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SUMMARY

Failures of systems are ubiquitous, such as the blackouts of electrical systems and road
disruptions in transport systems. Understanding the properties of systems can benefit the
control of the system and the design of robust systems. Complex networks are widely used
to model complex systems. In this dissertation, we explore the performance of complex
networks under link or node failures, provide strategies to recover the networks and
discover the behaviors of processes spreading on networks. This dissertation comprises
three parts, containing seven chapters, including the introduction chapter, five chapters
discerning the research contributions, and a conclusion chapter which summarizes the
main contributions and gives directions for future work.

Part I of the thesis deals with network robustness and reliability and contains two
chapters. In Chapter 2, we investigate the robustness of network controllability, calculated
by the minimum fraction of driver nodes required to fully control the networks. Under
random and targeted node removals based on in-degree, out-degree, and total degree, we
develop analytical methods using generating functions of the in-degree and out-degree
distributions to approximate network controllability. Validated on synthetic and real-
world networks, we find that analytical methods work well under random node removals
and reasonably well for different types of targeted node removals. In Chapter 3, assuming
each link has a given operational probability and nodes are always operational, we define
controller reachability, which is the probability that each node can reach at least one
controller. Using real-world networks, we explore how performance changes as the
number of controllers increases from one to five. We propose four placement strategies
to place controllers with a fixed number of controllers: the placement strategy based on
graph metrics, the greedy placement strategy, and two genetic placement strategies. The
placement strategies demonstrate good performance on real-world data.

After a network is degraded, recovering the system and measuring its recovery perfor-
mance are essential. Therefore, Part II of this thesis studies network recoverability. This
part contains two chapters. In Chapter 4, we explore how to approximate the network
controllability in case of a random recovery process and how to recover the network
controllability efficiently. We propose an analytical method to approximate network con-
trollability under random node additions. The outcomes of our method closely align with
numerical simulation results for both synthetic and real-world networks. Furthermore,
to recover network controllability efficiently, we find that greedy strategies outperform
recovery strategies based on degree centrality or betweenness centrality as well as the
random recovery strategy. Chapter 5 investigates recovery strategies after random link
failures on power grids. To explore the effectiveness of recovering failed links based
solely on topological network metrics, we consider 13 recovery strategies. To evaluate the
performance of these proposed strategies, we conducted simulations on three distinct
power systems: the IEEE 30, IEEE 39, and IEEE 118 systems. Our results conclude that
relying solely on a single metric to develop a recovery strategy is insufficient to restore

xi
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power grids after link failures. For comparison, recovery strategies that employ greedy
algorithms are more effective choices.

Finally, Part III looks into spreading processes on networks. Chapter 6 focuses on
exploring the time-dependent behaviors of the ϵ−SIS model. We find that the prevalence
(the average fraction of infected nodes) as a function of time typically exhibits a "two-
plateau" behavior. Furthermore, the time-dependent mean-field approximation for
the complete graph performs reasonably well for relatively large self-infection rates
but completely fails to mimic the typical behavior with small self-infection rates. The
observations may explain why absorbing processes are hardly observed in reality, even
over long intervals, because of the ignorance of the interplay of nodal self-infection
with small self-infection rates and spread over links. Chapter 7 concludes the thesis by
summarizing the main contributions and gives directions for future research.



SAMENVATTING

Uitval en storingen van systemen zijn alomtegenwoordig. Voorbeelden hiervan zijn
stroomuitval van elektrische systemen en vertraging van verkeer binnen transportsyste-
men. Het begrijpen van de eigenschappen van systemen kan bijdragen aan het beheren
van de systemen en het ontwerpen van robuuste systemen. Complexe netwerken worden
veel gebruikt om complexe systemen te modelleren. In dit proefschrift onderzoeken we
de prestaties van complexe netwerken bij uitval van verbindingen of knooppunten binnen
de netwerken. We ontwikkelen strategieën om de netwerken te herstellen en beschrijven
het gedrag van processen die zich verspreiden op netwerken. Dit proefschrift bestaat uit
drie delen, met in totaal zeven hoofdstukken, waaronder het inleidende hoofdstuk, vijf
hoofdstukken die de onderzoeksbijdragen bevatten, en een afsluitend hoofdstuk dat de
belangrijkste bijdragen samenvat en duiding geeft voor toekomstig onderzoek.

Deel I van het proefschrift behandelt robuustheid en betrouwbaarheid van netwerken
en bevat twee hoofdstukken. In Hoofdstuk 2 onderzoeken we de robuustheid van netwerk-
controle, berekend door de minimale fractie sturende knooppunten die nodig zijn om
de netwerken volledig te controleren. Voor willekeurige en gerichte verwijdering van
knooppunten, ontwikkelen we analytische methoden, gebaseerd opgenererende functies
van de verdelingen van in-, uit- en totale graad van de knooppunten, om de mate waarin
het netwerk controleerbaar is, te benaderen. Middels validatie op synthetische en echte
netwerken blijken analytische methoden goed te werken bij willekeurige verwijderingen
van knooppunten en redelijk goed voor verschillende soorten gerichte verwijderingen
van knooppunten. In Hoofdstuk 3 definiëren we, ervan uitgaande dat elke verbinding
met een gegeven waarschijnlijkheid operationeel is en knooppunten altijd operationeel
zijn, de controller-bereikbaarheid. Dit is de waarschijnlijkheid dat elk knooppunt ten
minste één controller kan bereiken. Door analyse van echte netwerken onderzoeken we
hoe de controller-bereikbaarheid verandert naarmate het aantal controllers toeneemt
van één tot vijf. We stellen vier strategieën voor om controllers te plaatsen met een vast
aantal controllers: de plaatsingsstrategie op basis van netwerk-metrieken, een strategie
gebaseerd op greedy plaatsing van controllers en twee strategieën gebaseerd op genetis-
che algoritmes. Validatie op echte netwerken laat zien dat de plaatsingsstrategieën goed
werken.

Nadat een netwerk is gedegradeerd, zijn het herstellen van het systeem en het meten
van de mate van herstel van het netwerk essentieel. Daarom onderzoekt Deel II van
dit proefschrift de herstelbaarheid van netwerken. Dit deel bevat twee hoofdstukken.
In Hoofdstuk 4 onderzoeken we hoe we de controleerbaarheid van netwerken kunnen
benaderen in geval van een willekeurig herstelproces en hoe we de controleerbaarheid
van netwerken efficiënt kunnen herstellen. We stellen een analytische methode voor
om de controleerbaarheid van netwerken te benaderen onder willekeurige toevoeging
van knooppunten. De resultaten van onze methode sluiten nauw aan bij numerieke
simulatieresultaten voor zowel synthetische als echte netwerken. Bovendien blijkt dat
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greedy strategieën beter presteren bij het efficiënt herstellen van de controleerbaarheid
van netwerken dan herstelstrategieën op basis van netwerk-metrieken zoals graad en
betweenness, evenals de willekeurige herstelstrategie. Hoofdstuk 5 onderzoekt hers-
telstrategieën voor elektriciteitsnetten waar een aantal verbindingen willekeurig zijn
verwijderd. Om de effectiviteit van het herstellen van de verwijderde verbindingen te
verkennen op basis van alleen topologische netwerk-metrieken, beschouwen we 13 hers-
telstrategieën. Om de prestaties van deze voorgestelde strategieën te evalueren, voeren
we simulaties uit op drie verschillende elektriciteitssystemen: de zogenaamde IEEE 30,
IEEE 39 en IEEE 118 systemen. Onze resultaten tonen aan dat herstelstrategieën die
gebaseerd zijn op slechts concluderen dat het vertrouwen op slechts één netwerk-metriek,
niet in staat zijn om elektriciteitsnetten efficient te herstellen na willekeurig verwijderde
verbindingen. Ter vergelijking, herstelstrategieën die gebruik maken van greedy gretige
algoritmen, zijn effectiever.

Tot slot gaat Deel III in op verspreidingsprocessen op netwerken. Hoofdstuk 6 richt
zich op het verkennen van de tijdafhankelijke gedragingen van het ϵ−SIS model. We
ontdekken dat de prevalentie (het gemiddelde fractie geïnfecteerde knooppunten) als
functie van de tijd meestal een "twee-plateau" gedrag vertoont. Bovendien presteert
de tijdsafhankelijke mean-field benadering voor de volledige graaf redelijk goed voor
relatief grote zelfbesmettingspercentages, maar slaagt er niet in om het typische gedrag
voor lage zelfbesmettingspercentages na te beschrijven. De observaties kunnen verklaren
waarom absorberende processen nauwelijks worden waargenomen in de realiteit, zelfs
over lange intervallen, vanwege het negeren van de wisselwerking tussen zelfbesmetting
van knooppunten met lage besmettingspercentages en verspreiding via links. Hoofdstuk 7
sluit het proefschrift af door de belangrijkste bijdragen samen te vatten en richtingen aan
te geven voor toekomstig onderzoek.



1
INTRODUCTION

Complex systems consist of interacting components that exhibit collective behaviors,
often referred to as "emergent" behaviors, which go beyond the sum of individual be-
haviors [1]. These systems are ubiquitous, finding applications in diverse fields such as
biology [2], transportation [3], finance [4], and more. Understanding the workings of
complex systems is crucial for designing and controlling them. For instance, in trans-
portation systems, a comprehensive understanding enables the development of robust
transportation systems, facilitating the efficient movement of people from one location
to another with reduced time and cost. Network science serves as a fundamental tool for
modeling and analyzing complex systems, employing graphs to depict the topology of
interconnected components [5].

Network science has its roots in graph theory, a prominent subfield of discrete math-
ematics [6]. A historically significant problem in graph theory is the Seven Bridges of
Königsberg problem, posed by Euler in 1736 [7]: determining how to traverse each of the
seven connected bridges in the city of Königsberg exactly once. Other renowned problems
in graph theory encompass the coloring problem [8], the shortest-path problem [9], and
more. Since the 1950s, graph theory has found applications in topology analysis in various
fields such as sociology [10], engineering [11], and beyond. In comparison to graph theory,
Newman et al. assert that network science introduces three key distinctions [12]. Firstly,
network science delves into understanding the properties of real systems by utilizing
real-world data, incorporating both theoretical and empirical perspectives. Secondly,
networks in the context of network science may exhibit time-varying characteristics.
Lastly, research in network science encompasses not only topological properties but also
dynamic aspects of networks. Similarly, Van Mieghem defines a network as comprising
both a topology part and a service part [13]. The topology part can be modeled as a graph,
encompassing nodes (vertices) and links (edges), while the service part, for instance,
involves utilizing the network topology to transport items between a group of nodes with
specific constraints.

In this thesis, we have explored three topics in network science: network robustness
and reliability, network recoverability, and spreading on networks.

1
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2 1. INTRODUCTION

1.1. NETWORK ROBUSTNESS AND RELIABILITY

Network robustness refers to the capacity of a network to maintain its functionality de-
spite failures in certain parts of the network during a specified time interval [13][14].
Scott et al. classify measures for quantifying network robustness into three main cate-
gories: measures based on graph connectivity, such as binary connectivity [15], node
connectivity [15], and edge connectivity [15]; measures based on the adjacency matrix
spectrum, including spectral radius [16], spectral gap [17], and natural connectivity [18];
and measures based on the Laplacian matrix spectrum, such as algebraic connectiv-
ity [19], the number of spanning trees [20], and effective resistance [15], etc. [21]. Lou
et al. present a general classification of network robustness into two types: a priori and
a posteriori measures [22]. A priori measures can be determined without conducting
attack simulations, such as binary connectivity, while a posteriori measures are computed
through a sequence of values during an iterative process, as in the case of node or link
attacks. Additionally, they have categorized a posteriori structural network robustness
metrics, based on network functionality, into three main classes: connectivity metrics,
like the relative size of the largest connected component [23]; controllability metrics, such
as minimum number of driver nodes [24][25]; and communication ability metrics, like
communicable node pairs [26]. Various research efforts have explored attack strategies,
including targeted node or link removals [27], defense strategies like edge rewiring [17],
and predictions of network robustness under attacks [28]. Due to the limited research
on approximations of network controllability under node removals, our dissertation
addresses this gap by conducting relevant research.

Controller placement problems discuss where to place controllers and how many
controllers are required to reach the expected performance with or without constraints
like costs, which is a hot topic in communication networks [29]. Network connectivity
is a widely used metric for measuring the performance of communication networks. All
connected components ensure that messages can be transmitted between any pair of
nodes [13]. For networks with unreliable components, network reliability is the probability
that a network remains connected with nodes or links assigned a probability of failure
(survival) [30][31]. Based on the concept of network reliability, we defined the notion
of controller reachability, which is the probability that all nodes can reach at least one
controller to ensure the transmission of data from nodes to controllers. Using controller
reachability, we investigate controller placement problems in networked systems.

1.2. NETWORK RECOVERABILITY

In the realm of network studies, network recoverability is defined as the ability of a
network to return to a desired state after disruption [32]. An efficient and effective re-
covery strategy can enhance network recoverability, and researchers have explored and
developed recovery strategies in various types of networks using different performance
metrics [33]. Pan et al. found that different recovery strategies perform differently with
respect to various performance metrics in weighted networks after links are removed [34].
Targeted recovery strategies, such as the strategy based on the targeted reinforcement
path method in economic systems [35], the hybrid recovery strategy based on local be-
tweenness and local closeness [36], and the recovery strategies against cascading failures
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in interdependent networks [37], have been proposed. Heuristic recovery strategies,
like greedy recovery strategies, have been found to be more efficient than metric-based
strategies in recovering links. This efficiency is observed concerning indicators such as
network efficiency, effective graph resistance [38], and network controllability [28]. After
investigating the robustness of network controllability, we further explored research on
the network recoverability of network controllability after nodes are removed.

In the context of power systems, the power grid can be represented as a complex
network, where nodes represent generators, loads, and transformers, and links represent
transmission lines. Numerous studies have focused on strategies for power grid recov-
ery [39], such as black-start procedures [40], including an optimal generator start-up
strategy solved through a mixed-integer linear programming (MILP) problem [41]. Ma-
chine learning methods, specifically reinforcement learning, have been developed for
restoring networks after both node failures [42] and link failures [43]. Despite extensive
research on power grid recovery, there is still a lack of investigation into the effectiveness
of recovery strategies that rely solely on different network metrics following transmission
line failures.

1.3. SPREADING ON NETWORKS
Modeling and analyzing the spreading process is a longstanding research area across
various fields, including biology [44], mathematics [45], social science [46], and engineer-
ing [47]. For instance, failures spreading in transportation or power grid systems can
be effectively modeled. Spreading models often consist of multiple compartments [48].
Two common compartments are susceptible (S) and infected (I). In the elementary com-
partmental models on the network, the susceptible-infected-susceptible (SIS) model is
widely used. In the SIS model, infected nodes can infect susceptible neighboring nodes
with an infection rate and can recover with the recovery rate. The steady state of the
SIS model is characterized by all nodes being susceptible (healthy). To compare steady
states approximated by different mean-field models of the SIS model, Li et al. introduced
the ϵ−SIS model as a benchmark model [49]. The key distinction is that a susceptible
node can also be infected with its self-infection rate ϵ. This model has been applied to
simulate the spreading of emotions on social networks [50]. Van Mighem [51] investi-
gated the ϵ−SIS model with an arbitrarily small but nonzero self-infection rate and found
that the corresponding model exhibits an explosive phase transition. To gain a better
understanding of the ϵ−SIS model, we are particularly interested in the time dependence
of the average fraction of infected nodes.

1.4. RESEARCH QUESTIONS
In this thesis, to better model, understand and control networked systems, we investigate
research questions related to network robustness and reliability, network recoverability
and spreading on networks. The research questions are defined as follows.

Using network controllability as the performance metric, we explore how network
controllability evolves during random node removals and targeted node removals based
on in-degree, out-degree, and total degree. Could we approximate the network controlla-
bility using the generating function of in-degree and out-degree distributions of networks
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under different kinds of node removals? (Chapter 2)

Network reliability is a way to measure the performance of the networked system.
Controller reachability is based upon the concept of network reliability, and we use
controller reachability as a performance metric to explore controller placement problems.
How many controllers does a network need to reach the expected performance? How
should we place controllers on a network? (Chapter 3)

After node removals, we want to investigate how network controllability changes
under random node additions. Could we approximate the network controllability during
random node additions? Which recovery strategies are the most efficient among the
recovery strategies considered? (Chapter 4)

Using the optimal power flow model, we would like to investigate how to recover
power grids after randomly removing a fraction of links. Can we find an effective recovery
strategy only using link centrality information? How does the heuristic recovery strategy
perform? (Chapter 5)

The prevalence is the average fraction of infected nodes in the ϵ−SIS process. What
kind of time-dependent behavior does the ϵ−SIS model have? (Chapter 6)

1.5. STRUCTURE OF THE THESIS

The thesis includes three parts and seven chapters: network robustness and reliability,
network recoverability and spreading process on networks.

1.5.1. PART I: NETWORK ROBUSTNESS AND RELIABILITY

Chapter 2 introduces the methods based on generating functions of in-degree and out-
degree distributions to approximate network controllability under random and targeted
node removals.

Chapter 3 explores the network controller problem using controller reachability as a
performance metric and develops different methods to place controllers.

1.5.2. PART II: NETWORK RECOVERABILITY

Chapter 4 investigates how to approximate network controllability using generating
functions of in-degree and out-degree distributions under random node additions. In
addition, the efficiency of different recovery strategies is assessed using the network
recoverability indicator.

Chapter 5 discusses the performances of recovery strategies based on graph metrics
and heuristic strategies to recover power grids using the optimal power flow model after
links are randomly removed.

1.5.3. PART III: SPREADING PROCESS ON NETWORKS

Chapter 6 investigates the time-dependent behaviors of the Markovian ϵ−SIS model on
networks.

Chapter 7 summarizes the main contributions of the dissertation and outlines future
directions for research.
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2
ROBUSTNESS OF NETWORK

CONTROLLABILITY WITH RESPECT

TO NODE REMOVALS

We developed methods based on generating functions for the in- and out-degree distri-
butions to calculate the minimum number of driver nodes needed to control directed
networks under random and targeted node removals. By validating the proposed methods
on synthetic and real-world networks, we show that our methods work very well in the
case of random node removals and reasonably well in the case of targeted node removals,
particularly for moderate fractions of attacked nodes.

This chapter is based on the published papers [52] and [53].

9
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2.1. INTRODUCTION

Network controllability has been investigated for different kinds of networks, like biologi-
cal networks [54], transportation networks [55] and corruption networks [56]. A network
is controllable if the states of nodes can be steered to any expected states in a finite time
by imposing external inputs to some of the nodes. Kalman’s controllability rank condition
is used to judge whether a linear system is controllable or not [57]. However, sometimes,
we do not know the weighted interactions within the network, which describe the strength
with which a node affects other nodes. To overcome the issue, the concept of structural
controllability has been proposed [58]. The interaction matrix and input matrix of the
linear time-invariant system are structural if their elements are independently free param-
eters or some are fixed zeros. The system is called structurally controllable if it is possible
to find values of structural interaction and input matrices to make the system satisfy
the usual controllability condition. Besides investigating the necessary and sufficient
conditions to make the specific system strongly structurally controllable [59], another
research direction is to find the minimum set of inputs to make the system fully control-
lable [60]. Liu et al. [24] reduce the structural controllability problem to the optimization
problem of finding a set of unmatched nodes in a maximum matching of the network.
The nodes where the external input signals are imposed are named driver nodes. The
number of unmatched nodes is equal to the minimum number of driver nodes needed to
fully control the network. Note that the results reported in Liu et al. [24] critically depend
on the assumption that the direct network has no self-links, i.e. a node’s internal state
can only be changed upon interaction with neighboring nodes [61]. We will follow this
assumption throughout the chapter.

Network structural controllability as a generic system property is applied to measure
and enhance network robustness. Measuring network robustness is usually done by
measuring network performance changes during perturbations imposed upon the net-
work [13]. The widely adopted perturbations in the research of the robustness of network
controllability are random node or link removals, which are used as a benchmark com-
pared with other perturbations. Another kind of perturbation deals with targeted attack
strategies. For example, attack strategies can relate to network topology features, such as
betweenness, degree and closeness. Pu et al. [62] demonstrate that degree-based removals
are more harmful to network controllability compared to random removals. Lu et al. [63]
find that a betweenness-based attack strategy is more harmful than a degree-based attack
strategy in most real-world networks. However, Wang et al. [64] find that attacking bridge
links, whose removal results in a disconnected network, is an effective way to destroy
network controllability. Another kind of targeted attack strategy is based on critical nodes
and links. Critical nodes and links are defined through the property that their removal will
increase the number of driver nodes [24]. Sun et al. [65] report random attack under the
protection of critical links is less efficient than a random link attack, and a targeted attack
aiming at critical links is more harmful than a random attack. Lou et al. [66] propose a
hierarchical attack removal framework where nodes or links are classified into critical,
sub-critical and normal categories. They find that hierarchical attack strategies are more
efficient than some metric-based attack strategies such as betweenness- or degree-based
strategies in interdependent networks. There is also some research focusing on how to
enhance the robustness of network controllability. Giulia et al. [67] show that network
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controllability is determined by the density of nodes with in-degree and out-degree equal
to one or two. Adding links to low degree nodes is beneficial to network controllability.
Lou et al. [68] find that multi-loop structures can improve the robustness of network
controllability. Zhang et al. [69] investigate different redundant design strategies of inter-
dependent networks. They present that betweenness-based strategy and degree-based
strategy for node backup and high degree first strategy for edge backup can optimize
robustness of network controllability. Besides the aforementioned qualitative research on
the robustness of network controllability, quantitative research has been conducted. Lu et
al. [63] develop the numerical approximations of random node removals and targeted
node removals based on degree on Erdös-Rényi (ER) networks. The results fit well when
the fraction of nodes is below 20 %. Sun et al. [65] explore the closed-form approximation
of the number of controllable nodes under random link removals, targeted removals and
random removals with protection. Dhiman et al. [70] use machine learning to quantify
the minimum fraction of driver nodes under random link removals and targeted link
removals, which performs better than the closed-form approximation proposed by Sun et
al. [65]. Later, Chen et al. [28] develop analytical approximations for the minimum num-
ber of driver nodes during random link removal by using methods based on generating
functions.

However, to the best of our knowledge, analytical methods for approximating network
controllability during random and targeted node removal in different types of networks
are lacking. The framework to calculate the structural controllability of linear systems for
directed networks has been proposed by Liu et al. [24]. This chapter utilizes their frame-
work to develop analytical approximations based on degree distributions to calculate
the minimum fraction of driver nodes during node removals. We consider two cases for
node removal: random node removals and targeted node removals, based on the node’s
in-degree, out-degree, and total degree. To validate our methods, we employ two types of
synthetic networks and four real-world communication networks.

This chapter is organized as follows. The second section introduces the networks
used in the study for validation. The third and fourth sections provide an introduction
to network controllability and targeted node removals. Analytical approximations and
results demonstrating the robustness of network controllability under node removals are
presented in the fifth section. The final section provides a summary.

2.2. NETWORK DATA
We will validate our theoretical results, which will be derived in the subsequent sections,
on two classes of synthetic networks and on a number of real-world networks. In this
section, we give details on the used networks.

2.2.1. DIRECTED SYNTHETIC NETWORKS

We choose two kinds of synthetic networks: Erdös-Rényi (ER) networks and Swarm
Signalling networks (SSNs).

We generate a directed ER network on N nodes by placing a directed link between
any pair of nodes, with a given probability pER . The average number of links for such ER
networks satisfies L = N (N −1)pER . In this chapter, we have used two ER networks, with
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N = 50, pER = 0.07 and N = 100, pER = 0.04.
Our topology for Swarm Signalling Networks (SSNs) was suggested in [71]. The SSN

has a regular out-degree, whereas the in-degree distribution follows a Poisson distribution.
To generate SSNs, we need two parameters. One is the number of nodes N , and the other
is the out-degree value k. For each node, the node randomly creates k outgoing links to
other nodes. This chapter uses two SSNs with N = 104,k = 2 and N = 104,k = 5.

2.2.2. REAL-WORLD NETWORKS
The real-world networks used in this study are taken from the Internet Topology Zoo [72], a
collection of real-world communication networks. We change those undirected networks
into directed networks by using two attributes: source node and target node [65]. The
properties of the networks are shown in Table 2.1, which shows the number of nodes N ,
the number of links L, and the average total degree < k >. The total degree is the sum of
the in- and out-degrees. Obviously, the average in-degree equals the average out-degree
and therefore, the average total degree is twice the average in-degree (and hence the
average out-degree).

Table 2.1: Properties of four real-world communication networks

Name N L < k >
HinerniaGlobal 55 81 2.95

Syringa 74 74 2.00
Interoute 110 146 2.65
Cogentco 197 243 2.47

2.3. NETWORK CONTROLLABILITY
Consider a linear, time-invariant networked system composed of N nodes, governed by
the following equation:

d x (t )

d t
= Ax (t )+Bu (t ) , (2.1)

Here, the N ×1 vector x (t ) = (x1 (t ) , x2 (t ) , . . . , xN (t ))T represents the state of each node.
The matrix A, with dimensions N ×N , characterizes the connections between nodes with
corresponding strength. Furthermore, the N ×M matrix B serves as the input matrix,
indicating which nodes are under direct control through the M ×1 control input vector
u (t ) = (u1 (t ) ,u2 (t ) ,u3 (t ) , . . . ,uM (t ))T .

