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ABSTRACT
Agent-based training systems can enhance people’s social skills. The effective development of
these systems needs a comprehensive architecture that outlines their components and
relationships. Such an architecture can pinpoint improvement areas and future outlooks. This
paper presents ARTES: a general architecture illustrating how components of agent-based social
training systems work together. We studied existing systems and architectures for training and
tutoring to design ARTES and identify its essential components and interaction characteristics.
ARTES comprises two core components: the agent simulation of social situations, and
educational elements to provide guided learning. We link ARTES’s crucial components to four
primary learning theories (behaviourism, cognitivism, social cognitive theory, and
constructivism) to illustrate the role of agent simulation and tutoring elements in establishing
desired learning outcomes. Furthermore, we map ARTES’s components against eight
architectures, 43 systems and three tools to indicate the components’ relevance, completeness,
generalisation, and deployment potential across contexts. In addition to ARTES, the paper also
contributes by identifying future improvements and research directions, such as the agent’s
thinking, tutoring methods, knowledge transfer, and ethical implications. We believe ARTES can
help bridge the gap between virtual human simulations and impactful educational learning,
offering training system developers desirable features like understandability and adaptability.
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1. Introduction

Social communication skills are important for human
interaction. Training these skills can, therefore, be ben-
eficial, including training them with computer appli-
cations. Software engineers designing these systems
would benefit from a high-level application overview;
that is, a conceptual architecture describing the system’s
components, their interrelationships, and properties.
This overview helps engineers identify what is necessary
and build applications with desirable characteristics such
as understandability for other developers and adaptability
(Losavio, Chirinos, and Pérez 2001). Nonetheless, the
area of social skills training systems currently lacks such
an architecture of the components and their relationships.
To this end, we present a conceptual architecture for agent-
based social skills training systems. This architecture
outlines the general functionalities and components
necessary to deliver these functionalities. The architecture
is versatile and could be applied to various forms of social

skills training, including interviews, negotiations, and
taking medical histories. The architecture is also agnostic
to the agent’s embodiment, modality of interactions, soft-
ware implementation, and deployment. Because of their
importance, it caters explicitly for training on dialogues
aimed at changing people’s perspectives and beliefs, such
as getting vaccinated, becoming physically active, or quit-
ting smoking. Therefore, we specifically focus on simulat-
ing the thought process of a communication partner but
also on how the architecture facilitates the embedding of
instructional principles. Moreover, we also look into new
opportunities and further research directions for agent-
based social skills training.

1.1. Why social skills training systems

Social skills training is beneficial to train people on problems
arising in different social settings, such as social anxiety
(Beidel et al. 2014), patient-doctor communication (Oh,
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Jeon, and Koh 2015), and business customer service
(Mouawad and Kleiner 1996). Yet, this training is
often reported to be costly, time-consuming, and
involves several individuals, e.g. training student
doctors on breaking bad news (Ochs et al. 2019). A
computer-simulated person within a training system
offers a practical solution. It role-plays a situation for
learners to learn from, whereby they interact with an
interactive computer agent representing a human in a
specific training scenario (Figure 1). These systems
allow learners to practice interactions in a safe, cost-
effective, and readily available environment (Gratch,
DeVault and Lucas 2016; Mascarenhas et al. 2010; Mot-
germ, Franch, and Marco 2022).

1.2. Architectures for social skills training
systems

Rather than building a training system from scratch, it
would be efficient for developers and researchers to
leverage an architecture that describes the connection
and flow between the different components. Integrating
different artificial intelligence (AI) technologies and
domain knowledge is crucial to the success of training
environments (Kenny et al. 2007), making such a system
complex by its nature. Thus, an architecture can help
designers abstract and understand such complexity.
Several architectures can be adapted for training sys-
tems, primarily: (1) tutoring models (e.g. Nwana
1990), which usually focus on the educational process
rather than simulations; (2) virtual human architectures
(e.g. Lee et al. 2008); and (3) the integration of both (e.g.
Core, Lane, and Traum 2014). Other architectures have
been proposed in adjacent domains, like in social

simulation (Bourgais, Taillandier, and Vercouter
2019). However, these simulations aim to study scen-
arios involving interactions among many agents that
mimic human behaviour, such as simulating the behav-
iour of many people in an evacuation scenario. This
makes them different from social skills training simu-
lations, which focus on simulating social interactions
to train human learners.

At its core, training systems are systems to teach (the
goal) (J. R. Anderson, Boyle, and Reiser 1985) by having
a human interact with a simulated environment (the
means). Adding tutoring to such simulations could con-
tribute to a guided learning experience, which is more
effective than unguided learning (Clark 2007; Kirschner,
Sweller, and Clark 2006; Lee 1999; Titov et al. 2008;
Topu and Goktas 2019). Furthermore, computer-
based tutoring can be time- and cost-effective compared
to in-house tutoring, e.g. debriefing session (Akyuz
2020; Niemiec, Sikorski, and Walberg 1989). However,
we noticed that many existing architectures and systems
tend to emphasise either the goal, with less utilisation of
the simulation potential, or the means, with less empha-
sis on pedagogical elements. Yet, these elements com-
bine well and could enhance training system benefits
in general. Therefore, we argue for an architecture
that supports both the goal and the means of training
systems.

Furthermore, we need an architecture to describe and
develop systems that capture more complex training
simulations. The complexity of these systems spans
from modelling passive interactions to simulating
human cognition. Examples of the more ‘complex’ sys-
tems include negotiation training (e.g. Johnson et al.
2019) and job interviews (e.g. K. Anderson et al.
2013). Other systems in this spectrum aim at training
learners to understand and change an individual’s cog-
nition or mental state through conversations. These sys-
tems allow a human learner to practice how to change a
person’s beliefs, attitudes, or emotions on a simulated
human to equip the learner with skills to apply in
real-life interactions with clients. For instance, simu-
lations might focus on de-escalating aggressive scen-
arios (e.g. Bosse, Gerritsen and de Man 2016) or
persuading a virtual patient to seek assistance (e.g.
Demasi, Li and Yu 2020). These systems specifically
train on altering the simulated human’s states, setting
them apart from other social skills training. We argue
that such systems are among the most intricate to design
because developers should replicate components that
mimic human thought processes, e.g. modelling
changes in human mental states based on a perceived
learner’s states. An architecture can provide clearer
insights into these systems and their components.

Figure 1. In a typical agent-based social skill training system,
the learner (on the left) engages with a virtual agent role-play-
ing as a human, like a virtual patient, to practice a skill. Based on
this interaction, the learner receives feedback, as shown on the
right.
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Several surveys have explored training systems,
including for virtual patients (Battegazzorre, Bottino,
and Lamberti 2020) and those utilizing virtual reality
(Zahabi and Abdul Razak 2020). The closest to our
work is by Bosman, Bosse and Formolo (2018), where
they explored 12 agent-based training systems, includ-
ing those with changing states, and analysed them
across six dimensions (e.g. internal reasoning and feed-
back). Yet, they did not address potential research direc-
tions or possible advancements in this area.

1.3. Main contributions

In this article, we present ARTES, i.e. the Agent-based
training architecture for social skills. ARTES outlines key
components that could ideally be present in a system
that simulates a training situation with one agent. Being
a conceptual architecture (Clements and Northrop
1996), it describes the components and the connection
and flows between them, regardless of implementation
decisions. Thus, the architecture provides a valuable refer-
ence point for researchers and developers looking to build
upon implementations, while not providing technical
implementation information as can be expected in an
implementation architecture (Johnson and Henderson
2002). One of the key features of ARTES is that it inte-
grates components from two perspectives to maximise
learning gains, namely from agent simulations and tutor-
ing systems. In addition, the architecture enables us to
identify the important components of training systems,
which we can examine further by looking at existing train-
ing systems, particularly those focused on changingmental
states. By examining the current training systems; offering
suggestions for advancements from adjacent fields; linking
to learning theories; and discussing future outlooks and
research directions, we hope to advance the state-of-the-
art in this area.

1.4. Approach

The article follows an approach similar to Harms et al.
(2018) and Brabra et al. (2021), where they presented
a model and discussed current states and possibilities
of applying segments of that model from different
dimensions. Similarly, we present an architecture and
focus on the essential components of training systems.
Although our objective was not to conduct a systematic
literature review, we defined the architecture and the
characteristics by examining a wide range of literature
on agent-based training systems and conversational
agents in general. To extract recent examples of such
systems, we used different sources: (1) by searching
for keywords, such as: ‘training system’, ‘social skills’,

‘agent’, and ‘virtual agent’, on Google Scholar and Goo-
gle, (2) by looking at systems mentioned in three litera-
ture reviews on social skills training that fits within our
scope (Battegazzorre, Bottino, and Lamberti 2020; Bos-
man, Bosse and Formolo 2018; Ding 2020), (3) by
extracting relevant papers published in the Interactive
Virtual Agents conference (IVA) between 2019–2022,
a period chosen to include also the latest research pub-
lished after these three literature reviews mentioned,
and (4) by looking at reverse citations, where literature
references were screened when deemed relevant. The
included systems also had to fit within the scope of
our architecture, i.e. training individuals in social skills
through communicating with an agent. Relevant architec-
tures also inspired ARTES: (a) Architectures of training
systems (e.g. Bosse, De Man, and Gerritsen 2014;
K. Anderson et al. 2013; Kenny et al. 2007); (b) Virtual
agents architectures, mainly for input/output components
(Hartholt et al. 2013; McTear, Callejas and Griol 2016),
agents’ thinking-acting cycles (Kenny et al. 2007) and
agents’ cognition (Pérez et al. 2016); (c) Intelligent Tutor-
ing Systems (ITS) models (Cheng et al. 2009; Nwana 1990;
Siemer and Angelides 1998); and (d) An integration of ITS
and virtual humans (Core, Lane, and Traum 2014).

