2.1 Human-AI Decision-Making
With the increasing performance of AI systems, there has been
growing interest in understanding how humans can effectively col-
laborate with AI systems in decision-making tasks [17, 34]. The
main goal of such collaboration is to leverage the complementary
strengths of humans and AI systems to improve overall perfor-
mance, exceeding what either humans or AI systems could achieve
alone [12, 60, 94, 105]. However, reaching such complementary per-
formance is not always achievable [66, 72] due to various factors
including human cognitive biases [31, 46, 75, 83, 86], the degree
of trust and reliance on AI systems [33, 71, 78, 85], and human
understanding of the boundaries within which AI systems can
make errors [11, 38, 58, 97, 111]. The context of decision-making
tasks has been found to have a substantial influence on the extent
to which AI systems are trusted, consequently affecting overall
performance [5, 41, 69, 89]. Each domain has its own unique char-
acteristics and requirements, which might not be transferable to
other domains, highlighting the need for domain-specific studies
on human-AI decision-making [66, 90]. Decision-making tasks can
have varying levels of risk and stake across different domains,
which can influence user behaviour, especially in high-stake sit-
uations where vulnerability and potential consequences are sig-
nificant [6, 43, 53, 68]. The significance of creating suitable tasks
in studies to arrive at valid findings has been emphasized by re-
searchers [17, 66, 90]. For example, in proxy tasks that require
users to predict AI advice, user behaviour, and performance might
vary from tasks where users make decisions directly based on AI
advice [17]. The level of complexity in tasks can also affect the
performance of human-AI teams [11, 22, 88], with individuals tend-
ing to rely more on the AI systems for complex tasks that demand
specialized knowledge or extensive analysis [69]. Task complex-
ity may be gauged by factors such as the number of constraints
involved [11, 88, 99] or the depth of mathematical calculations and
analysis needed [41]. Vasconcelos et al. [103] also manipulated task
difficulty levels by adjusting the cognitive effort needed to com-
plete the task, thereby expanding the decision space. In addition
to the complexity of the tasks, the uncertainty associated with
task constraints can also impact human behaviour and reliance on
the AI systems [27, 100]. In this study, we investigate how group
performance is affected by task complexity and uncertainty in a
collaborative decision-making scenario involving two individuals
and an AI system.

2.2 Group Decision-Making
Group decision-making involves a collective process of reaching
a decision within a group consisting of two or more individuals
with their own perceptions and personalities, all accessing the
same information to address a shared problem [20]. Research in
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group decision-making has shown that the group dynamics and
interaction within a group can significantly influence the deci-
sion outcomes [48, 64, 96]. Although many studies suggest that
group decision-making can result in better outcomes than indi-
vidual decision-making [10, 15, 81], there are also factors that can
hinder effective group decision-making [74, 80], such as group-
think [14, 108], social loafing [47], and conformity biases [36, 101].
To achieve effective group decision-making, it is essential to un-
derstand the factors that influence the performance and outcomes
of groups. Group performance refers to the collective ability of a
group to achieve its goals and objectives [29], arising from their in-
teractions, coordination, and cooperation rather than simply being
the sum of individual capabilities [8]. Prior studies have investi-
gated the factors that affect the performance of group decision-
making [13, 16, 19, 26, 28, 51]. Composition of the group has been
identified to be an important determinant of the group perfor-
mance [49, 50, 92, 110]. A few studies have also focused on the
role of task characteristics in influencing group performance and
behaviour. Almaatouq et al. [3] found that group efficiency sur-
passes the highest-scoring and most efficient members of nominal
groups, similarly sized collection of individuals working indepen-
dently, when dealing with complex tasks as opposed to relatively
simple ones. They also observed that both individuals and groups
have lower performance in complex tasks compared to simple tasks.
Toyokawa et al. [101] also explored the impact of task uncertainty
and group size on the group performance, finding that higher lev-
els of uncertainty with larger group sizes can negatively impact
decision-making outcomes. In our research, we create a group of
two individuals with an AI system to investigate how task complex-
ity and uncertainty affect the collective intelligence and decision-
making performance of the group.

