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Abstract

The railway industry has the potential to make a strong contribution to the achievement of various sustainable development goals, by an
expansion of its role in the transportation system of different countries. To realize this, complex technological and societal challenges
are to be addressed, along with the development of suitable state-of-the-art methodologies fully tailored to the particular needs of the
wide variety of railway infrastructure types and conditions. Artificial intelligence (AI) methods have been increasingly and successfully
applied to solve practical problems in the railway infrastructure domain for over two decades. This paper proposes a review of the
development of AI methods in railway infrastructure. First, we present a survey limited to selected journal papers published between
2010 and 2022. Bibliographical statistics are obtained, showing the increasing number of contributions in this field. Then, we select
key AI methodologies and discuss their applications in the railway infrastructure. Next, AI methods for key railway components are
analyzed. Finally, current challenges and future opportunities are discussed.
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1. Introduction
Industrial sectors have been increasingly limiting fossil fuel con-
sumption. However, transport sectors still struggle to significantly
reduce CO2 emissions. With the current technological progress,
the road sector cannot cope with the challenge despite the envi-
ronmental standards and the development and steady improve-
ment of alternative fuel vehicles (Ćetković et al. 2020). Increasing
rail usage in the modal share between rail and road transport is
envisioned as an important strategy when developing greener and
more sustainable societies (Guo et al. 2020). In some countries,
this can be achieved by equipping more regions with new railway
networks and infrastructure. In other countries where railway
infrastructure is already densely used, increasing the effective-
ness of their operations, improving the level of user satisfaction,
and making optimal use of resources are major challenges.

By 2030, rail sectors in Europe aim to reduce CO2 emissions for
passenger and freight transport by 30% from 1990 levels. However,
more regions are equipped with railway tracks and there is more
intense use of the infrastructure, which imply higher degradation
rates and a higher likelihood of disruptions for rail users. As
trains run on the tracks, the quality of the railway infrastructure
gradually deteriorates over time. When this deterioration is not
kept under control, it can cause disastrous events, such as broken
rails, train derailment, etc. (Martey and Attoh-Okine 2019). Thus,

the railway infrastructure must be kept in acceptable conditions
under all sorts of different scenarios of degradation mechanisms,
taking into consideration the most updated knowledge about
the particular types of failures in all the components, and the
consequences of these failures. Further, in highly used networks,
disruption might affect many passenger and freight transports.
Thus, it is crucial not only to prevent safety issues but also to
make sure rail users continue to trust the reliability of services
so that they do not shift to other modes of transport (Chang et al.
2019).

Generally, railway assets can be grouped into two main types:
the infrastructure and the rolling stock. Railway infrastructure
includes tracks, tunnels, bridges, and catenary systems. Rolling
stock refers to assets that can move on a railway network,
and examples are locomotives, passenger coaches, and freight
cars. Common problems affecting these assets can include
failures that originate in the usage of infrastructure components
(such as rail defects), failures in the rolling stock (such as door
opening failures), and events due to exogenous factors such as
third parties (e.g., collisions with people at stations and non-
authorized/trespassing people on railway properties) and weather
conditions (such as flooding). The railway industry has been
dealing with these problems mostly by relying on traditional
approaches. Still, there have been reports of some examples
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from the industry about the use of artificial intelligence (AI) in
railway applications. To mention just some, there are monitoring
systems of the infrastructure powered by AI to monitor the status
of bridges, tunnels, switches, and energy systems. Other reported
examples of sensing technologies enhanced by AI include line-
scan sensors and cameras from passenger trains, and fiber optic
acoustic sensors to detect rail and wheel defects, trespassers,
and level crossings. AI-based algorithms relying on wayside train
monitoring systems have been developed for damage detection
of pantographs, wheels, and brake blocks. Furthermore, AI has
also been exploited for robust rail logistic planning. However,
the use of AI in railway environments is not yet standard. This
indicates that further developments are needed before reaching
a maturity level to be ready to implement reliable solutions
under a large variety of infrastructures. While the current
developments in the industry are interesting to analyze as they
give indications on the acceptance level of AI solutions, in this
paper, we focus on the advancements in AI solutions reported
in journal publications. Our target is to provide an overview of
developments and to discuss gaps and future opportunities that
can support understanding of the use of AI technologies in railway
infrastructure.

Our review primarily focuses on publications dealing with
four selected groups of railway infrastructures as illustrated in
Figure 1. The selected groups comprise railway tracks (rails, welds,
joints, switches, fastening systems, ballast, crossings, and sleep-
ers), railway catenary (catenary and pantograph), railway civil
structures (tunnels, bridges, viaducts, and culverts), and railway
substructures (subgrade, soil, and embankments). The reason is
that these infrastructures form the foundation for safety, qual-
ity and reliability of services, and long-term costs. Moreover, by
proactively identifying and addressing degradation-related fail-
ures, risks can be minimized and a safe railway system can be
ensured. Therefore, the focus is on failures arising from degra-
dation and usage. Rolling stock, railway signaling, and operations
are excluded from our review. Readers interested in other railway
topics are referred to other recent reviews such as (Ghofrani et al.
2018; Besinović et al. 2022; Peinado Gonzalo et al. 2022; Tang
et al. 2022).

Railway infrastructure is a highly complex distributed param-
eter system. In other words, the dynamic characteristics of the
railway infrastructure change over time and space. The changes
over time refer mainly to the consequences of its continuous
usage, degradation processes, and human interventions such as
maintenance. The changes over space refer to the fact that gov-
erning dynamics are different for each location; for instance,
railway tracks at bridges, tunnels, stations, and curves behave in a
different way to straight tracks. Although the railway infrastruc-
ture can also be seen as a line structure with some components
presenting a sort of local periodicity (such as the sleeper spacing),
the substructure and structure track parameters are unique at
each location. Additionally, the railway infrastructure is subject
to various sources of stochasticity that can affect its functionality,
such as weather conditions. Thus, the railway infrastructure is a
dynamic, continuous, distributed, and stochastic system that is
fundamentally challenging, and from where the need to develop
new intelligent methods that can be tailored to practical solutions
at a local level naturally appears.

The optimal use of railway infrastructure requires holistic
approaches to its management that explicitly include the com-
plex interlinks among infrastructure, society, and the environ-
ment. Railway infrastructure research is inherently multidisci-
plinary. Answering fundamental questions in this field requires

not only knowledge of its physical responses (structural, mechan-
ical, etc.). We also need to understand the limitations of selected
mathematical modeling approaches, the capabilities of state-of-
the-art measurement technologies (vibration, images, laser, etc.),
the maintenance technology available, the behavior of stochastic
variables (weather, reliability, etc.), the inclusion of the human
aspects regarding users and workers, and the complex interlinks
between railway governance and contracts, etc. It appears that
the problems associated with railway infrastructure are unique to
different places and times. This opens up many opportunities to
develop a variety of new intelligent solutions to capture the essen-
tial characteristics of the infrastructure and to provide solutions
that traditional methods cannot truly provide.

Health condition monitoring and maintenance play a vital role
in ensuring the safety, availability, and reliability of service simul-
taneously and in prolonging the life span of the infrastructure.
Early detection and preventive maintenance of possible failures
before they occur have shown great potential for cost savings
(Su et al. 2017; Núñez et al. 2019). The continuous monitoring of
critical components has not only increased the level of safety but
drastically increased the availability of the infrastructure, as early
warning systems allow the inclusion of repairs or replacement of
these components during routine maintenance slots. Therefore,
the railway industry and researchers from various countries have
been developing integrated and robust approaches to continu-
ously monitor and maintain railway infrastructures (Bukhsh et al.
2019; Khajehei et al. 2019; Zhang 2019; Sangiorgio et al. 2020;
Long et al. 2022). With the developments in sensors and informa-
tion technology, health conditions in railway infrastructure are
monitored continually by using sensors installed in the rolling
stock (e.g., rail and pantograph monitoring), in areas adjacent
to the track (e.g., switch engine monitoring), and crowd sensing
(e.g., with mobile phones that measure vibrations, temperature,
pressure, etc.). Monitoring of railway systems has the potential
to support the management of their performance. Yet, how to
respond to the daily detection of faults poses another problem for
inframanagers due to limited resources, short closure times, lack
of alternative routes, and the standards that rely on time-based
inspection. Additionally, databases constructed from continuous
data monitoring become larger over time, which poses a challenge
for their transmission, storage, and analytics. For instance, when
using onboard axle box acceleration systems and laser Doppler
vibrometers, an open challenge is how to migrate such high-
frequency sampling data on to any cloud and database due to the
limitation of the existing communication bandwidth. To reduce
the amount of data, data pre-processing and analytics on-premise
can be an option. Further, new standards are still required when
dealing with multiple measurement sources and new sensing
technologies (e.g., satellite data). All in all, the railway industry
and academia have been working to address these challenging
issues in which further cooperation can unlock the best solutions
and overcome these barriers to the adoption of AI.

Thus, advanced railway networks, in essence, require standard-
ization and governance for big data management and analytics to
monitor the infrastructure condition and control life-cycle costs
adequately (Ghofrani et al. 2018; McMahon et al. 2020). In the liter-
ature, sophisticated data management for data storage and ana-
lytics has been proven to enable the development of better railway
maintenance solutions. This is because big data analytics enables
asset managers to switch from reactive maintenance towards
predictive maintenance (Cheng et al. 2020). The literature on
data analytics (Tokody and Flammini 2017; Pokusaev et al. 2019;
Arslan and Tiryaki 2020) shows that AI is increasingly popular in
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Figure 1. Illustration of the four selected groups of railway infrastructures considered in this work: track system, catenary system, civil structures, and
track substructures.

various domains as it allows automation in decision-support tools
by linking data with decisions and enabling asset-specific and
whole system behavior analyses. This paper focuses on AI applica-
tions in railway infrastructure, including technologies, methods,
and models in AI that have been published concerning moni-
toring, diagnosis, prognosis, detection, classification, and main-
tenance. The paper is structured as follows. In the next section,
we conduct a bibliographical analysis to identify the most used
and promising AI methodologies in the field of railway infrastruc-
ture. Then, we discuss how these methods have been adapted to
railway environments for tackling different challenges. Given the
dense literature, we describe a few selected characteristic exam-
ples of these AI methods and railway applications. Finally, we
discuss open challenges and opportunities for the development
of AI in the asset management of railway infrastructure.

2. Bibliographical analysis
Artificial intelligence (AI) refers to developing computer systems
and machines that can replicate or simulate human cognitive
abilities. AI involves the creation of algorithms and models that
allow computer systems and machines to understand natural
language, to recognize patterns, to solve problems, to make deci-
sions, and to adapt to new situations. AI has been deployed in
railway applications for decades. Some of the first works reported
in the literature of railways that explicitly mention AI in the
1980s are in the fields of diesel–electric locomotives using expert
systems (Johnson and Bonissone 1983) and derailment analysis
(Hoag 1985). For neural networks, the first applications reported
in the early 1990s were in traffic management (Gilmore et al.
1992) and rail defects using ultrasonic images (McKenzie and
Alder 1993), among others. Nowadays, AI plays an essential role in
analyzing the characteristics of complex railway measurements

and in identifying relevant patterns amongst an abundance of
information. Many intelligent systems relying on AI technologies
have been developed and integrated into railway infrastructure
to tackle problems arising from its usage and natural degradation
mechanisms. To select these topics, a first broad bibliographical
search was conducted from where the more prominent fields and
recent trends were selected, including neural networks, meta-
heuristics, regression (supervised), probabilistic graphical models
(PGMs), fuzzy logic, clustering (unsupervised learning), and trans-
fer learning.