This paper is organised as follows: We first introduce
ARTES, an architecture for agent-based training sys-
tems for social skills. We then describe the architecture
and its components and present the characteristics by
which training systems model the interactions between
the learner and the interactive agent, a term which we
will use interchangeably with virtual agents in this
paper. After that, we identify and discuss ARTES’s
essential components in training systems, followed by
showing their role in four learning theories. Finally,
we end the paper by mapping ARTES to eight training
systems architectures, classifying the examined systems
based on the essential components, linking ARTES to
development tools, and discussing further research
directions in this area. This research contributes by (a)
proposing an architecture for agent-based training sys-
tems for social skills, which designers and researchers
could use to build on their systems; (b) describing cur-
rent advances in the aforementioned systems and pro-
viding suggestions for what could be integrated from
other adjacent domains (e.g. conversational agents);
and (c) suggesting future research opportunities for
agent-based training systems.

2. ARTES architecture and characteristics of
social skills training systems

What should an architecture for agent-based social skills
training systems look like? What are the components?

BEHAVIOUR & INFORMATION TECHNOLOGY 3



And how is interaction with learners characterised?
These are the key questions to address now. To explain
the abstract concepts in the architecture, we will use the
hypothetical example of Lila, a new volunteer in a child
helpline. As part of her training, Lila interacts with a
simulation system, which includes: (1) a virtual agent
simulating a bullied child contacting a children’s help-
line; and (2) an educational model to manage the learn-
ing process. This example is relevant to existing social
skills training systems, e.g. to train children in dealing
with bullying (Aylett et al. 2005), or to train crisis help-
line counsellors (Demasi, Li and Yu 2020). However, it
differs in its focus on training a child helpline counsellor
to interact with a bullied child.

2.1. Agent-based training architecture for social
skills (ARTES)

Figure 2 illustrates the high-level architecture of the vir-
tual training system and how a learner, like Lila, interacts
with it. These interactions take place in a communication
setting, i.e. a scenario. In Lila’s scenario, she interacts
with a child who has been bullied and wants the helpline
to call their school. This simulated scenario allows Lila to
practice applying the helpline’s communication proto-
cols, which are the steps by which she can help the
child explore viable solutions, e.g. to inform a teacher
about the bullying. Therefore, Lila practices facilitating
a change in how the child perceives and thinks about
the situation. Two essential components are needed to
facilitate a change: a simulation of the virtual child,
which Lila practices with; and an educational model to
guide and teach Lila about communication protocols.
For the virtual child simulation, Lila interacts with a
user interface that resembles the setting used by child
helpline volunteers. This includes a chat interface for
exchanging short text messages with the child, access to
manuals, and a display showing the number of children
waiting in the queue. Behind the interface is the virtual
child simulation, represented by a mind and a body.
The simulated child’s mind aims to sense and understand
Lila’s input and thinks of a reply based on many factors,
such as the conversation’s history, Lila’s empathy, and its

belief in the helpline’s ability to help. The virtual child
uses its body, the interaction modality, to communicate
responses. This could have various representation types,
such as a physical robot, a virtual character, or, in the
case of the virtual child, generating a response and send-
ing it to Lila via the chat interface. Besides a single modal
sense-to-act cycle, multi-modal implementations are also
possible, e.g. monitoring Lila’s emotions expressed via
her facial expressions and text input, and also responding
across multi-modalities, e.g. a virtual child showing its
emotion via body gestures and text responses.

During and after Lila’s interactions with the virtual
child, she might not know what she did right or
wrong. To address this issue, the training tool incorpor-
ates an educational model that aims to improve Lila’s
understanding of the child’s behaviour, manage the
learning process, and guide her in achieving the learning
goals. The educational model uses domain knowledge,
such as the helpline’s communication protocols, Lila’s
competence level, and the tutor model, to decide what
and how to teach Lila. The educational model could
assess Lila’s progress, adapt the training scenario or
child’s personality, and provide Lila with guiding feed-
back. Lila can access the latter through the educational
interface. This interface is also used by Robin, Lila’s
human trainer, to monitor Lila’s progress. Robin can
also use the configuration interface to influence the
training by, e.g. changing the personality of the virtual
child.

The proposed full ARTES architecture (Figure 3)
aims to present the ideal set of system components
that simulate a training situation with one agent, e.g. a
virtual child. Lila’s example demonstrates that this mod-
ular architecture can be tailored to match the simulated
training and learning goals. Table 1 lists and explains
ARTES’s main components.

2.2. Characteristics of learner-agent interactions
in training systems

To better understand the interactions between a human
learner and an interactive agent in training systems, we
identify several key characteristics defining such inter-
actions. Table 2 shows them and aligns them with pre-
vious works on taxonomies for multi-modality inputs
and outputs (Feine et al. 2019; Turk 2014), dialogue
management in conversational agents (Harms et al.
2018; McTear, Callejas, and Griol 2016) and the existing
literature reviews on training systems mentioned earlier.
These characteristics and their aspects help explain the
components of ARTES and understand the differences
between various system implementations.

Figure 2. A simplified model of the proposed architecture, using
the virtual child example.
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Figure 3. General architecture of agent-based training for social skills (ARTES). The components highlighted in blue, ‘Think’ and ‘Tutor’, are crucial for training learners in social skills. The
two components are discussed in detail in this article.
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While any combination of these characteristics can
theoretically occur, certain patterns are more likely
based on factors such as the agent’s roles, technology
used, and training scope. When considering the case
of Lila’s interaction with the virtual child, the inter-
action takes place through open written inputs, where
Lila writes in a conversation text field. The child’s
response is provided through verbal textual output on
the interface, and the reasoning is based on a hybrid

approach between rule-based and data-driven, allowing
for training in a safe, explainable, and controlled
environment. The child also has defined internal states
and beliefs that change while talking with Lila, as well
as a background story of being bullied at school, and
memory of past conversations. The trainer, Robin, can
modify the virtual child’s configuration by changing
its belief values, making the child more or less adamant.
In other cases, the agent simulation may have different

Table 2. Characteristics of the interactions between a learner and a simulated agent.
Characteristic Aspect Definition

Input mode Verbal Written learner input
Visual Any visual input such as facial expressions and gaze
Sound Sound input (e.g. speech)
Haptic E.g. pressure, selection
Others Sensors, emotion recognition, motion capture

Verbal interactions input Closed Options for the learner to choose from as a reply
Open Free text speech input
Both Have both types of input

Reasoning Rule-based The rules of the virtual agent interactions are predefined
Data-driven The systems learn the rules from conversations (e.g. a dataset)
Hybrid Combination of rule-based and data-driven

Internal state Defined model The agent has defined states on how they affect the interactions
Limited The agent has one or two parameters (e.g. trust level) that change
None No explicit representation of internal states

Agent knowledge No history No memory of past experience is registered
Background only The agent has a history of its backstory
Dialogue only The agent has a memory of past interactions
Dialogue and background The agent has a memory of past interactions and their background

Trainer involvement Not involved No human is involved and the agent interactions are automated
Configuration The trainer monitors interaction and configures educational settings
Human-initiative Automated interactions, but the trainer can intervene and control
Agent-initiative The agent asks the trainer to take control (e.g. making a decision)
Wizard of Oz A human understands the input and controls the output of the agent

Output mode Verbal The agent utterances
Visual Any visual output appearing on the agent (e.g. animations)
Sound Sounds the agent outputs (speech or non-speech)
Others Outputs that can not be seen or heard (e.g. haptics)

Table 1. The main components of the architecture.
Component Description

Virtual training interface The simulation environment interface, in which a learner interacts with an agent

Sense/Input As part of the agent’s mind, its main purpose is to sense the user inputs and interprets it. The input could include talking (speech
recognition), typing (natural language understanding), happy or sad gestures (multi-modal), or a combination of them

Think This part of the mind decides on the agent’s next action, once the agent has interpreted the learner’s input. For this, it might
consider modelled dialogues, agent model (e.g. they have a short temper or negative beliefs of the situation), and how the
learner is progressing in training (e.g. the agent takes a less cooperative stance to challenge more experienced learners)

Act/Output Part of the agent’s body. After the agent decides on an action, it ‘acts’ by, e.g. showing sadness (animation) or raising voice (speech
generation), which is shown in the training interface

Domain knowledge Contains information concerning the training subject and learning goals. It includes facts, procedures and rules of the topic, such
as how to follow a certain communication protocol

Learner knowledge and
skill

The learner’s current knowledge and skill state in the context of the full domain knowledge-skill set, e.g. to what extent the learner
is able to apply a certain protocol

Tutor The tutor manages the system’s teaching process by considering domain knowledge and the learner knowledge and skill
components. The tutor decides on what knowledge or skill to focus on, how to do this, and provides feedback on the
learner’s performance.