2.3 Group Decision-Making with AI Assistance
Extensive research has been conducted on individual decision-
making with AI systems and group recommender systems [54, 77].
However, there remains a gap in the literature regarding howAI can
adequately facilitate group decision-making processes, particularly
when considering distinct characteristics of tasks and their impact
on the decision-making process [21, 25, 77, 98]. Askarisichani et al.
[8] highlighted the factors that contribute to successful human-AI
group decision-making, such as the cognitive processes, algorithms,
and psychological constructs that can provide a framework tomodel
and understand the dynamics of human-AI team decision-making.
Askarisichani et al. [9] also found that individual expertise and
cognitive biases play a crucial role in shaping social influence and
decision-making dynamics within a human-AI group. Zheng et al.
[112] explored the equal power of AI in a group decision-making
process, where AI systems have an equal say in the final decision.
Kim et al. [63] also found that the collective intelligence, a factor
measures group ability to perform together on a range of task, is
one of the key predictor variables of group performance, specifically
in complex tasks. Chiang et al. [23] compared group and individu-
als along six aspects, including decision accuracy and confidence,
reliance on the AI system, understanding AI system, fairness, and
accountability in the recidivism risk assessment task. They found

that groups over-rely more on AI systems compared to individu-
als but their performance may not necessarily be superior. In this
study, we aim to delve deeper into the impact of task complexity
and uncertainty on the interactions and performance of groups of
two individuals with an AI system.

3 HYPOTHESES AND TASK DESIGN
3.1 Hypotheses
The complexity of tasks have been identified as a key factor in
affecting the performance of groups in general, either as humans-
only groups [3, 101] or individual human-AI groups [11, 22, 88].
Based on prior studies, we hypothesize that as the complexity of
tasks increases, the performance of groups of humans with an AI
system would be negatively affected. As tasks become more com-
plex, the likelihood of interpersonal conflict among group members
may rise [95], resulting in sub-optimal outcomes and reduced per-
formance [3]. Cognitive biases like social loafing [61] and group-
think [55] are more likely to be noticeable in complex tasks, which
can further hinder group performance. On the other hand, inte-
grating input from each individual and the AI system may require
more time, resulting in prolonged decision-making processes and a
potentially reduced overall efficiency in decision-making.

(H1a.) Groups exhibit a lower performance in complex tasks compared
to relatively less complex tasks.

(H1b.) Groups spend more time for decision-making in complex tasks
compared to relatively less complex tasks.

We hypothesize that the presence of uncertainty in tasks could
further exacerbate the negative impact on group performance. Un-
certainty can introduce further challenges for human peers in reach-
ing a consensus and making timely effective decisions. It may also
lead to increased reliance on AI systems [100], potentially impeding
group coordination.

(H2a.) Groups exhibit a lower performance in tasks with high uncer-
tainty compared to tasks with relatively lower uncertainty.

(H2b.) Groups spend more time in tasks with high uncertainty compared
to tasks with relatively lower uncertainty.

3.2 Task Scenario
In our study, we devised a trip-planning scenario in which partic-
ipants were tasked with identifying the most efficient route that
minimizes both time and budget from a selection of ten possible
routes. Participants worked in pairs and were presented with prac-
tical situations in which they could receive guidance from an AI
system on the optimal route or make decisions based solely on their
own judgments as a team.

The context of group trip-planning serves as an application-
grounded evaluation [30], focusing on the individuals that such
systems are designed to assist in making real-life decisions. We
chose trip-planning as our task scenario to test our hypotheses
for several reasons: participants are familiar with the concept of
the task, allowing us to simulate a realistic scenario. Neverthe-
less, including time and budget constraints makes this task unique
in affecting participants’ behaviour and decision-making process.
Furthermore, a trip-planning scenario allows the meaningful ma-
nipulation of task complexity and uncertainty, thus enhancing the
ecological validity of our findings. We incorporated an imperfect AI
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system to evoke the intended feeling of uncertainty and vulnerabil-
ity, prompting deliberate collaboration and exchange of information
among team members to validate the accuracy of the AI advice
rather than relying solely on it.

Task Complexity: Inspired from prior work [11, 88, 99], we
manipulate the complexity of the tasks by varying the number of
constraints that participants have to consider when planning their
trip. We curated two levels of task complexity: low complexity and
high complexity. In the low complexity condition, participants
only have to consider four constraints when planning their trip
(e.g., length of the route, transportation, travel time, and transporta-
tion fare). In the high complexity condition, participants have to
consider eight constraints when planning their trip (e.g., length of
the route, transportation, travel time, transportation fare, weather
conditions, traffic jam, seating capacity of the transportation, and
ticket subscription). We determined the number of constraints per
condition according to an individual’s information processing abil-
ity [79], suggesting that individuals can efficiently process between
five and nine variables simultaneously.

Task Uncertainty: Task uncertainty pertains to the level of un-
predictability associated with the given task. This can be influenced
by various factors such as the amount and reliability of information
available, the likelihood of unexpected events occurring, and the
level of variability in task conditions. We operationalized task un-
certainty by manipulating the amount and reliability of information
available in two levels: low uncertainty and high uncertainty.
In the low uncertainty condition, participants are provided with
accurate and reliable information about all constraints involved in
planning their trip. In the high uncertainty condition, participants
are given a range of possible values or probabilities for certain con-
straints, reflecting the inherent unpredictability and variability in
real-world conditions. Such constraints include weather conditions,
traffic jam, availability of transportation options, and their seating
capacity, as these constraints can change over time and are subject
to various unforeseen events.

