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S U M M A R Y
Our objective is to complement lithospheric seismic tomography with an interferometric
method to retrieve high-resolution reflectivity images from local earthquake recordings. The
disadvantage of using local earthquakes for the retrieval of reflected body-waves is their usual
sparse distribution. We propose an alternative formulation of passive seismic interferometry
by multidimensional deconvolution (MDD) which uses the multiples in the full recordings
to compensate for missing illumination angles. This method only requires particle-velocity
recordings at the surface from passive transient sources and retrieves body-wave reflection
responses without free-surface multiples. We conduct an acoustic modelling experiment to
compare this formulation to a previous MDD method and Green’s function retrieval by cross-
correlation for different source distributions. We find that in the case of noise-contaminated
recordings obtained under severely limited and irregular illumination conditions, the alter-
native MDD method introduced here still retrieves the complete reflection response without
free-surface multiples where the other interferometric methods break down.

Key words: Interferometry; Body waves; Coda waves.

1 I N T RO D U C T I O N

Seismic tomography is used extensively to obtain information
about the complex low-frequency structures of the lithosphere
(Nolet 2008). Reflection imaging could complement tomography
by providing a well-constrained image of impedance contrasts with
a high spatial resolution. A densely sampled reflection survey with
controlled high-frequency sources placed at the surface could yield
this desired image. However, conducting this type of survey at a
lithospheric scale is very expensive and invasive for the natural
environment.

Seismic interferometry (SI) represents a set of less expen-
sive and non-invasive methods that can be applied to a regu-
lar and densely sampled receiver array at the surface to retrieve
virtual body-wave reflection responses from passive recordings
(Schuster 2009). These methods have the potential to give accu-
rate results when specific requirements are met. For example, they
rely on sufficient and isotropic illumination by naturally occurring
seismic sources. Local earthquakes have the potential to provide
waves with high-frequency content. However, the range of illumi-
nation angles provided by these sources strongly depends on their
relative position and orientation to the imaging target and the re-
ceiver array. Multiple reflections could compensate for the missing
illumination angles, but the currently employed SI methods are not
designed to utilize higher order scattering events in a physically
correct way to construct body-wave reflections.

SI by crosscorrelation retrieves any type of Green’s function
response between two receivers, by effectively turning one of the

receivers into a virtual source. In practice, this method has proven to
yield body-wave reflections under specific circumstances (Draganov
et al. 2007; Tonegawa et al. 2009; Poli et al. 2012; Boué et al. 2014).
However, there are several drawbacks to consider when using cross-
correlation for the retrieval of body waves. First of all, the method
requires a well-sampled boundary of passive sources to enclose the
receiver array. In addition, the source mechanisms and radiation pat-
terns should ideally be the same for all passive sources. Violation
of these requirements leads to irregular illumination of the array,
which in turn causes the radiation patterns of the virtual-sources
to be anisotropic. This inevitably leaves its imprint on the retrieved
reflection responses by causing inaccurate reconstruction of ampli-
tudes as well as a less effective destructive interference of artefacts.
Finally, SI by crosscorrelation assumes the input wavefields to be
reversible in time, which only holds in lossless media. This im-
plies that for the case of field data the reliability of this method is
compromised since it is unlikely that all these conditions are met.

Multidimensional deconvolution (MDD) offers an alternative to
crosscorrelation for retrieving reflection responses from passive
recordings (Wapenaar et al. 2008). This method does not rely on
time-reversibility, because it is based on reciprocity relations of the
convolution type. Intuitively, MDD can be compared to a ‘deblur-
ring’ procedure whereby artefacts caused by anisotropic illumina-
tion or variations in passive-source mechanisms are corrected for
by deconvolving with a ‘point-spread function’ (PSF). This PSF is
constructed from the wavefields of the kernel in the original reci-
procity formulation and ideally contains spectral information of the
virtual-source radiation patterns (van der Neut 2012). The kernel
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of the reciprocity formulation of the MDD method described in
Wapenaar et al. (2008) is, in theory, composed of the direct wave
and the internal multiples from the recorded wavefield. However,
when the subsurface reflectivity is unknown, it is in practice only
feasible to extract the direct wave (which can include possible short-
period multiples) from the recordings, because separating internal
multiples from surface-related multiples is not a trivial task. The re-
sulting approximation of the kernel limits the PSF to wavenumbers
provided by the directly incident field: the ‘ballistic field’ (Nakata
et al. 2014). Inverting this ballistic PSF likely produces errors,
because the function is inexact and affected by time-window proce-
dures. These disadvantages are expected to be most apparent when
the passive-source illumination from approximately vertically be-
low the receiver array is absent and the retrieval of virtual reflections
relies on low-wavenumber illumination from scattered events in the
passive coda wavefield. In such a case, a purely ballistic PSF does
not suffice to compensate for irregularities in the virtual-source ra-
diation patterns. In fact, the PSF would require spectral information
of the coda wavefield as well in order to enable the appropriate
illumination balancing and thus enhance the sought-after virtual
reflection responses.

The need for a more extensive PSF led to the development of an
alternative reciprocity relation which contains an exact full-field ker-
nel, instead of an approximated ballistic one (Almagro Vidal 2017).
Here, the term ‘full-field’ indicates that the kernel consists of the
entire recorded passive wavefield containing both the ballistic and
coda field. The full-field MDD method thus conducts the ‘deblur-
ring’ operation using a full-field PSF, which has encoded the max-
imum available spectral information to correct the virtual-source
radiation patterns. Consequently, in cases when the retrieval of vir-
tual reflections relies primarily on illumination from the passive
coda field, this full-field PSF is expected to perform better than the
ballistic PSF. Moreover, the full-field PSF avoids inversion of an ap-
proximated and time-windowed function (as is the case in ballistic
MDD).

In order to validate the above-mentioned advantages of full-field
MDD over ballistic MDD and crosscorrelation, we conduct an effec-
tive comparison of these SI methods. The experiments are carried
out using acoustic synthetic data, which allows for a controlled
analysis of the performance of each of these methods under various
passive-source illumination conditions as well as noise contamina-
tion.