The bibliographical search was conducted over papers pub-
lished within the context of AI and railway infrastructure. We
consider the track system, catenary–pantograph system, civil
structures, and substructure. Papers about rolling stock, railway
signaling, and operations are excluded from the analysis. The
review aims to look at papers in scientific journals, including both
articles and reviews. The publication years considered are from
2010 to 2022. Only papers in English and the engineering subject
area are included (which will leave out papers at the interfaces
with other domains). Scopus is chosen as the citation database,
and the precise search terms are considered in conjunction with
the generic words to capture most documents that we are inter-
ested in. The search terms are incorporated into three groups as
presented in Table 1.

2.1 Paper-retrieval process
The search is restricted to fields in the article title, abstract, and
keywords. As shown in Table 1, the wildcard “asterisk” is employed
to include plurals and spelling variants. Likewise, double quote
marks are used to search for vague phrases in which symbols
are ignored. To search for papers using AI methodologies in rail-
way infrastructure, the associated search terms from Group 1,
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Table 1. Search terms for retrieving publications.

Group Related area Identified search terms

1 Railway infrastructure rail∗ AND (catenary OR pantograph OR ”rail” OR track∗ OR ballast∗ OR weld∗ OR joint∗ OR
switch∗ OR turnout∗ OR fasten∗ OR ”level crossing∗” OR sleeper∗ OR tunnel∗ OR bridge∗ OR
viaduct∗ OR culvert∗ OR subgrade∗ OR substructure OR soil OR embankment)

2 Railway application monitoring OR diagnos∗ OR prognos∗ OR detect∗ OR predict∗ OR classif∗ OR maintenance
3 AI ”computational intelligen∗” OR ”artificial intelligen∗” OR ”big data” OR ”machine learning”

OR ”deep learning” OR ”computer vision” OR probabilistic∗ OR bayesian OR markov OR
”belief network” OR ”transfer learning” OR ”domain adaptation” OR clustering OR k-mean
OR regression OR ”neural network” OR convolution∗ OR encoder OR heuristic∗ OR fuzzy
”particle swarm” OR ”genetic algorithm” OR evolution∗

Table 2. Inclusion criteria.

Criterion Description

1 Only papers in track systems, catenary system,
civil structures, and substructures.

2 Only papers in monitoring and maintenance.
3 Only papers that focus on using AI.
4 Papers in railway signalling, rolling stock,

and operations are excluded.

Table 3. Summary of the search results.

Group Related area Number of papers

1 & 2 Railway infrastructure 17,393
3 AI 4,284,974
1 & 2 & 3 AI in railway infrastructure 3,465

Group 2, and Group 3 are all joined with the “AND” operator.
Once the primary search is done, the results are manually verified
to check whether some of the most well-known publications in
the different fields are included in their respective lists. Next,
the potential search results are assessed by considering criteria
described in Table 2. Upon completing the literature retrieval pro-
cess, the papers are analyzed and grouped based on the aims and
approaches of this review. Table 3 summarizes the search results
of each related area. We understand particular papers might have
been excluded from the search engine, or some unrelated papers
that mention the keywords in the abstract might fall into the
selection. With our manual check, we found that the number
of these cases was minimal, and the trends are representative
enough to draw some general analysis.

2.2 Bibliographical analysis
The quantitative analysis assisted in identifying 3,465 papers.
These are illustrated in Figure 2 in which an overview is given
of research trends observed from the number of publications by
year from 2010 to 2022. As expected, research with AI applications
in this field has gained popularity over the last twelve years.
Between 2010 and 2017, the number of publications per year rose
slightly from 95 papers to 208 papers. The number of publications
expanded significantly after 2017. This made the overall number
of publications after 2017 approximately two times greater than
that between 2010 and 2017. This increasing trend over the past
five years indicated the need and demand for AI technology
developments in the railway infrastructure domain.

Next, we give an overview of the current progress of AI appli-
cations in rail infrastructure based on the AI methodologies elab-
orated in the previous section. Figure 3 illustrates the utilization

Figure 2. AI research trend in railway infrastructure.

Figure 3. Utilization trend of each AI methodology for railway
infrastructure.

trend of each AI methodology for railway infrastructure. It can
be seen that the four most commonly used methods in rail
infrastructure are neural networks, metaheuristics, PGMs, and
regression. The total amount of publications using the neural-
network-based method was the biggest.

A breakdown of the relative utilization of the AI categories
over the years is also shown in Figure 3. It can be seen that
the utilization trend of the neural-network-based method shot
up in 2017. This made the neural-network-based method the
most deployed in 2022. For other AI categories, their utilization
trend progressed similarly over the past decade. However, a slight
drop was observed in the research trend using fuzzy-based meth-
ods. Note that no publications about railway infrastructure that
employ transfer learning have been found before 2018. Its upsurge
of interest was noticed after 2018.

An overview of the AI research share for railway infrastructure
systems is presented in Figure 4. AI has been employed the most
in track systems, whereas less attention has been paid to catenary
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Figure 4. An overview of the AI research share across railway
infrastructure systems.

Figure 5. The proportion of AI research papers for each component.
Note that one research paper can include multiple railway components.

and substructure systems. To obtain insight into the share of
AI in railway infrastructure research, a comparison between the
number of publications using AI and without AI is exhibited in
Figure 5 for each selected railway component. To retrieve the rel-
evant AI papers for each component, the associated search terms
from the selected railway component from Group 1, all railway
applications from Group 2, and all AI methodologies from Group
3, shown in Table 1, are all joined with the “AND” operator. In
this figure, the analysis of viaducts and culverts is included with
bridges, the analysis of substructures includes soil, and wheels are
included due to wheel–rail dynamics. Even though rails, wheels,
and bridges are the top three components that have received
the highest attention in research, their proportion of AI research
papers is less than that of catenary and pantographs. Substruc-
tures and embankments have received the least attention in
research, and their proportion of AI research is also lower than the
other components. Further discussion on the underlying reasons
that prevent the use of AI methodologies for these components
will be given later.

Figure 6 presents the distribution of AI methodologies across
the four groups of railway infrastructure. Unlike the retrieval pro-
cess of Figure 5, the search terms for Figure 6 were more restricted
to the selected AI methodology. Without including general terms
of AI, this resulted in a number difference between Figure 5 and
Figure 6 due to particular papers being excluded from the search
engine. However, the analysis is to draw some general trends.
Based on this, some insightful findings are drawn.

1. For all four groups of railway infrastructures, neural net-
works, metaheuristics, PGMs, and regressions are the most
commonly used methodologies.

2. Among the four groups, neural networks dominate the cate-
nary system with a share of 55%. The track system follows
with a 34% share, while civil structures and substructures

account for 27% and 22%, respectively. In contrast, transfer
learning exhibits limited applicability, constituting only a 1%
share in both the track system and civil structures.

3. All the selected AI methodologies have been adopted to
tackle issues in railway track system and civil structures.

4. Not all the selected AI methodologies have been adopted to
tackle issues in every component of the railway track system,
catenary system, and substructures. There was no deploy-
ment of transfer learning in some components of the track
system, the catenary system, and substructures, whereas
transfer learning has been applied to civil structures. Railway
welds and joints are examples where researchers have not
used transfer learning for the track system.

5. Even though regression was widely used amongst other rail-
way components, there was no publication (to the best of our
knowledge) about those methods in research for fasteners.
Likewise, no research was conducted on fasteners using
fuzzy logic.

6. There were limited numbers of AI methodologies applied to
embankments. To the best of our knowledge, AI research
was conducted using only methodologies from neural net-
works, metaheuristics, PGMs, and regression. There was no
deployment of clustering, fuzzy logic, or transfer learning for
embankments.

In Figure 7, the recent development of the selected AI method-
ologies in 2023 is presented across the four groups of railway
infrastructure, and a summary is given as follows.

1. Within the context of the track system, railway researchers
tend to focus more intensively on rails, wheels, and ballasts,
with comparatively less attention to welds and fastenings.
Similar to the AI developments observed in the preceding
years, all the selected AI methodologies have been applied
within the group and the utilization of neural networks
is more prevalent than those of the other methodologies.
Transfer learning is the least popular method, and its appli-
cations remain absent in welds and joints in 2023.

2. Within the context of the catenary system, the utilization
of transfer learning remains unexplored. The number of
publications is distributed equally between catenary and
pantographs, using predominantly methods stemming from
neural networks. As of 2023, there exists no research employ-
ing fuzzy logic within the catenary system.

3. The development trend of the selected AI methods in civil
structures is similar to the catenary system. Nonetheless,
all the selected AI methodologies have found their applica-
tions within civil structures. Notably, there exists research
employing transfer learning in the context of bridges, but
such applications have yet to extend to tunnels.

4. The recent trend of AI method development in substructures
also shares similarities with that of the catenary system.
Notably, the utilization of neural networks is less than meta-
heuristics in embankments, and employment of transfer
learning is still missing.

3. AI in railway infrastructure
Beyond a safe railway operation, multiple aspects have to be
taken into account by the inframanager and railway operators. For
instance, to minimize passenger and freight delay, to maximize
the capacity at which they can operate their networks, to
maximize the reliability of the infrastructure, and to do all of
these at minimum costs. Further, societal and environmental
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Figure 6. Distribution of the selected AI methodologies across the four groups of railway infrastructures. Note that one research paper can include
multiple AI methodologies.

impacts also have to be addressed. To achieve those targets, the
infrastructure needs to be reliable. This can be achieved by proper
maintenance strategies that can be used for requirements of new
designs when tackling root cause problems or new maintenance
procedures over a life cycle that also considers the interlinks

between replacements and recycling processes. This is called
prescriptive maintenance. It is a new maintenance concept
emerging in the railway industry along with the development
of business globalization. Similar to the other maintenance con-
cepts, prescriptive maintenance comprises information from the
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Figure 7. Development of the selected AI methodologies in 2023.

diagnosis and prognosis and maintenance decision-making. Its
goal is also to intelligently monitor, predict, and optimize the per-
formance of railway infrastructure. In prescriptive maintenance,
component health information should represent a trend, and a
major focus is on analyzing the root cause of abnormal behavior,
not just the symptoms. However, the successful implementation
of prescriptive maintenance in railway infrastructure requires the
development of new AI solutions. This includes solutions from
defect detection, root-cause identification, classification, and
prediction of degradation patterns to decision-making supporting
maintenance planning. The following is a narrative literature
review to offer insights into the use of AI methodologies in railway
infrastructure.

3.1 Railways and neural networks
Neural networks are nonlinear models that can be used to cap-
ture the dynamics of complex systems. Their architecture/model
structure is based on layers, namely the input layer, hidden layer,
and output layer. Each layer comprises interconnected processing
units (called neurons) to uncover the underlying patterns or rela-
tionships within a dataset. Neural networks can be constructed
with: (1) different topologies in which connections between pro-
cessing units can be designed differently; (2) different input sig-
nals in which input neurons can accept continuous or binary
values; (3) different internal state dynamics; and (4) different
learning processes to perform certain tasks. Contrary to multiple-
layer neural networks, typically considered as shallow networks,
deep neural networks consist of many layers commonly ranging
from several tens to more than hundreds. They are designed to
automatically learn and extract representations from raw input
data. Deep learning, with its emphasis on deep architectures
and hierarchical representation learning, has been developed by,
and gained much attention from, researchers to leverage the
capabilities of neural networks for feature transformation and
extraction in big data environments. Examples of neural networks
are multilayer perceptron, artificial neural network (ANN), spiking
neural network, graph neural network, radial basis function net-
work, residual neural network, convolution neural network, and
recurrent neural network. Readers interested in the field of neural
networks are referred to review papers such as Schmidhuber
(2015), Alzubaidi et al. (2021), and recent reviews such as Abadal
et al. (2021), Telikani et al. (2021), Han et al. (2022).