Educational interface The learner and trainer interact with the educational interface to check the learner’s progress and interaction

Configuration interface This interface allows a trainer to control the simulation or the educational model, e.g. by changing the agent’s mind configuration
or tasks

Storage The storage keeps data related to the system, and its uses, such as the chatlog or learner’s performance data

6 M. AL OWAYYED ET AL.



characteristics. For example, a visual embodiment of a
virtual recruiter for training on non-verbal cues, direct
rule-based reasoning for answering questions in his-
tory-taking, or an agent-initiated involvement to
demonstrate specific cues of a virtual patient with
depression.

3. Key social skills training components

The ARTES architecture includes components that are
also included in non-training systems, such as multi-
modality or dialogue systems. As these more generic com-
ponents have been explained elsewhere (e.g. Harms et al.
2018; Turk 2014), we will now focus our attention on
the ‘Think’ and ‘Tutor’ components. Both components
play a pivotal role in training learners’ social skills to
understand and change an individual’s emotions, cogni-
tions, and behaviours consequently. Table 3 shows the
sub-components of these two components.

3.1. Think components

Most training systems we studied were limited in their
simulation of the agent’s thinking. We believe there is
a potential for improvement, as by showing the change
in the agent’s belief states, learners can construct a men-
tal model of the agent’s thinking process, from which
they can learn the consequences of their actions. In
other words, they can construct a mental model of
the situation they operate in (Jonassen and Henning
1999). For Lila, this means she could understand how
the child’s emotion and thinking changes when she fol-
lows the helpline protocol. In this section, we will dis-
cuss the elements that affect the agent’s action
decision, reflecting on the proposed architecture.

3.1.1. Sources of input
Looking back at the model in Figure 3, we distinguished
three information sources upon which an agent bases its
actions: what Lila has said (information provided by

sense/input component); what the child is thinking
about itself or the world (the agent model); and what is
an appropriate learning experience for Lila (input from
the educational model). Let us start with the first one.
The agent considers Lila’s input based on what the two
have said so far, e.g. did the child pose a question, and is
this Lila’s answer? If the child is happy and trusts Lila,
the agent might consider her answer instead of rejecting
it. In other words, the agent’s decision depends on the
agent’s cognitive and emotional states, i.e. the second
source of input. So, if Lila showed empathy, the child’s
trust in Lila would increase; thus, the agent would be
more willing to open up. Finally, Lilamight be cognitively
and emotionally ready for a more challenging twist in the
scenario. Sensors indicate she is relaxed, and the learner
knowledge and skill information indicate she has
sufficient understanding for the next step in her training.
Therefore, the educational model might change the par-
ameter setting of the ActionDecisionMaking component
on the fly, for example, making the childmore susceptible
to any suggestion of rejection by Lila. This third source,
therefore, influences the agent’s decision-making on a
meta-level, by changing the rules it applies.

3.1.2. Basic decision making
With the three input sources, an agent’s thinking could
vary widely, from being simple options-based, matching
inputs to direct outputs, to having a complicated structure
of decision-making that includes dialogues, goals, and
emotions that adapt to the learner’s state.Adirect thinking
process might be suitable for training systems where a
change in an agent’s beliefs or emotions as part of the con-
versation is less relevant to the agent’s decision-making.
For example, to train student doctors in asking specific
appropriatequestions andcollecting information for diag-
nosing (Shah et al. 2012). However, such dialogues are
experienced as being static and inflexible (Bosman,
Bosse and Formolo 2018). Therefore, some proposals
have been made to tackle this. For example, Hirumi,
Kleinsmith, et al. (2016) structured the questions that

Table 3. Overview of Think and Tutor sub-components, which we examine further in this article.
Examined components Description

Think: An agent decides on an action based on the understood input
a) Action decision
making

Controls how the training scenario proceeds, i.e. how an agent decides what their next step would be based on the overall
interaction structure

b) Agent model Describes the model of the agent with different parameters and states. This could include its emotions and cognition about itself,
the learner, and the world. This, in turn, influence the agent’s future behaviour

Tutor: What educational information to present and how
a) Instructional
principles

A training system includes principles to teach knowledge, which could affect the agent’s interactions with the system. It is related
to learning techniques and the learner’s state

b) Feedback Generates and displays feedback to reflect on the learner’s performance, e.g. being empathic, or to explain the agent’s behaviour,
e.g. the changes in agent beliefs

c) Pedagogical agent A virtual trainer agent guiding or reflecting upon the learner’s interaction with the simulated agent. It can have basic or complex
interactions, e.g. with the ‘thinking’ elements

BEHAVIOUR & INFORMATION TECHNOLOGY 7



could be asked by learners into topics, e.g. about the
patient’s medical or social history. Dialogue managers
(Harms et al. 2018) go beyond option-based solutions,
as they can consider the dialogue history and state when
deciding on an action. Take, for example, the following
interaction: ‘[Child] I’m bullied at school, can I talk
about that?; [Lila] Sure, I amhere to listen; [Child]Thanks.
Do children often call about bullying?; [Lila] yes, you are
not the only one’. Here, the dialogue manager is running
a script and, based on Lila’s input, gives an appropriate
response and moves on. Another extension is to add one
or two state variables about agents, e.g. a trust meter
(Schoenthaler et al. 2017). It is an initial attempt to have
learners consider the consequences of their actions.

3.1.3. Cognitive models
More complex agent models can be used to elaborate
the thinking, e.g. by simulating a virtual child’s mental
model that reaches decisions based on interactions
with Lila. These models are often referred to as cognitive
models that simulate human decision-making processes
(Taatgen and Anderson 2010). These cognitive models
can be application-specific or can be built upon general
theories. Application-specific cognitive models, such as
a virtual suspect for interrogations that bases its answers
on interpersonal relations (Bruijnes et al. 2015), have
the advantage of addressing unique simulation aspects,
e.g. states which might not be included in general the-
ories. However, they require more work from domain
experts to simulate thinking, agent states, and their
interconnections. In the case of the virtual child, this
involves identifying relevant thinking processes for
training, potential cognitive and emotional states for
the child, and how these two can be linked together.
On the other hand, general cognitive models describe
how the agent’s state varies, allowing developers to
build upon a predefined flow. One well-known and uti-
lized cognitive theory in conversational agents is the
belief-desire–intention (BDI) model. This model is
built on three aspects: (1) the agent’s beliefs about them-
selves, the learner (i.e. Theory of Mind Leslie 1994), and
the world; (2) the agent’s desires regarding their goals;
and (3) their intentions as the actions they wanted to
execute (Georgeff et al. 1998). For instance, when Lila
shows empathy towards the virtual child, the child’s
belief in Lila’s understanding of their situation
increases, making the child more open. Employing
BDI in such a model could simulate human decision-
making, adapt to changes in the environment, and
directly explain the child’s decisions and changes in
internal states. In their survey of BDI agents for social
simulation, Adam and Gaudou (2016) argued that
BDI models are well-suited for agents in training

systems. However, they also discussed drawbacks, with
the most relevant for training systems being the need
for expert input to model agents’ values. BDI has been
utilized in several training agents (e.g. McShane et al.
2009; Muller et al. 2012; Oijen, Doesburg, and Dignum
2010), and proposed for others (e.g. Baptista et al. 2014;
Van der Zwaan, Dignum, and Jonker 2012). The
model’s flexibility allows for extensions to include social
concepts in the agent’s mind, such as agent trust (Adam
and Gaudou 2016), which would be valuable to train
learners on specific social skills and how such concepts
affect the agent’s decision-making.

3.1.4. Cognitive architectures
Cognitive architectures offer another approach to
modelling human cognition in training settings.
Although some cognitive architectures are based on
BDI, researchers differentiated BDI from cognitive
architectures in that the former is based on a philoso-
phical take on behaviour, while the latter considers
describing lower-level cognitive processes to simulate
a human mind (Adam and Gaudou 2016). Therefore,
we will consider them both as methods of cognition
modelling in the agent’s thinking. Cognitive architec-
tures aim to achieve general human intelligence
capable of reasoning, insight, behaviour adjustment,
and self-reflection (Kotseruba and Tsotsos 2020).
Architectures vary in decisions about actions, typi-
cally based on factors from their internal memory
and interactions, such as physiological needs, utility,
state, and relevance. However, we found limited social
skills training applications based on surveyed cogni-
tive architectures (Kotseruba and Tsotsos 2020; Ye,
Wang, and Wang 2018). One exception is a 2003
implementation of Soar (Laird 2019) to train army
personnel to make decisions in a critical social situ-
ation (Hill et al. 2003). The limited examples might
be because cognitive architectures aim to simulate
general human intelligence and not to ‘be an actor’
with emotions and states in a specific role-play train-
ing scenario. Moreover, they are not as easy to
implement as BDI (Adam and Gaudou 2016). While
cognitive architectures may not be the primary choice
for training systems with changing agent states, they
might have a potential added value when continuous
adaptability or self-reflection is needed, depending
on the agent’s past experiences. For example, when
building a general virtual human for helpline counsel-
lor training that can be utilised in children’s helplines.

