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SUMMARY

Aircraft efficiency and its environmental impact are primarily influenced by three
key areas: aircraft weight, aerodynamic efficiency, and engine performance. While
engine performance is typically addressed as a separate topic, weight reduction
and aerodynamic efficiency can be concurrently addressed by leveraging the direc-
tional stiffness properties of composite materials. This field is known as aeroelastic
tailoring. Its potential applications have been studied since the ’80s and have re-
cently gained momentum, thanks to advancements in computational power and
the widespread use of composite materials in aerospace.

In this dissertation, the author focuses on developing a framework for performing
wing aeroelastic tailoring during the preliminary design phase of an aircraft. The
framework’s applicability to preliminary design studies favours the use of low-
fidelity yet fast tools capable of computing thousands of different load cases used
in wing design. The wing structure is modelled with FEM shell elements, allow-
ing the direct inclusion of mechanical constraints in the optimization. The wing’s
main load-bearing structural components are divided into patches that are locally
optimized to fully utilize the tailoring capabilities of composite materials. Aero-
dynamics is modelled using a fast panel method called the doublet lattice method
(DLM). Composite materials and their directional stiffness characteristics are in-
cluded in the optimizer via lamination parameters, allowing for gradient-based
optimization. Structural continuity between adjacent wing patches is enforced
through blending constraints, and their impact on the final design is thoroughly
studied. Stacking sequence retrieval and the impact of blending constraints on
the retrieval process are also explored.

Low-fidelity approaches inevitably involve simplifications limiting their applic-
ability. Aerodynamic panel methods like the DLM, while fast, are unsuitable
for estimating aircraft aerodynamic performance (e.g., drag). In this disserta-
tion, CFD-based corrections to the DLM are implemented to capture the effect
of airfoil camber and wing twist law on aerodynamic loads accurately. Addition-
ally, a surrogate model is introduced to account for aerodynamic drag during
optimization. The surrogate model relies on an original reduction technique to
approximate wing structural deflection with a limited number of inputs. The
resulting surrogate replaces costly high-fidelity CFD aero-structural simulations
inside optimization loops, resulting in significantly faster simulations.
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The proposed framework is built around the analysis and optimization capabilities
of the commercial tool Nastran and has been applied to a real industrial case. Two
main optimization cases have been performed. The first case focuses on three
aspects: the impact of blending constraints on gradient-based optimization, the
effect of blending constraints on subsequent stacking sequence retrieval, and the
inclusion and impact of dynamic load cases on the final design. The use of blending
constraints leads to a reduction in the design space followed by an approximately
5% increase in structural weight. However, these constraints enable more gradual
thickness and stiffness changes between adjacent patches, resulting in a lower
error (about 60%) when retrieving a discrete stacking sequence. This lower error
ultimately leads to smaller corrections needed to achieve a fully feasible design and
up to a 3.7% lighter final discrete design. Dynamic loads have been included in the
optimizations via an Equivalent Static Load (ESL) method. Although dynamic
loads have not been found to significantly impact the design under consideration,
the ESL has demonstrated its capability to successfully include dynamic loads in
an optimization.

The second optimization case focuses on multi-objective optimizations and trade-
offs between weight and aerodynamic drag minimization, thanks to the inclusion
of the surrogate model. The obtained Pareto fronts show that for structural weight
minimization, the optimizer favours wing structures with wash-out behaviour and
inward-shifted lift distribution. However, to maintain trim, the aircraft needs to
fly at a higher angle of attack, increasing aerodynamic drag. Minimizing the
drag coefficient results in a stiffer wing with less wash-out behaviour, allowing
the aircraft to fly at a lower angle of attack. Validation of the results against
full-order model CFD results shows an absolute error ranging between 0.9 and
1.6 d.c., in line with the surrogate model generalization RMSE of 1.29 d.c.
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SAMENVATTING

De efficintie van vliegtuigen en de resulterende milieu-impact ervan worden hoof-
dzakelijk bepaald door drie belangrijke factoren: het vliegtuiggewicht, de aro-
dynamische efficintie en de voortstuwing. Dat laatste is vaak een aparte dis-
cipline, maar gewichtsvermindering en arodynamische efficintie kunnen samen
worden geoptimaliseerd door de stijfheidsverdeling van composietmaterialen te
bepalen. Dit onderzoeksgebied wordt aeroelastic tailoring genoemd. De potentile
toepassing ervan wordt al sinds de jaren 1980 bestudeerd en zijn de laatste tijd
in een stroomversnelling terechtgekomen dankzij betere computers en het wijd-
verbreide gebruik van composietmaterialen in de lucht- en ruimtevaart.

De auteur ontwikkelt een methode voor aroelastische optimalisatie van de vleugel
tijdens de voorontwerpfase van een vliegtuig in dit proefschrift. Snelle reken-
methoden zijn nodig om deze methode rekenkundig haalbaar te maken omdat
duizenden verschillende belastingsgevallen doorgerekend moeten worden tijdens
het vleugelontwerp. De structuur van de vleugel wordt gemodelleerd met eindige
elementen schaalmodellen die het mogelijk maken om mechanische randvoor-
waarden mee te nemen in de optimalisatie. De belangrijkste dragende struc-
turele delen van de vleugel zijn onderverdeeld in patches die elk geoptimaliseerd
zijn en zo veel mogelijk gebruik te maken unieke eigenschappen van de com-
posietmaterialen. De arodynamica wordt gemodelleerd met een panelenmethode,
meer bepaald de doublet lattice method (DLM). De composietmaterialen en hun
stijfheidskarakteristieken worden in de optimalisatie meegenomen via lamination
parameters om een gradient-based optimalisatie te kunnen doen. Structurele com-
patibiliteit tussen de aangrenzende patches van de vleugel wordt gegarandeerd
via blending constraints en hun invloed op het uiteindelijke ontwerp wordt be-
studeerd. Ook wordt de invloed van de composieten stacking sequence op het
proces bestudeerd.

De low-fidelity benaderingen gaan onvermijdelijk gepaard met aannames die hun
accuraatheid beperken. Panelenmethoden, zoals de DLM, zijn weliswaar snel,
maar echter niet geschikt om de luchtweerstand van vliegtuigen te bepalen. In
dit proefschrift worden arodynamische correcties, die berekend zijn met CFD, in
de DLM gemplementeerd om het effect van het vleugelprofiel en de vleugelro-
tatie op de arodynamische belastingen correct te bepalen. Bovendien wordt een
surrogaatmodel gebruikt om tijdens de optimalisatie rekening te houden met de
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luchtweerstand. Het surrogaatmodel berust op een reductietechniek om de con-
tinue structurele doorbuiging van de vleugel te benaderen met een beperkt aantal
parameters. Het resulterende surrogaatmodel wordt gebruikt om de rekenkundig
intensieve high-fidelity CFD arostructurele simulaties in het optimalisatiealgor-
itme te vervangen. Dat resulteert in een aanzienlijk snellere simulatietijd.

De voorgestelde methode is ontwikkeld binnen de analyse- en optimalisatiemo-
gelijkheden van NASTRAN en is toegepast op een realistische industrile casus.
Er zijn twee optimalisatiestudies uitgevoerd. De eerste studie focust op drie aspec-
ten: (i) de invloed van blending constraints op de gradient-based optimalisatie,
(ii) de invloed van blending constraints op de berekening van de stacking se-
quence, en (iii) de implementatie en effect van dynamische belastingsgevallen op
het uiteindelijke vleugelontwerp. Het directe gevolg van het gebruik van de blend-
ing constraints is een vermindering van de ontwerpmogelijkheden, wat resulteert
in een toename van het constructiegewicht met ongeveer 5%. Het gebruik van deze
voorschriften zorgt echter voor een meer geleidelijke dikte- en stijfheidsveranderin-
gen tussen aangrenzende patches, hetgeen uiteindelijk leidt tot een kleinere fout
(ongeveer 60%) bij het bepalen van een discrete stacking sequence. Deze kleinere
fout leidt uiteindelijk tot kleinere correcties die nodig zijn om een volledig pro-
duceerbaar ontwerp te verkrijgen en uiteindelijk tot een 3.7% lichter realistisch
ontwerp. Dynamische belastingen zijn meegenomen in de optimalisaties via een
Equivalent Static Load (ESL) methode. Ook al bleken dynamische belastingen
geen significante invloed te hebben op het ontwerp, toch is aangetoond via de
ESL methode dat dynamische belastingen succesvol meegenomen kunnen worden
in een optimalisatie.

De tweede studie is gericht op multi-objective optimalisatie en het afwegen van
minimaal gewicht en minimale luchtweerstand. Dit laatste kan bepaald worden
dankzij de integratie van het surrogaatmodel voor de weerstand. De verkregen
Paretocurves tonen aan dat voor structurele gewichtsminimalisatie, de optimizer
de voorkeur geeft aan vleugelstructuren met wash-out gedrag met als gevolg een
naar de vleugelwortel toe verschoven liftverdeling. Om het vliegtuig te trimmen
moet het echter bij een hogere invalshoek vliegen waardoor de luchtweerstand
toeneemt. Het minimaliseren van de weerstandscofficint resulteerde uiteindelijk
in een stijvere vleugel met minder wash-out waardoor het vliegtuig bij een lagere
invalshoek kan vliegen. Validatie van de resultaten met de CFD resultaten van
het volledige model laat zien dat de absolute fout varieert tussen 0.9 en 1.6 drag
counts, wat in lijn is met de fout van het surrogaatmodel van 1.29 drag counts.
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ACADEMIC CONTRIBUTION OF THIS
DISSERTATION

In this dissertation, an optimisation framework is introduced for designing aero-
elastically tailored wings during the preliminary design phase of an aircraft. The
framework allows for accurate sizing of the wing structure and incorporates aero-
dynamic drag estimation, allowing for multidisciplinary analysis and optimisation.
The main contributions of this work are as follows:

• Introduction of an aeroelastic optimisation framework for the design of
aeroelastically tailored wings has been introduced. The model extends
the state-of-the-art by (i) including a comprehensive set of constraints (i.e.
manufacturing constraints, composite compatibility constraints, structural
strength based on the Tsai-Wu failure criterion, panel buckling, blending
constraints and a high-fidelity aerodynamic drag constraint), (ii) including
a high-fidelity aerodynamic correction to improve load and flight shape cal-
culation and (iii) including a combination of static and dynamic load cases.
The optimisation framework is built using object-oriented programs and
combines commercial FEM tools (i.e. Nastran) for gradient-based optim-
isation and ad-hoc open-source tools for stacking sequence retrieval.

• Presentation of a novel approach to incorporating aerodynamic drag into
structural optimisation. This method employs an original reduction tech-
nique that combines traditional modal projection with advanced statistical
methods to approximate wing structural displacement using a limited num-
ber of inputs. This reduction enabled the creation of a fast surrogate model,
which is interfaced with the commercial tool Nastran, allowing for the in-
clusion of drag considerations during structural optimisation.

• Investigation of how blending constraints affect the continuous optimisation
of thickness and stiffness distribution across various load case combinations,
as well as assessing the influence of these constraints on the performance of
the stacking sequence retrieval process.

• Exploration of the impact of incorporating high-fidelity aerodynamic drag
into structural optimisation and the resulting Pareto fronts from the mul-
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tidisciplinary optimisation with conflicting objectives. Additionally, the sur-
rogate model approach was validated by comparing its results with those
from the CFD model.
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1
INTRODUCTION

Aviation, alongside other industries, continues to face the pressing need to reduce
greenhouse gas (GHG) emissions in alignment with the temperature targets ne-
gotiated under the Paris Agreement of COP21. As of 2019, prior to the COVID
pandemic, aviation accounted for approximately 2.5% of global CO2 emissions.
However, the actual impact on global warming could be significantly higher due
to emissions of nitrogen oxides, soot, and water vapour, with aviation effects po-
tentially being two to four times greater than the pure CO2 effects (ICAO, 2022).

As of February 2023 (ICAO, 2023), the International Civil Aviation Organiza-
tion (ICAO) forecasts that air passenger demand in 2023 will rapidly recover to
pre-pandemic levels on most routes by the first quarter. By the end of the year,
a growth of around 3% on 2019 figures is expected. Looking further ahead to
2024, air passenger demand is anticipated to be stronger, estimated to be around
4% higher than in 2019. This translates to a Compound Annual Growth Rate
(CAGR) of 0.7% over the 2019-2024 period, and some aircraft manufacturer fore-
casts a CAGR of 3.6% between 2019 and 2042 (Airbus, 2023) for the passenger
traffic alone. Thus, the need for more ecological aviation remains vital if we want
to mitigate the impact of this growth on the environment. These needs are reflec-
ted in the program from the Advisory Council for Aeronautics Research in Europe
“ACARE Flightpath 2050”. Among its many objectives (European Commission,
2011), this program aims at reducing CO2 emissions by 75% per passenger kilo-
metre, reducing NOx emissions by 90%, reducing perceived noise by 65% through
the development of new technologies by the year 2050.
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1

1. INTRODUCTION

Research and development tend to concentrate mainly on three key areas for im-
proving aircraft efficiency(Acosta et al., 2013). These areas are weight reduction,
aerodynamic efficiency and engine performance. Aerolestic tailoring is the main
topic of this dissertation and takes advantage of the directional stiffness prop-
erties of composite materials to control wing elastic deformation under static or
dynamic aerodynamic loads in a beneficial way. By doing so, aeroelastic tailoring
has the potential to achieve both structural weight reduction and aerodynamic
efficiency improvement.

1.1 LITERATURE REVIEW

This section reviews the state-of-the-art of the different topics involved in this
dissertation and serves as a background for the research objective and modelling
decisions. The topics covered in this section are composite material optimisation,
composite blending constraints and aeroelastic tailoring.

1.1.1 COMPOSITE MATERIAL OPTIMISATION

Composite materials are one of the key structural technology improvements that
take part in structural weight reduction (Acosta et al., 2013). This is possible
thanks to the composite materials’ high strength-to-weight ratio and their in-
trinsic anisotropy that allows for optimising specific stiffness directions in a load-
carrying component. However, while in general they offer improved mechanical
performances when compared to their more conventional aluminium counterparts,
composite materials are more difficult to design because of the increased number
of design variables. For example, with composite materials, both thickness and
plies angles need to be correctly chosen to determine the optimal stiffness and
mass of the laminate. In addition, adding composite materials to an aircraft
also has some drawbacks, such as galvanic corrosion, increased use of expensive
and hard-to-machine titanium alloys, additional failure modes that are harder
to predict, and increased environmental footprint. Optimisation of a compos-
ite structure plays a major role in composite design, and a considerable amount
of work has been spent in developing modelling and optimisation methods. The
books of Haftka and Gürdal (1992) and Gürdal et al. (1999) are great examples of
such modelling and optimisation methods for both general structural optimisation
and composite optimisation.
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1

1.1. LITERATURE REVIEW

1.1.1.1 REVIEW OF OPTIMISATION STRATEGIES

Optimising a composite structure consists of identifying its thickness and stack-
ing sequence with respect to a given set of loads while satisfying a wide range of
constraints such as stress, stability, minimum first natural frequency and man-
ufacturing. This strategy can be effective for simple structures. However, it is
not possible to make the same statement when large and complex structures are
involved. The reason is that loads are not uniformly distributed over large struc-
tures such as an aircraft fuselage or wing centre box. As a consequence, the use
of a uniform and constant thickness and stacking sequence design over a large
structure will lead to an optimal design only for the most heavily loaded region
while over-designing other less loaded parts of the structure, resulting in an over-
all inefficient design. As a consequence, it is common practice to divide large and
complex structures into sub-regions that could be locally optimised with respect
to the local load distribution.

Two works from Ghiasi et al. (2009) and Ghiasi et al. (2010) review various op-
timisation strategies for different classes of composite structures. The first work
of Ghiasi et al. (2009) focuses on constant stiffness composite, where the optimal
stacking sequence is uniform for the entire composite component. The second
work of Ghiasi et al. (2010) focuses instead on variable stiffness composite struc-
tures where material distribution and/or stacking sequence can vary over the
structural domain. Within the variable stiffness design category, it’s possible to
identify two subcategories: a patch variable stiffness design and a local variable
stiffness design. A patch is a region of the structure that is defined a priori by the
designer and where the stacking sequence and thickness are kept constant. The
local design, instead, offers the possibility to locally describe the fiber path across
the structure and results in a smooth and continuous variation of thickness and
stiffness. For the sake of simplicity, in this dissertation variable stiffness design
always refers to a structure with a patch-wise stiffness variation.

1.1.1.2 PARAMETERISATIONS OF COMPOSITE MATERIALS

A central topic in composite optimisation is the parameterisation adopted to
model the composite materials. The most explicit parameterisation is the direct
use of plies thickness and angle. This parameterisation allows for an easy intro-
duction of manufacturing constraints and direct output of the stacking sequence.
However, there are some drawbacks like the potentially boundless design space,
the discrete nature of the design parameters that could require the use of mixed-
integer programming techniques (Haftka and Gürdal, 1992) and non-convex con-
straint design space (e.g. buckling) presenting several local minima (Stegmann
and Lund, 2005). Heuristic methods like genetic algorithms (GAs) have also been
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widely used together with explicit parameterisation like the works from Haftka
and Walsh (1992), Le Riche and Haftka (1993) and Adams et al. (2004). However,
while heuristic methods may reach the global optimum and are suited to work
with discrete quantities, they require more function evaluation than gradient-
based methods. Such drawback makes these approaches difficult to apply in case
of expensive functions like finite element models (FEM) or computational fluid
dynamics (CFD) runs.

Another well-known approach is based on the lamination parameters (LPs) that
were first introduced by Tsai and Pagano (1968). Lamination parameters are part
of the implicit parameterisation and are a representation of the composite ma-
terial stiffness matrices A, B and D derived from the classical lamination theory
(CLT). Composite parameterisation via lamination parameters results in twelve
parameters that, together with the thickness, fully describe any general laminate
stiffness matrix regardless of the number of plies. The advantages of this paramet-
erisation are a drastically reduced number of design variables, the design variables
being continuous so that gradient-based optimisation can be implemented and a
convex design space (Grenestedt and Gudmundson, 1993). On the other hand,
lamination parameters do not provide a direct representation of the laminates,
so an inverse optimisation problem is often performed to obtain the stacking se-
quence of the optimised laminates through heuristic algorithms (Irisarri et al.,
2014). Moreover, the design space needs to be constrained, and the full feasible
space is not known explicitly.

Lamination parameters have been applied extensively to constant and variable
stiffness structure optimisation with the intent of improving mechanical perform-
ance such as compliance (Hammer et al., 1997; Setoodeh et al., 2005), buckling
load (IJsselmuiden et al., 2010; Liu et al., 2004; Setoodeh et al., 2009) and nat-
ural frequencies (Abdalla et al., 2007) and also in aeroelastic tailoring (more in
Section 1.1.3). For the sake of completeness, there is another implicit paramet-
erisation that has been successfully implemented in various optimisations; this
approach is called polar invariants (PIs) parameterisation and has been intro-
duced by Verchery (1982).

1.1.1.3 MANUFACTURING CONSTRAINTS AND BI-STEP APPROACH

As all implicit parameterisation methods model directly the laminate stiffness
and mass matrices, a constant challenge for these methods is how to introduce
stacking sequence manufacturing constraints or some mechanical constraints in
the parameterisation space. Among the many manufacturing constraints that are
applied to composites (Bailie et al., 2002; US Department of Defense, 2002), only
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a few (e.g. symmetric and balanced stacking sequences) have a direct link to con-
straints onto the parameters, while the other requires more elaborate constraints
that limit the design space in areas where these constraints can be enforced.

One common strategy used to optimise composite structures and enforce manufac-
turing constraints on the stacking sequence relies on a bi-step approach (Bloom-
field et al., 2009b; Dillinger, 2014; Herencia et al., 2007b; IJsselmuiden et al., 2009;
Liu et al., 2011), where a gradient-based (continuous) optimisation of homogen-
ised stiffness parameters (e.g. lamination parameters) is performed to obtain
the continuous optimum design. Later, combinatorial optimisation is used to re-
trieve the best stacking sequences matching the continuous design while enforcing
manufacturing constraints. This second step (discrete optimisation) is typically
performed via evolutionary algorithms (e.g. genetic algorithms). However, due to
the difficulties in enforcing some manufacturing constraints in the gradient-based
optimisation with homogenised stiffness parameters, these constraints are usu-
ally implemented only during stacking sequence retrieval. As a consequence, two
different sets of constraints are used in the two subsequent optimisations. This
reduces the chance of finding in the discrete domain a design close to the optimal
continuous solution. So, while the continuous optimum represents the theoretical
optimum that could be achieved, a drop in performance should be expected when
retrieving the laminate stacking sequence. Such drop depends on the number of
plies in the laminate and the number of additional constraints introduced in the
stacking sequence retrieval. One way of reducing such loss in performance is to
include in the gradient-based optimisation more and more manufacturing con-
straints. Some examples with lamination parameters are the 10%-rule constraint
derived by Abdalla et al. (2009), the blending constraints derived by Macquart
et al. (2016) and the strength constraints based on Tsai-Wu failure criteria derived
by IJsselmuiden et al. (2008).

1.1.2 BLENDING CONSTRAINTS

Various blending definitions have been proposed by different authors like Adams
et al. (2004) and van Campen et al. (2008) (more details in Section 2.4). The
objective of blending constraints is to ensure a smooth and gradual variation of the
structural thickness and stiffness distributions to ensure structural continuity and
avoid stress concentration during the design and optimisation of a variable stiffness
composite structure. The first definition of blending and its first application in
composite optimisation has been performed by Kristinsdottir et al. (2001). The
process starts with a set of predefined loads and the identification of the most
critical region. Every ply in the structure originates from the critical region
and can span any number of adjacent regions until it is dropped. Once a ply
is dropped, it cannot be added back again. This constant dropping from the
most loaded region is called the “grater-than-or-equal-to” blending rule. In this
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way, blending ensures that a structure is manufacturable by allowing a controlled
ply-drop and consistent fiber angle across the structure.

Liu (2001) used a bi-step sequential optimisation using response surfaces to en-
force continuity and derived two measures of continuity, the one based on the ratio
of common ply angles between adjacent panels, the second based on the number of
layers that can be continuous between two adjacent laminates. Soremekun et al.
(2002) proposed instead an iterative two-step genetic algorithm approach where
the minimum number of plies required in each panel is identified and then used to
create a base laminate spanning the entire structure. This process is repeated for
all the remaining panels until the final design is reached. Adams et al. (2004) uses
a different approach that relies on a single-step GA and the concept of “guiding
stack”. Similarly to the “grater-than-or-equal-to” blending rule, a guiding stack is
defined for the thickest laminate from which other panel laminates are obtained by
dropping plies. This new formulation reduces the dimensionality of the problem
and eliminates the need for continuity constraints. An enhanced version of the
guide-based blending proposed by Adams et al. (2004) is the stacking sequence
table (SST) proposed by Irisarri et al. (2014). SST contains additional inform-
ation about the order of ply-drops, thus it provides a more detailed picture of
the stacking sequence layout over the panels and results in a convenient tool to
introduce a wide variety of composite manufacturing rules (Irisarri et al., 2014;
US Department of Defense, 2002).