2 M E T H O D S

In Wapenaar et al. (2011), a systematic comparison is given of
SI methods, including ballistic MDD and crosscorrelation, for
retrieving the reflection response from active and passive-source
recordings. The passive SI methods are addressed for the case of
transient-source recordings as well as for ambient noise recordings,
which requires an adapted form in the case of the MDD application
(van der Neut 2012). Here we focus only on the passive transient-
source scenario, because this corresponds to earthquake record-
ings. We review the theory of ballistic MDD and crosscorrelation
and introduce our new formulation for retrieving multicomponent
reflection responses at the free surface.

2.1 Ballistic MDD

We formulate the reciprocity relation of the convolution type for a
passive transient-source configuration to study the interaction quan-

tities of wavefields in two independent states, A and B (Wapenaar
et al. 2008). The respective wavefields in each state are consid-
ered in the same arbitrary inhomogeneous anisotropic dissipative
medium in which we define a domain D enclosed by a boundary
∂D. We divide boundary ∂D into a horizontal part at the level of the
acquisition array, defined by the receiver positions xR ∈ ∂DR , and
an arbitrarily shaped part ∂DM inside the medium (Fig. 1). Bound-
ary ∂DM has absorbing boundary conditions in both states A and
B, while the boundary conditions of ∂DR differ between states. The
measurement state A represents the actual medium in which the
passive wavefields can be recorded. This medium contains a free
surface at the level of the acquisition array. Instead of a free surface,
state B has absorbing boundary conditions at ∂DR . Hence, inside
reference state B, fields do not have free-surface interaction and are
denoted by the superscript ‘o’. Sources in state A are introduced
immediately below the boundary ∂DR at positions xA. However,
by invoking source–receiver reciprocity, sources at xA function as
receivers. In state B the source locations, xB , are anywhere inside
the domain. Using these state definitions, the reciprocity theorem
of the convolution type for acoustic wavefields in 3-D media yields
a Fredholm integral of the first kind:∫

∂DR

R̂k|3(xA, xR, ω)P̂o(xR, xB, ω)d2xR

= V̂ o
k (xA, xB, ω) − V̂k(xA, xB, ω). (1)

This relation is expressed in the space-frequency domain, where
ω denotes the angular frequency. R̂k|3(xA, xR, ω) is the desired
impulsive particle-velocity reflection response at xA caused by a
vertical-traction source at xR at the free surface. This response is
defined in the measurement state A with free surface and therefore
contains free-surface multiples. The lower-case subscript on the left
side of the vertical bar, with possible values 1, 2 or 3, denotes the
receiver component of the field, while the subscript on the right
side denotes the component of the virtual source. The kernel of
the Fredholm integral, P̂o(xR, xB, ω), is the passive pressure-field
response at xR due to a source at xB in the reference state without
free surface. V̂k(xA, xB, ω) and V̂ o

k (xA, xB, ω) represent the passive
particle-velocity responses for the situation with and without free
surface, respectively, at xA due to a source at xB . The source at
xB does not require a subscript, because the relation holds for any
kind of source mechanism. Note that V̂k(xA, xB, ω) represents the
actual measurements, from which V̂ o

k (xA, xB, ω) and the kernel,
P̂o(xR, xB, ω), need to be extracted. The integral boundary is de-
fined by the receiver positions of the passive measurements at the
horizontal acquisition level ∂DR . We let the remaining part of the
closed boundary, ∂DM , extend to infinity such that its contribution
to the integral vanishes due to Sommerfeld’s radiation condition.
Note that the multiplication inside the integrand represents a con-
volution in the time domain. In order to solve for the reflection
response, R̂k|3(xA, xR, ω), we need to invert eq. (1). However, in
case we only have the recordings of a single passive source in a 2-D
or 3-D medium, this inverse problem is severely ill-posed (Arfken &
Weber 2005). We can constrain the problem by taking into account
many passive source recordings. Employing the wavefield matrix
notation (Berkhout 1982), eq. (1) becomes:

R̂k|3P̂o = V̂o
k − V̂k, (2)

where boldface symbolizes the matrix form of the wavefields.
A field matrix (P̂o, V̂o

k and V̂k) contains the independent non-
overlapping recordings of passive sources, whereby each row rep-
resents a receiver position and each column a passive source in the
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Figure 1. State definitions for ballistic MDD. (a) State A in the medium with free surface: the boundary of the domain, ∂D, consists of a half-sphere, ∂DM ,
with infinite radius and a horizontal free surface (thick continuous line), ∂DR , with normal vector n. The receivers at boundary ∂DR are denoted by triangles:
red indicates the position of the virtual source and yellow its corresponding receiver. R̂k|3(xA, xR) is the reflection response at xA to a virtual vertical traction
source at xR and contains free-surface multiples. V̂k (xA, xB , ω) is the particle-velocity response at receiver position xA due to an arbitrary passive source at
xB (red star) and contains free-surface multiples. (b) State B in the medium without free surface: here the acquisition boundary ∂DR has absorbing boundary
conditions (dotted line). P̂o(xR , xB , ω) and V̂ o

k (xA, xB , ω) are the pressure response at xR and particle-velocity response at xA , respectively, due to an arbitrary
passive source at xB (red star).

subsurface. The reflection response R̂k|3 is similar, except that it is
a square matrix and its columns correspond to independent virtual
sources at the surface. The normal form (van der Neut et al. 2011)
of eq. (2) for the particle-velocity reflection response is given by

R̂k|3P̂oP̂o† = (
V̂o

k − V̂k

)
P̂o†, (3)

where † denotes transposition and complex conjugation. To solve for
the unknown reflection response we implement regularized least-
squares inversion:

