

Delft University of Technology

QuIP: A P4 Quantum Internet Protocol Prototyping Framework

Kozlowski, Wojciech ; Kuipers, Fernando; Smets, Rob; Turkovic, Belma

DOI
10.1109/JSAC.2024.3380096
Publication date
2024
Document Version
Final published version
Published in
IEEE Journal on Selected Areas in Communications

Citation (APA)
Kozlowski, W., Kuipers, F., Smets, R., & Turkovic, B. (2024). QuIP: A P4 Quantum Internet Protocol
Prototyping Framework. IEEE Journal on Selected Areas in Communications, 42(7), 1936-1949.
https://doi.org/10.1109/JSAC.2024.3380096

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/JSAC.2024.3380096
https://doi.org/10.1109/JSAC.2024.3380096

1936 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 42, NO. 7, JULY 2024

QuIP: A P4 Quantum Internet Protocol
Prototyping Framework

Wojciech Kozlowski , Fernando A. Kuipers , Senior Member, IEEE, Rob Smets , and Belma Turkovic

Abstract— Quantum entanglement is so fundamentally differ-
ent from a network packet that several quantum network stacks
have been proposed; one of which has even been experimentally
demonstrated. Several simulators have also been developed to
make up for limited hardware availability, and which facili-
tate the design and evaluation of quantum network protocols.
However, the lack of shared tooling and community-agreed node
architectures has resulted in protocol implementations that are
tightly coupled to their simulators. Besides limiting their reusabil-
ity between different simulators, it also makes building upon
prior results and simulations difficult. To address this problem,
we have developed QuIP: a P4-based Quantum Internet Protocol
prototyping framework for quantum network protocol design.
QuIP is a framework for designing and implementing quantum
network protocols in a platform-agnostic fashion. It achieves this
by providing the means to flexibly, but rigorously, define device
architectures against which quantum network protocols can be
implemented in the network programming language P416. QuIP
also comes with the necessary tooling to enable their execution in
existing quantum network simulators. We demonstrate its use by
showcasing V1Quantum, a completely new device architecture,
implementing a link- and network-layer protocol, and simulating
it in the existing simulator NetSquid.

Index Terms— Quantum internet, quantum network protocols,
protocol design, network programming languages.

I. INTRODUCTION

QUANTUM communications will enhance our classical
(i.e., non-quantum) Internet by supplementing it with

capabilities that are provably impossible to achieve purely
classically or are significantly more efficient if they can use
distributed quantum resources [1]. These new networks will
open the door for new possibilities, such as quantum secure
communications [2], [3], distributed quantum systems [4],

Manuscript received 30 May 2023; revised 29 November 2023;
accepted 20 December 2023. Date of publication 27 March 2024; date of
current version 19 June 2024. This work was supported in part by Holland
High Tech through Topconsortium voor Kennis en Innovatie [Top Consortium
for Knowledge and Innovation (TKI)] Hightech Systemen and Materi-
alen [High-Tech Systems and Materials (HTSM)] (20.0052 Privaat-Publieke
Samenwerkingen [Private-Public Partnerships (PPS)]) Funds and in part by
Samenwerkende Universitaire Reken Faciliteiten [Co-operative University
Computing Facilities (SURF)] Innovation Funds [Wojciech Kozlowski (WK),
Rob Smets (RS)]. (Corresponding author: Wojciech Kozlowski.)

Wojciech Kozlowski is with QuTech, Delft University of Technology, 2628
CD Delft, The Netherlands (e-mail: w.kozlowski@tudelft.nl).

Fernando A. Kuipers is with the Networked Systems Group, Department
of Software Technology, Faculty of Electrical Engineering, Mathematics
and Computer Science, Delft University of Technology, 2628 CD Delft,
The Netherlands (e-mail: f.a.kuipers@tudelft.nl).

Rob Smets is with SURF, 3511 EP Utrecht, The Netherlands (e-mail:
rob.smets@surf.nl).

Belma Turkovic is with TNO, 2595 DA The Hague, The Netherlands
(e-mail: belma.turkovic@tno.nl).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSAC.2024.3380096.

Digital Object Identifier 10.1109/JSAC.2024.3380096

secure quantum computing in the cloud [5], [6], improved
clock synchronisation [7], and quantum-enhanced measure-
ment networks [8]. The idea of a quantum internet has been
around for some time [9], [10], but research has signifi-
cantly accelerated in recent years thanks to large collaborative
research efforts [11], [12], [13] and a growing number of
testbeds and network deployments in the USA [14], [15],
Europe [16], [17], and China [18]. These initiatives explicitly
aim to move beyond quantum key distribution (QKD) net-
works (i.e., quantum networks that can run only QKD) by
accelerating research into entanglement distribution networks,
thus reaching the next stage in the development of a quantum
internet [1].

The field of quantum network protocol research has been
growing rapidly over the last few years. Indeed, a lot of
networking research is needed as quantum entanglement, the
fundamental quantum network primitive, is so different from
anything known in classical networks that it does not neatly
fit into existing abstractions [10]. In fact, for this reason,
at least three quantum network protocol stacks have been put
forward [20], [21], [22], [23] and various protocols have been
proposed within and outside the context of these new network
stacks [19], [22], [24], [25], [26]. While these proposals share
many similarities, they often differ in striking ways. For
example, some works decouple control data from the quantum
payload [19], [22], while others explicitly combine them into
quantum packets [26]. Beyond protocols, (quantum) architec-
tures and algorithms for switching, routing, quality of service,
and traffic engineering are growing research fields [27], [28],
[29], [30], [31], [32], [33], [34], [35].

Rapid progress in hardware capabilities further motivates
the need for such work. Various types of quantum end nodes
have been demonstrated [36], [37], [38], [39], [40], [41],
[42]. Additionally, the number of connected nodes and the
achievable distances have also been increasing. The first
multi-node quantum network linking quantum processors [38],
as well as the first scalable quantum repeater links [43],
including one connecting two nodes separated by 33 km [44],
have recently been demonstrated in laboratory conditions.
However, the timeliness of quantum network protocol research
is particularly reinforced by the fact that one of the proposed
quantum network stacks has already been demonstrated on real
hardware, leading to new insights for their design [45].

The research community has developed several approaches
to quantum network architecture and protocol design [22],
[24], [25] as well as quantum network simulators to implement
and evaluate them, such as QuISP [46], SeQUeNCe [25],
and NetSquid [47]. However, the simulators do not share any

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0009-0002-1098-742X
https://orcid.org/0000-0002-6686-8350
https://orcid.org/0009-0008-4287-6816

KOZLOWSKI et al.: QuIP: A P4 QUANTUM INTERNET PROTOCOL PROTOTYPING FRAMEWORK 1937

Fig. 1. A sample quantum network. Routers and end nodes generate
entanglement between each other via heralding stations and hubs. Routers
“stitch” the entanglement to connect distant nodes [9], [19]. The ability
to include heralding hubs, nodes with one or more heralding stations with
reconfigurable connections, in our networks was a key motivation for QuIP.
We considered hubs as a viable strategy to reduce the number of more
technologically demanding quantum routers.

tooling nor a common node architecture, which has resulted
in protocol implementations that are tightly coupled to their
simulators. This leads to two key challenges in applying results
obtained via such simulations. Firstly, a protocol implemented
in one simulator cannot be easily ported and evaluated in
another simulator. This results in protocol research happening
in silos dictated by the choice of the simulator as it is generally
easier to build upon existing results and implementations than
porting from another simulator.

Secondly, it makes it difficult to apply prior results and
extend existing simulations. Our original research goal was
to study control planes for quantum networks with heralding
hubs as shown in Fig. 1. A heralding hub is a node with
one or more heralding stations and reconfigurable connections
and our work was motivated by their potential to reduce
the number of technologically demanding quantum routers,
making them an attractive prospect for near-term deployments.
However, despite the fact that many of the existing protocols
do not conceptually preclude such a possibility, all existing
implementations were tightly coupled to simulations where
all nodes are connected by individual heralding stations. As a
result, we spent large amounts of time developing new device
and protocol simulation code instead of a control plane, our
actual research objective. In addition to the immense time
commitment needed for such work, the required low-level
quantum device expertise is also non-trivial, making this task
only possible for people with a rigorous academic background
in quantum technologies.

Therefore, we created QuIP, a P4-based Quantum Internet
Protocol prototyping framework. QuIP is a framework for
implementing quantum network protocols in P416 [48],
a platform-agnostic network programming language. QuIP
provides a new abstraction layer that decouples the protocol
implementations from simulators. By using QuIP in our own
research, we hope to make our results more reusable end
extensible. In summary, we make the following contributions:

1) We argue for the use of the domain-specific network pro-
gramming language P416 for platform-agnostic quantum
network protocol implementations.

2) We make our method concrete by providing a set
of Python packages enabling its implementation in
any Python-based quantum network simulator, such as

NetSquid or SeQUeNCe. We provide the concrete inte-
gration with NetSquid.

