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Abstract—Emissions and contrails are key factors in aviation-
induced climate change, often presenting conflicting objectives in
flight trajectory optimization. Previous research typically lacks in
optimizer efficiency or in addressing these trade-offs, with limited
use of extensive meteorological and flight data. In this paper, a
fully open non-linear optimal control flight optimization approach
is designed for contrail avoidance and emission reduction, with
high computational efficiency. This is achieved by leveraging the
most recent trajectory optimizer, OpenAP.TOP, and atmospheric
data handling tool, fastmeteo. We present a new compound
grid-based objective function that considers both contrails and
emissions and introduce four different metrics for evaluating the
performance. A total of four months’ worth of data, containing
around half a million flights, are gathered from OpenSky for
analyses. We show that high levels of contrail mitigation can be
achieved, without significantly increasing flight time, distance, or
emissions.

Keywords—Sustainability, Contrails, OpenAP, Optimization,
OpenSky, Aircraft Surveillance Data

I. INTRODUCTION

Aviation is currently responsible for about 5% of net an-
thropogenic climate forcing [1]. This will cause increasingly
escalating climate impacts as flight frequencies rise. Promising
measures such as alternative fuels and aerodynamic aircraft
design are under development. However, their large-scale com-
mercial implementation is anticipated to take years or decades.
In the urgency of addressing the climate crisis, sustainable
aviation efforts should not only prioritize the advancement of
these technologies but also focus on immediate implementa-
tions feasible for today’s aircraft fleet.

A significant factor contributing to aviation’s radiative forc-
ing over shorter timescales is the formation of contrail cirrus,
albeit with some uncertainties [2]. During the daytime, these
contrails cause a parasol-like effect, where contrails scatter
incoming solar radiation back to space, cooling the earth-
atmospheric system below. During both night and day time,
contrails trap terrestrial radiation, thereby restricting outgoing
radiation and inducing a warming effect. There is scientific
consensus that the net radiative effect of contrails is positive
and thus has a warming effect on climate [1].

Unlike CO2 emissions, which influence global warming over
a span of 20–40 years, contrails have an immediate warming
effect [3]. This emphasizes the need to minimize contrail for-
mation as a way to limit aviation’s climate impact immediately
as well as into the future, similar to how fuel-optimization
implements wind-optimization effectively in the flight planning.

Re-routing aircraft to avoid contrail formation generally leads
to additional fuel burn [3], due to longer flight distances.
Estimating this additional fuel burn requires a performance

model to estimate the CO2 emissions, and this is commonly
performed with models like BADA or OpenAP [4]. In this
paper, we adopt the open-source performance model OpenAP,
and with integrated TOP [5] as a fully open four-dimensional
flight trajectory optimizer.

For the first time, this paper formally presents the integration
of contrail effects into OpenAP’s optimization. Several contrail
trajectory optimizers have been developed, ranging from the
network-based contrail minimization approach [6] to optimizing
individual trajectories [7].

The cost-functions used in previous work also differ, from
ones based to aCCF’s (algorithmic Climate Change Functions)
[8] to time and cost optimization [9]. Our investigation has
shown that because of sharp boundaries native to the aCCF
data used, the trajectory optimizer has challenges with con-
sistency and do not reliably provide realistic trajectories [8].
Additionally, we also find that the Kelvin / CO2 kg metric
used to fuel is hard coded into the aCCF algorithm and does not
offer customization options in terms of trade-off or sensitivities
studies.

In this paper, we adopt a fully 4D non-linear optimal control
trajectory optimization approach, which considers the wind
field and an objective function that considers both carbon emis-
sions and contrail impacts. Our contrail-fuel-wind optimization
is unique in its use of solely open-source data and code, in
combination with the computational speed and customizability
of the objectives.

For this study, we use 2023 ADS-B flight data from Open-
Sky, over both Europe and the United States, as a baseline
to compare with the contrail-optimized trajectories. For each
OpenSky flight that formed persistent contrails, several optimal
trajectories are generated, which vary the level of emphasis
placed on either contrail or emission prevention. Our analysis
is focused on understanding the aggregated impacts and trade-
offs among these different options.