R̂k|3 = [(
V̂o

k − V̂k

)
P̂o†] [

P̂oP̂o† + ε2I
]−1

, (4)

where the first term in square brackets on the right-hand side rep-
resents the ‘correlation function’, while the second term in square
brackets is the inverse matrix: it contains the ‘point-spread function’
(PSF) and the regularization matrix, which is composed of a stabi-
lization parameter, ε2, and the identity matrix I (van der Neut 2012).
This operation represents an MDD, which implies that the reflec-
tion response is retrieved for all virtual sources and receivers si-
multaneously. This makes MDD distinctly different from Green’s
function retrieval by crosscorrelation, which obtains the response
independently for each virtual-source position. The reference-state
fields without free-surface interaction, P̂o and V̂o

k , could be obtained
by removing all surface-related multiples from the passive record-
ings, but in practice this is an extremely challenging procedure.
Therefore, we estimate the field V̂o

k by extracting the only event
we can distinguish from other events with considerable certainty:
the direct arrival of the passive recording V̂k (which can include
possible short-period multiples). We multiply the direct arrival by a
factor 1

2 to account for the absence of the free surface in the refer-
ence state. This estimate is quite reliable for the implementation of
MDD when the medium is weakly scattering. Since measurements
are usually obtained at the free surface, P̂o can be estimated from
the vertical particle-velocity recordings by an additional far-field
approximation: P̂o ≈ −ρcV̂ o

3 , where ρ and c are the mass density
and P-wave velocity, respectively, at the receiver locations. eq. (4)
thus becomes:

R̂k|3 ≈ 1

ρc

[(
V̂k − V̂D

k

)
V̂D†

3

] [
V̂D

3 V̂D†
3 + ε2I

]−1
, (5)

where the superscript ‘D’ indicates that the wavefield is the direct
wave of the particle-velocity recording multiplied by the factor 1

2 .
Note that the ε in this equation is a scaled version of the ε in
eq. (4). The direct-wave approximation will cause errors in both the
correlation function and the inverse matrix, which inevitably propa-
gate into the solution R̂k|3. Physically speaking, this approximation
means that the PSF in the inverse matrix, V̂D

3 V̂D†
3 , is now only

constructed by the direct incident wavefield of the passive particle-
velocity recordings: the ballistic wavefield. This is why we have des-
ignated this MDD method as ‘ballistic MDD’. The fact that the PSF
is estimated by ballistic wavefields limits this MDD method to use
only the wavenumbers provided directly by the passive-source dis-
tribution. Moreover, the ballistic PSF can only correct for anisotropy
in the virtual-source radiation patterns caused by irregular source
distributions and mechanisms, but not for anisotropy resulting from
scattering inside the medium.

An approximation to the reflection response R̂k|3 can alternatively
be obtained from the reciprocity relation of the correlation type, as
presented in Wapenaar & Fokkema (2006):

�
[

R̂k|3(xA, xR, ω)
]
〈Ŝ(ω)〉

≈
∫

∂DS

ρ(xB)c(xB)V̂ ∗
3 (xR, xB, ω)V̂k(xA, xB, ω)d2xB . (6)

The integral is along the distribution of passive sources at loca-
tions xB ∈ ∂DS in the subsurface, where ρ(xB) and c(xB) denote the
mass density and P-wave velocity of the medium, respectively, at
these same locations. V̂3(xR, xB, ω) and V̂k(xA, xB, ω) are particle-
velocity recordings at receiver positions xR and xA, respectively, due
to a passive source at xB . Note that superscript ‘∗’ denotes complex
conjugation, which implies that the integrand product represents
a crosscorrelation in the time-domain. The left-hand side denotes
the causal and the acausal impulsive particle-velocity reflection re-
sponse at receiver xA due to a vertical-traction source at xR . 〈Ŝ(ω)〉
is the average power spectrum of the passive sources. Although
eq. (6) retrieves the same response as eq. (1), their underlying
solution methods differ significantly. Eq. (6) is solved explicitly,
which explains the relative robustness of the method. However, due
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Figure 2. State definitions for full-field MDD. (a) State A in the medium without free surface: the boundary of the domain, ∂D, consists of a half-sphere,
∂DM , with infinite radius and a horizontal surface, ∂DR , with normal vector n. The receivers at boundary ∂DR are denoted by triangles: red indicates the
position of the virtual source and yellow its corresponding receiver. R̂o

k|0(xA, xR, ω) is the reflection response at xA to a monopole virtual source at xR and

is without free-surface multiples. V̂ o
k (xA, xB , ω) is the particle-velocity response at receiver position xA due to an arbitrary passive source at xB (red star)

without free-surface multiples. (b) State B in the medium with free surface: here the acquisition boundary ∂DR forms a free surface (thick continuous line).
V̂k (xR, xB , ω) and V̂k (xA, xB , ω) are the particle-velocity responses with free-surface multiples at xR and xA , respectively, due to an arbitrary passive source
at xB (red star).

to the formulation of the integral, it does require a well-sampled
enclosing boundary of passive sources: a condition unlikely to be
met by earthquake sources, which are generally sparse. Eq. (1) is
implicit and hence requires inversion. However, a concomitant ad-
vantage of inversion is that it corrects for the imprint of the irregular
passive-source illumination. Moreover, since the integral of eq. (1)
is along the positions of the receivers instead of the passive sources,
it still works when the source distribution is sparse, as long as the
receivers form a well-sampled and sufficiently extended array.

2.2 Full-field MDD

We now introduce our formulation for the alternative MDD method,
which uses both the ballistic and coda (or scattered) wavefield of
the data: the full field. We use the same setting as for ballistic
MDD, but we change the boundary conditions: we appoint state
B as the measurement state with free surface, while state A is the
reference state without free surface (denoted by superscript ‘o’) of
which we aim to determine the reflection response (Fig. 2). This
switch of the boundary conditions at ∂DR between states ensures
that the kernel now contains the measured data (which avoids the
need to extract the direct wave to build the kernel) and allows us to
retrieve a reflection response without free-surface multiples. Note
that the source locations xA and xB remain the same as for ballistic
MDD. The acoustic representation in 3-D media is presented in the
space-frequency domain as∫

∂DR

R̂o
k|0(xA, xR, ω)V̂3(xR, xB, ω)d2xR

= V̂k(xA, xB, ω) − V̂ o
k (xA, xB, ω). (7)