Except for the work by Liu (2001), in all the above-mentioned works and many
other (Jin et al., 2016; Seresta et al., 2009; Soremekun et al., 2002) composite
structure optimisation with blending constraints were performed via a heuristic
method (e.g. GA) or random search (Improved Hit and Run) that require a
significant amount of structural analyses. The first attempt to derive blending
constraints in the lamination parameters space to be used in a gradient-based
optimisation has been proposed by Macquart et al. (2016).

1.1.3 AEROELASTIC TAILORING

Aeroelastic tailoring has been defined by Shirk et al. (1986) as “the embodiment
of directional stiffness into an aircraft structural design to control aeroelastic de-
formation, static or dynamic, in such a fashion as to affect the aerodynamic and
structural performance of that aircraft in a beneficial way,”. The areas that can be
improved by proper aeroelastic tailoring include but are not limited to structural
weight, buckling, stress/strain, fatigue, flutter, divergence, aileron effectiveness,
lift and drag. While aeroelastic tailoring is not limited to the sole use of composite
materials, as shown by Harmin et al. (2011), their superior material properties
and intrinsic anisotropy make them the ideal materials. A very extensive review
of the aeroelastic tailoring for subsonic transport aircraft can be found in the work
from Jutte and Stanford (2014), while early research and findings can be found
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in Shirk et al. (1986) and Weisshaar (1987).

The first reported application of aeroelastic tailoring can be found in a patent
from Munk (1949). In the patent, a fixed-pitch blade is manufactured, taking into
consideration the orientation of wood fibers to have a favourable twist deformation
as thrust changes. One of the early examples of the weight-saving capabilities of
aeroelastic tailoring with composite materials is the work from Krone (1975). In
his work, Krone demonstrated that the structural weight penalty associated with
divergence prevention could be greatly reduced when using composite materials
(Figure 1.1). This result has been achieved by controlling the composite stiffness
and orientation, which results in a wash-out wing behaviour. The concepts and
impact of wash-in and wash-out can be found in the work from Shirk et al. (1986)
and are summarised in Figure 1.2. Wash-out is a typical behaviour of aft-swept
wings where wing bending is coupled with wing nose-down torsion that reduces the
sectional angle of attack and, thus, the lift generated by the wing. On the contrary,
wash-in is a typical behaviour of a forward-swept wing that couples wing bending
with nose-up torsion that increases the sectional angle of attack and, therefore,
the lift. If this wash-in behaviour is not counteracted by sufficient structural
torsional strength, the wing will fail due to divergence. In addition, Figure 1.2
also shows how structural designers can impact not only the stress distribution but
also the lift distribution, handling qualities and aeroelastic instabilities through
directional stiffness.

Figure 1.1: Comparison between structural weight and wing sweep angle for aluminium and
composite wings. Original from Krone (1975).

11



1

1. INTRODUCTION

Structural

Primary stiffness

Maneuver

Maneuver

Divergence
Lift

Control

Flutter

drag reduction

load relief

preventioneffectiveness

effectiveness

prevention

direction

reference axis

Wash outWash in

V∞

Figure 1.2: Effects of aeroelastic tailoring. Original from Shirk et al. (1986).

1.1.3.1 AEROELASTIC TAILORING WITH LAMINATION PARAMETERS

Several works on aeroelastic tailoring have been carried out, taking advantage of
lamination parameters. Fukunaga and Sekine (1994) evaluated the effect of the
lamination parameters on the extension-shear coupling and how such coupling
affects differently flutter and divergence speeds. In a later work, Kameyama and
Fukunaga (2007) optimised a composite plate wing with various sweep angles for
minimum weight subjected to flutter and divergence speed constraints. Their
work clearly showed the effect of aeroelastic tailoring and also revealed the pres-
ence of potential discontinuities in flutter and divergence speeds in the lamination
parameters domain. Herencia et al. (2007a) presented a bi-step approach to min-
imise the mass of a shell-based FEM wing having five spanwise patches from root
to tip optimisable with symmetric laminates and 0, 90, 45 or -45 degree ply angles.
The first step uses a gradient-based optimiser in the lamination parameters space
with strength, buckling, and practical design constraints. Lift and induced drag
were also included in the optimisation thanks to the use of PANAIR Carmichael
and Erickson, a linear potential flow solver. The second step uses a genetic al-
gorithm to obtain the actual stacking sequence. Dillinger et al. (2013) expanded
the approach proposed by Herentia and investigated the effect of balanced and un-
balanced laminates on a wing with several spanwise and chordwise patches. In his
work, the stacking sequence of a composite wing is optimised for mass or aileron
effectiveness, and the impact on the final design is investigated. His research has
been extended to incorporate high-fidelity computational fluid dynamics (CFD)
corrections to the doublet lattice method (DLM) used during the optimisation.
In addition, this later work focuses on the aeroelastic tailoring of a forward-swept
composite wing (Dillinger et al., 2019).
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1.1.3.2 AEROELASTIC TAILORING AND DYNAMIC LOADS

Conventional wing structural sizing of large transport aircraft usually considers
symmetric static manoeuvres, like 2.5g pull-up and −1g push-down manoeuvres,
as design loads together with aeroelastic phenomena like divergence, flutter and
aileron effectiveness (Torenbeek, 2013). While this is the case for most of the
above-mentioned studies, Kenway et al. (2014) showed that a metallic large trans-
port aircraft wing optimised for static manoeuvres loads could fail when subjected
to discrete gusts, underlying the need to include dynamic load cases during optim-
isation. Werter (2017) obtained similar results with a composite large transport
aircraft wing and showed how wings optimised with static loads and unbalanced
stacking sequence are more prone to failure under dynamic loads than wings de-
signed with a more conventional stacking sequence (e.g. [060%/± 4530%/9010%]s).
One of the challenges in gust analysis is that the critical load cases are not known
a priori, and for that reason, a large number of simulations need to be run. To
speed up computation, Rajpal et al. (2019) utilised a balanced proper order de-
composition to reduce the aerodynamic system coupled to a structural solver to
obtain a reduced-order aeroelastic model. Results on a clamped model show that
the critical gust loads change and it is important to keep track of them during the
optimisation process. Finally, Reimer et al. (2015) and Lancelot and De Breuker
(2016) show that dynamic loads are also influenced by the flight dynamics of the
aircraft.

1.1.3.3 MULTIDISCIPLINARY DESIGN OPTIMIZATION

While a large portion of the research in aeroelastic tailoring is based on low fidel-
ity linearised potential aerodynamics (e.g. strip theory or pannel methods) and
focuses mainly on structural optimisation, the Multidisciplinary Design Optim-
ization Laboratory (MDO Lab) research group 1 at the University of Michigan
developed an adjoint-based aero-structural optimiser that allows for simultaneous
aerodynamic shape optimisation and structural sizing. This has been achieved
thanks to a framework that couples high-fidelity Euler/RANS (Reynolds-Averaged
Navier-Stockes) aerodynamics and finite element models and shows the benefits
in terms of fuel burn and weight reduction that can be obtained when combin-
ing aerodynamic and structural optimisation (Bons and Martins, 2020; Brooks
et al., 2018; Burdette and Martins, 2018; Kennedy and Martins, 2014; Kenway
and Martins, 2014; Liem et al., 2015; Martins et al., 2004, 2005). Despite the
remarkable results obtained with high-fidelity RANS/FEM aero-structural op-
timisation, these simulation remains computationally very expensive and rarely
applicable during conceptual or preliminary design phases, even with the cur-
rent supercomputer. The reason is that during these phases, up to several hun-

1http://mdolab.engin.umich.edu/
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dreds of manoeuvres and aircraft configurations could be considered, and each
resulting load case could have thousands of constraints. While constraints can
be reduced through agglomeration functions (e.g. Kreisselmeier and Steinhauser
(1979)), the number of load cases has a strong negative impact on the compu-
tational time. To speed up simulation time, a parallel computation strategy has
been developed (Kennedy and Martins, 2014), and significant effort has been
made towards accelerating high-fidelity CFD gradients computations by using
faster lower-fidelity aerodynamics as preconditioner (Jovanov, 2019).

1.1.3.4 SURROGATE BASED OPTIMIZATION

A very popular alternative to the direct use of CFD in optimisation processes is
to construct a cheap-to-use approximation model of the expensive CFD analysis.
These approximations are usually referred to as surrogate models or metamodels
and express complicated relationships between the responses (outputs) and the
design variables (inputs) with a simple equation. Once computed, these models
require minimal computational effort to run, making them ideal for optimisation
purposes (Forrester and Keane, 2009). Surrogate-based optimisation (SBO) has
been used for speeding up evolutionary algorithms like genetic algorithms (GAs)
used in 2D or 3D aerodynamic optimisation (Jeong et al., 2005; Song and Keane,
2007) via the Kriging model. GAs require many objective function evaluations,
and therefore, replacing expensive high-fidelity CFD analysis with the Kriging
model reduced the computational time drastically. The Kriging model, in partic-
ular, is very powerful as it is naturally equipped with an uncertainty estimation.
This uncertainty estimation can be integrated into adaptive sampling approaches
where an initial surrogate model is built, and new data points are iteratively added
to update the model (Liu et al., 2017). These additional points can either improve
the general accuracy of the model (exploration) or improve the optimal design un-
der study (exploitation). Multidisciplinary design optimisations can also benefit
from the use of a surrogate to approximate coupled multidisciplinary simulations
like in aeroacustics (Jouhaud et al., 2007) and aeroelasticity. Nevertheless, SBOs
are inherently limited to the dimension of the inputs, so dimensionality reduc-
tion techniques are required in applications with hundreds or thousands of design
variables.

Different authors used surrogate models to perform static aero-structural gradient-
based optimisation. Zhang et al. (2008) compared different surrogate models
(quadratic polynomial regression, Kriging and neural network) to maximise the
aircraft lift-to-drag ratio and minimise the weight with respect to the wing plan-
form parameters and structural thicknesses and concluded that not considering
the aeroelastic effect will result in large errors. Rasmussen et al. (2008) outlines a
methodology to optimise the weight and perform design exploration for a joined-
wing aircraft (no aerodynamic performance involved). The optimisation has been
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divided into two steps. The first step consists of performing aero-structural op-
timisation for weight minimisation for different geometric aircraft configurations.
A weight-optimised solution was found by varying spar, rib, and skin thicknesses
of the wing structure. The second step consisted of creating an approximation,
via polynomial regression, of the entire design space, using the optimised struc-
tures as sample points. The surrogate moderate fit is then used to define optimal
regions and design trends and is not used to determine precise optimal configur-
ations. Paiva et al. (2010) also compares different surrogate models (quadratic
polynomial regression, Kriging and neural network) of the aerodynamic coeffi-
cients (CL, CD and CM ) using a panel method aerodynamic model as a function
of several geometrical, structural (thicknesses) and aerodynamic (NACA profile)
parameters concluding that polynomial regression proves to be adequate only for
low dimensionality problems. Lebofsky et al. (2014) utilises a surrogate model
of an aircraft wing drag coefficient that is a function of wing geometry variables
such as the jig twist-law and deflection parameters of variable camber trailing
edge flaps to minimise drag at off-design cruise conditions in a gradient-based
optimisation.

1.1.3.5 AEROELASTIC TAILORING AND FIBER STEERING

For the sake of completeness, several promising results have been achieved in
aeroelastic tailoring by using fiber steering. Fiber steering falls under the local
variable stiffness design proposed in Ghiasi et al. (2010) and allows continuous
spatial variation of mechanical properties to achieve exceptional tailoring capab-
ility. This approach has recently gained momentum thanks to the development
of large-scale advanced fiber and tow placement (AFP) technologies. Examples
of this research in this field can be found in the works from Stodieck et al. (2013,
2017), Stanford et al. (2014), Stanford and Jutte (2017) and Brooks et al. (2019)

1.2 RESEARCH OBJECTIVE

Starting from the work of Dillinger (2014), this dissertation incorporates some of
the topics described in the previous section and has the objective to:

develop a preliminary wing design framework to perform aeroelastic tailoring, con-
sidering both structural weight and high-fidelity aerodynamic drag while enforcing
composite blending.

Different fidelity levels could be used to perform aeroelastic tailoring depend-
ing on the design phase and the required objectives: from Euler-Bernoulli beam
structures with panel methods for unsteady aerodynamics (Lebofsky et al., 2014)
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to complex FEM shell geometry fully coupled with high-fidelity RANS computa-
tions (Kenway et al., 2014). As this dissertation focuses on the preliminary design
of a composite wing, a FEM shell model is used together with a fast aerodynamic
panel method called the doublet lattice method (DLM). On the structural side,
the selection of shell FEM allows for detailed modelling of the main load-bearing
structures and the direct inclusion of mechanical constraints during sizing. On
the aerodynamic side, the use of panel methods results in a fast load generation
for potentially thousands of different load cases, both static and dynamic.

Composite material optimisation is included in this dissertation via lamination
parameters, and particular focus is placed on ensuring structural continuity in the
design via blending and studying its effect on wing sizing.

While being fast and resulting in conservative loads, panel methods are irrota-
tional and inviscid, thus unsuitable for estimating aircraft performance (i.e. lift-
to-drag ratio or drag coefficient) or capturing the effect of airfoil camber and
wing twist law. CFD-based corrections to the panel method are implemented to
correctly represent the wing spanwise and chordwise load distribution. Finally, a
surrogate model is introduced to take aerodynamic drag into account during the
optimisation. To achieve this, an original reduction technique based on both tra-
ditional modal projection and advanced statistical techniques has been developed
in order to approximate the wing structural deflection with a limited number of
inputs, suitable for Machine Learning models. The proposed reduction allowed
the creation of a fast surrogate model based on rigid CFD that could replace
costly high-fidelity CFD aero-structural runs. The proposed strategy is then im-
plemented in the commercial tool Nastran and applied to a realistic industrial
case.

1.3 DISSERTATION OUTLINE

The contribution of this dissertation is divided into three main tasks, which are
(i) extending the framework from Dillinger (2014) to include composite blending
and dynamic loads, (ii) applying the framework to different aeroelastic tailoring
optimisations of a regional aircraft composite wing structure and (iii) including
of high-fidelity aerodynamic drag during preliminary design.

The rest of the dissertation is outlined as follows:

• Chapter 2 provides a general introduction to composite materials and fo-
cuses on the introduction of two topics: the lamination parameters and the
blending constraints.

• Chapter 3 shows the approach used to create the surrogate model that
approximates the aerodynamic drag. The chapter first explains how the
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wing structural deflection is approximated and what techniques are used
to reduce the model dimensionality. Secondly, the chapter introduces what
numerical models are used to approximate the aerodynamic drag and what
selection process is used to derive the surrogate model. Application of what
is introduced in this chapter is presented later in Section 6.1.

• The application case used in this dissertation is presented in Chapter 4
together with the two-step optimisation approach used in all case studies.
In particular, Section 4.2.6 covers the integration of gust loads into the
optimisation while the interface between the optimiser and the surrogate
model for aerodynamic gust is covered in Section 4.2.7.

• Chapter 5 applies the composite parameterisation and blending constraints
presented in Chapter 2 to the weight minimisation of the composite wing
presented in Chapter 4. Several optimisations are performed to show the
effect of the blending constraints on the continuous optimisation, the relev-
ance of static and dynamic loads on the final wing design, and the effect of
blending constraints on the stacking sequence retrieval.

• In Chapter 6, first the approximation of the structural deflection and the
surrogate model selection process presented in Chapter 3 are applied to the
wing case introduced in Chapter 4. Secondly, the derived surrogate model
is applied to a multi-objective optimisation to perform trade-off studies of
conflicting objectives: weight minimisation and aerodynamic drag.

• Chapter 7 is reserved for the conclusions and suggestions on future activities.

17



1

1. INTRODUCTION

18



2
COMPOSITE MATERIALS AND

BLENDING CONSTRAINTS

On the macroscopic scale, the building blocks of composite materials are single
plies which are defined as thin orthotropic layers of fiber and matrix. These
orthotropic layers are stacked on top of each other to form a laminate, and the
orientation of all the plies is called a stacking sequence. As this dissertation
focuses on the optimisation of laminate stacking sequence, fiber and matrix are
not modelled separately, and their properties are considered constant during the
optimisation.

In this chapter, Section 2.1 introduces the classical lamination theory (CLT) that
allows translating the stacking sequence into an equivalent stiffness matrix called
the ABD-matrix. Section 2.2 briefly covers some of the manufacturing rules
and introduces some best practices when designing a laminate stacking sequence.
Lamination parameters used in this dissertation to parameterise the composite
materials are introduced in Section 2.3. Finally, Section 2.4 presents the blend-
ing constraints that are used to ensure structural continuity in the composite
structure.
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2.1 CLASSICAL LAMINATION THEORY

The stiffness properties of composite laminates are usually modelled using the
classical lamination theory (Gürdal et al., 1999; Kassapoglou, 2013). In classical
lamination theory (CLT), a ply (or lamina) is defined as the smallest element on a
macroscopic scale to be used to build a composite laminate. The ply is considered
to be a thin orthotropic layer, thus having only in-plane stiffness (σ3 = τ23 = τ13 =
0). Therefore, the ply Hooke’s law that describes the strain-stress state is as in
Equation (2.1).




σ1

σ2

τ12


 =



Q11 Q12 0
Q12 Q22 0

0 0 Q66






ε1
ε2
γ12


 (2.1)

where σ1, σ2 and τ12 refers to the in-plane longitudinal, transverse and shear
stresses respectively, ε1, ε2 and ε12 refers to the in-plane longitudinal, transverse
and shear strains respectively, Qij are the components of the reduced stiffness.
The subscripts (·)1 and (·)2 refer to the ply coordinate system, where the axis 1
is aligned with the fiber direction (see Figure 2.1). The components Qij of the
reduced stiffness matrix are written as:

Q11 =
E11

1− ν12ν21
(2.2)

Q12 =
ν12E22

1− ν12ν21
(2.3)

Q22 =
E22

1− ν12ν21
(2.4)

Q66 = G12 (2.5)

where E is the Young’s modulus, G is the shear modulus, and ν is the Poisson’s
ratio.

During the manufacturing of composite laminates, several plies are stacked on top
of each other with an arbitrary orientation with respect to the global coordinate
system (x,y). The relative rotation of the ply coordinate system (1,2) to the global
coordinate system (x,y) is described by the ply angle θ and pictured in Figure 2.1.
Therefore, the strain-stress relation expressed in Equation (2.1) has to be rotated
in the global coordinate system before being used to describe the laminate. The
rotation is achieved with the transformation matrix, T in Equation (2.6), thus
the strains and stresses in the (1,2) coordinate system can be described as in
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Figure 2.1: Definition of ply and laminate coordinate system.

Equation (2.7):

T =
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The relations in Equation (2.7) hold only for the tensorial shear strain ε12 and
not for the engineering shear strain γ12 used in Equation (2.1). Thus, the relation
between engineering and tensorial shear strain has to be taken into account:

R =




1 0 0
0 1 0
0 0 2


 (2.8)
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By combining Equations (2.1), (2.7) and (2.9), it is possible to obtain the stress-
strain relation of a ply in the global coordinate system (x,y):




σx
σy
τxy


 = Q




εx
εy
γxy


 (2.10)

where Q is the reduced stiffness matrix of the rotated ply:

Q = T−1QRTR−1 (2.11)
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A laminate is a stack of arbitrarily oriented plies, and the order in which the
plies are stacked and their orientation is called the stacking sequence. The CLT
assumes that each ply is perfectly bonded with its neighbouring layer by means
of an infinitely thin bond line and that the laminate thickness is small compared
to its width and length. The Kirchhoff-Love theory of plates is used to describe
the kinematics of the laminate. The hypotheses are:

1. Straight lines normal to the mid-surface remain straight after deformation

2. Straight lines normal to the mid-surface remain normal to the mid-surface
after deformation

3. The thickness of the plate does not change during a deformation

Thus, the strain of the k-th ply can be described as:




εx
εy
γxy



k

=




ε0x
ε0y
γ0
xy


+ z




κx
κy
κxy


 (2.12)

where ε0x, ε0y and γ0
xy are the mid-plane normal and shear strains, κx, κy and κxy

are the laminate curvatures and zk−1 < z < zk is the coordinate in the thickness
direction of the k-th ply as shown in Figure (2.2). By combining Equations (2.10)
and (2.12), it is possible to obtain the strain-stress relation for a specific ply in
the laminate:




σx
σy
τxy



k

= Qk




ε0x
ε0y
γ0
xy


+ zQk




κx
κy
κxy


 (2.13)

θ1
θ2
θ3

θk

θN

ply1
ply2
ply3

plyk

plyN

Z

X

z0
z1
z2

h

tply

Figure 2.2: Schematic cross section of a laminate with N plies with same ply thickness tply
and different orientation θi.

The laminate total force and moment are obtained by integrating the ply stresses
over the laminate thickness h. However, since each ply has a discrete thickness
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and each and the ply stresses are not continuous throughout the laminate, it is
convenient to integrate the stresses in every single ply and perform a subsequent
summation:




Nx
Ny
Nxy


 =

N∑

k=1

ˆ zk

zk−1




σx
σy
τxy



k

dz (2.14)




Mx

My

Mxy


 =

N∑

k=1

ˆ zk

zk−1

z




σx
σy
τxy



k

dz (2.15)

where Nx, Ny and Nxy are the forces and Mx, My and Mxy are the moments of the
entire laminate. Combining Equations (2.13), (2.14) and (2.15) and performing
the integration and summation leads to:




Nx
Ny
Nxy


 = A




ε0x
ε0y
γ0
xy


+ B




κx
κy
κxy


 (2.16)




Mx

My

Mxy


 = B




ε0x
ε0y
γ0
xy


+ D




κx
κy
κxy


 (2.17)

where:

A =

N∑

k=1

Qk(zk − zk−1)

B =
1

2

N∑

k=1

Qk(z2
k − z2

k−1)

D =
1

3

N∑

k=1

Qk(z3
k − z3

k−1)

(2.18)

are called laminate membrane stiffness matrix, laminate membrane-bending coup-
ling matrix and laminate bending stiffness matrix, respectively. Rewriting Equa-
tions (2.16) and (2.17) in matrix notation results in the ABD-matrix that describes
the laminate stiffness properties:




Nx
Ny
Nxy
Mx

My

Mxy




=




A11 A12 A16 B11 B12 B16

A22 A26 B22 B26

sym. A66 sym. B66

B11 B12 B16 D11 D12 D16

B22 B26 D22 D26

sym. B66 sym. D66







ε0x
ε0y
γ0
xy

κx
κy
κxy




(2.19)
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The ABD-matrix highlights the complex coupling and mechanical behaviour of
composite laminate. While A matrix describes the laminate in-plane behaviour
and D matrix describes the laminate out-of-plane behaviour, the B matrix couples
together the in-plane and out-of-plane behaviour. This means that for the non-
zero Bij term, an in-plane tension or compression load can result in out-of-plane
laminate deformations. This laminate behaviour is often undesired in practical
application, and one effective way to a null B matrix is to work only with symmet-
ric laminates. Therefore, in this dissertation, only symmetric stacking sequences
are used.