This paper is structured as follows. Section II explains the
background knowledge for the formation of persistent contrails.
Section III gives an overview of the data we collected and
used. Section IV provides the details on the methodologies for
this study. Finally, Sections V, VI and VII include the results,
discussions and conclusion from this study.

II. CONTRAIL FORMATION

Contrails are predominantly formed under the conditions
with air temperatures lower than -40 °C (233 K) and high
relative humidity [10]. For persistent contrail formation, two
atmospheric conditions must be met:
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1) Schmidt-Appleman Criterion (SAC), where the tempera-
ture must be below the critical temperature.

2) The ambient air is supersaturated with respect to ice
(RHi > 100%), in an ice-supersaturated regions (ISSR).

The Schmidt-Appleman criterion (SAC) [10] is a thermody-
namic model that takes into account ambient pressure, humid-
ity, and the water-to-heat ratio in exhaust plumes. When an
aircraft flies through atmospheric conditions that satisfy SAC,
saturation with respect to liquid water occurs, and a contrail is
formed.

The specific temperature threshold for contrail formation
relies on the ambient relative humidity and the slope of the
isobaric mixing line (G), which can be defined as follows:

G =
EIH2O cp p

ε Q (1− η)
(1)

where the constants for Eq. (1) can be found in Table I. In
this paper, only cruise optimization is applied. A propulsion
efficiency of η = 0.3 is assumed for modern aircraft–engine
combinations [11].

In order to determine the threshold value TLC, the tempera-
ture TLM [10] must first be identified, which is given by:

TLM = −46.46 + 9.43 ln(G− 0.053) + 0.72[ln(G− 0.053)]2 (2)

Figure 1. A visualization of the geometric approach to determining the critical
formation temperature (TLC), using the saturation pressure for water, the
saturation pressure for ice and the isobaric mixing line with slope G at ph
= 230 hPa. Zones of contrails persistence are also indicated in the graph.

Subsequently, the mixing line is defined as the tangent line at
the TLM point with the saturation water vapour pressure curve
(e*). TLC represents the intersection of the mixing line and the
saturation water vapour pressure curve over ice. This geometric
approach to identifying TLC is visualized in Figure 1. The RHi

(%) can be calculated through the specific humidity (q in %):

RHi =
q p Rv

Rd eice
(3)

where eice (hPa) is the actual vapour pressure over ice [12]:

log eice = 9.550426− 5723.265

T
+ 3.53068 ln(T )

− 0.00728332T
(4)

where p is pressure, provided by the ERA5 data. Rv and Rd

are gas constants for water vapour and dry air (see Table I).
For the study, we are only interested in minimizing the

impact caused by persistent contrails.

TABLE I: Constants used for contrail formation

Symbol Constant Value Unit

EIH2O Emission index 1.2232 − (kgH2O kg−1
fuel)

cp Specific heat capacity air 1004 J kg−1 K−1

ε
Ratio molar mass
of water vapor and air 0.622 -

Q Specific combustion heat 43× 106 J kg−1

η Overall propulsion efficiency 0.3 -
Rv Gas constant of water vapour 461.51 J kg−1 K−1

Rd Gas constant of dry air 287.05 J kg−1 K−1

III. DATA

In total, four full months of ADS-B flight data over the EU
and USA are gathered and processed for this study, nearly half
a million flights. This section explains the data sources and the
steps taken before further processing.

A. ECMWF ERA5 dataset

The European Centre for Medium-Range Weather Forecasts
(ECMWF) ERA5 dataset offers hourly atmospheric data on a
high-resolution grid with a horizontal resolution of 0.25 degrees
and 37 vertical layers. Conventionally, obtaining a large amount
of ERA5 data from ECMWF and converting it into a format that
can be used for aviation and optimization is a tedious process.
To overcome this limitation for the research community, we
released a new open-source tool fastmeteo [13], which allows
researchers conveniently and rapidly incorporate any scale of
ERA5 data in their research.

This study is one of the first that make use of fastmeteo on
half million of flights, for both estimation of emissions and
contrails, as well as make use of the meteorological informa-
tion, such as wind, temperature, humidity in the optimization
process.