For the derivation in elastic 3-D media, refer to Appendix A. Note
that in this formulation the unknown particle-velocity reflection re-
sponse R̂o

k|0 is caused by a monopole source and does not contain
free-surface multiples. The monopole source is indicated by sub-
script zero ‘0’, because it is a scalar. The kernel, V̂3(xR, xB, ω), is
the full recording of the vertical particle-velocity at receiver xR at
the free surface of the actual medium due to an arbitrary passive

source at xB . The source type, signature and location of the pas-
sive sources at xB do not need to be known. Similar to eq. (1), this
equation is a Fredholm integral of the first kind, but with a different
solution R̂o

k|0(xA, xR, ω) and a kernel which does not require approx-
imations. eq. (7) presents an inverse problem, which also requires
to be constrained by considering many passive source recordings.
We express eq. (7) using wavefield matrix notation:

R̂o
k|0V̂3 = V̂k − V̂o

k . (8)

The normal form of eq. (8) for the particle-velocity reflection re-
sponse is given by

R̂o
k|0V̂3V̂†

3 = (
V̂k − V̂o

k

)
V̂†

3, (9)

and we solve by regularized least-squares

R̂o
k|0 =

[(
V̂k − V̂o

k

)
V̂†

3

] [
V̂3V̂†

3 + ε2I
]−1

. (10)

Note that in this case, the evaluation of the PSF in the regular-
ized inverse matrix does not require any approximations: it is con-
structed by the full recordings of the particle-velocity response of
the medium. Hence, we refer to this MDD method as ‘full-field
MDD’. The term ‘full-field’ originates from the fact that the PSF
is constructed by the full passive recordings, containing both the
ballistic and the coda wavefields. Note that this means that this
MDD effectively uses the wavenumbers provided by the ballistic
as well as all scattered events in the data (this includes the free-
surface multiples). Therefore, this full-field PSF also corrects for
anisotropic illumination caused by both the ballistic field and the
scattering inside the medium.

In order to solve for the reflection response in eq. (10), V̂o
k in the

right-hand side needs to be estimated in the same way as we did for
eq. (5): by extracting the direct field from each passive recording
and multiply by a factor 1

2 . However, we do not require the additional
far-field approximation here. The equation thus becomes:

R̂o
k|0 ≈

[(
V̂k − V̂D

k

)
V̂†

3

] [
V̂3V̂†

3 + ε2I
]−1

. (11)
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It is important to remark that in the case of full-field MDD the direct-
wave approximation only occurs in the correlation function. The
wavefields in the PSF however, do not require any approximations.

We have discussed two essentially different MDD methods. Bal-
listic MDD retrieves the reflection response with free-surface mul-
tiples, while full-field MDD retrieves the response without free-
surface multiples. The kernel of the latter is constructed by the full
passive data and thus governs a wide spectrum of wavenumbers,
while the kernel of the former is limited to the wavenumbers of the
passive ballistic field. As a consequence, the full-field PSF takes
into account additional wavenumber illumination provided by the
recorded scattered field and consequently corrects for the irregular
illumination it may cause. These points lead us to hypothesize that
full-field MDD applies a better constrained inversion and yields
a more accurate retrieval of the reflection response than ballistic
MDD. Nevertheless, we still expect the retrieval of the reflection re-
sponse to be contaminated by some artefacts, since the correlation
function of full-field MDD does contain the approximated V̂D

k field.

3 N U M E R I C A L R E S U LT S

We conduct an effective comparison of retrieving the particle-
velocity reflection response by crosscorrelation (eq. 6), ballistic
MDD (eq. 5) and full-field MDD (eq. 11). Here we choose to analyse
only the vertical-component particle-velocity reflection response by
setting subscript k to 3, but we emphasize that we can equally well
obtain the horizontal components when the input data provides
them. To simulate the input recordings, we perform independent
2-D numerical experiments using acoustic finite-difference wave-
field simulation (Thorbecke & Draganov 2011). We use a litho-
spheric model with a Moho reflector at 50 km depth with a disconti-
nuity, which is characterized by a downward vertical displacement
of 10 km (Fig. 3a). The P-wave velocities of the crust and upper
mantle are 6 and 9 km s−1, respectively, and the respective densities
are 2700 and 3400 kg m−3 (Dziewonski & Anderson 1981). We gen-
erate independent passive recordings by modelling dipole sources
which we orient approximately tangential to the alignment of the
source locations, with some random directional deviation. This has
the purpose to approximate the effect of slip occurring along an
irregular listric fault system. For each passive-source signature we
use a different Ricker wavelet with a peak frequency varying be-
tween 0.3 and 1.1 Hz. In Fig. 3(a), the orientation and location of the
passive dipole sources are indicated by arrows: the colour defines
their peak frequency. The 200 multicomponent receivers are placed
0.2 km beneath the free surface with an inter-receiver spacing of
1 km. However, the receivers can be considered to be approximately
at the free-surface level, because 0.2 km is less than 4 per cent of the
smallest central wavelength in the upper layer. We model the pas-
sive recordings for a total time of 170 s to ensure that free-surface
multiples of higher orders are present in the data.

3.1 Different illumination scenarios

We conduct the comparison for two different irregular source distri-
butions: the first provides full coverage (Fig. 3a), while the second
provides only limited illumination from the sides (Fig. 4a).

3.1.1 Complete illumination

We use the three interferometric methods to retrieve a reflection
response to a virtual source at the position of the middle receiver

(position 0 km) for the case of sufficient passive-source illumination
(Fig. 3). To enable a visual analysis of the quality of the retrieved
reflection responses, we directly model the reflection response by
placing a monopole source at the position of the middle receiver
with a peak frequency of 1.1 Hz, depicted in Fig. 3(b). This modelled
response is characterized by four distinct events: the direct wave, the
primary Moho reflection, the diffraction of the Moho discontinuity
and the first free-surface multiple reflection. We focus on the body-
wave reflections: the primary and the first free-surface multiple,
which at position 0 km have two-way traveltimes of approximately
17 and 34 s, respectively. The visible jump in the body-wave reflec-
tions and the corresponding diffractions are caused by the Moho
discontinuity.