Another interesting coupling exists between in-plane tension and shear due to the
A16 and A26 terms. When these two terms are not zero, an in-plane tension will
result in extensional and shear strains. This coupling can be prevented by using
only balanced stacking sequences. A balance stacking sequence is characterised
by having for each ply at angle θ another ply at −θ. However, this coupling is
very important for aeroelastic tailoring since it can be used to modify the wing’s
global bending-twist behaviour. Similarly, the D matrix can present a bending-
twist coupling associated with the D16 and D26 terms. These coupling terms are
important as they mostly degrade stability margins for buckling.

2.2 MANUFACTURING GUIDELINES

Manufacturing guidelines have been developed using analysis, components test-
ing, and hands-on experience to avoid undesired laminate features that could
significantly impact the strength and durability of composite components. Some
undesired features include high interlaminar stresses, complex coupling mech-
anisms, large resin pockets or weak damage tolerance. Moreover, possible ply
orientations are usually reduced to a set of few discrete angles such as [0◦, ±15◦,
±30◦, ±45◦, ±60◦, ±75◦, 90◦]. As a result, these guidelines can heavily affect
the composite structural design and should be taken into account early in the
design phase. The interested reader is invited to have a look at Bailie et al.
(2002) or US Department of Defense (2002) for a more in-depth discussion on the
different guidelines.

Manufacturing guidelines are usually divided into three categories (Irisarri et al.,
2014). These categories are presented with a few guidelines for the sake of clarity.
The first set of guidelines refers only to the single composite panel and are:

1. Symmetry: The stacking sequence must be symmetric with respect to the
mid-plane to avoid any membrane bending coupling effect.

2. Balance: The stacking sequence must have the same number of plies with
an orientation equal to +θ◦ and -θ◦ to avoid any tension-shear coupling.
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3. Contiguity: Limits are placed on the number of consecutive plies aligned in
the same direction to limit delamination and matrix cracking.

4. Disorientation: No more than 45◦ ply orientation difference between suc-
cessive layers to avoid free-edge interlaminar stresses;

5. 10% rule: Plies with 0◦,±45◦, and 90◦ orientation should account each for at
least 10% of the total number of plies. Thus, it ensures a minimum in-plane
stiffness in all directions to account for unforeseen secondary loading.

6. Damage tolerance: No primary load-carrying plies should be placed on the
outer or inner surface of the laminate to reduce the chance of damage from
scratches and corrosion.

The second set refers to the ply-drop in the composite panel and aims at reducing
resin pockets, stress concentrations, and delaminations due to excessive ply-drops
from one stacking sequence to another within the same panel. The third set is
the global guidelines and is applied to the component level. Among these global
guidelines lies the concept of blending. Blending constraint aims at ensuring
structural integrity and manufacturability of the component and is covered in
more detail in Section 2.4.

2.3 LAMINATION PARAMETERS

The classical lamination theory can be used to determine the stiffness properties of
a composite laminate based on the ply thickness and angles. However, this para-
meterisation is not suitable for the optimisation of large composite structures for
two reasons. First, the number of design variables varies linearly with the number
of plies. Industrial cases of large composite structures can be composed of tens
or hundreds of laminates that have between 10 and 100 plies each, resulting in a
design space too big to handle. Second, due to manufacturing constraints, only
certain values of thickness and ply angles are allowed, resulting in a discrete op-
timisation problem that cannot make use of powerful gradient-based optimisation
techniques. To circumvent these problems, a well-established strategy is to use
a parameterisation of the ABD-matrix by means of lamination parameters (LP).
Other such parameterisations (e.g., polar invariants) exist that allow for fixed-size
optimisation parameters. In this dissertation, only lamination parameters have
been considered.

2.3.1 MATHEMATICAL REPRESENTATION

The lamination parameters approach has been first introduced by Tsai and Pa-
gano (1968) and Tsai and Hahn (1980). The first use of lamination parameters
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for optimisation purposes has been done by Miki (1982) under a graphical ap-
proach, and since then, they have been used successfully by many researchers
(see Section 1.1.1 for references). This approach allows the modelling of a gen-
eric ABD-matrix of a laminate in a continuous way by separating the material-
dependent parameters, the so-called Tsai-Pagano invariants, from the stacking
sequence parameters called lamination parameters. Lamination parameters (vi)
are defined as the integral, over the thickness, of the layers angles:

(vA1 , v
A
2 , v

A
3 , v

A
4 ) =

1

h

ˆ h/2

−h/2
(cos 2θ, sin 2θ, cos 4θ, sin 4θ)dz

(vB1 , v
B
2 , v

B
3 , v

B
4 ) =

4

h2

ˆ h/2

−h/2
z(cos 2θ, sin 2θ, cos 4θ, sin 4θ)dz

(vD1 , v
D
2 , v

D
3 , v

D
4 ) =

12

h3

ˆ h/2

−h/2
z2(cos 2θ, sin 2θ, cos 4θ, sin 4θ)dz

(2.20)

With lamination parameters, any stacking sequence can be reproduced with twelve
continuous variables, together with laminate thickness and material invariant
matrices Γi. The relation between lamination parameters, thickness and material
invariant is described by:

A = h(Γ0 + Γ1v
A
1 + Γ2v

A
2 + Γ3v

A
3 + Γ4v

A
4 )

B =
h2

4
(Γ0 + Γ1v

B
1 + Γ2v

B
2 + Γ3v

B
3 + Γ4v

B
4 )

D =
h3

12
(Γ0 + Γ1v

D
1 + Γ2v

D
2 + Γ3v

D
3 + Γ4v

D
4 )

(2.21)

Γ0 =



U1 U4 0
U4 U1 0
0 0 U5


 , Γ1 =



U2 0 0
0 −U2 0
0 0 0


 , Γ2 =




0 0 U2/2
0 0 U2/2

U2/2 U2/2 0


 ,

Γ3 =




U3 −U3 0
−U3 U3 0

0 0 −U3


 , Γ4 =




0 0 U3

0 0 −U3

U3 −U3 0


 (2.22)

where the invariant matrices (Γi, Equation (2.22)) contains the Tsai-Pagano ma-
terial invariants Ui. Such invariants contain the unidirectional ply stiffness in-
formation. Therefore, they depend only on the material properties and not on
the stacking sequence and can be derived from the elements reduced stiffness

26



2

2.3. LAMINATION PARAMETERS

matrix:




U1

U2

U3

U4

U5




=




3/8 3/8 1/4 1/2
1/2 −1/2 0 0
1/8 1/8 −1/4 −1/2
1/8 1/8 3/4 −1/2
1/8 1/8 −1/4 1/2







Q11

Q22

Q12

Q66


 (2.23)

By combining Equations (2.22) and (2.21), it is possible to obtain the relations
between components of the ABD-matrix and the Tsai-Pagano material invariants.
The relations for the membrane and bending matrices are:




A11

A22

A12

A66

A16

A26




= h




1 vA1 vA3 0 0
1 −vA1 vA3 0 0
0 0 −vA3 1 0
0 0 −vA3 0 1
0 vA2 /2 vA4 0 0
0 vA2 /2 −vA4 0 0







U1

U2

U3

U4

U5




(2.24)




D11

D22

D12

D66

D16

D26




=
h3

12




1 vD1 vD3 0 0
1 −vD1 vD3 0 0
0 0 −vD3 1 0
0 0 −vD3 0 1
0 vD2 /2 vD4 0 0
0 vD2 /2 −vD4 0 0







U1

U2

U3

U4

U5




(2.25)

For symmetric stacking sequences, where the B matrix is always zero, only eight
parameters are required to model both the A and the D matrices. However, this
number could be further reduced for some specific laminates. For example, it can
be shown that laminates with only classical orientation ([0◦,±45◦, 90◦]) would
result in both vA4 and vD4 being zero reducing the required number of lamination
parameters to six. Another example is the case of balanced laminates, where both
vA2 and vA4 are zero, reducing the required number of lamination parameters to
six.

2.3.2 FEASIBLE DESIGN SPACE

Lamination parameters are tightly linked to a laminate stacking sequence via
Equation (2.20) and, therefore cannot have arbitrary values. The region which
defines physically meaningful lamination parameters is called the feasible lamina-
tion space. Such a domain is known to be convex (Grenestedt and Gudmundson,
1993) and is available in closed form only for a limited number of combinations
of the lamination parameters.
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An example of closed-form feasible constraints is the one derived by Hammer
et al. (1997). This set of constraints describes the analytical relationship between
all four in-plane and between all four out-of-plane lamination parameters separ-
ately; no coupling between in-plane and out-of-plane lamination parameters is
considered. For a laminate with four lamination parameters (v1, v2, v3 and v4)
the feasible space for the A and D matrices is defined by Equation (2.26).





2v2
1(1− v3) + 2v2

2(1 + v3) + v2
3 + v2

4 − 4v1v2v4 ≤ 1
v2

1 + v2
2 ≤ 1

−1 ≤ vi ≤ 1, (i = 1, ..., 4)
(2.26)

Recent efforts in deriving constraints that consider both in-plane and out-of-plane
lamination parameters have been made by Raju et al. (2014) and Wu et al.
(2013) by using Cauchy-Schwarz inequalities. Another approach has been pro-
posed by Bloomfield et al. (2009a) and utilises a convex hull of the lamination
parameter space obtained by a set of predefined ply angles. A different approach
has been used by Bettebghor et al. (2019) where machine learning has been used
to reconstruct a lamination parameters feasibility constraint starting from a data-
base of stacking sequences.

In the present work, the in-plane and out-of-plane constraints derived by Raju
et al. (2014) are used in conjunction with those presented in by Hammer et al.
(1997) (Equation (2.26)). The constraints by Raju et al. (2014) are presented in
AppendixA

2.3.3 MEMBRANE STIFFNESS VISUALIZATION

While lamination parameters offer many advantages, reconstructing the associ-
ated fiber direction is not straightforward. As introduced by Dillinger et al. (2013),
to have a general understanding of the main in-plane stiffness distribution of a
given A matrix, and therefore an idea of the main fiber direction, it is possible to
calculate the normalised elastic modulus of elasticity (Ê11(θ)) associated to the
component A11 along an axis rotated with an angle θ with respect to the axis of
the laminate as:

Ê11(θ) =
1

Â−1
11 (θ)

(2.27)

where T is the transformation matrix presented in Equation (2.6) and

Â
−1

(θ) = TT Â
−1

T (2.28)

Â =
1

h
A (2.29)
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(a) [0] (b) [90] (c) [0/45/− 45/90]S

(d) [0/90]S (e) [45/− 45]S (f) [30/− 30]S

Figure 2.3: Ê11(θ) stiffness distribution for some characteristic laminates.

A few characteristic examples of laminates and their corresponding membrane
stiffness distributions are shown in Figure 2.3, where the x axis represents the
axis of the laminate and the S at the end of a stacking sequence means that the
stacking sequence is symmetric with respect to its mid-plane. The stiffness dis-
tributions presented here have all been normalised with respect to the maximum
stiffness associated with the single unidirectional ply. When all fibers are oriented
in the same direction, as in Figures 2.3a and 2.3b, the stiffness distribution is
aligned with one direction, and this direction is indeed the fiber orientation. For
quasi-isotropic laminates (Figure 2.3d), that is composed of plies in [0/45/−45/90]
directions in an equal ratio, the stiffness distribution is constant in all directions
and have a magnitude of 0.40 with respect to the unidirectional ply. For laminates
made with just two fiber directions, as in Figures 2.3c, 2.3f and 2.3e, the stiff-
ness distributions are aligned with the two directions that compose the stacking
sequences. Stiffness distribution plots are used throughout this dissertation to
provide an indication of the main fiber directions.
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2.4 BLENDING CONSTRAINTS

This section is based on the paper, Derivation and application of blending
constraints in lamination parameter space for composite optimisation by T.
Macquart, M.T. Bordogna, P. Lancelot and R. De Breuker, which appeared
in Composite Structures volume 135, (2016), pp:224-235. Note: symbols may
have been changed to maintain consistency throughout this thesis.

This section focuses on one of the main challenges in designing variable stiff-
ness design, namely the blending. First introduced by Kristinsdottir et al. (2001),
blending is essential to ensure structural continuity and avoid stress concentration
during the design of variable stiffness composite structures, where thicknesses and
ply orientations are locally optimised and may vary significantly between adjacent
patches. Blending constraints have the objective of guaranteeing that some plies
in the laminate stacking sequence span continuously between adjacent patches to
improve their structural integrity.

Different definitions for blending have been proposed by different authors (Fig-
ure 2.4). Inner and outer blending definitions have been introduced by Adams
et al. (2004). In these definitions, only the innermost and the outermost plies can
be dropped. Two alternative definitions, the generalised and relaxed generalised
blending, have been formulated by van Campen et al. (2008). Generalised blend-
ing requires all plies of the thinnest section to be continuous in the whole struc-
ture; relaxed generalised blending demands that no discontinuous plies should be
in direct physical contact with each other. For the sake of clarity, throughout this
dissertation, blending is always associated with the generalised blending definition
of van Campen et al. (2008).

Macquart et al. (2016) introduced a set of blending constraints in the lamina-
tion parameters space that allows taking into account blending during gradient-
based continuous optimisation. For the sake of completeness, these constraints
are presented here, while the interested reader is invited to check the work from
Macquart et al. (2016).

2.4.1 SINGLE IN-PLANE LAMINATION PARAMETER BLENDING CON-
STRAINT

The general definition of lamination parameters introduced with Equation (2.20)
can be rewritten as Equation (2.30) if the laminate is made with plies composed
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Symmetry line

Inner Blending
a)

I II III IV

Symmetry line

Outer Blending
b)

I II III IV

Symmetry line

Generalized
Blending

c)

I II III IV

Symmetry line

Relaxed
Generalized
Blending

d)

I II III IV

Figure 2.4: Four different definitions of blending: a) inner, b) outer, c) generalised and d)
relaxed generalised blending. Original figures from van Campen et al. (2008).

of the same material and with the same ply thickness.

(vA1 , v
A
2 , v

A
3 , v

A
4 ) =

1

N

N∑

i=1

(cos(2θi), sin(2θi), cos(4θi), sin(4θi))

(vD1 , v
D
2 , v

D
3 , v

D
4 ) =

4

N3

N∑

i=1

(z3
i − z3

i−1) (cos(2θi), sin(2θi), cos(4θi), sin(4θi))

(2.30)
where zi = −N/2 + i.

The key concept in the derivation of the blending constraints with respect to lam-
ination parameter is to quantify the change in lamination parameters between
adjacent patches due to ply-drops (Figure 2.5).

Consider the first in-plane lamination parameters for a laminate with N-plies
vA1,(N) and drop X-plies from the laminate to obtain vA1,(N−X). The complete
stacking sequence is denoted by the set S, the dropped plies are a subset of S
called D and the plies in common between the two patches are a subset of S called
K, where K = S−D. The change in vA1 due to any number X of ply-drops can
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vAi(N)

vAi(N−X)Ply drop of X plies

Figure 2.5: Multi-section laminate and ply-drops illustration.

be quantified according to Equation (2.33).

vA1,(N) =
1

N

N∑

i=1
i∈S

cos(2θi) (2.31)

vA1,(N−X) =
1

N −X
N∑

i=1
i∈K

cos(2θi) (2.32)

∆vA1,(N→N−X) = vA1,(N)−vA1,(N−X) =
1

N

N∑

i=1
i∈D

cos(2θi)

︸ ︷︷ ︸
Term containing the

dropped plies

+

(
1

N
− 1

N −X

) N∑

i=1
i∈K

cos(2θi)

︸ ︷︷ ︸
Term containing the plies

present in both patches

(2.33)

The maximum and minimal change of lamination parameters occur, respectively,
for some “extreme” laminates where [θi∈K, θi∈D] = [0◦, 90◦] and [θi∈K, θi∈D] =
[90◦, 0◦] for which the value of ∆vA1,(N→N−X) is:

max
(θi∈K,θi∈D)

||∆vA1,(N→N−X)|| = 2
X

N
(2.34)

Performing the same calculations for the remaining in-plane lamination paramet-
ers (i,e. vA2,3,4) it is found that 2(X/N) is always the maximum change magnitude:

||∆vAk,(N→N−X)|| ≤ 2
X

N
, for k = 1, 2, 3, 4 (2.35)

Equation (2.35) restrains the change of a single in-plane lamination parameter,
occurring from a symmetrical laminate with N-plies due to X-ply-drop.
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2.4.2 AGGLOMERATED IN-PLANE LAMINATION PARAMETERS BLEND-
ING CONSTRAINT

Simultaneous change of more than one in-plane lamination parameter is presented
here by introducing an Euclidean distance between multiple varying lamination
parameters. The Euclidean distance in Equation (2.36) is associated with the
radius of the feasible lamination parameter change reachable by a laminate with
N plies subjected to an X ply-drops. The situation is illustrated in Figure 2.5.

Eip12,(N→N−X) =

√(
∆vA1,(N→N−X)

)2

+
(

∆vA2,(N→N−X)

)2
(2.36)

Similarly to individual in-plane lamination parameter, it can be shown that the
maximal Euclidean distance occurs for “extreme” laminates. In this context,
“extreme” laminates refer to laminates where all θi∈K kept in the adjacent patches
and all θi∈D dropped have the same orientation (e.g. [θi∈K, θi∈D] = [90◦, 0◦]). As
result, ∆vA1,(N→N−X) and ∆vA2,(N→N−X) can be rewritten as:

[(
∆vA1,(N→N−X)

)
ext

]2
=


 1

N

N∑

i=1
i∈D

cos(2θi) +

(
1

N
− 1

N −X

) N∑

i=1
i∈K

cos(2θi)




2

=

[
X

N
cos(2θiD)− X

N
cos(2θiK)

]2

= [cos(2θiD)− cos(2θiK)]
2

(X/N)2

=
(
C2

1 + C2
3 − 2C1C3

)
(X/N)2

(2.37)

[(
∆vA2,(N→N−X)

)
ext

]2
=


 1

N

N∑

i=1
i∈D

sin(2θi) +

(
1

N
− 1

N −X

) N∑

i=1
i∈K

sin(2θi)




2

=
(
S2

1 + S2
3 − 2S1S3

)
(X/N)2

(2.38)

where [C1, C3] = [cos(2θiD), cos(2θiK)] and [S1, S3] = [sin(2θiD), sin(2θiK)]. Using
Equations (2.37) and (2.38) it is possible to rewrite the Euclidean distance (2.36)
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as:

Eip12,(N→N−X) = (X/N)2



(
C2

1 + C2
3 − 2C1C3

)
︸ ︷︷ ︸
from (∆V A1,(N→N−X))

2

+
(
S2

1 + S2
3 − 2S1S3

)
︸ ︷︷ ︸
from (∆V A2,(N→N−X))

2




= f12(θiD , θiK)(X/N)2

(2.39)

where fk(θiD , θiK) denote the sum of cosine and sine functions for the “extreme”
laminates, and k refers to the lamination parameters considered (e.g. in this case
12). The maximum Euclidean distance is obtained by maximizing f12(θiD , θiK),
resulting in:

max
θiD ,θiK

[(
Eip12,(N→N−X)

)2
]

= 4(X/N)2 (2.40)

According to Equation (2.40), the maximum change in lamination parameters vA1
and vA2 beyond which no blendable solution can be found is again a function of
the ply-drop ration (X/N). A corresponding bi-dimensional blending constraint
can, therefore, be written as Equation (2.41):

(
∆vA1,(N→N−X)

)2

+
(

∆vA2,(N→N−X)

)2

− 4(X/N)2 ≤ 0 (2.41)

by applying Equation (2.41) to a laminate on 20 plies and a ply-drop of 4 plies
(Figure 2.6), it can be seen that the retrieved constraint well constraints all 16
plies blended solutions. Considering that the constraints have been retrieved by
using “extreme” laminates and that such laminates are never used because they
do not satisfy most of the basic manufacturing rules introduced in Section 2.2, a
shrinking factor α can be added further reduce the design space:

(
∆vA1,(N→N−X)

)2

+
(

∆vA2,(N→N−X)

)2

− 4α(X/N)2 ≤ 0 (2.42)

Generalising, the Euclidean distance expressing a change in all four in-plane lam-
ination parameters is expressed as

(
Eip1234,(N→N−X)

)2

=

4∑

k=1

(
∆vAk,(N→N−X)

)2

(2.43)
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Figure 2.6: Illustrative example of the reduced feasible blended lamination parameter space
of a stacking sequence of 20 plies due to 4 ply-drops.

and its value for “extreme” laminates is:

[(
Eip1234,(N→N−X)

)
ext

]2
=
[(
C2

1 + C2
3 − 2C1C3

)
+
(
S2

1 + S2
3 − 2S1S3

)
+

(
C2

2 + C2
4 − 2C2C4

)
+
(
S2

2 + S2
4 − 2S2S4

)]
(X/N)2

= f1234(θiD , θiK)(X/N)2

(2.44)
in which the coefficients are:

[C1, C2, C3, C4] = [cos(2θiD), cos(4θiD), cos(2θiK), cos(4θiK)] (2.45)

[S1, S2, S3, S4] = [sin(2θiD), sin(4θiD), sin(2θiK), sin(4θiK)] (2.46)

From Equation (2.44), the generalised constraint for different in-plane lamination
parameters with shrinking α factor can be written as:

(
Eipk,(N→N−X)

)2

≤
(

max
θiD ,θiK

fk(θiD , θiK)

)
α(X/N)2, for k = 1, 2, 3, 4 (2.47)

A representation of fk(θiD , θiK) for the first three in-plane lamination parameters
(i.e. 1-3) is presented in Figure 2.7 while a list of maximal values for fk(θiD , θiK) is
presented in Table 2.1 for different combination of lamination parameters. Finally,
the blending constraint (2.47) is presented in Figure 2.8 for the reduced dimension
case where k = 1, 2, 3.
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Figure 2.7: Coefficient function fk(θiD , θiK ) for the combination of in-plane lamination para-
meters 123. Original from Macquart et al. (2016).

Values of k Combination of lamination parameters maxθiD ,θiK
fk(θiD , θiK )

1, 2, 3, 4, 12, 34 v1, v2, v3, v4, v1 + v2, v3 + v4 4
13, 23 v1 + v3, v2 + v3 5.1443

14, 24, 123, 124, v1 + v4, v2 + v4, v1 + v2 + v3, v1 + v2 + v4, 6.25
134, 234, 1234 v1 + v3 + v4, v2 + v3 + v4, v1 + v2 + v3 + v4

Table 2.1: Maximal values of fk(θiD , θiK ) for all combinations of in-plane lamination para-
meters

Figure 2.8: Normalised Euclidean distance for “extreme” laminates contained into a sphere of
radius 1. Originals from Macquart et al. (2016).