3) We demonstrate the use of QuIP by designing the
V1Quantum architecture and using it to implement a
quantum network protocol stack based on [19] and [22].

4) We open source QuIP [49], [50] and the V1Quantum use
case study [51], [52].

Note that QuIP is an addition to and not a replacement for any
of the existing simulators. Furthermore, since QuIP decouples
protocol implementations from simulation, we see potential
use cases for QuIP in using of simulations in the development
of real-world networks. For example, we have created a proof-
of-concept integration of a simulated network running the
V1Quantum architecture with the orchestration platform of
SURF – a national research and education network – and
demonstrated it internally.

II. THE P416 NETWORK PROGRAMMING LANGUAGE

To decouple protocol implementations from simulators,
we need a domain-specific language (DSL) and a compiler
to translate the DSL into runnable code. In addition to being
able to express quantum network protocols, we also had the
requirement that the DSL should not assume any specific
node architecture. It is our opinion that quantum networks are
simply not ready for stable device architectures, and exploring
new architectures must remain a crucial part of quantum
network protocol research. This statement is motivated by
our experience with heralding hubs. Until very recently, such
devices have not even been considered in entanglement-based
networks [53] and thus they are not accounted for in many of
the existing architectures.

Classical programmable networking is an extensive field of
research [54], which has resulted in, amongst others, the P4
programming language [55]. P4 is a network programming
DSL for expressing the behaviour of the data plane. Despite
the fact that it was designed for classical networking, many of
its concepts are independent of the nature of the networking
unit, be it a packet or an entangled pair of qubits. Indeed,
the core concept on which we rely in QuIP is the idea that
the data plane is a fixed-function device with programmable
blocks within it. The programmer writes P4 programs to
specify the behaviour of programmable blocks, but it is the
device architecture that defines the interfaces between them
and the fixed-function parts of the device. For a more detailed
introduction to P4, we refer the reader to [48] and [55].

It has already been shown that a simple entanglement
generation protocol running between two neighbouring nodes
and a heralding station can be implemented in P4 [56].
Unfortunately, the demo’s limited scope masked the difficulty
of scaling it up. Firstly, including the quantum physical layer
within the P4 program led to a surge in complexity when we
started including heralding hubs and routing nodes. Addition-
ally, it coupled the P4 program very tightly to the hardware’s
low-level design. Furthermore, because entanglement was not
a first-class citizen in the device architecture (V1Model),
we ended up creating pseudo-architectures where features
were being implemented in the user’s P4 program, thus

1938 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 42, NO. 7, JULY 2024

coupling the protocol definition to this pseudo-architecture.
Ultimately, the core issue was that entanglement is not, and
will never be, a first-class citizen in any classical architecture,
even when extended with custom external functions as was
done in [56]. To promote quantum objects to core abstractions,
we needed a pipeline for entanglement that mirrors the one that
exists for classical packets. That is, we needed new architec-
tures developed with quantum, and not classical, devices in
mind.

Therefore, for QuIP, we chose P416, the second iteration
of the P4 language. P416 not only gives flexibility in the
programming of the protocols, it explicitly discards the notion
of a single generic architecture and allows for vendor-specific
architectures and custom interfaces. Just like we did, the P4
community found the single architecture approach insuffi-
cient [48]. The authors of [56] did indeed note the architectural
flexibility of P416, but they did not fully leverage this feature
as they only needed to extend the V1Model with two externs
to complete their demo. In this paper, we show how we fully
leveraged P416’s ability to support completely custom, but
well-defined, device architectures to create QuIP for quantum
network protocol prototyping. We showcase its use by design-
ing (Sec. IV) and demonstrating (Sec. V) V1Quantum, a new,
quantum, P416 target architecture, where entanglement is a
core abstraction.

A final, but very important, advantage of P4 is its sizeable
ecosystem of open-source tooling such as P4Runtime [57],
SDN controllers like ONOS [58], and a compiler [59]. The
existence of an active open-source community and its projects
significantly reduces the effort that is required to achieve
meaningful results. For QuIP, we did not need to implement
(and maintain) our own compiler as we were able to use the
open-source compiler. Furthermore, it may potentially permit
interesting use cases in the future, such as standardising the
control- to data-plane interface [60].

III. ARCHITECTURE AND IMPLEMENTATION

The key challenge in implementing QuIP was that whilst
P416 allows for custom architectures, it does not envision
adjusting them very often or that researchers would want
to propose their own. The idea is that the vendor would
provide the hardware implementing a particular architecture,
while the programmer would write P4 programs against the
architecture’s specification. In this section, we explain how we
addressed this challenge and implemented QuIP to enable flex-
ible design-space exploration of quantum device architectures.
Fig. 2 shows a diagrammatic summary of all the components
and their relationships. Later, in Sec. IV, we show QuIP in
action through a use-case study. For a guide and demo of
QuIP, please see Appendix A.

We separate our discussion into simulator-agnostic and
-specific components. In addition to providing a natural imple-
mentation boundary, it also represents a boundary between
two types of expertise. The simulator-agnostic components
are concerned with protocol design against an architecture
specification, a task suited to protocol designers who can rely
on the abstractions provided by the architecture. In contrast,
the simulator-specific components are concerned with the

Fig. 2. The software architecture of QuIP. The components are separated
into three groups depending on who provides them. Framework: packages that
we have developed for QuIP (PyP4, NetSquid-P4) as well as existing tools
(P4 compiler). Architecture developer (e.g., vendor): software that needs to be
developed for every custom architecture. Protocol developer (e.g., operator):
software that the end user of QuIP, i.e., the protocol developer, needs to
implement to research and validate protocols.

implementation of the architecture in a simulator. This task
requires a rigorous understanding of the quantum physics
involved in the hardware modelling and careful validation
to ensure its accuracy with real devices. This task does not
require an extensive understanding of the protocols beyond
the device architecture that is meant to be provided.

A. Simulator-Agnostic Components

1) Data Plane/Architecture File: In P416, the programmer
writes a data-plane program for a particular architecture. P416

views the data plane as a fixed-function device that has,
within it, several programmable blocks [48]. The user writes
code to specify the protocols’ behaviour within these blocks.
The architecture defines the number of blocks, the connec-
tions between them, their interfaces, the architecture-specific
custom functionality available within, and the surrounding
fixed-function processing. By leaving the interface definitions
to the architecture, we found P416 sufficiently general to
enable quantum architectures. To create a new architecture,
the data-plane functionality must be expressed through a P4
architecture file. Note that we are not extending P416 itself,
but rather using it as per its existing, classical design and
specification.

2) P4 Compiler/BMv2 Backend: Once the P4 program,
specifying the data-plane protocol and its accompanying archi-
tecture file, is ready, it needs to be compiled into some
executable format. The open-source reference P4 compiler,
p4c [59], supports several backends. For software targets, such
as a network simulator, the BMv2 JSON [61] backend is
most suitable as the “executable” is expressed as a JSON file.
To enable a new custom architecture a new BMv2 backend
must be created. Fortunately, since neither the architecture
file nor the compiler implement any of the fixed-function

KOZLOWSKI et al.: QuIP: A P4 QUANTUM INTERNET PROTOCOL PROTOTYPING FRAMEWORK 1939

parts of the architecture — they only need to know about the
programmable blocks, extern function definitions, and their
inputs and outputs (including metadata) — adding a new
architecture to the BMv2 backend can be done fairly easily.

3) PyP4/P4 Processor: Python is the de facto standard
programming language in the quantum information commu-
nity. As a result, most quantum network simulators, such as
NetSquid or SeQUeNCe, provide their programming interfaces
in Python. Therefore, to execute P4 code in a simulator,
we need to have a way of executing it in Python. PyP4 is
a Python package that we provide [49] for implementing P4
processors in a simulator-agnostic fashion. A P4 processor
is an object that can be loaded with a BMv2 JSON file
produced from compiling a valid P4 source file. It consists of
the fixed-function logic that pipes and processes data between
the programmable blocks and implements the extern function
calls. It will also execute the code within the programmable
blocks as per the instructions in the loaded program. PyP4
also provides the necessary base classes from which the archi-
tecture developer can construct their own P4 processor. The
architecture developer must also implement the fixed-function
logic between the programmable blocks and the extern func-
tion calls. For functionality that requires a simulation runtime,
a base class must be provided specifying the required interface
to the simulation developer. By making the P4 processor
simulator-agnostic, we allow for the reuse of P4 programs
and architectures with other Python-based simulators, such as
SeQUeNCe [25].

B. Simulator-Specific Components

For the simulator-specific components, we chose NetSquid
[47] as our simulation platform. Primarily for its maturity
as compared to SeQUeNCe [25], the other Python-based
simulator. We envision that, with QuIP, developers familiar
with NetSquid can provide code for a range of architectures,
such that protocol developers can use them in their own
research, thus saving them the need to implement their own
NetSquid simulations from scratch just like we had to.