A linear, time-invariant networked system is considered controllable if its node states
can be manipulated to reach any desired state within a finite time by applying a set of
external inputs. The Kalman rank criterion provides a way to determine controllability,
where the rank of the controllability matrix [B , AB , A2B , . . . , AN−1B ] should be equal to
N for the system to be fully controllable [73]. To gain an understanding of the Kalman
rank criterion, we can derive the formal solution of Eq. (2.1) with an initial condition of
x (0) = 0 as x (t ) = ∫ ∞

0 e A(t−τ)Bu (τ)dτ. By expanding e A(t−τ) into a series, we can deduce

that x (t ) is a linear combination of the matrix [B , AB , A2B , . . . , AN ′
B , . . . ]. According to the
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Cayley-Hamilton theorem, for N ′ > N , the rank of the matrix [B , AB , A2B , . . . , AN ′
B , . . . ]

is equivalent to the rank of the controllability matrix [B , AB , A2B , . . . , AN−1B ]. Conse-
quently, if the rank of the controllability matrix is less than N , it implies that the matrix
[B , AB , A2B , . . . , AN ′

B , . . . ] cannot span the state space of dimension N entirely. In such
cases, an input u (t ) cannot be found to steer x (0) to an arbitrary state x (t ) [74]. In practi-
cal applications, the implementation of the Kalman rank criterion poses challenges due
to the requirement of obtaining information about the network’s interaction strengths
and the involvement of computationally intensive calculations, especially for large-scale
networks. To mitigate these challenges, Lin [75] introduced the concept of structural
controllability. Additionally, Liu et al. [24] presented the maximum matching method and
the minimum inputs theorem to determine the minimum number of nodes (driver nodes)
that must be controlled to ensure controllability. To determine the count of driver nodes,
a directed network should first be transformed into a bipartite network. Subsequently, a
maximum matching edge set can be derived using the maximum matching algorithm [76],
consisting of NM directed edges without shared source nodes or end nodes. The end
nodes of the matching edges are termed matched nodes, while the remaining nodes are
unmatched. The calculation of the minimum number ND of driver nodes is as follows

ND = max{1, N −NM }. (2.2)

2.4. TARGETED NODE REMOVALS

Centrality analysis is an essential research area in studying network robustness [77].
Nodes with a high degree are known to have a substantial impact on network functioning
and are more susceptible to targeted removals. In this study, our objective is to develop
an analytical approximation of network controllability during targeted node removals
based on three types of degrees: in-degree, out-degree and total degree.

Assuming that the probabilities of node attacks are proportional to some power of its
in-degree, out-degree and total degree, we can express the probability of removing node i
based on its in-degree ki n_i as pi n_i , based on its out-degree kout_i as pout_i and based
on its total degree ki as pi . The formulas for calculating these probabilities are given as
follows,

pi n_i =
kαi n_i∑

j∈N kαi n_ j

,

pout_i =
kαout_i∑

j∈N kαout_ j

,

pi = ki
α∑

j∈N kαj
.

(2.3)

In the node removal process, after some nodes are removed, we recalculate the re-
moval probabilities for the remaining nodes using Eq. (2.3). We then select nodes to
remove based on the recalculated probabilities until all nodes are removed.
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When α= 0, the aforementioned equations become

pi n_i = 1

N
,

pout_i = 1

N
,

pi = 1

N
,

(2.4)

which indicates that each node has an equal probability of being removed, resulting in a
random removal strategy. On the other hand, for α> 0, nodes with higher degrees have a
greater likelihood of being removed, while for α< 0, nodes with lower degrees are more
likely to be removed.

In this study, we investigate the impact of degree-based node removal strategies
on network robustness. To this end, we focus on α > 0, as higher-degree nodes are
commonly targeted for attack in real-world scenarios. Specifically, we consider two values
of α, namely α= 1 and α= 10, to evaluate the impact of removing nodes proportional to
their degree and removing high-degree nodes more aggressively, respectively. By using
Eq. (2.3), we obtain the probabilities of the node being removed based on in-degree,
out-degree and total degree when α= 1 as follows,

pi n_i =
ki n_i∑

j∈N ki n_ j
,

pout_i =
kout_i∑

j∈N kout_ j
,

pi = ki∑
j∈N k j

.

(2.5)

Analogously, the node removal probabilities based on in-degree, out-degree and total
degree with α= 10 can be calculated by

pi n_i =
k10

i n_i∑
j∈N k10

i n_ j

,

pout_i =
k10

out_i∑
j∈N k10

out_ j

,

pi = ki
10∑

j∈N k10
j

.

(2.6)

Our results show that, for α = 10, the removal of high-degree nodes does not lead
to a significant reduction in network robustness in the beginning stage. For several
networks, there are no significant differences between the results with α= 1 and α= 100.
Interestingly, we observe that increasing the value of α to 100 does not result in further
performance gains, as the performance of removals with α = 100 is similar to that of
removals with α= 10. Additional details on these findings can be found in Appendix A.1.
Furthermore, we find that when α = 1, the removal strategies based on in-degree or
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out-degree can be more detrimental to certain networks than node removal based on the
total degree. However, for some other networks, the harmful effects of these strategies are
comparable. The results are presented in Appendix A.2.

2.5. ANALYTICAL APPROXIMATIONS UNDER NODE REMOVALS
This section presents how to analytically approximate network controllability in the case
of different types of node removals and the corresponding results.

2.5.1. ANALYTICAL APPROXIMATIONS FOR RANDOM NODE REMOVALS

GENERAL NETWORKS

From [24], for directed network G (N ,L) with N nodes and L links, we can determine the
minimum number of driver nodes by using generating functions of the in- and out-degree
distributions (Gi n(x) and Gout (x), respectively) and of the excess in- and out-degree
distributions (Hi n(x) and Hout (x), respectively). These generating functions are defined
as follows:

Gi n(x) =
∞∑

k=0
Pi n(ki n)xki n ,

Gout (x) =
∞∑

k=0
Pout (kout )xkout ,

Hi n(x) =
∑∞

k=1 ki nPi n(ki n)xki n−1

< ki n > = G ′
i n(x)

G ′
i n(1)

,

Hout (x) =
∑∞

k=1 kout Pout (kout )xkout−1

< kout >
= G ′

out (x)

G ′
out (1)

,

(2.7)

where ki n and kout denote in- and out-degree, respectively, while Pi n(·) and Pout (·) are
in- and out-degree probability distribution, respectively. Then the minimum fraction of
driver nodes is given by:

nd = 1

2
{Gi n(ω2)+Gi n(1−ω1)−2+Gout (ω̂2)+Gout (1− ω̂1)

+k [ω̂1(1−ω2)+ω1(1− ω̂2)]},
(2.8)

where ω1, ω2, ω̂1 and ω̂2 satisfy

ω1 = Hout (ω̂2),

ω2 = 1−Hout (1− ω̂1),

ω̂1 = Hi n(ω2),

ω̂2 = 1−Hi n(1−ω1),

(2.9)

and k denotes half of the average degree equal to the average in-degree and the average
out-degree, k = 1

2 < k >=< ki n >=< kout >.
During the node removal process, the set of driver nodes includes two parts. One is

the set containing ND driver nodes that control the remaining part of the network, and
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the other set is formed by Nr removed nodes. We assume that each removed node needs
to be controlled by an individual driver node. We define the fraction of driver nodes nD as
nD = ND+Nr

N . After randomly removing a fraction p of nodes in the network, the fraction
of driver nodes nD satisfies

nD = nd (1−p)N +pN

N
= nd (1−p)+p. (2.10)

Based on the research of Shao et al. [78], the generating function after randomly
removing a fraction p nodes corresponds to the original generating function, with the
adjusted argument x̄ = p + (1−p)x. Then the generating functions of in- and out-degree,
and the excess in- and out-degree, after randomly removing a fraction p of nodes, are
adjusted as follows:

Ḡi n(x) =Gi n(p + (1−p)x),

Ḡout (x) =Gout (p + (1−p)x),

H̄i n(x) = Ḡ ′
i n(x)

Ḡ ′
i n(1)

,

H̄out (x) = Ḡ ′
out (x)

Ḡ ′
out (1)

.

(2.11)

Next, we use Eqs. (2.8) and (2.10) to acquire the fraction of minimum number of nodes
nD after randomly removing a fraction p of nodes:

nD = 1

2
(1−p){Ḡi n(ω2)+Ḡi n(1−ω1)−2+Ḡout (ω̂2)+Ḡout (1− ω̂1)

+k(1−p)[ω̂1(1−ω2)+ω1(1− ω̂2)]}+p,
(2.12)

where ω1, ω2, ω̂1 and ω̂2 satisfy

ω1 = H̄out (ω̂2),

ω2 = 1− H̄out (1− ω̂1),

ω̂1 = H̄i n(ω2),

ω̂2 = 1− H̄i n(1−ω1),

(2.13)

and k is half of the average degree equal to the average in-degree and the average out-
degree, k = 1

2 < k >=< ki n >=< kout >.

ER NETWORKS

Both the in-degree distribution Pi n(ki n) and the out-degree distribution Pout (kout ) of
ER networks follow a Poisson distribution with average degree k [28]. Therefore, the
generating functions of in-degree and out-degree are as follows,

Gi n(x) = e−k(−x+1),

Gout (x) = e−k(−x+1).
(2.14)



2.5. ANALYTICAL APPROXIMATIONS UNDER NODE REMOVALS

2

17

The minimum fraction of driver nodes nD after a fraction p of nodes is randomly
removed in the ER networks can be obtained through Eq. (2.12) as

nD = p +pω2 −ω2 + [1−p +k(1−p)2(1−ω2)]ek(1−p)(ω2−1) (2.15)

where ω2 satisfies 1−ω2 −e−k(1−p)e−k(1−p)(1−ω2) = 0.

SSNS

In a SSN with the number of nodes N and average in-degree and out-degree equal to k,
the in-degree distribution resembles a Poisson distribution with mean value k and the
out-degree distribution follows a Dirac delta function. Then the generating functions of
in-degree and out-degree distribution can be denoted as follows,

Gi n(x) = e−k(−x+1),

Gout (x) = xk .
(2.16)

Based on Eq. (2.12), the minimum fraction of driver nodes nD after randomly removing
a fraction p of nodes can be calculated by

nD = p +pω2 −ω2 + [1−p + (k −1)(1−p)2(1−ω2)]ek(1−p)(ω2−1) (2.17)

where ω2 satisfies 1−ω2 − [p + (1−p)(1−e−k(1−p)(1−ω2))]k−1 = 0.
Note that for real-world networks, the generating functions for the in- and out-degree

distributions, can simply be obtained from the histograms of these distributions. We use
the relative frequency of degree as the corresponding probability in generating functions.

2.5.2. ANALYTICAL APPROXIMATIONS FOR TARGETED NODE REMOVALS

CASE: α= 1
In-degree: In undirected networks, after a fraction p of nodes has been removed based on

their degree, specifically, the probability of a node removal is proportional to some
power of its degree, see Eq. (2.3), the generating function of the degree distribution,
G(x), transforms into function Ḡ(x), which is as follows, [77],

Ḡ(x) = 1

1−p

∞∑
k=0

pk f kα
(
1+ f G ′

α( f )

< k > (x −1)

)k

, (2.18)

where f ≡ G−1
α (1− p), Gα(x) ≡ ∑

k pk xkα and < k > is the average degree of the
initial network.

We investigate the extension of prior conclusions to directed networks while re-
moving nodes based on their in-degree. We assume that a node’s in-degree and
out-degree are independent and uncorrelated, such that removing a fraction p of
nodes based on their in-degree results in the generating function of the in-degree
distribution described by Eq. (2.18). Furthermore, the generating function of the
out-degree distribution is given by Ḡout (x) =Gout (p + (1−p)x) following the equa-
tion of random node removals. So if we remove nodes based on in-degree, function
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Ḡi n(x) and function Ḡout (x) satisfy,

Ḡi n(x) = 1

1−p

∞∑
ki n=0

pki n f ki n

(
1+ f G ′

1( f )

< ki n > (x −1)

)ki n

,

Ḡout (x) =Gout (p + (1−p)x).

(2.19)

Then, we can obtain the analytical approximation of the minimum fraction of driver
nodes under node removals based on in-degree using Eq. (2.12).

Out-degree: Analogously, if we remove a fraction p of nodes based on their out-degree,
we maintain the assumption that the generating function of the out-degree dis-
tribution is described by Eq. (2.18). Additionally, the generating function of the
in-degree distribution can be expressed as Ḡi n(x) =Gi n(p + (1−p)x). Therefore,
we have function Ḡi n(x) and function Ḡout (x) as follows,

Ḡi n(x) =Gi n(p + (1−p)x),

Ḡout (x) = 1

1−p

∞∑
kout=0

pkout f kout

(
1+ f G ′

1( f )

< kout >
(x −1)

)kout

.
(2.20)

Furthermore, utilizing Eq. (2.12), we can derive an analytical approximation of the
minimum fraction of driver nodes when nodes are removed based on out-degree.

Total-degree: The main challenge is to obtain expressions for the generating functions
for the in- and out-degree distributions after removing a fraction p of the nodes
through removals. In general, it is not possible to obtain the generating function
both for the in- and the out-degree distribution, after a fraction p of nodes has
been attacked. Therefore we have to come up with a heuristic to deal with this.
Here we will map the targeted node attack process (based upon total degree) into a
random node attack process. We suppose that the generating functions of in-degree
distribution and out-degree distribution change to those corresponding to random
node removal, but such that the total number of links after randomly removing a
fraction p̄ of nodes is equal to the total number of links after targeted removal of a
fraction p of the nodes. As reported in [77], the fraction p̄ can be calculated by

p̄ = 1− f G ′
α( f )

< k > , (2.21)

where f ≡G−1
α (1−p), Gα(x) ≡∑

k pk xkα and < k > is the average total degree of the
initial network and pk is the probability of a node having total degree k. If α= 1,
Gα(x) ≡∑

k pk xk , which is the generating function for the total degree distribution.
For ER networks, the generating function of total degree is G(x) = e−<k>(−x+1) and

for SSNs, the generating function of total degree is G(x) = x
<k>

2 e−
<k>

2 (−x+1).

CASE: α= 10
When α= 10, we encounter difficulties in obtaining a numerical solution for f ≡G−1

α (1−
p), where Gα(x) ≡ ∑

k pk xkα . Consequently, it becomes challenging to determine the
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evolution of the generating functions for in-degree and out-degree distributions during
the node removal process. To address this challenge, we propose a heuristic approach
whereby we map the targeted node removal process based on in-degree or out-degree
into a random node attack process.

Specifically, for node removals based on in-degree with α= 10, where a fraction of p
nodes is to be removed, we map this process to the removal of p̄ nodes in the in-degree
distribution, while maintaining the fraction of nodes in the out-degree distribution at
p. Similarly, for node removals based on out-degree with α= 10, we map the process to
the random removal of a fraction of p̄ nodes in the out-degree distribution, as well as a
fraction of p nodes in the in-degree distribution.

In-degree: In order to estimate the corresponding p̄ of a given fraction p under node
removals based on in-degree with α = 10, we adopt the assumption that nodes
are removed in descending order of in-degree. Specifically, we first sort the nodes
according to their in-degree and then remove nodes starting from the node with
the highest in-degree until the targeted fraction p is reached.

Next, we calculate the total in-degree of all the removed nodes by utilizing the
original in-degree distribution and the targeted removal fraction p. The effective
fraction p̄ is then obtained by normalizing the total in-degree of all removed nodes
with respect to the total in-degree of all nodes in the initial network. This can be
calculated as follows,

p̄i n =
∑ki n=k̄i n

ki n=ki nmax
pki n N ki n

N < ki n > =
∑ki n=k̄i n

ki n=ki nmax
pki n ki n

< ki n > , (2.22)

where the largest in-degree value is denoted as ki nmax , the probability of removed

nodes with degree ki n is denoted as pki n and degree k̄i n satisfies
∑ki n=k̄i n

ki n=ki nmax
pki n =

p. It is worth mentioning that except removed probability pk̄i n
, other probability

pki n is equal to probability Pi n(ki n) in the generating function. Then we can use
effective proportion p̄i n for the approximation of the minimum fraction of driver
nodes as follows,

Ḡi n(x) =Gi n(p̄i n + (1− p̄i n)x),

Ḡout (x) =Gout (p + (1−p)x),

nD = 1

2
{Ḡi n(ω2)+Ḡi n(1−ω1)−2+Ḡout (ω̂2)+Ḡout (1− ω̂1)

+k

(
1− p + p̄i n

2

)
[ω̂1(1−ω2)+ω1(1− ω̂2)]}

(
1− p + p̄i n

2

)
+ p + p̄i n

2
,

(2.23)

where ω1,ω2,ω̄1 and ω̄2 satisfy Eq. (2.13).

Out-degree Analogously, for targeted node removal based on out-degree with α= 10, the
calculation of fraction p̄out follows the same assumption: nodes are removed from
the node with the highest out-degree to the node with the lowest out-degree until
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the removed fraction of nodes reaches p. The effective fraction p̄out is the total
out-degree of removed nodes normalized by the total out-degree in the original
network, which can be calculated by,

p̄out =
∑kout=k̄out

kout=koutmax
pkout N kout

N < kout >
=

∑kout=k̄out
kout=koutmax

pkout kout

< kout >
, (2.24)

where the largest degree value is denoted as koutmax , and the probability of removed
nodes with out-degree kout as pkout . To achieve the targeted removal fraction p,

we find the minimum out-degree value k̄out satisfying
∑kout=k̄out

kout=koutmax
pkout = p. For

all out-degree values except for k̄out , their corresponding probabilities pkout are
equal to the probabilities Pout (kout ) in the generating function. Then, we use p̄out ,
the effective proportion of removed nodes based on out-degree, to estimate the
minimum number of driver nodes, which is given by the following expression,

Ḡi n(x) =Gi n(p + (1−p)x),

Ḡout (x) =Gout (p̄out + (1− p̄out )x),

nd = 1

2
{Ḡi n(ω2)+Ḡi n(1−ω1)−2+Ḡout (ω̂2)+Ḡout (1− ω̂1)

+k

(
1− p + p̄out

2

)
[ω̂1(1−ω2)+ω1(1− ω̂2)]}

(
1− p + p̄out

2

)
+ p + p̄out

2
,

(2.25)

where ω1,ω2,ω̄1 and ω̄2 satisfy Eq. (2.13).

Total-degree: We map the fraction p of removed nodes under targeted removals for
α= 10 onto the effective proportion p̄ of nodes under random node attack. Under
the attack strategy to remove the largest degree node at each step, total degree of all
removed nodes can be obtained according to the degree distribution after giving
the removed fraction p. The effective proportion p̄ is the total degree of all removed
nodes normalizing by the total degree of all nodes in the initial network, which can

be calculated as p̄ =
∑k=k̄

k=kmax
pk N k

N<k> =
∑k=k̄

k=kmax
pk k

<k> , where the largest degree value is
denoted as kmax , the probability of removed nodes with degree k is denoted as pk

and degree k̄ satisfies
∑k=k̄

k=kmax
pk = p. Similarly, except removed probability pk̄ ,

other probability pk is equal to probability P (k) in the generating function. Then
the minimum number of driver nodes can be approximated by replacing argument
p by p̄ in Eqs. (2.11) and (2.12).

2.5.3. RESULTS FOR RANDOM NODE REMOVALS
We ran simulations on various networks, as described in Section 2.2. We carried out 10000
realizations for all networks to ensure sufficient statistical power. For ER and real-world
networks, which have a relatively small number of nodes, one node was removed at each
step until all nodes had been removed during each realization. Then a recalculation
of the minimum fraction of driver nodes was conducted by using the algorithm. On
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the other hand, due to the large number of nodes in SSNs, 1% of nodes were removed
at each step until all nodes had been removed during each realization. Subsequently,
the minimum fraction of driver nodes was recalculated based on the modified network
structure. The average value of results obtained from the 10000 realizations was taken
as the final simulation output. The green lines in Figs. 2.1 and 2.2 show the simulation
results.

Since we know each network’s in-degree and out-degree distributions, we can com-
pute the minimum fraction of driver nodes of a network according to the equations
mentioned above for the minimum fraction nD . The results obtained using the generat-
ing functions of the degree distributions are depicted as red dashed lines in Figs. 2.1 and
2.2.

The results are shown in Figs. 2.1 and 2.2. As the predicted values in the red lines and
the simulated values virtually overlap, we conclude that the analytical approximations
for network controllability in the case of random node removals are very accurate. The
reason for this is that, after removing a fraction p of the nodes at random, we still have
expressions for the generating functions of the in- and out-degree distributions, see
Eq. (2.11).

2.5.4. RESULTS FOR TARGETED NODE REMOVALS

IN-DEGREE AND OUT-DEGREE WITH α= 1
We ran simulations with 10000 realizations with α= 1 under in-degree and out-degree
node removals for all mentioned networks. Each realization is the same as described in
Section 2.5.3. We present the results of targeted node removal based on in-degree and out-
degree with α= 1, as depicted in Figs. 2.3 and 2.4, and Figs. 2.5 and 2.6. The simulation
results are shown in green lines, whereas the analytical results are in red. The results of
random node removal are also presented in grey lines for comparison. We observe that
the analytical results serve as a closed-form approximation of the minimum fraction of
driver nodes (nD ), as a discrepancy exists between the predicted and simulation values
during the targeted node removal process based on in-degree or out-degree. In the case
of ER networks, the in-degree and out-degree distributions are identical. Consequently,
the predicted values of targeted removal based on in-degree and out-degree are also the
same. For SSNs, the out-degree of nodes is fixed. Therefore, the lines of analytical results
of targeted node removal based on out-degree with α= 1 in SSNs overlap with the lines of
random node removal. We find that for SSNs, the simulation results of targeted removal
based on in-degree and out-degree are slightly different from the simulation results of
random removals.

When the removed fraction p is small, the simulation results of targeted removals
based on in-degree and out-degree are close to those of random removals. We verified
this by calculating the Root Mean Square Error (RMSE) between the simulation results of
targeted removals based on in-degree and out-degree and analytical results of randomly
removing nodes below 10%, as shown in Table 2.2. Moreover, we calculated the RMSE
between the simulation and analytical results of targeted node removals based on in-
degree and out-degree below 10%, as shown in Table 2.3. The results indicated that both
methods provide a good approximation of the simulation results, as the values in both
tables for targeted node removals based on in-degree and out-degree with α = 1 are
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Figure 2.1: The minimum fraction of driver nodes nD during random node removal for different kinds of
networks. The green lines are calculated by the maximum matching algorithm. The red dashed lines are
obtained by the analytical methods.
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Figure 2.2: The minimum fraction of driver nodes nD during random node removals for SSN networks. The
green lines are calculated by the maximum matching algorithm. The red dashed lines are obtained by the
analytical methods.

reasonably small.

Table 2.2: The RMSE between the analytical results of random removals and the simulation results under
random removals, targeted removals with α= 1 and α= 10, respectively, while removing up to 10% of the nodes.
The column labeled "random" indicates the RMSE under random removals. The columns labeled "α= 1" and
"α= 10" represent the RMSE under targeted node removals with α= 1 and α= 10, respectively. The columns
labeled "in-degree", "out-degree", and "degree" represent the RMSE under targeted node removals based on
in-degree, out-degree, and total degree, respectively

network random
α= 1 α= 10

in-degree out-degree degree in-degree out-degree degreee
ER(50, 0.07) 0.0137 0.0164 0.0156 0.0155 0.0190 0.0195 0.0223

ER(100, 0.04) 0.0079 0.0086 0.0095 0.0094 0.0126 0.0121 0.0156
HinerniaGlobal 0.0039 0.0052 0.0110 0.0084 0.0025 0.0152 0.0152

Syringa 0.0071 0.0136 0.0217 0.0179 0.0237 0.0263 0.0443
Interoute 0.0011 0.0008 0.0106 0.0056 0.0064 0.0072 0.0175
Cogentco 0.0011 0.0090 0.0053 0.0071 0.0156 0.0091 0.0248

SSN(104, 2) 0.0000 0.0103 0.0003 0.0052 0.0143 0.0007 0.0155
SSN(104, 5) 0.0000 0.0006 0.0000 0.0003 0.0008 0.0001 0.0008

TOTAL-DEGREE WITH α= 1
We chose the same network set to do simulations under targeted node removal, based
on total degree. We did 10000 realizations for each communication network and 1000
for each synthetic network. Each realization is done as described in Section 2.5.3. The
simulation results are presented as green lines in Figs. 2.7 and 2.8. For the analytical
method, we employ the effective fraction of removed nodes p̄ acquired by Eq. (2.21). Red
lines in Figs. 2.7 and 2.8 represent the analytical results. We also show the simulation
results under random node removals in grey lines in Figs. 2.7 and 2.8.

We find that the analytical results are a reasonable fit with the simulations, especially
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Figure 2.3: The minimum fraction of driver nodes nD during targeted node removal based on in-degree with
α= 1 for different kinds of networks. The grey lines are the results of simulations under random node removal
(α = 0), and the green lines are calculated by the maximum matching algorithm. The red dashed lines are
obtained by the analytical methods.
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Figure 2.4: The minimum fraction of driver nodes nD during targeted node removal based on in-degree with
α= 1 for SSN networks. The grey lines are the results of simulations under random node removal (α= 0), and
the green lines are calculated by the maximum matching algorithm. The red dashed lines are obtained by the
analytical methods.

Table 2.3: The RMSE between the analytical results of the proposed analytical methods and the simulation
results under different kinds of removals while removing up to 10% of the nodes. The column labeled "random"
indicates the RMSE under random removals. The columns labeled "α= 1" and "α= 10" represent the RMSE
under targeted node removals with α = 1 and α = 10, respectively. The columns labeled "in-degree", "out-
degree", and "degree" represent the RMSE under targeted node removals based on in-degree, out-degree, and
total degree, respectively

network random
α= 1 α= 10

in-degree out-degree degree in-degree out-degree degreee
ER(50, 0.07) 0.0137 0.0122 0.0113 0.0095 0.0588 0.0595 0.0543

ER(100, 0.04) 0.0079 0.0058 0.0067 0.0039 0.0189 0.0193 0.0284
HinerniaGlobal 0.0039 0.0089 0.0136 0.0025 0.0281 0.0349 0.0354

Syringa 0.0071 0.0096 0.0143 0.0061 0.0157 0.0235 0.0142
Interoute 0.0011 0.0151 0.0242 0.0009 0.0265 0.0454 0.0229
Cogentco 0.0011 0.0233 0.0244 0.0050 0.0314 0.0330 0.0322

SSN(104, 2) 0.0000 0.0085 0.0002 0.0027 0.0331 0.0006 0.0343
SSN(104, 5) 0.0000 0.0094 0.0000 0.0024 0.0167 0.0001 0.0264

for small values of the fraction p of attacked nodes. It indicates that the proposed method
of calculating the effective proportion p̄ is inaccurate in the late removal stage.

IN-DEGREE AND OUT-DEGREE WITH α= 10
We ran the simulations of 10000 realizations with α= 10 under in-degree and out-degree
node removals in mentioned networks. Each realization of every network is the same as
described in Section 2.5.3. The simulation results of network controllability are shown
in the green lines in Figs. 2.9 and 2.10, and Figs. 2.11 and 2.12. As before, the analytical
results are depicted in red lines, while the simulation results of network controllability
under random node removals are shown in grey lines.