3.1.5. Modelling emotions
So far, we have only discussed the cognitive part of the
agent’s mind. An additional layer to the agent model in
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a training system is modelling the agent’s emotions,
often referred to as affective architectures (Pérez et al.
2016). These architectures extend cognitive models,
such as BDI, to include more elaborated states or traits
to the agent, e.g. by adding emotions, personality, atti-
tude, and mood (Ojha, Vitale, and Williams 2021). As
a result, the agent’s emotions can influence their
decisions and beliefs, leading to varied reactions based
on their feelings. Incorporating such feelings in the vir-
tual child example can help Lila understand the child’s
internal states and emotions and how the interactions
affect them, e.g. when the child might feel frustrated
and how to address it. Emotions also enrich the simu-
lation, particularly when the learning outcome involves
understanding or changing the agent’s emotions. One
example is TARDIS (K. Anderson et al. 2013), which
has an affective architecture. In this job interview train-
ing system, the virtual recruiter’s emotions impact its
decision-making, e.g. becoming more aggressive as
they feel angry. Numerous affective models, primarily
based on BDI (Ojha, Vitale, and Williams 2021), inte-
grate cognitive modelling with emotions to build a
training agent. For instance, EMA (Marsella and Gratch
2009) was employed in a stressful decision-making
scenario (Swartout et al. 2006), and FAtiMA (Dias, Mas-
carenhas, and Paiva 2014) to build a job interview scen-
ario (Mascarenhas et al. 2022).

3.1.6. Data-driven approaches
Agents in training systems usually have rule-based
reasoning. Alternatively, data-driven approaches, i.e. a
model trained on corpora of conversations (Harms
et al. 2018), may also prove helpful. There are many
challenges, though, to having data-driven training sys-
tems, including the scarcity of conversational data tai-
lored to the simulated scenario, concerns about data
accuracy, and technical limitations such as limited
understandability of human emotions. For example,
building a data-driven virtual child would raise ques-
tions regarding sensitivity, availability, and privacy
when collecting conversational data from children and
helpline volunteers. Human-in-the-loop machine learn-
ing could offer a solution when a human trainer acts as
the agent and responds to learners’ interactions to create
a corpus. In Lila’s case, this would involve Robin con-
trolling the virtual child. This method, akin to what
was used in a storytelling chatbot (Jackson and Latham
2022), could help train the virtual child on actual data
for different background stories and interactions. How-
ever, it requires Robin’s commitment and manual effort
to define the child’s states in order to develop a human
interpretable agent model. Reinforcement learning
offers another alternative, where the model of the

agent is trained based on user interactions, and the
agent’s correct behaviour is rewarded (Williams 2008).
While reinforcement learning has been utilized in
related domains, such as healthcare assistants (Yasavur,
Lisetti, and Rishe 2014), implementing this approach in
a training system like Lila’s may pose challenges. These
challenges can arise when an agent needs to have con-
sistent and predictable agent behaviour across different
learners. Furthermore, defining suitable reward func-
tions for simulation in such a sensitive scenario, which
requires interdisciplinary expertise, poses its own hur-
dles. Therefore, human experts could check such
rewards to determine if the virtual child exhibits appro-
priate behaviour during the communication protocol
phases or to assess whether Lila gained the correct learn-
ing skill, such as showing empathy to the child.

3.1.7. Trainer’s involvement
Human trainers could also influence the agent’s
decision-making process. ARTES captures this by incor-
porating the interaction flow from the trainer, in our
case, Robin, to the educational model and then to the
agent’s thinking. Aside from the Wizard of Oz
approach, where a human trainer substitutes the entire
agent cognition, Table 2 illustrates two ways in which a
human trainer can impact the agent’s action decision:
based on human or agent initiative. Human initiative
occurs when the trainer acts as a supervisor guiding
the agent and intervening when necessary, for example,
if the virtual child does not exhibit the expected behav-
iour or if Robin wishes to control parts of the agent (e.g.
Hartanto et al. 2014). On the other hand, agent initiative
has the agent asking Robin to choose on its behalf, sub-
stituting a part of the agent’s cognition with the trainer’s
input. The latter is used when the agent is stuck in a
conversation or faces a moral dilemma (van der Waa
et al. 2020). While this approach requires a human trai-
ner on standby during the training session, it can also be
utilized in a data-driven approach to training the agent
model, where the agent learns from the trainer’s
decisions by requesting their input.

3.2. Tutor components

The tutor model is an intermediate between domain
knowledge and learner knowledge in the educational
model. The tutor manages the learning experience by
supervising learning tasks, providing feedback, and
maintaining learner engagement and motivation (Bour-
deau and Grandbastien 2010). Unlike agents with their
human-like manifestation, tutors in intelligent tutoring
systems could manifest themselves in many forms.
These can be colour-coded feedback indicators, such
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as red and green symbols showing the learner’s per-
formance or topic recommendations. Many models
have been reported for tutors, detailing their logic and
presentation style for giving feedback or guidance to a
learner (Alkhatlan and Kalita 2018). Having such a
model in a training system is helpful to educate learners,
as the lack of guidance could leave the learner only with
the simulation experience, limiting its effectiveness
(Hattie and Timperley 2007). Consider, for instance, if
Lila directly instructs the child to ask the school for
help. Such an approach contradicts the helpline’s guide-
lines (de Beyn 2003), where a counsellor is expected to
coach the child to come up with that solution rather
than telling the child directly what to do. A tutor
could intervene in such cases, showing Lila how her
approach deviated from the helpline’s guidelines.

Adding a tutoring model could enhance the training
impact by giving the right feedback at the right moment,
thereby integrating guidance naturally into the training
system’s teaching approach. In short, this model is
essential for offering a guided learning experience.
Designers could look at a number of learning theories
(Ertmer and Newby 1993) established by different
schools of thought to utilise them in training systems,
thus, facilitating the learning process. On the other
hand, training systems are typically designed to teach
a specific set of skills. Therefore, linking the learning
theories and training systems components clarifies the
latter’s roles, allowing for a more targeted implemen-
tation. But before exploring this link, we must first
understand the tutor’s subcomponents.

3.2.1. The three subcomponents
The tutor model (Figure 3) is responsible for teaching
the learner, and has three components: instructional
principles, a pedagogical agent, and feedback. The first
component, instructional principles, or as some refer
to it, instructional strategies (Weston and Cranton
1986), entails psychological techniques the training sys-
tem can employ to deliver the training. Take, for
example, the scaffolding strategy (Van Der Stuyf
2002). Here, the system initially offers Lila extensive
help, then gradually reduces support as she gains experi-
ence. Next is the pedagogical agent, who behaves as a
social actor as it simulates a teacher guiding the learner,
e.g. as a person offering guidance and assistance to Lila.
Although pedagogical agents are perceived positively in
training systems (e.g. Murali et al. 2021, 2022; O’Brien
et al. 2019), they are often not included. For example,
Table 6 shows that in 43 systems we studied, only 12
had a pedagogical agent. The third tutoring component
is feedback, which can give Lila insight into her per-
formance. The feedback can be based on the modelled

knowledge, e.g. to tell Lila what she did wrong and
offer hints, or the agent’s states, e.g. why the virtual
child does not trust Lila. Yet, most examined systems
primarily focus on the former (Table 6).

The tutor model can interact with (a) the agent simu-
lation, e.g. for monitoring belief changes in the simu-
lated child that needs explaining, (b) the domain and
the learner knowledge, e.g. for determining when
Lila’s training should move on to a more challenging
situation, and (c) the human teacher, e.g. Robin confi-
guring the tutor. Similar to ITSs (VanLehn 2006), the
tutoring model operates within two learning cycles:
the within-session cycle, e.g. for providing hints during
a session, and the between-session cycle, e.g. for decid-
ing on new scenarios.

3.2.2. Linking to learning theories
Tutor components can represent and facilitate the
implementation of learning theories, thus supporting
their incorporation and abstraction within ARTES.
Four prominent learning theories exist today that
explain how skills are acquired: behaviourism, cogniti-
vism, social cognitive theory, and constructivism (Ert-
mer and Newby 1993; Schunk 2012). Table 4
highlights the roles of four software components within
the context of these learning theories. They are the three
tutor components and the virtual agent simulation. The
first software component, instructional principles,
derives its role directly from the core ideas of learning
theory, subsequently guiding the design of agent simu-
lation. Take, for example, behaviourism. The instruc-
tional principles focus on forming appropriate stimuli-
response relations; thus, the simulation’s role is to
offer realistic stimuli. This flow similarly applies to the
roles of the pedagogical agent and feedback, which, in
our example, work to reinforce desirable responses to
stimuli through guidance and feedback. Now, let us
look at the learning theories in more detail.