Much of modern technology is based on big data environments
with highly inherent complex relationships between dependent
and independent variables. In railway infrastructure, both neural

networks and deep neural networks have found their applications
for various railway infrastructure components, e.g., rails (Jamshidi
et al. 2018), catenary (Chen et al. 2018; Kang et al. 2019; Zhong
et al. 2019), tracks (Oukhellou et al. 2010; Zhang et al. 2011; Guler
2014; Gibert et al. 2017; Galvín et al. 2018), fasteners (Zhang et al.
2011; Chen et al. 2018), tunnels (Adoko et al. 2013), turnouts
(Fink et al. 2014), and bridges (Shu et al. 2013). The existing
applications of neural networks focus, among others, on detection
(Oukhellou et al. 2010; Zhang et al. 2011; Shu et al. 2013; Gibert
et al. 2017; Jamshidi et al. 2018; Krummenacher et al. 2018; Chen
et al. 2018; Kang et al. 2019; Zhong et al. 2019), prediction (Adoko
et al. 2013; Guler 2014; Fink et al. 2014; Galvín et al. 2018), and
decision-making (Oukhellou et al. 2010; Jamshidi et al. 2018). In
the railway industry, there have been various applications of neu-
ral networks and deep learning to detect defects and anomalies,
and to diagnose and make a prognosis of railway infrastructures
including rails, level crossings, switches, welds, and catenary and
pantographs.

In the research topic of detection, the challenge is to achieve
complete automation of defect detection at the early stages (Shu
et al. 2013; Gibert et al. 2017; Kang et al. 2019; Zhong et al.
2019). Algorithms based on deep convolutional neural networks
(DCNNs) are predominantly utilized in railway fault inspection
and detection (Oukhellou et al. 2010; Gibert et al. 2017; Jamshidi
et al. 2018; Chen et al. 2018; Kang et al. 2019; Zhong et al. 2019).
This is due to the capabilities of DCNNs and the popularity of
vision-based inspection. Dealing with vision-based data, intensive
research has been devoted to alleviating problems concerning
image quality acquired from inspection systems (Zhang et al.
2011; Gibert et al. 2017; Chen et al. 2018; Krummenacher et al.
2018; Kang et al. 2019).

To deal with the visual complexity of defects and the similarity
between the component and background, Chen et al. (2018) and
Kang et al. (2019) proposed methodologies based on DCNNs. Many
modules were considered in developing the detection system,
including component localization and defect detection. In the
component localization module, the object detection algorithms
employed were the single shot multibox detector, You-Only-Look-
Once, a region convolutional neural network (R-CNN), and a fast
R-CNN. Besides a fully convolutional network used in (Chen et al.
2018), a deep multitask neural network integrating both a deep
material classifier and a deep denoising autoencoder into its
architecture was introduced in Kang et al. (2019) to accomplish
simultaneous segmentation and defect detection. To obtain better
high-speed performance in detection, Zhang et al. (2011) proposed
a novel structured light method based on motion imaging to
assist a feedforward neural network for the inspection of moving
objects.

For prediction, neural networks are mainly selected because
of their universal approximation capabilities for nonlinear sys-
tems, self-adaptation, and the precision of their predictions. Some
of the algorithms utilized within the area of railway prediction
are neural networks trained with back-propagation (Guler 2014),
multilayer perceptrons (Adoko et al. 2013; Galvín et al. 2018),
multi-valued neural network (Fink et al. 2014), and several other
algorithms. Multilayer feedforward neural networks based on
multi-valued neurons (MLMVNs) proposed by Fink et al. (2014)
were applied to predict reliability and degradation based on time
series. This research demonstrated that the MLMVNs developed
good results for multi-step ahead predictions and did not show
accumulating errors.

Oukhellou et al. (2010) and Jamshidi et al. (2018) presented a
framework using a neural network to detect faults. A data-fusion
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technique based on Bayesian probability theory was considered
afterwards to combine the outputs from a neural network in order
to make a final decision on the detection and localization of a
fault in the system. The Dempster–Shafer theory was considered
in Oukhellou et al. (2010) while Bayesian inference was considered
in Jamshidi et al. (2018). The Dempster–Shafer theory provides a
convenient framework for handling imprecision and uncertainty
in decision problems regarding the presence and location of a
fault.

3.2 Railways and regression
Regression and AI typically build models based on a labeled set
of data examples and predict a certain data characteristic. For
instance, regression models can be used to evaluate new data,
which will tend to provide a prediction as the examples provided
in the database. A new data point with a high similarity measure
to a data point in the dataset indicates the best match to predict
a certain output (Hegde and Rokseth 2020). Examples of regres-
sion algorithms are logistic regression, ridge regression, linear
regression, stepwise regression, ordinary least-squares regression,
multivariate adaptive regression, principal component regression,
partial least-squares regression, and project pursuit regression.
For recent review papers on regression, readers are referred to
Müller et al. (2001), Smola and Schölkopf (2004). Regression has
been widely employed in rail infrastructure due to its simplicity.
Based on our review, regression has been used for association,
prediction, and assessment.

For association, examples of algorithms are Bayesian regres-
sion (Wang et al. 2018), logistic regression (Cárdenas et al.
2017), auto-associative kernel regression (Chen et al. 2020),
locally weighted regression (Chen et al. 2020), partial least-
squares regression (Sysyn et al. 2019), etc. Chen et al. (2020)
employed an auto-associative kernel regression to explicit
mapping relationships between the remaining useful life (RUL)
and health indices to provide a reliable and effective RUL
estimation. Sysyn et al. (2019) employed principal component
analysis and partial least-squares regression to show a significant
statistical relationship between a change in the dynamic response
of a railway crossing and the rolling surface degradation during
the life cycle of the crossing.

For prediction, Wang et al. (2018) employed Bayesian regression,
a generalized linear regression method, for probabilistic assess-
ment of crack-like rail damage using acoustic emission monitor-
ing data. This was developed based on a nonparametric approach
in the context of Bayesian inference with the combined use of
Bayesian regression and Bayes factor. To forecast the degradation
of track geometry, Cárdenas et al. (2017) proposed an ensemble
classifier based on deterioration, regression, and classification. In
regression, a binary logistic regression model was employed to
predict how the future state of a particular defect is described by
the independent variables.

Regression-based methods have also found their applications
in feature extraction and selection in railway infrastructure.
A multivariate regression analysis with feature selection and
extraction techniques contains many popular methods such
as stepwise regression, ridge and lasso regression, principal
components analysis (Sysyn et al. 2019), partial least-squares
regression (Sysyn et al. 2019), proper orthogonal decomposition
(Eftekhar Azam et al. 2019), and locally weighted regression
(Chen et al. 2020), etc. Eftekhar Azam et al. (2019) developed a
framework to detect damage under operational conditions in
railway truss bridges. Before using an ANN to detect damage,
the proper orthogonal decomposition was employed to categorize

responses to different load patterns of trains near a bridge in
their work. In (Sysyn et al. 2019), principal components analysis
and partial least-squares regression were two feature extraction
methods applied to determine the rolling surface degradation
during the life cycle of a crossing. To reduce the noise interference,
the extracted features and the combined health indicators are all
smoothed using the locally weighted regression in Chen et al.
(2020).

3.3 Railways and metaheuristics
Metaheuristics are strategies that guide the search for near-
optimal solutions to an optimization problem. Convergence to a
global optimum is not guaranteed, yet statistical analysis shows
that these techniques can systematically get close to a global
optimum. Their performance is rather problem-specific, but their
fundamentals can be applied to a broader class of problems.
Their search techniques range from local-search- to global-
search-based procedures, such as population-based approaches.
Examples of metaheuristic algorithms are differential evolution,
evolutionary computation, particle swarm optimization (PSO),
genetic algorithms (GAs), and ant colony optimization. For recent
review papers on metaheuristics, readers are referred to Yazdani
et al. (2021a, b), He et al. (2023).

In recent years, metaheuristics have been applied to various
railway infrastructures, e.g., welds (Núñez et al. 2019), bridges
(Ribeiro et al. 2012; Sgambi et al. 2012; Costa et al. 2016; Qin
et al. 2018; Tran-Ngoc et al. 2018), tracks (Zhang et al. 2013; Shen
et al. 2021), rails (Persson et al. 2010; Caetano and Teixeira 2013;
Choi et al. 2013; Li et al. 2017), and catenary and pantograph
(Lee et al. 2012; Sanchez-Rebollo et al. 2013). According to our
survey, applications of metaheuristics lie within model updating
(Ribeiro et al. 2012; Costa et al. 2016; Qin et al. 2018; Tran-Ngoc
et al. 2018; Shen et al. 2021) and optimization in structural design
(Persson et al. 2010; Lee et al. 2012; Sgambi et al. 2012; Choi et al.
2013; Li et al. 2017), maintenance (Gorman and Kanet 2010; Zhang
et al. 2011; Caetano and Teixeira 2013; Núñez et al. 2019), and
operations and control (Sanchez-Rebollo et al. 2013).

In structural health monitoring and safety assessments, the
finite element method (FEM) is the standard tool for modeling
the structural behavior of railway infrastructures. However, the
FEM cannot accurately represent the dynamic characteristics of
a structure due to a wide range of simplifying assumptions. To
achieve a more suitable FEM of the structure (Ribeiro et al. 2012;
Costa et al. 2016; Simarro et al. 2020), calibration, also known as
model updating, on uncertain parameters in the model with new
measurements is typically needed. This aims at minimizing the
relative difference between analytical predictions and experimen-
tal measurements. GAs and PSO are two optimization techniques
widely used for this purpose. The GA is a search and optimiza-
tion technique inspired by the process of natural selection and
genetics, whereas PSO is inspired by the collective behavior seen
in flocks of birds or schools of fish, where particles adjust their
position based on their own experience and the experience of their
neighboring particles. With its simplicity and trustworthy evalu-
ations, the GA has been used in (Ribeiro et al. 2012; Costa et al.
2016; Tran-Ngoc et al. 2018) to enhance assessment performance.
Tran-Ngoc et al. (2018) employed a GA to update the unknown
model parameters for a railway bridge. Costa et al. (2016) proposed
an iterative method based on the GA to minimize the differences
between numerical and experimental modal responses of a stone
masonry arch railway bridge. Ribeiro et al. (2012) described the
FEM updating of a bowstring-arch railway bridge based on exper-
imental modal data using an iterative procedure with a GA.
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As the GA usually takes more time to converge towards a global
optimum, PSO has been employed by researchers to find the
global optima of the problem. Qin et al. (2018) applied the kriging
model and PSO for the dynamic model updating of bridge struc-
tures using the higher vibration modes under large-amplitude ini-
tial conditions. Tran-Ngoc et al. (2018) employed PSO to minimize
the discrepancies between experimental and numerical results.
They also made a comparison between applying PSO and GAs. The
results showed that the PSO algorithm provided better accuracy,
and it reduced the computational time compared with the GA. For
model updating, Shen et al. (2021) employed PSO and proposed
a fusion strategy that directly infers the stiffness of the rail pad
and the ballast from measured frequency response functions
based on Gaussian process regression. It was demonstrated that
their fusion method outperformed the PSO method in terms of
accuracy and time efficiency.