B. OpenSky

The OpenSky Network has supported much of our previous
research, and will be used again in this research. It has been
collecting global air traffic surveillance data since 2013. The
unfiltered and raw data from the OpenSky network is based on
ADS-B, Mode S, TCAS and FLARM messages is open to use
[14]. The variables used in this research include; time, latitude,
longitude, callsign and the altitude.

OpenSky data for the months of January, April, July and
October 2023, are downloaded. Flights that took off and landed
within Europe or the United States are extracted for this
study. The geographical regions of our flights are visualized in
Figure 2. The red flights indicate persistent contrail formation
at some point along the trajectory. The blue trajectories are
non-contrail forming and are not considered for optimization.

The flights are then filtered and re-sampled to 30-second
interval using the traffic library [15]. Almost half a million
flights, which account for 20 GB of compressed data, are used
for the study.

Table II shows the total number of persistent contrail forming
flights (these are the ones considered in this study), as well as
the percentage these flights are of the total. The total percent of
persistent contrail forming flights is a weighted average based
on the number of flights.
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(a) The 2,877 flights trajectories considered for optimization in red on 6th of January 2023
in the European airspace.

(b) The 2,519 flights trajectories considered for optimization in red on 5th of July 2023
in the airspace over the United States of America.
Figure 2. All cruise section of flights for a single day above the European and
United States airspace. The red flights indicate persistent contrail formation at
some point along their trajectory. The blue trajectories are non-contrail forming.

TABLE II: Flights Considered
January April July October Total

# contrail flights 178,534 114,160 72,688 101,589 466,971

[%] 9.1 4.8 4.2 6.7 6.8

C. Processing of Data

Each individual trajectory is converted into a traffic [15]
type and assigned a unique flight identification number. For
each flight trajectory, the ADS-B data points where persistent
contrails are created are determined using fastmeteo, according
to the two atmospheric conditions described in Section II.

The fastmeteo module [13] allows for quick weather-data
interpolation based on ECMWF’s ERA5 data, using a client-
server architecture via an API. Weather data from the nearest
hour to the flight’s takeoff time is used.

Once all the contrail-forming flights are gathered, the tra-
jectories are resampled at every 15 seconds to fill data gaps.
Subsequently, the flight is clipped to the trajectory between top
of climb and top of descent.

Using the .phases function from traffic, the flight phases are
determined for each ADS-B measurement point. This phase
library is based on the fuzzy logic flight phase identification al-
gorithm from OpenAP [4]. Trajectory optimization is performed
solely during the cruise phase of the flight, since optimization
during ascent and descent is not possible.

IV. METHODOLOGY

In this section, we focus on explaining the optimization, the
creation of the contrail-based cost function, and the research
approach applied to compare OpenSky ADS-B trajectories with
the resulting optimized trajectories.

A. The trajectory optimizer
The trajectories are optimized using the OpenAP.TOP op-

timizer. This optimizer models the trajectory optimization as
a non-linear optimal control problem, where speed, vertical
rate, and heading are considered as the control variable. Based
on a direct collocation method, the optimal discretized flight
trajectory is computed to minimize a desired objective function,
such as fuel, cost index, or any other customized objectives.

In our previous study [5], the internal of the OpenAP.TOP
optimizer is discussed in detail. It is built on top of the OpenAP
model, and a common optimization framework called Casadi,
which uses the IPOPT as the nonlinear programming solver.

The optimizer is made open-source1 due to the fact that
all components, including the underlying aircraft performance
model, the optimization framework, and the nonlinear program-
ming solver, are all openly shared.

In this study, our focus is on designing a new three-
dimensional discretized objective grid, that can be used to
consider the trade-off between contrails and emissions at all
locations, at any given scale. The optimization of a trajectory
can be generally completed in the tens of seconds on a single
core with a modern computer. And the optimization of multiple
flights can be computed in parallel with multiple cores.

B. Using convolutions to smooth objective boundaries
As described in Section II two conditions must be met for

persistent contrail formation to occur, namely the temperature
to be below a critical temperature, and the RHice exceeding
100%.