Behaviourism can be applied to teach facts and tasks
through repetition and memorization. This approach
supports reinforcement and guidance in accordance
with instructional principles. Therefore, the realism of
the agent’s actions and consequences are important as
they establish stimuli for which a response needs to be
trained. To strengthen this stimulus-response, the ped-
agogical agent and feedback components should
reinforce positive or negative behaviours. Some
examples of adopting behaviourism are showing angry
responses and allowing scenario repetition following
incorrect actions by the learner (Guetterman et al.
2019), as well as a virtual coach giving a thumbs-up
for correct actions (Murali et al. 2021).
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Cognitivism focuses on constructing a learner’s cogni-
tive process and knowledge, which requires an under-
standing of the relevance and application of targeted
skills. Implementing instructional principles, such as
information chunking, can build this understanding.
Accordingly, an agent simulation with several learning
situations is needed to demonstrate the use of a targeted
skill, which is further explained by a pedagogical agent.
Feedback can then be provided based on the learner’s
interactions with the simulation. Examples of cognitivism
in training systems include: adapting a scenario difficulty
to the learner’s current knowledge (Bosse, Gerritsen and
de Man 2016), a pedagogical agent that explains the next
task (Murali et al. 2022), or receiving reflection about
the learner’s performance (K. Anderson et al. 2013).

The social cognitive theory emphasises learning through
observation of peers or coaches. In this perspective, the
instructional principles could demonstrate successful inter-
action with a virtual agent to train the learner. Therefore,
the examples should cover different learning situations.
Several systemshave implemented this approach, including
a pedagogical agent that provides examples of taught skills
(Murali et al. 2022), or a system that allows learners to view
video recordings of mastered skills (Tanaka et al. 2016).

As for constructivism, learners should be able to con-
struct their knowledge, e.g. through self-reflection (Kors-
gaard 1996) or discovery learning (Mayer 2004). In
training systems, this translates to exploring virtual agents’
scenarios to create their interpretations and communi-
cation styles and learning from mistakes. This approach
requires adiverse and rich set of scenarios in the simulation.
At the same time, the instructional principles can encou-
rage exploration by facilitating and personalising the
environment presented to learners. Examples of applying
this theory include providing a ‘practice’mode to support
scenario exploration and learning (K. Anderson et al.
2013), a virtual coach providing insights into the virtual
patient’s thinking (O’Brienet al. 2019), andofferingguiding

feedback by highlighting important discoveries during the
interaction with the agent (Kleinsmith et al. 2015).

3.2.3. Alternative tutor structure through data-
driven approaches
Utilising data-driven techniques in the educational model
makes it harder to distinguish between the different edu-
cational model components. One example is the Korbit
learning platform (Kochmar et al. 2022; St-Hilaire et al.
2022). Korbit aims to provide instruction in various sub-
jects and skills, employing a conversational interface that
utilizes reinforcement learning and machine learning to
personalize the AI tutor’s pedagogical intervention. It uti-
lises machine learning to generate hints based on learner
questions. It also retrieves explanations from sources
like Wikipedia. However, this technique requires exten-
sive data sources that are typically only available for gen-
eral educational topics, making it less suitable for
training systems that focus on specific domain aspects
and train learners accordingly. Nonetheless, Korbit’s
approach can be valuable, allowing for adapting instruc-
tional principles based on learner profiles and previous
interactions with the system. This requires a more elabor-
ate training systemwith diverse scenarios or tasks to build
the learner’s profile and history. Among the examined
training systems, only one system integrated reinforce-
ment learning into its tutoring approach (Georgila et al.
2019), where itmanages feedback and prompts self-reflec-
tion on incorrect user inputs. This implementation show-
cases a merging between different components from our
model, specifically the instructional principles, feedback,
pedagogical agent, and learner knowledge.

4. Relation with the examined systems, other
architectures and tools

Having described ARTES, it is time to see how well the
architecture captures and resonates with existing

Table 4. The roles of ARTES components within four primary learning theories. These components comprise the three tutor elements
(instructional principles, pedagogical agent, and feedback) and the agent simulation. The roles explain how these components fit
within each learning theory.
Learning theory Instructional principles Agent simulation Pedagogical agent Feedback

Behaviourism: Reinforcement to
shape desirable behaviours

Use of techniques to guide
learners behaviour

Realism of stimulus An entity that provides
feedback or assistance

Provide reinforcement
feedback

Cognitivism: Focus on mental process
to acquire knowledge

Use of techniques to guide
learners knowledge
development

Simulating several
situations to learn
from

Teaching and explaining Explaining situations and
learner’s decisions

Social cognitive theory: Learning
through social observations

Offer suitable examples of
interactions

Simulating several
situations to learn
from

Interacting with the
agent simulation

Explaining situations

Constructivism: A learner constructs
their own understanding and
knowledge

Facilitate the learning
environment

Explorative situation Mentoring Used alongside instructional
principles to guide learners
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Figure 4. Mapping components between ARTES and eight other architectures. Columns represent different architectures, while rows show ARTES components (on the left) and their
counterparts in other architectures. Dotted lines connect component names that map to multiple ARTES components. Colours indicate layers and black areas highlight components absent
in ARTES.
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systems and architectures, supporting that ARTES is
versatile and agnostic. This assessment provides insights
into its deployment and adaptability across different situ-
ations. Specifically, whether ARTES shows relevance and
generalisation and whether its components match those
of other architectures. Moreover, looking at how the com-
ponents were implemented, e.g. if the input type was
choice-based or open-ended, gives an insight into how
concepts discussed earlier are actually implemented in
systems. Next, we will examine how well current software
tools support ARTES-based system development. All
these points are, therefore, systematically examined here.

4.1. Mapping ARTES to social skills training
architectures

How complete is ARTES in comparison to existing
architectures? To answer this question, we evaluated
the coverage of ARTES against eight architectures suit-
able for training systems. We did this by mapping the
components of the eight architectures to those of
ARTES (Figure 4). The mapping offers insights into
components commonly defined in training or tutoring
systems, compares ARTES’s components with other
architectures, and highlights any component that
ARTES might have overlooked. The eight architectures
we analysed are all conceptual architectures deemed rel-
evant to ARTES and applicable within training systems.
These architectures are (a) two implementations of
training systems [aggression de-escalation (Bosse,

Gerritsen and de Man 2016), and TARDIS (K. Ander-
son et al. 2013)], (b) three virtual agent simulations [vir-
tual human integrated architecture (Kenny et al. 2007),
the virtual human architecture (Lee et al. 2008), and
FAtiMA Toolkit architecture (Mascarenhas et al.
2022)], (c) two tutoring systems [the general ITS archi-
tecture (Siemer and Angelides 1998), and a pedagogical
agent in an ITS system (Cheng et al. 2009)], and (d) an
architecture integrating ITS with virtual agents (Core,
Lane, and Traum 2014). Although the first two architec-
tures were developed to describe specific systems, we
think their information is general enough to be applied
to training systems. Still, the mapping accuracy is lim-
ited by the clarity to which the architectures were
described in the literature and potential individual
interpretation bias. To mitigate the latter, two coders
with a computer science background mapped the
eight architectures to ARTES independently, which
resulted in a substantial agreement (Cohen’s k = 0.7)
(Landis and Koch 1977). The coders then discussed dis-
agreements to reach a consensus.

We could directly map all ARTES components and
layers to at least one component from the eight architec-
tures, indicating that ARTES components are relevant
to training systems. This gives more credibility to
ARTES’s components. On the other hand, we did
encounter six components from the mapped architec-
tures that did not have suitable matches in ARTES.
Two reasons for this are: (i) the components were
describing the interaction process in a concealed
‘black box’ that generalised across distinctive com-
ponents and their relations [system control that handles
interactions between all components (Siemer and
Angelides 1998) and communication bus between all
components (Kenny et al. 2007)]; and (ii) that they
were from other architectural perspectives than concep-
tual architecture [a component for the general software
tools (Kenny et al. 2007) and real-world environment
that represents the real world (Lee et al. 2008)].

On average, ARTES matches or exceeds the detail
level of the mapped architectures, such as FAtiMA,
which has more configuration components but fewer
Mind and Body components. This also includes special-
ised architectures like Virtual Humans for agent simu-
lation and ITS architectures for educational systems.
Figure 5 shows the depth these eight architectures
cover, based on the mapping in Figure 4. There are
three main clusters in the figure: (1) in the top left cor-
ner are architectures that mainly focus on the agent’s
simulation (the means); (2) in the bottom right corner
are those focusing on the educational model (the
goal); and (3) in the middle, the integration of both in
well-defined systems. However, none of these eight

Figure 5. Assessing the level of depth for the eight mapped
architectures (Figure 4). We determined the level of depth by
calculating the median depth level of the components of an
architecture for the two dimensions: the agent simulation
model and the educational model.
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architectures addresses both aspects as deeply as ARTES
(located in the top right corner), indicating that these
architectures often focus more on either one of the
dimensions.1 In practice, training systems like TARDIS
and aggression de-escalation often incorporate com-
ponents from both educational and agent simulation
models, supporting our vision to merge tutoring and
agent models. Thus, ARTES demonstrates coverage
with both specialized and broader system architectures,
underscoring its completeness.