1) NetSquid-P4/NetSquid Components: NetSquid-P4 is a
Python package that we provide [50] for architecture develop-
ers to develop NetSquid-native interfaces for PyP4 processors.
Examples are available in our V1Quantum [51] case study
code. Whilst not strictly necessary, we envision that it might
be helpful to provide such interfaces in order to facilitate the
implementation of the architectures in NetSquid. This is based
on our expectation that simulation developers will generally be
quantum device experts who are unlikely to be familiar with
network protocol design principles or with the P4 language
and concepts. Thus, they could otherwise be discouraged from
using QuIP due to a learning barrier.

2) Control Plane: With P4 we managed to decouple the
data-plane protocol implementation from the underlying simu-
lator. However, the control plane remains coupled to NetSquid.
In one way, the two planes are already decoupled, because
the control plane can populate the data-plane tables by using
the interfaces provided by the PyP4 processor wrapped in
NetSquid-P4. However, the communication protocol between
the two planes remains coupled to NetSquid and its runtime.

Fig. 3. The V1Quantum architecture, based on the V1Model architecture [55].
The classical network path remains unchanged with unmodified standard
metadata. V1Quantum introduces a new programmable block (QControl), a
new type of input (QControl events), and a new type of output (QControl
operations). QControl input/output is implemented using a new metadata
struct, “qcontrol metadata”. Unlike network packets, the QControl events
and operations are part of the architecture’s fixed-functions. Network packets
can be passed to and from the QControl using another new metadata struct,
“xconnect metadata”.

It is out of the scope of this paper, but it is possible to create
a software architecture where the control plane is decoupled
from this communication protocol and instead depends only
on the table definitions from the P4 program just like it is
already done in classical networks with P4Runtime [57].

3) Research and Validation: With a new architecture,
a researcher can design and implement a new quantum
network protocol in P4. However, to evaluate it we still
need a device on which the compiled protocol can run. The
simulation developer must implement the device matching
the target architecture. Whilst we had to implement both
our own architecture and simulated target device, we are
now in a position where the protocol design and simulation
can evolve independently of each other. We have found this
endeavour fruitful in helping us design useful abstractions
for quantum network protocol design, as demonstrated with
the V1Quantum architecture in Sec. IV. Finally, we found
NetSquid’s do-it-yourself approach lacking in tools to easily
create different topologies, submit requests, record results,
and replay simulations. Therefore, we have also implemented
NetSquid-Netrunner [62] to aid in creating and running net-
work simulations in NetSquid. Inspired by Mininet [63],
it allows the user to quickly create topologies programmat-
ically, configure network demand, run simulations, collect
results, and even rerun previous experiments. See Appendix A
for more details.

IV. CASE STUDY: V1QUANTUM

To demonstrate QuIP, we show its use in a case study of
our original problem: developing a control plane for a network
with heralding hubs (see Fig. 1). To this end, we created
V1Quantum, an architecture for quantum network devices
that we used to construct the entanglement-based network
protocols in P4, on top of which we built our control plane.
Fig. 3 shows a diagrammatic representation of V1Quantum.
It was created by extending the V1Model [55], [56] with a
new programmable block, QControl, that comes with a new

1940 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 42, NO. 7, JULY 2024

type of input, QControl events, and output, QControl oper-
ations. We used QuIP to implement the architecture, limited
variations of the link and network layer protocols [19], [22],
a limited control plane to reserve entanglement generation
paths. Finally, we validated all components in simulation using
NetSquid. The code for the V1Quantum architecture, including
demo code, is available at [51].

A. Heralding Hubs

In an entanglement-based network, a heralding station is
required to connect any pair of routers and/or end nodes.
However, despite the fact that there is no fundamental barrier
preventing us from combining multiple stations and connecting
more than two nodes via reconfigurable optical switches,
such “hubs” have not yet been considered in entanglement-
based networks. We wanted to study them for two reasons.
First, they offered a simpler solution for providing quantum
connectivity to a large campus, such as a university. A single
“heralding hub” directly connected to multiple end nodes is
much easier to deploy than a quantum router connected to
each end node via a dedicated heralding station. Furthermore,
by virtue of not needing a quantum memory, heralding stations
are much simpler to build than quantum routers. Our second
reason for considering such networks was that they provide
a path of evolution from MDI-QKD (Measurement Device
Independent QKD) networks, which are already undergoing
trials with industry [64]. MDI-QKD networks are a variant of
QKD networks, which, instead of point-to-point connectivity
between the end nodes, connect to each other via a central
station in a hub-and-spoke network topology. These central
stations contain similar hardware to what is required for the
heralding stations in an entanglement-based “hub”.

We designed V1Quantum to support end-to-end entangle-
ment generation protocols based on the QEGP [22] and
QNP [19] protocols. However, the key challenge that we
faced throughout was not so much in implementing the end-
to-end protocol suite itself, but in the inclusion of these
heralding hubs in our networks. The QEGP and QNP protocols
conceptually had no issue with heralding hubs, but their prior
simulated implementations strictly assumed heralding stations.
Whilst in the end, we did have to implement all the simulation
building blocks ourselves, QuIP allowed us to approach the
problem in a two-pronged approach. On one side, we re-
implemented simplified variations of the QEGP and QNP
protocols in P4. On the other side, we independently imple-
mented the heralding hubs device models in NetSquid. These
two pieces are connected via the V1Quantum architecture.
In the rest of this section, we show how we addressed the
various challenges we faced in creating this architecture.

B. Quantum Network Layers

The problem with the approach of [56] was that it consid-
ered the quantum physical layer suitable for implementation
in P4. This choice was motivated by the fact that, just like
the higher-layer protocols, it included exchanging classical
metadata. However, implementing the physical layer in more
complex scenarios, such as that of a quantum router, required

Fig. 4. V1Quantum and the functional allocation protocol stack [22]. This
follows the same approach as P4 stacks for classical networks as well as
quantum network stack implementations on real hardware [45].

very tight coupling with the underlying hardware capabilities.
Not only did this increase the protocol’s complexity, but it
also often required updates to the architecture specification
for small changes in the physical-layer protocol. The demo’s
small scale masked the complexity of scaling it up. Therefore,
we abandoned this approach and instead opted for an imple-
mentation that would more closely resemble the experimental
demonstration of [45].

In [45], the authors demonstrated QEGP [22] by imple-
menting the physical-layer protocol in hardware such that it
was abstracted away by means of physical-layer commands.
Following that approach, we moved the physical-layer protocol
to the fixed-function of the architecture and implemented only
the link- and network-layer protocols in the P4 data plane as
shown in Fig. 4. This approach is also more in line with how
P4 is used in classical networks. Reference [22] also defines
a transport layer, but we did not need it for our case study.

C. Quantum Abstractions

With the physical-layer protocol moved to the fixed-function
part of the architecture, we proceeded with the implementation
of the link (QEGP) and network-layer (QNP) protocols. Here
we ran into another problem. The P4 language and the
V1Model architecture were designed with classical networks
in mind. As a result, all language constructs relate to classical
packet processing. We found the lack of abstractions, and thus
concrete language constructs, for quantum objects limiting.
Reference [56] managed by adding extern function calls. How-
ever, externs are limited in the extent to which they can add
P4 constructs to represent quantum objects. What we really
needed was to elevate entanglement to a first-class abstraction
and provide suitable constructs to the programmer directly
within the architecture itself. To achieve this, we introduced
the QControl programmable block as shown in Fig. 3 with a
new type of input and output channels, called QControl events
and operations, connected directly to the QControl. We have
also coupled the QControl with the classical network Ingress
and Egress paths in order to enable the cross-connection of
quantum events and operations with classical communication.

To understand the rationale behind this P4 architecture,
we first explain the abstractions upon which we built our
architecture and data-plane protocols, before discussing its
implementation, while also explaining the principles of how
quantum networks operate.

KOZLOWSKI et al.: QuIP: A P4 QUANTUM INTERNET PROTOCOL PROTOTYPING FRAMEWORK 1941

1) Entanglement Objects: Fig. 5 summarises the principle
of operation of our quantum network stack based on [22] and
contrasts it with a classical layered network. Fig. 5(a) shows
how in a classical network, the payload follows a path from
the application at the source node to the application at the
destination node. However, in a quantum network, there is
no “payload” in the same sense as there is for a classical
network. Instead, as shown in Fig. 5(b), the quantum network
entangles a qubit at one end node with a qubit located at
the other end node, via a chain of intermediate heralding
stations and routers. What is then delivered to the application
is an entanglement object, in our case an entangled pair of
qubits, identified through an entanglement identifier that must
be identical at both end nodes. Through this shared identifier
and its associated entanglement object, the two nodes can
identify the qubits in their local quantum memories belonging
to the same entangled pair. Operating on entangled qubits
is only useful if we can correlate operations on a qubit at
one node with operations on the qubit that it is entangled
with at the other node. Otherwise, it is impossible to extract
any useful information from the entanglement. Additionally,
the entanglement object must also contain information about
the entangled pair’s Bell state. Due to the inherent ran-
domness of quantum mechanics, the network creates one of
four random states, called the Bell states, and it is never
possible to know ahead of time which one will be created.
Without knowing the Bell state, it is also impossible to extract
any useful information from the entanglement. Fortunately,
while it is impossible to know ahead of time what that
state will be for any entangled pair, the network will always
be able to infer this information once the entanglement is
created [19].