A binary mask is created where grid points that meet these
two conditions are set to one, and the rest are set equal to zero.
The contrail-optimizer will avoid grid values of one, as these
are persistent contrail forming regions.

Figure 3. Example of the convolution applied to the binary contrail forming
grid, where the binary ones are retained, and only convolution is applied to the
surrounding zeros.

To ensure a smoother cost grid function and thus more
realistic trajectories, a kernel of 5 by 5 pixels (1.25 x 1.25
degrees) is applied to each altitude level using two-dimensional
convolution. The convolution is performed so that the binary
values equal to one remain intact, while the surrounding
pixels are increased in value, using the SciPy convolve2d
function [16].

This convolved contrail array (see Section III-A) subse-
quently was scaled to be a similar weight to the fuel parameter,
in order to achieve an effective cost function.

1Accessible at https://github.com/junzis/openap-top
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C. Optimal trajectory with new contrail-emission costs

As previously mentioned, the OpenAP.TOP optimizer allows
the use of grid-based cost function, which is a unique feature of
the optimizer. Such capability allows grid-like and discontinu-
ous objectives to be rapidly adopted in the flight optimization.

Such a feature is essential for generation of optimal flights
considering contrails, as the meteorological condition for con-
trail formation is highly irregular and temporally dynamic.
From each flight’s top of climb to the top of descent location,
the atmospheric conditions at the nearest hour to the flight’s
takeoff time are used to generate the optimal trajectories. An
example of the grid cost based on persistent contrail formation
condition is illustrated in Figure 4.

The unique compound cost function presented in this pa-
per offers minimization between both fuel usage and contrail
formation, with a user defined coefficient between the two.
The cost function was constructed through a process of trial-
and-error, until a cost function was obtained exhibiting the
behaviour required.

Because the cost function should properly balance contrail
formation against additional fuel burn, the following structure
was selected:

Cost Function = Coi · Contrail + (1− Coi) · Fuel (5)

where the coefficient (Coi) indicates the user defined coeffi-
cient, which is also referred to as Coefficient of Impact (CoI)
in the rest of this paper.

Additionally, besides this contrail-optimized trajectory, a
solely fuel-optimized route is also calculated using Ope-
nAP.TOP’s default minimal fuel objective. In all optimizations,
wind conditions, along other meteorological parameters, are ob-
tained using fastmeteo. The computation speed of incorporating
meteorological conditions is at sub-second.

D. Metrics used for comparison and evaluation

In this study, we design four metrics to compare the Open-
Sky trajectory, the fuel-optimized trajectory, and the contrail-
optimized trajectories. These metrics are:

1) ∆t: represent the change in flight time,
2) ∆d: represent the difference in flight distance,
3) ∆tcontrail: reduction in time of persistent contrails
4) ∆CO2: changes in CO2 emissions.
After determining whether persistent contrails formed in the

flight’s local atmospheric conditions, the total time of persistent
contrail formation during the flight is calculated. Subsequently,
this time was calculated as a percentage of the OpenSky
trajectory flight time, which serves as a baseline.

The change in CO2 emissions are calculated using Ope-
nAP [4] with the flight trajectory data with the mass assumption
of 90% of maximum takeoff weight at the start of the trajectory.

All previously defined four metrics (flight time, flight dis-
tance, contrail time, and CO2) were calculated in absolute
terms, as well as a percentage of change with the OpenSky
ADS-B trajectory as a baseline compared with both the contrail-
minimized and fuel-optimized trajectories.

V. ANALYSES AND RESULTS

In this section, the contrail-minimizing optimization is eval-
uated against the baseline of the ADS-B OpenSky trajectories.
This evaluation is done through the comparison metrics pre-
sented in the previous section, namely, the additional flight
time and distance flown, as well as the change in time flown
in persistent contrail forming areas (or contrail time), and
additional CO2 emissions.

To best illustrate the results and the meaning of the aforemen-
tioned metrics, two random flights are highlighted in the fol-
lowing sections, after which histograms containing all 466,971
flights are shown.