Metaheuristics have also been applied for structural design
optimization. The GA is the most widely used technique within
this area based on our literature search results. Sgambi et al.
(2012) proposed a method based on the combined application of
the GA and FEM to design a complex long-span suspension bridge.
In (Persson et al. 2010), the GA was used to optimize the rail profile
on the Stockholm underground to alleviate a problem with rolling
contact fatigue without consequent issues with wear and noise. Li
et al. (2017) proposed a hybrid method to design a challenging rail-
way alignment for topographically complex mountainous regions.
The hybrid approach uses a bidirectional distance transform and
GA. Even though this hybrid method improved the performance
of the GA and solved the challenging problems concerning topo-
graphically complex mountainous regions, it was computation-
ally more expensive than the other existing methods. In addition,
differential evolution is another technique used in (Lee et al. 2012;
Chellaswamy et al. 2020). In (Lee et al. 2012), differential evolution
was used to define the regressive function and to determine the
optimum values for stable current collection performance of the
pantograph for a high-speed train. In (Chellaswamy et al. 2020),
the railway track health monitoring system employed a dynamic
differential evolution algorithm for identifying defects in railway
tracks. In (Bardhan et al. 2022), Harris hawks optimization with
PSO-based mutation were used for predicting soil consolidation
parameter. In (Dahoe 2021), the performance of the Grey Wolf
optimization, PSO, and GA were compared for the estimation of
railway track parameters. Their results showed that the Grey
Wolf optimization performed the best in most of the used tested
cases.

The information provided by the metaheuristic-based method-
ology can be used to support the decision for maintenance.
Typically, most optimization solutions in railway infrastructures
have focused on single-objective problems. To schedule the
maintenance crew for freight rail optimally, Gorman and Kanet
(2010) adopted three techniques (mixed-integer programming,
constraint programming, and GA) and compared them. The
results showed that the mixed-integer programming network
formulation showed the most potential for quickly finding
quality solutions among the techniques used. Zhang et al. (2013)
developed an enhanced GA approach to deduce the optimal
scheduling for the maintenance work of railway tracks in the
UK. In the enhanced GA, they employed various additional
techniques, for example, orthogonal experimental design to
initialize the population, roulette selection to generate a popu-
lation for the next generation of solutions, and the differential
evolution operator to perform the variation process. Moreover,
the selection was executed on the pooled solutions from both the

parent and the newly generated offspring to guarantee that the
best solution was not disregarded.

However, in railway maintenance optimization, focusing on
a single objective is not always valid. In the structural health
monitoring context, sometimes two or more failures often occur
simultaneously. It is thus necessary to consider all related goals
as bi- or multi-objective functions to be optimized. These objec-
tives make it challenging to find a single solution that optimally
satisfies all of them simultaneously. Evolutionary multi-objective
optimization (EMO) is a computational optimization technique
that aims to solve problems with multiple objectives.

In the maintenance context, reliability, life-cycle costs, and
sometimes environmental costs are to be considered. Such opti-
mization concerns multiple objectives and searches for solutions
in the global Pareto-optimal region, where solutions cannot be
reallocated to make one objective better off without making at
least one of the others worse off. This is to achieve solutions
that are separated from one another to the maximum possible
extent to form the trade-off surface in the objective space (Cae-
tano and Teixeira 2013). Various multi-objective methods have
been employed to obtain multiple Pareto-optimal solutions. Gen-
erally, two classes can be distinguished: GA-based (Caetano and
Teixeira 2013; Sanchez-Rebollo et al. 2013; Choi et al. 2013; Núñez
et al. 2019) and evolutionary algorithm-based approaches (Núñez
et al. 2019). In (Caetano and Teixeira 2013), Sanchez-Rebollo et al.
(2013), Choi et al. (2013), and Núñez et al. (2019), multi-objective
optimization was handled by a fast nondominated sorting genetic
algorithm (NSGA). In Sanchez-Rebollo et al. (2013), NSGA2 was
used to optimize both the contact force and the consumption of
the energy supplied by the control force for the design process
and control of the catenary–pantograph system. Choi et al. (2013)
adopted NSGA2 to minimize both the wear and fatigue of a
wheel taking into consideration derailment, lateral force, vehicle
overturning, and vertical force generated during motion along
a curved track. The research objectives of Caetano and Teixeira
(2013) were to support an informed decision that considered not
only the railway track life-cycle cost but also the track occupation.
Núñez et al. (2019) also performed multi-objective optimization
to identify the set of all Pareto-optimal solutions that formed
the trade-off surface between performance and maintenance
cost for rail welds in a regional railway network. In their work,
a multi-objective optimization tool from Matlab was used, and
the algorithms ARMOEA, NSGA2, SPEA2, GrEA, RSEA, and VaEA
were compared. It was shown that SPEA demonstrated superiority
among other algorithms for their proposed maintenance deci-
sions optimization problem, at least when the number of integer
decision variables was not extremely large.

3.4 Research based on probabilistic graphical
models
A PGM expresses relationships between variables based on
graphic architectures. It operates to provide an intuitive frame-
work for representing uncertainty using probability distributions
(Tseng et al. 2020). PGMs can be divided into two classes:
Bayesian models and Markov models (Lei et al. 2020). Examples
of algorithms within PGMs are naïve and non-naïve Bayesian,
Bayesian (belief) network, hidden Markov models, Markov models,
and averaged one-dependence estimator. For recent review papers
on PGMs, readers are referred to Shahriari et al. (2016) and Mena
et al. (2022).

PGMs have been applied to various railway infrastructures,
such as railway bridges (Gonzales et al. 2013; Rafiq et al.
2015; Neves et al. 2017), catenary (Liu et al. 2018b), turnouts
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(Wang et al. 2017; Dindar et al. 2018), rails (Jamshidi et al. 2017a),
and tracks (Andrade and Teixeira 2015). They are considered
a powerful tool for anomaly quantification in the presence
of uncertainty. There has been a growing interest in applying
PGMs to fault diagnosis and prognosis in railway systems. In
particular, they offer solutions to damage detection, predicting the
future conditions of railway infrastructures, identifying causality
inference, and providing a learning mechanism that can be
adaptive over time.

For railway infrastructure, it happens that multiple failure
events cannot be identified and the probability of failure cannot
be reached quantitatively by event tree and fault tree analysis
(Dindar et al. 2018). Many researchers have thus proposed meth-
ods based on the Bayesian network to identify the probability
and the underlying root cause of failures in railway infrastructure
through various basic principles and inference algorithms. Gen-
erally, the systematic Bayesian networks are developed in three
steps: (1) variable selection; (2) structural design of the Bayesian
network; and (3) parameter learning. Wang et al. (2017) proposed
a Bayesian network for weather-related failure prediction in rail-
way turnout. In the Bayesian network development, they first
selected variables that related to weather and failures. An entropy
minimization-based method was presented to discretize model
variables in order to reduce the input type and to capture better
performance. In the second step, they designed the structure of
the Bayesian network by learning from real data combined with
expert experience. Lastly, in parameter learning, the Bayesian
network was transferred into a noisy independence of the causal
influence model and took advantage of learning the conditional
probabilities using a noisy MAX model to overcome the parameter
learning problem from small datasets. Monte Carlo simulations
were also employed to determine with greater accuracy the mean
and the confidence interval for weekly estimations of failures.
Dindar et al. (2018) employed a Bayesian network to analyze
the probability of train derailments caused by extreme weather
patterns on railway turnouts. They followed the same steps as in
Wang et al. (2017) but employed fuzzy probability using Buckley’s
confidence-interval-based method to allow for gathering more
information than just a single confidence interval or just a point
estimate in the last step of the Bayesian network development.
In contrast to Wang et al. (2017) and Dindar et al. (2018), Rafiq
et al. (2015) proposed a dynamic Bayesian network to model the
variation in the bridge condition with time. In a dynamic Bayesian
network, the Bayesian model is connected to its successive “time
slices” through temporal links to form a time-varying model, while
the Bayesian network model discussed in Wang et al. (2017) and
Dindar et al. (2018) serves as a “snapshot” model to estimate the
railway infrastructure condition based on its constituent element
conditions at a given point in time. Markov chain principles were
employed to quantify the transitional probabilities in Rafiq et al.
(2015).

PGMs are computationally efficient in updating the model
when new information regarding the condition state of any vari-
able becomes available. Neves et al. (2017) proposed a PGM-
based method to update an ANN model for damage detection of
railway bridges. In their work, a Gaussian process was employed
to statistically analyze the distribution of the errors using the
predicted acceleration errors obtained from the developed ANN.
This was to define the detection threshold for the system, allowing
the determination of the probability of true and false detection
events. Finally, probability-based expected cost, as a function of
the chosen threshold, was proposed based on the theorem of
Bayes to update the model. To infer some stiffness properties of

the ballast and subsoil from measurements carried out on the
railway bridge, considering uncertain seasonal effects, Gonzales
et al. (2013) also employed Bayesian updating of a 3D FEM with
Markov chain Monte Carlo sampling to determine posterior dis-
tributions of the uncertain stiffness properties in the warm and
cold states of the bridge.

Another typical application of PGMs is for analysis of the risk
factors correlated with failures in railway systems. Jamshidi et al.
(2017a) proposed a failure risk assessment framework based on
the PGM for analyzing the rail surface defects called squats.
The proposed framework aimed to estimate the probability of
rail failure based on the growth and severity of rail squats. In
their work, defect severity and growth analysis were performed
via an N-step ahead prediction model using data measured by
ultrasonic detection. To assess model uncertainty and robustness
for stochastic data behaviors, the Bayesian inference model was
employed to estimate the failure probability. Andrade and Teixeira
(2015) used a hierarchical Bayesian model to handle the spatial
correlations of the deterioration rates and the initial qualities for
consecutive track sections. With a hierarchical Bayesian model,
the predictive model for the degradation of railway track geometry
was improved based on the deviance information criterion.

Furthermore, a Markov random field model was developed in
Liu et al. (2018b) for image segmentation in order to facilitate
automatic fault detection for the loose strands of the isoelectric
line in the catenary system. This work employed the Markov
random field model to provide a link between the uncertainty
description and prior knowledge in their work. They showed that
detection accuracy was improved with the use of the Markov
random field.

3.5 Railways and fuzzy systems
Fuzzy logic can deal with ambiguity. While traditional logic allows
a proposition to be either true or false, in fuzzy logic, a proposition
has a degree of truth, ranging from being completely true to
completely false. A formulation based on fuzzy logic is defined by
multi-valued logic where the value of a variable can be any real
number between, but not limited to, 0 and 1. The applications of
fuzzy-logic-based methodology often lie within solving a problem
with uncertainties, vagueness, or imprecision (Tseng et al. 2020).
Examples of fuzzy logic methods are type1- and type2-fuzzy logic,
Takagi–Sugeno fuzzy inference systems, Mamdani fuzzy inference
systems, fuzzy C-means, and adaptive network-based fuzzy infer-
ence systems. Readers interested in fuzzy logic are referred to
review papers such as Mendel (2007), Sosnowski and Gadomer
(2019), Das et al. (2020), and Kumar et al. (2022).