4.2. Examined systems

To further explore the generalisability and relevance of
ARTES components, we examined 43 training systems.
Specifically, we studied if we could identify the five
ARTES important components, as highlighted in Sec-
tion 3, within the examined training systems, and if
the concepts presented in this article resonate with
existing systems. To do that, we formulated Table 5,
which presents the categorisation criteria for com-
ponents’ properties, such as input type, learning the-
ories, and pedagogy format. We based these
categorisations on the ideas we discussed previously in
Section 3. Also, the Appendix visually explains in
more detail two classifications of the ‘decided by’ prop-
erty of the Action Decision Making component (Figure
A1(a,b)) and the ‘structure’ property of the Agent model
component (Figure A1(c,d)). Then, we applied the cat-
egorisations Table 5 to the examined systems, which
resulted in Table 6. Just as with mapping the architec-
ture components, we cannot guarantee the accuracy of
our interpretations based solely on the descriptions of
these systems. Therefore, we conducted reliability test-
ing to examine this bias. Five secondary coders classified
a total of 41 of the 43 systems, with the remaining two
systems used to train them in coding. There was moder-
ate inter-rater reliability between the first coder – who
assessed all systems – and the secondary coders (average
Cohen’s k = 0.55, range: 0.49–0.63) (Landis and Koch
1977). The coders discussed the ratings to reach a
consensus.

Table 6 maps the five components across the exam-
ined systems. For Action Decision Making, 49% of sys-
tems utilized a scenario sequence to guide agent
actions, while 42% employed input-output processing.
Additionally, 28% of agents incorporated a represen-
tation of internal states. Surprisingly, only 70% of the sys-
tems integrated feedback components, where 14%
provided feedback only during the interaction, 33%
only post-interaction, and 23% during both phases.
Regarding instructional principles based on learning the-
ories, Behaviourism was most prevalent at 81%, followedTa
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Table 6. Categorising the examined training systems based on Table 5.

System Examined components

Training type
Action decision

making Agent model Feedback
Instructional
principles Pedagogical agent

Bosse, Gerritsen and de
Man (2016), Bosse, De
Man, and Gerritsen
(2014)

Aggression de-
escalation

3, 1,2, 1 3, 1,2, 1,2,3 2, 2, 1 1,2,4, 2 –

MPathic-VR (Guetterman
et al. 2019; Kron et al.
2017)

Medical communication 3, 1 1 2, 2, 1 1,2, 1 –

Murali et al. (2022) Counseling 3, 1 1 – 1,2,3 1 2, 2, 2
TARDIS (K. Anderson et
al. 2013)

Job interviews 3, 1,2, 2 3, 1,2, 1,2,3 2, 2, 1 1,2,4 2 –

NERVE (Hirumi, Johnson,
et al. 2016; Hirumi,
Kleinsmith, et al. 2016)

Interview and diagnosis 2, 1,2 1 1,2, 2, 1 2,4, 2 –

ASST (Tanaka et al. 2016) Communication skills 2, 2 1 2, 2, 1 2,3,4, 2 –

CuCoMaG (Doberstein et
al. 2016; Othlinghaus-
Wulhorst, Mainz and
Hoppe 2019)

Customer service 3, 2 1 2, 2, 1 1,2, 2 –

Virtual suspect William
(Bruijnes 2016; Bruijnes
et al. 2015)

Suspect interrogation 1,2, 1, 2 3, 1,2, 1,2,3 2, 1, 1 1,4 1 –

Friendly Face (Murali et
al. 2021)

Public speaking 2, 2 – 1, 2, 1 1, 1 2, 2, 1,3,4

Nakash et al. (2022) Suicide prevention 1, 2 – – 1, 1 –
Communicate! (Jeuring
et al. 2015)

Communication Skills 3, 1 1 2, 2, 1 1,2, 1 –

Schoenthaler et al.
(2017), Albright et al.
(2018)

Medical communication 3, 1, 1 2, 1,2, 1,2 1,2, 2, 1 1,2,3, 2 2, 1, 1

Maicher et al. (2017) History taking 2, 2 1 – 1, 1 –

O’Brien et al. (2019) Suicide prevention 2, 1, 1 2, 1,2, 1 1,2, 1,2, 1 2,4, 2 2, 1, 1,3
Muller et al. (2012) Sales training 3, 1, 1 3, 1, 1,3 1, 1, 1 2,4, 1 –

Yao et al. (2022, 2020) Medical empathy
training

2, 2 1 2, 2, 1 2,4, 2 1, 1, 3

ELECT BiLAT (Lane et al.
2007)

Intercultural negotiation 2, 1,2, 1 2, 1,2, 1,2,3 1,2, 1,2, 1 1,2,4, 2 2, 1,2, 1,2,3

Szilas et al. (2019) Caregivers training 3, 1 1 – 1, 1 –
Ochs et al. (2019) Medical communication 1,2, 2 – 2, 2, 1 1,4, 1 –

Georgila et al. (2019) Counseling skills 3, 1 1 1,2, 2, 1 1,2, 2 1, 1, 1,3
Ziebarth et al. (2014) Medical Interviews 2, 1, 2 2, 1,2, 1 1,2, 1,2, 1,2 1,2,4, 2 –

Adewole et al. (2020) Cultural Awareness 3, 2 1 1, 2, 1 2,4 2 1, 1, 1,3
Bánszki et al. (2018) Medical education 1, 2 – – 1, 1 –
UT TIME Portal (Zielke et
al. 2016)

Medical communication 3, 1 1 1,2, 1,2, 1 1,2,3, 2 –

Zlotos et al. (2016) Medical communication 2, 1 1 – 1, 1 –
AdaCoach (Peng et al.
2022)

Customer service 3, 2 1 1, 2, 1 1, 1 –

Dupuy et al. (2020) Medical interviews 3, 2 1 1, 2, 1 1, 1 –

Mission rehearsal
exercise (Hill et al.
2003)

Decision-making skills 3, 1, 2 3, 1,2, 1,2,3 – 1,4, 1 –

Peddle et al. (2019) Medical communication 3, 1 1 – 1, 1 –
deLearyous (Vaassen et
al. 2012)

Communication skills 2, 1, 2 3, 1, 2 – 1, 1 –

Washburn, Parrish, and
Bordnick (2020)

Medical education 2, 2 1 2, 2, 1 1,4, 1 –

Demasi, Li and Yu (2020) Hotline counselling 3, 1,2, 2 1 – 1,4, 1 –
INOTS (Hays et al. 2012) Interpersonal skills 3, 2 1 2, 2, 1 2,3, 1 –

Virtual-Suspect (Bitan et
al. 2017)

Suspect interrogation 2, 1, 2 2, 1, 1 – 1,4, 1 –

Mell and Gratch (2017),
Johnson et al. (2019)

Negotiations 2, 1,2, 1,2 3, 1,2, 1,3 2, 2, 1 1,2,4, 2 –

Jacklin, Maskrey, and
Chapman (2018),
Jacklin, Chapman, and
Maskrey (2019)

Shared decision making 3, 1 1 2, 2, 1 1,2, 1 –

(Continued )
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by Cognitivism (60%), Constructivism (49%), and Social
Cognitive Theory (12%). This prevalence might stem
from training systems’ aim to train learners on social situ-
ation responses, often focusing on behaviour formation.
Lastly, a mere 28% of the systems featured a pedagogical
agent, either as text (9%) or an embodied agent (19%).

The table also shows that all five components are pre-
sent in the examined training systems, suggesting their rel-
evance in such contexts. Each concept discussed in the
categorisation table (Table 5) also appears in at least two
of the examined systems, further validating the relevance
of the ideas. Figure 6 shows the extent to which the 43 sys-
tems cover the agent simulation model and the edu-
cational model. We assessed the agent simulation based
on the complexity of decision-making and the agent
model, and we assessed the educational model based on

the presence of three elements: feedback, multiple instruc-
tional principles, and the use of a pedagogical agent. None
of the systems achieved the highest scores in both dimen-
sions, while some scored highly in mainly a single dimen-
sion, suggesting a focus on either one over the other.2

Furthermore, the training systems analysed span various
topics, from job interviews to suicide prevention and nego-
tiations. This broad representation emphasises the general
applicability of the five components across various training
types, thus supporting ARTES’s generalisability.

4.3. Tools support for ARTES components

Our previous discussion examined the link between
ARTES components and other architectures concep-
tually. Now, we turn our attention to the implemen-
tation support for ARTES components, i.e. do existing

Table 6. Continued.