2) Bell State Measurements: In addition to the different
nature of the payload, Fig. 5 also shows that the way this
payload is delivered is quite different. The classical payload
begins its journey at the application on the source node, and
then by descending and ascending the network layers, it makes
its way to the application at the destination node as shown in
Fig. 5(a). On the other hand, Fig. 5(b) shows that the qubits
that eventually form the entanglement object never leave their
nodes. Instead, the qubits at different nodes are entangled with
photons via a local process and these photons are sent towards
heralding stations where a Bell State Measurement (BSM)
is performed on them leading to entanglement between the
qubits that were coupled to these photons. At router nodes,
a local BSM is performed (usually called an entanglement
swap in this context) that, similarly to the BSM at the heralding
station, leads to entanglement between the remote qubits with
which these two local qubits were entangled. Taking Fig. 5 as
an example, performing a BSM at node 3 on qubit 3.1 and
3.2 leads to entanglement between qubits 1 and 5. Therefore,
we see that BSMs “stitch” long-distance entanglement together
from shorter entanglement objects. The heralding station BSM
combined two pairs, each consisting of a local qubit entangled
with a photon, into a single entangled pair between the qubits
at the two nodes surrounding the station. The router BSM
combined two link-level entangled pairs into a single end-
to-end entangled pair. Thus, we also see that entanglement

Fig. 5. (a) The path across the network of a classical payload and its packet
headers. In a classical network, the packet descends and ascends through
the network layers, losing and gaining headers as it makes its way from
source to destination. The link header identifies the source and destination
on a local network and the network header identifies the network source
and destination. (b) The multitude of paths that qubits and headers take in
our protocol implementations to deliver a single end-to-end entangled pair of
qubits. Unlike in the classical case, the “payload”, i.e., the entangled qubits
“bubble up” from the physical layer to “surface” at the application layer
rather than beginning their journey from there. Here, the link header maps a
link-local entanglement object to its qubits and the network header maps the
end-to-end entanglement object to its qubits at the end nodes.

“bubbles up” from the bottom of the network stack as it is
extended via successive BSMs. As a BSM is a measurement
of the state of two qubits, it will produce an output containing
two bits of the measurement outcome, one for each qubit. This
outcome is used to identify which of the four Bell states was
produced through the BSM. Additionally, as not all physical
BSM implementations are deterministic (in particular optical
implementations, such as the one used at heralding stations,
are not deterministic), the BSM event must also indicate the
success or failure of the attempt.

3) Classical Communication: A key feature of this entire
process is that at each layer, classical messages must be
exchanged in order to correctly deliver an entanglement object
to the next layer. At either the physical or link layer, the herald-
ing station must send a signal back to the nodes that originated
the photons. In [22], this was done at the physical layer, but
in our implementation, we did it via the link layer (although
V1Quantum also sends the signal on the physical layer). Going
higher, the network-layer protocol must send messages to
identify the chain of all the link-layer entanglement objects

1942 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 42, NO. 7, JULY 2024

that were combined via BSMs at intermediate routers so that
the two end nodes can unambiguously identify which qubits
at the two nodes belong to the same entanglement object.
These messages must also collect all the outputs of the BSMs,
which contain information about the entangled pair’s Bell
state [19].

D. Implementation

1) QControl: The first element of our V1Quantum imple-
mentation is the QControl programmable block as shown in
Fig. 3. The block is part of the target architecture and thus it is
defined, including its inputs and outputs, in the P4 architecture
file. There are three key features of this new block: (1) a new
input channel that triggers within the QControl block without a
parser, (2) a new output channel that leaves from the QControl
block without a deparser, and (3) it is connected to the classical
Ingress and Egress paths.

a) QControl events: It follows from the previous dis-
cussion that the QControl block must receive the BSM
measurement outcomes. Therefore, we introduced a new input
channel, QControl events. Via this channel, the QControl
receives the outcomes from both the heralding station as well
as the entanglement swap BSMs. The events do not need to
be parsed as they are part of the fixed-function definition
and can be immediately delivered in a structured form as
“qcontrol metadata” to the program. The QControl events are
defined by the target architecture, but the processing of the
events, i.e., the data-plane protocol logic, is implemented in the
P4 program. However, the events themselves originate from
the target device as shown in Fig. 3. See Appendix B for
details.

b) QControl operations: The QControl block must also
issue commands to perform these BSMs. To issue the entan-
glement swap BSM we introduced a new output channel,
QControl operations. Via this channel, the QControl can issue
commands which will be executed by the fixed-function.
Implementing these operations via a new output channel is
more aligned with P4’s packet processing, where operations
on the payload, such as copying, dropping, or forwarding, are
performed by the fixed-function rather than via extern calls.
However, we have implemented the heralding station BSMs
differently, because they require the photons from the nodes
to arrive at precisely the same time. The alternative mechanism
is described in Sec. IV-D.3. QControl operations do not need
deparsing, because similarly to the input channel they are
implemented via the “qcontrol metadata” in the program. Also
similarly to the events, the QControl operations are defined
by the target architecture and they are emitted as a result of
the data-plane protocol logic implemented in the P4 program.
Once emitted the operations are executed by the target device
as shown in Fig. 3.

c) Cross-connect path: Finally, in order to build the
chain of link-layer entanglement objects and collect all
the BSM outcomes required to infer the final Bell state, the
QControl block needs to be able to receive and send clas-
sical packets. Therefore, the QControl programmable block
is connected to both the Ingress and Egress paths. This
allows the QControl to consume metadata about entanglement

from a remote node and to send such metadata itself. The
cross-connect path is also defined in the target architecture
with an implementation on the target device. However, since
the classical packet pipeline does not depend on any quantum
behaviour, which would require simulation, it is implemented
in the simulator-agnostic PyP4 processor and thus can be
re-used across different simulators.

2) Entanglement Headers: To implement the QEGP and
QNP protocols, we needed to express the entanglement objects
and classical messages sent by those protocols using P4
constructs. P4 headers were the natural choice for this task.
Combined with P4 registers to store state information locally
on each node they also proved to be sufficient and we were
able to implement our concept of network-level entanglement
objects as explained in Sec. IV-C directly within the P4
program itself.

Whilst these protocols did not consider the classical mes-
sages as headers, by implementing them in P4, we found that
a limited analogy can exist as illustrated in Fig. 5(b). Firstly,
indeed, the headers do not travel with the payload like they
would in a classical network. They have to remain decoupled
as the qubits that end up forming the final entanglement
object never physically leave their nodes. However, just like
classical headers identify the source and destination of the
packet at their respective layer, we defined our quantum
headers such that they identify the end-points and the state
of the entanglement object at their respective layer. That is,
we implemented the headers such that the link-layer header
identified the qubits and their state at the nodes on either
side of the link while the network-layer headers identified the
qubits and their state at the end nodes. Thus, at every layer,
the header identifies an entanglement object, but the higher
the layer, the larger the scope of the entanglement.

However, whilst the idea of identifying the end-points is
similar, the principle of operation deviates from the classical
one. For example, it is not possible for one node to fill
out all the entanglement object information in the header.
Indeed, the network layer collects this entanglement object
information by using the link-layer headers to follow the chain
of entanglement from one end node to the other. As shown in
Fig. 5(b), the network layer has a link-layer header pushed
on top before being sent to the next router. At the router,
the link-layer header uniquely identifies which qubit was
used in the local BSM that “stitched” this link entanglement
object with the next link. The network-layer header picks
up the corresponding link-layer header and continues along
the path. Once it reaches the remote end node, the final
link-layer header is used to identify the end node’s qubit that
belongs to the end-to-end entanglement object identified by
the network-layer header. Additionally, at each layer we have
two headers for each entanglement object moving in counter-
propagating directions. The counter-propagating message is
needed to ensure that both nodes receive acknowledgement
that the full chain of BSMs has been achieved and that none
of the intermediate pairs were dropped due to losses, such as
decoherence [19].

3) BSM Groups: The QControl block allowed us to move
the physical-layer protocol into the fixed-function section,

KOZLOWSKI et al.: QuIP: A P4 QUANTUM INTERNET PROTOCOL PROTOTYPING FRAMEWORK 1943

Fig. 6. A BSM group at a heralding hub. Installing a BSM group will connect
a pair of fibres, identified by the BSM entries, to a BSM unit, identified by the
BSM ID, and initiate entanglement generation. The BSM’s output is available
in the P4 program and multicast at the physical layer to the nodes connected
via that particular unit. Entanglement generation continues until the group is
removed.

thus simplifying the implementation of an end-to-end protocol
suite. However, alone this does not enable the use of heralding
hubs. We considered hubs composed of one or more sets of
BSM units, each capable of performing a BSM on its two
optical inputs, and an optical switch that would connect the
fibres from the nodes to the BSM units. While a hub with
multiple BSM units has not yet been realised for entanglement
generation, they are technologically feasible.