In addition to targeted node removals based on out-degree in SSNs with fixed out-
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Figure 2.5: The minimum fraction of driver nodes nD during targeted node removal based on out-degree with
α= 1 for different kinds of networks. The grey lines are the results of simulations under random node removal
(α = 0), and the green lines are calculated by the maximum matching algorithm. The red dashed lines are
obtained by the analytical methods.
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Figure 2.6: The minimum fraction of driver nodes nD during targeted node removal based on out-degree with
α= 1 for SSN networks. The grey lines are the results of simulations under random node removal (α= 0), and
the green lines are calculated by the maximum matching algorithm. The red dashed lines are obtained by the
analytical methods.

degree, the analytical results are consistent with random node removals. Notably, the
analytical results exhibit a similar pattern for α = 10, where they initially surpass the
simulation results before eventually intersecting and becoming inferior to the targeted
node attack lines but superior to the random node attack lines as the fraction of removed
nodes approaches one. We find the proposed methods can closely approximate network
controllability using a closed-form approach but do not precisely align with simulation
results.

Upon examining Tables 2.2 and 2.3, we observe that both the proposed analytical
methods and the analytical results of random node removal demonstrate satisfactory
performance for targeted node removal based on in-degree and out-degree with α= 10
when the fraction of removed nodes p is below 10%. However, the values obtained for
α= 10 are comparatively inferior to those obtained for α= 1 and random node removal.
These outcomes highlight the limitations of our proposed approach. Specifically, our
method assumes that nodes are removed from the node with the highest degree to the
node with the lowest degree, which is true when α is large enough like infinity. In this
context, we choose α= 10 and the node with the highest degree is much more likely to be
removed but still can not be guaranteed to be removed at each step.

TOTAL-DEGREE α= 10
Analogously, we do the simulations with α = 10 under total degree targeted node re-
moval, 10000 realizations for each communication network and 1000 realizations for
each synthetic network. Each realization is carried out as described in Section 2.5.3. The
simulation results are shown in the green lines. We present the analytical results in red
lines. The simulation results of network controllability under random node removals are
depicted in grey lines. The results with α= 10 for total degree targeted node removal are
shown in Figs. 2.13 and 2.14.

The proposed approaches for the case α= 10 can approximate network controllability
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Figure 2.7: The minimum fraction of driver nodes nD during targeted node removal based on the total degree
with α= 1 for real-world networks. The grey lines are the results of simulations under random node removal
(α = 0), and the green lines are calculated by the maximum matching algorithm. The red dashed lines are
obtained by the analytical methods.

in a closed-form but do not perfectly fit the simulation results. The analytical result lines
are first above the targeted attack lines, then below the targeted attack lines but still above
the random attack lines, until the fraction of removed nodes approaches one.

2.6. CHAPTER SUMMARY
In this chapter, we propose analytical methods based on generating functions to compute
the minimum fraction of the number of driver nodes in directed networks, subject to
node removals. Analytical methods fit simulation results very well for random node
removals. Moreover, we develop analytical methods for three cases during targeted
node removal based on in-, out- and total degrees. Our proposed analytical methods
demonstrate reasonable results to predict the minimum fraction of driver nodes under
targeted removals. Furthermore, our investigation indicates that random node removals
may also serve as a reliable predictor of the results of various targeted node removals,
particularly when the fraction of removed nodes is minimal (below 10%).
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Figure 2.8: The minimum fraction of driver nodes nD during targeted node removal based on the total degree
with α= 1 for synthetic networks. The grey lines are the results of simulations under random node removal
(α = 0), and the green lines are calculated by the maximum matching algorithm. The red dashed lines are
obtained by the analytical methods.
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Figure 2.9: The minimum fraction of driver nodes nD during targeted node removal based on in-degree with
α= 10 for real-world networks. The grey lines are the results of simulations under random node removal (α= 0),
and the green lines are calculated by the maximum matching algorithm. The red dashed lines are obtained by
the analytical methods.
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Figure 2.10: The minimum fraction of driver nodes nD during targeted node removal based on in-degree with
α= 10 for synthetic networks. The grey lines are the results of simulations under random node removal (α= 0),
and the green lines are calculated by the maximum matching algorithm. The red dashed lines are obtained by
the analytical methods.
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Figure 2.11: The minimum fraction of driver nodes nD during targeted node removal based on out-degree with
α= 10 for real-world networks. The grey lines are the results of simulations under random node removal (α= 0),
and the green lines are calculated by the maximum matching algorithm. The red dashed lines are obtained by
the analytical methods.
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Figure 2.12: The minimum fraction of driver nodes nD during targeted node removal based on out-degree with
α= 10 for synthetic networks. The grey lines are the results of simulations under random node removal (α= 0),
and the green lines are calculated by the maximum matching algorithm. The red dashed lines are obtained by
the analytical methods.
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Figure 2.13: The minimum fraction of driver nodes nD during targeted node removal based on the total degree
with α= 10 for real-world networks. The grey lines are the results of simulations under random node removal
(α = 0), and the green lines are calculated by the maximum matching algorithm. The red dashed lines are
obtained by the analytical methods.
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Figure 2.14: The minimum fraction of driver nodes nD during targeted node removal based on the total degree
with α= 10 for synthetic networks. The grey lines are the results of simulations under random node removal
(α = 0), and the green lines are calculated by the maximum matching algorithm. The red dashed lines are
obtained by the analytical methods.
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Using controller reachability as a network performance metric, we investigate the controller
placement problem on networks. Controller reachability is the probability that each node
can reach at least one controller, given that each link is operational with a fixed probability.
By exploring placements for more than 100 real-world networks and by varying the number
of controllers from two to five, we find that controller reachability varies greatly with differ-
ent placements. Obviously, increasing the number of controllers increases the controller
reachability. However, the extent of this increase depends on the strategy with which the
controllers are placed. The findings indicate that efficient controller placement strategies
should be developed to ensure good network performance. In this research, we propose four
controller placement strategies. One strategy is based on topological network metrics: the
degree of the node and the path length between the controllers and nodes. The other three
heuristic strategies are the greedy algorithm, a classic genetic algorithm, and a heuristic
genetic algorithm. By validating strategies on real-world networks, we find that all four
strategies work well to solve the controller placement problem with respect to controller
reachability.

This chapter is based on the published paper [79].
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3.1. INTRODUCTION
The Controller Placement Problem (CPP) on networks belongs to the class of facility loca-
tion problems, which looks to place facilities in potential locations, such that certain per-
formance metrics are optimized, often under constraints of cost. The study of controller
placement problems has been widely investigated in the setting of Software-Defined Net-
working (SDN). The SDN network can be divided into the data plane, the control plane,
and the application plane, where the data plane corresponds to the networking devices
that are responsible for forwarding data such as switches. The control plane decides how
to handle network traffic using controllers, and the application plane remotely monitors
and configures the control functionality through the interface (northbound API) [80].
SDN has a logically centralized control architecture achieved by decoupling the network
control plane and the data plane [81].

Within the Controller Placement Problem (CPP) in Software-Defined Networking
(SDN), two fundamental research questions arise, each crucial to optimizing network
performance [29]. The first question centers on determining the appropriate number
of controllers to be deployed in the network. Although a single controller is typically
sufficient for smaller networks, larger networks require the addition of multiple controllers
to maintain optimal performance levels [82]. The use of a multi-controller design has
shown promising results in improving the performance of the SDN network [83], albeit
at the expense of increased deployment costs. Hence, determining the optimal number
of controllers becomes imperative for striking a balance between performance and cost
considerations.

The second research question relates to the strategic placement of controllers within
the network. The performance of the network is inherently influenced by the specific
locations chosen for the controllers, given a fixed number of controllers. As the number
of controllers increases, the number of potential placement combinations increases expo-
nentially, intensifying the challenge of identifying optimal configurations. Consequently,
the question of where to place the controllers emerges as a critical consideration. Ad-
dressing this question is vital to achieving superior network performance by minimizing
latency, optimizing resource utilization, and ensuring efficient communication between
the control plane and the data plane. The solutions to the research questions heavily rely
on the formulation approaches employed for the CPP in SDN.

The formulation of the CPP in SDN requires the consideration of various performance
metrics that directly impact the design of effective controller placement strategies. Three
fundamental metrics, namely latency, reliability, and cost, play critical roles in the evalua-
tion and optimization of the placement of controllers [81]. The first performance metric,
latency, captures the time delays experienced during data transmission and processing.
Transmission latency encompasses delays that occur between switches and controllers,
as well as inter-controller communication. It is often quantified using the average or
maximum distances between the network components. Processing latency arises when
controllers become overloaded, exceeding their processing capacity. Minimizing latency
is crucial to ensure efficient communication between the control plane and the data
plane, resulting in improved network responsiveness. Reliability constitutes the second
performance metric and is concerned with the probability of successfully reaching con-
trollers in the event of network component failures. Low reliability levels can lead to
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packet losses due to the absence of viable transmission paths. Evaluating the probabilities
associated with multiple control paths and determining the availability of such paths
are vital in ensuring network robustness and fault tolerance. The third performance
metric encompasses cost considerations. Economic costs encompass expenses related to
construction, maintenance, operation, and other financial factors. Environmental costs,
such as energy consumption and CO2 emissions, are also taken into account. Balancing
costs while optimizing controller placements is essential for achieving economically and
environmentally sustainable SDN deployments. The performance metrics can be used in
isolation or in combination to formulate the CPP as either a single-objective optimization
problem, aiming to optimize a specific metric, or a multi-objective optimization problem,
considering multiple metrics simultaneously [84].

Determining the number of controllers required is a fundamental challenge, and it is
closely intertwined with the problem of where to place the controllers. The NP-hard na-
ture of the controller placement problem [29][85] necessitates the exploration of diverse
algorithms and methodologies to identify optimal placements. One commonly employed
method is the brute force algorithm, which aims to find the optimal solution, simply
by considering the full state space of all possible placements. However, this algorithm
is inefficient and suitable primarily for small-scale networks. To address larger-scale
networks, heuristic algorithms, including the greedy algorithm, simulated annealing, ge-
netic algorithm, and others, have been widely adopted. Additionally, linear programming
and graph-based algorithms have been proposed as alternative approaches to tackle the
complexity of the controller placement problem [86].

Heller et al. [29] propose the controller placement problem with a focus on minimizing
propagation delays in wide-area networks. They utilize average latency (k-median) and
worst-case latency (k-center) as performance metrics to optimize controller placements.
By exhaustively enumerating every combination of controllers, they find that random
placement falls significantly short of the optimal placement in nearly all network topolo-
gies, thereby underscoring the substantial impact of placement on network performance.
Furthermore, in most topologies, it is challenging to optimize both average latency and
worst-case latency simultaneously. Hu et al. [87] formulate the reliability-aware controller
placement (RCP) problem. The expected percentage of control path loss is considered as a
metric to reflect the reliability of networks. In the RCP problem, they look for the number
of controllers and the placement in a network with a given failure probability of each
component such that the reliability is optimized. They find that reliability and latency
cannot be optimized at the same time for most networks. However, the placement with
optimal reliability exhibits quite a good average latency as well. Ros et al. [88] introduce
the Fault Tolerant Controller problem, wherein a heuristic algorithm is developed to
determine the optimal controller placement, considering the lower bound reliability as a
performance metric. Zhong et al. [89] define a reliability metric in the control network as
the average number of disconnected switches when a single edge fails. They propose a
min-cover-based method to minimize the number of controllers and maximize reliability.
The concept of "cover" is employed, representing a set of nodes with controllers to en-
sure that every switch in the network belongs to at least one controller’s neighborhood,
guaranteeing low propagation delays.

In this research, we aim to investigate efficient controller placement strategies using a
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reliability metric. We assume that nodes, including controllers, are always operational.
At the same time, links between nodes and controllers or between controllers are also
assumed to be always operational. However, links among nodes are subject to operational
probabilities. In addition to traditional reliability metrics based on paths, we introduce
one novel reliability metric called controller reachability. Controller reachability quanti-
fies the probability that all nodes can reach at least one controller. To calculate the exact
controller reachability value, we employ a path composition algorithm. By analyzing
more than one hundred real-world networks and considering various controller place-
ment scenarios, we aim to highlight the differences among placements and emphasize
the importance of efficient placement techniques. Subsequently, we propose different
controller placement strategies, including a strategy based on graph metrics, a greedy
algorithm, and two strategies utilizing genetic algorithms. To validate the effectiveness
of the proposed placement strategies, we conduct experiments on five representative
medium-sized real-world networks.

3.2. CONTROLLER REACHABILITY
The data plane in SDN can be mathematically represented as an undirected graph, de-
noted as G(N ,L ), where N represents the set of nodes corresponding to network de-
vices, and L represents the set of links representing connections between network de-
vices. The graph consists of N nodes and L links. Each link li j indicates the presence
of a connection between node i and node j . Notably, in the data plane, controllers are
co-located with nodes, assuming that connections between controllers and nodes are
always operational. Fig. 3.1 provides a graphical representation of an SDN network using
a graph model. Each node in the graph represents a network device, and the presence of
a red node signifies the co-location of a controller. We assume that nodes within the net-
work always remain operational and links have an independent and identical operational
probability p.

(a) SDN network (b) Graph representation

Figure 3.1: Graph representation of SDN network.

We define controller reachability Cr (K , p, s) as the probability that each node can
reach at least one controller, assuming each link is operational with probability p, when
placing K controllers in the graph G on the node set s, where the cardinality of set s is K
and s ⊆N . To calculate controller reachability, we enumerate the cases of m,1 ≤ m ≤ L
operational links and count the number of case Im in which each node can reach at least
one controller. The probability that each node can reach at least one controller given m
operational links and L−m nonoperational links is Im pm(1−p)L−m . By considering all



3.2. CONTROLLER REACHABILITY

3

41

possible cases, the controller reachability with K controllers placed at node set s can be
obtained as follows,

Cr (K , p, s) =
L∑

m=1
Im pm(1−p)L−m . (3.1)

The aforementioned enumeration method is suitable for small-scale networks, but it
becomes computationally infeasible for larger networks due to the exponential growth in
running time with an increasing number of links. To address this issue, we can estimate
the controller reachability Ĉr (K , p, s) for a given operational probability value p using
Monte Carlo simulation [31]. This estimation is obtained by performing a large number
(n) of independent sampling trials as follows:

Ĉr (K , p, s) = 1

n
Un (3.2)

where Un represents the number of samples in which every node successfully reaches
at least one controller. However, it is worth noting that Monte Carlo Simulation may not
be computationally efficient when estimating rare event probabilities [90]. Achieving a
good approximation often requires running the simulation for a significant number of
iterations.

Given the limitations of the enumeration and Monte Carlo simulation methods in
terms of network size and computation time, we propose a modified approach to calculate
controller reliability by utilizing a path decomposition algorithm. The path decomposition
algorithm offers an efficient means to compute the exact value of all-terminal reliability
as long as the width of a decomposition is sufficiently small [91]. A path decomposition of
a graph G = (V ,E ) is given by a sequence of vertex subsets (X1, X2, ..., Xr ) that satisfy three
conditions: (1) ∪1≤i≤r Xi =V ;(2) For every edge (v, w) ∈ E , there exists an index i such that
1 ≤ i ≤ r , where both endpoints v and w are elements of Xi ;(3) For any three indices i , j ,k:
if i ≤ j ≤ k, then Xi ∩Xk ⊆ X j . The width of a decomposition is given by max1≤i≤r |Xi |−
1 [92]. Pathwidth is the minimum width over all possible decompositions of a graph,
a problem known to be NP-hard [93]. All-terminal reliability Rel (p) is defined as the
probability that all terminals (nodes) can reach each or the probability that the network
is connected [94]. With the assumption that all links are independently operational
with probability p and all nodes are always operational, all-terminal reliability can be
calculated as follows,

Rel (p) =
L∑

m=1
Fm pm(1−p)L−m , (3.3)

where Fm is the number of operating network states with m operational links. In the
context of our problem, we leverage this algorithm to calculate controller reachability,
which is equivalent to all-terminal reliability when a single controller is present in the
graph. To apply the path decomposition algorithm for cases where there are multiple
controllers in the network, we introduce a modification of the problem at hand. Specifi-
cally, we consider merging all controllers together as a super-controller node. The links
connecting controllers and nodes are modified to connect the super-controller node
with nodes. To eliminate duplicate links, we adjust the link operational probabilities
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Figure 3.2: Example of controllers merging. (a) two controllers are placed on node 2 and node 4 in the graph
with five nodes; (b) merging node 2 and node 4 to a super-controller node presented in red resulting in two links
between node 1 and the super-controller node, and two links between node 5 and the super-controller node; (c)
adjusting the link operational probabilities to eliminate duplicate links.

accordingly. The resulting network comprises a single controller and does not contain
duplicate links, allowing us to apply the path decomposition algorithm to calculate the
all-terminal reliability efficiently. To illustrate the process of controllers merging, we
provide an example in Fig. 3.2.

3.3. DATA SET

In this study, we utilized real-world communication networks from the Topology Zoo
dataset [72]. We specifically selected a subset of networks consisting of 100 small-sized
networks with the number of nodes ranging from 11 to 30, as well as five medium-sized
networks with over 50 nodes. To provide an overview of the networks used, we present the
average node degree and network sizes in Fig. 3.3. The average node degree spans from
1.875 to 4.48, and among the networks, the smallest in size is Abilene with 11 nodes and
14 links, while the largest network is Cogentco with 197 nodes and 243 links. Additionally,
we present the number of nodes (N ), the number of links (L), and the average degree
dav , the number of nodes with degrees equal to one and two (d = 1 and d = 2) for the five
medium-sized networks in Table 3.1.

Figure 3.3: Average node degree with respect to network size for 100 small real-world networks and five medium
real-world networks from the Topology Zoo.
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Table 3.1: Properties of five medium-sized real-world networks from the Topology Zoo

Name N L dav d = 1 d = 2
HinerniaGlobal 55 81 2.945 1 20

Syringa 74 74 2.000 23 34
Interoute 110 146 2.655 8 53
Cogentco 197 243 2.467 22 95

GtsCe 149 193 2.591 12 80

3.4. PLACEMENT STRATEGIES

3.4.1. CONTROLLER PLACEMENT STRATEGY BASED ON DEGREE AND DIS-
TANCE

Nodes with low degrees, specifically degrees equal to one and two, exhibit higher vulnera-
bility to disconnection within a network. Testing on three distinct sets of graphs, denoted
asΩ(N ,L), where each set encompasses all non-isomorphic connected graphs with the
same numbers of nodes and links, we find that the optimal placements prefer to in-
clude nodes with low degrees. Specifically, we investigated the setsΩ(7,10),Ω(10,12), and
Ω(9,18), which contain 132, 8548, and 33366 graphs, respectively. The optimal placements
with varying numbers of controllers (2, 3, 4, and 5) are determined for every graph within
these selected sets. During this process, the degrees of the nodes corresponding to the op-
timal controller placements are recorded. The acquired information produces statistical
findings, which are shown in Fig. 3.4. The results reveal a significant trend suggesting a
preference for nodes with lower degrees in the optimal placement of controllers.

To enhance controller reachability, it is effective to assign higher priorities to nodes
with lower degrees. Moreover, considering the distance between nodes and controllers is
also important. Fig. 3.5 presents a comprehensive analysis of the distances between two
controllers across our set of 100 small real-world graphs. Each column within the figure
represents a specific graph, while each data point signifies a possible distance between
two controllers. Notably, the red data points correspond to the distances observed when
the optimal placements are implemented. By examining the positioning of these red data
points within their respective columns, valuable insights can be gained regarding the
relationship between optimal controller placements and the distance. Specifically, if a red
point is at the top of its column, it indicates that the optimal placement of this graph is
the node pair with the maximum distance. When the link operational probability p = 0.99,
the optimal placements of 67 graphs are observed to be the node pairs with the maximum
distance, while the optimal placements of 14 graphs correspond to the node pairs with
the second-largest distance. None of the analyzed graphs exhibit an optimal placement
where the selected node pair consists of two neighboring nodes, i.e. with a distance of one.
It can be concluded that distance is a significant graph metric that influences controller
reachability. When placing two controllers, the optimal placement tends to occur at the
node pair with the maximum distance. This preference for maximizing distance helps
ensure that no node within the network is located too far away from the controllers.

Considering these two graph metrics, we propose an effective strategy for placing K
controllers. The core concept of this strategy involves partitioning nodes into distinct
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sets based on their degrees, with a preference for selecting nodes from sets with smaller
degrees. In cases where nodes have the same degree, the algorithm aims to maximize the
distance between controllers, thereby minimizing the overall distance between controllers
and nodes.

Specifically, in the graph G , we denote the lowest degree as d1, the second lowest
degree as d2 (where d1 ̸= d2), the i -th lowest degree as di and the highest degree as
dM (d1 < d2 < . . . < dM ). We consider n1 nodes with degree d1 as set S(d1), n2 nodes
with degree d2 as set S(d2), ni nodes with degree di as set S(di ). Besides, we use d0 = 0,
n0 = 0, and S(d0) =; to indicate that there are no nodes with a degree of 0 in the network.
Consequently, we obtain M non-empty sets of nodes that do not overlap and collectively
cover every node in graph G . We aim to find the node set S(dk ) such that

∑k−1
i=0 ni <

K ≤∑k
i=0 ni . The node sets with degree lower than dk are defined as the initial existing

controllers set SC =⋃k−1
i=0 S(di ), the controllers are placed on every node in this set due to

their low degree. The number of remaining controllers is defined as K ′ = K −∑k−1
i=0 ni . The

nodes in S(dk ) are considered as potential locations for placing K ′ controllers according
to the distance.

If K ≤ n1, SC = ;, the nodes in S(d1) are considered as potential locations to place
K ′ = K controllers. For each node in set S(d1), we compute the sum of its distance to
other nodes in G . The node with the highest sum of distances is selected as the location
for the first controller. From the placement of the second controller onwards, we select
the node that has the longest distance to the existing controllers as the location for the
next controller.

If K > n1, the node set that we are going to place K ′ controllers in is determined as
follows: If n1 < K ≤ n1 +n2, SC = S(d1), the nodes in S(d2) are considered as potential
locations for placing K ′ = K−n1 controllers. If n1+n2 < K ≤ n1+n2+n3, SC = S(d1)∪S(d2),
the nodes in S(d3) are considered as potential locations for placing K ′ = K −n1 −n2

controllers, etc. Using this method, we can identify the locations of K −K ′ controllers
based on the node degree, and then place the remaining K ′ controllers based on the
distance within a smaller set of nodes. Within this set, the distance between each node
and the existing controllers is computed. The node with the longest distance to the
existing controllers is selected as the location for the next controller. This process is
repeated until K nodes are identified. The pseudo-code of the algorithm is presented in
Algorithm 1.

3.4.2. GREEDY ALGORITHM
The greedy algorithm is employed to determine controller placements in a step-by-step
manner. At each iteration, the algorithm selects a location that maximizes the improve-
ment in the performance metric, which in our case is the controller reachability. Since
each decision is made based solely on the available information at that step, the greedy
algorithm may yield a solution that is locally optimal but not necessarily globally optimal.

When placing the first controller in the network, there is no distinction in terms of
controller reachability among the available options. However, the choice made for the
first controller will impact the subsequent decisions. To address this "black start" problem
encountered in the greedy algorithm, we explore four different approaches to start the
algorithm:
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(a)Ω(7,10)

(b)Ω(10,12) (c)Ω(9,18)

Figure 3.4: Statistics on optimal placement for three sets of graphs. The blue bars represent the number of
graphs containing nodes with a specific degree, while the remaining bars indicate the number of graphs where
the optimal placement (at p = 0.99) of K controllers includes at least one node with that degree.
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Figure 3.5: Statistics on optimal placement for 100 real-world graphs (K = 2, p = 0.99). The x-axis denotes the
index of graphs, and the y-axis denotes the distance between the two controllers. In this figure, each point
represents a possible distance between two controllers. The red points represent the distance between two
controllers when the optimal placements are employed.

• Randomly choose a node,

• Randomly choose a node with the lowest degree,

• Use Algorithm1 to determine the first node,

• Enumerate all possible placements for K = 2 controllers and select the optimal
solution as the first two controllers to be placed.

Not surprisingly, randomly choosing a node performs poorly when placing the first few
controllers, but it gradually approaches the performance of other methods. Enumerating
all possible placements with two controllers yields the best performance, but it is rather
time-consuming. The remaining two methods both select a node with the lowest degree,
but Algorithm 1 also takes into consideration the distance. Therefore, we have ultimately
decided to use Algorithm 1 to determine the first node in the greedy algorithm. The
computational time required for determining the first node is short, almost negligible
compared to the running time of the greedy algorithm.

Starting from the second controller, the greedy algorithm iterates over all nodes
without controllers and selects the node that offers the highest improvement in controller
reachability. This process is repeated until K controllers have been placed. The pseudo-
code for the greedy algorithm is provided in Algorithm 2.

3.4.3. GENETIC ALGORITHMS
The genetic algorithm is a well-known meta-heuristic algorithm that draws inspiration
from biological evolution. In each generation, individuals from the current population
are selected as parents, and through their reproduction, new children are generated.
The algorithm aims to gradually progress towards the optimal solution by continually
improving the fitness of the individuals in the population. The genetic algorithm encom-
passes several key elements, namely chromosome representation, selection, crossover,
mutation, and fitness function computation [95]. Selection, mutation, and crossover
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Algorithm 1 Controller Placement Algorithm based on degree and distance

Input: network G , number of controllers K
Output: Set SC

1: Define set SC as the set of nodes with controllers
2: Define di as the i -th lowest degree
3: Define ni as the number of nodes with degree di

4: Define S(di ) as the set of nodes with degree di

5: Define n0 = 0, S(d0) =;
6: Define di st ance(u, v) as the shortest path length between u and v
7: Find the set S(dk ) such that

∑k−1
i=0 ni < K ≤∑k

i=0 ni

8: SC =⋃k−1
i=0 S(di )

9: K ′ = K −∑k−1
i=0 ni

10: if K < n1 then
11: for v ∈ S(d1) do
12: SumDi st ance(v) =∑

u∈G ,u ̸=v (di st ance(u, v))
13: end for
14: Add the node v with the highest SumDi st ance(v) into SC

15: K ′ = K ′−1
16: end if
17: while K ′ > 0 do
18: for v ∈ S(dk ) do
19: D(v) = min(di st ance(u, v)) where u ∈ SC

20: end for
21: Add the node v with the highest D(v) into SC

22: K ′ = K ′−1
23: end while
24: return Set SC

are often referred to as biologically-inspired operators. In this research, we developed
two genetic algorithms: the classic genetic algorithm and the heuristic genetic algorithm.
Both algorithms employ the same method for generating the initial population, and the
fitness value is determined based on the controller reachability.