Figure 4. Illustration of the 3D cost grid based on the conditions for persistent contrails. Only flight levels between FL260 and FL360 are shown. The actual
grid spans between FL100 and FL400.
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A. Examples of optimal trajectories

In Figure 5, optimization of flight ABR255 from Paris to
Hanover on the 19th of July 2023 is shown, with the cruise
section of the OpenSky trajectory in blue. Darkening of the
colours represent an increase of altitude.

The red underlying circles indicate the measurements are lo-
cated in persistent contrail forming conditions. The background
is the convoluted persistent contrail forming grid, ranging from
transparent (zero indicating no contrail formation) to dark grey
(one indicating persistent contrail formation).

Not all red circle contrail locations appear to correlate with
the contrail grid values, because only one altitude of the contrail
forming grid can be shown. The altitude, shown in the grid, is
represented as a horizontal line in the altitude plot insert.

The yellow trajectory shows the fuel-optimized trajectory,
which neatly follows the great circle, as winning time through
wind optimization is not possible, because of a weak local wind
(average of 14.3 m/s). Again, here, red circles indicate contrail
forming conditions.

Three green contrail-optimal routes are shown with varying
the CoI from 0.8 (in bold) to 0.4 to 0.2, with the latter being
closest to the great circle. In Table III the four comparison
metrics are shown for each of the CoI’s. The absolute values are
shown, as well as the relative percent change with the OpenSky
trajectory.

Table III and Fig. 5 show that a CoI of 0.8 does not
fly through any persistent contrail forming conditions (100%
reduction of contrail flight time, from 8.5 minutes). However,
this high CoI adds the most additional flight time, the most ad-
ditional distance as well as the largest CO2 emissions increase.

In Figure 5 the plot insert shows the altitude changes
throughout the flight, as well as the locations of persistent
contrail forming conditions. As expected, the fuel-optimized
route has a higher altitude than the original OpenSky trajectory.

The contrail-optimized routes not only show a clear departure
in the horizontal plane (adding a maximum distance of 6% or

TABLE III: Comparison Metrics for Varying Coefficients, ABR255
CoI ∆t ∆d ∆tcontrail ∆CO2

0.8 02:32 (+13%) 08:31 (-100%) 14.8 (+6%) +4%

0.4 02:07 (+11%) 07:30 (-88%) 6.7 (+3%) +3%

0.2 00:57 (+5%) 05:58 (-70%) 1.2 (+0.5%) +1%

14 kilometres), but also in the vertical, with a strong altitude
increase in order to avoid persistent contrail forming conditions.
While still flying higher than the fuel-optimized route, because
of the sharp altitude increase the contrail-optimized route
increases CO2 emissions by 4%.

A second example of the optimization is visualized in Fig-
ure 6, flight AF1195 on the 7th of April 2023. As indicated by
the red circles, along a large section of the OpenSky and fuel-
optimized trajectories, persistent contrail forming conditions are
encountered.

As visualized in Figure 6, the more favourable local wind
field at a lower altitude cause the fuel-optimal route to fly
lower than the OpenSky trajectory. This results in a flight time
reduction of 6% compared to the OpenSky trajectory.

However, the fuel-optimal route (in yellow) increases the
time flown in persistent contrail forming areas, by 37% com-
pared to the OpenSky trajectory. Table IV shows that the
contrail-optimized routes still offer the benefit of a flight time
reduction, while additionally effectively minimizing contrail
formation.

TABLE IV: Comparison Metrics for Varying Coefficients, AF1195
CoI ∆t ∆d ∆tcontrail ∆CO2