Design Consideration: Task Complexity vs. Task Uncer-
tainty: Wood’s seminal work suggests that task complexity could
be devised into three dimensions: component, coordinative, and
dynamic complexity [109]. Component complexity refers to the
number of distinct constraints that need to be considered in a task,
while coordinative complexity relates to the number of steps re-
quired to complete the task and the interdependencies between
those steps. Dynamic complexity, on the other hand, arises when
the world states change requiring to potentially adjust decisions
based on the changing conditions. In our work, we operational-
ized task complexity as component complexity taking into account
the number of constraints involved in planning a trip [11, 88, 99].
Task uncertainty pertains to the level of unpredictability associated
with the task, reflecting the missing information and likelihood of
unexpected events. By definition, dynamic complexity and uncer-
tainty are two distinct constructs; in dynamically complex tasks, all
the information are accessible and can be considered for decision-
making at each point, while in uncertain tasks, decision-making is
inherently challenged by the lack of complete and reliable informa-
tion. Although these two constructs could interact and influence

each other, it is valid to consider that task complexity and task un-
certainty as separate constructs that can independently influence
decision-making processes.

4 STUDY DESIGN
4.1 Experimental Conditions
Our study was approved by our institutional ethics board. We de-
signed a between-subject study with 2 × 2 factorial design. The
experimental conditions included two independent variables: task
complexity (high vs. low) and task uncertainty (high vs. low). We
randomly assigned participants to one of four experimental con-
ditions and balanced the number of participants in each condition
across the different task complexity and uncertainty levels. Partic-
ipants in each scenario were given three distinct task instances,
according to the complexity and level of uncertainty associated
with the specific condition. In groups of two individuals with an AI
system, participants were required to make decisions based on the
task constraints, while also considering the AI advice.

AI System: Our AI system was developed to consider factors
like distance, traffic, weather conditions, and time and budget limi-
tations to offer the most efficient route from the possible ten options.
We fine-tuned the AI system at a 66.7% accuracy rate, such that
the AI system provided incorrect advice in one out of the three
tasks. This design choice aimed to encourage participants to criti-
cally evaluate the AI system’s advice while still benefiting from its
guidance.

Four-stage Decision-Making: To engage each member in the
decision-making process, we implemented a four-stage procedure [52].
The first stage includes recording individual initial decisions in iso-
lation to prevent bias or influence from others [45, 87]. In the second
stage, initial decisions are shared in a chat box and openly discussed.
The AI system then suggests the best route based on the available
information in the third stage. The peers then engage in a collabo-
rative discussion during the fourth stage to reach a consensus on
the final decision.

Ice-breaking: We included an ice-breaking activity at the be-
ginning of the collaboration to provide an opportunity for peers to
build common ground and enhance their communication through-
out the trip-planning task [4, 7, 57, 107]. To this end, we suggested a
number of questions that encouraged participants to share personal
experiences, interests, and goals, inspired by [59]. Peers are also
allowed to share any concerns or questions they may have, further
fostering open communication and collaboration within the group.

Measures: Our measures aim to assess the effectiveness of col-
laboration within the group, individual decision-making skills, and
the impact of the AI system on the decision-making process across
all conditions. These measures included objective performance cri-
teria such as the accuracy of the final decision made by the group
(Group Accuracy_Final), the accuracy of individual initial decisions
(Individual Accuracy_Initial), and the peer agreement with AI ad-
vice (AI Agreement). Additionally, we recorded the time taken to
reach an individual initial decision (Average Individual Decision
Time_Initial), the time taken to reach a consensus for the final de-
cision (Average Group AI Consideration Time_Final), and the total
task completion time (Average Decision Time). To get insight into
participants’ engagement and exploration of solution space, we
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also tracked participants’ interaction with the map and exploration
of alternative routes. Furthermore, we calculated group efficiency
(Group Efficiency_Final) and individual efficiency (Individual Effi-
ciency_Initial), defined as the performance divided by the duration.
To assess the potential confounding effect of participants’ math-
ematical skills on their task performance, we incorporated a pre-
task questionnaire to evaluate their perceived numerical skills [35].
Additionally, we administered the Affinity for Technology Scale
questionnaire [40] to gauge participants’ level of comfort and pro-
ficiency in using technology [99].