The applications of fuzzy-logic-based methods often lie within
the problem of prediction and decision under uncertainties or
vagueness. Examples of their applications for railway infrastruc-
tures are detection, risk assessment, and decision-support (García
et al. 2010; Metin and Guclu 2011; Hussain et al. 2013; Li et al. 2015;
Jamshidi et al. 2017b).

For detection problems within a railway environment, false
alarms are one of the biggest issues that create financial losses
in the railway industry (García et al. 2010). False alarms are gen-
erated when the system detects a non-existent obstacle or does
not detect an existent obstacle. Techniques utilized to alleviate
the problem include, for example, the design of the sensor used,
the conditions in which the sensor is working, and the signal
processing that is carried out by the system. García et al. (2010)
employed a Mamdani fuzzy controller to weigh the certainty
of the existence of objects given by a multisensory system to
inform the monitoring system about the existence of obstacles.
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Hussain et al. (2013) also employed a fuzzy-logic-based method
to deal with such uncertain circumstances in detecting adhesion
and its changes under different wheel–rail contact conditions.

As detection and diagnosis systems can facilitate the decision-
making process, much attention has been paid to improving the
reliability of such systems by using fuzzy-logic-based methods. As
numerous circumstances threaten safety and operations in rail-
way infrastructures, it is necessary to consider key performance
indicators (KPIs) affecting the health conditions of railway infras-
tructures over time. Under the stochasticity of operational con-
ditions, fuzzy-logic-based methods have been adopted to assess
the dynamics of threats. Within this context, Li et al. (2015) and
Jamshidi et al. (2017b) proposed a technique stemming from fuzzy
logic. To assess the dynamic of water inrush in the progressive
process of tunnel construction, Li et al. (2015) employed a fuzzy
evaluation method to quantitatively analyze the risk level of
factors concerning both geological condition and construction
situation. Jamshidi et al. (2017b) presented a fuzzy Takagi–Sugeno
interval model to predict squat growth over time under different
possible scenarios and under different maintenance decisions.
Moreover, a Mamdani fuzzy expert system was used to calculate a
single KPI to conclude the dynamics of the deterioration of railway
tracks.

In addition to railway safety and operations, there are increas-
ing requirements concerning ride comfort. Because railway tracks
deteriorate over time and maintenance becomes expensive, Metin
and Guclu (2011) presented a fuzzy logic controller to ensure
that the vibration responses are within permissible limits. In their
work, the performance of the fuzzy logic controller was compared
with the conventional proportional integral derivative controller.
The results showed that the fuzzy logic controller demonstrated
superiority in active vibration control and increased passenger
comfort. Other notable AI techniques applied in catenary sys-
tems using fuzzy logic are discussed by Aydin et al. (2015, 2018),
Karakose et al. (2018), Karakose and Yaman (2020), and Yi et al.
(2020).

3.6 Railways and clustering
Clustering is a technique for partitioning a set of objects into
different data groups. The procedure is done so that objects in
the same cluster are more similar than those in other clusters.
Further, it is preferable for different clusters to contain different
samples. Thus, clustering methods require selecting an appro-
priate measure and an objective function that minimizes the
within-cluster variation and maximizes the between-cluster vari-
ation. Different measures result in different clusters. Examples
of clustering algorithms are k-means, k-nearest-neighbor, self-
organizing maps, a mixture of Gaussian models, and hierarchical
clustering. Readers interested in the field of clustering are referred
to review papers such as Xu and Wunsch (2005), McNicholas
(2016), and Qu et al. (2023).

Various applications in the area of railway monitoring and
maintenance have been found using clustering methodologies.
For monitoring, clustering can be employed to detect and assess
damage in railway infrastructures. Cardoso et al. (2017) proposed
a clustering technique to uncover hidden patterns in monitoring
data. A hierarchical clustering algorithm was applied to modal
parameters and used to perform automated modal identification
in railway bridges. Unlike Cury et al. (2010), Cardoso et al.
(2017) proposed a novel technique based on symbolic data
analysis for providing a clustering of different structural states
in which the number of states is not known a priori and has to
be determined. The symbolic clustering methods considered in

Cury et al. (2010) included hierarchy-divisive methods, dynamic
clustering, and hierarchy-agglomerative schemes. The results
highlighted the large capability of the symbolic data analysis
methods to provide clusters of different structural behaviors
in railway bridges. Both hierarchy-divisive and dynamic cloud
methods demonstrated better results compared with those
obtained by using the hierarchy-agglomerative method.

Clustering-based methodologies have been applied to support
decisions for the optimal planning of maintenance of railway
infrastructures. Within this context, Ćirović and Pamucar (2013),
Peng and Ouyang (2014, and Su et al. (2017)) presented a clus-
tering technique to determine groups of maintenance jobs and
groups of railway assets that can be treated within either the
allocated time slots or budget allowance. Ćirović and Pamucar
(2013) proposed a technique based on fuzzy clustering to define
the optimal strategy that supports the choice of level crossings
for installing safety equipment on the Serbian railway. These
criteria were used to form a set of data for training the adaptive
neuro-fuzzy network. Su et al. (2017) solved a mixed-integer linear
programming problem to obtain the resulting optimal clusters of
railway components that were treated within the allocated main-
tenance time slots. This was to determine the trade-off between
traffic disruption and the total set-up cost associated with each
maintenance slot, while guaranteeing that the total duration of
the resulting maintenance slots was no less than the estimated
maintenance time. Peng and Ouyang (2014) also employed a
mixed-integer mathematical programming model in the form of
a vehicle routing problem with side constraints to classify track
maintenance jobs into projects. The algorithm framework of job
clustering considered in their work included a constructive greedy
heuristic, a local search heuristic, and a feasibility heuristic.

3.7 Railways and transfer learning
Methods based on transfer learning are developed to tackle prob-
lems concerning limited labeled data in supervised learning. The
knowledge from one or multiple tasks (the source domain) is
expected to transfer to other related but different tasks (the
target domain). The transfer scenarios can be divided into two
categories: transfer in the identical machine and transfer across
different machines (Lei et al. 2020). The latter is also known as
domain adaptation, where differences between feature spaces
and label spaces are allowed (e.g., transferring knowledge from
railway track to railway catenary). For recent review papers on
transfer learning, readers are referred to Kouw and Loog (2021)
and Zhuang et al. (2021).

The existing supervised AI learning algorithms manifest a
relatively advanced performance in different railway engineer-
ing applications. Their fruitful performance relies extensively on
sufficient training data and high-dimensional balanced datasets
(Oukhellou et al. 2010; Gibert et al. 2017; Kang et al. 2019). Other-
wise, imbalance and insufficient labeled datasets can impair the
ability of, for example, the classification algorithms. For railway
engineering, the amount of monitoring data collected from rail-
way infrastructures, especially defective samples, cannot gener-
ally be collected in a short time to obtain balanced datasets for
network training under different operating conditions (Zhuang
et al. 2018; Yao et al. 2020; Zhong et al. 2021; Chen et al. 2021).
To alleviate this issue, increasing attention has been paid to
developing algorithms based on the transfer learning approach.
It refers to the concept of transferring the knowledge of the pre-
trained model to other related but different ones. The transfer
scenarios can be developed using other AI methodologies such
as CNN (Zhong et al. 2021; Chen et al. 2021), deep learning
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(Zhuang et al. 2018; Yao et al. 2020), and AdaBoost (Lin et al. 2019;
Zhong et al. 2021).

Zhong et al. (2021) and Chen et al. (2021) proposed a transfer
learning approach based on CNNs. Chen et al. (2021) used a
multilayer CNN in which the low-level layers of a model were
pre-trained on large audio data for feature extraction. Next, the
acoustic-specific features were transferred to train the high-level
layers by using acoustic emission monitoring data for condition
assessment of the rail structure. To overcome the problem of a
limited amount of defective data, Zhong et al. (2021) proposed an
improved algorithm based on the Faster R-CNN algorithm to build
a transfer learning model in defect localization.

Based on deep learning, Zhong et al. (2021) also introduced
an algorithm based on a generative adversarial network to con-
struct defect detection models by using only normal samples.
Yao et al. (2020) employed a generative adversarial network to
generate additional fault samples in order to balance and train
the datasets. A residual network was developed for fault diagnosis
and classification of track fasteners, and the extended dataset
was used for group training and validation. With the genera-
tive adversarial network and the residual network, the results
showed that the fault detection accuracy of rail fasteners was
not impaired when using a serious shortage of fault data. Zhuang
et al. (2018) first employed extended Haar-like features to extract
effective features of cracks on railway ties and fasteners. Then
they developed a cascading classifier ensemble by integrating
individual cascading classifiers built via the LogitBoost algorithm
with a bootstrap aggregation. However, the framework proposed
in Zhuang et al. (2018) could not identify patterns that were not
included in the training dataset.

Among transfer learning algorithms, the Adaboost algorithm
is one of the most widely used tools to overcome the problem
of insufficient training data. The core idea of AdaBoost is to
iteratively train the weak learning algorithm, whose predictive
performance is lower, for the same dataset and integrate them
into a strong learning algorithm, whose predictive performance
is higher. Lin et al. (2019) employed AdaBoost to relate catenary
fault frequency to meteorological conditions. In their work, only
a small number of training samples were classified correctly
by each weak classifier chosen from the single decision tree.
The AdaBoost algorithm was adopted to adjust the weights of
misclassified samples and weak classifiers and to train multiple
weak classifiers. Finally, the weak classifiers were combined to
construct a strong classifier for the final prediction.

Transfer learning can be applied to a pre-trained model of
any type, and transfer learning alone particularly deals with the
issue when the amount of available data for the target task are
limited. However, the combination of transfer learning with other
neural network architectures (such as recurrent neural networks
and convolutional neural networks) can lead to hybrid models
that leverage the strengths of different approaches, providing
more accurate solutions for railway problems. Furthermore, when
multiple neural networks are trained independently, knowledge
of the pre-trained models can be aggregated by using transfer
learning in an ensemble setting and can be adapted to differ-
ent railway networks or different environments. The combina-
tion of transfer learning with neural networks can potentially
lead to improved performance, generalization, and robustness.
In Chenet al., (2023), the concept of transfer learning was applied
to DCNNs for multi-category damage image classification recog-
nition of high-speed rail reinforced concrete bridges. The results
showed that the approach reduced the training time of the neu-
ral network models and led to lower generalization errors. In

Zhang et al. (2023), deep transfer learning and graph neural
networks were proposed for the health assessment of high-speed
rail suspension systems. Using transfer learning in an ensemble
setting to combine transferable features in the source domain, the
problem of a shortage of labeled data in real operating conditions
was alleviated, as the initial hyper-parameters of the model in the
target domain were obtained from the pre-trained model in the
source domain.

3.8 Discussion
Table 4 presents the potentials of the selected AI methodologies
for applications in railway infrastructure and their limitations.
Based on these, we list some insightful findings.

• Neural networks require further adaptations to describe real-
world physical interpretation due to their black-box charac-
teristic. Having a black box model that is not guaranteed
to perform under new unexpected conditions makes the
users and rail operators concerned about the use of the
model predictions. Based on the review in this section, it is
observed that several works have applied neural networks
in combination with regression (Adoko et al. 2013; Shu et al.
2013) and other soft-computing techniques, such as support
vector machine (Krummenacher et al. 2018), decision tree
(Oukhellou et al. 2010), and fuzzy (Jamshidi et al. 2018), to
provide more explanation of the correlation between model
behaviors and the physical problem.