0.8 04:42 (-5%) 12:31 (-79%) 20.8 (+1.5%) +2

0.4 03:32 (-4%) 05:10 (-31%) 15.2 (+1.1%) 0

0.2 0:57 (-1%) 02:58 (-19%) -8 (+0.6%) -1

Figure 5. Flight ABR255 Paris to Hanover on 19 July 2023. The optimization and the OpenSky trajectory are shown. Several green contrail-optimal routes are
indicated with varying CoI’s (as indicated by number). The background is the convoluted persistent contrail forming grid, ranging from transparent (zero values
indicating no contrail formation) to dark grey (one values indicating persistent contrail formation). The figure insert shows the altitude change in time for the
three trajectories. The altitude shown in the left grid, is represented as a horizontal line in the altitude plot insert.
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Figure 6. Flight AF1195 Lisbon to Paris on 7 April 2023. The optimization and the OpenSky trajectory are shown. Several green contrail-optimal routes are
indicated with varying CoI’s (as indicated by number). The background is the convoluted persistent contrail forming grid, ranging from transparent (zero values
indicating no contrail formation) to dark grey (one values indicating persistent contrail formation). The figure insert shows the altitude change in time for the
three trajectories. The altitude shown in the left grid, is represented as a horizontal line in the altitude plot insert.

B. All flights

In this section, we provide the aggregated statistics of all
466,971 flights, and the histograms of all these flights are shown
for each of the four metrics discussed earlier.

1) Changes in flight time: First, Figure 7 shows the his-
tograms for the change in total flight time using a CoI of 0.8,
so more weight placed on contrail mitigation than minimizing
fuel burn.

Figure 7. Histogram of the change in flight time for Contrail optimized vs
OpenSky (blue) and Contrail vs Fuel Optimized (green) at CoI value 0.8.

The total flight time of the OpenSky and the contrail op-
timized trajectory are calculated. The histograms show the
difference between the two times, as a percent change of the
OpenSky trajectory time, in blue. In green, the same procedure
is applied to the fuel and contrail optimized trajectory times.

The histograms indicate that on average, the contrail opti-
mized trajectories have a longer total flight time (mean of 4.6%
and a median of 8.3%) than the flown OpenSky trajectories.

As the fuel optimized route is in a sense also time-optimized,
it follows that the change between the fuel and contrail opti-
mization is larger than for the OpenSky trajectory, which is
visible in Figure 7.b (mean of 27.6% and a median of 25.6%).

To investigate the impact of the Coefficient of Impact (CoI),
Figure 8 shows several Ridgeline plots of the change in time
spent in persistent contrail regions for varying CoI.

To limit computation time, the histograms were generated
for a single month (April) only.

Figure 8. Ridgeplot histograms of change in flight time with varying Coefficient
of Impact (CoI) with respect to the flown OpenSky trajectories.

2) Changes in persistent contrail time: The second set of
histograms in Figure 9 show the change in time flown in
persistent contrail forming conditions (or contrail time). A
high CoI, at the ratio of 1, prioritizes avoiding flying in
persistent contrails conditions. In this extreme situation, 42%
of original contrail-forming flights could have produced no
persistent contrails at all any more (i.e., -100% reduction).

Figure 9 also shows that even at low CoI, the majority of
flights could have reduced their persistent contrails by 80%. By
lowering the CoI, the tail of the histogram grows, and contrail
mitigation becomes less definitive.

3) Changes in flight distance: Figure 10 shows a histogram
indicating the change in the flown distance. The distribution of
the contrail-optimized vs OpenSky trajectories exhibit a normal
distribution centred around zero.

The ridgeplots for varying CoI are shown in Figure 11. As
fuel optimization is similar to optimizing for time and distance,
it follows that without exception, the contrail-optimized routes
are longer (mean of 6.1% and a median of 5.0%).

6
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Figure 9. Ridgeplot histograms of change in contrail time with varying CoI

Figure 10. Histogram of the change in flown distance, vertical axis is the same
scale in both graphs at CoI value 0.8.

Figure 11. Ridgeplot histograms of change in distance flown with varying CoI.

4) Changes in emissions: In Figure 12 a similar story
to Figure 7 is shown, where generally, CO2 emissions are
increased more in the contrail-optimized trajectories than the
fuel-optimized trajectory (mean of 29.4% and a median of
28.8%). The same is also true for the OpenSky baseline (mean
of 10.8% and a median of 12.4%). The ridgeplots for varying
CoI’s are shown in Figure 13.