Participants: We calculated the minimum sample size required
for this research by conducting a power analysis using G*Power
software, resulting in 256 participants, i.e. 64 participants (32 pairs)
per experimental condition with a medium effect size of 0.25, the
significance level of 0.05, and the power of 0.80. We totally recruited
303 participants from the Prolific crowdsourcing platform, where
47 participants rejected due to our quality control criteria, resulting
in a final sample size of 256 participants. On average, participants
spent 45 minutes completing the entire study. All participants were
compensated at the fixed rate of 9 GBP per hour regardless of their
performance, as deemed good according to the standards set by the
Prolific platform.

Quality Control: To ensure the quality of our study, we imple-
mented various measures. First, we conducted a pilot test with a
small sample of participants to identify any potential issues or am-
biguities in our instructions and procedures. Second, we recruited
native English participants who had at least 100 previous successful
task completions in the Prolific crowd sourcing platform, with at
least 95% approval rate ensuring a certain level of experience and
reliability. Third, we provided detailed training to participants to
ensure they had a clear understanding of the interface, the task, and
how to collaborate within the group to submit their decisions. We
also evaluated their understanding through a brief quiz at the end of
the tutorial and practice session. Participants who did not pass the
quiz were excluded from the study. Finally, we closely monitored
the participants’ progress throughout the study and were available
for any clarifications or assistance they may have required.

4.2 Procedure
When participants entered the study, they were provided with a con-
sent form that explained the procedure of the study. If they agreed
to participate, they were randomly assigned to one of the four ex-
perimental conditions. In the first step, participants were given
a pre-task questionnaire to help us capture their numeracy skills.
On completing this questionnaire, participants were introduced
to the interface and familiarized with its functionalities through
a tutorial. They were then instructed on the details of the trip-
planning task, including the specific goals and constraints involved.
In the next stage, participants were presented with a sample sce-
nario and were asked to make decisions based on the provided
information to practice and apply their understanding of the task.
To ensure participants’ understanding and consistency across ex-
perimental conditions, participants were given a brief quiz at the
end of the practice session. The quiz aimed to ensure participants’
comprehension of the task and the impact of each constraint on

the decision-making process. Participants who passed the quiz pro-
ceeded to the lobby, while those who did not were excluded from
the study.1 In the lobby, participants had to wait for a partner to
be matched with. During this waiting period, participants were
provided with optional fillers– a game and breathing exercises– to
help them relax and stay engaged. Such activities were designed
to keep participants engaged and reduce the perceived waiting
time [1, 2]. Participants in the lobby had to wait to be matched with
a partner. Upon the arrival of another participant under the same
experimental conditions, they were grouped and given guidance
on how to collaborate within the chat environment for the main
tasks. Figure 1 displays a bird’s-eye view of the interface without
the chat component.

During the collaboration phase, peers were provided with the
same interface and could communicate with each other in a chat
environment. They shared their opinions, received AI advice simul-
taneously, and submitted their decisions as text messages within
the chat interface. At the beginning of their interaction, participants
could use three minutes to communicate with their partners on the
ice-breaker questions suggested within the chat environment. This
aimed to initiate conversation and facilitate a comfortable com-
mon ground between the participants that could aid collaboration.2
Participants were tasked to follow the four-stage decision-making
process to submit their final decision for each trip-planning task. To
ensure that participants adhere to the decision-making procedure,
prompts were provided at each stage of their collaboration. While
there were no time limits for each stage, these prompts served as
a road-map for systematic progression. After completion of three
consecutive tasks, participants were redirected to the post-task
questionnaire where they were asked to provide feedback on their
experience. All code for our implementation of the interface along
with task scenarios and in-depth details of our user study are made
publicly available to support future research in the community and
in the spirit of Open Science.3

5 RESULTS
5.1 Descriptive Statistics
Our study involved a sample of 256 participants, with 59.7% being
male and 40.3 % female. The average age of the participants was 34
years, ranging from 18 to 61 years. Participants’ numeracy skills
were also found to be moderately high (𝑀 = 4.40, 𝑆𝐷 = 0.77), with
no significant differences or confounding effects observed across the
four experimental conditions. Similarly, participants reported their
affinity with technology to be moderately high (𝑀 = 4.09, 𝑆𝐷 =

0.57), indicating that they were familiar and comfortable using
technological tools for communication and collaboration.