We first compare the reflection retrieved by crosscorrelation in
Fig. 3(c) to the modelled response in Fig. 3(b). The resolution
of the crosscorrelation result is significantly lower, which makes
it difficult to distinguish the primary or the free-surface multiple
reflection. This low resolution is caused by the variation in spec-
tra between individual passive sources. In spite of the low res-
olution, the primary reflection can be distinguished at positions
−100 to −50 km and 50 to 100 km. Between positions −50 and
50 km, the primary reflection becomes more obscured by the pres-
ence of artefacts, which makes it difficult to detect the Moho dis-
continuity. The artefacts are a result of the anisotropic illumina-
tion of the array due to the variations in passive-source radiation
patterns.

The result of ballistic MDD is shown in Fig. 3(d). The resolution
of this reflection retrieval is comparable to the modelled response
in Fig. 3(b). The primary is retrieved for each receiver position and
it is possible to detect the jump caused by the Moho discontinuity.
However, the primary is not very distinct, because its amplitude is
not significantly higher than most of the artefacts. At about 4 s after
the primary an erroneous ‘ghost’ of the primary is clearly visible,
which, in the realistic case when the medium parameters are not
known, could result in an incorrect interpretation of a reflectivity
contrast. This interferometric ghost is caused by crosscorrelations
between direct waves and primaries in the correlation function. The
ballistic PSF cannot correct for this, because it only contains the
spectral information of the direct waves (see Fig. 5a). In addition to
this predominant artefact, the retrieved primary reflection is slightly
obscured by steep-dipping artefacts around the centre of the array,
near position 0 km. The free-surface multiple is significantly weaker
than in the modelled response. This is not in accordance with the
theory, which states that ballistic MDD retrieves the reflection re-
sponse with free-surface interaction.

In Fig. 3(e) the reflection response retrieved by full-field MDD is
shown. The resolution is of the same quality as the modelled reflec-
tion response. The primary reflection is retrieved completely and is
distinctly stronger than the artefacts in the background. However,
there is a slight decrease in amplitude at lower angles of incidence.
The free-surface multiple is expected to be absent, but we can still
see some remnants of it. The diffraction caused by the upper corner
of the Moho discontinuity is, though obscured by artefacts, partially
retrieved by full-field MDD.

When we compare results of ballistic and full-field MDD, we
see that the latter gives a more distinct reflection response and is
not as obscured by artefacts as the former. Full-field MDD does
not contain the erroneous primary ghost we see in the result of
ballistic MDD. This indicates that the full-field PSF is more effective
in correcting for artefacts (see Fig. 5b). Moreover, ballistic MDD
required a stabilization parameter two orders of magnitude larger
than full-field MDD.
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Figure 3. Complete illumination scenario. (a) P-wave speed model (km s−1) for the complete illumination scenario. The orientation and location of the passive
dipole sources are denoted by arrows and the receivers by blue triangles. The colour of the arrows indicates the peak frequency (fp) of the passive-source
signatures as specified by the colour bar. The position along the horizontal axis corresponds with the horizontal axis of the modelled and retrieved shot gathers.
(b) Modelled vertical particle-velocity reflection response to a vertical dipole-source placed at the position of the middle receiver. (c) Vertical particle-velocity
reflection response obtained by crosscorrelation. (d) Vertical particle-velocity reflection response obtained by ballistic MDD. (e) Vertical particle-velocity
reflection response obtained by full-field MDD.

3.1.2 Limited illumination

In Fig. 4 we compare all three interferometric methods for the case
of having passive sources positioned at the far sides of the model.
In this challenging configuration, low-angle reflections at the centre
of the array can only be retrieved from diffractions and multiply
scattered waves contained in the coda field of the input recordings.

The crosscorrelation result in this illumination scenario differs
from the complete illumination case (Fig. 3c) in that it does not
show any sign of the Moho primary between positions −50 and
50 km (Fig. 4c). This implies that for this situation, crosscorrelation
only profits effectively from first order and not from higher order
multiples, because only the latter could yield a retrieval of the Moho
reflection at the positions between −50 and 50 km. This makes it
impossible to detect the Moho discontinuity.

In Fig. 4(d) the ballistic MDD result is shown, which is severely
contaminated by artefacts and does not show a reflection retrieval.
These artefacts are caused by the ballistic PSF, which is designed

to correct for irregularities in virtual shot gathers which are entirely
retrieved from the ballistic passive field, which is here constructed
from high-angle events only (see Fig. 5c). However, in this scenario,
the retrieved virtual reflections can only be constructed from the
scattered events contained in the passive recordings and thus the
ballistic PSF will only introduce artefacts.

Fig. 4(e) shows that full-field MDD does yield a visible reflec-
tion for all receiver positions. This is due to the fact that full-field
MDD uses diffractions and multiples of different orders, contained
in the coda field, to construct the reflection response for all avail-
able wavenumbers. The full-field PSF is designed to correct for
illumination irregularities caused by both the ballistic and the coda
wavefield (see Fig. 5d). However, there is a notable decrease in am-
plitude for the lower wavenumbers, which makes it slightly more
difficult to distinguish the primary from artefacts when compared
to the case of complete illumination in Fig. 3(e). In spite of this,
full-field MDD is the only method which can still obtain a reflec-
tion response under these severely limited illumination conditions
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Figure 4. Same as in Fig. 3, but for limited illumination (high angles only).

and allows for a reasonably accurate interpretation of the Moho
discontinuity.

3.2 PSF analysis

Conventionally, the function of the PSF is to properly balance the
virtual-shot gathers, such that each virtual source resembles an
isotropic source mechanism. From the theory, as well as the numer-
ical results, we have learned that the ballistic PSF achieves this by
balancing the irregular illumination caused by the directly incident
passive wavefields. On the other hand, the full-field PSF balances
the irregular illumination associated with the full passive recording
and additionally uses the scattered passive events to convert free
surface multiples into primaries in the resulting reflection response.
To gain insight into the differences in illumination characteristics,
we compare the full-field and ballistic PSF in the time-space and
frequency-wavenumber domains.