2.4.3 SINGLE AND AGGLOMERATED OUT-OF-PLANE LAMINATION
PARAMETER BLENDING CONSTRAINT

The same approach used in the previous two subsections can be used for the deriv-
ation of the single and agglomerated out-of-plane lamination parameters blending
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constraints. However, the location of the dropped plies influences the D matrix
while it doesn’t influence the A matrix. Therefore, in order to simplify the deriv-
ation of the blending constraints for the D matrix, only symmetric laminates with
an even number of plies are considered, and plies are dropped two by two. This
means that a 2X ply-drop is obtained by removing X plies from the top half of
the stacking sequence and X plies from the bottom half of the stacking sequence,
resulting in a 2X ply-drop that is symmetric around the laminate mid-plane. The
out-of-plane blending constraints for a ply-drop of 2X is equal to:

(
Eoopk,(N→N−2X)

)2

≤
(

max
θiD ,θiK

fk(θiD , θiK)

)
α

[
2

(
3

(
X

N

)
− 6

(
X

N

)2

+ 4

(
X

N

)3
)]2

for k = 1, 2, 3, 4
(2.48)

Also, in this case, the retrieved blending constraint (Equation (2.48)) results in a
change of lamination parameter that is a function of the ratio X/N . It should be
noted that all the derived constraints are very conservative since they do not take
into account any manufacturing rules apart from symmetric stacking sequence
rules. Therefore, a shrinking factor α is added to reduce the design space.

2.4.4 AGGLOMERATED IN-PLANE AND OUT-OF-PLANE LAMINATION
PARAMETERS BLENDING CONSTRAINT

The Euclidean distance is used again to agglomerate all in-plane and all out-of-
plane lamination parameters into a single blending constraint, resulting in:

(
Eip,oopk,(N→N−2X)

)2

≤




(
max
θiD ,θiK

fk(θiD , θiK)

)
αip(2X/N)2

︸ ︷︷ ︸
in-plane

+

(
max
θiD ,θiK

fk(θiD , θiK)

)
αoop

[
2

(
3

(
X

N

)
− 6

(
X

N

)2

+ 4

(
X

N

)3
)]2

︸ ︷︷ ︸
out-of-plane




for k = 1, 2, 3, 4
(2.49)

where αip and αoop the two shrinking factors and the in-plane ply-drop now con-
siders 2X ply-drops to be consistent with the out-of-plane contribution assump-
tions.
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3
HIGH-FIDELITY DRAG PREDICTION

FOR FLEXIBLE WINGS: COMBINING
MODEL REDUCTION AND SURROGATE

MODELLING TECHNIQUES

The aerodynamic methods used in the preliminary design phase are usually di-
vided into two categories. The first methods are the high-fidelity CFD simulations
used primarily to estimate aircraft performance, such as aircraft drag, stability
margins, maximum lift at low speeds, and corrections for lower-fidelity methods.
These methods deliver accurate results but are very computationally expensive,
limiting their use in optimisation. The second methods are low-fidelity and fast-
to-run potential methods such as strip theory or panel methods like the doublet
lattice method (DLM) or the vortex lattice method (VLM). These second methods
are mainly used to determine the aerodynamic loads acting on the aircraft and,
therefore, are used to size the structure. However, these low-fidelity methods are
irrotational and inviscid, thus unsuitable for estimating aircraft drag as limited
to induced drag only, while high-fidelity CFD computes the total drag and also
decomposes it in its components (e.g. induced drag, viscous drag, form drag and
wake drag).

A popular alternative to the direct use of CFD in optimisation processes is to con-
struct a cheap-to-compute approximation model of the computationally expensive
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CFD computations by statistical or empirical approaches. These approximation
models are usually referred to as surrogate models or metamodels. Surrogate
models express complicated relationships between the response (output) and the
design variables (input) with relatively simple equations derived from machine
learning, statistics and optimisation. Once constructed, these models require min-
imal computational effort to run and often allow retrieving gradient, making them
ideal for optimisation. Some examples of surrogate models used in aero-structural
optimisation can be found in Lebofsky et al. (2014); Paiva et al. (2010); Zhang
et al. (2008).

The approach used in this dissertation is built around the commercial FE tool
Nastran. Nastran’s SOL144 (MSC Software, 2014a) and SOL200 (MSC Software,
2014b) solutions are capable of computing static aeroelastic loads and their sens-
itivities with respect to design variables using the doublet lattice method from
Giesing et al. (1972), and are commonly used in the industry to perform aero-
elastic optimisation with structural constraints. However, total drag cannot be
properly captured because the panel methods are limited to computing induced
drag only. To overcome this restriction, a surrogate model is built from rigid
RANS computations to provide the total wing drag coefficient. The surrogate
model (C̃D) can be written as in Equation (3.1), where f() is the function of
the surrogate model that has as input the aicraft angle of attack α and the wing
elastic structural displacement uE .

CD ≈ C̃D = f(α,uE) (3.1)

This chapter presents the framework used to develop a high-fidelity CFD surrogate
model for the drag coefficient of a flexible wing. In particular, Section 3.1 focuses
on modal reduction and dimensionality reduction processes while Section 3.2 fo-
cuses on the selection and validation of the surrogate model. The application of
these processes is presented in Section 6.1.

3.1 STRUCTURAL DISPLACEMENT DIMENSIONALITY RE-
DUCTION

The direct use of the wing elastic structural displacement (uE) as input to the
surrogate model is not viable, as this would mean building a model with the
same dimensionality as the number of components inside (uE). To avoid this, the
wing elastic displacement is approximated using a projection-based reduced-order
model. The simplest approach is to project the displacement onto a modal-basis
built using the structural modes of the structure under study as in Equation (3.2),
where the basis can be truncated to use only the first nφ modes as is shown in
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Equation (3.3).

uE =

∞∑

i=1

φiqi = Φq (3.2)

ũE =

nφ∑

i=1

φiqi = Φ̃q̃ (3.3)

where Φ is the full modal basis, Φ̃ is the truncated modal basis that contains only
the first nφ structural modes (i.e. Φ̃ = [φ1 φ2 ... φnφ ]), and q and q̃ the full and
truncated generalised coordinates resulting from the projection.

It should be noted that both the structural displacement and the modal basis used
in Equation (3.3) depend on the structural stiffness matrix K and mass matrix M
of the structure under consideration. Therefore, any change in the structure dur-
ing optimisation will impact both structural modes and wing displacement. Thus,
in order to guarantee a correct approximation of the displacements throughout
the optimisation process, the surrogate model should either use a variable projec-
tion basis (Φ̃ = f(M,K)) or adopt a constant basis made to ensure small residual
displacement (ures = uE − ũE) across the design space. The latter approach is
used in this dissertation.

The following two sections cover two separate model reduction steps. Section 3.1.1
focuses on reducing the number of vectors in the constant projection basis, while
Section 3.1.2 combines different generalized coordinates to reduce the surrogate
dimensionality further. The starting point for both steps is the creation of data-
bases of structural modes and aeroelastic displacements obtained via a design of
experiment (DOE). The DOE is structured as follows:

1. N distinct structures are generated with different stiffness and mass distri-
butions

2. From each of the structure, the first nφ modal shapes vectors (φi, for i =
1, . . . , nφ) and the aeroelastic displacements at trim conditions (uiE) are
computed. Each structure is trimmed independently. All the mode shape
vectors from the different structures are grouped together to form the modal
basis (Φndof×Nnφ = [φ1, . . . ,φNnφ ]) and all the aeroelastic displacements

are grouped together to form a matrix of aeroelastic displacements (undof×NE =
[u1
E , . . . ,u

N
E ]).

3. The modal basis and the matrix of aeroelastic displacements are split into
a training set and a test set. The training set is used to build the approx-
imation model using the K-fold cross-validation (CV) method, while the
test set is used specifically to assess the capability of the resulting model
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to extrapolate from unseen data. The rule-of-thumb ratio of 80/20 (Hastie
et al., 2017) is used to generate the training and the test sets.

The DOE process is represented in Figure 3.1.

Design of experiment
(DOE)

Nastran simulations

SOL144
aeroelastic displacement

uE

SOL103
normal modes

φi

Data split in training and test sets

All data

Training
80%

Test
20%

Figure 3.1: DOE process with retrieval of modal basis and aeroelastic displacement and final
separation in the training and test set

3.1.1 PROJECTION BASIS DIMENSIONALITY REDUCTION USING SIN-
GULAR VALUE DECOMPOSITION

The number of modes required to build an appropriate modal basis depends on
the complexity of the structure, the scope of the model, and the requirements for
the model’s accuracy. In general, this basis can vary from about ten to tens of
modes for a single structure, and its size is decided via a convergence study over
the quantities of interest (e.g. displacement error). It is, therefore, difficult to
understand a priori the required number of modes that shall be used.

To compute the constant projection basis Φ̃ and to reduce its dimensionality, a
singular value decomposition (SVD) is applied to the training set of modal basis
generated by the DOE to reduce the basis dimensionality. Matrix decomposi-
tion allows the decomposing of a matrix into a product of matrices to implement
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efficient matrix algorithms or identify hidden patterns, such as the smallest or-
thogonal subset or the presence of redundant information. The identification of
hidden patterns is especially important with a large quantity of data because such
patterns could be used to reduce data dimensionality. The singular value decom-
position is no exception and is widely used in signal/image processing, numerical
analysis and big data.

The SVD decomposes a general rectangular matrix as in Equation (3.4) (Golub
and Reinsch, 1970).

Φ̃ = LΣRT (3.4)

where Σ is the diagonal matrix containing the singular values of Φ̃ and L and
RT are two orthonormal matrices in column space and row space, respectively.
All the vectors in the matrices are linearly independent so that L and RT are
the smallest set of orthonormal vectors required to describe the column and row
spaces. Additionally, the column and row vectors are ordered with respect to the
magnitude of the singular values. This allows the creation of reduced orthonormal
matrices by simply removing vectors associated with the lowest singular values.
Thus, the reduced size projection basis can be computed as in Equation (3.5).

Φ̃ ≈ L̃ = [l1, . . . , lnL ] (3.5)

where only the first nL column vectors of L are retained in the reduced orthogonal
basis L̃.

As result, the structural displacements can be approximated as in Equation (3.6),
where p is the column vector that contains the new generalized coordinates (pi)
obtained from projecting the wing elastic displacement over the orthogonal basis
L̃. By introducing Equation (3.6) in Equation (3.1), the function of the surrogate
model can then be written as in Equation (3.7).

ũE = L̃p, with L̃ constant (3.6)

C̃D = f(α,p) (3.7)

3.1.2 GENERALIZED COORDINATES REDUCTION USING PRINCIPAL
COMPONENT ANALYSIS

So far, attention has been placed only on the dimensionality reduction of the
projection basis, as this directly impacts the number of inputs required by the
surrogate model. However, the non-correlation of the inputs should also be con-
sidered as this has three benefits: it improves the explainability of the surrogate
model, it reduces the variance in regression coefficients and thus improves the
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model performance with unseen data, and finally, it allows to reduce the dimen-
sionality of the model further as redundant information can be removed (Golub
and Reinsch, 1970) from the inputs. In addition, machine learning models might
encounter numerical issues when fed with correlated inputs. In this section, a
principal component analysis (PCA) is performed to eliminate the potential cor-
relation between the generalized coordinates (p) computed from Equation (3.6)
and possibly further reduce the surrogate model dimensionality.

The principal component analysis (PCA) is an orthogonal transformation that
converts a set of correlated variables into a new set of uncorrelated variables.
PCA can be achieved by eigenvalue decomposition of a data covariance matrix
(in this case 1

2PPT , where P = [p1, . . . ,pnL ]) or singular value decomposition of a
data matrix. Both approaches are applied after the data have been mean-centred
as in Equation (3.8).

(P−Pmean) = ΨN (3.8)

where N contains as columns vector (νi) the new uncorrelated set of variable
(νi), or principal components. Pmean contains the mean values of P and allows
to center the data and Ψ contains as columns the eigenvectors of the covariance
matrix PTP. The transformation matrix Ψ maps a data vector pi from an
original space to a new space of uncorrelated variables νi. Additionally, since
the new variables are indexed by data variance, it is possible to truncate the
transformation by simply retaining only the first nΨ principal components and
obtain a reduced-order representation of P, P̃.

(
P̃−Pmean

)
= Ψ̃Ñ (3.9)

where Ψ̃ contains only the first nΨ columns of Ψ and only the first nΨ principal
componets of N are used to approximate P̃. By construction, the truncated

reconstruction of P is the one that minimizes the total squared error
∣∣∣
∣∣∣P− P̃

∣∣∣
∣∣∣
2

.

As a result, a set of nL potentially correlated generalized coordinates pi can now
be approximated with nΨ uncorrelated principal components νi with minimum
truncation error, where nΨ < nL.

p ≈ p̃ = Ψ̃ν + pmean (3.10)

Therefore, by using Equations (3.6) and (3.10), the aeroelastic displacement can
be then approximated as in Equation (3.11) such that the function of the surrogate
model can be expressed as in Equation (3.12).

ũE = L̃(Ψ̃ν + pmean), with L̃,Ψ̃ and pmean constant (3.11)

C̃D = f(α,ν) (3.12)
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3.1.3 SUMMARY AND TRUNCATION STRATEGY

The workflow presented in Sections 3.1.1 and 3.1.2 is summarized in Figure 3.2.
At different points in the workflow, truncations are made to reduce the model
dimensionality and the decision behind each truncation is based on the residual
displacement quantification (ures) as shown in Figure 3.2. The number of vectors
used in the projection basis, as well as the residual displacement error at each
truncation, are presented in Section 6.1.

Projection basis dimensionality
reduction via SVD (Section 3.1.1)

Generalised coordinates
reduction via PCA (Section 3.1.2)

Estimation of the residual displacement

All data

TrainingTest

Φ

uE

SVD and truncation PCA and truncation

Φ̃ = LΣRT

L→ L̃

L̃

Projection on L̃ and
displacement reconstruction

ũE ≈ L̃p

ũE

Error calculation
ures = ũE − uE

ures

Acceptable error?
No

Error calculation

ures

Acceptable error?

Ψ̃, pmean

Approximate generalised
coordinates pi with the new
pricipal coordinates νi and
reconstruct displacement

ures = ũE − uE

ũE

(P−Pmean) = ΨN
Ψ→ Ψ̃

ũE ≈ L̃(Ψ̃ν + pmean)

Yes No

Application of the retrieved truncation level to the full data set

Yes

L̃, Ψ̃, pmean

Figure 3.2: Workflow for projection basis dimensionality reduction via SVD, the subsequent
generalised coordinates reduction via PCA with their respective estimation of residual displace-
ment.

3.2 SURROGATE MODELLING TECHNIQUES

This section covers the list of techniques considered in this dissertation during the
surrogate model creation. It presents also the processes used to create, evaluate,
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tune, and finally select the most suitable model.

3.2.1 TECHNIQUES CONSIDERED FOR SURROGATE

For this work, only a few surrogate modelling techniques are investigated to obtain
a robust surrogate for the wing drag coefficient. The models considered are:

1. Linear regression (LR);

2. Polynomial regression (PR);

3. Polynomial regression with elastic net regularization (PR-ENET);

4. Support vector machine with radial basis function kernel (SVM-RBF).

3.2.1.1 LINEAR AND POLYNOMIAL REGRESSION MODELS

A linear regression model assumes a linear relationship between the input variables
xT = [x1, . . . , xp] and the response y. The linear regression model can be written
as:

ỹ ≈ β0 +

p∑

i=1

xiβi (3.13)

where ỹ is the function approximation, βi are the unknown coefficients and xi
are the variables. Polynomial regression models are also represented by Equa-
tion (3.13), but in this case, xi are intermediate variables that represent the
interactions between different variables of the system called zi (e.g. x3 = zi1 · zj2).
Regardless of the origins of the inputs xi, the model is always linear in the para-
meters, and the p+ 1 unknowns βi are computed via the least-squares method by
minimizing the residual sum of squares (RSS) in Equation (3.14).

RSS(β) =

N∑

i=1

(yi − ỹ)
2

=

N∑

i=1

(
yi −

(
β0 +

p∑

i=1

xiβi

))2

(3.14)

In this dissertation, the designation linear regression (LR) indicates the use of a
model based on Equation (3.13) without intermediate variables. The designation
polynomial regression (PR) will instead be used when xi are the intermediate
variables used to model interaction and/or basis expansion of the variables zi
(e.g. x3 = zi1 · zj2)

For linear regression, no hyperparameters are involved in the model unless regular-
ization techniques are used, while in polynomial regression, the hyperparameters
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k, which indicate the polynomial degree, need to be tuned during the model’s
training.

3.2.1.2 LINEAR AND POLYNOMIAL REGRESSION METHOD WITH SHRINKAGE

Shrinkage methods allow to retain a subset of the predictors and discarding the
rest by introducing a penalty on the size of the regression coefficients. Thus result-
ing in models that are easier to interpret and potentially have a lower prediction
error.

Three well-known shrinkage methods are the Ridge, the Lasso and the Elastic
Net regressions (Hastie et al., 2017). In the case of Ridge regression, unknown
coefficients βi are found through a simple linear system. In the case of Lasso
or elastic-net regression, βi are found through more complex optimisation tech-
niques. The residual sum of squares (RSS) of each regression is presented here,
respectively:

RSS(β) =

N∑

i=1

(
yi −

(
β0 +

p∑

i=1

xiβi

))2

+ λ

p∑

i=1

β2
i (3.15)

RSS(β) =

N∑

i=1

(
yi −

(
β0 +

p∑

i=1

xiβi

))2

+ λ

p∑

i=1

|βi| (3.16)

RSS(β) =

N∑

i=1

(
yi −

(
β0 +

p∑

i=1

xiβi

))2

+ λ

p∑

i=1

(
αβ2

i + (1− α)|βi|
)

(3.17)

For all three methods, the hyperparameter λ indicates the magnitude of the pen-
alty and needs to be tuned during model training. The Ridge penalty (λ

∑p
1 β

2
i )

limits the values of all unknown coefficients βi, putting an upper limit to their
values. The Lasso penalty (λ

∑p
1 |βi|) is instead used to set some unknown coeffi-

cients βi to zero (see Figure 3.3) reducing the dimension of the model. This dis-
sertation also considers the elastic-net penalty (PR-ENET) from Zou and Hastie
(2005). The Elastic Net uses a linear compromise between Ridge and Lasso
λ
∑p

1

(
αβ2

i + (1− α)|βi|
)
, where the hyperparameter λ indicates the magnitude

of the penalty and α indicates the ratio between the Ridge and Lasso penalties.

3.2.1.3 SUPPORT VECTOR REGRESSION

Support vector regression (SVR) is a supervised learning model derived from
the support vector machine (SVM) method for classification by Vapnik (1995).
While the classification problem returns a discrete-valued output from a finite
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β1

β2

β̂

β1

β̂

β2

Figure 3.3: Representation of the Lasso and Ridge constraints on the RSS contours. Originals
from Hastie et al. (2017)

set, the regression problem returns a continuous-valued output. SVR retains
from SVM the capability of defining an acceptable error of the model thanks to
the introduction of an ε-insensitive region in the regression equation that ignores
the errors of size less than ε (see Figure 3.4 and Equation (3.18)).

+ε

−ε
0

Vε

r
+ε−ε

Figure 3.4: Representation of the ε-insensitive region for a linear SVM. Original from Smola
and Schölkopf (2004)

Vε(r) =

{
0 if |r| < ε

|r| − ε otherwise
(3.18)

The linear regression model is written as in Equation (3.13), and the unknown βi
are computed by minimising Equation (3.19).

H(β) = C

N∑

i=1

Vε

(
yi −

(
β0 +

p∑

i=1

xiβi

))
+

1

2

p∑

i=1

β2
i (3.19)

where Vε is the ε-insensitive region presented in Equation (3.18). The introduc-
tion of the ε-insensitive region enables the minimization problem to find a buffer
zone that approximates the continuous-valued function and balances both model
complexity and prediction error. This trade-off, between model complexity and
deviations larger than ε, is controlled by the constant C. Both ε and C are
hyperparameters of the linear SVR.

48



3

3.2. SURROGATE MODELLING TECHNIQUES

SVR can be made nonlinear by using kernels to map the data into a higher-
dimensional space and perform linear SVR in the kernel space (Smola and Schölkopf,
2004). In this dissertation, a radial basis function (RBF), see Equation (3.20),
the kernel is used where σ is the additional hyperparameter.

k(xi, xj) = exp

(
−||xi − xj ||

2

2σ2

)
(3.20)

3.2.2 SURROGATE MODEL SELECTION PROCESS

Most of the models considered in this dissertation have hyperparameters that
change the complexity of the model. Selecting the best-performing surrogate
model means identifying which model and which hyperparameters minimize the
average error when the model is used with independent test data.

The selection of the best surrogate model is divided into two steps:

1. Model selection refers to the process of estimating the performance of differ-
ent models, adjusting any hyperparameters and choosing the best-performing
model.

2. Model assessment refers to the prediction of how well the selected model
performs with new data (generalization error)

In the ideal data-rich situation, the two problems are solved by randomly dividing
the data into three subsets: a training set, a validation set and a test set. No
general rule exists on how to partition the data into the three subsets, however,
it is good practice to use the 50/25/25 split (Hastie et al., 2017). The training
and the validation sets are used respectively to fit and estimate the performance
of each model during model selection, while the test set is used to estimate the
generalization error of the best-performing model during the model assessment.

Both the model selection and the model assessment steps rely on the mean squared
error (MSE) to compute the performance of the model on their respective data
sets. The MSE quantify the average error between the responses predicted by a
model and the correct response for a given set of observations.

MSE =
1

n

n∑

i=0

(yi − ỹi)2 (3.21)

The reason behind the division of the data into subsets is that low training MSE
does not guarantee a low test MSE (Hastie et al., 2017). The risk is that, in order
to minimize the training MSE, model complexity could be excessively increased,
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Figure 3.5: Representation of the behaviour of the test error and training error as a function
of the model complexity. Original from Hastie et al. (2017)

resulting in an overfitted model that performs poorly against new data. This case
is represented in Figure 3.5.

In case of scarcity of data, when it is impossible to divide the data into training,
validation, and test sets, the K-fold cross-validation (CV) method is used. This
method requires only the training and test sets as the training data are randomly
split into K equally sized folds. The first fold is then treated as a temporary
validation set while the remaining K − 1 folds are used to fit the model as the
training set (see Figure 3.6). This procedure is repeated K times, and each time
the MSE is computed against the temporary validation set and stored. The full
MSE from the K-fold CV is computed by averaging the stored MSE values as in
Equation (3.22). Usual choices of K are 5 or 10 (Hastie et al., 2017).

CV =
1

k

k∑

i=1

MSEi (3.22)

During the model selection, the K-fold CV is performed for each model and the
different values of the associated hyperparameters. The selected model is the
model that, together with its hyperparameters, results in the lowest CV error.
The selected model is then trained using both training and validation sets and
tested against the test set to estimate the generalization error of the model.