5.2 Hypotheses Tests
H1a. Impact of task complexity on group performance: To in-
vestigate the main effect of task complexity on group performance,
we conducted a Kruskal-Wallis test, comparing the accuracy of

1All participants were compensated fairly irrespective of whether or not they passed
the quiz.
2Note that analyzing the role of relationship strengths in the context of peer decision-
making with AI assistance is beyond the scope of this work.
3https://osf.io/kvt7p/?view_only=0d90e14a2eeb4ea8889000b409720987
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Figure 1: An overview of the trip-planning task interface that participants used including five components: (1) the task scenario
and description, (2) map, (3) route information, (4) general information, and (5) chat box, located at the bottom of the interface.
Note that this screenshot is meant to convey a bird’s-eye view of the interface. This interface corresponds to a highly complex
task scenario encompassing all constraints.

(a) Mean of Individual Accuracy_Initial (b) Mean of Group Accuracy_Final

Figure 2: Mean of Individual Accuracy_Initialand Group Accuracy_Finalacross different levels of task complexity and uncer-
tainty. The accuracy improved after the peers received AI advice.

groups across complexity levels (cf. Table 1). We also assessed the
accuracy of initial decisions submitted per individual in a group to
evaluate if the AI advice provided after their individual choices had
an effect on group performance. Similarly, we evaluated the level
of agreement between the peers decisions and AI advice to gauge
the impact of the AI system on decision-making.

The observed significant difference between low complexity
tasks and high complexity tasks indicates that task complexity does
impact group performance (Group Accuracy_Final). In the low com-
plexity tasks, groups exhibited higher accuracy compared to high
complexity tasks, suggesting that the level of task complexity has a
negative impact on group performance. Furthermore, we observed
that the performance of each individual in making initial decisions

(Individual Accuracy_Initial), also significantly differed across com-
plexity levels. Similarly, the initial performance are lower in high
complexity tasks compared to low complexity tasks, indicating that
the complexity of the tasks also affects individual performance.
We found that the collective performance significantly improved
(Accuracy Gain) when participants were given AI advice following
their initial decision-making, in situations where the task complex-
ity was high compared to low complexity tasks, demonstrated in
Figures 2a and 2b. However, there was no significant difference
between AI agreement across complexity levels. This suggests that
AI advice and group discussions can positively impact group perfor-
mance, particularly in high complexity tasks, regardless of the level
of agreement between the peers decisions and AI advice. Overall,
these results support our hypothesis H1a.
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Table 1: Kruskall-Wallis test for the main effect of task complexity on performance. † indicates that the effect of the variable is
significant in the comparisons shown in the ‘Post-hoc Results’ column.

Dependent Variable adjusted-p 𝑀 ± 𝑆𝐷 (Low) 𝑀 ± 𝑆𝐷 (High) Post-hoc Results

Individual Accuracy_Initial <.001† 0.76 ± 0.26 0.55 ± 0.35 Low > High
Group Accuracy_Final <.001† 0.79 ± 0.24 0.62 ± 0.32 Low > High
Accuracy Gain 0.017† 0.03 ± 0.15 0.07 ± 0.17 Low < High
AI Agreement 0.06 0.56 ± 0.21 0.51 ± 0.25 -

H1b. Impact of task complexity on group behaviour: To
examine the influence of task complexity on group behaviour, we
conducted a Kruskal-Wallis test comparing the average time taken
by groups to make decisions across complexity levels, reported
in Table 2. We also considered the time taken by individual par-
ticipants to make their initial decisions and the time taken for
peers to reach a consensus after receiving AI advice. We also as-
sessed the effectiveness of group decision-making by evaluating
how quickly the peers reached correct decision during each minute
of their decision-making process. Additionally, we investigated the
individual efficiency in making initial decisions to compare their
performance before and after receiving AI advice.

We found no significant difference in the average time taken
by groups (Average Decision Time) to make decisions across com-
plexity levels. The time taken by individual participants to make
their initial decisions (Average Individual Decision Time_Initial)
and the time taken for peers to reach a consensus after considera-
tion of AI advice (Average Group AI Consideration Time_Final) also
did not significantly differ across complexity levels. This indicates
that task complexity does not have a significant impact on the
speed at which groups make decisions or reach consensus. How-
ever, task complexity did significantly affect the group efficiency
(Group Efficiency_Final) in terms of the performance per unit of
decision-making time. In high complexity tasks, groups tended to
be more efficient in reaching a correct decision compared to low
complexity tasks. However, the impact of task complexity on in-
dividual decision-making efficiency (Individual Efficiency_Initial)
was not significant, suggesting that task complexity primarily af-
fects group dynamics and enhances the collective efficiency. We
also recorded the user interaction with the interface including time
spent navigating different routes on the map, the number of clicks
on different routes, and the extent they explored the available fea-
tures and options. We observed that participants exhibited similar
exploration and utilization of the map and route options regardless
of the complexity of the task at hand. The presence of additional
features and information did not appear to prompt participants
to explore or make extensive use of them. Thus, we reject our
hypothesis H1b.