In the context of the controller placement problem, an individual in the genetic algo-
rithm population is represented as a sequence of K genes, where each gene corresponds
to the node that hosts a controller. To generate the initial population, we employ the
method proposed in [96], which ensures that each gene has a similar frequency of oc-
currence in the population. Specifically, the gene frequency f in the initial population is
determined by the following equation,

f = max

{
2,

⌈
N

100
· ln(ns )

d

⌉}
(3.4)

where N is the number of nodes, K is the number of controllers, ns =
(N

K

)
is the number

of possible placements, d = ⌈ N
K

⌉
is the rounded-up density of the problem. The gene

frequency is at least two. The initial population size P can be calculated by P = f ·d .
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Algorithm 2 Greedy algorithm

Input: network G , number of controllers K
Output: Set SC

1: Define set SC as the set of nodes with controllers
2: The first controller SC 1 is chosen based on algorithm 1
3: K = K −1
4: while K > 0 do
5: for node v ∉ SC do
6: Compute the controller reachability Cr (v) if controllers are placed at node v and

nodes in SC

7: end for
8: Add node v with the highest Cr (v) into set SC

9: K = K −1
10: end while
11: return Set SC

After determining the frequency and the population size, the nodes are assigned
to each solution. In the first set of d solutions, the nodes 1,2, . . . ,K are assigned to the
first solution, the nodes K +1,K +2, . . . ,2K are assigned to the second solution, etc. The
process is repeated until all nodes are assigned to solutions, resulting in d solutions. If
N /K is not an integer, random non-repeating genes are selected to fill the last solution.
In the second set of d solutions, the nodes 1,3, · · ·2K −1 are assigned to the first solution,
the nodes 2K +1,2K +3, · · ·4K −1 are assigned to the second solution, etc. The process
continues until f sets of solutions are obtained. By adjusting the increment of nodes when
generating different sets of solutions, we ensure that there are no repeated solutions in the
initial population. Next, we will present how the two algorithms work in the subsequent
steps.

CLASSIC GENETIC ALGORITHM

• Selection operator Binary tournament selection, a selection method known for
its fast convergence and ease of implementation [97], is employed in this study.
Two individuals are randomly sampled from the population, and the tournament
is conducted based on their fitness values. The individual with the highest fitness
value is selected to proceed with the following operation.

• Crossover operator Partial Mapped Crossover (PMX) is employed as the crossover
operator in this study. It is recognized as the most commonly used technique for
permutation-encoded chromosomes. PMX ensures that the generated offspring
do not contain any duplicate genes [95], making it particularly suitable for this
context. Compared to other crossover operators, PMX has demonstrated superior
performance. The crossover rate is set to pc = 0.8.

• Mutation operator The mutation operator is employed to preserve the genetic
diversity within the population, thereby preventing the algorithm from converging
to a locally optimal solution. Randomly selecting a gene from an individual, the
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mutation operator replaces it with another gene that is not present in that individual.
This process guarantees that the offspring do not contain any duplicate genes. In
this research, the mutation rate is set to pm = 0.1.

The classic genetic algorithm will terminate after the iteration times reaches the preset
value. The pseudo-code of the classic genetic algorithm is presented in Algorithm 3.

Algorithm 3 Classic genetic algorithm

Input: network G , number of controllers K , maximum number of iterations M AX
Output: Set SC

1: Define set SC as the set of nodes with controllers
2: Determine the population size P
3: Initializing the population
4: Compute the fitness value of each individual
5: Set iteration counter t = 0
6: while t < M AX do
7: Select P individuals from the population using tournament selection.
8: Apply crossover on P/2 pairs of individuals with crossover probability.
9: Apply mutation on the offspring with mutation probability.

10: New population with size P is generated
11: t = t +1
12: end while
13: Add nodes in the best solution in the last iteration to set SC

14: return Set SC

HEURISTIC GENETIC ALGORITHM

The heuristic genetic algorithm employed in this research is based on the algorithm pro-
posed by Alp et al. for solving the facility location problem, where evolution is facilitated
by a greedy heuristic [96]. In the heuristic genetic algorithm, only the crossover operator is
utilized. Unlike the traditional crossover method that involves exchanging genes between
two individuals to produce offspring, this novel genetic algorithm begins by combining
the genes of the two parents. Subsequently, a greedy deletion heuristic is applied to
reduce the number of genes until the solution contains exactly K genes. Furthermore,
instead of generating a new population at each iteration, the algorithm continuously
updates the initial population.

• Crossover operator

Two individuals are randomly selected as parents to initiate the crossover process.
The genes of the parents are combined to create a temporary offspring. However,
this offspring cannot be directly utilized in the subsequent steps as it contains
2K genes, which exceeds the desired number of K genes. To refine the offspring
and ensure it consists of only K genes, a removal procedure is applied. The gene
removals follow two rules until K genes are kept:

– The gene that is present twice is kept.
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– The gene that contributes least to improving controller reachability is re-
moved.

Although the crossover increases the time demands, the quality of the offspring is
improved.

Whenever a new individual is produced through crossover, it undergoes a comparison
process with the existing members of the population. If the generated individual is not
identical to any of the current population members and exhibits a better fitness value
(controller reachability) than the worst fitness value in the population, it will replace
the worst individual. This replacement mechanism facilitates the gradual improvement
of the average quality of the entire population. Furthermore, the population maintains
good diversity as it consists of non-duplicate individuals. The termination condition
for the heuristic algorithm is reached when the best fitness value remains unchanged in
successive iterations. The pseudo-code of the heuristic genetic algorithm is presented in
Algorithm 4.

Algorithm 4 Heuristic genetic algorithm

Input: network G , controllers’ number K
Output: Set SC

1: Determine the population size P
2: Initializing the population
3: Compute the fitness value of each individual
4: Store the best value and the worst value
5: Set iteration counter t = 0
6: while t < n do
7: Select two individuals from the population randomly
8: Apply crossover and generate one offspring
9: if offspring not in population then

10: Compute the fitness value of offspring
11: if fitness value > worst value then
12: Update population
13: else
14: t = t +1
15: end if
16: else
17: t = t +1
18: end if
19: end while
20: Add nodes of the best solution to set SC

21: return Set SC
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Table 3.2: The number of graphs based on the scaled average reachability values in each interval with K = 2,3,4,5

K (0, 0.25) (0.25, 0.5) (0.5, 0.75) (0.75, 1)
2 31 52 11 6
3 25 48 21 6
4 17 50 27 6
5 8 54 31 7

3.5. RESULTS

3.5.1. HOW DOES PLACEMENT AFFECT CONTROLLER REACHABILITY
To investigate performance disparities among different controller placement strategies,
we conducted a comprehensive analysis of controller reachability for the small-sized
real-world networks with the number of nodes ranging from 11 to 30. Specifically, we
considered the placement of 2, 3, 4, and 5 controllers with an operational probability p
set to 0.99. The resulting controller reachability values were utilized to determine the
maximum, minimum, and average reachability, represented by error bars in Figs. 3.6
and 3.7. Analysis of the figure reveals that only a few networks achieve near-optimal
controller reachability when randomly placing controllers. For most networks, the average
reachability values deviate significantly from the optimal levels. To further substantiate
our observations, we employed max-min scaling on our set of 100 graphs to quantify
the deviation from the average reachability value (random placements) to the optimal
value (optimal placement). The scaling process involved dividing the range between the
scaled maximum value (1) and the scaled minimum value (0) into four intervals: (0, 0.25),
(0.25, 0.5), (0.5, 0.75), and (0.75, 1). When the scaled value equals 0, the average controller
reachability is the farthest from the optimal reachability and when the scaled value equals
1, the average controller reachability is the optimal reachability. The number of graphs
falling within each interval based on the scaled average reachability values is shown in
Table 3.2.

Our analysis reveals that an increasing number of networks fall within the intervals
(0.5, 0.75) and (0.75, 1) as the number of controllers (K ) increases, which suggests that the
performance of random placement approaches closer to that of the optimal placement
with a larger K . However, for most networks, the controller reachability of random
placements is still far away from the controller reachability with the optimal placement,
regardless of the value of K . Consequently, it is imperative to employ efficient strategies
for controller placement to achieve enhanced performance for most networks.

3.5.2. HOW MANY CONTROLLERS ARE NEEDED
To investigate the optimal number of controllers required in the networks, we analyzed
our 100 small real-world networks to determine the optimal controller placements for
varying values of K , ranging from one to five, as depicted in Fig. 3.8. Although the sizes
of the networks are close, the controller reachability with a single controller exhibits a
significant range, spanning from 0.75 to 0.9995.

Upon setting a controller reachability threshold of 0.995, we observed that among the
analyzed networks, six networks achieved this criterion with a single controller, while 26
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(a) K = 2

(b) K = 3

Figure 3.6: Controller reachability error bars for 100 small real-world graphs when K = 2,3 and link operational
probability equal to 0.99. The x-axis denotes the index of the graph; the y-axis denotes the controller reacha-
bility. Each error bar represents the maximum, minimum, and average controller reachability of all possible
placements of K controllers.

networks necessitated two controllers. Furthermore, ten networks met the requirement
with three controllers, one network required four controllers, and four networks necessi-
tated five controllers. Notably, 53 networks could not attain a controller reachability of
0.995 even with five controllers placed.

Determining the optimal number of controllers should be based on specific require-
ments, link probability p, and network topology. It is impractical to establish a universal
number that applies to all networks. Nevertheless, our observations indicate that deploy-
ing multiple controllers consistently enhances controller reachability across all networks.
Notably, when K = 2, all the curves show a significant improvement in controller reacha-
bility with just two controllers.

3.5.3. COMPARE DIFFERENT PLACEMENT STRATEGIES

To assess the effectiveness of the proposed four placement strategies, we conducted
experiments using five medium-sized networks. Considering the large number of nodes
in each graph and the observation that optimal placements often involve nodes with
low degrees, we investigated the feasibility of utilizing nodes with degrees below the
average degree as potential candidates instead of all nodes for controller placements.
In addition to the four strategies, we compared the results with random placements
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(a) K = 4

(b) K = 5

Figure 3.7: Controller reachability error bars for 100 small real-world graphs when K = 4,5 and link operational
probability equal to 0.99. The x-axis denotes the index of the graph; the y-axis denotes the controller reacha-
bility. Each error bar represents the maximum, minimum, and average controller reachability of all possible
placements of K controllers.

among all nodes, which were generated through 10000 simulations, where the average
value was computed over the 10000 realizations. For the HinerniaGlobal network and
the Syringa network, we also obtained the optimal placements for different values of K
within the potential nodes set, comprising nodes with degrees equal to one and two. The
outcomes for the five medium-sized networks are presented in Figs. 3.9 and 3.10. Notably,
all four placement strategies yielded satisfactory results for the HinerniaGlobal, Interoute,
and GtsCe networks. However, the graph metric-based strategy exhibited relatively poor
performance compared to the other methods for the Syringa and Cogentco networks. The
discrepancy can be attributed to the influence of network topology.

To elucidate the limitations of the graph metric-based strategy in certain scenarios,
we compared its node selection approach with the greedy method, which also involves
selecting nodes one by one. Here, we present an example using the Syringa network with
ten controllers and a link operational probability of p = 0.99, as depicted in Fig. 3.11. In
this example, both the greedy algorithm and the graph metric-based strategy initially
select node 5 as the first controller. However, as K = 2, the subsequent controller selec-
tions differ between the two strategies. The greedy algorithm chooses node 18 as the
location for the second controller, whereas the graph metric-based method selects node
21. Upon closer examination of the network topology, it becomes evident that the greedy
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Figure 3.8: The optimal controller reachability of 100 graphs. In this figure, the x-axis denotes the number
of controllers, the y-axis denotes the controller reachability. Each curve represents the optimal controller
reachability of a graph with K = 1,2,3,4,5 at p = 0.99.

(a) HinerniaGlobal

(b) Syringa

Figure 3.9: Comparison of placement strategies on two of five real-world networks by placing different numbers
of controllers with link operational probability p equal to 0.99. The x-axis denotes the number of controllers,
the y-axis denotes the controller reachability.
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(a) Interoute

(b) Cogentco

(c) GtsCe

Figure 3.10: Comparison of placement strategies on three of five real-world networks by placing different
numbers of controllers with link operational probability p equal to 0.99. The x-axis denotes the number of
controllers, the y-axis denotes the controller reachability.

algorithm makes a more advantageous choice. Although node 21 has the greatest distance
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Figure 3.11: Syringa: ten controllers chosen by the graph metric-based strategy and the greedy algorithm. The
green nodes are found by both strategies, the red nodes are only found by the greedy algorithm, and the blue
nodes are only found by the graph metric-based strategy.

from node 5, with a distance of 31, node 18 is more prone to disconnection as the hop
count from node 18 to the "ring" portion of the network is three, which is higher than
the hop count from node 21 and the "ring" portion. In the Syringa network, the "ring"
portion can be considered relatively more reliable. Consequently, in scenarios where
similar situations arise, optimal decisions cannot be solely based on node degree and
distance metrics. The provided example serves to emphasize the limitations of the graph
metric-based strategy in specific network topologies.

3.6. CHAPTER SUMMARY
In this chapter, we adopt controller reachability as the performance metric for addressing
the controller placement problem. Controller reachability is defined as the probability
that each node can reach at least one controller. To evaluate controller reachability, we
employ the path decomposition algorithm, commonly used for computing all-terminal
reliability. By applying this algorithm, we can calculate the controller reachability and
quantify the impact of different placements on network performance. Our analysis reveals
that the choice of placement strategy can significantly influence controller reachability,
highlighting the importance of efficient placement strategies. Moreover, we investigate
how many controllers are necessary to ensure satisfactory performance. For small-size
networks, introducing a second controller yields substantial improvements in controller
reachability for most networks. However, it is important to note that the number of
controllers required depends on the specific network topology and the performance re-
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quirements in real-world scenarios. Thus, determining the optimal number of controllers
necessitates consideration of both network topology and the desired performance levels.

Upon analyzing the optimal placements for various graphs, we have determined that
two topological graph metrics, namely degree and distance, heavily influence controller
reachability. Building upon this insight, we propose a controller placement strategy that
leverages degree and distance as key factors. Additionally, we develop three heuristic
algorithms: the greedy algorithm, the classic genetic algorithm, and the heuristic ge-
netic algorithm, to facilitate controller placement. To evaluate the effectiveness of these
strategies, we conducted experiments using real-world graphs from the Topology Zoo
dataset. The strategy based on graph metrics proves to be a time-efficient approach,
delivering controller placements comparable to those obtained using other heuristic
methods. Although the strategy based on graph metrics exhibits certain limitations for
specific network topologies, its overall performance is satisfactory. Among the three
heuristic algorithms, the greedy algorithm demonstrates superior performance across
all networks. Both the classic genetic algorithm and the heuristic genetic algorithm are
more computationally intensive, yet they do not surpass the performance of the greedy
algorithm. Considering both performance and algorithm complexity, we conclude that
the strategy based on graph metrics and the greedy algorithm are suitable approaches for
addressing the controller placement problem.
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4
RECOVERABILITY OF NETWORK

CONTROLLABILITY WITH RESPECT

TO NODE REMOVALS

Network controllability is a critical attribute of dynamic networked systems. Investigat-
ing methods to restore network controllability after network degradation is crucial for
enhancing system resilience. In this study, we develop an analytical method based on
degree distributions to estimate the minimum fraction of required driver nodes for net-
work controllability under random node additions after the random removal of a subset
of nodes. The outcomes of our method closely align with numerical simulation results for
both synthetic and real-world networks. Additionally, we compare the efficacy of various
node recovery strategies across directed Erdös–Rényi (ER) networks, swarm signaling net-
works (SSNs), and directed Barabási-Albert (BA) networks. Our findings indicate that the
most efficient recovery strategy for directed ER networks and SSNs is the greedy strategy,
which considers node betweenness centrality. Similarly, for directed BA networks, the greedy
strategy focusing on node degree centrality emerges as the most efficient. These strategies
outperform recovery approaches based on degree centrality or betweenness centrality, as
well as the strategy involving random node additions.

This chapter is based on the published paper [79].

61



4

62 4. RECOVERABILITY OF NETWORK CONTROLLABILITY WITH RESPECT TO NODE REMOVALS

4.1. INTRODUCTION
Network controllability has been extensively investigated [98], particularly due to its
applicability to various complex systems that can be represented as networks. These
include domains such as power grids [99], transportation systems [100], and telecom-
munication systems [101]. Controllability represents an important characteristic of such
systems, affording the ability to achieve varied control objectives. For example, ma-
nipulating approximately 17% neurons in the C. elegans worm can elicit coordinated
body responses, while controlling 5% of a swarm of honeybees can guide the swarm
to new destinations [102]. However, controllability can falter in the face of malicious
attacks or natural catastrophes, resulting from the failure of system components [65]. To
improve the resilience of the system against attacks [103], bolstering its robustness be-
comes paramount. Moreover, there is a pressing need to explore strategies for efficiently
restoring failed components to ensure controllability within the system [104].

Network controllability discussed in this research pertains to the concept of structural
controllability within directed networks, which do not contain self-loops. In the domain
of control theory, a system is considered controllable if it can transition from an initial
state to any desired state in a finite time by applying external inputs [105]. Lin intro-
duced the notion of structural controllability [75], where a system exhibiting structural
controllability maintains a high likelihood of controllability even after modifying the
weights of interconnections. Exploring the intricate interplay between network topol-
ogy and controllability, Liu et al. [24] devised the framework of structural controllability
for directed networked systems. This framework focuses on injecting specific external
input nodes to achieve full system controllability. Importantly, it is worth noting that
network controllability differs from the widely recognized concept of "pinning control-
lability" [102]. The latter explores methods for driving the system to specific states by
manipulating specific nodes. For example, network synchronization explores whether
all nodes can exhibit identical dynamic trajectories [106] and investigations of network
consensus problems [107] aim to determine strategies to guide all nodes towards the
same state.

Errors or attacks within a system can cause a degradation in network performance [108].
Effective and efficient recovery of networks after attacks has gained considerable atten-
tion [109]. For example, Shang has explored local recovery strategies from a network
percolation perspective [110], as well as strategies for restoring consensus in nonlinear
multi-agent systems [104]. Moreover, He et al. [32] have defined network recoverability as
a network’s capacity to revert to a desired state after facing disruptions. In the context
of network recoverability with a focus on network controllability, Chen et al. [28] ex-
plored efficient recovery strategies after random link removals. Their study revealed that
the greedy recovery strategy outperforms degree-based and eigenvector-based recovery
strategies. Additionally, they introduced an analytical method based on degree distri-
butions to predict network controllability during recovery. However, their investigation
did not include the effective recovery strategy of nodes after node failures, a scenario
frequently observed in real-life networks. Addressing this gap, our study aims to predict
network controllability under random node additions and explore efficient strategies for
node recovery in network controllability.

Since network recovery is the reverse process of attacking or disrupting networks,
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we can derive various recovery strategies by drawing insights from the attack process.
Researchers have explored efficient strategies to undermine network controllability and
methods to forecast network controllability under attack scenarios. Targeted attacks
are generally more detrimental than random attacks [65]. Pu et al. [62] demonstrated
that node removals based on node degrees are more harmful than random node attacks
in directed Erdös-Rényi (ER) and scale-free (SF) networks. Directed ER networks are
synthetic networks generated by randomly placing directed links, while directed scale-
free networks are generated to ensure that the degree distributions follow power-law
distributions. Wang et al. [64] found that intentionally attacking bridge links, whose re-
moval can disconnect the network, effectively disrupts network controllability compared
to link removals based on node degrees and distances in directed ER and SF networks.
Critical nodes and links are identified based on their propensity to increase the number
of driver nodes required for network controllability after removals, where driver nodes
are defined as nodes where external inputs are injected [24]. Building on this, Lou et
al. [111] developed a hierarchical attack framework that incorporates critical nodes or
links. In this framework, nodes or links are removed based on categorical priorities, and
within the same category, nodes or links with higher centrality values are removed first.
Their findings presented that the destructiveness of this attack framework is stronger than
strategies that solely leverage centrality features like node degrees or betweenness when
targeting nodes or links. Given that attack strategies considering degree and betweenness
are extensively investigated, we aim to explore the effectiveness of different degree-based
and betweenness-based recovery strategies in terms of network controllability after node
removals.

Several techniques have been employed to predict the minimum number of driver
nodes required under attack scenarios, including regression models, analytical methods
using degree distributions, and machine learning approaches. Sun et al. [65] introduced
linear regressions for removal fractions less than lc and quadratic regressions for fractions
greater than lc (where lc is the fraction of critical links) to approximate the fraction of
driver nodes for random and targeted link removals based on critical links. Liu et al. [24]
proposed an analytical method based on degree distributions to estimate the minimum
fraction of driver nodes. Chen et al. [28] presented an analytical method using degree
distributions for random link removals. Dhiman et al. [112] utilized an artificial neural
network to predict the minimum number of driver nodes under link-targeted removals,
outperforming analytical methods based on critical links. Lou et al. [113] predicted con-
trollability robustness under targeted attacks by utilizing convolutional neural networks,
which process the adjacency matrix as a grayscale image. The performance of regression
models is worse than the analytical methods using degree distributions and machine
learning approaches. While machine learning methods require training data, analytical
methods offer time and computational cost savings. This encourages us to develop an
analytical method based on degree distributions to predict network controllability during
the random node recovery process.

In this study, we focus on the recovery process of network controllability after random
node removals. We propose an analytical method based on degree distributions to approx-
imate the number of driver nodes required during random node additions. To validate our
analytical approach, we apply it to both synthetic and real-world networks. Additionally,
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we investigate six other node recovery strategies on synthetic networks: degree-based
recovery strategy, betweenness-based recovery strategy, updated degree-based recovery
strategy, updated betweenness recovery strategy, greedy degree-based recovery strategy,
and greedy betweenness-based recovery strategy. To measure the efficiency of a recovery
strategy for network controllability, we utilize two modified recoverability indicators of
the recovery process [38], [111].

The remainder of the chapter is the following. Section 4.2 provides a detailed descrip-
tion of the networks utilized in this study. Section 4.3 outlines the attack scenario and the
recovery strategies employed, the analytical approximation for network controllability
under random node additions, and the two recoverability indicators used in this study.
Section 4.4 presents results of the analytical approximation for network controllability
under random node additions, and based on the recoverability indicators, we compare
and evaluate the efficiency of different recovery strategies on synthetic networks. The
chapter is summarized in Section 5.6.

4.2. NETWORK DATA
In this study, we evaluate the effectiveness and efficiency of our proposed methods by
applying them to synthetic networks and real-world communication networks.

4.2.1. SYNTHETIC NETWORKS
The synthetic networks under investigation comprise directed Erdös-Rényi (ER) networks,
swarm signalling networks (SSNs), directed Barabási-Albert (BA) networks and directed
power-law (PL) distributed networks.

1. Directed ER networks

Directed ER networks with N nodes are constructed by randomly placing directed
links between any two nodes with a given probability pER . Both the in-degree and
out-degree distributions of the generated directed ER network follow the Poisson
distribution. In this research, two directed ER networks have been generated with
N = 500, pER = 0.007 and N = 1000, pER = 0.004, respectively, where the average
total degree is 7 and 8, correspondingly.

2. SSNs

In this study, we employ the topology of SSNs proposed and developed by [71][114].
The SSN exhibits a regular out-degree distribution, while its in-degree distribution
follows a Poisson distribution. To generate SSNs, we specify two parameters: the
number of nodes N and the out-degree value k. Each node randomly creates k
outgoing links to other nodes. Specifically, we generated SSNs with N = 500,k = 2
and N = 500,k = 4. The total average degree is 4 and 8, respectively.

3. Directed PL distributed networks

Directed power-law distributed networks have power-law degree distributions,
which are characterized by a specific power-law exponent γ and the minimum
value of the degree α. To generate directed power-law distributed networks, we first
generate a power-law degree sequence using the Python package powerlaw [115].
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Next, we use the configuration model [116] to generate a digraph and remove
self-loop links. To ensure that the generated network conforms to the power-law
distribution, we use the same Python package to fit the degree distributions. We
only use generated networks that have a difference between the exponent used and
the average fitted power-law exponent of the in-degree and out-degree distribution
smaller than 0.01. In this study, we choose two PL distributed networks with 10000
nodes, one with γ= 2.3,α= 3 and the other one with γ= 3,α= 3. The average total
degrees are around 22 and 10.3, respectively.

Directed BA networks also exhibit power-law degree distributions. To generate a
directed BA network, we first generate an undirected BA network [117] by giving two
parameters: the number of nodes N and the number of links m that a new node
preferentially attaches to existing nodes with high degrees. The initial network is a
star network with m +1 nodes. Once the undirected BA network is established, we
proceed to randomize the orientations of links, thereby transforming the network
into a directed structure. We generated directed BA graphs with parameters N =
500,m = 2 and N = 500,m = 4, respectively, where the average total degree is 4
and 8. As the number of nodes N increases in the directed BA networks with
m = 2 and m = 4, the average power-law exponents of the in-degree and out-
degree distributions, obtained using the aforementioned Python package, converge
to around 2.9 over 10000 networks. These results are presented in Appendix B,
Table B.1. We opted for directed BA graphs with 500 nodes rather than power-law
distributed graphs with 10000 nodes to reduce the computational time required for
simulations while investigating the performance of different recovery strategies in
directed PL distributed networks.

4.2.2. REAL-WORLD NETWORKS

For the real-world networks, we choose 202 communication networks from the Internet
Topology Zoo data set [72], whose number of nodes ranges from 11 to 754. To change
undirected communication networks into directed networks, based on the node attribute:
source node or target node [65], we assign the direction of the link from the source node
to the target node. The properties of the 202 communication networks, in terms of the
number of nodes, number of links and average degree, are depicted in Fig. 4.1. Apart from
the small and medium-sized communication networks, we incorporate an additional
seven larger directed networks obtained from the Network Data Repository [118] and the
SNAP dataset collection [119]. These selected networks originate from diverse domains,
such as the world wide web (WebSpam [120] and Indochina [121]), a Wikipedia adminship
election dataset (Wiki Vote [122]), a retweet network dataset (Qatif [123]), an E-mail
network dataset (Email Eu core [124]), and internet peer-to-peer network datasets (p2p
Gnutella25 [125] and p2p Gnutella08 [126]). Essential details such as the number of
nodes (N ) and links (L) and the average degree (dav ) of these seven larger networks are
presented in Table 4.1.
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Figure 4.1: Properties of 202 real-world networks from the Internet Topology Zoo data set

Table 4.1: Properties of seven real-world networks

Name N L dav

Qatif [118] 7537 8568 2.274
p2p Gnutella25 [119] 22663 54693 4.827
p2p Gnutella08 [119] 6299 20776 6.597

Indochina [118] 11358 47606 8.383
WebSpam [118] 4767 37375 15.681
Wiki Vote [119] 7066 141779 40.130

Email Eu core [119] 986 46771 94.870
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4.3. PRELIMINARIES

4.3.1. ATTACK AND RECOVERY SCENARIOS
In this study, the network attack process is executed iteratively. At each time step, a node
is uniformly and randomly chosen and subsequently removed. Concurrently, the links
connected to other nodes are eliminated when the selected node is removed. We stop
removing nodes when 15% of the nodes are removed from the network.