To achieve the desired control over these hubs, we needed:

1) The ability to program the connections from the incom-
ing fibres to the right detector unit.

2) The ability to trigger entanglement generation between
the nodes connected via this unit.

3) The P4 data-plane protocols to have access to the
detector output.

For the first point, it was sufficient if this was only
accessible to the control plane, which is analogous to how
classical networks reconfigure their connections. Therefore,
we introduced BSM groups, which are exposed by the device,
but not in the P4 program, for the control plane to configure.
A BSM group consists of three identifiers: the BSM ID, which
identifies the detector unit, and two entries, which identify the
input fibres. Upon creation of a BSM group at a heralding hub,
the device was expected to switch the input fibres identified
by the group’s entries to the BSM unit identified by the
BSM ID. The BSM output, the heralding signal, is then
automatically multicast, at the physical layer, i.e., not via the
P4 data plane, to the nodes at the remote ends of the fibres.
Physical-layer multicasting is required to implement protocols
in alignment with the experimental demonstration of [45]. This
is illustrated in Fig. 6.

Fig. 7. A BSM group at a quantum router. Entanglement swaps are
triggered and assigned to connections through a connection ID (CID) using
match+action rules. In parallel, we install a BSM group with the BSM ID
equal to the CID and its two BSM entries matching the connection’s upstream
and downstream ports. Once the BSM completes, the result is multicast using
the swap’s CID as the BSM ID.

For the second requirement, we chose to deviate from
the original QEGP design [22] by making the BSM group’s
creation trigger entanglement generation between the two
nodes connected by these input fibres. In the original design,
the heralding station’s BSM unit was always connected to the
same two nodes. Entanglement generation was triggered by
these two nodes according to a queue that they maintained in
a distributed fashion. Whilst possible to extend this approach
to multiple nodes connected via a central hub, we opted to
instead have the hub trigger entanglement generation to avoid
problems due to queue convergence.

To implement the last requirement, the BSM output is also
copied to the P4 data plane at the heralding hub as a QControl
event. Furthermore, the multicast signal, upon arrival at the
end node or router, is also immediately forwarded to the
node’s P4 data plane as a QControl event. This allows us to
implement a link-layer protocol with its logic fully contained
at the router and end nodes, just like [22], but it also allows
for implementations with some logic implemented at the hub.
Indeed, we used this ability in our QEGP variation to have the
hub assign unique labels to each entangled pair on the link.
These labels are later used at the other nodes to identify which
end-to-end entanglement object they belong to. To achieve
this, we needed the QControl to be able to multicast a packet to
the two nodes connected to the particular BSM unit. Therefore,
when the control plane creates a BSM group, in addition to
connecting the fibres to the BSM unit, it will also create a
special multicast group, this time available in the P4 program,
with the same ID as the BSM group and connecting the same
two nodes.

We also used the BSM group abstraction for the entangle-
ment swap BSM performed at the routers (Fig. 7). However,
here we did not need the BSM group to establish any physical

1944 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 42, NO. 7, JULY 2024

connectivity between the qubits like it had to for fibres at the
heralding hub. Nevertheless, we still found the BSM group’s
multicasting functionality useful. After an entanglement swap,
the QNP protocol has to multicast the BSM result to the next
upstream and downstream nodes. We implemented the QNP
in V1Quantum by leveraging BSM groups for this purpose.
More concretely, for each network-layer connection, we create
a corresponding BSM group at each router along the path with
the BSM ID matching the connection ID and the BSM entries
identifying the upstream and downstream ports. Additionally,
the router’s data plane is programmed to use the connection
ID as the BSM ID for the entanglement swap BSM operation.
Thus, when it completes, the QControl is able to use this ID
to multicast the outcome using the appropriate BSM group.

E. Limitations of V1Quantum

To facilitate the proof-of-concept implementation of the
V1Quantum architecture, we made two simplifying assump-
tions: (1) Routers have only one qubit per link and each qubit
is uniquely assigned to that link only. That is, the qubits cannot
be used to generate entanglement with another node via a link
that it is not assigned to. (2) Qubits are assumed to never be
kept in memory long enough for decoherence to have visible
effects. In other words, V1Quantum assumes that the qubit
memory lifetime is long compared to the time it takes to
generate end-to-end entanglement. These are not fundamental
limitations and should be resolvable with further extensions to
V1Quantum using QuIP. Additionally, all classical connections
in our simulations were considered reliable and in-order. This
is a reasonable assumption given that TCP was used for
the implementation of the QEGP protocol in the lab [45].
This suggests that the classical network ports in quantum
architectures should be logical rather than physical. Instead,
it is up to the architecture to define and the user to configure
the properties of these connections.

V. EVALUATION

We evaluated QuIP on a network with a heralding hub
running the protocol suite we implemented on the V1Quantum
architecture. The evaluation code can be found online [65].

A. Demand

As no large-scale quantum network exists yet, we do not
have any real demand patterns to base our simulations on.
For our evaluation, we opted for a demand pattern that
we considered realistic for near-term QKD. QKD works
by first producing a finite-size block of raw key material.
In entanglement-based networks, the raw key material is
obtained by generating a fixed number of entangled pairs and
measuring the qubits at the two end nodes. The measure-
ment results form the raw key material. For our evaluation,
we focused on the raw key generation step as it is the only step
that involves entanglement, and we do not simulate any of the
classical post-processing that is usually required. Thus, in our
simulations entanglement is generated on demand in response
to requests issued by individual end nodes for a fixed number
(50) of entangled pairs with some other end node submitted at

random intervals at a pre-specified network-wide average rate.
For each request, the two end nodes are chosen at random. One
of them is chosen to be the requesting node and is responsible
for forwarding the request to the remote end node.

B. Topology

We use a heralding-hub-and-spoke topology. We vary the
number of BSM units at the hub between one and eight.
As each BSM unit can only handle one request at a time,
their number determines the maximum throughput. All our
simulations are performed on a hub-and-spoke topology with
16 end nodes. Each end node is connected to the central hub
by 5 km of fibre, a reasonable distance for a small network.

C. Control Plane

The control plane we used for this proof-of-concept eval-
uation is simple: its only goal is to ensure that all requests
eventually complete and it is not optimised for any metric.
It runs on a controller located at the hub. All requests are
submitted by both end nodes to the controller, which schedules
them and, at the scheduled time, configures the data plane.
Requests are scheduled on a first-come-first-served basis and
run until completion before their resources can be re-assigned.
Since multiplexing entanglement generation on a single link is
not currently possible, any fibre can only be assigned to one
request at a time. Therefore, the controller will skip requests
if the required fibres are occupied. Whilst BSM units can also
only be assigned to one request at a time, they can be flexibly
reconnected to different links via BSM groups. Therefore,
although they impose a limit on the number of requests that
can be handled simultaneously, they do not block requests
based on which fibres are required. More advanced control
planes are a subject of ongoing research and may be developed
in the future.

D. Physical Parameters

All the physical parameters and code used for the simu-
lation are available online [65] with instructions on how to
reproduce the results of our evaluation. In summary, we use
realistic values for fibre losses and photon detector properties.
We model the stationary qubits at the end nodes based on
Nitrogen Vacancy quantum nodes [42].

E. Results

We simulated randomly generated demand for different
network-wide request rates ten times for 2 seconds each. Fig. 8
shows averages calculated based on requests that started and
completed between 1 s and 2 s (i.e., once an equilibrium is
reached). Fig. 8(a) shows that our control plane easily saturates
the hub’s resources in terms of throughput (completed requests
per second). However, Fig. 8(b) shows that this happens at the
cost of mean latency (time between the moment a request is
submitted and the moment the request starts being executed).
This happens even if the network is far from being saturated.
Furthermore, the variation in latencies is large, especially
when the network is close to saturation, as seen in Fig. 8(c),

KOZLOWSKI et al.: QuIP: A P4 QUANTUM INTERNET PROTOCOL PROTOTYPING FRAMEWORK 1945

Fig. 8. The performance of a heralding-hub-and-spoke network. Different
coloured lines correspond to a different network-wide request rate. (a) The
mean throughput vs. the number of BSM units. We see that our protocols
easily saturate throughput. Error bars are not shown as they are of the same
order of magnitude as the markers. (b) The mean latency vs. the number
of BSM units. As the request rate increases so does the mean latency. The
number of BSM units itself does not have much impact on latency when
significant bandwidth is available. The variation in latency is enormous and
thus, instead of error bars, (c) shows the cumulative distribution function of
completed requests for 6 BSM units. We see that as the request rate increases,
the distribution significantly spreads out.

which shows the cumulative distribution function of completed
requests for the case of 6 BSM units. For reference, a request
of 50 entangled pairs needs only ≈0.015 s to actually execute.