H2a. Impact of task uncertainty on group performance:
We investigated the main effect of task uncertainty on group per-
formance by conducting a Kruskal-Wallis test on a number of per-
formance metrics including group accuracy, individual accuracy,
and peer agreement with the AI system, Table 3.

Tasks uncertainty is found to have a significantly negative im-
pact on group performance (Group Accuracy_Final). Participants in
high uncertainty tasks showed lower accuracy in their decisions

compared to groups performing low uncertainty tasks. Addition-
ally, the level of task uncertainty also significantly affected the
initial decision accuracy (Individual Accuracy_Initial), with individ-
uals facing high uncertainty demonstrated lower initial decision
accuracy compared to those facing low uncertainty. This suggests
that task uncertainty hinders the overall performance and decision-
making ability of groups, leading to lower accuracy in decisions
either with or without the AI advice. The remarkable gap between
group performance in high and low uncertainty tasks highlights the
significant role that task uncertainty plays in influencing group per-
formance and decision-making accuracy. We also found that task
uncertainty significantly increased disagreement with AI advice,
with high uncertainty tasks experiencing lower levels of AI agree-
ment compared to low uncertainty tasks. The impact of AI advice
on improving accuracy (Accuracy Gain) from the initial decision is
not significantly influenced by task uncertainty, shown in Figures
2a and 2b. However, this suggests that presenting the AI advice
may still have assisted peers in enhancing their decision-making
process, even in high uncertainty tasks where agreement with the
AI advice was lower. As a result, our findings support hypothesis
H2a.

H2b. Impact of task uncertainty on group behaviour: We
examined the main effect of task uncertainty on group behaviour
by analyzing the decision making time of groups as wells as their
efficiency using Kruskal-Wallis tests, reported in Table 4.

Our findings illustrate that task uncertainty did not significantly
impact the decision-making time of groups (Average Decision Time)
and the time it takes to submit the initial decision (Average Indi-
vidual Decision Time_Initial). However, the time taken to reach
from initial decision to final decision (Average Group AI Consider-
ation Time_Final) was significantly longer for groups facing high
uncertainty compared to those facing low uncertainty tasks. This
indicates that task uncertainty prolongs the decision-making pro-
cess when presenting the AI advice, potentially leading to more
thorough analysis and consideration of the uncertain tasks. Task
uncertainty also had a significant impact on efficiency (Group Effi-
ciency_Final), with groups facing high uncertainty demonstrating
lower efficiency in their decision-making process compared to those
in low uncertainty experimental conditions. However, the individ-
ual efficiency (Individual Efficiency_Initial), measured by the time
taken to submit the initial decision, did not show a significant dif-
ference between high and low uncertainty tasks. These findings
suggest that task uncertainty not only slows down the decision-
making process but also reduces overall efficiency in groups. We
also observed that participants exhibited similar exploration and
utilization of the map and route options regardless of the uncer-
tainty of the task at hand. One explanation for this could be that
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Table 2: Kruskall-Wallis test for the main effect of task complexity on behaviour. † indicates that the effect of the variable is
significant in the comparisons shown in the ‘Post-hoc Results’ column. Note that Efficiency is the measure of performance over
one minute. The times are also reported in seconds.

Dependent Variable adjusted-p 𝑀 ± 𝑆𝐷 (Low) 𝑀 ± 𝑆𝐷 (High) Post-hoc Results

Individual Efficiency_Initial 0.13 0.30 ± 0.10 0.28 ± 0.11 -
Group Efficiency_Final <.001† 0.03 ± 0.02 0.04 ± 0.02 Low < High
Average Decision Time 0.91 483 ± 171 477 ± 179 -
Average Individual Decision Time_Initial 0.59 389 ± 149 376 ± 137 -
Average Group AI Consideration Time_Final 0.31 94 ± 52 100 ± 77 -

Table 3: Kruskall-Wallis test for the main effect of task uncertainty on performance. † indicates that the effect of the variable is
significant in the comparisons shown in the ‘Post-hoc Results’ column.

Dependent Variable adjusted-p 𝑀 ± 𝑆𝐷 (Low) 𝑀 ± 𝑆𝐷 (High) Post-hoc Results

Individual Accuracy_Initial <.001† 0.87 ± 0.21 0.45 ± 0.28 Low > High
Group Accuracy_Final <.001† 0.91 ± 0.16 0.51 ± 0.26 Low > High
Accuracy Gain 0.12 0.04 ± 0.16 0.06 ± 0.16 -
AI Agreement <.001† 0.65 ± 0.14 0.43 ± 0.24 Low > High

participants did not get extra information from the interface or map
that could help reduce the uncertainty in high uncertainty tasks. As
a result, they invested additional time with their partner engaging
in discussion and exploring possible solutions after receiving AI
advice, relying on their collective knowledge and perspectives to
navigate the uncertain task and make informed decisions. These
results support hypothesis H2b.