• It was observed that researchers have developed hybrid
models combining two (or more) AI techniques to perform
a specific task. Examples of combing AI methods are: (1)
metaheuristics-based method with neural network-based
method (Li et al. 2017; Neves et al. 2017); (2) PGM-based
method with neural network-based method (Oukhellou et al.
2010; Jamshidi et al. 2018); (3) regression-based method with
PGM-based methods (Cárdenas et al. 2017; Wang et al. 2018),
etc. The use of a combination of methods has the potential
to improve overall performance when these methods
are complementary to each other. For instance, global
optimization approaches can potentially find parameters
of neural networks that better fit an objective function.
However, when different methods solve a similar task, a
major emphasis on the analysis of the consensus between
these methods is needed.

• Deep learning concerns multiple layers of computational
units in which the actual optimization of the whole structure
is a highly non-convex problem. They contain a huge amount
of parameters and, in some cases, more than millions of
parameters, which results in a long computation time to
find a near-optimal solution. Moreover, large labeled datasets,
preferably balanced, are required to train deep learning mod-
els. Despite these shortcomings, interest in these methods
has increased in view of the rather impressive results from
other fields. To alleviate the issues and make its advan-
tages more pronounced, transfer learning is employed to help
retrain the trained deep learning models to perform a similar
task. This reduces not only computational effort but also the
amount of training data needed for deep learning.

• PGMs and fuzzy logic have received a growing interest for
applications in fault prognosis due to their powerful capabil-
ity to deal with the presence of vagueness and uncertainty
and their ability to solve inference problems (Andrade and
Teixeira 2015; Rafiq et al. 2015; Wang et al. 2017; Jamshidi
et al. 2017a; Dindar et al. 2018). However, there are several
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sources of uncertainty, such as measurement data, model
structure and parameters, and different data behaviors from
future operational conditions. These uncertainties propagate
over time and the existing models have to be updated when
new information regarding the health condition of any vari-
able becomes available. Most existing models are computa-
tionally inefficient at updating. Based on our review, however,
limited work has been found to address such a problem for
railway infrastructure.

4. Challenges from railway infrastructure
State-of-the-art intelligent solutions show good generalization
capabilities to solve problems from different fields. Some par-
ticular challenges from railway infrastructures prevent direct
exploitation of the existing state-of-the-art methodologies, as will
be highlighted in the following. Consequently, their successful
application in the field of railway infrastructure requires the
design and development of methodologies to capture the partic-
ular and challenging characteristics of railway infrastructure.

4.1 Insufficient and imbalanced data for model
training
For railway infrastructure, conventional supervised methods, par-
ticularly deep learning, require a large amount of labeled data
available for learning to guarantee their performance. However,
collecting accurate and verified labeled samples of high-quality
faulty and healthy states from thousands of kilometers of railway
lines is extremely difficult, costly, and time-consuming. Regarding
class information for defects, often few labeled data are available
due to the lack of historical data with sufficient quality and
localization. Likewise, healthy data are difficult to label because
of their variants of behavior at different locations; in particular,
rails are affected by local track dynamics and different stochastic
variables. Sometimes, there is no standard/threshold to evaluate
the level of health conditions. For instance, an embankment is
one of the areas in railway infrastructure that require further
study. Furthermore, in some railway infrastructure, obtaining a
wide variety of class information for defects is extremely diffi-
cult. Therefore, data from healthy infrastructure are abundant,
whereas defective data are few. As a result, the data used for
training AI models are seriously imbalanced, and labeled data are
insufficient.

4.2 Training AI models with complex railway
data
Railway infrastructures are complex and highly nonlinear. They
involve different assets and can be affected by various anomalies.
Detecting failures and maintaining the structure requires multi-
ple measurement systems. Most of the information about the con-
dition of the infrastructure is collected with inspection systems.
Typical systems in the industry include eddy current, ultrasonics,
vibration measurements between wheel and rail using accelerom-
eters, video images, and track geometry recording vehicles (Sun
et al. 2021a, b). Depending on track tonnage, the number of
trains passing along the track, and maximum line speed, data
measurement frequencies and data processing requirements can
differ substantially. Thus, selection of a proper AI methodology
must account for the nature of the railway components and
their inherent dynamics. There is a significant interdependency
between assets related to railway tracks, not only in functionality
but also in using anomaly detection algorithms or maintenance
planning. For example, a track video scan (Hovad et al. 2021;

Ni et al. 2022; Pham et al. 2021; Zhou 2021) allows the asset
manager to capture the health condition of different track com-
ponents, such as fasteners, switches, and sleepers (Dai et al.
2018; Guerrieri et al. 2018; Franca and Vassallo 2021; Sabato
and Niezrecki 2017; Tabatabaei et al. 2019; Skrickij et al. 2021).
However, measurements based on video images can only capture
anomalies in the track structure when they are visible. This
means that early-stage anomalies in rail (invisible ones) or vertical
irregularities in the track cannot be detected effectively using
only video cameras. Using both images and other sources of data,
such as axle box acceleration measurements, track geometry,
or eddy current and ultrasonics, can provide a more integrated
assessment of the track condition. Axle box acceleration mea-
surements can detect light squats (Phusakulkajorn et al. 2023,
Phusakulkajorn et al. (in preparation)), which occur at frequency
bands up to 2.5 kHz with train speeds of about 100 km per hour
(Molodova et al. 2014). New technologies, such as a laser doppler
vibrometer sensor, can also provide continuous monitoring along
a railway line, and they can measure with frequency sampling
that goes higher than the order of MHz. Thus, continuous monitor-
ing of hundreds of kilometers of track with the latest technologies
creates a better overview of the current track condition, but at the
expense of creating a huge volume of data and a very high dimen-
sionality problem from which key features are to be extracted to
represent the data effectively. In this case, developing ultrafast
AI solutions, also considering edge computing (Chen et al. 2022a),
could help to address these challenges.

In addition to the characteristics of the railway infrastructure,
the most suitable AI method can be determined based on the
nature of the measurement data, which can vary from an unor-
ganized and semi-organized data structure to a fully organized
structure. Measured data collected by human operators (e.g., track
information and historical operational activities) are usually fully
structured or semi-structured. In contrast, advanced anomaly
detection systems contain a massive sampling pool and high
complexity as they are high-dimensional and nonlinear systems
that require additional methodologies for preprocessing, includ-
ing noise removal, feature extraction, and selection.

Employing multiple systems to monitor railway infrastructure
performance indicates the need to deal with heterogeneous data.
The information about defects obtained by a single source can
easily show trends; however, it is limited by the nature of the
measurement itself. When different data types are exploited to
extract information and to provide additional information about
the same defect, we have the risk that the data sources do not con-
tain complementary information for data analytics. This is when a
physical understanding of the advantages and limitations of the
different monitoring systems is not included. Different systems
might provide different detection reports that appear to contra-
dict each other. Thus, new AI solutions to deal with heterogeneous
data can also support the development of holistic approaches
to integrate railway information and make the decision-support
models more robust. In addition to the integration of information,
data alignment from different measurement trains on a track
is another challenge. A robust optimization model is needed to
correct positional errors of inspection data from heterogeneous
measurements (Xu et al. 2015).

4.3 Training AI models for maintenance
purposes
Railway infrastructures are dynamic, stochastic, and distributed
parameter systems that change critical parameters over differ-
ent locations and times. Moreover, their failures have complex
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characteristics that result from multiple incidents involving dif-
ferent causalities and uncertainties affecting their functional-
ity: for example, operational conditions, maintenance activities,
weather conditions, traffic loads, the geometry of the infrastruc-
ture, and the properties of construction materials (Ashley and
Attoh-Okine 2021; Luo et al. 2022). Therefore, it is crucial to have
an accurate RUL and degradation pattern estimation. An early
prediction may result in over-maintenance, and a late prediction
could lead to catastrophic failures. Consequently, the existing
degradation models for rails have to be updated when new infor-
mation regarding the health condition of any variable becomes
available. However, some models may not be computationally
efficient at updating. New models and techniques are needed to
alleviate the issue.

To estimate RUL or degradation patterns, many existing models
rely on handcrafted features representing degradation processes
caused by those factors. The feature selection/extraction often
requires domain knowledge and expertise about common causes
leading to system degradation. For instance, the location or type of
rail surface defects may cause different degradation patterns. The
dependency on a large variability of datasets and experimental
tests in large railway infrastructures presents a challenge for
training in prognostic models. Research in certain applications
uses data from run-to-failure tests, from which the labels can be
derived (Lasisi and Attoh-Okine 2019). For railway applications, it
is impossible to conduct such tests. To accurately determine the
associated RUL and degradation pattern at every time step for
railway infrastructure, the threshold of its failure must be defined.
Therefore, some experiential knowledge is needed. For instance,
a rail is deemed reliable when the size of rail surface defects
achieves a threshold of a certain length (Jamshidi et al. 2018). As
such, condition-based maintenance strategies have to systemat-
ically improve to capture new situations and to perform better
under new conditions (e.g., when facing new challenges from
more intensive use of the infrastructure, from climate change, and
from harsh environmental conditions).

Railway infrastructure systems are also large-scale for various
reasons. First, railway infrastructure often involves many basic
components distributed over various kilometers of railway tracks.
Further, a railway line can cover a long distance (e.g., over 250
km) with defects that have a size of the order of centimeters
(e.g., squats) and whose locations are distributed over the whole
infrastructure (Su et al. 2017). This causes the maintenance opti-
mization problem to become large and intractable. Obtaining an
exact resolution of each plan along the prediction horizon is
time-consuming and leads to a large-scale optimization problem
(Aboudolas et al. 2010).

Secondly, maintenance operations over the whole prediction
horizon might change when performing maintenance optimiza-
tion based on a rolling horizon under real-life conditions. That is,
long-term maintenance plans might continuously change accord-
ing to new predictions and new operation plans. Consequently, the
flexibility in the maintenance contracts to include adaptive plans
and methods for learning from these plans can be supported with
new AI methodologies.

Lastly, and most importantly, incorporating the inherent char-
acteristics of the railway system gives rise to a complex nonlinear
model that becomes too large and complex to solve efficiently and
that leads to a high computational burden (Peralta et al. 2018). For
these, the amount of information needed to guarantee the proper
operation and the high computational burden of solving problems
for such complex and large-scale systems present challenges in
research concerning AI. The difficulties include stack overflow

and long computation time, and a very challenging-to-obtain set
of optimal solutions due to the irregular shape of the resulting
Pareto fronts.

4.4 Barriers for AI deployments in the railway
industry
Many stakeholders are inter-related within the railway industry.
However, they are conservative and usually resist the changes
introduced by the digitalization of railway infrastructure, as these
can affect the way they worked before. Likewise, the lack of
understanding of AI used and the lack of trust in the reliabil-
ity of the results are barriers to the adoption of new methods,
especially with regard to safety requirements. Without effective
cybersecurity, rail operators cannot be assured of securing their
data and information. Consequently, business resources cannot
be consolidated, and data are scarce with limited access.

Other aspects that prevent the successful implementation of AI
in railway infrastructures also include a lack of standards, trace-
ability, and interpretability of results using complex AI method-
ologies, particularly neural networks. Results and their impli-
cations for the safety of railway infrastructure provided by AI
are often difficult to understand. As the infrastructure manager
is responsible for the assets and has to ensure their required
safe operation, the physical explanation of the problem and the
causality are crucial for preventing failures. Failing to provide
such information prevents the exploitation of AI methodologies
for decision-support systems.