VI. CONCLUSION

We have introduced QuIP, a P4-based Quantum Internet
Protocol prototyping framework. QuIP decouples quantum
network protocol implementation from simulation by using
the P416 network DSL. We demonstrated the framework in a
case study in which we introduced V1Quantum, a quantum
device architecture where entanglement is a core abstraction.
We showed how we used P416’s architectural flexibility to
incorporate heralding hubs and implement a quantum network
protocol suite. We provide the Python packages that we
developed for QuIP to enable its integration with Python-based
quantum network simulators and provide an integration with
NetSquid. We have also made our code publicly available [49],
[50], [51], [62].

APPENDIX A
QUICK START GUIDE

Whilst QuIP requires many components, it is not expected
that all of them are implemented by a single party. A natural
division of responsibilities would have protocol experts
develop the data- and control-plane protocols, while quantum
experts implement the simulated devices. The architecture will
ideally be developed jointly as it defines the interface between
the two domains.

A. Simulator-Agnostic Components

1) Data Plane/Architecture File: The first step is to define
the device architecture in a P4 file. A device architecture
defines the processing pipeline of the device by defining
the user-programmable blocks, their inputs and outputs, the
architecture-specific functionality available within the blocks
as well as the fixed-function processing that is executed
between the blocks. The reference P4 compiler [59] includes
several architectures in the p4include directory that can
be used as a starting point. The V1Quantum architecture
file can be found in the p4include directory in our
fork of the P4 compiler [52]. Once an architecture is
expressed in a P4 file, data-plane protocols can be written
for it. The P4 source files for the protocols we imple-
mented for the V1Quantum architecture can be found in
the v1quantum/protocol/data_plane/p4 directory
of the V1Quantum repository [51].

2) P4 Compiler/BMv2 Backend: Once ready, the P4 source
files must be compiled into a format that can be executed in
a simulator. QuIP uses the BMv2 JSON format [61] for this
purpose. Thus, for every architecture a P4-to-BMv2 compiler
is required. The easiest way to create one is to fork the open-
source P4 compiler [59] and add the new architecture to it.
The compiler frontend is shared by all architectures and since
P416 supports custom architectures by default, there is no
need to provide new frontend code. However, a new BMv2
backend must be added to backends/bmv2. Fortunately,
backend code for BMv2 is relatively straightforward since it
compiles to a JSON file rather than a hardware-specific binary
format. Furthermore, since the compiler does not implement
any of the fixed-function logic, it only needs to know how to
convert programmable blocks, externs, and metadata blocks
into JSON structures. This work is quite mechanistic and
a developer with moderate C++ familiarity should be able
to adapt code from an existing BMv2 backend. The back-
end code for the V1Quantum architecture can be found in
backends/bmv2/quantum_switch in our fork of the P4
compiler [52].

3) PyP4/P4 Processor: To execute a BMv2 JSON file,
a processor is required. For QuIP simulations, the processor
is expected to be implemented in Python. For the purposes
of implementing such a processor, QuIP provides the PyP4
package [49]. PyP4 provides functions for processing the
BMv2 code so that the developer does not need to under-
stand the BMv2 format themselves. However, the JSON file
does not contain any information on how the blocks are
connected nor any architecture-specific fixed-function logic,

1946 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 42, NO. 7, JULY 2024

including externs. Therefore, the architecture developer must
additionally provide the following three elements to implement
a processor: (1) the connections between the inputs and
outputs between the different programmable blocks, (2) the
fixed-function logic executed by the data plane between
the programmable blocks, and (3) the entry points and the
logic for all the externs that are called from within the
programmable blocks. For fixed-function logic that cannot
be implemented in a simulation-agnostic manner the archi-
tecture developer can instead provide abstract base classes
that define the interfaces that must be implemented within
the simulator. The V1Quantum processor implementation can
be found in the V1Quantum repository [51] in the file
v1quantum/processor.py.

B. Simulator-Specific Components

1) NetSquid-P4/NetSquid Components: Finally, the archi-
tecture needs to be implemented in the quantum network sim-
ulator. This implementation must provide all the fixed-function
capabilities specified by the architecture. In the case of quan-
tum network devices this will include functionality such as
the physical-layer protocol for entanglement generation and
entanglement swapping. For V1Quantum we implemented
two devices: a quantum node, and a heralding hub. The
code can be found in v1quantum/components of the
V1Quantum repository [51]. To facilitate this task, the archi-
tecture developer may choose to provide a simulator-native
interface for the P4 processor from the previous step. The
purpose of such an interface is to facilitate the integration
of the P4 processor by providing functions that can accept
simulation-native objects, cast them to architecture-specific
metadata constructs, inject them into the P4 processor, cast
any output metadata into simulation-native objects, and call
back into the simulation for further execution. This is optional,
but it may help if the simulation developer is different
from the protocol and architecture developer. For V1Quantum
we have implemented the v1quantum/device.py of
the V1Quantum repository [51] using the QuIP package
NetSquid-P4.

2) Control Plane: The task of a control plane is to
populate the match+action tables defined in the P4 data plane
such that the desired networking objectives are achieved.
As the tables, matches, and actions are defined in the
P4 source code, they are all available in the compiled
BMv2 JSON file. Therefore, a P4 processor implemented
using PyP4 will automatically provide the necessary API
calls for inserting and removing entries to and from these
tables such that they can be used by the processor. QuIP
makes no assumptions as to whether the control plane
is distributed or centralised. The control plane that we
implemented for the case study in this paper is available
in v1quantum/protocol/control_plane in the
V1Quantum
repository [51].

3) Research and Validation: With a device architecture,
a P4 data plane, and a control plane we are ready to simulate
them in a network scenario and evaluate their performance.
We recommend using the NetSquid-Netrunner [62] package

that we have created for QuIP to construct and run such
simulations. The package provides modules to easily gener-
ate and instantiate network topologies as well as generate
and inject user demand. The V1Quantum repository [51]
includes two examples of experiments created using NetSquid-
Netrunner in the experiments directory. In particular, the
experiments/hub experiment was used to produce the
data in the case study in this paper. For a step-by-step example
that executes the simulations we used to produce the data in
this paper, please follow the README.md in [65].

APPENDIX B
V1QUANTUM ARCHITECTURE IN P4

The new QControl input and output channels, called
QControl events and operations, are implemented with a
new metadata block called “qcontrol_metadata”, which is
defined as:

@metadata @name (" q c o n t r o l _ m e t a d a t a ")
s t r u c t q c o n t r o l _ m e t a d a t a _ t {

QCont ro lEventType e v e n t _ t y p e ;
b i t <64> e v e n t _ t i m e s t a m p ;

/ / QCont ro l o p e r a t i o n s and p a r a m e t e r s .
/ / Note t h a t c u r r e n t l y p o r t == q u b i t .
Q C o n t r o l O p e r a t i o n o p e r a t i o n ;

/ / Q C o n t r o l O p e r a t i o n == r e l e a s e .
b i t <9> r e l e a s e _ q u b i t ;

/ / Q C o n t r o l O p e r a t i o n == swap .
b i t <16> swap_bsm_id ;
b i t <9> swap_qub i t_0 ;
b i t <9> swap_qub i t_1 ;

/ / QCont ro l e v e n t m e t a d a t a .

/ / H e r a l d i n g / swap BSM outcome .
b i t <16> bsm_id ;
boo l bsm_success ;
b i t <2> b s m _ b e l l _ i n d e x ;

}

enum QCont ro lEventType {
hera ld ing_bsm_outcome ,
swap_bsm_outcome ,
cne twork

}

enum Q C o n t r o l O p e r a t i o n {
none ,
swap ,
r e l e a s e

}

When the QControl block is triggered, the trigger-
ing event is specified in the event_type field of
qcontrol_metadata_t. The other fields of the metadata

KOZLOWSKI et al.: QuIP: A P4 QUANTUM INTERNET PROTOCOL PROTOTYPING FRAMEWORK 1947

struct will be filled in depending on the type of the event.
There are three types of events:

• heralding_bsm_outcome: A heralding signal noti-
fying of success or failure and the resulting state of
link-level entanglement between two nodes connected
via the heralding station. This event is triggered at the
heralding hub, but also at the router and end nodes as
the heralding signal is also transmitted at the physical-
layer protocol.

• swap_bsm_outcome: An entanglement swap has com-
pleted at a quantum router node as a result of the
entanglement swap operation (which is also a BSM).
The QControl metadata will indicate the ID that
was assigned to the operation and the resulting Bell
state.

• cnetwork: The QControl was triggered by a classical
message that was diverted from the Ingress block. In this
case, the remaining fields qcontrol_metadata_t are
not filled in and the program should inspect the diverted
packet fields.

The QControl block issues operations to the local
quantum network processing unit by filling out
qcontrol_metadata_t. It indicates the operation
type by setting the operation field and sets parameters by
filling out the accompanying fields. There are three types of
operations:

• none: Do nothing. This is useful if QControl cannot
act on the provided input, it only needs to record some
metadata locally in registers, or it only wants to emit a
classical packet.