VI. DISCUSSIONS

A. Influence of the CoI

In this study, we have shown that the coefficient in the
customizable objective function has significant influence on
the optimality of the trajectory concerning flight time and
emissions.

In Figure 9, the two example flights in Figures 5 and 6
and Table III shows that a high CoI is extremely effective at
reducing time flown in persistent contrail regions. However,

Figure 12. Histogram of the change in CO2 emissions, vertical axis is the same
scale in both graphs, at CoI value 0.8.

Figure 13. Ridgeplot histograms of change in CO2 emissions with varying CoI

while a lower CoI still remains effective against contrail time,
the CO2 emissions and distance penalties are considerably less.

B. Cooling effect of the contrails

As described in the Introduction, contrails can have both
warming and cooling effects on the climate, although the net
radiative effect of contrails is positive and so warming.

Currently, the cost function presented in this paper is con-
structed as a Coefficient of Impact (CoI) between avoiding
persistent contrail forming regions and fuel. This means that
forming potentially cooling contrails is also avoided. In future
work, based on meteorological and geographical data a predic-
tion can be made whether the persistent contrail formed will be
warming or cooling can be made. Besides this incorporation,
instead of a CoI between contrails and fuel, a radiative forcing
based ratio could be used.

C. Seasonal effects

Although air traffic reaches its peak during the summer
months in the Northern Hemisphere, [3] and [17] note a higher
incidence of persistent contrails in winter. Table II confirms this
pattern; despite the lowest total number of flights, as expected,
the percentage of flights producing contrails is highest during
the winter months. This implies that, potentially, re-routing in
these contrail prevalent months can be done more easily due to
lower traffic volumes.

D. Safety of diverted flight trajectories

In this paper, each trajectory is optimized individually and
the complete air network is not taken into account.

7
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This implies that it is possible for two flights post-
optimization to no longer be horizontally or vertically sepa-
rated. However, safety impacts are minimal [17], with only a
slight increase in the number of intrusions or conflicts when
changing altitudes for contrail prevention.

E. Uncertainty ERA-5 weather data

The presence of persistent contrails is determined using
ECMWF’s ERA5 dataset through the temperature and specific
humidity parameters. The temperature condition mentioned in
II can be predicted reliably [18].

However, the specific humidity parameter has some problems
with reliability, especially in the upper troposphere. The level
of relative humidity over ice is often underestimated [19]. This
leads to lower estimates of the instantaneous radiative forcing
[18].

F. Improvements Schmidt-Appleman Criterion

In this paper, a propulsion efficiency of η = 0.3 is assumed
for modern aircraft–engine combinations. However, in Eq. (1)
η is defined as the fraction between resulting energy (thrust and
true air speed) and required energy (specific combustion heat
Q and fuel flow) [10]. In future work, this parameter should be
dynamic and not assumed constant.

VII. CONCLUSION

This paper presents a fully open-source flight optimizer
for contrail-avoidance based upon the OpenAP model and
atmospheric data from fastmeteo. By introducing a new grid-
based objective function that considers impacts of both contrails
and carbon emissions, optimal trajectories can be generated
with different degrees of trade-off between contrail avoidance
and excess emissions.

To analyse our approach, four months of OpenSky flight
data from 2023 were gathered and evaluated based on four
metrics; flight time and distance, time spent in persistent
contrail forming regions as well as the CO2 emissions.

From this analysis of these four metrics of 466,971 flights,
we show that while tuning the CoI to prioritize contrail mit-
igation is very effective (85% reduction in contrail time), it
penalizes flight time (+5%) and distance (+6%) heavily.

Furthermore, an important discovery based on our analysis,
we can conclude that a large amount of contrails can be
mitigated even with a lower CoI, without much penalty on
additional distance flown, flight time, or CO2 emissions.

For future studies, we will further explore a climate-
optimized routing model, which deals with energy forcing by
modeling the warming or cooling effects based on varying
atmospheric conditions. The methods and analysis in this paper
have paved a path for the generation of a climate-optimal
routing model using solely the open data and open models.

REPRODUCIBILITY STATEMENT

The source code for the optimization study in this paper is
available at: https://github.com/junzis/openap-top.
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