In the recovery phase, we employ seven distinct recovery strategies within our investi-
gation: random recovery strategy, degree-based recovery strategy, betweenness-based
strategy, updated degree recovery strategy, updated betweenness recovery strategy, greedy-
degree recovery strategy, and greedy-betweenness recovery strategy. When implementing
these strategies, we focus on restoring the nodes. At each step, a single node is recovered
along with its previously removed links that connect to nodes still present in the attacked
graph based on the recovery strategy. We persist in adding back the removed nodes until
the original network is fully restored.

The random recovery strategy involves selecting a node uniformly and randomly
from the set of removed nodes at each step. This chosen node is then added to the
attacked network. On the other hand, the degree-based recovery strategy relies on the
degree information derived from the initial graph (i.e., the graph prior to the attack).
The procedure entails ranking the removed nodes based on their degree values in the
original network. Throughout the recovery phase, these nodes are gradually reintroduced
to the network in accordance with their degree ranks and their original connections.
Similarly, the betweenness recovery strategy is rooted in betweenness centrality in the
original graph. Nodes that have been removed are ranked according to their betweenness
values as calculated from the original network. Nodes with higher betweenness centrality
rankings are afforded higher priority during the recovery process, and they are added into
the network earlier, including their original connections with other existing nodes in the
attacked graph.

The updated degree recovery strategy involves selecting a removed node at each
time step that, upon reintegration into the attacked network, will possess the highest
degree compared to other removed nodes undergoing the same process. In cases where
multiple nodes would have the same highest degree after reintegration, their degrees in
the original network are compared. The node with the highest original degree is prioritized
for the addition. Should the degrees in the original network be equal, a random selection
between the nodes is made. Similarly, the updated betweenness recovery strategy follows
a comparable approach. The key distinction lies in the use of betweenness values instead
of degree values at each step for selecting the node to be reintroduced into the network.

The greedy-degree recovery strategy operates by selecting a removed node from the
set in each step to minimize the number of driver nodes most effectively. If multiple
nodes offer the same potential reduction in the minimum number of driver nodes, the
original degrees of the removed nodes are compared. The node with the higher initial
degree is given priority for reintegration. If removed nodes yield an equal reduction
in the minimum number of driver nodes and have identical initial degrees, a random
selection determines which node is added back. Similarly, the greedy-betweenness
recovery strategy follows a similar approach. However, instead of relying on initial degrees
as a determining factor for reintegration, the initial betweenness values of the removed
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nodes are used.

4.3.2. ANALYTICAL APPROXIMATIONS OF THE NUMBER OF DRIVER NODES
Network controllability has been introduced in Chapter 2 Section 2.3. The analytical
approximation for network controllability with respect to random node removals has been
described in Chapter 2 Section 2.5.1. In this study, we will denote a network perturbation,
either a node removal or a node addition, as a challenge. This study uses challenge K to
present the number of manipulations under node removals or additions. A manipulation
represents a node removal or a node addition. Challenge K represents that a fraction
p = K

N of nodes was removed during the removal process. Hence K = 0 corresponds to the
graph in the initial state before the attack. Then the minimum fraction of driver nodes at
challenge K satisfies

nD (K ) = 1

2

(
1− K

N

)
{Ḡi n (ω2)+Ḡi n (1−ω1)−2+Ḡout (ω̂2)+Ḡout (1− ω̂1)

+k

(
1− K

N

)
[ω̂1 (1−ω2)+ω1 (1− ω̂2)]}+ K

N
,

(4.1)

satisfying Eq. (2.13).
Under random node additions, suppose the total number of removed nodes (chal-

lenges) during the attack process is Ka , the total number of nodes added back at challenge
K is K −Ka , and the fraction of removed nodes p at challenge K is equal to p = 2Ka

N − K
N .

Therefore, during random additions, the minimum fraction of driver nodes at challenge
K is

nD (K ) = 1

2

(
1− 2Ka

N
+ K

N

)
{Ḡi n (ω2)+Ḡi n (1−ω1)−2+Ḡout (ω̂2)+Ḡout (1− ω̂1)

+k

(
1− 2Ka

N
+ K

N

)
[ω̂1 (1−ω2)+ω1 (1− ω̂2)]}+ 2Ka

N
− K

N
,

(4.2)

satisfying Eq. (2.13).

1. Directed ER networks

Both the in-degree distribution Pi n (ki n) and the out-degree distribution Pout (kout )
of ER networks follow a Poisson distribution with average degree k. Therefore, the
generating functions of in-degree and out-degree are as follows,

Gi n (x) = e−k(−x+1),Gout (x) = e−k(−x+1). (4.3)

The minimum fraction of driver nodes nD at challenge K under random removals
in the ER networks can be obtained through Eqs. (2.11), (4.1) and (2.13) as

nD (K ) = K

N
+ K

N
ω2 −ω2 +

[
1− K

N
+k

(
1− K

N

)2

(1−ω2)

]
ek

(
1− K

N

)
(ω2−1) (4.4)

where ω2 satisfies 1−ω2 −e−k
(
1− K

N

)
e
−k

(
1− K

N

)
(1−ω2) = 0.
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Then, the minimum fraction of driver nodes nD at challenge K under random
additions satisfies

nD (K ) =
[

1− 2Ka

N
+ K

N
+k

(
1− 2Ka

N
+ K

N

)2

(1−ω2)

]
e

k
(
1− 2Ka

N + K
N

)
(ω2−1)

+ 2Ka

N
− K

N
+

(
2Ka

N
− K

N

)
ω2 −ω2

(4.5)

where ω2 satisfies 1−ω2 −e
−k

(
1− 2Ka

N + K
N

)
e
−k

(
1− 2Ka

N + K
N

)
(1−ω2)

= 0.

2. SSNs

In SSNs with N nodes and average in-degree and out-degree equal to k, the in-
degree distribution resembles a Poisson distribution with mean value k and the
out-degree distribution follows a Dirac delta function. As a result, the generating
functions of in-degree and out-degree distribution can be denoted as follows,

Gi n (x) = e−k(−x+1),Gout (x) = xk . (4.6)

Based on Eqs. (2.11), (4.1) and (2.13), the minimum fraction of driver nodes nD at
challenge K under random removals can be calculated by

nD (K ) = K

N
+ K

N
ω2 −ω2 +

[
1− K

N
+ (k −1)

(
1− K

N

)2

(1−ω2)

]
ek

(
1− K

N

)
(ω2−1)

(4.7)

where ω2 satisfies 1−ω2 −
[

K
N + (

1− K
N

)(
1−e−k

(
1− K

N

)
(1−ω2)

)]k−1 = 0.

Then the minimum fraction of driver nodes nD at challenge K under random
additions can be obtained by

nD (K ) =
[

1− 2Ka

N
+ K

N
+ (k −1)

(
1− 2Ka

N
+ K

N

)2

(1−ω2)

]
e

k
(
1− 2Ka

N + K
N

)
(ω2−1)

+ 2Ka

N
− K

N
+

(
2Ka

N
− K

N

)
ω2 −ω2

(4.8)

where ω2 satisfies 1−ω2 −
[

2Ka
N − K

N +
(
1− 2Ka

N + K
N

)(
1−e

−k
(
1− 2Ka

N + K
N

)
(1−ω2)

)]k−1

=
0.

3. Directed PL distributed networks

For directed power-law distributed networks, we suppose the in-degree distribu-
tion and out-degree distribution both follow the pure power-law distribution with
minimum degree a and exponent γ, which can be denoted as follows,

Pi n (ki n) =Ci nk−γ
i n , Pout (kout ) =Cout k−γ

out , (4.9)
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where Ci n = 1∑∞
ki n=a k

−γ
i n

and Cout = 1∑∞
kout =a k

−γ
out

, in short Ci n = Cout = 1
ζ(γ,a) where

ζ
(
γ, a

)
is the Hurwitz Zeta function. The average degree satisfies k = ζ(γ−1,a)

ζ(γ,a) . Cor-

respondingly, the generating functions can be obtained by

Gi n (x) = xaΦ
(
x,γ, a

)
ζ
(
γ, a

) , Gout (x) = xaΦ
(
x,γ, a

)
ζ
(
γ, a

) , (4.10)

whereΦ (z, s,α) is the Lerch transcendent function. Together with Eqs. (2.11), (4.1)
and (2.13), the fraction of the minimum fraction of driver nodes nD at challenge K
under random removals can be calculated by

nD =
(
1− K

N

)(− K
N ω2 + K

N +ω2
)a
Φ

(− K
N ω2 + K

N +ω2,γ, a
)

ζ
(
γ, a
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N
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Φ

( ( K
N −1

)
Φ
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N ω2+ K
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ζ
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)
×

(( K
N −1

)(− K
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Φ
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)
ζ
(
γ−1, a

) +1
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+
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(
2 K

N −1− ( K
N
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(
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)
+2

K

N
−1,

(4.11)

where 1−ω2 − H̄out
(
1− H̄i n (ω2)

)= 0.
Then the fraction of the minimum fraction of driver nodes nD at challenge K under
random additions can be acquired by
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nD =
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(4.12)

where 1−ω2 − H̄out
(
1− H̄i n (ω2)

)= 0.

4.3.3. RECOVERABILITY INDICATORS
To facilitate the comparison of various recovery strategies, recoverability indicators are
necessary. One such indicator is the recovery energy E , as proposed by Sun et al. [38].
We adopt the recovery energy as a measure of recoverability. The calculation of recovery
energy is outlined as follows:

E =
2Ka∑

K=Ka

nD (K ) , (4.13)

where Ka is the number of challenges occurring during the attack process.
Taking inspiration from the robustness metric suggested in [127], [111] to assess the

effectiveness of attack strategies, our study introduces a recoverability metric denoted
by R to quantify the recoverability. This robustness metric quantifies the impact of an
attack strategy by averaging the network controllability at each step during an attack [111].
Similarly, we compute the recoverability metric R for a recovery strategy by averaging the
network controllability at each step during the recovery process. This allows us to quantify
the performance of different recovery strategies with respect to network controllability:

R = 1

Ka

2Ka∑
K=Ka

nD (K ) = E

Ka
. (4.14)

Since the value of Ka remains constant for different recovery strategies for a given net-
work, the ranking of recovery strategies remains consistent across both recoverability
indicators. The physical significance of the recovery energy lies in its representation of
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the total minimum number of required driver nodes throughout the recovery process.
A higher recovery energy signifies a greater demand for driver nodes during recovery,
whereas a lower recovery energy implies that network controllability can be regained
with fewer driver nodes. In essence, recovery strategies with lower recovery energy E or a
reduced unique recoverability measure R are deemed more efficient in restoring network
controllability.

4.4. RESULTS

4.4.1. VALIDATIONS OF THE ANALYTICAL METHOD

To validate the proposed analytical method for random removals and additions, we
conducted simulations on both synthetic and real-world networks to determine the
minimum fraction of required driver nodes. Each simulation realization involved a
sequence of attacking and recovering the network, with this process repeated 10000
times. During the attack phase, a single node was randomly removed at each step, and
the recalculated minimum fraction of necessary driver nodes for network controllability
was recorded. Subsequently, in the recovery phase, we reintroduced one removed node
along with its original connections to the existing nodes in the network at each step and
recalculated the minimum fraction of driver nodes. The recovery process concluded
upon the restoration of all initially removed nodes. For synthetic networks characterized
by specific parameters, a new network was generated for each simulation realization.
However, for real-world networks, the same network was employed across all realizations.

In Fig. 4.2, we present the simulation results and analytical predictions of the proposed
method on synthetic networks. The results for random node removals and additions are
displayed in blue and red, respectively. The analytical approximations are represented
by dashed lines, and the algorithm results are presented with solid lines. Our analysis
shows that the analytical approximations accurately predict the minimum fraction of
driver nodes in most synthetic networks, except for PL networks with N = 10000, γ= 2.3,
and a = 3, where a gap is observed between the dashed lines and solid lines.

We also observe the discrepancies between simulation and analytical results for three
real-world networks, which is depicted in Fig. 4.3 where the solid lines represent the
simulation results and the dashed lines represent the analytical results. To further explore
the reasons for these discrepancies, we conduct two experiments on each of the three
real-world networks.

In the first experiment, we apply the degree preserving rewiring, which maintains the
original degree distribution of each network, while randomly rewiring two links in the
graph. We then recalculate the minimum fraction of driver nodes and repeat this process
for 10000 iterations. We record the minimum fraction of driver nodes for each iteration
and present the results in the form of a box plot. In the second experiment, we generate
10000 graphs using the degree distributions obtained from the real-world networks by
employing the configuration model [128]. We then calculate the minimum fraction of
driver nodes for each generated graph and represent the results as a box plot.

As depicted in Fig. 4.4, the results of both experiments reveal that the minimum
fraction of driver nodes can vary for the networks with the same in- and out-degree
distributions. Additionally, we observe that the mean value of the minimum number
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Figure 4.2: The minimum fraction of driver nodes nD during random node removals and random node additions
in synthetic networks. The blue lines depict node removals, while the red lines represent node additions. The
solid lines are obtained by simulations. The blue and red dashed lines are the analytical approximations under
random node removals and additions, respectively. We use nD av g to denote the mean minimum fraction of
driver nodes in the simulations at each challenge and use n̄D av g to denote the analytical values of the minimum
fraction of driver nodes at each challenge.
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of driver nodes in the networks generated by the configuration model is equivalent to
that obtained using the analytical approximation method. It should be noted that the
analytical approximation method represents the expected value of the minimum number
of driver nodes for graphs that have the same in-degree and out-degree distributions.
Conversely, a real-world network is merely a single instance of networks that satisfy the
specific in-degree and out-degree distributions. This fundamental difference between
the analytical and real-world networks accounts for the gaps between the simulation and
analytical results.
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Figure 4.3: The minimum fraction of driver nodes nD during random node removals and random node ad-
ditions in three real-world networks. The blue lines depict node removals while the red lines represent node
additions. Both are obtained by the maximum matching algorithm over 10000 realizations. The blue dashed
lines represent the analytical approximations under node removals and the red dashed lines represent the
analytical approximations under node additions. nD av g presents the mean minimum fraction of driver nodes
using the algorithm at each challenge and n̄D av g presents the analytical values of the minimum fraction of
driver nodes at each challenge.

4.4.2. ANALYTICAL METHOD WITH SHIFTING
In order to reduce the discrepancies between the predicted and simulated values, we
propose to adjust our original analytical model by applying a shift. First, we determine
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Figure 4.4: Rewiring links and generating graphs using the configuration model can yield different values for
the minimum fraction of driver nodes. "Rewiring" presents rewiring results, and "CFM" represents results for
the configuration model. The analytical results obtained using the in-degree and out-degree distributions are
represented by the grey dashed lines. The values of the minimum fraction of driver nodes calculated by the
maximum matching algorithm for the real-world networks are represented by the blue dotted lines. The mean
minimum fraction of driver nodes calculated by the algorithm for networks after rewiring and for networks
generated by using the configuration model are indicated by the red lines.
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the exact value of the minimum fraction of driver nodes nD [0]′ by applying the maximum
matching algorithm. The shifting term β is then calculated as the difference between
nD [0]′ and the original analytical approximation nD [0], i.e., β = nD [0]′ −nD [0]. Con-
sequently, if the shifted analytical result of the minimum fraction of driver nodes at a
particular challenge k is denoted as nD [k]′, the shifted result nD [k]′ can be calculated as
follows:

nD [k]′ =β+nD [k]. (4.15)

It should be noted that the analytical method using shifting will incur an additional
computational cost due to the use of the maximum matching algorithm, which has a time
complexity of O

(
L
p

N
)

[76]. Here, L denotes the number of links in the network and N
represents the number of nodes in the network.

We show the results of the adjusted model for three real-world networks and PL(2.3, 3)
in Fig. 4.5, where the prediction results are much better than those before shifting. Then
we validate the shifting method using the dataset comprising 202 small-scale real-world
networks from the Topology Zoo and seven large-scale networks. Validation involves
calculating the absolute mean error (AME) and root mean square error (RMSE) between
the results obtained from simulations and analytical results, both before and after apply-
ing shifting. AME is defined as the absolute difference between the simulation and the
analytical results. Additionally, we calculate the proportion of challenges where RMSE
was smaller than 5%, denoted as PRMSE≤0.05. We compare the results before and after
shifting to demonstrate the effectiveness of the method.

We present the results of the shifted model for the Topology Zoo dataset in a histogram
(Fig. 4.6), where the results before and after shifting are depicted in orange and blue,
respectively. Furthermore, we observe an improvement in the approximations for the
seven large graphs by comparing the results obtained before and after shifting (Table 4.2).
The results for the shifted model exhibit smaller AME and RMSE values and higher
PRMSE≤0.05 values, thus indicating the effectiveness of the shifting method. Besides using
the shifting term β= nD [0]′−nD [0], we can also attempt to use the ratio of nD [0]′ and

nD [0] as a scaling factor, i.e. γ = nD [0]′
nD [0] , to construct a rescaled model nD [k]′ = γnD [k].

However, the results for the rescaled model for the Topology Zoo and seven large-scale
networks are less good than those for the shifted model. This discrepancy could be
attributed to the rescaled model’s heightened sensitivity to scaling factors at each point,
as opposed to the fixed modifications offered by the shifted model. The results for the
rescaled model are reported in Appendix B.

4.4.3. THE EFFICIENCY OF RECOVERY STRATEGIES

We adopt two recoverability indicators to assess the effectiveness of distinct recovery
strategies. For each synthetic network category with different sets of parameters, such
as the directed ER network with parameters N = 500, pER = 0.007, we generate a total of
10000 networks. For each network instance, we proceed by randomly removing up to 15%
of the nodes and subsequently employ diverse recovery strategies to restore the network.
During the recovery phase, we reintroduce one node at each step in accordance with
the chosen recovery method. We then recalibrate the minimum fraction of driver nodes
required for network controllability until all previously eliminated nodes are reinstated.
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Figure 4.5: The minimum fraction of driver nodes nD during random node removals and random node additions
in three real-world networks and one PL network after shifting. The blue lines depict node removals, while the
red lines represent node additions. Simulation results (solid lines) are obtained by the maximum matching
algorithm over 10000 realizations. The blue dashed lines are the shifted analytical approximations under node
removals, while the red dashed lines are the shifted analytical approximations under node additions. nD av g
denotes the mean minimum fraction of driver nodes in the simulations at each challenge and n̄D av g denotes
the shifted analytical values of the minimum fraction of driver nodes at each challenge.
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Figure 4.6: Results before and after shifting for 202 networks from the Topology Zoo data set. Clearly the shifted
model exhibits better performance for this data set.

Table 4.2: Results for the shifted model for 7 large scale real-world networks

Name AME RMSE PRMSE≤0.05 AME’ RMSE’ P ′
RMSE≤0.05

Qatif 0.0085 0.0088 1.0000 0.0015 0.0013 1.0000
p2p Gnutella25 0.0002 0.0003 1.0000 0.0000 0.0000 1.0000
p2p Gnutella08 0.0363 0.0533 0.2326 0.0030 0.0037 1.0000

Indochina 0.0338 0.1005 0.0000 0.0009 0.0019 1.0000
WebSpam 0.0104 0.0240 1.0000 0.0056 0.0106 1.0000
Wiki Vote 0.0001 0.0002 1.0000 0.0001 0.0001 1.0000

Email Eu core 0.0014 0.0096 1.0000 0.0000 0.0002 1.0000

Next, we compute the mean value of the minimum fraction of driver nodes across
the 10000 networks for each specific recovery strategy at every step. Subsequently, we
sum these mean values to derive the recovery energy associated with the recovery strat-
egy. For the various recovery strategies employed on synthetic networks, we present the
corresponding recovery energy in Fig. 4.7. The recoverability metric R is summarized
in Table 4.3. In the case of directed ER networks and SSNs, the greedy-betweenness
recovery strategy demonstrates the lowest recovery energy, followed by the greedy-degree
recovery strategy. The remaining recovery strategies, ranked in order of increasing re-
covery energy, are updated betweenness recovery strategy, updated degree recovery
strategy, betweenness-based recovery strategy, degree-based recovery strategy, and ran-
dom recovery strategy. Regarding the directed BA network, the degree-related recovery
strategies outperform the betweenness-related recovery strategies. The order of recov-
ery energy ranking for different recovery strategies, from lowest to highest, is as follows:
greedy-degree recovery strategy, greedy-betweenness recovery strategy, updated degree
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(a) ER(500, 0.007) (b) ER(1000, 0.004)

(c) SSN(500, 2) (d) SSN(500, 4)

(e) BA(500, 2) (f) BA(500, 4)

Figure 4.7: Recovery energy for different recovery strategies in synthetic networks. Bar "Rand" presents the
recovery energy of random recovery strategy; Bar "Deg" presents the recovery energy of degree-based recovery
strategy; Bar "Bet" presents the recovery energy of betweenness-based recovery strategy; Bar "Deg-up" presents
the recovery energy of updated degree recovery strategy; Bar "Bet-up" presents the recovery energy of updated
betweenness recovery strategy; Bar "Greedy-deg" presents the recovery energy of greedy-degree recovery
strategy and Bar "Greedy-bet" presents the recovery energy of greedy-betweenness recovery strategy. The
numbers above each bar demonstrate different recovery strategies’ values of recovery energy.
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recovery strategy, updated betweenness recovery strategy, degree-based recovery strategy,
betweenness-based recovery strategy, and random recovery strategy. Indeed, it is worth
highlighting that the performance improvements brought about by the updated degree
(or betweenness) recovery strategy are not substantial when compared to the perfor-
mance of the corresponding degree-based (or betweenness-based) recovery strategy. On
the other hand, the greedy-degree (or greedy-betweenness) recovery strategy significantly
enhances performance in comparison to the degree-based (or betweenness-based) re-
covery strategy. The recovery strategy outcomes for small-sized networks, as presented in
Appendix B.3, are consistent with the results discussed here.

Table 4.3: The recoverability metric R for different recovery strategies for different kinds of synthetic networks.
"Rand" is an abbreviation of random recovery strategy; "Deg" is an abbreviation of degree based recovery strat-
egy; "Bet" presents betweenness based recovery strategy; "Deg-up" is an abbreviation of updated degree based
recovery strategy; "Bet-up" presents updated betweenness recovery strategy; "Greedy-deg" is an abbreviation of
greedy-degree recovery strategy; "Greedy-bet" presents greedy-betweenness recovery strategy. The bold values
represent the lowest recoverability metric for each type of graph

Name Rand Deg Bet Deg-up Bet-up Greedy-deg Greedy-bet
ER(500, 0.007) 0.12986 0.12343 0.12183 0.12326 0.12161 0.11735 0.11708

ER(1000, 0.004) 0.10697 0.10319 0.10193 0.10309 0.10176 0.09921 0.09891
SSN(500, 2) 0.24807 0.23711 0.23576 0.23647 0.23545 0.22519 0.22506
SSN(500, 4) 0.10169 0.09955 0.09790 0.09944 0.09763 0.09361 0.09357
BA(500, 2) 0.40485 0.38627 0.38921 0.38597 0.38925 0.37542 0.37558
BA(500, 4) 0.18744 0.17141 0.17293 0.17113 0.17275 0.16089 0.16098

4.5. CHAPTER SUMMARY
In this Chapter, we have introduced an analytical approach based on degree distribu-
tions to estimate the minimum fraction of driver nodes needed for achieving network
controllability through random node additions. We have also employed two recover-
ability indicators to assess the efficiency of seven recovery strategies after random node
removals. These strategies include the random recovery strategy, degree-based recovery
strategy, betweenness-based recovery strategy, updated degree recovery strategy, updated
betweenness recovery strategy, greedy-degree recovery strategy, and greedy-betweenness
recovery strategy.

Upon analysis, we have observed a difference between our initial analytical predic-
tions and simulation results in both synthetic and real-world networks. To address this
inconsistency, we propose an adjustment to the original method to align the outcomes
more closely. Regarding the seven recovery strategies, we have determined that the greedy-
betweenness recovery strategy demonstrates superior efficiency in directed ER networks
and SSNs, while the greedy-degree recovery strategy proves most efficient in directed BA
networks.



5
RECOVERABILITY OF POWER GRIDS

OPTIMIZING THE DC POWER FLOW

We investigated efficient strategies for the recovery of individual links in power grids gov-
erned by the direct current (DC) power flow model, under random link failures. Our
primary objective was to explore the efficacy of recovering failed links based solely on topo-
logical network metrics. In total, we considered 13 recovery strategies, which encompassed
2 strategies based on link centrality values (link betweenness and link flow betweenness), 8
strategies based on the products of node centrality values at link endpoints (degree, eigenvec-
tor, weighted eigenvector, closeness, electrical closeness, weighted electrical closeness, zeta
vector, and weighted zeta vector), and 2 heuristic strategies (greedy recovery and two-step
greedy recovery), in addition to the random recovery strategy. To evaluate the performance
of these proposed strategies, we conducted simulations on three distinct power systems:
the IEEE 30, IEEE 39, and IEEE 118 systems. Our findings revealed several key insights:
Firstly, there were notable variations in the performance of the recovery strategies based on
topological network metrics across different power systems. Secondly, all such strategies
exhibited inferior performance when compared to the heuristic recovery strategies. Thirdly,
the two-step greedy recovery strategy consistently outperformed the others, with the greedy
recovery strategy ranking second. Based on our results, we conclude that relying solely on
a single metric for the development of a recovery strategy is insufficient when restoring
power grids following link failures. By comparison, recovery strategies employing greedy
algorithms prove to be more effective choices.