In this dissertation, the selection of the most suitable surrogate model considers
the cross-validation error but also the regression error characteristics (REC) (Bi
and Bennett, 2003) area and the ease of implementation inside the commercial
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Figure 3.6: Schematic display of a K-fold cross-validation.

optimizers (i.e. Nastran). Application of the selection process is presented in
Section 6.1.

51



3

3. HIGH-FIDELITY DRAG PREDICTION FOR FLEXIBLE WINGS: COMBINING MODEL

REDUCTION AND SURROGATE MODELLING TECHNIQUES

52



4
OPTIMISATION STRATEGY AND

REGIONAL AIRCRAFT WING MODEL

This chapter is partially based on the industrial application paper, Static and
dynamic aeroelastic tailoring with composite blending and manoeuvre load alle-
viation by M.T. Bordogna, P. Lancelot, D. Bettebghor and R. De Breuker,
which appeared in Structural and Multidisciplinary Optimization, 2020, issue 61,
pages 2193-2216. Note: symbols may have been changed to maintain consistency
throughout this thesis.

This chapter introduces the regional aircraft wing model used in this dissertation
as an application test case as well as the optimisation strategy. The wing model
and the optimisation strategy are used in Chapters 5 and 6 to study, respectively,
the effect of aeroelastic tailoring and blending constraints on the wing structural
weight and the trade-off between wing structural weight and aerodynamic drag.

As introduced in Chapter 2, lamination parameters require a two-step optimisa-
tion approach where a continuous gradient-based optimisation is followed by an
inverse optimisation problem that retrieves a discrete stacking sequence. The two
steps are introduced in Sections 4.2 and 4.3, respectively. Section 4.2 also cov-
ers the integration of gust loads into the optimisation and the integration of the
surrogate model of the aerodynamic drag inside the optimiser.
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4.1 REGIONAL AIRCRAFT WING MODEL

This section introduces the model used in this dissertation as an application case.
The model is an ONERA internal composite wing model of a regional aircraft.

4.1.1 FINITE ELEMENT MODEL

The finite element model is composed of shell and beam elements. The wing
skins, shear ribs and spars have been modelled using shell elements, while beam
elements represent stringers. The shell elements of the upper and lower wing skins
are grouped to form sections in the spanwise and chordwise directions. The wing
spars are also grouped in sections in the spanwise direction (Figure 4.1). All the
elements in each section share the same thickness and material properties. The
wing’s internal structure is composed of 32 shear ribs and 13 stringers. Wing
dimensions and characteristics are presented in Table 4.1.

XY

Z

Figure 4.1: ONERA regional wing model with the main structural components. Each com-
ponent shows the locations of the different locally optimised sections.

Two different fuel mass distributions have been considered in this dissertation,
the maximum take-off weight (MTOW) and maximum landing weight (MLW),
see Figure 4.2. A third mass distribution is the maximum zero fuel weight
(MZFW), which is not considered in load calculation. The fuel is modelled as
concentrated masses connected to the wing box FEM via multi-point connections.
The amount of fuel along the spanwise direction has been estimated by consider-
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Table 4.1: Wing dimensions and characteristics.

Wing feature Values

Half wingspan 16.7 m
Wing area 111 m2

Wing dihedral 3.5◦

Leading edge sweep angle 18◦

MTOW 60 000 kg
MLW 55 000 kg

MZFW 50 000 kg
Design cruise Mach 0.75

Design cruise altitude 35 000 ft

ing the volume of each rib-bay, defined as the space between two consecutive ribs
and the two spars, and the jet fuel density.
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Figure 4.2: Two jet fuel distributions in the spanwise direction: MTOW and MLW.

4.1.2 AERODYNAMIC MODEL

Two aerodynamic models have been used in this dissertation. The first model is a
low-fidelity panel method for fast aeroelastic loads simulations, while the second
model is a high-fidelity computational fluid dynamics model used to generate
corrections for the low-fidelity method and perform the analysis required for the
aerodynamic drag surrogate model.

4.1.2.1 DOUBLET LATTICE MODEL

The aeroelastic loads are calculated via the Nastran (MSC Software, 2014a)
SOL144 static aeroelastic solution that utilises the doublet lattice method. Fig-
ure 4.3 shows the DLM panels mesh associated with the wing model.
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(a) Top view. (b) Iso view.

Figure 4.3: DLM mesh of the ONERA regional wing model.

As the aerodynamic loads coming from the DLM are used to perform the aircraft
trim and to calculate the displacement required by the drag surrogate model, it
is essential to correctly represent the spanwise and chordwise load distribution
along the wing. This condition is achieved by using the concept of separation
between the rigid and elastic load components, where the rigid part utilises rigid
CFD results, and the elastic increment is computed via DLM. This method, often
referred to as the Hybrid Static Approach (HSA) (Di Vincenzo, 2012), allows
for consideration in the aeroelastic load computation for airfoil camber and wing
twist law. This method not only ensures a more realistic lift distribution for
structural sizing but also provides correct wing deflection input to the surrogate
model, improving the fidelity of the drag evaluation.

4.1.2.2 COMPUTATIONAL FLUID DYNAMIC MODEL

An aerodynamic mesh with 1 million cells is used to perform rigid CFD RANS
analysis with the Spalart-Allmaras turbulence model. All simulations have been
computed at Mach 0.75 and at 35 000 ft altitude which represents the cruise
condition for this regional aircraft. The ONERA CFD solver elsA (Cambier et al.,
2011) is used to perform all rigid aerodynamic computations. Figure 4.4 shows
the fluid-structure interface mesh of the ONERA regional wing model.

The CFD model is used for two applications. The first is to compute drag coef-
ficients CD for the surrogate model generation and assessment. The second is to
correct the DLM model by providing rigid CFD data.
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(a) Top view. (b) Iso view.

Figure 4.4: CFD mesh of the ONERA regional wing model.

4.2 GRADIENT-BASED OPTIMIZATION

The first step of the optimisation process is composed of a continuous optimisation
where the optimal lamination parameters and section thicknesses are obtained
through a gradient-based process performed via Nastran SOL200 (MSC Software,
2014b).

4.2.1 DESIGN VARIABLES

As introduced in Section 4.1.1, the wing structural elements are grouped into
sections sharing the same thickness and material properties. In total, there are
44 sections, 14 for each skin and 8 for each spar (Figure 4.1). All laminates
are parameterised with lamination parameters and are assumed to be symmetric.
Thus, each section has as 9 design variables, one thickness ti and eight lamination
parameters vAi or vDi for a total of 396 design variables.

Shear ribs and stiffeners do not take part in the optimisation and are made of
quasi-isotropic composite. Carbon fiber reinforced polymer (CFRP) is used in
the structure, and its material properties are summarised in Table 4.2.
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Table 4.2: Carbon fiber single-ply material properties.

Property Value

E11 177 GPa
E22 10.8 GPa
G12 7.6 GPa
ν12 0.27
ρ 1500 kg/m3

tply 0.2 mm

4.2.2 COMPATIBILITY CONSTRAINTS

Compatibility constraints introduced in Section 2.3.2 ensure that lamination para-
meters are within the feasible design space and that the obtained A and D stiffness
matrices are realistic.

In this dissertation, the compatibility constraints proposed by Hammer et al.
(1997) (Equation (2.26)) and Raju et al. (2014) (see AppendixA) are used during
the optimisation process.

4.2.3 MECHANICAL CONSTRAINTS

Two mechanical constraints are considered during the optimisation: strength and
local buckling.

Strength constraints have been derived from the work of IJsselmuiden et al. (2008).
This approach defines an analytical expression for a conservative failure envelope
based on the Tsai-Wu failure criterion in strain space. This conservative failure
envelope determines a region that guarantees no failure would occur within a
laminate, irrespective of the ply orientation angles (Figure 4.5). The strength
constraint is applied to all the elements of the structure.

Local buckling is applied to all regions of the wing skins delimited by two consec-
utive ribs and stiffeners, called buckling bays (see Figure 4.6). The closed formula
in Equation (4.1) for buckling under biaxial loading of a simply supported plate
is used.

λB = π2D11(m/a)4 + 2(D12 + 2D33)(m/a)2(n/b)2 +D22(n/b)4

(m/a)2NX + (n/b)2NY
(4.1)

where buckling occurs for 0 < λB < 1, NX and NY are the stresses in the lon-
gitudinal and transverse directions, D11, D12, D22 and D33 are bending stiffness
terms of the laminate, a and b are the corresponding region dimensions and m and
n are the corresponding number of half-waves. This formula does not consider
the effects of shear fluxes NXY and non-orthotropic composite bending stiffness
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Figure 4.5: Strenght constrained derived by IJsselmuiden et al. (2008).

effects (i.e. D13 and D23 non-zero) into account. This approximation is known to
be non-conservative and should be considered carefully (Bettebghor and Bartoli,
2012).

Both the strain values used in the strength constraints and the stress used for
buckling computation are multiplied by 1.5 so that the structure is sized by ulti-
mate loads.

4.2.4 BLENDING CONSTRAINTS

The blending constraints outlined in Section 2.4 apply to all sections of each
main structural component but not cross-component. The four main structural
components are the two wing skins and the two spars. This means, for example,
that blending is applied to all sections of the upper wing skin only but not to the
upper and lower wing skin simultaneously. The reason behind this choice is that
usually, these four components are manufactured separately and then fastened
mechanically together. Therefore, there is no need to guarantee ply continuity
among them. A shrinking factor equal to 0.5 is applied to all blending constraints
to help retrieve a blended solution.

4.2.5 LOAD CASES

The regional wing model is optimised with respect to different load cases summar-
ized in Table 4.3. In total, there are 18 load cases: 8 symmetric static manoeuvres
and 10 gust load cases.
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Figure 4.6: Difference between FE shell elements in black and buckling bays in red on the
upper wing skin.

Table 4.3: List of the load cases used in the optimisation.

N Load factor (g) Mach Altitude (ft) Mass configuration Name

1 2.5 0.48 0 MTOW Pull-up
2 -1 0.48 0 MTOW Push-down
3 2.5 0.75 35000 MTOW Pull-up
4 -1 0.75 35000 MTOW Push-down
5 2.5 0.48 0 MLW Pull-up
6 -1 0.48 0 MLW Push-down
7 2.5 0.75 35000 MLW Pull-up
8 -1 0.75 35000 MLW Push-down

9-18 - - - - Gust 1-10

The 10 gust loads, as explained in more detail in Section 4.2.6, are the 10 worst
gust loading conditions resulting from a gust selection process. The different gust
profiles, taken from the certification CS-25 (EASA, 2018), are shown in Figure 4.7.
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Figure 4.7: Gust profiles used at sea-level and cruise from CS-25 (EASA, 2018).

4.2.6 INCLUSION OF DYNAMIC LOAD CASES

Dynamic aeroelastic analyses of discrete gusts are performed to ensure the wing
satisfies the CS-25 certification requirements (EASA, 2018) for gust and turbu-
lence loads. The CS-25 requires the aircraft to be subjected to discrete symmet-
rical vertical and lateral gusts at level flight.

4.2.6.1 GUST ANALYSIS

In this dissertation, only positive and negative discrete symmetrical vertical gusts
are taken into account. The “1-cosine” gust shape is defined according to EASA
(2018) as in Equation (4.2).

U =
Uds
2

[
1− cos

(πs
H

)]
(4.2)

Uds = UrefFg

(
H

107

)1/6

(4.3)

Fg = 0.5

(
1− Zmo

76200
+

√
MZFW

MTOW
tan

(
πMLW

4MTOW

))
(4.4)

where U is the gust velocity in equivalent airspeed (EAS) at position s, s is the
distance travelled inside the gust, Uds is the design gust velocity in EAS as defined
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in Equation (4.3), H is the gust gradient in meters, Uref is the reference gust
velocity in EAS, Fg the flight profile alleviation factor as defined in Equation (4.4)
and Zmo is the maximum operating altitude in meters. The ONERA regional wing
has an MTOW of 60 000 kg, an MLW of 55 000 kg, an MZFW of 50 000 kg and a
maximum operating altitude Zmo of 12 192 m (40 000 ft). For gust computations,
ten different gust gradients H have been used from 9 m and 107 m (see Figure 4.7).

All gust encounters are simulated as a perturbation of the 1g steady-level flight.
The Nastran dynamic aeroelastic solver (SOL146) is utilised to perform the gust
analysis and to compute the responses (e.g. displacement, strain, etc.). To build
up the full response, the incremental results from the gust analysis are superim-
posed on the 1g steady-level flight results.

4.2.6.2 EQUIVALENT STATIC LOADS

In this dissertation, a gradient-based optimiser is used due to a large number of
design variables. The main issue when computing for aeroelastic loads is their
direct dependency on the design itself. For gust cases in particular, loads and
sensitivities need to be recomputed not only for each design cycle but also for
all gust cases and for all time instants. Such operations are computationally
expensive; therefore, it is often difficult to include transient analysis directly in
an optimisation process (Kang et al., 2006). Nonetheless, this process has been
implemented in dedicated tools like the TU Delft Proteus aeroelastic code (Rajpal
et al., 2019) and the Airbus Lagrange tool (Petersson, 2009). The Equivalent
Static Load (ESL) method formalised by Kang et al. (2001) is used in this paper
to bypass these issues.

The ESL aims at computing one or more equivalent static loads (feq) capable of
generating the same displacement fields of the transient load at different critical
time steps. These feq, now assumed as constant with respect to the structural
design, are then applied to the FEM as static loads while the design is being
optimised. Once the optimised design is obtained, a new set of transient analyses
is performed to update feq, and the loop is repeated until convergence of the op-
timisation. Therefore, the ESL method relies on a weak coupling between the
transient simulations and the optimiser and requires several optimisation itera-
tions before converging to a solution. The lack of sensitivities between the design
variables and the transient responses constitutes one of the main drawbacks of
this method. Therefore, design changes between two consecutive ESL loops need
to be small enough to ease constraints satisfaction and convergence. In case of
convergence issues, under-relaxation strategies could also be implemented. Still,
this method can be implemented around already existing gradient-based optim-
isation tools and aeroelastic analysis code. The ESL has been used in various
contexts, such as non-linear structures, multi-body dynamics, crash, and topo-
logy optimisation for the automotive industry. Most of these applications have
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been summarised in Park (2006).

4.2.6.3 IMPLEMENTATION OF THE EQUIVALENT STATIC LOAD

The flowchart of the ESL method used in this work is presented in Figure 4.8. The
ESL method starts with the design variables (x) of the optimisation problem being
updated. This ensures that the latest wing design is used during the equivalent
static load creation. The structural stiffness matrix K(x) is also computed and
stored for later usage.

Nastran SOL146 is used to solve the governing equations of motion for the dy-
namic aeroelastic problem. Four separate gust load analyses are performed at
different flight points (i.e. sea level and cruise) and for different mass configur-
ations (i.e. MTOW and MLW). Once the time domain response is obtained for
each analysis and for each gust gradient shown in Figure 4.7, different critical
time instants are identified, and their associated displacement fields ugust are ex-
tracted. Two criteria are used to identify the critical time steps: the maximum
wing root bending moment and wingtip maximum deflections. Ten critical gust
instants for each gust analysis are extracted across the gust gradients for a total
of 40 stored displacement fields for all four gust analyses. As the wing is modelled
as free-flying, the flexible structural displacements are obtained by removing the
rigid body translations and rotations from the displacement vector of each grid
point.

To include the 1g flight condition in the ESL method, four separated static aero-
elastic analyses are performed using Nastran SOL144, one for each combination of
flight point and mass configuration. The corresponding aeroelastic displacement
field u1g is computed and extracted.

The total displacement is obtained by superimposing the 1g and gust displace-
ment fields associated with the same flight and mass configuration. The gust
displacement field is added or subtracted to the cruise 1g displacement to obtain
the effect of a positive or negative gust. This operation brings the total number
of critical gust displacements from 40 to 80.

utot = u1g ± ugust (4.5)

Once utot are retrieved, a set of equivalent static loads feq can be computed using
Equation (4.6).

feq = K(x)utot (4.6)

feq allows a static analysis to achieve the displacement field that occurs during
the dynamic response.

To further reduce the number of static analyses associated with the different
equivalent static loads, a second selection of the most critical feq is performed
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Figure 4.8: Overview of the equivalent static load process.

before their introduction in the optimiser. The selection is made by a static
analysis performed via Nastran SOL101. The strength (Section 4.2.3) fields of all
the 80 equivalent static loads are compared, and only the ten most critical loads
are retained and added to the complete list of load cases (Table 4.3) sent to the
optimiser module of Nastran SOL200.

4.2.7 INTEGRATION OF THE SURROGATE MODEL INSIDE THE OP-
TIMISER

Nastran allows two kinds of user-defined response functions, or second-level re-
sponse functions, called DRESP2 and DRESP3. DRESP2 entities allow basic
responses to be combined via algebraic equations defined by the user inside Nas-
tran. On the other hand, DRESP3 allows an external program to be called during
the optimisation and, therefore, is more suitable when the response cannot be ob-
tained directly but through an iterative solution or a system of equations.

In this dissertation, the surrogate model and part of the structural displacement
model reduction presented in Chapter 3 have been implemented inside an external
FORTRAN program that is called during the optimisation by a DRESP3 function.
The implementation is shown in Figure 4.9.

As shown in shown in Figure 4.9, all quantities obtained during the creation of
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Figure 4.9: Workflow to include the surrogate model inside Nastran optimisation.

the wing displacement model reduction (i.e. L̃, Ψ̃, p̃mean), see Chapter 3, are
stored in ASCII files and are accessible by both the optimiser and the external
FORTRAN program.

The Nastran call to the external function is in the form of CD = h(α,x), where α is
the aircraft angle of attack and x are all the 396 design variables (i.e. thicknesses
and lamination parameters) of the optimisation problem. All these quantities
are available to the optimiser, and Nastran expects as output from the DRESP3
function the function value, CD, plus all the derivatives of the function with
respect to the inputs to carry on the optimisation (i.e. ∂CD/∂α and ∂CD/∂x).

During the optimisation runs, a modified Nastran Direct Matrix Abstraction Pro-
gram (DMAP) subroutine is used to perform the projection of the structural dis-
placement, computed by the static aeroelastic solver, over the projection basis L̃
and compute the generalised coordinates p. In addition, the DMAP subroutine
calculates the derivatives of the generalised coordinates p over the design variables
(∂p/∂x). These two quantities (p and ∂p/∂x) are computed in the background
during Nastran execution and stored in an eternal text file.
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Once the FORTRAN program is called by Nastran DRESP3 and receives the
inputs α and x, the external program accesses via ASCII file the stored constant
quantities Ψ̃, p̃mean plus p, ∂p/∂x computed by the DMAP subroutine. First, the
generalised coordinates p are translated into principal components ν. Then, the
surrogate model function (Equation (3.12) is used to compute the drag coefficient
CD as well as its derivatives (∂CD/∂α and ∂CD/∂ν). However, since the DRESP3
requires ∂CD/∂x, the chain rule is applied to ∂CD/∂ν using ∂p/∂x provided by
DMAP and ∂ν/∂p being the transposed PCA truncated matrix Ψ̃T resulting in
Equation (4.7).

∂CD
∂x

=
∂CD
∂ν

∂ν

∂p

∂p

∂x
(4.7)

It should be noted that even if the FORTRAN code has access to the design
variables x, it does not use them. Their inclusion in the DRESP3 is necessary
so that Nastran can have the derivatives of the drag with respect to the design
variables.

4.2.8 CENTRAL OPTIMIZATION PROBLEM

The blending constraints introduced in Section 2.4 limit the change of lamination
parameters between all wing sections as a function of their difference in thickness.
Applying those constraints while simultaneously optimising thickness and lamin-
ation parameters leads to a non-convex optimisation problem (Macquart et al.,
2016). Therefore, a 4-stage strategy is employed during the gradient-based phase
of the optimisation strategy, see Figure 4.10. This 4-stage strategy is used in all
the applications presented in Chapters 5 and 6, so it is used not only with the
composite blending constraints but also in conjunction with the equivalent static
load and the surrogate model for aerodynamic performance. Figure 4.11 presents
the overview of the full optimisation workflow used in this dissertation.

The 4-stage strategy is as follows. When the blending constraints are included in
the optimisation, see Figure 4.10a, stage 1 of this strategy is a weight minimisa-
tion of the wing with respect to thicknesses and lamination parameters without
blending constraints (Equation 4.8). This stage provides a feasible starting point
before the introduction of the blending constraints. The unblended design (xU )
is used as a starting point for stage 2, where the objective is still to minimise
wing mass, but in this case, the blending constraints are included (Equation 4.9).
In stage 3, a repair function rounds up the thicknesses of blended design (xB)
to an even number of plies based on the ply thickness (tply). After the repaired
design (xR), lamination parameters are optimised one last time in stage 4 while
thicknesses are kept fixed with the intent of maximising the reserve factors of all
the mechanical constraints (i.e. local buckling and strength from Section 4.2.3).
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(a) With continuous blending constraints.
Blending constraints are included in stages 2
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(b) Without continuous blending constraints.
Stage 2 is not performed, and blending con-
straints are not included in stage 4.

Figure 4.10: Proposed bi-step optimisation and 4-stage strategy for continuous optimisation.

In this step, often referred to as margin maximization (Bettebghor and Bartoli,
2012; Haftka and Watson, 2005; Liu, 2001), the feasibility of the structure is max-
imised utilising a slack variable s (Equation 4.10). Rounding of thicknesses and
maximising of reserve factors modify the structure’s stiffness, leading to internal
load redistribution. Therefore, stages 2 to 4 are repeated until convergence to a
final continuous design (xFC). Once an optimum design is reached, the stacking
sequence retrieval via GA is used to retrieve a blended final discrete design (xFD),
see Section 4.3.

In case blending constraints are not included in the optimisation, see Figure 4.10b,
stage 2 is not performed, and stage 4 does not consider blending constraints dur-
ing the optimisation. Stages 1, 3 and 4 are repeated until convergence.
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Minimize W (t, v) (4.8)

subject to compatibility constraints < −1

strenght constraints < −1

local buckling constraints < −1

Minimize W (t, v) (4.9)

subject to compatibility constraints < −1

blending constraints < −1

strenght constraints < −1

local buckling constraints < −1

Maximize s (4.10)

subject to compatibility constraints < −1

blending constraints < −1

strenght constraints + s < −1

local buckling constraints + s < −1

The gradient-based optimiser used is an interior point optimisation algorithm
called IPOPT (Wächter and Biegler, 2006). Other optimisation algorithms could
also be used. The approximation of the problem is obtained with the convex
linearisation method (CONLIN), and all constraints are required to be smaller
than −1 for ease of comparison during the optimisation runs.
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Figure 4.11: Overview of the gradient-based optimization workflow with equivalent static load
and surrogate model.
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4.3 STACKING SEQUENCE RETRIEVAL

The OptiBLESS open-source stacking sequence optimisation toolbox (Macquart,
2016) is used to retrieve manufacturable laminates 1. OptiBLESS uses a guide-
based genetic algorithm (GA) to retrieve blended stacking sequences matching
the optimised lamination parameters achieved by the gradient-based optimiser
(i.e. Nastran). According to the guide-based methodology (Adams et al., 2004),
the thickest laminate is defined as the guide-laminate. Other laminates from the
same structure are obtained by dropping plies from the guide-laminate, therefore
ensuring the final design is blended. As a result, the plies of the thinnest laminate
are ensured to span the entire structure.