System Examined components

Training type
Action decision

making Agent model Feedback
Instructional
principles Pedagogical agent

Sveinbjörnsdóttir et al.
(2019)

Training teachers 2, 1 1 1, 2, 1 2,4, 2 –

DialogueTrainer (n.d.)a Several skills 3, 1 1 2, 2, 1,2 1,2, 1 2, 2, 2
SIMmersion (n.d.)a Several skills 2, 1 1 1,2, 1,2, 1 1,2,4, 2 1, 1, 1
Kognito (n.d.)a Several skills 3, 1 1 1,2, 1,2, 1 1,2,4, 2 2, 1, 1
Mursion (n.d.)a Several skills 1, 2 – –b 1,2,4, 2 2, 2, 4
VirtualSpeech (n.d.)a Several skills 2, 2 1 1,2, 2, 1,2 1,2, 1 –

CleVR (n.d.)a Several skills 1, 2 – – 1,4, 1 –

(a) These systems are commercially available, and were categorised based on information from their websites and publicly available data. Thus, some infor-
mation might be missing from the categorisation. (b) A human actor gives feedback.

Figure 6. Categorisation of the 43 training systems based on criteria related to the agent simulation model and the educational
model, as detailed in Tables 5 and 6. The numbers inside the circles represent the count of systems that correspond to each category.
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tools support the implementation of ARTES com-
ponents? To answer this question, we linked ARTES
to three development platforms for creating virtual
humans: GRETA (Poggi et al. 2005), the Virtual
Human Toolkit (VHToolkit) (Hartholt et al. 2022,
2013), and Agents United (Beinema et al. 2021).
While these platforms are mainly designed to develop
virtual humans, they are also suitable for agent-based
social skills training systems. Table 7 depicts which
tools can be utilized to build ARTES agent simulation
components in these three platforms. The linking
shows that the tools can support the implementation
of ARTES simulation components. For a comprehensive
overview of virtual human tools and their applications,
we refer to the chapter by Hartholt and Mozgai (2022).

Regarding ARTES’s educational model, we can map
ITS-based authoring tools directly to it, as ARTES’s edu-
cational model also relies on ITS main components
(domain knowledge, learner knowledge, and tutor). ITS-
centric examples include GIFT (Sottilare et al. 2017) and
AutoTutor (Graesser et al. 2004). Integrating authoring
tools with virtual human platforms would align with the
two main parts of ARTES: the virtual agent simulation
and the ITS-based educational model. Such integration
is possible, as shown by merging the VHToolkit with
AutoTutor (Swartout et al. 2016), and the VHToolkit
with GIFT (Brawner, Hoffman, and Nye 2019). In the
future, ARTES could be evaluated through an example

implementation using such tools or by implementing a
prototype from scratch, allowing us to evaluate other
quality attributes such as performance and usability
(Abowd et al. 1997).

5. Further research directions

What research directions still warrant further explora-
tion? We identified nine of them, which we will discuss
here one by one.

Knowledge Transfer. Knowledge transfer in edu-
cation relates to learners’ ability to generalise the gained
knowledge to other contexts (Barnett and Ceci 2002). In
training systems, this translates to transferring knowl-
edge gained from agent simulations to real-world situ-
ations. Various concerns arise regarding knowledge
transfer in training systems, notably: (a) the inaccuracy
of reflecting complex, real-world interactions; (b) the
simulated situation being context-dependent; and (c)
the lack of motivation to learn and transfer skills to
other contexts. Despite the transfer’s importance, most
examined systems overlooked the assessment of real-
life knowledge. In their review, Bosman, Bosse and For-
molo (2018) reported one system out of twelve that
tested for knowledge transfer, attributed to the cost
and expertise needed to conduct it, especially as compu-
ter scientists in academia mainly created these systems.
Naturally, testing for such tangible outcomes should

Table 7. Mapping virtual human platforms and their tools to ARTES’s agent simulation components.
ARTES components GRETA VHToolkit Agents United

Simulation environment FAP-BAP Player Unity Unity
Ogre3D Robotics
Unity
Robotics

Speech recognition PureData MS SAPI N/A
Google Voice
PocketSphinx

Multimodal perception and understanding SSI MultiSense Holistic Behaviour
OpenFace Analysis Framework
OpenSmile AWARE

universAAL

NLU Emotional Mind Dialog Manager NPCEditor WOOL

Agent model & Action decision making Intent Planner NPCEditor Topic Selection Engine
TRINDIKIT Scripting Dialogue Game Execution
MIDAS Flipper

WOOL

NLG Emotional Mind Dialog Manager NPCEditor WOOL

Speech generation MaryTTS Festival MaryTTS
CereVoice MS SAPI MS SAPI

Rhetorical
CereVoice

Nonverbal behaviour generation Behavior Planner NVBG Flipper

Nonverbal behaviour realizer Behavior Realizer SmartBody GRETA Behavior Realizer
Unity BML Realizer ASAP Realizer

Animation system OpenGL Library Unity Mecanim Unity Mecanim
Unity Mecanim
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accompany adherence to defined design guidelines and
recommendations for fostering knowledge transfer (e.g.
Craig and Schroeder 2018). Regarding the provided
feedback, away from the agent simulation, it is worth
noting the critical role of instructions specificity level
for knowledge transfer. Eiriksdottir and Catrambone
(2011), for instance, examined educational instructions
and found that participants receiving detailed, step-by-
step instructions performed well initially but received
worse learning and transfer results later. On the other
hand, they found that general instructions aided people
in establishing a more adaptable reference framework
for new tasks. This finding supports the need for knowl-
edge transfer testing in agent-based training systems, as
good initial performance results may not necessarily
translate into successful knowledge transfer.

Balance between realism and educational gains.
High-fidelity simulation does not necessarily corre-
spond to better learning outcomes (Carey and Rossler
2020). For training systems, the realism of a simulation
could cover elements such as the rendered agent and
environment, the agent’s behaviour, dialogues, and
sound. Gallagher et al. (2005) argued that the essential
question is whether the simulation trains the appropri-
ate skills, regardless of the technological fidelity. At the
same time, realism in simulation can impact attributes
such as the agent’s likability (Baylor and Kim 2004)
and the satisfaction of the agent (Prajod et al. 2019),
which could, in turn, influence educational gains.
Thus, the challenge lies in identifying essential simu-
lated elements that can fulfil learning goals. More
specifically, how to find cues or behaviours that are
sufficiently realistic to train specific skills and meet
the training objectives. For instance, adjusting eye
gaze intensity can help manage social phobia in virtual
reality exposure therapy (Brinkman et al. 2012), or
altering depth perception can address fear of heights
(Ling et al. 2013). As for establishing a balance between
training objectives and simulation fidelity, we took
steps towards it by linking learning theories to
ARTES components, which would contribute to deter-
mining the level of development required for each
component, guided by the targeted skills and relevant
theories.

Explainablity of training systems decisions. The
nature of training systems requires two types of expla-
nations for learners: one addressing the virtual agent’s
behaviour, and the other offering insights into the lear-
ner’s choices as part of the educational process. There
is a need to integrate these two aspects within the con-
text of training systems. Doing that would help gener-
ate and present reliable and valid feedback that
explains the agent’s actions and the learner’s decisions.

When it comes to the explainability of the agent, we
need to explain the agent’s actions, their consequences,
and why the scenario unfolded in the way it did. This is
often referred to as explainable agency, and education
is one of its drives for demanding explainability
(Anjomshoae et al. 2019). This explainability typically
unfolds in three phases: generating the explanation
regarding the action, communicating the reason to
the learner, and assessing the explanation reception
(Neerincx et al. 2018)- the latter equivalent to exper-
iments in the case of training systems. The other type
of explanation is regarding the learner’s performance
in training. One such work in this domain is where
Khosravi et al. (2022) defined a framework for Explain-
able AI in education, which are six dimensions that
education systems developers and researchers should
consider.

Ethical implications. Using interactive agents in
training systems could raise stereotypes and biases. Riv-
era-Gutierrez et al. (2014) experimented with six virtual
patients varying in gender and skin colour, revealing a
disparity in correct diagnoses among the different char-
acters. The authors speculated this could be due to the
transfer of prejudices from real life to the simulation.
Conversely, this transfer could potentially develop
biases based on the learner experience within the train-
ing system. For instance, if a character with certain traits
behaves in a particular way, it could inadvertently
reinforce discriminatory attitudes towards such traits
or populations. Moreover, modelling ‘appropriate’
behaviour in agent-based training systems raises two
main concerns: regarding (1) inaccurate design and
(2) potential malicious control of this behaviour. If an
agent’s behaviour is poorly designed, simulations
might not accurately represent human interactions.
This could lead to ineffective training, giving learners
a false sense of competence. As for who is controlling
appropriate behaviour, training systems could be used
to shape and moralise people on specific behaviours.
Similarly, ill-intentioned learners could misuse the skills
learned from training systems to cause harm, such as
exacerbating bullying. Regarding affective privacy in
virtual agents, Hudlicka (2016) highlighted three ethical
concerns, which are apparent in a training system that
tries to change the user’s emotions, e.g. social anxiety
training. The concerns are affective privacy, or the
right to keep one’s emotions private; emotion induction,
the act of evoking and changing specific emotions in a
person; and the formation of virtual relationships
through (over)trust and attachment. If these systems
are inadequately designed, for instance, by evoking
inappropriate emotions in the learners, they could
have negative consequences that exacerbate the issues.
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Other ethical questions for training systems could arise
while analysing and storing personal data and regarding
consent and autonomy for such simulation training. A
solution that could address this is to develop guidelines
and checklists as a community, which can provide a
structure for design validation. Furthermore, we should
involve multiple stakeholders in the evaluation of train-
ing systems to get a variety of perspectives on system
validity and preferences (e.g. Botezatu et al. 2010), and
by letting them participate in the design process
(e.g. Kleinsmith et al. 2015; Kron et al. 2017).