This chapter is based on the published paper [129].
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5.1. INTRODUCTION
The power grid system is vulnerable to disruptions caused by manufacturing defects,
natural disasters and human actions such as terrorist attacks [130][131][132]. Even minor
initial disturbances can lead to severe consequences, including economic and social in-
stability [133][134][135]. To reduce the costs associated with the disruptions, one research
direction is to enhance the robustness of the power grid to withstand perturbations. The
other direction is to propose efficient restoration strategies.

The power grid can be represented as a complex network, where nodes represent
generators, loads and transformers, and links represent transmission lines. Analyzing the
power grid’s robustness from a network perspective has attracted significant attention.
Network robustness is typically evaluated by assessing changes in network performance
due to fluctuations such as node removals or link removals [13]. Identifying critical
nodes and links within the power grid can lead to strategies for enhancing robustness by
protecting the vital components [136][137][138]. Besides, robust failure responses like par-
titioning grids into islands can mitigate the effects of components disruptions [139][140]

Numerous studies focus on strategies for power grid recovery [39], from black-start [40],
like an optimal generator start-up strategy by solving a mixed integer linear programming
(MILP) problem [41] or a method that partitions the network to restore parts of the power
grid separately and then interconnects them afterward [141]. Additionally, research has
been conducted on recovering power grids after partial component failures. Machine
learning methods, specifically reinforcement learning, have been developed for restoring
networks after node failures [42] and link failures [43]. The machine learning methods
have demonstrated better performance to node recovery strategies based on node de-
grees or node loads and link recovery strategies based on link betweenness. Li et al. [142]
developed the Q-learning method to find an optimal method to recover the power grids
with link failures. From a network perspective, Wu et al. [143] develop an effective tool
for the sequential recovery graph to recover the nodes in the power grids which perform
better than recovery strategies based on node degree and node loads. Forming microgrids
can improve the resilience of the system after blackouts, Mosaye et al. [144] apply deep
reinforcement learning to establish microgrids from black-start after blackouts to restore
service in distribution networks. Wei-Chang et al. [145] developed an enhanced genetic
algorithm to minimize costs while optimizing dispatch in stand-alone microgrid systems.

Despite extensive research on power grid recovery, there is still a lack of investigation
into the effectiveness of recovery strategies that rely solely on different network metrics
following transmission line failures. In this study, our main contributions are as follows,

1. We examine recovery strategies based on various network metrics, including de-
gree, betweenness, flow betweenness, eigenvector centrality, weighted eigenvector
centrality, closeness, electrical closeness, electrical weighted closeness, zeta vector
centrality, and weighted zeta vector centrality. Additionally, we compare these
strategies with the random recovery, greedy, and two-step greedy strategies.

2. To assess the effectiveness of recovery methods, we utilize the general recoverability
framework proposed by He et al. [32] to measure power grid recoverability in the
context of random link removals, where recoverability signifies a network’s ability
to return to a predefined desired performance level.
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3. Our study does not consider cascading failures after the recovery or removal of a
single transmission line. Instead, we use the Direct Current (DC) power flow model
to maximize power flow satisfaction for loads after a link removal or addition.

The chapter is structured as follows: Section 5.2 provides an overview of network
robustness, laying the foundation for the subsequent analyses. Section 5.3 details the
modeling of power grids, including how to transfer a power grid into a network and
optimize the DC power flow. Section 5.4 presents the attack and recovery processes with a
focus on the strategies employed. The results and summary are presented in Sections 5.5
and 5.6, respectively.

5.2. PRELIMINARY FOR NETWORK ROBUSTNESS

5.2.1. R-VALUE AND CHALLENGES
In a framework for computing network robustness [13], network robustness is interpreted
as a measure of the network’s response to perturbations such as failures or attacks. The
robustness value R was proposed to measure the performance of a network at a certain
time, which is related to the function of the network, i.e., the type of service the network is
supposed to support, such as road transport, neuron transport or the spreading of news
on a social network. The R-value is normalized in the range [0,1]. Here, R = 0 corresponds
to a network completely lacking robustness, while R = 1 corresponds to an optimally
robust network.

We assume that perturbations are imposed on a network through a number of ele-
mentary changes [13][32][146]. We denote the total number of the changes by K . An
elementary change in a network is defined as an event that changes the topology of a
network, such as a link addition, a link removal or a change in the link weight. An ele-
mentary change in the network may result in a change of the R-value. In this paper, we
consider elementary changes as the random removal of a link during the attack phase
and the recovery of a link previously removed in the attack phase. Additionally, we denote
the number of challenges in the attack process as Ka and in the recovery process as Kr .

5.2.2. RECOVERABILITY INDICATOR OF A RECOVERY STRATEGY
The performance of a power grid at any time can be captured by a specific R-value, which
possibly changes when an elementary change occurs. The R-value at challenge k is
denoted as R[k]. The areas under the R-value line during the processes can reflect the
effectiveness of the attack strategy or the recovery strategy [38]. We define the attack
strength Sa and the recovery strength Sr satisfy the following relations:

Sa =
Ka∑

k=0
R[k], (5.1)

and

Sr =
Ka+Kr∑
k=Ka

R[k], (5.2)

where Ka is the total number of challenges in the attack process and Kr is the total number
of challenges in the recovery process. Further, we define the recoverability energy ratio η
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as follows:

η= Sr

Sa
. (5.3)

Recoverability energy ratio η presents the efficiency of the recovery strategy with
respect to the attack strategy. The larger the recoverability energy ratio η is, the more
efficient the recovery strategy is.
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Figure 5.1: Illustration of the attack process and the recovery process in a power grid: one realization with a
threshold equal to 0.8.

5.3. MODELING POWER GRIDS

5.3.1. NETWORK MODEL OF POWER GRIDS
A power grid can be represented by a graph G , where the set of N nodes is denoted as
N and the set of L links is denoted as L . For an unweighted and undirected graph, the
symmetric adjacency matrix A has elements ai j = 1 if the nodes i and j are connected
by a link li j ∈ L , otherwise ai j = 0. Alternatively, we can also model a power grid as
a weighted graph. The link weight is related to the impedance of transmission line li j ,
which will be denoted as yi j . The weighted symmetric adjacency matrix Ã has elements
ãi j = 1

yi j
if a link li j ∈L exists, otherwise ãi j = 0 [147].

In this study, we choose three power grids [148][149], IEEE 30 [150], IEEE 39 [151][152][153]
and IEEE 118 [154]. We present the number of nodes N , the number of links L and the
average degree dav of the unweighted power grids in Table 5.1.

Table 5.1: Properties of three considered power grids

Name N L dav

IEEE 30 30 41 2.73
IEEE 39 39 46 2.36

IEEE 118 118 179 3.03



5.3. MODELING POWER GRIDS

5

85

(a) IEEE 30 (b) IEEE 39 (c) IEEE 118

Figure 5.2: Three power grids. The red nodes represent loads and the blue nodes represent generators.

5.3.2. PERFORMANCE OF POWER GRIDS
As proposed by Cetinay et al. [155], we employ as R-value in a power grid, the ratio of the
total satisfied demand to the total initial demand, called yields. At challenge k, we denote
the amount of satisfied demand at bus i by Li [k] and the amount of supply at bus i by
Gi [k]. Therefore the injected power Pi at node i satisfies Pi [k] =Gi [k]−Li [k]. Since the
total demand matches the supply in a power grid, it holds that

∑N
i=1 Li [k] =∑N

i=1 Gi [k]. At
challenge k = 0, the power grid has not been attacked and the initial demand of bus i is
Li [0]. Then yields, the R-value at a challenge k, can be calculated by

R[k] =
∑N

i=1 Li [k]∑N
i=1 Li [0]

(5.4)

5.3.3. OPTIMIZING THE DC POWER FLOW MODEL
Compared with cascading failure models in power grids, we consider a power flow redistri-
bution mechanism to achieve a steady state by optimizing the total satisfied demand value.
The mechanism adjusts the supply and demand of buses using a linear programming
method to ensure that line flows are below the line capacity. Specifically, the objective
of the proposed model is to optimize the total satisfied demand while satisfying several
constraints, including (1) the power grid satisfies Kirchhoff’s Law and Ohm’s Law; (2) the
total supply matches the total demand at each challenge; (3) the supply and demand of a
bus are not beyond its initial values; (4) the absolute value of a line flow is not beyond
the line capacity. The DC power flow model [155] at challenge k obeys the optimization
problem:

minimize −
N∑

i=1
Gi [k]

subject to G[k]−L[k] = Q̃[k]Θ[k],

F [k] = B̃ T [k]Θ[k],

N∑
i

Gi [k]−
N∑
i

Li [k] = 0,

0 ≤G[k] ≤G[0],

0 ≤ L[k] ≤ L[0],

−C ≤ F [k] ≤C .

(5.5)
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The weighted Laplacian matrix is Q̃[k] = ∆̃[k]− Ã[k] where ∆̃[k] is the weighted degree
matrix and Ã[k] is the weighted adjacency matrix;Θ is the N ×1 vector with elements θi ,
which presents the phase angle of bus i ; B̃ [k] is the N ×L weighted incidence matrix with
elements

b̃i l =


ãi j if link el = i → j ,

−ãi j if link el = i ← j ,

0 otherwise,

(5.6)

and Q̃[k] = B̃ [k]B̃ [k]T .
The supply and demand vectors G[k] and L[k] include the supply Gi [k] and demand

Li [k] of each bus i , respectively. The initial supply and demand values of all buses are
stored in the vectors G[0] and L[0] at challenge k = 0. The active power flow vector
F [k] has L elements, each representing the power flow fi j [k] of a transmission line li j

connecting buses i and j . The capacity vector C is a vector with L elements and each
element ci j representing the capacity of each transmission line li j .

For the power grid, the line capacity ci j is defined as α fi j [0] where flow vector F [0]
is the active power flow of each line at the initial stage (at challenge k = 0) and α is the
tolerance level [156].

5.4. THE ATTACK AND RECOVERY PROCESS

5.4.1. THE ATTACK PROCESS

In the attack process, we select links uniformly at random to be removed iteratively until
the R value of the power grid falls below a predetermined threshold. The flowchart of the
attack process is shown in Fig. 5.3(a).

5.4.2. THE RECOVERY PROCESS

In the recovery process, links previously removed from the power grid are gradually added
back individually, with the order of additions determined by a chosen recovery strategy.
The flowchart of the recovery process is presented in Fig. 5.3(b). We explore the efficiency
of thirteen different recovery strategies introduced in the following section. It is important
to note that strategies based on topological network metrics are calculated based on
the original network configuration before the attack process. The flow chart of recovery
strategies based on network metrics is presented in Fig. 5.4.

RANDOM RECOVERY STRATEGY (RAND)
A link is randomly selected to add to the power grid one by one from the set of links that
were removed during the attack process.

GREEDY AND TWO-STEP GREEDY RECOVERY STRATEGIES (GREEDY AND TWOGREEDY )
The greedy recovery strategy is to optimize the performance of the power grid at each
stage of the recovery process. The strategy selects the link that yields the largest R-value
of the power grid in each step and adds the link to the grid. The greedy recovery strategy
flow chart is depicted in Fig. 5.5(a).
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Figure 5.3: The flowcharts of the attack process and the recovery process.
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Figure 5.4: The flow chart of recovery strategies based on topological network metrics.

In contrast to the greedy recovery strategy, which focuses on identifying a single link
that significantly improves the R-value in one step, an improved approach involves select-
ing n links that collectively maximize the summation of the R-value in n steps, which can
be achieved by exhaustively enumerating all permutations of n links from the set of poten-
tial links to be added. By considering multiple steps, more information is incorporated,
resulting in potentially better solutions for the n-step greedy recovery strategy. However,
if the value of n becomes excessively large, the computational cost becomes prohibitive.
Therefore, in this study, we have chosen to investigate the performance of the two-step
greedy recovery strategy. Specifically, the two-step greedy strategy aims to determine two
links to be added sequentially, optimizing the sum of the R-values achieved in the two
steps. We present the flowchart of the two-step greedy strategy in Fig. 5.5(b).

DEGREE RECOVERY STRATEGY (DEGREE)
The degree di is the number of neighboring nodes of node i , which can be used to
measure the node’s importance. By using the adjacency matrix A, the calculation of the
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Figure 5.5: The flowcharts of the greedy and two-step greedy strategies.

degree is di =∑N
j=1 ai j . To evaluate the significance of a link, we can use the product di j

of the degrees of the nodes connected by the link li j [157], denoted as di j = di d j .
The degree recovery strategy involves a sequence of link additions based on the

descending order of the product of the degrees of the end points of each removed link.
Consequently, the first link to be added possesses the largest product of the degrees of its
end points in the removed link set.

BETWEENNESS AND FLOW BETWEENNESS RECOVERY STRATEGIES (BET AND FLOWBET )
Betweenness of a link is widely used to measure the importance of a link li j in the network.
It is defined as the ratio of the shortest paths through the link li j to the number of all
shortest paths in the network [158]. If we denote the number of shortest paths from node
s to node t as P s→t and the number of the shortest paths from node s to node t through
the link li j as P s→t (li j ), the betweenness bi j of link li j can be calculated by

bi j =
∑

s,t∈N

P s→t (li j )

P s→t
. (5.7)

The shortest paths are the most efficient ways for a flow in a network to travel from one
node to another node if the traveling cost of every link is the same and there are no other
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limitations in the network like link capacity. However, in a power grid, the distribution of
the power flow is determined by the Kirchhoff and Ohm laws, not by the shortest paths.
Therefore, Newman [159] proposed flow betweenness to measure the link importance
in a power grid. The flow betweenness b̄i j of link li j is defined as the sum of the power
flow through link li j for any node pair s and t if one unit power is injected to node s and
one unit power is extracted from node t . The flow betweenness b̄i j of link li j can be
calculated by

b̄i j =
∑

s,t∈N

| fs→t (li j )| (5.8)

where | fs→t (li j )| is the magnitude of flow through the link li j according to DC flow
equations and Ohm’s law when we inject one unit active power to node s and extract one
unit active power from node t .

The sequence of added links in the betweenness or flow betweenness recovery strate-
gies assumes a descending order of betweenness or flow betweenness of links.

EIGENVECTOR AND WEIGHTED EIGENVECTOR RECOVERY STRATEGIES (EIGEN AND WEIEIGEN)
The eigenvector centrality measures the importance of a node by not only taking into
account the number of its connected nodes but also considering the importance of its
connected nodes [160][157]. The eigenvector centrality xi of node i is i -th element of
the eigenvector with the largest eigenvalue of the adjacency matrix A. Compared to the
eigenvector centrality, the weighted eigenvector centrality x̄i of node i is the i -th element
of the eigenvector with the largest eigenvalue of the weighted adjacency matrix Ã. The
products ei j and ēi j of the eigenvector centrality and the weighted eigenvector centrality
of link li j ’s end points are calculated by ei j = xi x j , ēi j = x̄i x̄ j .

The sequences of links are added in descending order of products ei j or ēi j of links in
the eigenvector or weighted eigenvector recovery strategies.

CLOSENESS, ELECTRICAL CLOSENESS AND ELECTRICAL WEIGHTED CLOSENESS RECOVERY

STRATEGIES (CLOSE, ELECLOSE AND ELEWEICLOSE)
The closeness centrality of a node relates to the node’s distance towards all other nodes [161].
If the distance of the shortest path between node i and node j is denoted by H i j , then
the closeness c̄i of node i is defined as

c̄i = 1∑N
j=1 H i j

. (5.9)

We calculate the product c̄i j of the closeness of link li j ’s end points, c̄i j = c̄i c̄ j , which
is used in the closeness recovery strategy to measure the importance of a link.

As the flow in a power grid follows the Kirchhoff law, not only the shortest path, using
the so-called effective resistance is a more appropriate way to quantify the distance
between a pair of nodes in a power grid [162]. The effective resistance between node i and
node j is denoted asΩi j , which can be calculated by using the pseudo-inverse matrix Q†

of the Laplacian matrix Q: Ωi j = (Q†)i i + (Q†) j j −2(Q†)i j [163]. In analogy with closeness,
the electrical closeness c̃i of node i is given by

c̃i = 1∑N
j=1Ωi j

. (5.10)
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We use the product c̃i j of electrical closeness values of the end points of link li j in the
electrical closeness recovery strategy, where c̃i j = c̃i c̃ j .

Compared with the electrical closeness of a link, the difference in calculating the
electrical weighted closeness of a link is that we use the weighted Laplacian matrix Q̃.
Analogously, we first obtain the effective resistance Ω̃ using Ω̃i j = (Q̃†)i i +(Q̃†) j j −2(Q̃†)i j

where Q̃† is the pseudo-inverse matrix of the Laplacian matrix Q̃. Then the electrical
weighted closeness wi of node i is calculated by

wi = 1∑N
j=1 Ω̃i j

. (5.11)

The product wi j of electrical weighted closeness values of the end points of link li j ,
wi j = wi w j , is the measurement of a link in the electrical weighted closeness strategy.

In the closeness, electrical closeness, and electrical weighted closeness recovery
strategies, we prioritize the recovery of links based on the descending order of the products
c̄i j , c̃i j , or wi j .

ZETA VECTOR AND WEIGHTED ZETA RECOVERY STRATEGIES (ZETA AND WEIZETA)
The zeta vector ζ, inspired by the electrical flow in a resistant network, serves as a rep-
resentation of nodal spread capacity. The minimization of the zeta vector leads to the
identification of the best spreader [147]. Specifically, the zeta vector consists of the diago-
nal elements of the pseudo-inverse matrix Q†, derived from the Laplacian matrix Q. Thus,
ζ= ((Q†)11, (Q†)22, ..., (Q†)i i ), where (Q†)i i represents the zeta vector value ζi associated
with node i .

When employing the weighted adjacency matrix Ã, the weighted zeta vector ζ̃ is given
by the diagonal elements of the pseudo-inverse matrix of the weighted Laplacian matrix
Q̃, denoted as ζ̃ = ((Q̃†)11, (Q̃†)22, ..., (Q̃†)i i ). Here, (Q̃†)i i represents the weighted zeta
vector value ζ̃i associated with node i .

To assess the significance of a link based on the zeta vector values of its end points, we
introduce the zeta vector metric ζi j = ζiζ j and the weighted zeta vector metric ζ̃i j = ζ̃i ζ̃ j

for a given link li j . The metrics are calculated by multiplying the zeta vector values or the
weighted zeta vector values of the link’s end points.

To restore the removed links in the zeta vector and weighted zeta vector recovery
strategies, we adopt a ranking scheme based on the descending order of the links’ zeta
vector metric values or weighted zeta vector metric values.

5.5. RESULTS
To investigate the effectiveness of recovery strategies in power grids, we conducted simu-
lations on three different power grids, the IEEE 30 bus system, IEEE 39 bus system and
IEEE 118 bus system. In each realization, we randomly removed links until the R-value of
the system fell below a specified threshold. We then used various strategies to restore the
system until all the removed links were added. Finally, we computed the recoverability
energy ratio of each recovery strategy given the same random removal process. To explore
the impact of thresholds and tolerance levels, we selected two thresholds (0.8 and 0.5)
and four tolerance levels (1, 2, 2.5 and 3) and performed 1000 realizations for a power
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Figure 5.6: An example of R values during one random attack realization and different recovery processes with a
threshold equal to 0.5 and a tolerance level equal to 2 for the IEEE 39 bus system. The results of the random
recovery strategy are the average values of 100 realizations.

Table 5.2: The abbreviations of the strategies used in figures and tables in the paper

Abbreviation Full name
TwoGreedy Two step greedy recovery strategy

Greedy Greedy recovery strategy
Bet Betweenness recovery strategy

FlowBet Flow betweenness recovery strategy
EleWeiClose Electrical weighted closeness recovery strategy

WeiEigen Weighted eigenvector recovery strategy
Close Closeness recovery strategy

EleClose Electrical closeness recovery strategy
Rand Random recovery strategy

Degree Degree recovery strategy
Zeta Zeta vector recovery strategy

WeiZeta Weighted zeta vector recovery strategy
Degree Degree recovery strategy
Eigen Eigenvector recovery strategy

grid with each setting. In Fig. 5.6, we demonstrate how the R-value varies for one attack
realization with different recovery strategies for the IEEE 39 bus system.

We present the recoverability energy ratios of various recovery strategies concerning
two thresholds and the tolerance level equal to 1 for the considered power grids, as shown
in Tables 5.3, 5.4 and 5.5. The tables illustrate that the greedy two-step method exhibits
the highest mean value of recoverability energy ratio and the lowest standard deviation
value for all three power grids in both threshold cases. Additionally, the greedy method
consistently maintains the second-best performance in terms of recoverability energy
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Table 5.3: The mean value and standard deviation values of different recovery strategies for the IEEE 30 bus
system with the tolerance level α equal to 1 while we set the threshold values as 0.8 and 0.5. The results of the
random recovery strategy have a gray background color

Rank
Threshold = 0.8 Threshold = 0.5

Strategy Mean std Strategy Mean std
1 TwoGreedy 1.0292 0.0241 TwoGreedy 1.1710 0.0656
2 Greedy 1.0285 0.0240 Greedy 1.1595 0.0654
3 Eigen 0.9877 0.0400 Zeta 0.9854 0.0679
4 EleWeiClose 0.9852 0.0420 Eigen 0.9837 0.0714
5 Close 0.9823 0.0427 WeiZeta 0.9796 0.0676
6 Rand 0.9808 0.0265 Rand 0.9733 0.0526
7 EleClose 0.9807 0.0429 EleWeiClose 0.9687 0.0762
8 Degree 0.9804 0.0423 Close 0.9629 0.0722
9 Zeta 0.9803 0.0358 EleClose 0.9576 0.0713

10 WeiEigen 0.9772 0.0440 Degree 0.9571 0.0727
11 WeiZeta 0.9772 0.0354 WeiEigen 0.9509 0.0761
12 Bet 0.9765 0.0404 Bet 0.9442 0.0667
13 FlowBet 0.9709 0.0447 FlowBet 0.9126 0.0693

Table 5.4: The mean value and standard deviation values of different recovery strategies’ recoverability energy
ratio for IEEE 39 bus system with the tolerance level α equal to 1 while we set the threshold values as 0.8 and 0.5.
The results of the random recovery strategy have a gray background color

Rank
Threshold = 0.8 Threshold = 0.5

Strategy Mean std Strategy Mean std
1 TwoGreedy 1.0299 0.0221 TwoGreedy 1.1665 0.0605
2 Greedy 1.0292 0.0219 Greedy 1.1543 0.0585
3 Zeta 1.0065 0.0240 Zeta 1.0709 0.0571
4 WeiZeta 1.0000 0.0260 WeiZeta 1.0582 0.0594
5 Rand 0.9858 0.0217 Rand 0.9741 0.0474
6 WeiEigen 0.9800 0.0347 WeiEigen 0.9430 0.0618
7 Bet 0.9794 0.0333 Bet 0.9384 0.0673
8 EleWeiClose 0.9730 0.0347 EleWeiClose 0.8945 0.0625
9 Eigen 0.9703 0.0351 Eigen 0.8871 0.0653

10 Degree 0.9701 0.0363 Degree 0.8848 0.0706
11 FlowBet 0.9697 0.0331 FlowBet 0.8827 0.0618
12 Close 0.9675 0.0358 Close 0.8809 0.0629
13 EleClose 0.9646 0.0348 EleClose 0.8639 0.0621

ratio mean value for all three power grids, albeit its performance is slightly inferior to
that of the greedy two-step method. Notably, the difference in performance between the
greedy two-step method and the greedy method is more pronounced when the threshold
is equal to 0.5, compared to the case when the threshold is 0.8. The observation suggests
that the greedy two-step method outperforms the greedy method when the removal link
set is relatively large. Another noteworthy finding concerns the results of the random
recovery method. The mean recoverability energy ratios of all power grids with different
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Table 5.5: The mean value and standard deviation values of different recovery strategies’ recoverability energy
ratio for IEEE 118 bus system with the tolerance level α equal to 1 while we set the threshold values as 0.8 and
0.5. The results of the random recovery strategy have a gray background color

Rank
Threshold = 0.8 Threshold = 0.5

Strategy Mean std Strategy Mean std
1 TwoGreedy 1.0458 0.0270 TwoGreedy 1.2611 0.0715
2 Greedy 1.0441 0.0266 Greedy 1.2294 0.0717
3 Bet 0.9959 0.0409 Bet 1.0855 0.0683
4 FlowBet 0.9824 0.0685 WeiEigen 1.0225 0.0782
5 EleWeiClose 0.9759 0.0639 EleWeiClose 1.0206 0.0732
6 WeiEigen 0.9726 0.0648 Close 1.0051 0.0734
7 Zeta 0.9705 0.0388 FlowBet 0.9989 0.0988
8 Close 0.9703 0.0677 Zeta 0.9961 0.0735
9 Rand 0.9666 0.0400 Eigen 0.9909 0.0701

10 EleClose 0.9649 0.0799 Rand 0.9819 0.0545
11 WeiZeta 0.9611 0.0435 Degree 0.9646 0.0846
12 Degree 0.9599 0.0774 WeiZeta 0.9624 0.0715
13 Eigen 0.9523 0.0731 EleClose 0.9589 0.0855

thresholds of the random recovery method are less than one, indicating that the cost of
recovery outweighs the cost of attacks.

For the recovery strategies utilizing link metrics or the product of node centralities of
the link’s end points, we have observed noteworthy variations in performance across dif-
ferent power grids. Specifically, the recovery method based on link betweenness exhibits
diverse rankings of mean recoverability energy ratio when applied to the three power
grids under consideration. In the IEEE 30 bus system, the mean recoverability energy ratio
rank of the betweenness recovery method falls within the bottom two. Conversely, within
the IEEE 39 bus system, the betweenness recovery method achieves an intermediate
rank among all methods based on the mean recoverability energy ratio. Remarkably, the
recovery method based on betweenness centrality yields the highest mean recoverability
energy ratio among all recovery strategies based on ink metrics or the product of node
centrality values of the link’s end points in the IEEE 118 bus system.

In addition to the betweenness recovery strategy, the zeta vector recovery strategy
exhibits a similar performance pattern. The strategy demonstrates effectiveness in the
IEEE 30 bus system with a threshold value of 0.5, as well as in the IEEE 39 bus system.
However, the efficiency diminishes when applied to the IEEE 118 bus system. The results
indicate that the efficacy of recovery methods based on link metrics or the product of node
centralities of the link’s end points is contingent upon the underlying network topology
and dynamics on the networks.