After the continuous optimisation, each wing section is optimised in terms of
laminate thickness and lamination parameters. The continuous design outcome is
used as a target solution for the discrete stacking sequence retrieval. The thickest
laminate within each main structural component (i.e. skins and spars) is identified
and set as the guide. Next, the ply angles describing the guide laminate stacking
sequence and ply drops are used as design variables in OptiBLESS. The genotype
used in OptiBLESS to describe composite structures is given as in Equation 4.11,
where [θ1 θ2 ... θn] reppresents the stacking sequence of the guide and [Ξ1 Ξ2 ... ΞD]
is the drop off table. The drop off table states what plies shall be removed from
the guide to generate the remaining laminates of the structural component.

Genotype =


[θ1 θ2 ... θn]︸ ︷︷ ︸

Ply angles

[Ξ1 Ξ2 ... ΞD]︸ ︷︷ ︸
Drop off


 (4.11)

The objective function used during the discrete optimisation represents the lamin-
ation parameter matching quality between the continuous and discrete retrieved
design (Equation 4.12). In other words, OptiBLESS is set to retrieve blended
stacking sequences matching the lamination parameters obtained at the end of the
continuous optimisation. This objective function is expressed as the root mean
square error (RMSE) between the continuous and discrete lamination parameters
as shown in Equations (4.12) and (4.13).

Fitness(θ,Ξ) =
1

Nlam

Nlam∑

s=1

RMSEs(θ,Ξ) (4.12)

RMSEs(θ,Ξ) =

√√√√1

8

8∑

i=1

wi
(
LPi,p − LPi,p(θ,Ξ)

)2
(4.13)

1https://github.com/TMacquart/OptiBLESS
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where Nlam is the total number of laminate sections in a structural component
(i.e. upper wing skin), LPi,p is the vector of target parameters for section p, wi is
a weighting factor and LPi,p is the vector of lamination parameters obtained by
the GA. The weighting has been decided empirically with higher weights given to
sections with a high number of failed elements after stacking sequence retrieval.
Stacking sequences are converted into lamination parameters in order to evaluate
the fitness using the following notation:

LP = [vA1 vA2 vA3 vA4 vD1 vD2 vD3 vD4 ] (4.14)

According to the fitness function given in Equation (4.12), the best-retrieved
stacking sequence would be a stacking sequence best matching the optimised
lamination parameters obtained by Nastran.
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5
AEROELASTIC TAILORING WITH

STATIC AND DYNAMIC LOAD-CASES
AND BLENDING CONSTRAINTS

This chapter is partially based on the industrial application paper, Static and
dynamic aeroelastic tailoring with composite blending and manoeuvre load alle-
viation by M.T. Bordogna, P. Lancelot, D. Bettebghor and R. De Breuker,
which appeared in Structural and Multidisciplinary Optimization, 2020, issue 61,
pages 2193-2216. Note: symbols may have been changed to maintain consistency
throughout this thesis.

This chapter applies the optimisation strategy presented in Chapter 4 to the
ONERA regional wing model introduced in Section 4.1. This application focuses
on the weight minimisation of the composite wing and utilises the composite
parameterisation and blending constraints introduced in Chapter 2.

A list of all the optimisation cases performed is presented in Section 5.1. Sec-
tion 5.2 shows the effect of the blending constraints on the continuous optimisa-
tion introduced in Section 4.2. The relevance of static and dynamic loads on the
final wing design are presented and discussed in Section 5.3. This section also
focuses on the ESL and checks the reliability of the equivalent static load ap-
proach. Finally, Section 5.4 shows the results from the stacking sequence retrieval
performed via the genetic algorithm introduced in Section 4.3.
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CONSTRAINTS

5.1 OPTIMISATION CASES

To investigate the effects of the static/dynamic loads and blending constraints on
the final design of the wing, four different optimisation cases are analysed:

• Case A corresponds to the weight minimisation under static loads with
mechanical (i.e. strength and buckling) and compatibility constraints. This
serves as a reference case for later comparisons.

• Case B is a weight minimisation with the same constraints used in case A
but considers both static and dynamic loads. Comparison between cases A
and B shows the impact of gust loads on the wing design.

• Case C is a weight minimisation with the addition of blending among con-
straints used during the optimisation. Only static loads are used in this
case, so comparing cases A and C shows the effect of blending constraints
on the wing design.

• Case D is a weight minimisation with both static and dynamic loads that
also includes blending among the constraints. Comparing A and D shows
the combined effect of including blending and dynamic loads.

A summary of the cases can be found in Table 5.1 together with their associated
normalised optimal weight. In Table 5.1, two different normalized weight results
are given: W and WNRU . W represent the weight results obtained with the
processes introduced in Figure 4.10 where thicknesses are rounded up in stage
3 to the nearest upper multiple of tply. On the other hand, WNRU is obtained
with the same processes used for W , but without the rounding up in stage 3.
All results obtained without rounding up are here referred to with the subscript
(·)NRU . All weights presented in this chapter are normalised with respect to the
NRU weight from case A.

Table 5.1: Weight for different optimisation problems.

Case Static Dynamic Blending WNRU [%] W [%]

A Yes No No 100.00 102.16
B Yes Yes No 100.05 102.16
C Yes No Yes 105.01 107.50
D Yes Yes Yes 105.14 108.04

The reason behind showing both weights is that the rounding-up step does not
produce consistent results. For example, two designs with the same weights before
rounding but with different thickness distributions may result in different rounded-
up weights depending on how close the different thickness distributions are to an
even multiple of tply. Therefore, NRU weights are used in all weight comparisons
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as WNRU is the lowest but theoretical weight achievable by the optimisation
process. In contrast, final design comparison and stacking sequence retrieval
are made using the continuous rounded-up results as this is closer to a realistic
aerospace application.

For the sake of clarity, only the meaningful outputs produced during the op-
timisation are presented in this chapter. All computed outputs are included in
Appendix B.

5.2 EFFECT OF BLENDING CONSTRAINTS ON CONTINU-
OUS OPTIMUM

The effect of using blending constraints during the continuous optimisation is
visible in Table 5.1. The introduction of the constraints results in an increase in
mass of 5.01% from case A to C and of 5.14% from case B to D; this weight gap
remains similar also after rounding up. This weight increase is expected since the
blending constraints reduce the design space, as shown in Figure 2.6.

Figures 5.1, 5.2 and 5.3 show the thickness and stiffness distributions for the
upper wing skin, lower wing skin and spars, respectively. Each figure presents
the distributions for case A, case C, and the difference between the two cases.
The stiffness distributions are presented with the membrane stiffness polar plots
introduced in Section 2.3.3.

(a) Case A (b) Case A → Case C (c) Case C

Figure 5.1: Upper wing thickness and stiffness distributions for case A, case C and the differ-
ence between the two cases

Case A results in a wing with decreasing thickness from root to tip, with most
of the skin’s and spar’s thickness concentrated at the leading edge. This solution
results in a wing elastic axis that is close to the leading edge and thus creates
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(a) Case A (b) Case A → Case C (c) Case C

Figure 5.2: Lower wing thickness and stiffness distributions for case A, case C and the difference
between the two cases

(a) Case A (b) Case A → Case C (c) Case C

Figure 5.3: Front and rear spar thickness and stiffness distributions for case A, case C and
the difference between the two cases

a wing wash-out effect under bending that shifts the lift distribution towards
the wing root, resulting in a lower root wing bending moment and hence light
wing design. Including the blending constraints in case C preserves this thickness
distribution towards the leading edge, creating a wash-out effect. However, the
thickness change between adjacent panels is more gradual than in case A and
is followed by a smoother change in stiffness distribution from wing root to tip.
This is due to the connection between thickness drop and allowable change in
lamination parameters introduced by the blending constraints.

Figures 5.4 present the distribution of the most critical mechanical constraints
over wing skins and spars. The resolution of strength and buckling constraints
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differ in the FE model as the strength constraint is applied on each FE shell
element while buckling is applied on regions delimited by two consecutive ribs
and stiffeners (called buckling bays) and only on the skins, this is explained in
Section 4.2.3. Therefore, the most critical strength constraint among all the
elements in a buckling bay is compared to the most critical buckling constraint
for that particular bay. The resulting constraint and its associated load case are
extracted and used in Figures 5.4 and 5.5 respectively. In Figure 5.5, the different
aircraft configurations (i.e. MTOW and MLW) and flight conditions (i.e. sea-level
and cruise altitude) associated with each manoeuvre have been grouped so that
only the three manoeuvres are plotted (i.e. pull-up, push-over and gust)

(a) Case A (b) Case C

Figure 5.4: Most critical failure index based on mechanical constraints at continuous optimum
for cases A and C.

(a) Case A (b) Case C

Figure 5.5: Load-cases associated with the most active mechanical constraints at continuous
optimum for cases A and C.

Figures 5.4 and 5.5 show that for both cases A and C, the upper wing skin has
higher failure indices (FIs) in buckling, and the load case associated with such
FIs is the 2.5g pull-up manoeuvre. For the lower skin, the higher FIs are a mix
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between strength and buckling, where the former results from the 2.5g pull-up
manoeuvre while the latter is from the −1g push-over manoeuvre. Spars are only
sized by strength, as no buckling has been considered during the optimisation for
this component. Gust loads do not appear in Figure 5.5 as both cases A and
C are only sized for static loads. The introduction of the blending constraints
and their impact on the thickness and stiffness distributions does affect the most
critical mechanical constraints and their associated load case. The tendency is
that with blending, the wing is more clearly divided between strength-driven and
buckling-driven regions.

The observations made in this chapter on the comparison between case A and
case C can be made when comparing case B and case D. For the sake of brevity,
this second comparison is not presented here. However, the results from cases B
and D and their difference can be found in Appendix B.

5.3 EFFECT OF INCLUDING DYNAMIC LOADS ON CON-
TINUOUS OPTIMUM

Table 5.1 shows that for the composite regional wing model under study, the intro-
duction of gust loads results in a marginal NRU weight increment between 0.05%
and 0.12%. This small weight increment is then either absorbed or augmented by
the rounding up but remains substantially minimal, between 0% and 0.5%. The
impact of including dynamic loads on the thickness and stiffness distributions of
the upper wing skin, lower wing skin and spars are shown in Figures 5.6, 5.7
and 5.8 respectively. Each figure presents the distributions for case C, case D and
the difference between the two cases. The stiffness distributions are presented
with the membrane stiffness polar plots introduced in Section 2.3.3.

Including dynamic loads results in a mild change in the thickness and stiffness
distributions if compared with the introduction of the blending constraints. The
change in thickness removes material from the leading edge and increases it at
the trailing edge. This change in thickness is followed by a change in stiffness
direction at the same panels. Even if, for this application, the impact of dynamic
loads is contained, the net result is that the optimiser modified both wing stiffness
and thickness to withstand the additional dynamic load cases, showing the cap-
abilities of aeroelastic tailoring and the importance of considering dynamic loads
in preliminary design. The contained impact of the gusts on the final design of
the regional wing model under study can also be seen in Figure 5.10. This figure
shows how only a few areas are characterised by high mechanical constraints FI
from the additional dynamic loads.

Figure 5.11 shows the highest strength and buckling constraint values obtained
during the encounter of the ten gusts considered during the optimisation for all
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(a) Case C (b) Case C → Case D (c) Case D

Figure 5.6: Upper wing thickness and stiffness distributions for case C, case D and the differ-
ence between the two cases

(a) Case C (b) Case C → Case D (c) Case D

Figure 5.7: Lower wing thickness and stiffness distributions for case C, case D and the differ-
ence between the two cases

flight conditions and mass configurations. Even if the impact of gust loads is
marginal, as in the application case used in this dissertation, it is still possible to
notice that case C, optimised with only static loads, fails when subjected to gust
loads that were not included during the optimisation. This result again shows the
importance of including dynamic loads early in the design phase.

Despite the limited impact of dynamic loads on the regional wing model sizing,
it is generally recognised that both static and dynamic loads shall be taken into
consideration since the early design phase (Kenway et al., 2014) to provide the
optimiser with all the relevant load cases. This is even more critical for composite
wing structures (Werter, 2017) that, due to the many design variables, can be
tailored for the loads taken into consideration but results less robust than metal
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(a) Case C (b) Case C → Case D (c) Case D

Figure 5.8: Front and rear spar thickness and stiffness distributions for case C, case D and
the difference between the two cases

(a) Case C (b) Case D

Figure 5.9: Most critical failure index based on mechanical constraints at continuous optimum
for cases C and D.

wing when subjected to a new set of loads not included during the wing structure
optimisation. Therefore, given the importance of including dynamic loads, the
reliability of the ESL to produce a feasible structure needs to be assessed. The
ESL method relies on a weak coupling between the gust simulations and the
optimizer. During the structural optimization process, gust loads are considered
frozen and updated at fixed intervals. This means that the optimized design
meets the frozen gust loads at each iteration, but there is no guarantee that the
design will still be valid once the gust loads are recomputed. Hence, after the
optimization process is complete, a final analysis is conducted. The optimized
structure is tested through a dynamic aeroelastic analysis, in which the strength
and buckling values are checked for possible failure.
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(a) Case D (b) Case D

Figure 5.10: Load-cases associated with the most active mechanical constraints at continuous
optimum for cases C and D.

(a) Strength constraint (b) Buckling constraints

Figure 5.11: Time history of critical strength and buckling constraints during the ten different
encountered gust for case C and case D

The results of this test are shown in Figure 5.12 where the time histories of the
most critical strength and buckling constraints from gust load are compared for
case D. The figure shows the constraints time histories from the last optimisation
iteration and the gust check step. The results show that strength constraints do
not change significantly between the last optimisation iteration and the gust check
step, less than 0.7%. On the other hand, the change in buckling constraints is more
pronounced and can reach up to 5%. This is due to the fact that while strength
constraints depend only on external loads and membrane lamination parameters,
buckling depends on external loads and both membrane (e.g. responsible for the
internal fluxes) and bending lamination parameters as in Equation (4.1). Thus,
buckling constraints are generally more affected by changes in design variables
during the ESL loop. Therefore, if a gust load-cases is critical for wing sizing due
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to buckling constraints, a different strategy should be implemented to ensure a
small change in buckling constraint values between subsequent ESL steps. Such a
strategy could imply the use of under-relaxation factors to control the evolution
of the structure during the optimisation.

(a) Strength constraint (b) Buckling constraints

Figure 5.12: Time history of critical strength and buckling constraints during the ten different
encountered gust for case D. Comparison between the ELS last load set and the gust check step.

In this section, only cases C and D have been compared. However, similar obser-
vations and conclusions can also be made when comparing cases A and B. For the
sake of brevity, this second comparison is not presented here. The results from
cases A and B and their difference can be found in Appendix B.

5.4 EFFECT OF BLENDING ON STACKING SEQUENCE

RETRIEVAL

Once the continuous optimisation described in Section 4.2 converges to an op-
timal wing design, the stiffness matrix and thickness of each section of the wing
are defined. However, in order to manufacture the wing, it is essential to retrieve
the stacking sequence associated with the obtained optimal stiffness and thick-
ness distribution. This is achieved with the stacking sequence retrieval process
described in Section 4.3.

In this section, the optimal designs from all four cases are considered. The GA
introduced in Section 4.3 is used to retrieve the stacking sequences that best
match the continuous optimum designs by minimising the root means squared
error between the optimum design and the discrete stacking sequence generated
by the GA. Unlike more sophisticated GA (Irisarri et al., 2011; Vicente, 2019),
the GA used in this dissertation does not have access to information such as
mechanical constraints values or their derivative with respect to design variables,
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so any of the results presented here could be further improved. During the GA run,
manufacturing constraints have been imposed in order to retrieve only symmetric
laminates with ply orientation limited to multiples of 15◦.

The GA stacking sequence retrieval has been performed ten times for each design,
and the averaged RMSE obtained after stacking sequence retrieval are shown
in Figure 5.13 while the normalised weight difference is presented in Table 5.1.
As seen in Section 5.2, the introduction of the blending constraints results in a
weight increment of about 5%. However, this weight increment is also followed
by a significant reduction of the RMSE between the target and the retrieved
lamination parameters during the stacking sequence retrieval. This reduction of
about 60% shows that the blending constraints help the continuous optimisation
in converging to a continuous design that is much closer to the discrete solution
and, therefore closer to a manufacturable solution.

(a) Comparison cases A (w/o blending) and C
(w/ blending).

(b) Comparison cases B (w/o blending) and D
(w/ blending).

Figure 5.13: Stacking sequence retrieval RMSE for all cases.

If all constraints are met during the continuous optimization process, retrieving
a discrete structure that does not exactly match the continuous stiffness and
thickness distributions will likely result in a wing that fails to meet all mechanical
constraints and global wing behaviour. The effect of this mismatch in the retrieval
of discrete stacking sequence is visible in Figures 5.14 and 5.15 and Table 5.2.

Table 5.2: Improvements in constraints violation after stacking sequence retrieval due to the
use of blending constraints.

Failed Elements Mean Failure Index Max Failure Index
Strength Buckling Strength Buckling Strength Buckling

Case A 312 99 1.22 1.43 2.42 2.56
Case C 144 50 1.10 1.21 1.38 1.80

Delta A-C -54% -49% -10% -15% -43% -30%

Case B 305 95 1.25 1.42 2.33 2.57
Case D 164 53 1.12 1.20 1.42 2.07

Delta B-D -46% -44% -10% -15% -39% -19%

Figures 5.14 and 5.15 present the values of the constraints for each element and
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(a) Strenght constraints. (b) Local buckling constrainrs

Figure 5.14: Strenght and buckling constraints values for the retrieved discrete structures of
case A (w/o blending) and case C (w/ blending)

(a) Strenght constraints. (b) Local buckling constrainrs

Figure 5.15: Strenght and buckling constraints values for the retrieved discrete structures of
case B (w/o blending) and case D (w/ blending)

buckling zone of the wing for all the four cases considered in this chapter after the
stacking sequence retrieval step. The total number of failed elements, together
with the mean and max failure indices for both strength and local buckling con-
straints, are summarised in Table 5.2. For the number of failed elements, the
reported number consists of the failed elements in all load-cases. This means
that if the same element fails in two different load-cases, it is counted twice. The
smaller RMSE between the target and retrieved lamination parameters resulting
from the use of the blending constraints significantly reduces the number of failed
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elements and the failure indices. In particular, failed elements are reduced by
about 44% − 54%, the mean failure indices are reduced by about 10% − 15%,
and the maximum failure indices are reduced by about 19% − 43%. Finally, the
retrieved stacking sequences of the upper and lower wing skins for case D are
shown respectively in Figures 5.16 and 5.17.

Figure 5.16: Retrieved stacking sequence for the upper wing skin - case D.

Figure 5.17: Retrieved stacking sequence for the lower wing skin - case D.

As seen in Figures 5.13, the proposed strategy and the GA tool used in this disser-
tation result in a continuous optimum that can be closely matched by a discrete
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blended stacking sequence. However, as the match does not reach 100%, some
of the mechanical constraints are no longer satisfied, see Figures 5.14 and 5.15.
To have a measure of how much the retrieved discrete stacking sequences shall
be corrected to satisfy both blending and all mechanical constraints, the follow-
ing approach is used. First, the stiffness matrices corresponding to the retrieved
stacking sequences are computed for all panels. Second, a weight minimisation
optimisation is performed with a frozen stiffness matrix but variable thicknesses,
allowing the optimiser to increase the thickness where it is needed without modi-
fying the stacking sequence. This approach is by no means intended to retrieve
the best-performing and ready-to-manufacture laminate. Still, it can provide a
basis for comparing how much extra weight shall be added to satisfy all mechan-
ical constraints. Results of this analysis are shown in Table 5.3 where the weights
obtained by this process appear under the column W feasible. As it can be seen,
while the use of blending constraints results in about 5% higher theoretical struc-
tural weight at the end of the continuous optimisation, the extra weight to be
added to make the structure feasible is lower than in the case where no blending
constraints have been used, resulting in a 1.5%− 3.7% lighter final design. These
results justify the need for considering blending early in the design phase.

Table 5.3: Weight for different optimisation problems.

Case Static Dynamic Blending WNRU [%] W [%] W feasible[%]

A Yes No No 100.00 102.16 115.42
B Yes Yes No 100.05 102.16 117.59
C Yes No Yes 105.01 107.50 113.72
D Yes Yes Yes 105.14 108.04 113.36

A different and more sophisticated GA has been used by Vicente (2019) to re-
trieve a discrete stacking sequence using the same ONERA regional wing model
and cases similar to the cases B and D used in this dissertation. The GA used in
the above-mentioned study, called pyTLO1, is capable of using mechanical con-
straint values and sensitivities to take into account constraints violation during
stacking sequence retrieval. Besides, the GA allows for the addition or removal
of plies where it sees fit. PyTLO was able to retrieve a fully feasible and blended
discrete structure with a weight increment of 5% if blending were used in the
continuous optimisation and a fully feasible and blended discrete structure with a
weight increment of 35% if blending constraints were not used in the continuous
optimisation showing the capability of the blending constraints in retrieving a
more ready-to-manufacture continuous design.

1https://gitlab.com/FGS_SSR/pytlo
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6
EFFECT OF HIGH-FIDELITY

AERODYNAMIC DRAG ON
AEROELASTIC TAILORING

This chapter applies the optimisation strategy presented in Chapter 4 to the
ONERA regional wing model introduced in Section 4.1. This second applica-
tion adds the surrogate model described in Chapter 3 and aims at performing
a trade-off study of conflicting objectives: structural weight minimisation and
aerodynamic drag minimisation.

Section 6.1 focuses on the creation of the surrogate model based on the model
reduction introduced in Chapter 3. This includes the retrieval of the constant
projection matrix, the truncation during SVD and PCA and the surrogate model
selection. Section 6.2 applies the surrogate model to two studies: Section 6.2.2
focuses on the effect of the aerodynamic constraint on the wing optimisation,
while Section 6.2.3 focuses on the validation of the results with respect to CFD.
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6.1 MODEL REDUCTION AND SURROGATE MODEL CRE-
ATION

This section applies the approximation of the wing structural displacement and
the subsequent surrogate model selection and assessment as described in Chap-
ter 3. In particular, Section 6.1.1 covers the approximation of the wing structural
displacement presented in Section 3.1.1, while Section 6.1.2 covers the surrogate
model selection from Section 3.1.2.