• swap: Execute an entanglement swap (BSM) operation.
The QControl must assign an ID to the operation, which
will be returned with the entanglement swap result as a
QControl event, and choose the two qubits that are to be
entanglement swapped.

• release: Release the qubit so that it can be reused.
This is equivalent to a packet drop in classical net-
working. This operation is extremely useful in handling
window conditions that result when the network’s state
changes and has not yet converged into the new
equilibrium.

The QControl also has the ability to send and receive
classical packets. It is coupled to the classical net-
working path by means of the “xconnect_metadata”
defined as:

@metadata @name (" x c o n n e c t _ m e t a d a t a ")
s t r u c t x c o n n e c t _ m e t a d a t a _ t {

/ / Choose pathway f o r t h e p a c k e t .
PathWay pathway ;

/ / I n g r e s s i n f o r m a t i o n .
b i t <9> i n g r e s s _ p o r t ;

/ / Send s i n g l e p a c k e t .
b i t <9> e g r e s s _ s p e c ;

/ / BSM group m u l t i c a s t .

b i t <16> bsm_grp ;

/ / BSM i n f o a v a i l a b l e a t e g r e s s .
b i t <16> bsm_info ;

}

enum PathWay {
cnetwork ,
q c o n t r o l

}

If Ingress wants to divert a packet to QControl, it must
set the pathway field to qcontrol. If the QControl
wants to send out a classical packet, it can either set the
egress_spec field, which has exactly the same meaning
as the standard_metadata_t field of the same name
or, if a BSM group has been installed, it can set the
bsm_grp field to multicast a packet as per the definition
of the BSM group (see Sec. IV-D.3). The ingress_port
indicates the ingress port of the packet and bsm_info
is filled out by the BSM group for use in the Egress
block.

REFERENCES

[1] S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A
vision for the road ahead,” Science, vol. 362, no. 6412, Oct. 2018,
Art. no. eaam9288.

[2] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key
distribution and coin tossing,” Theor. Comput. Sci., vol. 560, pp. 7–11,
Dec. 2014.

[3] A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys.
Rev. Lett., vol. 67, no. 6, pp. 661–663, Aug. 1991.

[4] M. Ben-Or and A. Hassidim, “Fast quantum Byzantine agreement,” in
Proc. 37th Annu. ACM Symp. Theory Comput. Baltimore, MD, USA:
ACM Press, May 2005, p. 481.

[5] A. Broadbent, J. Fitzsimons, and E. Kashefi, “Universal blind quan-
tum computation,” in Proc. IEEE Symp. Found Comput. Sci. (FOCS),
Oct. 2009, pp. 517–526.

[6] A. M. Childs, “Secure assisted quantum computation,” Quantum Inf.
Comput., vol. 5, no. 6, pp. 456–466, Sep. 2005.

[7] P. Komar et al., “A quantum network of clocks,” Nature Phys., vol. 10,
no. 8, pp. 582–587, 2014.

[8] D. Gottesman, T. Jennewein, and S. Croke, “Longer-baseline telescopes
using quantum repeaters,” Phys. Rev. Lett., vol. 109, no. 7, Aug. 2012,
Art. no. 070503.

[9] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum
repeaters: The role of imperfect local operations in quantum com-
munication,” Phys. Rev. Lett., vol. 81, no. 26, pp. 5932–5935,
Dec. 1998.

[10] R. Van Meter, Quantum Networking. Hoboken, NJ, USA: Wiley, 2014.
[11] (2022). Quantum Internet Alliance. [Online]. Available: https://quantum-

internet.team/
[12] (2022). Quantum Internet Task Force. [Online]. Available:

https://qitf.org/
[13] (2022). Center for Quantum Networks. [Online]. Available: https://cqn-

erc.org/
[14] Y. Tadjdeh. (2020). Argonne National Lab Testing Quantum

Internet. [Online]. Available: https://www.nationaldefensemagazine.
org/articles/2020/3/31/argonne-national-lab-testing-quantum-internet

[15] Center for Quantum Networks. (2022). Quantum Network Testbed.
[Online]. Available: https://cqn-erc.org/research/quantum-network-
testbed/

[16] European Commission. (2022). The European Quantum
Communication Infrastructure (Euroqci) Initiative. [Online]. Available:
https://digital-strategy.ec.europa.eu/en/policies/european-quantum-
communication-infrastructure-euroqci

[17] Quantum Delta NL. (2022). National Quantum Network. [Online].
Available: https://quantumdelta.nl/quantum-network/

1948 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 42, NO. 7, JULY 2024

[18] Y.-A. Chen et al., “An integrated space-to-ground quantum commu-
nication network over 4,600 kilometres,” Nature, vol. 589, no. 7841,
pp. 214–219, 7841.

[19] W. Kozlowski, A. Dahlberg, and S. Wehner, “Designing a quantum
network protocol,” in Proc. Int. Conf. Emerg. Netw. Exp. Technol.
(CoNEXT). New York, NY, USA: Association for Computing Machinery,
2020, pp. 1–16.

[20] J. Illiano, M. Caleffi, A. Manzalini, and A. S. Cacciapuoti, “Quan-
tum Internet protocol stack: A comprehensive survey,” Comput. Netw.,
vol. 213, Aug. 2022, Art. no. 109092.

[21] R. Van Meter, T. D. Ladd, W. J. Munro, and K. Nemoto, “System design
for a long-line quantum repeater,” IEEE/ACM Trans. Netw., vol. 17,
no. 3, pp. 1002–1013, Jun. 2009.

[22] A. Dahlberg et al., “A link layer protocol for quantum net-
works,” in Proc. ACM Int. Group Data Commun. (SIGCOMM).
New York, NY, USA: Association for Computing Machinery, 2019,
pp. 159–173.

[23] A. Pirker and W. Dür, “A quantum network stack and protocols for
reliable entanglement-based networks,” New J. Phys., vol. 21, no. 3,
Mar. 2019, Art. no. 033003.

[24] T. Matsuo, C. Durand, and R. Van Meter, “Quantum link
bootstrapping using a RuleSet-based communication protocol,”
Phys. Rev. A, Gen. Phys., vol. 100, no. 5, Nov. 2019,
Art. no. 052320.

[25] X. Wu et al., “SeQUeNCe: A customizable discrete-event simulator of
quantum networks,” Quantum Sci. Technol., vol. 6, no. 4, Sep. 2021,
Art. no. 045027.

[26] S. DiAdamo, B. Qi, G. Miller, R. Kompella, and A. Shabani, “Packet
switching in quantum networks: A path to the quantum internet,” Phys.
Rev. Res., vol. 4, no. 4, Oct. 2022, Art. no. 043064.

[27] R. Van Meter, T. Satoh, T. D. Ladd, W. J. Munro, and K. Nemoto, “Path
selection for quantum repeater networks,” Netw. Sci., vol. 3, pp. 82–95,
Dec. 2013.

[28] M. Caleffi, “Optimal routing for quantum networks,” IEEE Access,
vol. 5, pp. 22299–22312, 2017.

[29] S. Shi and C. Qian, “Concurrent entanglement routing for quantum
networks: Model and designs,” in Proc. Annu. Conf. ACM Special Inter-
est Group Data Commun. Appl., Technol., Archit., Protocols Comput.
Commun. New York, NY, USA: Association for Computing Machinery,
2020, pp. 62–75.

[30] K. Chakraborty, D. Elkouss, B. Rijsman, and S. Wehner, “Entan-
glement distribution in a quantum network: A multicommodity
flow-based approach,” IEEE Trans. Quantum Eng., vol. 1, pp. 1–21,
2020.

[31] L. Gyongyosi and S. Imre, “Entanglement-gradient routing for quantum
networks,” Sci. Rep., vol. 7, no. 1, p. 14255, Oct. 2017.

[32] L. Gyongyosi and S. Imre, “Decentralized base-graph routing for the
quantum internet,” Phys. Rev. A, Gen. Phys., vol. 98, no. 2, Aug. 2018,
Art. no. 022310.

[33] C. Li, T. Li, Y.-X. Liu, and P. Cappellaro, “Effective routing design for
remote entanglement generation on quantum networks,” NPJ Quantum
Inf., vol. 7, no. 1, pp. 1–12, Jan. 2021.

[34] M. Skrzypczyk and S. Wehner, “An architecture for meeting quality-
of-service requirements in multi-user quantum networks,” 2021,
arXiv:2111.13124.

[35] G. Vardoyan, S. Guha, P. Nain, and D. Towsley, “On the
stochastic analysis of a quantum entanglement switch,” ACM
SIGMETRICS Perform. Eval. Rev., vol. 47, no. 2, pp. 27–29,
Dec. 2019.

[36] G. Vallone et al., “Experimental satellite quantum com-
munications,” Phys. Rev. Lett., vol. 115, no. 4, Jul. 2015,
Art. no. 040502.

[37] J. Yin et al., “Satellite-based entanglement distribution over
1200 kilometers,” Science, vol. 356, no. 6343, pp. 1140–1144,
Jun. 2017.