The observation can be attributed to the distinct allocation of generators in the IEEE
39 bus system, as illustrated in Fig. 5.2. Specifically, the majority of generators in the IEEE
39 bus system have only one neighbor and the proportion of links attached to generators is
22.74%, which is significantly higher than the corresponding proportions in the other two
systems. In contrast, the IEEE 30 bus system has only one generator with one neighbor
and the proportion of links connected to generators is 14.63%, while the IEEE 118 bus



5

94 5. RECOVERABILITY OF POWER GRIDS OPTIMIZING THE DC POWER FLOW

���
��
�� ��

�

��
���
��

��
�
�
��� ��

��

	�
���
�


��
���
��

�
��

���
��


��
��
���
���

��
��

��
���
�

��
��
���
��

���

���

���

���

���


�
��
��
���
���

α=1 α=2 α=2.5 α=3

(a) IEEE 30 Threshold = 0.8


��
���
��

���
��

���
��
��

	�
���
�

��
��


��
��
���
��� ��

�

��
�
�
��� �

��

��
���
��

��
��

��
���
�

��
��
���
��

���

���

���

���

���


�
��
��
���
���

α=1 α=2 α=2.5 α=3

(b) IEEE 39 Threshold = 0.8


��
��

	�
���
�

��
���
��


��
���
��

�
��

���
�� ��

��

��
�
�
���


��
��
���
���

���
��
�� ��

�

��
���
�

��
��
���
��

���

���

���

���

���


�
��
��
���
���

α=1 α=2 α=2.5 α=3
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Figure 5.7: Bar graph of different recovery strategies’ recoverability energy ratios with thresholds equal to 0.8 for
the three considered bus systems with different tolerance levels. The number of realizations is 1000.

system has three generators with one neighbor and the proportion of links connected
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Figure 5.8: Bar graph of different recovery strategies’ recoverability energy ratios with thresholds equal to 0.5 for
the three considered bus systems with different tolerance levels. The number of realizations is 1000.

to generators is 10.62%. Therefore, the location of generators in the IEEE 39 system
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makes the links connected to generators more susceptible to attacks and less likely to be
recovered than the other two systems. Based on calculating the average values of links’
metrics used for the different recovery strategies of two kinds of links: links connecting
generators with loads and links connecting loads with loads in Appendix C.2 Table C.2,
we find that in the IEEE 39 system, the link metrics of links connecting generators and
loads are larger than the link metrics of links connecting loads with loads in zeta recovery
strategy and weighted zeta recovery strategy, indicating recovering the links connecting
generators and loads matter in the recovery process.

Compared to the IEEE 30 bus system and the IEEE 39 bus system, the recovery meth-
ods based on link metrics and the product of node centrality values of the link’s end points
in the IEEE 118 system demonstrate substantially better performance. Specifically, most
recovery strategies based on link metrics and the product of node centrality values of
the link’s end points exhibit higher average recoverability energy ratios than the random
recovery strategy for both thresholds.

The link capacity is a crucial factor in causing blackouts in power grids. Although
our method does not employ the cascading failure model, we investigated the impact of
link capacity on recovery strategies. To this end, we conducted simulations with different
tolerance levels (α= 1,α= 2,α= 2.5,α= 3) and analyzed the results, which are presented
in Figs. 5.7 and 5.8 for the IEEE 30 bus system, IEEE 39 bus system and IEEE 118 bus
system. The simulation results show that the mean values of the recoverability energy
ratio with respect to different tolerance levels do not change monotonically for the same
recovery method, which could inspire the study on the optimal tolerance level. The
ranking of recovery strategies based on network metrics may vary slightly, but the two-
step greedy recovery strategy consistently performs the best, with the greedy recovery
strategy following closely behind. Moreover, the results indicate that the recovery strategy
based on betweenness outperforms the recovery strategy based on flow betweenness,
while the electrical weighted closeness recovery strategy is the best among the electrical
closeness recovery strategy, closeness recovery strategy and electrical weighted closeness
recovery strategy.

5.6. CHAPTER SUMMARY
In this chapter, we observe significant variations in the performances of different strate-
gies for recovering power grids. Firstly, recovery strategies based on link metrics and
the product of node centrality values of the link’s endpoints do not achieve the highest
performance. Secondly, the performances of these recovery strategies vary notably across
different power systems, emphasizing the significance of network topology and generator
placements in power grids. Thirdly, the two-step greedy recovery strategy consistently
outperforms all other network metric-based recovery methods across all power systems,
thresholds, and tolerance levels. The greedy recovery strategy, which is slightly less effec-
tive than the two-step greedy recovery strategy, also shows promising results. The findings
confirm that implementing an effective recovery strategy can significantly improve the
recoverability of power grids and the two-step greedy strategy is particularly efficient
while relying solely on one network metric for recovery is less effective.
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6
TIME DEPENDENCE OF SIS

EPIDEMICS ON NETWORKS WITH

NODAL SELF-INFECTIONS

The average fraction of infected nodes, in short the prevalence, of the Markovian ϵ-SIS
(susceptible-infected-susceptible) process with small self-infection rate ϵ>0 exhibits, as
a function of time, a typical "two-plateau" behavior, which was first discovered in the
complete graph KN . Although the complete graph is often dismissed as an unacceptably
simplistic approximation, its analytic tractability allows to unravel deeper details, that
are surprisingly also observed in other graphs as demonstrated by simulations. The time-
dependent mean-field approximation for KN performs only reasonably well for relatively
large self-infection rates, but completely fails to mimic the typical Markovian ϵ-SIS process
with small self-infection rates. While self-infections, particularly when their rate is small,
are usually ignored, the interplay of nodal self-infection and spread over links may explain
why absorbing processes are hardly observed in reality, even over long time intervals.

This chapter is based on the published paper [164].
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6.1. INTRODUCTION

The ϵ-susceptible-infected-susceptible (ϵ−SIS) model on a network describes that each
node has two states: susceptible and infected. A susceptible node can be infected by an
infected neighbor with an infection rate or with its independent self-infection rate ϵ. An
infected node will recover with a specific recovery rate. Self-infections occur naturally in
the metapopulation, where each metapopulation group consists of items (individuals,
computers, etc.) that are indistinguishable and exchangeable. Each metapopulation
group can be represented by a node, and iterations can take place between groups.
Additionally, items within the same group can infect each other, which can be modeled as
a self-infection process. Using the ϵ−SIS model, emotions spreading on social networks
can be modeled [50]. Furthermore, the self-infection process can also be used to model
the "imminent" infection in reality [165]. Viruses usually do not fully die out in the
environment, which keeps challenging people’s immunity in case people lose entirely
immunity. In addition, as the ϵ−SIS model does not have an absorbing state, the model
with a small self-infection rate can be used to measure the performance of different mean-
field approximation methods in the susceptible-infected-susceptible (SIS) model [49].

In this chapter, we focus on a simple and stochastic epidemic model with self-infections.
In a graph G with N nodes, the viral state of a node i at time t is specified by a Bernoulli
random variable Xi (t) ∈ {0,1}: if Xi (t) = 0, the node is in a healthy (susceptible) state;
if Xi (t) = 1, the node is in an infected state. Thus, at any time t , a node can only be
in of two possible states: infected, with probability vi (t) = Pr[Xi (t) = 1] = E [Xi (t)] or
healthy, with probability 1−vi (t ). The continuous-time description of the homogeneous
self-infectious Markovian susceptible-infected-susceptible (ϵ−SIS) process on a contact
graph is as follows. The curing process per infected node is a Poisson process with rate
δ and the infection process per link is a Poisson process with rate β. The self-infection
process per node is also a Poisson process with rate ϵ, which means, on average, every
1
ϵ time units, a self-infection event occurs. All Poisson processes are independent. The
ϵ−SI S model reduces to the "classical" SIS model when the self-infection rate is zero.
In the ϵ−SIS heterogeneous setting, the curing rate δi and the self-infection rate ϵi are
coupled to a node i and βi j specifies the infection rate on the link from node i to node j .

Inspired by the observation that the ϵ−SIS model with special self-infection rates is
very close to the mean-field steady state in the classical SIS model [49], Van Mieghem [51]
investigated the ϵ−SIS model with arbitrary small but nonzero self-infection rate on com-
plete graphs and found that the corresponding model exhibits a phase transition in the
average steady-state fraction of infected nodes, with the steepness of the transition in-
creasing as the size N of the graph grows. In this chapter, we explore the time dependence
of the average fraction yN (τ,ϵ∗; t) of infected nodes, briefly called the prevalence, in a

graph with N nodes where τ= β
δ is the effective infection rate and ϵ∗ = ϵ

δ is the effective
self-infection rate. We emphasize that the Markovian setting is important and that a
mean-field analysis is unable to describe the "typical ϵ−SIS temporal behavior".
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GRAPH

6.2.1. MARKOVIAN SETTING
On the complete graph KN , we can obtain an exact expression for the steady-state fraction
of infected nodes in the ϵ−SI S epidemic process. The number of infected nodes M(t ) at
time t is a continuous-time Markov process on {0, 1, . . . , N} states with the following rates:

M 7→ M +1 at rate (βM +ϵ)(N −M),

M 7→ M −1 at rate δM .

Every infected node is recovered with rate δ and every susceptible node (in total N−M)
is infected with rate βM from its M infected neighbors and its self-infection rate ϵ. The
Markov process is indeed the birth and death process with birth rate λ j = (β j +ϵ)(N − j )
and death rate µ j = δ j . We denote the probability that the number of infected nodes M(t )
at time t equals k by

sk (t ) = Pr[M(t ) = k]. (6.1)

Applying the differential equations of a general birth and death process to the ϵ−SIS
process yields the set of equations

s′0(t ) = δs1(t )−Nϵs0(t ), (6.2)

s′k (t ) = {βK 2 − (nβ+δ−ϵ)k −Nϵ}sk (t )+ {−β(k −1)2 + (Nβ−ϵ)(k −1)+Nϵ}

× sk−1(t )+δ(k +1)sk+1(t ),
(6.3)

where all involved rates β,δ, and ϵ can depend on time t .
We denote the probability of steady state i as π j = lim

t→∞Pr[M(t) = j ], which can be

computed in the birth and death process as follows [166],

π0 = 1

1+∑N
k=1

∏k−1
m=0

(βm+ϵ)(N−m)
(m+1)δ

, (6.4)

π j =π0

j−1∏
m=0

(βm +ϵ)(N −m)

(m +1)δ
,1 ≤ j ≤ N . (6.5)

Using the normalized self-infection rate ϵ∗ = ϵ
δ , the above steady-state probabilities

are

π0 = 1∑N
k=0

(N
k

)
τk Γ( ϵ

∗
τ +k)

Γ( ϵ
∗
τ )

, (6.6)

π j =π0

(
N

j

)
ϵ∗τ j−1 Γ( ϵ

∗
τ + j )

Γ( ϵ
∗
τ +1)

. (6.7)
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The average steady-state fraction of infected nodes ( the steady-state prevalence ) is

y∞;N (τ,ϵ∗) = 1

N

N∑
j=0

jπ j ;N = π0;N

N

N∑
j=1

j

(
N

j

)
τ j Γ( ϵ

∗
τ + j )

Γ( ϵ
∗
τ )

. (6.8)

For the classical SIS model with effective infection rate τ on the complete graph KN ,
using the first order N−intertwined mean-field (NIMFA) prevalence model [167], the
average steady-state fraction y (1)

∞;N of infected nodes follows,

y (1)
∞;N = 1− 1

(N −1)τ
, τ> 1

N −1
= τ(1)

c , (6.9)

where τ(1)
c is the first-order mean-field epidemic threshold. The mean-field SIS epi-

demic threshold in any graph is τ(1)
c = 1

λ1
, where λ1 is the largest eigenvalue of the adja-

cency matrix of the contact graph and lower bounds the Markovian SIS epidemic threshold
τc [168].

In [51], it was shown that there always exists a phase transition around τϵc in the ϵ−SI S
process on the complete graph KN , above which the effective infection rate τ> τϵc causes
the prevalence y∞;N (τ,ϵ∗) to approach the prevalence y (1)

∞;N of the classical SIS model, no
matter how small, but still non-zero, the self-infection rate ϵ∗ is. The phase transition τϵc
can be bounded by

1

e

(
10−s

ϵ∗ (N −1)!

) 1
N−1 < τϵc <

(
10−s

ϵ∗ (N −1)!

) 1
N−1

, (6.10)

where s specifies an agreed level for the onset of the phase transition at which
y∞;N (τ,ϵ∗) = 10−s is first reached, when τ is gradually increased from τ= 0 at y∞;N (0,ϵ∗) =
ϵ∗

1+ϵ∗ on.
The observation of a phase transition, increasingly more abrupt with size N of the

graph was only possible by a purely analytical study of the complete graph KN in [51].
Unfortunately, the phase transition is difficult to simulate as the absorbing time increases
exponentially with N in the SIS model. Therefore, we show simulations for small graphs of
N = 30 nodes. For most graphs with N = 30 nodes, the absorbing time at which the virus
dies out from the network is within 105 time units, which is within an interval equal to 105

times the average curing time. The simulation is performed in our simulator introduced
in [49]. The unit of time equals the average curing time. We have set the curing rate in
simulations to δ= 1 (so that ϵ∗ = ϵ here).

We present the prevalence yN (τ,ϵ∗; t) of the ϵ−SIS process on the complete graph
K30 with effective infection rate τ = 2τ(1)

c = 2
29 and different values of the effective self-

infection rate ϵ in Fig. 6.1. The simulation results are over 100 realizations. For a small

self-infection rate ϵ= 10−5, the prevalence y30(2τ(1),10−5

c ; t ) starts with one infected node,
increases rapidly, almost exponentially fast, towards about 20% of infected nodes between
1 and 10 time units, after which the prevalence decreases slowly towards its steady state
around 4%. The ϵ−SIS with small self-infection rates generalizes the classical SIS where
eventually the prevalence tends to zero for any effective infection rate τ in any graph with
the finite number of N nodes. When the self-infection rate is relatively high (ϵ= 10−1, or
ϵ= 10−2), the prevalence curves resemble the mean-field typical SIS behavior; when the
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Figure 6.1: The prevalence yN (τ,ϵ∗; t) of the ϵ−SIS process on the complete graph KN on N = 30 nodes with
effective infection rate values of the self-infection rate ϵ. The epidemic started with one infected node. Both
simulations and numerical solutions of the differential equations Eqs. (6.2) and (6.3). are presented for each
self-infection rate ϵ.

self-infection rate is between ϵ= 10−3 and ϵ= 10−4 in Fig. 6.1, the typical ϵ−SIS behavior
in time is shown, which we will explain below.

Fig. 6.2 presents the prevalence y∞;N (τ,ϵ∗) of the ϵ−SIS process and the NIMFA
steady state prevalence y (1)

∞;N (τ) in a Markovian SIS process. When the number of nodes
N increases, the transition of the prevalence from small to NIMFA values is increasingly
steep, resulting in a step function if N →∞ [51]. Here, the number of nodes is 30, so the
transition is not very steep. Although we present the results of the complete graph in
Figs. 6.1 and 6.2, for other kinds of graphs, the prevalence y∞;N (τ,ϵ∗) behavior is the same
as we show in Fig. 6.1. We will demonstrate the corresponding results of other graphs
later.

Based on the numerical solution of the differential equations Eqs. (6.2) and (6.3) of the
complete graph K30 with self-infection rate ϵ∗ = 10−5, we present the prevalence versus
time with various effective infection rate τ in Fig. 6.3. We can find the characteristic ϵ−SIS
prevalence with two plateaus. For sufficiently high effective infection rates τ, the first
plateau is rapidly reached and is due to link infections. The second, higher plateau is
attained roughly around time 1

ϵ (in units of the average curing time). The interarrival time
of self-infection events generated at each node is exponentially distributed with mean
1
ϵ based on the property of the Markov process. The minimum of N−interdependent
exponential random variables, each with rate ϵi , is again an exponential random variable
with a rate equal to their sum

∑N
j=1 ϵi . Here, we have N nodes, each with a self-infection

rate ϵ. Thus, the first appearance of self-infections is expected around time 1
Nϵ , which is

here about 3×103 time units. Fig. 6.3 indeed illustrates that the onset towards the second
plateau occurs around time 3×103. The precise time changes also depend on the effective
infection rate τ over links because the onset starts for different τ, in particular for small τ,
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Figure 6.2: The steady-state prevalence y∞;N (τ,ϵ∗) in K30 versus the effective infection rate τ, for various

self-infection rates varying from ϵ∗ = 10−1 down to ϵ∗ = 10−10. The dotted line at τ= 2τ(1)
c corresponds to the

setting in Fig. 6.1. The bold line is the NIMFA steady-state prevalence y∞;N (τ) in the Markovian SIS process.

at slightly different times.

For lower effective infection rates τ, the second plateau in the prevalence, which cor-
responds to its steady state value, is lower than the first plateau caused by spreading over
links in the graph. The lower value is due to a curious equilibrium between absorption
(due to a series of rate curing events as explained in [51]) and self-infection. When ϵ= 0,
the ϵ−SIS process is the classical Markovian SIS process where the prevalence tends to
zero in any finite graph after a sufficiently long time. In other words, the epidemics are
eradicated from the graph because of a sequence of curing events that happens with very
low, though positive, probability. Hence, the observation interval must be long enough to
observe such a rare event of successive curing events, which explains the long absorption
time in the classical SIS process.

The onset of the second plateau, due to the self-infection process, is shown in Fig. 6.4
for several self-infection rates and a relatively high effective infection rate τ= 3τ(1)

c ≈ 0.1.
A self-infection in each node is created on average every 1

ϵ time units and as mentioned

before the onset toward the second plateau is observed earlier at about 1
Nϵ . Compared

with Fig. 6.1, Fig. 6.4 shows a narrow range of prevalence, which follows the result pre-
sented in Fig. 6.2: for higher effective infection rate τ and a fixed ϵ∗ ∈ [10−5,10−1] band,
the corresponding prevalence band decreases. Also, the other two results in Fig. 6.4 satisfy
the results with the effective infection rate τ= 0.1 in Fig. 6.2 as well: the steady-state preva-
lence of self-infection rate ϵ= 0.1 is slightly higher than the steady-state prevalence of
self-infection rates from ϵ= 10−4 to ϵ= 10−2; the steady-state prevalence of self-infection
rate ϵ= 10−5 is slightly lower than the steady-state prevalence of self-infection rates from
ϵ= 10−4 to ϵ= 10−2.

Fig. 6.5 showing the steady-state prevalence with self-infection rate ϵ = 0.1, is the
companion of Fig. 6.3. In the ϵ−SIS process with high self-infection rate ϵ= 0.1, both the
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Figure 6.3: The prevalence yN (τ,ϵ∗; t ) in the complete graph K30 versus time for self-infection rate ϵ= 10−5 and

effective infection rates τ(1)
c ≤ τ≤ 3τ(1)

c and each curve differs 0.2τ(1)
c from its neighboring curves.

link and the node infection events occur roughly at the same timescale and the combined
effect results in "traditional mean-field" curves. In summary, only for small self-infection
rate ϵ, the anomalous behavior in the ϵ−SIS, with respect to the mean-field theory is
observed.

6.2.2. N-INTERTWINED MEAN-FIELD APPROXIMATION FOR ϵ-SIS
The governing differential equations of the N−intertwined mean-field approximation
(NIMFA) for heterogeneous ϵ−SI S epidemics on a graph with adjacency matrix A are

d vi (t )

d t
=−δi vi (t )+ [1− vi (t )]

(
N∑

j=1
αi jβi j v j +ϵi

)
. (6.11)

Eq. (6.11) shows that the change of the infected probability vi (t) of node i at time t
depends on two parts: one is that when the node state is infected with probability vi (t ),
it will be healthy with its cure rate δi (t); another is that when the node state is healthy
with probability 1− vi (t ), it can be infected by its infected neighbors or get self-infected
with self-infection rate ϵi . The probability of an infected neighbor j is αi j v j (t) and the
infected rate of the specific link is βi j . The matrix form of Eq. (6.11) is as follows.

d v(t )

d t
= B v +η−diag(v)(B v +η+ c), (6.12)

where the vector v = (v1, v2, . . . , vN ), the self-infection vector η= (ϵ1,ϵ2,ϵ3, . . . ,ϵN ), the
curing vector c = (δ1,δ2, . . . ,δN ) and the N ×N matrix B has elements αi jβi j . Using the
N ×1 all one vector, the average fraction of infected nodes (prevalence) is calculated by

y = uT v
N = 1

N

∑N
i=1 vi (t ), whose changes follow,
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Figure 6.4: The prevalence on K30 over time for a high effective infection rate τ= 3τ(1)
c = 3

29 and several self-
infection rates ϵ. The curves are numerical solutions of the differential equations.

N
d y(t )

d t
= uT η− vT (c +η)+ (u − v)T B v. (6.13)

For the complete graph KN , we can analytically solve the above differential equation.
When the initial condition vi (0) is the same for every node i , we have y (1)

N (τ,ϵ∗; t ) = v(t ) =
vi (t ). By normalizing time t∗ = δt , Eq. (6.11) can be denoted as

d v(t )

d t∗
= ϵ∗+ [t (N −1)− (1+ϵ∗)]v(t )−τ(N −1)v2(t ). (6.14)

We recognize that the above equation is a Ricatti differential equation with solution,

y (1)
N (τ,ϵ∗; t ) = τ(N −1)− (1+ϵ∗)

2τ(N1)
+ γ

2τ(N −1)

× tanh

[
t

2
γ+arctanh

(
τ(N −1)(2y0 −1)+ (1+ϵ∗)

γ

)]
,

(6.15)

where
γ=

√
[τ(N −1)− (1+ϵ∗)]2 +4τ(N −1)ϵ∗. (6.16)

The mean-field approximation is the upper bound of the prevalence of the Markovian
SI S process [168], which is manifested in Figs. 6.5 and 6.6. The mean-field approximation
deviates considerably for small self-infection rates in Fig. 6.6 compared to the mean-field
approximation for a large self-infection rate in Fig. 6.5.

6.3. BEYOND THE COMPLETE GRAPH
To investigate whether other graphs exhibit the same characteristic ϵ−SIS prevalence time
behavior as complete graphs, we have done simulations on five other kinds of graphs:
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Figure 6.5: The prevalence yN (τ,ϵ∗; t ) in the complete graph K30 versus time for the self-infection rate ϵ= 0.1
with the same values of effective infection rates τ as in Fig. 6.1. The mean-field approximation (dotted lines) lies
above ϵ−SIS Markovian prevalence which is computed by solving the differential equations Eq. (6.2) and (6.3).

square lattice, ring graph, Erdős-Rényi (ER) graph and Barabási-Albert power law (BA)
graph. Fig. 6.7 confirms that different graphs, in addition to complete graphs, also exhibit
the existence of two plateaus. A surprising fact concerns the BA graph with 500 nodes.
For large N and ϵ= 0, we expect that the absorbing state is reached only after O(eN c ) time
units, where the constant c depends on the effective infection rate and the topology of
the graph. However, the green curve of the BA graph with τ= 2.6

λ1
, initially increases to

show that the effective infection rate lies above the epidemic threshold, but decreases
relatively fast.

Fig. 6.8 for an ER graph with 100 nodes, on the other hand, does not depict such a
decrease; the green curve stays much longer in the metastable state, as expected because
the absorbing time increases exponentially in the number of nodes N . Fig. 6.9 for a
star graph with 30 nodes looks amazingly similar to Fig. 6.3. For the star graph with N
nodes, the spectral radius is λ1 =

p
N −1 and the mean-field epidemic threshold satisfies

τ(1)
c = 1

λ1
= 1p

N−1
. From [169], the actual epidemic threshold for sufficiently large N is

τc = αp
N−1

with α=
√

logN
2 + 3

2 loglogN . Although N = 30 is not large, the estimated actual

threshold is τc ≈ 1.872p
29

, which explains why the lowest curve of Fig. 6.9 corresponding to

τ= 2τ(1)
c just exceeds the epidemic threshold τc . In contrast to the classical SIS process

where all prevalence curves eventually end up at zero, Figs. 6.9 and 6.7 indicate that in the
steady state (not the metastable state), all possible values of the prevalence between zero
and the mean-field steady state are possible as claimed in [51].
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Figure 6.6: The prevalence yN (τ,ϵ∗; t ) of the ϵ−SIS with the same parameters as in Fig. 6.1 to which the mean-
field approximation is added. The same color curve presents the model with the same self-infection rate ϵ. The
mean-field approximations of the prevalence with ϵ= 10−3,10−4 and 10−5 overlap, which is represented by the
purple dashed line.

6.4. CHAPTER SUMMARY
The prevalence yN (τ,ϵ∗; t ) of the Markovian ϵ−SIS process with small self-infection rate
ϵ > 0 has been studied as a function of time. The typical "two-plateau" behavior, first
explained for the complete graph KN based on analytic computations, is demonstrated to
hold generally for other graphs other than complete graphs. In fact, we claim this behavior
may hold for any finite graph. In reality, if a disease or the spread process has a small
self-infection rate ϵ, the second plateau may play a significant role: after the epidemics
arrive at the first plateau (in a relatively short time), the epidemics will not disappear like
the classical SIS process nor stay constant as in the mean-field approximation but will
tend to reach the second plateau which can be either higher of lower than the first plateau
depending on its self-infection rate ϵ.

The time-dependent mean-field approximation for KN only performs reasonably well
for relatively large self-infection rates but completely fails to describe the typical Marko-
vian ϵ−SIS process with small self-infection rates. While self-infections, in particular
when their rates are small, are usually ignored, we have shown that the interplay of nodal
infection and spread over links may explain why the absorbing processes are less often
observed in real life.
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Figure 6.7: The prevalence yN (τ,ϵ∗; t) with self-infection rate ϵ= 10−5 versus time for four different kinds of
graphs; the square lattice with 36 nodes, the ring graph with 30 nodes, the Erdős-Rényi random graph with link
density p = 0.098 and the Barabási-Albert power law graph with N = 500. The average degree of the Barabási-
Albert power law graph is two. Initially, there is one infected node and the figure is based on the average results

of 100 realizations of each ϵ−SIS process. The prevalence curves shown increase with a step of τ= 0.2τ(1)
c . The

three curves in color illustrate the three different behaviors: blue shows two plateaus and upward bending, red
presents the almost constant plateau and green depicts downward bending.
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Figure 6.8: The "two-plateau" ϵ−SIS prevalence curve versus time for an ER graph with 100 nodes and link
density p = 2pc = 0.04 and ϵ= 10−5. The downward bending of the green curve only occurs for considerably
larger times.
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Figure 6.9: The ϵ−SIS prevalence curve versus time in the star graph with 30 nodes. Initially, one node is infected
and the prevalence is averaged over 104 realizations. The curves presented increase with a step of effective

infection rate τ= 0.2τ(1)
c and the values of effective infection rates are from the lowest τ= 2τ(1)

c to the highest

τ= 6τ(1)
c .