6.1.1 PROJECTION MATRIX VIA SINGULAR VALUE DECOMPOSITION
AND TRUNCATION

As described in Section 3.1.1, to reduce the dimensionality of the surrogate model,
the wing structural displacements are projected onto a constant projection basis.
This means that the projection basis is independent of the design variables used
during the optimisation. To retrieve such basis, the proposed approach consists
of performing a DOE of the structural design variables and extract natural modes
and aeroelastic displacements under 1g cruise condition as shown in Figure 3.1.
For this DOE, a total of 400 different wing structures are generated, and for each
structure, the first 50 modes are computed. The results are split into a training
and test set with an 80/20 ratio as suggested in Hastie et al. (2017).

A singular value decomposition is then applied to Φ, the set of natural modes from
all structures, to determine L the smallest set of orthonormal vectors required to
describe the column space of Φ. Finally, a truncation over the number of columns
of L is performed to obtain the projection basis L̃. The decision on how many
column vectors to retain is based on the displacement residual ures.

Figure 6.1a shows the mean and maximum values of the Euclidian norm of the
residual displacement ures = uE − ũE for the training and test sets. Figure 6.1b
shows the mean and maximum values of the maximum absolute residual displace-
ment. From Figure 6.1b, it is possible to notice that with 100 modes, the mean
values of all the maximum absolute difference between uE and ũE is about 1 mm,
approximately 0.006% of the wingspan. Moreover, it is possible to see that the
truncated orthogonal projection basis L̃ results in the same projection quality for
both the training and the test set, meaning that it guarantees an adequate pro-
jection basis for the whole design space. Therefore, for this application, the first
100 columns of the matrix L will be used as a projection basis and will compose
the matrix L̃, this means that nL = 100 in Equation (3.5). Further reduction is
presented in Section 3.1.2 as an input of 100 generalized coordinates is too big to
build a robust surrogate model.

Appendix C shows the first nine structural modes from Φ and the first nine modes
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(a) Variation of the Euclidian norm of the re-
sidual displacement as a function of the number
of SVD columns.

(b) Variation of the displacement error as a
function of the number of SVD columns.

Figure 6.1: Effect of the truncation after SVD on the Euclidean norm of the residual dis-
placement and the displacement error. The vertical dashed line represents the truncation at
nL = 100.

obtained after the transformation in L̃ by SVD, ordered by decremental singular
value.

6.1.2 GENERALIZED COORDINATE REDUCTION VIA PRINCIPAL COM-
PONENT ANALYSIS

As described in Section 3.1.2, to further reduce the surrogate model dimension-
ality, all inputs should be non-correlated. To achieve that and eliminate the
potential correlation between the generalised coordinates (p) obtained by pro-
jecting structural displacement on the projection matrix L̃, see Equation (3.6), a
principal component analysis is performed on the generalised coordinates.

Figure 6.2a shows the correlation between the first 50 generalized coordinates (p)
obtained when using L̃ as projection basis. The ’chessboard’ distribution of high
positive and high negative correlation, especially among the first 15 generalised
coordinates, shows the presence of highly correlated data. Figure 6.2b shows the
correlation between the new set of coordinates (ν) obtained from the PCA. It
is possible to see that all the new coordinates are non-correlated and, therefore,
they are better suited to be used in creating the surrogate model.

While the truncation of L̃ has shown, see Figure 6.1b, that 100 column vec-
tors provide adequate residual error for the whole design space, the reduction on
principal components number needs to be more extensive in order to result in
fewer required generalized coordinates. Ideally, (ν) should be as small as possible
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(a) Correlation matrix among the general-
ized coordinated (p) obtained when projecting
structural displacement over L̃.

(b) Correlation matrix among the principal
coordinated (ν) obtained after performing a
PCA.

Figure 6.2: Correlation matrices of the generalized coordinates (p) and the principal coordi-
antes (ν).

without compromising too much model accuracy.

The effect of reduction in principal components can be seen in Figures 6.4a
and 6.4b. As expected, for a number of principal components (ν) that tends
to 100, the values of Euclidean norm of the residual displacement and maximum
absolute error reach the same values obtained in Figures 6.1a and 6.1b as the
model reaches the same dimensionality as the starting model after SVD. If fewer
principal components are considered, there is an increase in both the Euclidean
norm and the maximum absolute value of the residual displacement. One way to
decide where to truncate after PCA transformation is to investigate the variance
ratio and its cumulated value in Figure 6.3. Unless there is a sudden drop in the
variance ratio, there is no general agreement on what the proper threshold level
is.

In this work, it has been decided to truncate the number of principal compon-
ents to the first 13 (nΨ = 13). This truncation level of the new generalized
coordinates results in a mean of all maximum absolute errors of less than 2.5
mm, see Figure 6.4b, approximately 0.015% of the wingspan. With nΨ selected,
Equation (3.9) can be used to compute Ψ̃ and pmean. Figures 6.5 and 6.6 show
the absolute displacement and twist error between the real displacement and the
approximated one for different values on truncation level at different wingspan
positions (i.e. 50%, 80%, 100%, winglet tip). The results for the truncation at
nΨ = 13 are summarized in Table 6.1.
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Figure 6.3: Variance ratio associated with each principal component and its cumulated value.

(a) Euclidian norm of the residual displace-
ment

(b) Maximum absolute value of the residual
displacement

Figure 6.4: Effect of the truncation after PCA on the Euclidean norm of the residual displace-
ment and on the displacement error

Appendix C shows the first nine modes from the final PCA-modes.

Table 6.1: Mean values of the maximum structural deformation approximation error for both
displacement and twist.

Span-wise position Displacement error [mm] Twist error[deg]
50% 0.445 0.0166
80% 0.342 0.0162
100% 0.506 0.0856

Winglet tip 0.852 0.0978
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(a) 50% of the wing span (b) 80% of the wing span

(c) 100% of the wing span (d) Winglet tip

Figure 6.5: Absolute error in displacement at different spanwise wing locations.

6.1.3 DESIGN OF EXPERIMENT AND MESH DEFORMATION

Once all quantities involved in the approximation of the structural displacements
are defined, it is possible to use this approximation in a Design of Experiment
and generate all structural deflections needed to create the surrogate model for
aerodynamic drag.

As per Equation (3.12), the design space for the surrogate model is composed of
the 13 principal components (νi) plus the angle of attack (α), while L̃, Ψ̃, pmean
have been obtained in Sections 6.1.1 and 6.1.2 and stored. The 400 randomly gen-
erated structures used in Section 6.1.1 to retrieve the constant projection matrix
and the principal components are here used to estimate a realistic range of the
principal coordinate to be used in the DOE. The obtained range is then doubled
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(a) 50% of the wing span (b) 80% of the wing span

(c) 100% of the wing span (d) Winglet tip

Figure 6.6: Absolute error in local wing twist at different spanwise wing location

to take into account a wider range of displacements. To evenly sample the design
space, the Halton sequence is used (Halton, 1960). This sequence is determin-
istic, but thanks to its low discrepancy property, it can sample the design space
uniformly. A total of 1000 points has been used in the DOE.

From each point of the DOE, the angle of attack is directly inserted as a parameter
inside the CFD solver elsA (Cambier et al., 2011) and the generalized coordinates
are used to compute the corresponding elastic displacement (uE) using Equa-
tion (3.11). The retrieved structural displacements are then splined, by means of
Thin Plate Spline (TPS) (Duchon, 1977), onto the aerodynamic wetted surface
using the python tool Cassiopee (Benoit et al., 2015). Then, the aerodynamic
mesh is deformed accordingly by using elsA. For each point of the DOE, a rigid
RANS computation is run with the Spalart-Allmaras turbulence model, and the
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resulting drag coefficient is stored for surrogate model selection and assessment.

6.1.4 MODEL SELECTION, VALIDATION AND PERFORMANCE

The surrogate model selection is based on the results of the K-fold cross-validation
described in Section 3.2.2 over a grid search that runs over a manually specified
subset of the hyperparameter space. Therefore, each model is evaluated via the
K-fold cross-validation, and the hyperparameters associated with the best RMSE
and regression error characteristics (REC) (Bi and Bennett, 2003) performance
are extracted.

The REC curve is defined as a cumulative distribution of the model error. It
presents on the x-axis the error and on the y-axis the percentage of data points
that are fit within the error. This curve allows to compare the range of er-
rors between different models and complements the information provided by the
RMSE. The ideal surrogate model should have 100% of the predicted outcome at
0% error tolerance. This means having a REC composed only by a horizontal line
at the ordinate value 100%. The area under the REC curve is used to compare the
REC performance between models, and in this dissertation, the area is computed
only between the RMSE of 0 and 10 drag counts.

Figure 6.7: REC curves for the different models.

Figure 6.7 shows the REC curves for the best models considered in this disserta-
tion, while Figure 6.8 compares the RMSE and the REC area from all models. As
shown in Figure 6.7, the best polynomial regression with elastic net regularisation
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(PR-ENET) model performs better than all other models. This model resulted
in 52.6% of the data points having an RMSE of less than 1 drag count (d.c.) and
82.8% of the data points having an RMSE of less than 2 d.c. From Figure 6.8, it
is possible to see that the best PR-ENET model performs better than the other
models also in terms of mean errors, having an RMSE of approximately 1.55 d.c.
The grey markers identify the performance of all the models tested with different
hyperparameters. The hyperparameters of the best performing models are shown
in Table 6.2 together with their RMSE and REC area.

Figure 6.8: Comparison RMSE and REC area for the different models.

Table 6.2: Best performing hyperparameters for the different models and their RMSE and
REC areas.

Hyperparameter Cross validation
Surrogate Model Name Value RMSE REC area

Linear Regression - - 13.63 23.45

Polynomial Regression k 2 2.03 86.56

Polynomial Regression with ENET k 3 1.55 88.31
α 1.0
λ 5.46E − 4

SVR with RBF kernel γ 1.7E − 3 1.83 86.88
ε 1.3E − 2
C 3.5E + 3

Given the results summarized in Table 6.2, the polynomial regression with ENET
is the model used to approximate aerodynamic drag. To validate the model and
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estimate its performance against unseen data, the model is tested once again
with the test set and predicted drag coefficients have an RMSE of 1.29 d.c. The
comparison between the test set and predicted outputs are shown in Figure 6.9.
The selected surrogate model, together with its hyperparameters, cross-validation
RMSE and REC and generalisation error, is shown in Table 6.3

Figure 6.9: Comparison between predicted output and true output from the test set.

Table 6.3: Surrogate model used to approximate aerodynamic drag with hyperparameter
values, K-fold cross-validation performance and generalisation error.

Surrogate Hyperparameter Cross validation Generalisation
Model Name Value RMSE REC area RMSE

Polynomial k 3 1.55 88.31 1.29
Regression α 1.0
with ENET λ 5.46E-4

6.2 MULTI-OBJECTIVE OPTIMISATION OF A REGIONAL

AIRCRAFT WING

This section presents the results of the multi-objective optimisation of the ONERA
regional wing model. Both structural weight and aerodynamic drag are considered
during the optimisation. The multi-objective optimisation is translated into a
constrained Pareto optimisation, as further explained in Section 6.2.1, to show
the effect the aerodynamic drag constraint has on structural sizing. Different
optimised structures are compared, and a final validation is performed to check
if the aerodynamic drag computed by the surrogate models agrees with the full-
order CFD analysis.
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6.2.1 OPTIMISATION STRATEGY TO OBTAIN PARETO FRONT

The optimisation strategy used in this section is presented in Section 4.2 to-
gether with the ONERA regional wing model and all the constraints considered
during the optimisation. Chapter 5 presents the first application of such optim-
isation. However, by integrating the surrogate model for aerodynamic drag, see
Section 4.2.7, it is now possible to perform a multi-objective optimisation.

The approach used in this dissertation to perform multi-objective optimisation is
the ε-constraint method (Haimes et al., 1971). While the weighted sum method (Za-
deh, 1963) combines the different objectives into a single function through weight-
ing parameters, the ε-constraint method turns a multi-objective optimisation into
single-objective optimisation by incorporating all but one objective as constraints.
A parametric variation of the constrained objective function (f2 ≤ εi) is then per-
formed to obtain a Pareto front, see Figure 6.10. Examples of a bi-objectives
optimisation written with the weighted sum and with the ε-constraint method
are presented in Equations (6.1) and (6.2), were x ∈ S represents the constraints
applied to the design variable x.

Weighted sum method

Minimize I(x) = w1f1(x) + w2f2(x) (6.1)

subject to x ∈ Syis transformed into

ε-constraint method

Minimize f1(x) (6.2)

subject to f2(x) ≤ εi
x ∈ S

In the weight sum method, the scaling of the objective functions directly impacts
the results, and thus, the weights need to be carefully selected to obtain a Pareto-
optimal solution in a desired region of the objective space or to avoid solutions
being dominated by a single objective. The ε-constraint method does not have
such a problem, and setting one of the objectives as a constraint requires little
additional effort and gives direct control over the region of the Pareto front to
investigate. Another advantage of the ε-constraint is its applicability to either
convex or non-convex problems. However, the range of objective functions needs
to be known a priori in order to properly constrain one of the functions.

In this dissertation, the ε-constraint method is implemented with the weight min-
imisation as the objective function and with the drag coefficient minimisation as
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Figure 6.10: Representation of the ε-constraint method.

the constraint objective as shown in Equations (6.3).

Minimize W (x) (6.3)

subject to CD(x) ≤ εi
x ∈ S

6.2.2 RESULTS OF THE OPTIMISATION

This study examines two different wing designs, as detailed in Table 6.4. The
first design, referred to as the unblended wing, has been optimized to account for
both static and dynamic loads, all the constraints outlined in Section 4.2, with
the exception of the blending constraints. The second design, referred to as the
blended wing, includes the blending constraints.

Table 6.4: Characteristics of for different optimisation cases.

Case Static Dynamic Drag Blending

Unblended Yes Yes Yes No
Blended Yes Yes Yes Yes

Figure 6.11 shows the Pareto fronts resulting from the bi-objective optimisations
performed on the unblended and blended wings. As the figure shows, the two
objectives considered during the optimisation (i.e. weight minimisation and drag
coefficient minimisation) are conflicting objectives, as the reduction of one results
in the increment of the other. As also shown in Section 5.2, the introduction of
the blending constraints resulted in a weight increment between 3.8% and 5.9%,
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in line with the results from Chapter 5; however, there is no significant impact on
the trend of the Pareto front.

Figure 6.11: Pareto fronts obtained from the bi-objective optimisation.

For the sake of clarity, from here until the end of the section, only the results
of the blended wing optimisation are presented. The results from the unblended
wing can be found in Appendix D.

Figures 6.12 to 6.15 show the evolution of the thickness and stiffness distribution
for different drag coefficient constraints, from CD = 188.5 d.c. to CD = 180.5
d.c., these values are the two end points of the graph in Figure 6.11.

From Figure 6.12, it is possible to see that for low structural weight and high
drag coefficient, the optimiser favours structures with higher thickness towards
the leading edge and with upper wing skin stiffness direction oriented towards the
leading edge. These design choices favour a wing wash-out behaviour that results
in lower lift distribution at the wingtip, reducing wing root bending moment and
thus lowering structural weight. To compensate for the reduction of lift at the
wingtip, the aircraft needs to fly at a higher angle of attack such that the lift equals
the weight of the aircraft. This situation increases the aircraft’s drag and reduces
its cruise performance. For a more stringent constraint on the drag coefficient,
see Figures 6.15, the optimiser favours structure with chordwise thickness more
evenly distributed and with upper wing skin stiffness distribution aligned with
the main wing axis. This results in a stiffer wing in bending with less wash-out
behaviour that results in higher wing loading and, thus structural weight but
allows the aircraft to fly at a lower angle of attack.

Figure 6.16 presents the vertical displacement and twist angle of the wing for
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(a) Upper wing skin (b) Lower wing skin (c) Wing front and rear spars

Figure 6.12: Wing thickness and stiffness distributions for blended continuous optimum with
CD ≤ 188.5 d.c.

(a) Upper wing skin (b) Lower wing skin (c) Wing front and rear spars

Figure 6.13: Wing thickness and stiffness distributions for blended continuous optimum with
CD ≤ 184.5 d.c.

various blended structures along the Pareto front. The twist angle measurement
is relative to the freestream direction, rather than the aircraft’s longitudinal axis,
thereby reflecting the different angles of attack required to trim the different wings.
This figure illustrates that the optimal solution for weight reduction results in a
more flexible wing with greater wash-out angles compared to the solution focused
on minimizing CD, which leads to a stiffer wing. Additionally, the angles of attack
under trim conditions for these solutions are depicted in Figure 6.17. Here, it is
shown that lower angles of attack are associated with heavier weights but reduced
drag coefficients.

The most active mechanical constraints and their associated load cases are presen-
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(a) Upper wing skin (b) Lower wing skin (c) Wing front and rear spars

Figure 6.14: Wing thickness and stiffness distributions for blended continuous optimum with
CD ≤ 182.5 d.c.

(a) Upper wing skin (b) Lower wing skin (c) Wing front and rear spars

Figure 6.15: Wing thickness and stiffness distributions for blended continuous optimum with
CD ≤ 180.5 d.c.

ted in Figures 6.18 and 6.19, respectively, and it can be observed that, while the
wing is mainly sized by buckling, the load cases associated with gust become
one of the predominant sizing cases with the tightening of the aerodynamic drag
constraints and the reduction in wash-out behaviour of the wing.

6.2.3 VALIDATION WITH CFD

Validation of the results is performed by comparing the Pareto front, shown in
Figure 6.11 which was constructed with the surrogate model, to full-order model
CFD results. To do so, the wing structural displacement at cruise condition is
extracted from the optimum solution and splined onto the aerodynamic mesh.
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(a) Wing vertical displacement (b) Wing twist angle with respect to airstream

Figure 6.16: Comparison between different blended structures obtained with different con-
straints on CD

Figure 6.17: Trim angles for different results optimum on the Pareto from and the corres-
ponding weight and drag coefficient.

This aerodynamic mesh is then deformed accordingly, and finally, elsA is used to
run a rigid RANS computation on the deformed mesh with the Spalart-Allmaras
turbulence model. Comparison between the results obtained with the surrogate
model and with CFD are shown in Figure 6.20 while Figure 6.21 shows the relative
and absolute errors. The absolute error varies between 0.9 and 1.6 d.c. which is
well in line with the estimated surrogate model generalisation RMSE of 1.29 d.c.
presented in Table 6.3. The surrogate model constantly overestimates the drag
coefficient for all the points on the Pareto fronts; however, the two lines have the
same trend.
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(a) CD ≤ 188.5 d.c. (b) CD ≤ 184.5 d.c. (c) CD ≤ 182.5 d.c. (d) CD ≤ 180.5 d.c.

Figure 6.18: Comparison between the most active mechanical constraints for different blended
structures obtained with different constraints on CD

(a) CD ≤ 188.5 d.c. (b) CD ≤ 184.5 d.c. (c) CD ≤ 182.5 d.c. (d) CD ≤ 180.5 d.c.

Figure 6.19: Comparison between the load cases associated with the most active mechanical
constraints for different blended structures obtained with different constraints on CD

The wing normalised lift distribution and the normalised cumulative lift distribu-
tion are presented in Figure 6.22 and show, for low wing structural weight and
high drag, how the lift distribution is shifted inboard compared to cases with low
drag. Moreover, the lower weight is visible by comparing the cumulated lift at the
wing root. These two effects are the result of wing wash-out behaviour. It should
be noted here that the normalised cumulated lift curves at the wing root do match
the trend shown in Figure 6.20 but not the correct weight ratios. The reason is
that Figure 6.20 only consider the structural masses affected by the optimisation
process while lift in Figure 6.22b also includes non-structural masses such as fuel,
payload and other concentrated masses and structural masses non affected by the
optimisation (e.g. the wing spars).
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Figure 6.20: Comparison between the Pareto front obtained with the surrogate model and the
drag coefficient obtained via CFD.

(a) Structure optimised without blending con-
straints

(b) Structure optimised with blending con-
straints

Figure 6.21: Absolute and relative error between surrogate model and CFD results.
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(a) Normalised spanwise lift distribution. (b) Normalised spanwise cumulative lift distri-
bution.

Figure 6.22: Spanwise lift distribution and its cumulate for different results optimum on the
Pareto from and the corresponding weight and drag coefficient.
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7
CONCLUSIONS AND

RECOMMENDATIONS

As outlined in Chapter 1, aeroelastic tailoring has the potential to increase aircraft
fuel efficiency by both reducing structural weight and improving aerodynamic drag
by using the directional stiffness properties of composite materials. To get the
most out of composite materials, variable stiffness composite structures are used
where the material distribution and/or stacking sequence are allowed to vary over
the structural domain. To ensure a smooth and gradual variation between the
different regions of the structural domain, blending needs to be enforced at all
levels of the optimisation process to ensure both structural continuity and an
almost ready-to-manufacture results.

The objective of this dissertation is to:

develop a preliminary wing design framework to perform aeroelastic tailoring, con-
sidering both structural weight and high fidelity aerodynamic drag while enforcing
composite blending.

The main objective of this dissertation is reached in two steps. In the first step,
an aeroelastic tailoring framework that includes both static and dynamic loads
is set up in the commercial tool Nastran. In this framework, composite material
is optimised by means of lamination parameters, and blending constraints have
been implemented during the continuous optimisation to obtain a closer “ready-
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to-manufacture” continuous design. In the second step, a surrogate model based
on a rigid CFD (Computational Fluid Dynamic) analysis has been developed
and used to include high-fidelity aerodynamic drag in the analysis and perform
multi-objective optimisations. The surrogate relies on an original reduction tech-
nique used to approximate the wing structural deflection with a limited number of
inputs. The surrogate model has been integrated into the commercial FEM soft-
ware Nastran via Direct Matrix Abstraction Program and third-party integration
software capability and applied to a realistic industrial case.

The conclusions of this dissertation can be found in Section 7.1, while Section 7.2
presents recommendations for future research activities.

7.1 CONCLUSIONS

This section contains the main conclusions of this dissertation.

7.1.1 EFFECT OF BLENDING CONSTRAINTS ON CONTINUOUS OP-
TIMUM AND STACKING SEQUENCE RETRIEVAL

A set of blending constraints in the lamination parameter space, introduced in
Section 2.4, is used to enforce blending during the gradient-based continuous
optimisation. These constraints link the number of ply-drops between adjacent
composite patches and the allowed change in lamination parameters, limiting the
change in stiffness to the change in thickness between patches.

The direct effect of using blending constraints during the continuous optimisation
is a reduction of the lamination parameters design space. This reduction in design
space results in heavier optimised structures (approximately 5%) compared to the
case where blending constraints are not implemented. However, the use of these
constraints allowed to obtain more gradual thickness and stiffness changes between
adjacent panels by removing those areas where it is impossible to find a blended
solution from the design space.

By looking at the solutions found by the optimiser, all retrieved wings had thick-
ness concentrated at the leading edge and close to the root. This solution res-
ults in a wing elastic axis located close to the leading edge and thus creates a
wing wash-out effect under bending that shifts the lift distribution towards the
wing root, resulting in a lighter wing design. The introduction of the blending
constraints does not significantly alter this thickness distribution but drastically
reduces thickness and stiffness jumps across patches.