6 DISCUSSION
Our study investigated the impact of task complexity and uncer-
tainty on group performance and behavior. We found that task
complexity negatively affects the accuracy of decision-making in
groups, with higher complexity leading to lower accuracy. This
finding is consistent with prior studies that have shown the chal-
lenges posed by complex tasks which can lead to increased decision-
making errors [3, 11, 22, 88]. The higher performance gain obtained
with AI advice in complex tasks while maintaining a similar level
of agreement with the AI system suggests that leveraging the AI
system can help mitigate the negative impact of task complexity on
group accuracy. One potential explanation for this finding is that
the AI advice provides a point of discussion and reference for peers,
helping them navigate through the challenges and potentially im-
proving their decision-making process. Although the AI advice was
not appropriately followed by peers in tasks with high complexity,
it was utilized to facilitate more thorough analysis and consider-
ation of the complex task, leading to improved decision-making
outcomes.

We also did not find any significant influence of task complexity
on the time taken to reach the consensus or the total time spent on
decision-making. However, task complexity positively impacted the
efficiency of the groups, with groups facing high-complexity tasks
demonstrating a higher efficiency compared to those facing low-
complexity tasks. One explanation for this contrasting finding could
be that peers were able to utilize their collective insights and knowl-
edge to make more efficient decisions in complex tasks, whereas in

low-complexity tasks, the decision-making process may be more
straightforward and less strategic and thorough. Another possible
explanation could be that the higher complexity tasks prompted
peers to allocate more resources towards thorough discussions and
information gathering, leading to more informed and carefully con-
sidered decisions. We did not observe any significant difference in
the efficiency of individuals in their initial decisions across tasks
of varying complexity, suggesting that task complexity does not
inherently impact individual efficiency. Although we expected that
individuals facing high-complexity tasks may experience decreased
efficiency, our findings suggest that the presence of a group and
the opportunity for collaborative thinking and initial discussion
can offset such a potential decrease in individual efficiency caused
by task complexity.

Our study also revealed that task uncertainty plays a crucial
role in group performance. The levels of task uncertainty were
found to negatively influence the collective accuracy of the groups.
Task uncertainty also significantly impacts the agreement with
the AI advice, with higher levels of uncertainty leading to lower
agreement. Nevertheless, the use of AI advice led to improved
decision-making outcomes across all levels of task uncertainty. This
finding highlights the potential of the AI system as a valuable tool
in decision-making processes, especially in situations where task
uncertainty is high. In such situations, the AI system could provide
additional insights that can help mitigate the negative effects of
task uncertainty and support more accurate decision-making.

We found that task uncertainty significantly impacts the time
taken to reach a consensus after receiving the AI advice. This could
be because high task uncertainty creates more divergent viewpoints
within the group, requiring more time for discussion and consider-
ation of various perspectives along with AI advice. Nevertheless,
the total decision time and time taken to make the initial individual
decision remained relatively consistent across different levels of
task uncertainty. With the lower group accuracy and longer time
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Table 4: Kruskall-Wallis test for the main effect of task uncertainty on behaviour. † indicates that the effect of the variable is
significant in the comparisons shown in the ‘Post-hoc Results’ column. Note that Efficiency is the measure of performance over
one minute. The times are also reported in seconds.

Dependent Variable adjusted-p 𝑀 ± 𝑆𝐷 (Low) 𝑀 ± 𝑆𝐷 (High) Post-hoc Results

Individual Efficiency_Initial 0.17 0.30 ± 0.11 0.28 ± 0.10 -
Group Efficiency_Final <.001† 0.04 ± 0.02 0.02 ± 0.02 Low > High
Average Decision Time 0.35 464 ± 150 500 ± 196 -
Average Individual Decision Time_Initial 0.92 373 ± 119 392 ± 163 -
Average Group AI Consideration Time_Final .01† 91 ± 64 108 ± 66 Low < High

reaching the consensus which is associated with higher task uncer-
tainty, we observed that the group efficiency drops in high levels of
task uncertainty compared to tasks with relatively low uncertainty.
We did not observe any significant difference in the efficiency of
individuals in their initial decisions across tasks of varying uncer-
tainty, suggesting that the presence of a group and collaborative
thinking before making an individual decision could help mitigate
the negative impact of task uncertainty on efficiency.