First, the time–space plots in Figs 5(a) and (c) show that the bal-
listic PSF is constructed of the directly incident fields only, while
Figs 5(b) and (d) show that the full-field PSF includes all scattered
events as well. Note that the apparent difference between the full-
field PSF in the case of complete and limited illumination is not
significant. The frequency–wavenumber spectrum of the ballistic

PSF (Fig. 5e) shows that for complete illumination (Fig. 3a), the
ballistic fields provide a broad range of wavenumbers. This is in
stark contrast with the case of limited illumination from the sides
(Fig. 4a), where the ballistic fields of the passive sources only pro-
vide high wavenumbers (Fig. 5g). Moreover, the application of the
tapered time-window for selecting the ballistic fields causes smear-
ing, which introduces artificial low wavenumbers between 0.1 and
0.4 Hz.

Figs 5(f) and (h) show the corresponding full-field PSF’s for the
two illumination scenarios, which appear to be similar in spectral
content even though the directional balancing is different for each
scenario. In both cases, the full-field PSF clearly displays distinct
features which indicate the presence of spectral information due to
the coda wavefield, which is necessary to balance the virtual-source
radiation and is responsible for converting free-surface multiples
into primaries.

3.3 Direct-wave approximation sensitivity

Eqs (5) and (11) both rely on the direct wave to approximate the
reference-state response to the passive sources. This approxima-
tion will inevitably cause errors in retrieved reflections. To analyse
this error, we additionally compute the reflection retrievals using
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Figure 5. Ballistic and full-field PSF’s of the virtual source at position 0 km for the complete (Fig. 3a) and limited (Fig. 4a) illumination scenarios. (a) Ballistic
PSF in the t–x domain for complete illumination. (b) Full-field PSF in the t–x domain for complete illumination. (c) Ballistic PSF in the t–x domain for limited
illumination. (d) Full-field PSF in the t–x domain for limited illumination. (e)–(h) show the f–k spectra of (a)–(d).

eqs (4) and (10), which are without the direct-wave approximation.
This required numerical simulation of the actual reference-state
responses by using the model setting in Fig. 3(a) with absorbing
boundary conditions at the top. This allows us to compare re-
flection responses obtained using the direct-wave approximation
(eqs 5 and 11) and without using the direct-wave approximation
(eqs 4 and 10).

Figs 6(a) and (b) show the reflection response retrieved by bal-
listic MDD using eqs (5) and (4), respectively. In the result with-
out approximation in Fig. 6(b), the primary is more distinct and
continuous and the source ghost is less visible, compared to the
result obtained using the direct-wave approximation in Fig. 6(a).
The free-surface multiple is clearly more visible in Fig. 6(b),
which is in accordance with the theory which states that ballistic

MDD retrieves the response with free-surface interaction. Figs 6(c)
and (d) display the results for full-field MDD with (eq. 11) and
without using the direct-wave approximation (eq. 10), respectively.
The free-surface multiple is suppressed in both figures (although
some remnants are still visible), which agrees with the fact that full-
field MDD retrieves the reflection response without free-surface
interaction. Note that the two results for full-field MDD do not dif-
fer much from each other, although artefacts are less apparent in
Fig. 6(d).

This comparison shows that ballistic MDD is more affected by
the direct-wave approximation than full-field MDD, which could
be predicted when comparing eqs (5) and (11): the ballistic PSF
requires the direct-wave approximation while the full-field PSF does
not.
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Figure 6. MDD methods with and without direct-wave approximation, for the complete illumination scenario described by Fig. 3(a). (a) Vertical particle-
velocity reflection response using ballistic MDD with direct-wave approximation. (b) Idem, using ballistic MDD formulation with modelled reference responses.
(c) Idem, using full-field MDD with direct-wave approximation. (d) Idem, using full-field MDD formulation with modelled reference responses.

3.4 Noise sensitivity

In order to create a more realistic scenario, we introduce noise in
the modelled passive recordings. We generate random noise in the
frequency-domain which is different for every shot and trace and
we band-limit it between 0.01 and 2.6 Hz (see Fig. 7c). In Fig. 7(b)
the effect of adding the noise can be seen in a trace at position 0 km
of a passive-source recording. The primary, indicated by ‘P’, is
easily recognizable in the trace contaminated by noise, but the first
order free-surface multiple, indicated by ‘M1’, is below the noise
level. This indicates that the ballistic field is not affected much by
the noise, while the scattered events of the coda wavefield are. In
the example of one of the passive-source recordings in Fig. 7(a) the
effect of the noise is clearly visible: the free-surface multiples of
higher order are obscured.

We compare the retrieved vertical particle-velocity reflection re-
sponses, using the three SI methods for the case of limited illu-
mination, as shown in Fig. 4(a). The retrieved response by cross-
correlation is unaffected by the introduction of noise (Fig. 7e): the
method diminishes incoherent or random events present in the input
recordings. Ballistic and full-field MDD are much more affected by
the noise (Figs 7f and g, respectively). This is because inversion is
sensitive to the prevalence of noise. We partially compensated for
this by increasing the stabilization parameter for full-field MDD to
the same magnitude as used for ballistic MDD. Additional artefacts
now contaminate the reflection response retrieved by ballistic MDD
even more (Fig. 7f). In Fig. 7(g) it can be seen that the noise intro-
duces a random pattern in the response retrieved by full-field MDD.
However, the accuracy and visibility of the reflection response is
not significantly affected with respect to Fig. 4(e). Moreover, the
noise-related artefacts could be minimized by making use of spar-
sity promotion as presented by van der Neut & Herrmann (2013).

4 D I S C U S S I O N

Earthquakes are generated by various complex mechanisms and
are often sparsely distributed (Stein & Wysession 2003). Our re-

sults show that the quality of the body-wave reflections obtained by
crosscorrelation and ballistic MDD is severely affected when these
realistic conditions are met (Figs 4c and d). In contrast, full-field
MDD turns out to be significantly less sensitive to the possible ad-
verse effects of these circumstances and yields a complete retrieval
of the body-wave reflection (Fig. 4e). Moreover, the addition of
noise to the passive recordings does not significantly diminish the
quality of the response retrieved by full-field MDD (Fig. 7g).