Once an optimum design is obtained using lamination parameters, each wing
patch’s stiffness matrix and thickness are defined. However, a stacking sequence
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retrieval process is necessary to obtain the discrete stacking sequence needed to
build the structure. The stacking sequence retrieval has been performed in this
dissertation by a simple genetic algorithm that only aimed at minimising the
RMSE (Root Mean Square Error) between the lamination parameters from the
continuous optimum and the retrieved discrete stacking sequence without taking
into account any mechanical performance. The GA (Genetic Algorithm) is guide-
based and therefore could only retrieve blended stacking sequences.

The main effect of the blending constraints on the stacking sequence retrieval is
the reduction of about 60% in the lamination parameters RMSE between the dis-
crete stacking sequence and the continuous optimum, showing that the continuous
design obtained with blending constraints is much closer to the discrete solution.
In the studies performed in this dissertation, even when blending constraints have
been included, the stacking sequence retrieval step never managed to find a dis-
crete solution with zero RMSE; therefore, the retrieved structure always resulted
in some failed constraints. Nevertheless, the smaller RMSE significantly reduces
the number of failed elements (44%−54%), the mean failure indices (10%−15%)
and the maximum failure indices (19%− 43%) for both strength and buckling.

The presence of some failed constraints required some adjustments in the form
of thickness correction to satisfy all mechanical constraints. As a consequence,
while the use of blending constraints results in about 5% heavier continuous design
compared to a design obtained without blending constraints, the retrieved and
corrected stacking sequence capable of satisfying all mechanical constraints is
1.5%− 3.7% lighter. These results justify the need to account for blending in the
design phase as early as possible to reduce the final step weight penalty.

7.1.2 IMPACT OF THE DYNAMIC LOADS ON CONTINUOUS OPTIMUM

Dynamic loads have been included in the optimisations through an equivalent
static load (ESL) method. The ESL computes static loads capable of generating
the same displacement fields of the transient load at critical time steps. These
static loads are then considered independent from the design and used during the
optimisation, relying on a weak coupling between the transient simulations and
the optimiser.

The inclusion of dynamic loads did not result in a significant change in the thick-
ness and stiffness distributions for the composite regional wing model under study.
The contained impact of the gusts on the final design can be seen in the weight
difference < 0.5% but also in the limited areas of the wing associated with high
failure indices for the mechanical constraints coming from the additional dynamic
loads.

Even if gust loads have not been found to have a significant impact on the design
under consideration, it is recognised that both static and dynamic loads shall
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be taken into consideration since the early design phase (Kenway et al., 2014;
Lancelot and De Breuker, 2016; Werter, 2017) to provide the optimiser with all
the relevant load cases. To this end, the ESL has proved its capability to include
dynamic loads inside a commercial optimisation tool even without utilizing the
sensitivity of the loads.

7.1.3 EFFECT OF HIGH FIDELITY AERODYNAMIC DRAG ON AERO-
ELASTIC TAILORING

To overcome the panel methods limitation in computing only induced drag, a
surrogate model of the total drag based on rigid high-fidelity CFD analyses has
been developed and implemented into the optimisation process to perform a multi-
objective trade-off between weight and aerodynamic drag minimisation.

The first step in creating the surrogate model was to derive an approximation of
the wing elastic displacement with minimum residual error, valid for the entire
optimisation process. To achieve this, an original reduction technique based on
classical modal projection and advanced statistical techniques has been developed
in order to approximate the wing structural deflection with a limited number
of inputs, suitable for machine learning models. The resulting model, with 13
principal coordinates, is capable of approximating the wing displacements with a
maximum absolute error that averages at 2.5 mm, approximately 0.015% of the
wingspan.

In the second step, the retrieved model was used in a design of experiment (DOE)
to generate several deflected structures. These structures, together with a range
of angles of attack, have been used as inputs for the rigid CFD analyses, and
the resulting drag coefficients have been used to generate the surrogate model.
A polynomial regression with elastic net regularisation (PR-ENET) model has
been used to fit the data coming from the DOE, and the resulting model had a
generalisation RMSE of 1.29 d.c., approximately 0.7% of lowest drag obtained in
this dissertation.

The multi-objective optimisation allowed the retrieval of two Pareto fronts: one
obtained with blending constraints and one without. The presence of the blending
constraints does not impact the trend of the Pareto fronts but, as shown earlier,
results in heavier design between 3.8% and 5.9% at the end of the continuous
optimisation. The Pareto fronts show that when structural weight minimisation is
privileged, the optimiser favours structures with wash-out behaviour that reduces
the lift at the wingtip and, thus, the wing root bending moment and the structural
weight. To maintain a lift equal to the aircraft’s weight, the aircraft needs to fly
at a higher angle of attack, increasing the aerodynamic drag. If, instead, the drag
coefficient minimisation is privileged, the optimiser results in a stiffer wing with
less wash-out behaviour but allows the aircraft to fly at a lower angle of attack.
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Validation of the results against the full order model CFD shows the absolute
error in the drag coefficient CD varies between 0.9 and 1.6 d.c., in line with the
estimated generalisation RMSE of 1.29 d.c.

7.2 RECOMMENDATIONS

The framework presented in this dissertation is a step towards including structural
analysis, aerodynamic drag and composite manufacturing constraints early in
the aircraft design process. However, several aspects have not been considered;
therefore, this section presents some recommendations for further development of
the proposed framework.

From the structural modelling side, local buckling in the upper and lower wing skin
is computed via a closed formula suitable for computing buckling under biaxial
loading of a simply supported plate. The formula does not consider the effects of
shear fluxes and non-orthotropic composite bending stiffness effects (i.e. D13 and
D23 non-zero) that degrade buckling critical factors. A different formulation could
be implemented via the Rayleigh-Ritz method to overcome these limitations. In
addition, local buckling could also be extended to the front and rear spars, and
both strength and bucking could be extended to ribs and stringers.

Considering interlaminar shear stress in composite design is crucial for ensuring
the structural integrity and longevity of composite materials. Interlaminar shear
stresses can lead to delamination, a predominant failure mode in composites. Sev-
eral factors influence these stresses. On the laminate level these factors are the
Poisson’s ratio and coefficient of thermal expansion (CTE) mismatch between
adjacent plies, the number of identical contiguous plies and the number of ply
drops at the same location can exacerbate these stress concentrations. Addition-
ally, other aspects include out-of-plane loads, bending of curved sections, and
the presence of bonded joints. Addressing these factors in the design phase can
mitigate the risk of delamination, leading to more robust and reliable composite
structures.

About the use of the surrogate models to include aerodynamic drag during struc-
tural optimisation, Chapter 6 showed the capability of the proposed framework
to produce trade-off studies between weight minimisation and aerodynamic drag
minimisation. However, the study does not identify what solution leads to the
most efficient aircraft. To achieve this, the Breguet range equation could be used
and integrated into a single objective function containing both the aircraft weight
and the drag. Also, multipoint optimisation could be included to take into account
the estimate of the aircraft drag at different mass configurations and, therefore,
the different trim angles of attack and wing elastic deflections.

The surrogate model presented in this dissertation is based on the aircraft’s angle
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of attack and the wing elastic deflection. However, the approach presented in this
dissertation could be extended to include aerodynamic shape changes. For ex-
ample, by adding parameters linked to the winglet length, sweep and cant angles,
it would be possible to optimise both wing structure and winglet shape to achieve
a certain target in weight and drag. In case the simple methods considered in this
dissertation would not produce sufficiently accurate results, more sophisticated
models like Artificial Neural Network (ANN) and Kriging should be considered
or even Mixtures of Experts (MoE) which would allow to consider multi-regime
behaviour in one sole equation.

Finally, by including both winglet shape optimisation and multipoint in the struc-
tural optimisation, it would be possible to investigate both a single solution for
the different flight regimes (e.g. cruise, climb and descent) or, by assuming some
winglet morphing capabilities, unique solutions for the different flight phases.

Concerning the tools adopted during the optimisations, the GA used in this work
for stacking sequence retrieval had access only to the target lamination parameters
from the continuous optimum and the discrete stacking sequences and had the sole
objective of minimising the RMSE between the two sets of lamination parameters.
By providing the GA with additional information, such as critical constraint values
and their sensitivity with respect to lamination parameters from the continuous
optimisation (like in Irisarri et al. (2011) and Vicente (2019)), it will be possible
to take into account constraints violation during stacking sequence retrieval. This
would allow the provision of discrete stacking sequences that satisfy all constraints
and thus be one step closer to delivering a “ready-to-manufacture” design.
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G. Soremekun, Z. Gürdal, C. Kassapoglou, and D. Toni. Stacking sequence blend-
ing of multiple composite laminates using genetic algorithms. Composite Struc-
tures, 56(1):53 – 62, 2002. ISSN 0263-8223. doi: http://dx.doi.org/10.1016/
S0263-8223(01)00185-4.

121

http://dx.doi.org/10.1007/s00158-008-0229-4
https://doi.org/10.1007/s00158-005-0528-y
http://www.sciencedirect.com/science/article/pii/S0263822308000135
http://www.sciencedirect.com/science/article/pii/S0263822308000135
https://doi.org/10.1023/B:STCO.0000035301.49549.88
http://dx.doi.org/10.2514/1.30015


BIBLIOGRAPHY

B. K. Stanford and C. V. Jutte. Comparison of curvilinear stiffeners and tow
steered composites for aeroelastic tailoring of aircraft wings. Computers &
Structures, 183:48 – 60, 2017. ISSN 0045-7949. doi: https://doi.org/10.
1016/j.compstruc.2017.01.010. URL http://www.sciencedirect.com/
science/article/pii/S0045794916305569.

B. K. Stanford, C. V. Jutte, and K. Chauncey Wu. Aeroelastic benefits of
tow steering for composite plates. Computers & Structures, 118:416 – 422,
2014. ISSN 0263-8223. doi: https://doi.org/10.1016/j.compstruct.2014.08.
007. URL http://www.sciencedirect.com/science/article/pii/
S0263822314003973.

J. Stegmann and E. Lund. Discrete material optimization of general compos-
ite shell structures. International Journal for Numerical Methods in En-
gineering, 62(14):2009–2027, 2005. doi: 10.1002/nme.1259. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1002/nme.1259.

O. Stodieck, J. E. Cooper, P. M. Weaver, and P. Kealy. Improved aeroelas-
tic tailoring using tow-steered composites. Composite Structures, 106:703 –
715, 2013. ISSN 0263-8223. doi: https://doi.org/10.1016/j.compstruct.2013.07.
023. URL http://www.sciencedirect.com/science/article/pii/
S0263822313003462.

O. Stodieck, J. E. Cooper, P. M. Weaver, and P. Kealy. Aeroelastic tailoring
of a representative wing box using tow-steered composites. AIAA Journal, 55
(4):1425–1439, 2017. doi: 10.2514/1.J055364. URL https://doi.org/10.
2514/1.J055364.

E. Torenbeek. Advanced Aircraft Design: Conceptual Design, Analysis and Op-
timization of Subsonic Civil Airplanes. Wiley, West Sussex, UK, 2013.

S. W. Tsai and H. T. Hahn. Introduction to composite materials. Technomic
Publishing Co, 1980.

S. W. Tsai and N. J. Pagano. Invariant properties of composite materials. Ft.
Belvoir Defense Technical Information Center, 1968.

US Department of Defense. MIL-HDBK-17-3F. Military handbook, polymer mat-
rix composites. US Department of Defense, 2002.

J. van Campen, O. Seresta, M. M. Abdalla, and Z. Gürdal. General blending
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A
ADDITIONAL COMPATIBILITY

CONSTRAINTS

As mentioned in Section 2.3.2, Raju et al. (2014) and Wu et al. (2013) derived
the most complete closed formula that defines the feasible design space for both
in-plane and out-of-plane lamination parameters.
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B
OPTIMISATION RESULTS FROM

CHAPTER 5

B.1 CASE A

B.1.1 THICKNESS AND STIFFNESS DISTRIBUTION

(a) Upper wing skin (b) Lower wing skin (c) Wing front and rear spars

Figure B.1: Wing thickness and stiffness distributions.
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B. OPTIMISATION RESULTS FROM CHAPTER 5

B.1.2 MECHANICAL CONSTRAINTS FAILURE INDEX

(a) Upper Skin (b) Lower Skin (c) Front Spar (d) Rear Spar

Figure B.2: Failure indices of the strength constraints at continuous optimum for different
load cases.
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B

B.1. CASE A

(a) Upper Skin (b) Lower Skin

Figure B.3: Failure indices of the buckling constraints at continuous optimum for different
load cases.

B.1.3 CRITICAL MECHANICAL CONSTRAINTS AND LOAD CASES

Figure B.4: Load-cases as-
sociated with the most active
mechanical costraints at con-
tinuous optimum.

Figure B.5: Most critical fail-
ure index based on mechanical
constraints at continuous op-
timum.
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B. OPTIMISATION RESULTS FROM CHAPTER 5

B.2 CASE B

B.2.1 THICKNESS AND STIFFNESS DISTRIBUTION

(a) Upper wing skin (b) Lower wing skin (c) Wing front and rear spars

Figure B.6: Wing thickness and stiffness distributionss.
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B.2. CASE B

B.2.2 MECHANICAL CONSTRAINTS FAILURE INDEX

(a) Upper Skin (b) Lower Skin

Figure B.7: Failure indices of the strength constraints at continuous optimum.
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B. OPTIMISATION RESULTS FROM CHAPTER 5

(a) Front Spar (b) Rear Spar

Figure B.8: Failure indices of the strength constraints at continuous optimum.

B.2.3 CRITICAL MECHANICAL CONSTRAINTS AND LOAD CASES
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B

B.2. CASE B

(a) Upper Skin (b) Lower Skin

Figure B.9: Failure indices of the buckling constraints at continuous optimum.

Figure B.10: Load-cases as-
sociated with the most active
mechanical costraints at con-
tinuous optimum.

Figure B.11: Most critical
failure index based on mech-
anical constraints at continuous
optimum.
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B. OPTIMISATION RESULTS FROM CHAPTER 5

B.3 CASE C

B.3.1 THICKNESS AND STIFFNESS DISTRIBUTION

(a) Upper wing skin (b) Lower wing skin (c) Wing front and rear spars

Figure B.12: Wing thickness and stiffness distributions.
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B

B.3. CASE C

B.3.2 MECHANICAL CONSTRAINTS FAILURE INDEX

(a) Upper Skin (b) Lower Skin (c) Front Spar (d) Rear Spar

Figure B.13: Failure indices of the strength constraints at continuous optimum.
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B. OPTIMISATION RESULTS FROM CHAPTER 5

(a) Upper Skin (b) Lower Skin

Figure B.14: Failure indices of the buckling constraints at continuous optimum..

B.3.3 CRITICAL MECHANICAL CONSTRAINTS AND LOAD CASES

Figure B.15: Load-cases as-
sociated with the most active
mechanical costraints at con-
tinuous optimum.

Figure B.16: Most critical
failure index based on mech-
anical constraints at continuous
optimum.
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B.4. CASE D

B.4 CASE D

B.4.1 THICKNESS AND STIFFNESS DISTRIBUTION

(a) Upper wing skin (b) Lower wing skin (c) Wing front and rear spars

Figure B.17: Wing thickness and stiffness distributions.
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B. OPTIMISATION RESULTS FROM CHAPTER 5

B.4.2 MECHANICAL CONSTRAINTS FAILURE INDEX

(a) Upper Skin (b) Lower Skin

Figure B.18: Failure indices of the strength constraints at continuous optimum.
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B.4. CASE D

(a) Front Spar (b) Rear Spar

Figure B.19: Failure indices of the strength constraints at continuous optimum.

B.4.3 CRITICAL MECHANICAL CONSTRAINTS AND LOAD CASES
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B. OPTIMISATION RESULTS FROM CHAPTER 5

(a) Upper Skin (b) Lower Skin

Figure B.20: Failure indices of the buckling constraints at continuous optimum.

Figure B.21: Load-cases as-
sociated with the most active
mechanical costraints at con-
tinuous optimum.

Figure B.22: Most critical
failure index based on mech-
anical constraints at continuous
optimum.
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B.5. COMPARISON: CASE A - CASE B

B.5 COMPARISON: CASE A - CASE B

B.5.1 THICKNESS AND STIFFNESS DISTRIBUTION

(a) Upper wing skin (b) Lower wing skin (c) Wing front and rear spars

Figure B.23: Comparison Case A and Case B.

B.6 COMPARISON: CASE A - CASE C

B.6.1 THICKNESS AND STIFFNESS DISTRIBUTION

(a) Upper wing skin (b) Lower wing skin (c) Wing front and rear spars

Figure B.24: Comparison Case A and Case C.
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B. OPTIMISATION RESULTS FROM CHAPTER 5

B.7 COMPARISON: CASE B - CASE D

B.7.1 THICKNESS AND STIFFNESS DISTRIBUTION

(a) Upper wing skin (b) Lower wing skin (c) Wing front and rear spars

Figure B.25: Comparison Case B and Case D.

B.8 COMPARISON: CASE C - CASE D

B.8.1 THICKNESS AND STIFFNESS DISTRIBUTION

(a) Upper wing skin (b) Lower wing skin (c) Wing front and rear spars

Figure B.26: Comparison Case C and Case D.
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C. STRUCTURAL MODES EVOLUTION

The first nine structural modes from Φ in Figures C.1.
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Figure C.1: First nine structural modes from Φ.
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The first nine modes after the transformation in L̃ via SVD are shown in Fig-
ure C.2 and are ordered by decremental singular value order.
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Figure C.2: First nine structural modes from L̃ ordered by decremental singular value order.
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C. STRUCTURAL MODES EVOLUTION

The first nine structural modes after PCA reduction ordered by decremental sin-
gular value order are shown in Figures C.3.
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Figure C.3: First nine structural modes after PCA reduction ordered by decremental singular
value order.
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D. OPTIMISATION RESULTS FROM CHAPTER 6

D.1 BLENDED WING

D.1.1 CD ≤ 180.5

D.1.1.1 THICKNESS AND STIFFNESS DISTRIBUTION

(a) Upper wing skin (b) Lower wing skin (c) Wing front and rear spars

Figure D.1: Wing thickness and stiffness distributions.

D.1.1.2 CRITICAL MECHANICAL CONSTRAINTS AND LOAD CASES

(a) Load-cases associated with
the most active mechanical
costraints at continuous op-
timum.

(b) Most critical failure in-
dex based on mechanical con-
straints at continuous optimum.
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D.1. BLENDED WING

D.1.2 CD ≤ 182.5

D.1.2.1 THICKNESS AND STIFFNESS DISTRIBUTION

(a) Upper wing skin (b) Lower wing skin (c) Wing front and rear spars

Figure D.3: Wing thickness and stiffness distributions.

D.1.2.2 CRITICAL MECHANICAL CONSTRAINTS AND LOAD CASES

(a) Load-cases associated with
the most active mechanical
costraints at continuous op-
timum.

(b) Most critical failure in-
dex based on mechanical con-
straints at continuous optimum.
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D. OPTIMISATION RESULTS FROM CHAPTER 6

D.1.3 CD ≤ 184.5

D.1.3.1 THICKNESS AND STIFFNESS DISTRIBUTION

(a) Upper wing skin (b) Lower wing skin (c) Wing front and rear spars

Figure D.5: Wing thickness and stiffness distributions.

D.1.3.2 CRITICAL MECHANICAL CONSTRAINTS AND LOAD CASES

(a) Load-cases associated with
the most active mechanical
costraints at continuous op-
timum.

(b) Most critical failure in-
dex based on mechanical con-
straints at continuous optimum.
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D.1. BLENDED WING

D.1.4 CD ≤ 188.5

D.1.4.1 THICKNESS AND STIFFNESS DISTRIBUTION

(a) Upper wing skin (b) Lower wing skin (c) Wing front and rear spars

Figure D.7: Wing thickness and stiffness distributions.

D.1.4.2 CRITICAL MECHANICAL CONSTRAINTS AND LOAD CASES

(a) Load-cases associated with
the most active mechanical
costraints at continuous op-
timum.

(b) Most critical failure in-
dex based on mechanical con-
straints at continuous optimum.
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D. OPTIMISATION RESULTS FROM CHAPTER 6

D.1.5 SPANWISE VERTICAL DISPLACEMENT AND TWIST

(a) Wing vertical displacement (b) Wing twist angle with respect to airstream

Figure D.9: Comparison between optimum obtained with blending constraints and with dif-
ferent contraints on CD
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D.2. UNBLENDED WING

D.2 UNBLENDED WING

D.2.1 CD ≤ 180.5

D.2.1.1 THICKNESS AND STIFFNESS DISTRIBUTION

(a) Upper wing skin (b) Lower wing skin (c) Wing front and rear spars

Figure D.10: Wing thickness and stiffness distributions.

D.2.1.2 CRITICAL MECHANICAL CONSTRAINTS AND LOAD CASES

(a) Load-cases associated with
the most active mechanical
costraints at continuous op-
timum.

(b) Most critical failure in-
dex based on mechanical con-
straints at continuous optimum.
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D. OPTIMISATION RESULTS FROM CHAPTER 6

D.2.2 CD ≤ 182.5

D.2.2.1 THICKNESS AND STIFFNESS DISTRIBUTION

(a) Upper wing skin (b) Lower wing skin (c) Wing front and rear spars

Figure D.12: Wing thickness and stiffness distributions.

D.2.2.2 CRITICAL MECHANICAL CONSTRAINTS AND LOAD CASES

(a) Load-cases associated with
the most active mechanical
costraints at continuous op-
timum.

(b) Most critical failure in-
dex based on mechanical con-
straints at continuous optimum.
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D.2. UNBLENDED WING

D.2.3 CD ≤ 184.5

D.2.3.1 THICKNESS AND STIFFNESS DISTRIBUTION

(a) Upper wing skin (b) Lower wing skin (c) Wing front and rear spars

Figure D.14: Wing thickness and stiffness distributions.

D.2.3.2 CRITICAL MECHANICAL CONSTRAINTS AND LOAD CASES

(a) Load-cases associated with
the most active mechanical
costraints at continuous op-
timum.

(b) Most critical failure in-
dex based on mechanical con-
straints at continuous optimum.
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D. OPTIMISATION RESULTS FROM CHAPTER 6

D.2.4 CD ≤ 188.5

D.2.4.1 THICKNESS AND STIFFNESS DISTRIBUTION

(a) Upper wing skin (b) Lower wing skin (c) Wing front and rear spars

Figure D.16: Wing thickness and stiffness distributions.

D.2.4.2 CRITICAL MECHANICAL CONSTRAINTS AND LOAD CASES

(a) Load-cases associated with
the most active mechanical
costraints at continuous op-
timum.

(b) Most critical failure in-
dex based on mechanical con-
straints at continuous optimum.
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D.2. UNBLENDED WING

D.2.5 SPANWISE VERTICAL DISPLACEMENT AND TWIST

(a) Wing vertical displacement (b) Wing twist angle with respect to airstream

Figure D.18: Comparison between optimum obtained without blending constraints and with
different contraints on CD
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