Large Language Models (LLMs). These models, such
as GPT (Brown et al. 2020), can be considered as
another option for simulating a person in a training
scenario. Figure 7 shows an interaction with ChatGPT
acting as a child contacting a children’s helpline. In
this case, the conversations appear convincing and
reasonably coherent. However, there are currently sev-
eral challenges to the direct application of LLM in social
skills training systems. For example, it is less clear how
to explain agents’ cognitions in the absence of a human-
understandable agent model. Additionally, LLMs are
reported to suffer from bias issues (Nadeem, Bethke
and Reddy 2020) and carry a risk of misinformation
in the agent reply (Weidinger et al. 2021), which could
deviate the training from its objectives. One possible

approach to utilizing LLMs is to simulate some parts
of the agent’s thinking. These models generally generate
fitting responses, but may occasionally deliver incorrect
information (Kasneci et al. 2023). Therefore, exploring
hybrid solutions could be beneficial, blending rule-
based agent models and LLMs to generate appropriate
agent responses. This could involve generating parts
of the agent’s thinking, like their beliefs, intentions,
and actions, to be fed into a framework (Antunes
et al. 2023). Another outlook involves incorporating
LLMs into the tutor model to supplement or potentially
replace certain components. Despite their limitations,
LLMs could automate sections of the educational pro-
cess and reply to unexpected learner inputs. For Lila’s
case, three examples can illustrate the potential appli-
cations of LLM-based tutor subcomponents. First, a
pedagogical agent could serve as a social actor, addres-
sing Lila’s questions about communication protocols
and counselling in general. Second, the responses of
the virtual child character could be personalised based
on Lila’s demonstrated proficiency, thus reflecting
instructional principles. Lastly, feedback for Lila could
be generated by comparing her conversation logs with
the virtual child to an ideal conversation log.

Crowdsourcing solutions. As previously mentioned,
data required to create a virtual human or a tutoring

Figure 7. A chat from ChatGPT (GPT-4). We prompt the tool to act as a bullied child contacting a children’s helpline. The prompt was
‘Engage in roleplay. You are a child (Sarah) who was bullied at school and chatting with a child helpline. I will play the volunteer at the
helpline. Let’s start: “I am John, I am here to listen to you. What do you like to talk about?”’.
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model is not always accessible or adequately expansive
for every training system domain. One solution to
such a challenge is crowdsourcing. In theory, crowd-
sourcing could aid in collecting data required for a
data-driven virtual agent. However, in most training
systems, a domain expert is needed to feed and evaluate
such data, thereby limiting the pool of workers. Never-
theless, crowdsourcing has proven helpful for training
systems; for example, Rossen and Lok (2012) proposed
an approach to develop a conversation with a virtual
agent rapidly. This approach allows a domain expert
to start an agent with an initial set of questions and
responses, which will then interact with novices
recruited through crowdsourcing. The domain expert
then refines the agent with information from novice
interactions. This iterative procedure continues until
the agent’s performance reaches a satisfactory level.
Such an approach could decrease the cognitive load
and workload on the domain expert and yield a broader
range of responses. Another approach that focuses on
simulating different actions in a situation was proposed
by Feng et al. (2018). In that study, the workers were
asked to complete a situation story and how it could
unfold. These stories were fed to data-driven models,
and the workers evaluated the outputs iteratively.
Although this approach reveals actions and consequences
within a situation, it falls short in modelling conversa-
tions – meaning the agents’ dialogues are not directly
trained. Still, it can be an initial step to creating a good
story for future dialogues. On the agent model level,
crowd workers could contribute to defining the agent’s
states, based on the current state of the conversation.

Multi-agent scenarios. We, with ARTES, only
focused on social scenarios involving a single virtual
agent. However, training social skills might require the
presence of multiple actors, and thus, there is a need
to model more than one agent to simulate a situation.
Depending on a scenario’s context and learning objec-
tives, agents could have individual cognition or share
a collective cognitive model. For example, a virtual
nurse and a virtual patient could be simulated to train
a student doctor (Kron et al. 2017). Furthermore, mul-
tiple agents can be used with social cognitive theory to
model agents with differing perspectives on a topic
that a learner could learn from. For example, learners
can explore the ethical implications of implementing a
new two-factor authentication policy by engaging with
agents that prioritize different ethical principles, such
as non-maleficence (not harming people) or autonomy
(giving people choice) (Ali Bajwa, Richards, and For-
mosa 2023). It would be interesting to explore the
dynamics of multiple agents and how their shared cog-
nition could enhance the learner’s training. Taking this

concept further, the simulation system could train more
than one learner in a collaborative learning environ-
ment. An example of this approach is utilising a virtual
agent moderating conflict resolution between two lear-
ners (Emmerich et al. 2012).

Research methods. Prior research has discussed the
lack of standardised terminology and standardised
evaluation of learning outcomes for virtual patients
(Battegazzorre, Bottino, and Lamberti 2020) and train-
ing systems in general (Bosman, Bosse and Formolo
2018). As a next step, the community could establish
strategies to enhance the reproducibility of results.
There are two strategies to foster the future reproduci-
bility of the system’s positive learning effects. The first
one focuses on specifying the material used, for
example, a model to illustrate the internal functioning
of the agent. However, crafting an accurate model pre-
sents its challenges, as these models represent an
abstraction of reality. Thus, an alternative strategy is
to record people’s impressions and test whether these
can be replicated as a blackbox approach. One of the
initiatives for this strategy is the Artificial Social Agents
(ASA) questionnaire (Fitrianie et al. 2022), which allows
researchers to measure a broad number of interaction
impressions, such as the believability, enjoyability, and
social presence of an agent (Fitrianie et al. 2021).

Procedurally generated scenarios. Regarding social
interaction training systems, there are many intersec-
tions with serious games – games designed for objec-
tives beyond entertainment. They both have goals,
objectives, and, usually, virtual characters. Incorporat-
ing gamification elements can increase engagement
and overall learning outcomes (Huang et al. 2020; Sailer
and Homner 2020). This can be achieved by using
scores as rewards (Gebhard et al. 2018; Jeuring et al.
2015), or using badges (Zielke et al. 2016). One direction
forward for training systems is incorporating procedu-
rally generated dialogue, where the storyline, characters
and their proprieties (e.g. traits and goals) dynamically
evolve as the scenario progresses. For example, the game
‘Tech Support: Error Unknown’3, which, despite not
being the main focus, does exhibit some training elements.
Here, the player acts as a technical support representative
who people contact for support, where the customer’s sup-
port requests are procedurally generated. Having a similar
procedural narrative could introduce an element of ran-
domness to scenarios in training systems, thus mitigating
repetitiveness and predictability.

6. Final remarks

We believe ARTES is a valuable foundation for
researchers and developers in agent-based social skills
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training systems. This paper’s contribution lies in the
proposal of this versatile architecture and the examin-
ation of its key components, comparing them to similar
domains and linking them to learning theories. Under-
standing the complexities and roles of these vital com-
ponents, we hope, could enhance the efficiency, cost-
effectiveness, adaptability, and impact of training sys-
tems. Therefore, our work serves as a stepping-stone
to bridging the gap between virtual human simulations
and effective educational learning.

Notes

1. Note that the mapping does not evaluate the quality or
implementations of the architectures, but rather show-
cases ARTES’s coverage. These architectures may sup-
port additional functionalities and libraries beyond
what is reported in the examined literature.

2. Similar to the mapping of architectures, systems are
typically designed to suit their specific contexts. Thus,
our analysis does not assess their overall quality;
instead, it aims to show how these systems incorporated
ARTES’s components, highlighting its relevance and
modularity of the architecture.

3. Dragon Slumber, Tech support: Error unknown, [Steam],
2019.
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Appendix. Further explanations of aspects in Table 5

Figure A1. State machine diagrams explaining the four categorization mentioned in Table 5. ‘Learner’ and ‘Agent’ refers to their
replies. (a) Action decision: The input is directly mapped to output ( 2). (b) Action decision: a scenario is defined ( 3). (c) Agent
model: limited states changes ( 2). (d) Agent model: representation of changes ( 3).
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