The robustness of full-field MDD can be explained by the fact
that its kernel equals the full passive recording (eq. 7). As a conse-
quence, its PSF takes into account additional wavenumber illumi-
nation provided by the scattered events contained in the recording
and thus also corrects for the irregular illumination these events
may cause. Another benefit of this kernel is that it does not require
any approximations, which results in a more constrained and stable
inversion.

Wavefields with high-frequency content are more sensitive to
the various scales of heterogeneities present in a realistic litho-
spheric medium: the scattering potential will effectively increase
with higher frequency content (Sato et al. 2012). A medium with
a stronger scattering potential has the advantage of increasing the
range of wavenumbers contained in the illuminating field, which
full-field MDD profits from. However, when the scattered field
energy increases with respect to the ballistic field energy, the direct-
wave approximation in the correlation function of full-field MDD
will become less reliable. This can lead to an increase in the er-
ror in the estimate of the reflection response. This expected trade-
off requires further research. Crosscorrelation does not rely on the
direct-wave approximation and, in theory, would also profit from a
stronger scattering potential in case this generates isotropically scat-
tered waves at the receiver level (Snieder 2004). However, a mod-
elling study of coda-wave crosscorrelation interferometry showed
that in case of only a slightly higher scattering potential, the re-
flection retrieval becomes obscured by the associated emergence of
cross-talk artefacts (Hartstra & Wapenaar 2015).

Another characteristic of strongly scattering media is that P-
to S-wave conversions dominate the multiply scattered wavefield
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Figure 7. Limited high-angle illumination scenario as described in Fig. 4(a), but with added noise. (a) Vertical particle-velocity recording of a passive source
with added noise (the clipping is slightly increased). (b) Trace at position 0 km of a passive recording with (red) and without noise (dashed blue). The arrow
with ‘P’ indicates the Moho primary and ‘M1’ the first order free-surface multiple. (c) Spectrum of the trace in (b) with (red) and without noise (blue). (d)
Modelled vertical particle-velocity reflection response to a vertical dipole-source placed at the middle receiver. (e) Vertical particle-velocity reflection response
from passive recordings with noise using crosscorrelation. (f) Idem, using ballistic MDD. (g) Idem, using full-field MDD.

(Snieder 2002). We derived the full-field MDD equation for elasto-
dynamic wavefields (eq. A14), which only requires particle-velocity
recordings as input and possibly does not require surface-wave re-
moval. Using full-field MDD, we expect to retrieve an elastody-
namic reflection response of a comparable quality as for the acoustic
case demonstrated here.

Finally, we would like to point out that this method is not limited
to lithospheric imaging applications. Depending on the characteris-
tics of the array, full-field MDD could be used to obtain body-wave
reflections on a global scale to shed light on mantle and core struc-
tures (Ruigrok 2012). Additionally, the method could prove useful
for monitoring purposes in marine ocean-bottom cable configura-
tions by allowing the use of natural microseismic sources instead of
active marine sources (Ravasi et al. 2015).

5 C O N C LU S I O N S

We derived a novel interferometric method by MDD for passive
particle-velocity recordings at the free surface. The input data do
not require wavefield decomposition and the retrieved reflection

response does not contain free-surface multiples. In the retrieval
process, the additional wavenumbers provided by the passive coda
wavefield are effectively used to cover illumination gaps. Moreover,
the method intrinsically corrects for any illumination irregulari-
ties caused by both the passive sources and the scattering inside
the medium. The numerical experiments showed that the inversion
does not become unstable in the case of having noise-contaminated
recordings of sparsely distributed passive sources with strongly
varying radiation patterns. When compared to conventional passive
SI approaches, this novel MDD method provides a more accurate
result under these circumstances.

A C K N OW L E D G E M E N T S

We would like to express our gratefulness to Jan Thorbecke for his
finite-difference code fdelmodc which we used to conduct the nu-
merical experiments. We thank Joost van der Neut and Max Holicki
for their constructive comments and fruitful discussions. We are
grateful to reviewers Nori Nakata and Matteo Ravasi for their help
in improving the quality of this paper. This study was funded by



Full-field MDD to retrieve body-wave reflections 619

The Netherlands Research Centre for Integrated Solid Earth Science
(ISES).

R E F E R E N C E S

Almagro Vidal, C., 2017. Passive seismic interferometry for reflection imag-
ing and monitoring, PhD thesis, Delft University of Technology.

Arfken, G.B. & Weber, H.J., 2005. Mathematical Methods for Physicists,
pp. 1023–1024, Academic Press.

Berkhout, A., 1982. Seismic Migration: Imaging of Acoustic Energy by Wave
Field Extrapolation, Elsevier.
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A P P E N D I X A : D E R I VAT I O N O F
F U L L - F I E L D M D D

Following Wapenaar & Fokkema (2006), we derive the full-field
MDD relation for elastodynamic wavefields in an arbitrary inhomo-
geneous isotropic domain D with boundary ∂D and outward point-
ing normal vector nj (see Fig. 2). We define two independent states
A and B in the same domain D and introduce the local interaction
quantity ∂ j

[
v̂A

i τ̂ B
i j − τ̂ A

i j v̂
B
i

]
to relate fields in the respective states

(Fokkema & van den Berg 1993; de Hoop 1995; Wapenaar 1996),
where ‘hat’ indicates the space-frequency domain. Capital super-
scripts denote which state the field belongs to, while lower-case
subscripts indicate the component of each field, which can take up
values 1, 2 and 3. The number of subscript letters designates the or-
der of the tensor. Note that Einstein’s summation convention holds
here. The particle velocity is denoted by v̂i and the tensorial stress
field by τ̂i j , where i = j denotes normal stress and i 	= j shear stress.
We substitute Newton’s second law and Hooke’s law into the lo-
cal interaction quantity and apply Gauss’ theorem, yielding global
reciprocity theorem:
∮