Even though there are more applications of AI methodologies
in the railway industry, some projects were not continued, first
and most importantly, because of the lack of budget, and, sec-
ondly, because digitalization was not complete and accurate. The
railway industry tends to be conservative, and for some infra-
managers, the documentation is mainly paper-based. Dynamical
models used are primarily in two dimensions and digital maps
of the asset positions are partly not available. This creates the
problem of allocating failures when the location of railway infras-
tructures is not accurate and precise. Therefore, AI developments
are needed to check and improve localization accuracy in order
to obtain reliable data in the future. Lastly, system integration
requires a proper understanding of the system hazards and asso-
ciated risks. Proper integration of a new system into the current
operating system must be done in a smooth way and without
interrupting the service. Moreover, another challenge is how to
implement AI in real operations.

5. Research directions and future
opportunities
The challenges discussed previously create a need to develop new
intelligent methods based on AI that should be tailored to the
particularities of railway infrastructures. This section presents
research directions and future opportunities for railway infras-
tructure. As the use of AI is not yet standardized and AI solutions
are mostly not traceable and interpretable, implementing AI solu-
tions only serves as a decision-support for railway infrastructure
managers at the moment. Humans are still required to make
final decisions. We have not yet reached the point of having fully
automated AI capable of making final decisions.

Based on our literature review and our view, research directions
and future opportunities for railway infrastructure given in Sec-
tions 5.1–5.7 are conceivable as there exist current developments
in academia. However, further validations in different environ-
ments/network lines and standardizations are still needed before

D
ow

nloaded from
 https://academ

ic.oup.com
/iti/article/doi/10.1093/iti/liad016/7264159 by D

elft U
niversity of Technology user on 09 Septem

ber 2024



16 | Phusakulkajorn et al.

reaching a level of maturity to be ready for real implementation
in the railway industry.

It is worth noting that some research directions will be rel-
atively difficult to achieve in the upcoming years within the
context of railway infrastructure. Given the rapid pace of techno-
logical development and advancements, making such conclusive
judgements about the feasibility and ease of potential research
directions in the near future for railway infrastructures is com-
plex and subjective. Therefore, the discussion only serves as an
informative and advantageous resource for readers. Drawing from
our perspective, the research directions we refer to here are
transformers (see Section 5.8), the metaverse (see Section 5.9),
and emerging technologies such as blockchain technology (see
Section 5.10), because their adoption and implementation are
hindered by the unique challenges and characteristics of the rail-
way infrastructure. For instance, many systems and parts of the
railway infrastructure have been in place for decades. They may
have been designed and built using outdated technologies and
standards. The introduction of new technologies often requires
retrofitting or replacing existing infrastructure, which can be
expensive, time-consuming, and disruptive. Moreover, integrating
new technologies such as transformers or blockchain technology
requires careful consideration of how these technologies will
interact with existing systems and processes. A skilled workforce
with expertise is also required for implementing and maintaining
advanced technologies such as transformers, metaverse-related
solutions, and blockchain technology where railway organizations
may lack the necessary expertise and resources.

5.1 Hybrid models
Hybrid models are promising and have the potential to offer more
competitive AI and machine learning models with high perfor-
mance. Hybrid models refer to a combination of multiple methods
or techniques to solve a particular problem. They are developed
not only to improve overall performance via their advantages but
also to alleviate the limitations of the methods. The models can
be constituted by combining (1) different AI methods, (2) human
experts and AI methods, (3) physical-based methods or other
traditional methods and AI methods, or (4) a mixture of AI, human
experts, and physical-based models. Tailoring hybrid models to
railway infrastructure applications requires in-depth knowledge
of the particularities of the problem and a particular focus on the
interfaces between the methods. For example, the performance
of PGMs in prognosis can be impaired by the accumulating error
from using results obtained from diagnosis models based on deep
learning. Then, a combination of AI-based models with human-
expert or physical-based knowledge is required. In catenary sys-
tems, it was mentioned in Liu et al. (2018a) that, despite the
fruitful outcomes of using AI for catenary systems, the growing
dependency on data has led to underutilized knowledge of physics
accumulated in the past decades. However, the use of AI for cate-
nary systems seldom exploits the physical knowledge to improve
the resulting performances. It has been demonstrated that PGMs
such as Bayesian networks can consider the underlying physics
in inspection data using tailored features (Wang et al. 2020).
Likewise, hybrid multi-scale models can also capture degradation
mechanisms for various components involved in the mainte-
nance process while considering some parameters and dynamics
determined by data-based approaches. As the methods explicitly
include the physical/mechanical characteristics of the infrastruc-
ture, the link between data and the physical infrastructure system
can be explained. This helps to improve the interpretability of
AI methodologies, particularly neural networks. Therefore, it can

be foreseen that AI applications will be even more powerful
when combined with knowledge from other approaches. Hybrid
models will allow researchers in railway engineering to enhance
model effectiveness and obtain better solutions for railway prob-
lems. Moreover, combining AI-based models with human-expert
or physical-based knowledge is expected to increase exploitation
and reduce resistance to the use of AI in the railway industry.

5.2 Learning methodologies
Learning methodologies are crucial to improving performance
based on current and previous experiences systematically. AI
methods have been used to learn from current data and per-
formance. However, learning can be continuous based on pre-
vious experiences and mistakes; for example, defects that were
not detected on time or maintenance decisions that were not
correctly prioritized. Learning mechanisms (such as deep rein-
forcement learning) allow us to systematically include ways to
improve our perception and decision mechanism continuously.
Learning methodologies provide practical answers to how railway
infrastructures can perceive their condition, can make optimal
and timely decisions, and can keep learning to improve their
performance over time systematically. For these, three promising
approaches to learning methodologies are highlighted as follows.

5.2.1 Deep learning
Deep learning has shown the capability to extract highly complex
abstractions from different data types and it has achieved great
success in many applications. It is foreseen that deep learning will
open up an opportunity to step beyond the capabilities of a human
operator. Deep learning provides a promising direction for big
data analytics for assessment and prediction using a tremendous
amount of railway data. With the help of deep learning, inspec-
tions of railway infrastructures can be fully automated, which
fully or partially replaces traditional manual testing and visual
inspections. Moreover, computational intelligence methods for
expert system design can support railway infrastructure assess-
ment in real time. For instance, in Liu et al. (2020a), deep learning
relying on image-based data that can capture the vibrations of
pantograph–catenary interactions and the health conditions of
catenary-supporting structures was employed to simultaneously
monitor the health condition of catenary components, including
contact wires, messenger wires, droppers, and up to twelve types
of supporting components. Deep learning has also been employed
for defect detection and achieved satisfactory results in imaging
data (Liu et al. 2018b; Kang et al. 2019; Lin et al. 2020; Luo et al.
2019; Qu et al. 2019; Zhong et al. 2019; Chen et al. 2018; Duan et al.
2020; Lyu et al. 2020; Wei et al. 2020; Liu et al. 2020b, c, d; Huang
et al. 2019). Likewise, recent deep learning-based approaches have
significantly demonstrated their capability to fuse information for
multi-sensor condition data, including the fusion of static, mov-
ing, and crowd-based sensing technologies (Oukhellou et al. 2010;
Aydin et al. 2018). Various fusion techniques using deep learning
algorithms have been proven to assist in learning features from
multiple signal sources simultaneously and effectively (Chen et al.
2020). However, choosing data representations of fused data plays
a fundamental role in designing data fusion algorithms. As a
result, how to integrate information from multiple data sources
and then make a more robust deep learning algorithm is another
challenging task for railway infrastructure. In addition to data-
based deep learning approaches, physics-informed neural net-
works (Raissi et al. 2019; Kapoor et al. 2023) have recently emerged
as another promising approach for solving problems based on
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mathematical physics models of railway infrastructures with a
small amount of data.

5.2.2 Transfer learning
Within the concept of transfer learning, we can benefit from exist-
ing pre-trained models in various ways. First, statistically similar
datasets of identical structures can be leveraged to replace the
requirement of augmenting a training dataset, especially when
some of the actual measurement data are difficult to obtain.
Wang et al. (2022) showed that transfer learning allows the CNN
model trained in one domain to be used in other domains where
training data are lacking. In Chen et al. (2021), transfer learning
was employed for evaluating structural conditions of rail in a
progressive manner by using acoustic emission monitoring data
and knowledge transferred from an acoustic-related database.
Secondly, transfer learning has shown its potential to relax the
prerequisite for training a deep learning architecture containing
up to millions of model parameters. This allows computation time
to be reduced, and this facilitates online monitoring of railway
infrastructure systems. Thirdly, transfer learning can be used to
adapt to work under new conditions where the models have not
yet been tested/trained. Because of the impossibility of acquiring
training data that represent all operating conditions and fault
types, transfer learning is beneficial to make use of information
between units or between models. Transfer learning has been
shown to be able to train models that are robust to newly encoun-
tered conditions (Wang et al. 2019; Michau and Fink 2021; Chen
et al. 2022b). This resulted in an improvement in the model perfor-
mance on the target task. Therefore, transfer learning should be
further explored in the field of railway infrastructure, where we
aim to apply knowledge from a different railway network to the
monitoring and decision-making processes in another network.
With transfer learning, intelligent sensing and decision-support
systems can improve over time.

5.2.3 Deep reinforcement learning
Deep reinforcement learning (DRL) refers to a broad group of
learning techniques that emulate how living beings learn by trying
actions and learning from successes and failures (Mnih et al.
2015). Its learning process is experience-driven, and its efficiency
is enhanced by trial and error to optimize the cumulative reward.
In DRL, labeled data are not required, which is beneficial when
mainly unlabeled data are available. DRL has shown the potential
to handle the dynamic and complex nature of physical problems
where solutions to new problems can be adjusted and utilize
experience and knowledge learned from solving old problems.
For instance, an algorithm developed for track component A
can be applied to track component B even though they might
be at the same usage level, track tonnage, or environmental
situation. In Zhong et al. (2022), a DRL approach was developed
to refine the localization of fasteners in the catenary support
to improve an automatic looseness detection method based on
deep learning. With state-of-the-art methods, the learning pro-
cess can be fast and efficient. DRL is also capable of modeling
complex stochastic environments and handling relatively high-
dimensional problems. It can be used to optimize maintenance
and renewal planning by considering cost-effectiveness and risk
reduction over a planning horizon and taking into account pre-
dictive and condition-based maintenance tasks, as well as time,
resource, and engineering constraints (Mohammadi and He 2022).
However, DRL has not experienced many key developments com-
pared with deep learning. Research on its application to solve

problems related to renewal and maintenance planning for rail-
way infrastructure is still limited. As DRL is relatively new to
railway infrastructure, its adaptation to solve railway problems
has many open challenges; for example, a major difficulty is
that data that are required to train this sort of network are
recorded at different monitoring times. In addition to data-based
deep learning approaches, recent advances in physics-informed
neural networks have emerged as another promising approach
for solving problems based on mathematical physics models of
railway infrastructures with a small amount of data.

All in all, by including perception, decision, and learning, the
railway infrastructure can be emulated as a living being from
where each methodology will contribute to creating its digital
brain. However, learning methodologies for railway infrastruc-
tures have still been relatively limited.