[38] M. Pompili et al., “Realization of a multinode quantum network of
remote solid-state qubits,” Science, vol. 372, no. 6539, pp. 259–264,
6539.

[39] H. Bernien et al., “Heralded entanglement between solid-state qubits
separated by three metres,” Nature, vol. 497, no. 7447, pp. 86–90,
May 2013.

[40] D. L. Moehring et al., “Entanglement of single-atom quan-
tum bits at a distance,” Nature, vol. 449, no. 7158, pp. 68–71,
Sep. 2007.

[41] A. Reiserer and G. Rempe, “Cavity-based quantum networks with
single atoms and optical photons,” Rev. Modern Phys., vol. 87, no. 4,
pp. 1379–1418, Dec. 2015.

[42] P. C. Humphreys et al., “Deterministic delivery of remote entanglement
on a quantum network,” Nature, vol. 558, no. 7709, pp. 268–273,
Jun. 2018.

[43] D. Lago-Rivera, S. Grandi, J. V. Rakonjac, A. Seri, and
H. de Riedmatten, “Telecom-heralded entanglement between multimode
solid-state quantum memories,” Nature, vol. 594, no. 7861, pp. 37–40,
Jun. 2021.

[44] T. van Leent et al., “Entangling single atoms over 33 km telecom fibre,”
Nature, vol. 607, no. 7917, pp. 69–73, Jul. 2022.

[45] M. Pompili et al., “Experimental demonstration of entanglement delivery
using a quantum network stack,” npj Quantum Inf., vol. 8, no. 1, p. 121,
Oct. 2022.

[46] R. Satoh et al., “QuISP: A quantum internet simulation package,”
in Proc. IEEE Int. Conf. Quantum Comput. Eng. (QCE), Dec. 2021,
pp. 353–364.

[47] T. Coopmans et al., “NetSquid, a NETwork simulator for QUantum
information using discrete events,” Commun. Phys., vol. 4, no. 1,
pp. 1–15, Jul. 2021.

[48] M. Budiu and C. Dodd, “The P416 programming language,”
ACM SIGOPS Operating Syst. Rev., vol. 51, no. 1, pp. 5–14,
Sep. 2017.

[49] PyP4. (2023). At Time of Submission: Tag V1.0.0; Commit
396300720633ce16d5f34a0e0aa1416b279f1d9e. [Online]. Available:
https://github.com/QuTech-Delft/pyp4

[50] NetSquid-P4. (2023). At Time of Submission: Tag V1.0.0; Commit
C615a152119995d06ac435591bd667f3ed39b75f. [Online]. Available:
https://github.com/QuTech-Delft/netsquid-p4

[51] V1Quantum. (2023). At Time of Submission: Tag Jsac; Com-
mit A7bba830209fa92cbb70146ed8ccdf85572aff38. [Online]. Available:
https://github.com/QuTech-Delft/v1quantum

[52] V1Quantum P4 Compiler. (2023). At Time of Submission: Tag
Jsac; Commit 718445be9947b1d3860c0ebe2faa091c1e19fe3e. [Online].
Available: https://github.com/QuTech-Delft/p4c

[53] R. Yehia, S. Neves, E. Diamanti, and I. Kerenidis, “Quantum city:
Simulation of a practical near-term metropolitan quantum network,”
2022, arXiv:2211.01190.

[54] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: An intel-
lectual history of programmable networks,” ACM SIGCOMM Comput.
Commun. Rev., vol. 44, no. 2, pp. 87–98, Apr. 2014.

[55] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 87–95, Jul. 2014.

[56] W. Kozlowski, F. Kuipers, and S. Wehner, “A P4 data plane for the
quantum Internet,” in Proc. 3rd P4 Workshop Eur. New York, NY, USA:
Association for Computing Machinery, Dec. 2020, pp. 49–51.

[57] P4 Project. (2022). P4runtime. [Online]. Available:
https://github.com/p4lang/p4runtime

[58] Open Networking Foundation. (2022). Onos: Open Network Operating
System. [Online]. Available: https://opennetworking.org/onos/

[59] P4 Project. (2022). P4c. [Online]. Available: https://github.
com/p4lang/p4c

[60] J. Wanderer and A. Vahdat. (2018). Google Cloud Using P4runtime To
Build Smart Networks. [Online]. Available: https://cloud.google.com/
blog/products/gcp/google-cloud-using-p4runtime-to-build-smart-
networks

[61] P4 Project. (2022). BMV2 Json Input Format. [Online].
Available: https://github.com/p4lang/behavioral-model/blob/
main/docs/JSON_format.md

[62] NetSquid-Netrunner. (2023). At Time of Submission: Tag V1.0.0; Com-
mit 0f33cb109c46655be861fb1e53d8b81047cebae4. [Online]. Available:
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-netrunner

[63] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:
Rapid prototyping for software-defined networks,” in Proc. 9th ACM
SIGCOMM Workshop Hot Topics Netw. (Hotnets), Monterey, CA, USA:
ACM Press, Oct. 2010, pp. 1–6. Monterey, CA, USA: ACM Press,
Oct. 2010, pp. 1–6.

[64] R. C. Berrevoets et al., “Deployed measurement-device independent
quantum key distribution and bell-state measurements coexisting with
standard Internet data and networking equipment,” Commun. Phys.,
vol. 5, no. 1, pp. 1–8, Jul. 2022.

[65] (2024). V1Quantum Demo. [Online]. Available: https://doi.org/
10.4121/8077ccf1-9967-4b95-8b1c-ebbfdc395039

KOZLOWSKI et al.: QuIP: A P4 QUANTUM INTERNET PROTOCOL PROTOTYPING FRAMEWORK 1949

Wojciech Kozlowski received the M.Sci. degree
in theoretical quantum physics from the University
of Cambridge in 2012 and the D.Phil. degree in
atomic and laser physics from the University of
Oxford in 2016. After graduating from Oxford,
he decided to change track and he worked as a
Software Engineer with the Network Software Team,
Metaswitch, for two years. This has placed him in
the unusual position of having experience in both
computer networking and quantum physics, which
is how he ended up with QuTech, The Netherlands.

There, he worked as a Post-Doctoral Researcher with the Stephanie Wehner
Group for two years, before changing roles. In his new role as a Quantum
Network Engineer, he works on developing the software and network protocol
stacks for the Quantum Internet Alliance in which he leads the Stack and
Integration Team.

Fernando A. Kuipers (Senior Member, IEEE)
received the Ph.D. degree (cum laude) from Delft
University of Technology (TU Delft) in 2004.
He was a Visiting Scholar with the Technion—
Israel Institute of Technology in 2009 and Columbia
University, New York, NY, USA, in 2016. He is
currently a Full Professor with TU Delft, where he
established and leads the Networked Systems Group
and the Laboratory on Internet Science. He co-
founded the Do IoT Fieldlab and the PowerWeb
Institute. His research interests include network opti-

mization, network resilience, quality-of-service, and quality-of-experience and
address problems in computer networks, software-defined networking, 6G,
and the Internet of Things. His work on these subjects includes distinguished
papers at IEEE INFOCOM 2003, Chinacom 2006, IFIP Networking 2008,
IEEE FMN 2008, IEEE ISM 2008, ITC 2009, IEEE JISIC 2014, NetGames
2015, and EuroGP 2017. He has served as the General Chair and the TPC
Chair for flagship conferences, such as ACM SIGCOMM (2021 and 2022)
and IEEE INFOCOM (2024). He is the Vice Chair of the ACM SIGCOMM
Executive Committee. He served on the Board of the TU Delft Safety and
Security Institute. He is the Co-PI of the Dutch 6G Flagship Project Future
Network Services, where he leads the program line Intelligent Networks.

Rob Smets joined the Dutch Organization for
Applied Scientific Research (TNO), where he acted
as an Innovator in many mobile and fixed-network
projects in 2008. After completing the Ph.D. degree,
he worked on all-optical signal processing with
Philips Research, he started working with Lucent
Technologies in 1999, where he as a Member
of Technical Staff, supported the Optical Net-
working Group and the Access Network Division,
Alcatel-Lucent. In 2013, he joined the Dutch
National Research and Network Operator, SURF,

as a Network Architect, and an Innovator, with a focus on introducing new
network technology and services. At present, he has taken an interest in the
cutting-edge between scientific and operational aspects in the field of DevOps,
quantum information networking, and network services.

Belma Turkovic received the M.Sc. degree in elec-
trical engineering from the University of Sarajevo,
Bosnia and Herzegovina, in 2015, and the Ph.D.
degree from the Embedded and Networked Sys-
tems Group, Delft University of Technology,
The Netherlands, in 2022. Since 2021, she has been
a Research Scientist with the Dutch Organization
for Applied Scientific Research (TNO), where her
research focuses on the development of 5G/6G
core networks and applications utilizing them, cloud
computing, programmable infrastructure (IaC), and

programmable networks (e.g., programmable data planes and software-defined
networking).