7
CONCLUSION

7.1. MAIN CONTRIBUTIONS
In this dissertation, we have discussed research in network science on three topics: net-
work robustness and reliability, network recoverability and spreading.

In Chapter 2, we deduce the analytical methods based on generating functions of
in-degree and out-degree distributions to approximate the minimum fraction of the
number of driver nodes in directed networks, subject to random node removals and
targeted node removals based on in-degree, out-degree and total degree. We find that
the analytical methods fit simulation results very well for random node removals; the
proposed analytical methods for targeted node removal fit the simulation results reason-
ably well, in particular for small values of the fraction of removed nodes. Furthermore,
our investigation indicates that random node removal may also serve as a reliable pre-
dictor of the results of various targeted node removals, particularly when the fraction of
removed nodes is minimal (below 10%). Further, we find that for a real-world network,
the minimum fraction of driver nodes calculated by the proposed analytical method
utilizing generating functions does not always coincide with the results obtained using
the maximum matching algorithm before node removals. As such, our proposed methods
are inadequate for predicting the minimum fraction of driver nodes under node removal
for these networks.

In Chapter 3, based on network reliability, we adopt controller reachability as the
performance metric for addressing the controller placement problem. Controller reach-
ability is the probability that each node can reach at least one controller. We employ
the path decomposition algorithm to evaluate controller reachability, commonly used
for computing all-terminal reliability. By applying this algorithm, we can calculate the
controller reachability and quantify the impact of different placements on network per-
formance. Our analysis reveals that different controller placements can significantly
influence controller reachability, highlighting the importance of developing efficient
placement strategies. Moreover, we investigate how many controllers are necessary to
ensure satisfactory performance. In the case of small-size networks, introducing a second
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controller yields substantial improvements in controller reachability for most networks.
Upon analyzing the optimal placements for various graphs, we have determined that
two topological graph metrics, namely degree and distance, heavily influence controller
reachability. Building upon this insight, we propose a controller placement strategy that
leverages degree and distance as key factors. Additionally, we develop three heuristic
algorithms: the greedy algorithm, the classic genetic algorithm, and the heuristic ge-
netic algorithm, to facilitate controller placement. To evaluate the effectiveness of these
strategies, we conducted experiments using real-world graphs from the Topology Zoo
dataset. All algorithms perform reasonably well. Considering both performance and algo-
rithm complexity, we conclude that the strategy based on graph metrics and the greedy
algorithm are suitable approaches for addressing the controller placement problem with
respect to controller reachability.

In Chapter 4, we have introduced an analytical approach based on generating func-
tions of in-degree and out-degree distributions to estimate the minimum fraction of driver
nodes needed for achieving network controllability through random node additions. Be-
sides, we have employed two recoverability indicators to assess the efficiency of seven
recovery strategies after random node removals. These strategies include the random
recovery strategy, degree-based recovery strategy, betweenness-based recovery strategy,
updated degree recovery strategy, updated betweenness recovery strategy, greedy degree
recovery strategy, and greedy betweenness recovery strategy. Upon analysis, we have
observed a difference between our initial analytical predictions and simulation results
in both synthetic and real-world networks. To address this inconsistency, we propose
an adjustment to the original method to more closely align the results. Regarding the
seven recovery strategies, we have determined that the greedy-betweenness recovery
strategy demonstrates superior efficiency in directed ER networks and SSNs, while the
greedy-degree recovery strategy proves most efficient in directed BA networks.

In Chapter 5, we investigate the efficiency of different link recovery strategies with
respect to random link removals based on the optimal power flow model on power grids.
We observe significant variations in the performance of different recovery strategies. First,
recovery strategies based on link metrics and the product of node centrality values of
the link’s endpoints do not achieve the highest performance. Secondly, the performance
of these recovery strategies varies significantly between different power systems, em-
phasizing the importance of network topology and generator placements in power grids.
Third, the two-step greedy recovery strategy consistently outperforms all other network
metrics-based recovery methods for all power systems, thresholds, and tolerance levels.
Additionally, the greedy recovery strategy, although slightly less effective than the two-
step greedy recovery strategy, demonstrates promising results. The findings confirm that
implementing an effective recovery strategy can significantly improve the recoverability
of power grids and that the two-step greedy strategy is particularly efficient while relying
solely on one network metric for recovery is less effective.

In Chapter 6, the prevalence yN (τ,ϵ∗; t) of the Markovian ϵ−SIS process with small
self-infection rate ϵ> 0 has been studied as a function of time. The typical "two-plateau"
behavior, first explained for the complete graph KN based on analytic computations, is
demonstrated to hold for other graphs other than complete graphs. Indeed, we argue
that this behavior may hold for any finite graph. In reality, if a disease or the spread
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process exhibits a small self-infection rate ϵ, the second plateau may play a significant
role: after the epidemics reach the first plateau (in a relatively short time), the epidemics
will not disappear like the classical SIS process nor stay constant as in the mean-field
approximation but will tend to reach the second plateau which can be either higher of
lower than the first plateau depending on its self-infection rate ϵ. The time-dependent
mean-field approximation for KN only performs reasonably well for relatively large self-
infection rates but completely fails to describe the typical Markovian ϵ−SIS process with
small self-infection rates. While self-infections, in particular when their rates are small,
are usually ignored, we have shown that the interplay of nodal infection and spread over
links may explain why the absorbing processes are less observed in real life.

7.2. DIRECTIONS FOR FUTURE WORK
The approximations in Chapter 2 for node removals based on in- or out-degree, involve
the assumption that the in-degree and out-degree distributions evolve independently.
However, the assumption requires further investigation to ensure its validity. Another
direction is to broaden the scope of our findings by including other types of node attacks,
specifically localized node attacks, as documented in [77]. Furthermore, we intend to
verify our conclusions on a more comprehensive collection of real-world networks and
various types of networks, such as interdependent networks. We also plan to apply
additional prediction techniques, such as machine learning methods, to assess network
controllability under node removals concerning in-degree and out-degree.

In relation to Chapter 3, we can also consider the impact of nodes being non-operational
with a certain probability or links between network devices and controllers being non-
operational with a certain probability. Second, other performance metrics like the worst
or the average node-controller reachability, where node-controller reachability is defined
as the probability of a node being able to establish communication with at least one con-
troller. Third, the strategy based on graph metrics might be improved by incorporating
additional topological properties, such as the existence of multiple paths between network
devices and controllers. Besides, the study of multi-objective optimization can be done
while placing controllers, such as considering both latency and controller reachability.

With the investigation into approximating network controllability under random node
additions, future research in line with Chapter 4 could delve into the development of ana-
lytical techniques for estimating network controllability under various recovery strategies.
For instance, Wang et al. [52] have laid the groundwork for potential analytical methods to
approximate network controllability under targeted node additions based on degree. Fur-
thermore, considering the additional computation cost associated with the shifted model,
there is potential for enhancing its effectiveness. One promising avenue is the exploration
of algorithms with lower complexity to calculate the initial minimum number of driver
nodes, thereby optimizing the performance of the shifted model. Moreover, considering
that cycles play a critical role in network controllability [170], we can consider the method
proposed by Fan et al. [171] to measure node centrality based on cycles, which could
lead to the development of a cycle ratio recovery strategy, potentially offering improved
recovery efficiency. In addition, the concept of the l -shell of a given node, defined as the
set of nodes at a distance l from the focal node [78], presents an intriguing avenue for
further research. Exploring localized attacks and subsequent recovery strategies based
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on the shell distance l could offer insights into strategies that leverage localized informa-
tion. These investigations hold the potential to deepen our understanding of the efficacy
of diverse recovery methods and contribute to the evolution of more efficient network
recovery techniques in the context of network controllability.

To enhance the results of Chapter 5, we can develop hierarchical recovery strategies by
classifying links into two groups: those connected to generators and those not connected
to generators. Then, we prioritize restoring links connected to generators. Second,
we could investigate whether allowing cascading failures after link recovery or removal
impacts the conclusions of this study. Thirdly, we could introduce additional constraints,
such as generator costs, and incorporate cost minimization as an objective within the DC
power flow model. Finally, given that distributed energy systems enhance power system
resilience, it is promising to research how to establish and integrate such systems after a
blackout using the discussed strategies.

To extend the research reported in Chapter 6, we can first consider the non-Markovian
ϵ−SIS process and investigate whether the time-dependent behavior is the same as the
Markovian ϵ−SIS process. Secondly, we can employ the ϵ−SIS process to model failure
spreading in real-world systems. Thirdly, we can extend the research by calculating the
threshold for the spreading process on time-varying networks.
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A
APPENDIX TO CHAPTER 2

A.1. THE SIMULATION RESULTS BASED ON DIFFERENT α VALUES
In Figs. A.1 and A.2, we demonstrate for α = 0, α = 1, α = 10 and α = 100, how the
minimum fraction of driver nodes changes under targeted attacks based on degree, in-
degree and out-degree for ER networks and SSNs. We find that the results of α= 10 and
α= 100 overlap.

A.2. COMPARISON WITH NODE REMOVAL BASED ON DEGREE

WITH α= 1
We present the results of four types of node removal strategies: random removal, tar-
geted node removal based on the total degree with α= 1, targeted node removal based
on in-degree with α = 1, and targeted node removal based on out-degree with α = 1
for three networks in Fig. A.3. We find that the three targeted node removal strategies
are more disruptive than random removal. However, the effectiveness of the targeted
node removal strategies varies depending on the network structure. For instance, in
ER(100,0.04), all three targeted node removal strategies show similar performance. In
SSN(104,2), the targeted node removal based on in-degree is the most disruptive, whereas,
in HinerniaGlobal, the targeted node removal based on out-degree is the most disruptive.

A.3. RESULTS FOR ANOTHER REAL-WORLD NETWORK
In Chapter 2, the real-world graphs utilized have an average degree ranging from 2 to 3. To
further evaluate the efficacy of the proposed techniques, we selected a network from the
Topology Zoo dataset, namely BtNorthAmerica, which possesses an average total degree
of 4.22. The network under consideration comprises 36 nodes and 76 links. We analyzed
the controllability of the network under node removals concerning node in-degree and
out-degree with different α. The results are presented in Fig. A.4 and Tables A.1 and
A.2. Our findings suggest that the predicted values of the proposed methods are valid. It
is worth mentioning when α = 10, attacks based on out-degree at the onset are not as

117



A

118 A. APPENDIX TO CHAPTER 2

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of removed nodes (p)

0.2

0.4

0.6

0.8

1.0

n D

α=0
α=1
α=10
α=100

(a) Total−ER(50, 0.07)

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of removed nodes (p)

0.2

0.4

0.6

0.8

1.0

n D

α=0
α=1
α=10
α=100

(b) In−ER(50, 0.07)

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of removed nodes (p)

0.2

0.4

0.6

0.8

1.0

n D

α=0
α=1
α=10
α=100

(c) Out−ER(50, 0.07)

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of removed nodes (p)

0.0

0.2

0.4

0.6

0.8

1.0
n D

α=0
α=1
α=10
α=100

(d) Total−ER(100, 0.04)

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of removed nodes (p)

0.0

0.2

0.4

0.6

0.8

1.0

n D

α=0
α=1
α=10
α=100

(e) In−ER(100, 0.04)

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of removed nodes (p)

0.0

0.2

0.4

0.6

0.8

1.0

n D

α=0
α=1
α=10
α=100

(f) Out−ER(100, 0.04)

Figure A.1: The minimum fraction of driver nodes nD during targeted node removal based on total degree,
in-degree and out-degree with α= 0, α= 1, α= 10 and α= 100 for ER networks. The results are the average
nD calculated by the maximum matching algorithm over 10000 realizations of real-world networks and 1000
realizations of model networks. The blue, orange, and green dashed lines are the results of simulations with
α= 0, α= 1 and α= 10, respectively. The pink dotted lines are obtained by the simulation results with α= 100.
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(c) Out−SSN(104,2)
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Figure A.2: The minimum fraction of driver nodes nD during targeted node removal based on total degree,
in-degree and out-degree with α= 0, α= 1, α= 10 and α= 100 for SSN networks. The results are the average
nD calculated by the maximum matching algorithm over 10000 realizations of real-world networks and 1000
realizations of model networks. The blue, orange, and green dashed lines are the results of simulations with
α= 0, α= 1 and α= 10, respectively. The pink dotted lines are obtained by the simulation results with α= 100.
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(b) SSN(104,2)
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(c) HinerniaGlobal
Figure A.3: The minimum fraction of driver nodes nD during random removal and targeted node removal
based on total degree, in-degree and out-degree with α= 1 for three networks. The results are the average nD
calculated by the maximum matching algorithm over 10000 realizations of HinerniaGlobal and 1000 realizations
of ER(100, 0.04) and SSN(104,2). The blue, red, orange and pink dashed lines are the results of simulations with
random removal, targeted removal based on the total degree with α= 1, targeted removal based on in-degree
with α= 1 and targeted removal based on out-degree with α= 1.
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deleterious as random removals. Removing the node with the highest out-degree in the
initial steps results in a lower average number of driver nodes than removing other nodes,
on average.
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Figure A.4: The minimum fraction of driver nodes nD during targeted node removal based on in-degree and
out-degree with α= 1 and α= 10, respectively, for the network BtNorthAmerica.

Table A.1: The RMSE between the analytical results for random removals and the simulation results under
random removals, targeted removals with α= 1 and α= 10, respectively, while removing up to 10% of the nodes.

network random
α= 1 α= 10

in-degree out-degree degree in-degree out-degree degreee
BtNorthAmerica 0.0097 0.0140 0.0104 0.0121 0.0117 0.0096 0.0101

Table A.2: The RMSE between the analytical results of the proposed analytical methods and the simulation
results under different kinds of removals while removing up to 10% of the nodes.

.

network random
α= 1 α= 10

in-degree out-degree degree in-degree out-degree degreee
BtNorthAmerica 0.0097 0.0126 0.0175 0.0091 0.0538 0.0612 0.0527
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B.1. FITTING POWER-LAW EXPONENTS OF THE IN-DEGREE

AND OUT-DEGREE DISTRIBUTIONS FOR DIRECTED BA
NETWORKS

To illustrate the power-law degree distributions in directed BA networks, we present the
mean and standard deviation values of the fitted power-law exponents for both in-degree
and out-degree distributions across 10,000 networks. This analysis is conducted for each
pair of parameters N and m outlined in Table B.1.

B.2. ANALYTICAL METHOD BASED UPON RESCALING
Besides using the difference between the simulation result nD [0]′ and the analytical
approximation nD [0], we also constructed a model using a rescaling factor γ, defined

as γ = nD [0]′
nD [0] . Consequently, if the analytical result of the minimum fraction of driver

nodes at a particular challenge k is denoted as nD [k], the rescaled result nD [k]′ can be
computed as follows:

nD [k]′ = γnD [k] (B.1)

We present the results of the rescaled model for the Topology Zoo dataset in a his-
togram Fig. B.1, where the results obtained before and after rescaling are depicted in
orange and blue, respectively. We observe a noticeable improvement in the approxima-
tions for the seven large real-world graphs by comparing the results obtained before and
after rescaling (Table B.2). The results for the rescaled model exhibit smaller AME and
RMSE values, and higher PRMSE≤0.05 values, thus indicating the effectiveness of the rescal-
ing method. However, compared to the results using the shifted model, the prediction
improvements are slightly less.
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Table B.1: The mean value γi n and γout , and standard deviation value i nstd and outstd , of fitted power-law
exponents of the in-degree distribution and the out-degree distribution for 10000 directed BA networks for each
pair of parameters N and m

Name γi n γout i nstd outstd

BA(50,2) 3.53 3.50 1.78 1.78
BA(50,4) 4.72 4.61 3.06 2.96

BA(100,2) 3.29 3.34 2.04 2.13
BA(100,4) 3.19 3.19 1.29 1.29
BA(500,2) 2.81 2.81 0.33 0.28
BA(500,4) 2.87 2.87 0.15 0.14

BA(1000,2) 2.83 2.83 0.12 0.15
BA(1000,4) 2.89 2.89 0.07 0.07
BA(5000,2) 2.86 2.86 0.06 0.06
BA(5000,4) 2.92 2.92 0.04 0.04

BA(10000,2) 2.87 2.87 0.05 0.05
BA(10000,4) 2.92 2.92 0.04 0.03

Table B.2: The results of the rescaled model for 7 large scale real-world networks

Name AME RMSE PRMSE≤0.05 AME’ RMSE’ P ′
RMSE≤0.05

Qatif 0.0085 0.0088 1.0000 0.0016 0.0014 1.0000
p2p Gnutella25 0.0002 0.0003 1.0000 0.0000 0.0000 1.0000
p2p Gnutella08 0.0363 0.0533 0.2315 0.0053 0.0066 1.0000

Indochina 0.0338 0.1005 0.0000 0.0081 0.0197 1.0000
WebSpam 0.0104 0.0240 1.0000 0.0056 0.0106 1.0000
Wiki Vote 0.0001 0.0002 1.0000 0.0001 0.0001 1.0000

Email Eu core 0.0014 0.0096 1.0000 0.0014 0.0066 1.0000
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Figure B.1: The method based upon rescaling has better approximation performance for the Topology Zoo data
set than the original analytical model.
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B.3. THE PERFORMANCE OF DIFFERENT RECOVERY STRATEGIES

IN SMALL SIZE SYNTHETIC NETWORKS

Table B.3: The recovery energy E of different recovery strategies for different kinds of synthetic networks. "Rand"
is an abbreviation of random recovery strategy; "Deg" is an abbreviation of degree based recovery strategy;
"Bet" presents betweenness based recovery strategy; "Deg-up" is an abbreviation of updated degree based
recovery strategy; "Bet-up" presents updated betweenness recovery strategy; "Greedy-deg" is an abbreviation of
greedy-degree recovery strategy; "Greedy-bet" presents greedy-betweenness recovery strategy. The bold values
represent the lowest recovery energy for each type of graph

Name Rand Deg Bet Deg-up Bet-up Greedy-deg Greedy-bet
ER(50, 0.07) 1.29925 1.24832 1.23136 1.24708 1.22850 1.19586 1.19462

ER(100, 0.04) 1.79139 1.73317 1.70636 1.73172 1.70256 1.65979 1.65714
SSN(50, 2) 2.23936 2.15538 2.13779 2.15146 2.13314 2.06563 2.06426
SSN(50, 4) 0.98394 0.97422 0.96245 0.97383 0.96052 0.94980 0.94963

SSN(100, 2) 3.92723 3.76935 3.74061 3.7614 3.73418 3.59817 3.59557
SSN(100, 4) 1.61484 1.58919 1.56030 1.58803 1.55644 1.51731 1.51674

BA(50, 2) 3.39699 3.25094 3.26215 3.24886 3.26049 3.17485 3.17540
BA(50, 4) 1.44235 1.34377 1.33573 1.34272 1.33353 1.28932 1.28862

BA(100, 2) 6.20176 5.92666 5.95579 5.92276 5.95477 5.77948 5.78079
BA(100, 4) 2.63404 2.42488 2.42039 2.42208 2.41671 2.30261 2.30216

Table B.4: The recoverability metric R of different recovery strategies for different kinds of synthetic networks.
"Rand" is an abbreviation of random recovery strategy; "Deg" is an abbreviation of degree based recovery strat-
egy; "Bet" presents betweenness based recovery strategy; "Deg-up" is an abbreviation of updated degree based
recovery strategy; "Bet-up" presents updated betweenness recovery strategy; "Greedy-deg" is an abbreviation of
greedy-degree recovery strategy; "Greedy-bet" presents greedy-betweenness recovery strategy. The bold values
represent the lowest recoverability metric for each type of graph

Name Rand Deg Bet Deg-up Bet-up Greedy-deg Greedy-bet
ER(50, 0.07) 0.14436 0.13870 0.13682 0.13856 0.13650 0.13287 0.13274

ER(100, 0.04) 0.11196 0.10832 0.10665 0.10823 0.10641 0.10374 0.10357
SSN(50, 2) 0.24882 0.23949 0.23753 0.23905 0.23702 0.22951 0.22936
SSN(50, 4) 0.10933 0.10825 0.10694 0.10820 0.10672 0.10553 0.10551

SSN(100, 2) 0.24545 0.23558 0.23379 0.23509 0.23339 0.22489 0.22472
SSN(100, 4) 0.10093 0.09932 0.09752 0.09925 0.09728 0.09483 0.09480

BA(50, 2) 0.37744 0.36122 0.36246 0.36098 0.36228 0.35276 0.35282
BA(50, 4) 0.16026 0.14931 0.14841 0.14919 0.14817 0.14326 0.14318

BA(100, 2) 0.38761 0.37042 0.37224 0.37017 0.37217 0.36122 0.36130
BA(100, 4) 0.16463 0.15156 0.15127 0.15138 0.15104 0.14391 0.14389
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C.1. ABBREVIATIONS
Ka the number of challenges in the attack process
Kr the number of challenges in the recovery process
R[k] the value of R at challenge k
Sa the attack strength
Sr the recovery strength
η the recoverability energy ratio
G a graph
N the number of nodes in a graph
N the set of N nodes
L the number of links in a graph
L the set of L links
A the adjacency matrix
ai j the element of the adjacency matrix
li j the link connecting node i and node j
yi j the impedance of transmission line li j

Ã the weighted adjacency matrix
ãi j the element of the weighted adjacency matrix
dav the average degree
Li [k] the amount of satisfied demand at bus i at challenge k
Gi [k] the amount of supply at bus i at challenge k
Pi the injected power at node i
Q̃ the weighted Laplacian matrix
∆̃ the weighted degree matrix
θi the phase angle of bus i
Θ the N ×1 vector with elements θ
B̃ the weighted incidence matrix
b̃i j the element of the weighted incidence matrix
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G[k] the supply vector including the supply Gi [k] of each bus i at challenge k
L[k] the demand vector including the demand Li [k] of each bus i at challenge k
F [k] the active power flow vector at challenge k
fi j [k] the power flow of line li j at challenge k
C the capacity vector including the capacity of all transmission lines
ci j the capacity of each transmission line li j

α the tolerance level
di the degree of node i
di j the degree of link li j

bi j the betweenness of link li j

P s→t the number of shortest paths from node s to node t
P s→t (li j ) the number of shortest paths from node s to node t through link li j

b̄i j the flow betweenness
| fs→t (li j )| the magnitude of flow through the link li j when we inject one unit active

power to node s and extract one unit active power from node t
xi the eigenvector centrality of node i
ei j the product of eigenvector centrality values of end points of link li j

x̄i the weighted eigenvector centrality of node i
ēi j the product of weighted eigenvector centrality values of end points of link li j

H i j the distance of the shortest path between node i and node j
c̄i the closeness of node i
c̄i j the product of closeness values of end points of link li j

Q the Laplacian matrix of adjacency matrix A
Q† the pseudo-inverse Laplacian matrix of the Laplacian matrix Q
Ωi j the effective resistance between node i and node j calculated by

using the pseudo-inverse matrix Q†

c̃i the electrical closeness of node i
c̃i j the product of electrical closeness values of end points of link li j

Q̃† the pseudo-inverse matrix of the weighted Laplacian matrix Q̃
Ω̃i j the effective resistance between node i and node j calculated by

using the pseudo-inverse matrix Q̃†

wi the electrical weighted closeness of node i
wi j the product of electrical weighted closeness values of end points of link li j

ζ the zeta vector
ζ̃ the weighted vector
ζi j the product of zeta vector values of end points of link li j

ζ̃i j the product of weighted zeta vector values of end points of link li j
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C.2. THE STATISTICAL PROPERTIES OF LINK METRICS FOR TWO

KINDS OF LINKS BASED ON WHETHER OR NOT LINKS ARE

CONNECTED WITH GENERATORS

Table C.1: The mean value and standard deviation of various link metrics are calculated for two categories of
links, classified based on whether or not links are connected with generators for the IEEE 30 bus system

Metrics
Connected to generators Not connected to generators

Mean Std Mean Std
FlowBet 94.770551 44.594022 114.742752 47.264862
Degree 10.400000 6.231258 12.269231 9.101902

Zeta 0.528584 0.296456 0.492346 0.434582
Bet 0.081226 0.044353 0.080283 0.063794

Eigen 0.032307 0.042318 0.050533 0.055398
WeiZeta 0.025984 0.031659 0.024918 0.050187

EleWeiClose 0.012889 0.004615 0.014670 0.005090
WeiEigen 0.045759 0.122430 0.009824 0.037966
EleClose 0.000488 0.000132 0.000535 0.000167

Close 0.000123 0.000029 0.000136 0.000038

Table C.2: The mean value and standard deviation of various link metrics are calculated for two categories of
links, classified based on whether or not links are connected with generators for the IEEE 39 bus system

Metrics
Connected to generators Not connected to generators

Mean Std Mean Std
FlowBet 96.370201 45.321198 240.779292 107.181289
Degree 3.272727 0.646670 8.800000 2.654630

Zeta 3.114607 1.747125 1.138656 0.685581
EleWeiClose 0.229349 0.068645 0.437775 0.126349

Bet 0.050301 0.005854 0.119877 0.072109
Eigen 0.008464 0.004923 0.037058 0.016150

WeiEigen 0.003469 0.010297 0.030148 0.074798
WeiZeta 0.001033 0.000709 0.000310 0.000363
EleClose 0.000070 0.000018 0.000115 0.000027

Close 0.000026 0.000005 0.000039 0.000010
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Table C.3: The mean value and standard deviation of various link metrics are calculated for two categories of
links, classified based on whether or not links are connected with generators for the IEEE 118 bus system

Metrics
Connected to generators Not connected to generators

Mean Std Mean Std
FlowBet 832.375534 764.6106 778.816749 542.1641
Degree 19.189189 10.90265 10.761905 5.989612

Zeta 1.091884 1.30306 1.338246 0.9381184
Bet 0.046504 0.0607467 0.027309 0.0374265

WeiZeta 0.009382 0.0138922 0.011388 0.0088103
WeiEigen 0.002517 0.0154307 0.005404 0.0468745

Eigen 0.020586 0.022895 0.005041 0.008672
EleWeiClose 0.002065 0.0006941 0.001772 0.0005885

EleClose 0.000017 0.0000051 0.000014 0.0000038
Close 0.000002 0.0000008 0.000002 0.0000006
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