5.2.4 Metaheuristics
Heuristic optimization is a promising approach for decision-
making in railway infrastructure systems. For example, one
typical characteristic of maintenance strategies in railways (such
as grinding and tamping) is that relaxing strong assumptions
of simple models leads to the formulation of more realistic
and complex problem formulations. This may create a need
for nonlinear relationships between variables, which gives rise
to a mixed-integer nonlinear optimization problem, especially
when discrete decisions are present in a problem. To deal with
challenges in maintaining large-scale railway infrastructures,
hierarchical and distributed optimization-based methods can
be considered. A significant challenge is to speed up the solution
of the optimization problems by partitioning and coordinating
between reduced-size subproblems. Most decomposition-based
approaches work by decomposing the large-scale multi-objective
optimization problem into multiple single-objective subproblems
based on a set of weight vectors. Then, the subproblems
can be solved cooperatively in, for example, an evolutionary
algorithm framework. Stochastic optimization for decisions in
rail systems explicitly includes the effect of different sources
of stochasticity and uncertainty, such as in measurements,
loading conditions, infrastructure parameters, and external
factors, including climate/weather. Multi-objective decision-
based methods for dynamic decision-support tools in railway
infrastructure systems help find different solutions, typically to
quantify trade-offs between cost reduction and performance.
But they can include punctuality, efficiency, robustness, safety,
sustainability (recycling/disposal), energy consumption, etc.

5.3 Digital twins
When only limited data are available and they are imbalanced,
transfer learning, on the one hand, can be considered to alleviate
the issues arising from using small datasets to train machine
learning models. On the other hand, it is crucial to have a suffi-
cient amount of data. When it is not possible to collect real data,
particularly data related to rare events (e.g., failures or defects),
using synthetic data is an option. A digital twin can be a good
candidate for that.

Digital twins are a conceptual framework for interconnecting a
physical system and its digital representations (Thelen et al. 2022).
Digital twins are created by capturing and integrating various data
types from sensors, devices, and other sources, including physical
models. The purpose is to gain deeper insights into the physical
entities they represent. Digital twins allow us to emulate future
scenarios of the consequences. This helps us with risk assessment
and decision-making to prepare for and mitigate the impact of
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rare events. Within this context, an open challenge that needs to
be addressed is an effective method to generate synthetic data
representing the total variation of the expected railway operating
conditions.

In Levine et al. (2023), a building information model (BIM) was
used to photo-realistically simulate severe structural damage in
a synthetic computer graphics environment. In Kor et al. (2023),
a deep learning-integrated digital twin model was developed to
establish an interoperable functionality and to develop typologies
of models described for autonomous real-time interpretation and
decision-making support for the architecture, engineering, and
construction sectors. By applying the concept of digital twins to
railway infrastructure, railway companies can cut costs, modern-
ize workflows, and increase efficiency and performance. Digital
twins allow companies to offer new services such as remote
monitoring, real-time diagnostics, predictive maintenance, and
automated operations. With a combination of various sensors
throughout the whole infrastructure, information can be imme-
diately analyzed by AI and big data to plan maintenance actions
proactively. This can avoid incidents or delay, and improve safety
and operational efficiency.

While digital twins bring numerous opportunities to the rail-
way industry, they present challenges in their implementation.
To successfully implement digital twins in railway infrastructure,
sufficient data need to be available for properly calibrating digital
twins. Moreover, a new mindset of rail operators and authorities
must be developed; they must promote cooperation, share data,
and consolidate business resources. Also, business models need
to be changed, and, most importantly, financial investments and
a strategy to tackle cyber threats are required (Attoh 2017).

5.4 Multidisciplinary research for holistic
approach
Railway infrastructure research is inherently multidisciplinary.
Answering fundamental questions in the field requires knowledge
from different fields. Combined with AI, some of the emerging
fields related to resilience engineering, climate change, cyber
security, etc., are essential for solving open research questions.
For example, AI research related to embankments requires
knowledge of geosciences, railway engineering, and computer
sciences, among other fields. Without knowledge sharing and
research collaborations, the essential physics and dynamics of the
infrastructures cannot be studied efficiently. When considering
the whole life cycle of the railway infrastructure, environmental
and social impacts add more dimensions. This requires a holistic
approach to analyze different aspects of the overall life-cycle cost
to evaluate the system’s environmental, economic, and social per-
formance. For instance, the study by Gulcimen et al. (2021) showed
that the operation and maintenance phases are responsible for
most emissions, with electricity consumption being the primary
contributor. Energy costs were identified as the main contributor
(92%) to the overall life-cycle cost, and reducing these costs could
help lower the system’s total cost. The social impact assessment
in Gulcimen et al. (2021) revealed that the urban transportation
industry has strong connections with consumers, workers, the
local community, and society. Even though new AI technologies
can be employed to assist learning, they can extract valuable
insights, patterns, or relationships from the data without human
dependency. When no historical data are available, physical
models are needed. In the field of railway infrastructure, 3D
dynamic models are widely used as they offer dynamics and
physical interpretation of the systems. However, when it comes to
a complex non-static problem, such as soil (Yurlov et al. 2019;

Adeagbo et al. 2021), a new dynamical model and sensing
technologies are needed. The lack of historical data and
efficient higher-dimensional dynamic models results in less
research on some railway components (e.g., substructures and
embankments). However, this also opens up opportunities for AI
approaches in the areas with few data when the available physical
knowledge can be included.

5.5 Validity of the data
Many existing studies have developed AI methodologies using
training data under specific environments and operating condi-
tions. Ultimately, we aim to develop innovative solutions that can
facilitate the work of inframanagers so they can focus on other
critical challenges. To ensure the robustness, generalization, and
efficacy of the new methodologies, the validity of the data sources
and field validations are required. It is essential to regularly and
continuously assess and measure the impact of data to ensure
they deliver tangible results that meet the needs of rail operators.
Accurate and reliable data serve as the foundation for making
informed decisions. For example, can we trust the decision driven
by the data we use to train the model? Moreover, more controlled
field measurements and shared case studies should be provided
so that the researchers can validate and compare the perfor-
mance levels of their models developed with the state-of-the-art
methods in the field of railway infrastructure.

5.6 Interoperability of the data
In the railway industry, data interoperability appears to be a
significant challenge in delivering AI-based solutions. The prob-
lem is how to convert and integrate the data between different
systems (e.g., the data coming from the application programming
interfaces of different customers). Each application programming
interface has its own way of working. Having compatibility among
software programs is thus critical to facilitate the use of AI. A
data standard is also required to enable the available interactions
between heterogeneous formats and systems.

5.7 Cloud infrastructures
Digitalization in railway infrastructures generates a large volume
of real-time data as many devices and sensors are used to mon-
itor the assets. These data can provide insights into the health
conditions of the monitored assets, and this enables predictive
maintenance. To derive actionable insights in real time, cloud
infrastructures need to be invested in and leveraged. With such
big data, the communication network and the adoption of 5G
technology are required. A petabyte-scale Internet of Things (IoT)
and edge data to the cloud must be agile. The adoption of edge
computing is required for the use of machine learning and AI
algorithms to help manage the infrastructures in near real time.

5.8 Transformers
Transformer models refer to a specific type of deep learning
network. They are designed with large encoder and decoder blocks
based on a self-attention mechanism which represents the key
innovation that allows transformers to selectively focus on differ-
ent parts of the input sequence (Vaswani et al. 2017). Instead of
relying on sequential processing, transformers process the entire
input sequence in parallel. Before transformers arrived, users
had to train neural networks with large labeled datasets that
were costly and time-consuming to produce. By finding patterns
between elements mathematically, transformers eliminate that
need. Even without pre-training on large datasets, transformer-
based models are more robust to generalization (Bai et al. 2021).
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Therefore, transformer models have opened up another technique
to tackle insufficient and imbalanced railway data. This allows
more researchers in railway engineering to conduct research with
machine learning without facing issues arising from the training
data. However, transformer models themselves can contain tril-
lion parameters; for example, Google’s Switch Transformer has
1.6 trillion parameters (Fedus et al. 2022). This poses another
challenge in training transformer models that requires further
research.

5.9 Metaverse
The metaverse is a concept referring to a virtual world where
users can interact with each other and computer-generated
environments in real time. The concept of the metaverse often
involves a combination of technologies such as virtual reality (VR),
augmented reality (AR), artificial intelligence (AI), blockchain,
and other emerging technologies (e.g., robotics and drones). Even
though the metaverse is currently used for entertainment and
gaming, it has the potential to be applied in the railway industry.

By using technologies that are equipped with cameras, IoT
devices, and sensors that collect real-time data from instru-
mented railway infrastructure, data obtained can be analyzed
by AI and can be used to create virtual environments. Many
aspects of real fieldwork that transcend physical limitations can
be created. For instance, to create a virtual environment from
information collected in areas that are difficult to access and
risky for humans. This enables railway inframanagers to conduct
virtual inspections, identify issues, explore, analyze, and opti-
mize various aspects of the railway infrastructure (e.g., design,
operation, and maintenance). However, applying the metaverse
in railway infrastructure is still an emerging concept, and its full
potential has yet to be explored.

5.10 Emerging technologies
Several emerging technologies can contribute to improving the
reliability of railway infrastructure. Examples include blockchain
technology, robotics, and drones. Blockchain technology can
enhance the reliability of the supply chain management
process in the railway industry. It can provide transparent and
tamper-resistant records of the origin, maintenance history, and
certification of critical components, ensuring the integrity and
reliability of the infrastructure. Robots and drones, equipped with
cameras and sensors, can be used to regularly inspect railway
tracks, bridges, tunnels, and other infrastructure components.
They can provide detailed visual data and collect information in
areas that are difficult to access and risky for humans. In addition
to the aforementioned trends, further potential technologies
can include web3, cryptocurrencies, nonfungible tokens, natural
language processing, 5G or 6G technology, conversational AI
humans, etc. These emerging technologies have the potential
to revolutionize the railway industry by improving reliability,
safety, minimizing various types of risks, and enhancing the
overall performance of the railway infrastructure. However, their
use in various cases and their implementation will depend
on technological advancements, industry requirements, and
regulatory considerations on planning and integration with
existing systems.

6. Conclusion
This paper reviews some AI methodologies developed and inte-
grated into railway infrastructure to tackle problems arising from
its usage and natural degradation mechanisms. The methods

focused on in this paper are neural networks, metaheuristics,
regressions, PGMs, clustering, fuzzy logic, and transfer learning.
Based on our survey of journal papers on Scopus, these have
shown great promise for various applications in railway infras-
tructure, and not only at a research level; many of these AI and
machine learning applications have also been implemented in the
railway industry, and the extent of their implementation varies
across different railway operators and regions. Despite their suc-
cess, the use of AI methodologies exhibits certain limitations that
pose challenges for a successful implementation in the railway
industry. Some considerations and discussions about the chal-
lenges and the need for new intelligent methods are presented
in this paper to bridge the gaps between industrial applications
and new AI developments. Researchers in academia and industry
can exploit the information from our paper to visualize trends and
to develop benchmarks of problems and methods tailored to the
particularities of railway infrastructures. Finally, with this paper
we also aim to inform the railway industry about the overview of
technological advances in the field of AI, so even more innovative
uses and applications can emerge in the near future. In addition to
the enthusiasm surrounding the implementation of AI in railway
infrastructure, it is imperative to prioritize economic efficiency
and feasibility. For instance, the existing maintenance and opera-
tional protocols rely on predefined rule sets, which would neces-
sitate modifications when incorporating solutions provided by
AI technologies. Consequently, alongside technological advance-
ments, a fundamental redesign of inspection, monitoring, and
maintenance procedures becomes essential.
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