∂D

[
v̂A

i τ̂ B
i j − τ̂ A

i j v̂
B
i

]
n j d

2x

=
∫

D

[
−τ̂ A

i j ĥ B
i j − v̂A

i f̂ B
i + ĥ A

i j τ̂
B

i j + f̂ A
i v̂B

i

]
d3x, (A1)

where f̂ i denotes the force density source and ĥi j is the uniaxial
shear density for i = j and simple shear density source for i 	= j. In
the following we assume that the medium parameters in D are the
same in both states. In both states A and B, we divide the boundary
of domain D into a horizontal acquisition surface defined by the
receiver positions, xR ∈ ∂DR , and a half-sphere in the subsurface,
∂DM , which has absorbing boundary conditions in both states A and
B. The boundary condition at ∂DR differs between the two states:
in state A it has absorbing boundary conditions, while in state B,
it forms a free surface. The opposite is the case for the derivation
of ballistic MDD by Wapenaar et al. (2008; Fig. 1). The sources in
state A are located at xA just inside the domain immediately below
the boundary ∂DR . In state B, the source locations xB are located at
arbitrary positions inside the domain D. Since the final solution is
independent of passive-source type, we take the liberty to neglect the
ĥi j sources. By extending boundary ∂DM to infinity, the contribution
of that part of the integral vanishes due to Sommerfeld’s radiation
condition. This results in∫

∂DR

[
v̂o

i τ̂i j − τ̂ o
i j v̂i

]
n j d

2x =
∫

D

[
−v̂o

i f̂ i + f̂ o
i v̂i

]
d3x, (A2)

where we also simplified the notation by denoting all wavefields of
state A, which are without free-surface interaction, with a super-
script ‘o’, while wavefields in state B, which do have free-surface
interaction, have no superscript. The field τ̂i j n j does not contribute
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to the integral, because the acquisition surface ∂DR coincides with
the free surface of state B. Of the remaining field in the integrand,
only the components perpendicular to the horizontal boundary ∂DR ,
which has an upward pointing normal vector, contribute to the in-
tegral: τ̂ o

i j n j → −τ̂ o
i3. Applying these constraints imposed by the

boundary yields:∫
∂DR

τ̂ o
i3v̂i d

2xR =
∫

D

[
f̂ o

i v̂i − v̂o
i f̂ i

]
d3x. (A3)

We now proceed to define the source terms as impulsive functions
and consequently the wavefield terms as Green’s functions:

f̂ o
i = δ(x − xA)δik, (A4)

v̂o
i = Ĝo

i |k(x, xA, ω), (A5)

τ̂ o
i3 = Ĝo

i3|k(x, xA, ω), (A6)

f̂ i = δ(x − xB)δiq , (A7)

v̂i = Ĝi |q (x, xB, ω), (A8)

where ω denotes the angular frequency. The lower-case subscripts,
with possible values 1, 2 or 3, on the left-hand side of the ver-
tical bar denote the receiver component of the field, while sub-
scripts on the right-hand side denote the component of the source
mechanism. Substituting these expressions in the global reciprocity
theorem (A3), we solve the domain integral and apply the source-
receiver reciprocity relations Ĝo

k|i3(xA, x, ω) = Ĝo
i3|k(x, xA, ω) and

Ĝo
k|i (xA, x, ω) = Ĝo

i |k(x, xA, ω). The final result becomes∫
∂DR

Ĝo
k|i3(xA, xR, ω)Ĝi |q (xR, xB, ω)d2xR

= Ĝk|q (xA, xB, ω) − Ĝo
k|q (xA, xB, ω), (A9)

where Ĝo
k|i3(xA, xR, ω) is the particle-velocity response at xA to

an impulsive shear density source at xR . Since xA and xR are im-
mediately below and at the surface, respectively, Ĝo

k|i3(xA, xR, ω)
represents an impulsive reflection response (including the direct
wave). Hence, we change its notation to

R̂o
k|i3(xA, xR, ω) = Ĝo

k|i3(xA, xR, ω). (A10)

We denote the particle-velocity field measured at the free sur-
face due to an impulsive force at xB with source spectrum

Ŝ(ω) as

V̂i |q (xR, xB, ω) = Ĝi |q (xR, xB, ω)Ŝ(ω). (A11)

The full response of the medium without free surface is presented
as

V̂ o
k|q (xA, xB, ω) = Ĝo

k|q (xA, xB, ω)Ŝ(ω), (A12)

and the full response of the medium with free surface is

V̂k|q (xA, xB, ω) = Ĝk|q (xA, xB, ω)Ŝ(ω). (A13)

Substituting definitions (A10)–(A13) into eq. (A9) yields the final
elastodynamic full-field MDD relation∫

∂DR

R̂o
k|i3(xA, xR, ω)V̂i (xR, xB, ω)d2xR

= V̂k(xA, xB, ω) − V̂ o
k (xA, xB, ω), (A14)

where we omitted subscript ‘q’, because the passive-source mech-
anism does not influence the left-hand side of the equation. The
desired R̂o

k|i3(xA, xR, ω) is the particle-velocity reflection response
of the medium without free surface at xA due to a uniaxial or simple
shear source, depending on subscript ‘i’, at position xR at the hori-
zontal surface. Note that the surface orientation defines the virtual
source orientation of the reflection response retrieval. The acoustic
form of the equation is∫

∂DR

R̂o
k|0(xA, xR, ω)V̂3(xR, xB, ω)d2xR

= V̂k(xA, xB, ω) − V̂ o
k (xA, xB, ω), (A15)

whereby R̂o
k|0(xA, xR, ω) is the particle-velocity reflection response

at xA due to a scalar monopole source, indicated by source sub-
script zero ‘0’, at xR . Note that V̂ o

k (xA, xB, ω) can only be ob-
tained by removing the free-surface multiples from the passive
recorded field V̂k(xA, xB, ω). Since this is difficult to achieve in
practice, the field can instead be approximated by selecting the
direct wave of the passive recording and multiplying it by 1

2
to remove the effect of the free surface. However, in the case
of elastodynamic full-field MDD (eq. A14) this approximation
does not suffice. Instead, wave-field decomposition is required
to remove the effect of the free surface from the direct P and
S waves.