Comparing the performance of the human-AI group with the
accuracy of the AI system (0.66) revealed that the group was able
to achieve higher accuracy in tasks with relatively low complexity
(0.79) or uncertainty (0.91). This suggests that in situations with
low task complexity or uncertainty, collective intelligence and col-
laboration within the group can lead to more accurate outcomes
compared to relying solely on the AI system, achieving comple-
mentary performance. In high-complexity situations, however, the
AI system’s accuracy slightly surpassed that of the group (0.62),
suggesting that the AI system may have an advantage in handling
complex tasks. The AI system’s accuracy exceeds that of the group
in tasks with high levels of uncertainty (0.51), demonstrating its
potential as a reliable and precise tool for making decisions. There-
fore, peers should consider leveraging AI advice to augment their
decision-making processes, particularly in situations with high
levels of task uncertainty or complexity.

Overall, this study emphasizes the importance of considering
task complexity and uncertainty in a human-AI decision-making
context and highlights the potential benefits of incorporating AI
advice to enhance accuracy and efficiency in group decision-making.
AlthoughAI advice has been shown to improve accuracy potentially
through facilitating improved discussions, there is still a need for the
design and development of more nuanced approaches and support
systems to help groups fully leverage AI advice, especially in highly
complex and uncertain scenarios.

Caveats and Limitations: Individuals and groups are prone to
a range of biases that can impact the accuracy and effectiveness of
their decision-making processes. In our task, we identify the famil-
iarity bias that could lead individuals or groups to rely too heavily
on their own experiences and knowledge, neglecting the valuable
insights provided by the AI system or the partner. We also recognize
the potential for groupthink, wherein group members may conform
to a dominant opinion or suppress dissenting views to maintain
harmony or consensus within the group. While we formed small
groups and delegated tasks accordingly, it is crucial to account for
the potential differences in outcomes when working with larger

groups in future work. Furthermore, group communication in face-
to-face settings may differ from chat communication, potentially
influencing the decision-making process. The findings from this
study should be interpreted with caution as they may not general-
ize to all decision-making contexts. Different contexts may have
different levels of task uncertainty or complexity, and the dynam-
ics within groups may vary. The use of AI systems with different
attributes may also impact the decision-making process. Although
we operationalized task complexity and task uncertainty in this
study, further research is needed to explore the impact of other
factors such as group size, group diversity, and communication
dynamics on the accuracy of decision-making outcomes. Analyzing
the impact of task characteristics on peer trust and reliance on
AI systems was beyond the scope of this work. However, it could
provide valuable insights into how group performance was affected
by these factors. Additionally, our study did not explore the content
and number of messages exchanged within the group, which may
have influenced decision-making processes. Future research should
aim to investigate these factors to gain deeper insights into the role
of AI systems in human-AI group decision-making.

7 CONCLUSION AND FUTUREWORK
In this study, we investigated the impact of task complexity (RQ1)
and task uncertainty (RQ2) on the performance and behaviour of
human-AI group decision-making. Each group consisted of two
participants with an AI system who collaborated on three decision-
making tasks in the context of trip planning. We conducted a user
study with 256 participants to explore our research questions across
four experimental conditions varying in level of complexity (high
or low) and uncertainty (high or low). Our results revealed that
task complexity and task uncertainty significantly influence the
performance and dynamics of human-AI group decision-making.
Specifically, we found that in tasks with high complexity or high
uncertainty, group performance diminishes significantly compared
to tasks with low complexity or low uncertainty. AI advice was
also found to positively impact decision-making performance, but
this effect was statistically significant in conditions of high com-
plexity. This positive impact does not necessarily imply that groups
always agree with AI advice, as individual and group factors may
still influence the decision-making process. On the other hand, we
have shown that task complexity and uncertainty can have varying
effects on the efficiency of human-AI group decision-making. While
higher task complexity tends to increase efficiency, higher task un-
certainty can decrease efficiency and prolong the time needed to
reach a consensus. Overall, this study highlights the importance of
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considering task complexity and uncertainty in human-AI group
decision-making, and the need for tailored strategies and guidelines
to optimize the integration of AI systems in group decision-making,
especially in uncertain environments.

Future studies should further investigate the dynamics of trust
and reliance in group decision-making with AI systems to gain a
more comprehensive understanding of the factors that influence
group behaviour and decision-making processes. Moreover, future
research should explore how AI systems can be designed and uti-
lized to mitigate the negative effects of task complexity and uncer-
tainty, as well as develop strategies to enhance collaboration and
communication between humans and AI systems to improve group
decision-making outcomes. Additionally, it would be valuable to
explore other factors that may influence human-AI group decision-
making, such as different task contexts and features, group sizes,
group diversity, group dynamics, and the impact of potential biases
in the group setting.
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