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ABSTRACT
We present in this work a Lightweight Transaction Protocol (LTP)
for enabling constrained embedded devices’ interaction with mul-
tiple types of blockchains via the LoRaWAN communication pro-
tocol. The proposed protocol provides the benefit of interacting
with multiple blockchains with only 13.5% decrease in battery life.
The protocol also includes a gateway module API that connects
to blockchains and generic smart contracts to authenticate end
devices and store their data. The study points out that, in the worst
case, end-device data can be stored in blockchains with a latency
of 20.3 seconds for Substrate and 6.8 seconds for the Hyperledger
Fabric blockchain.

CCS CONCEPTS
• Computer systems organization → Embedded software;
Peer-to-peer architectures.
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1 INTRODUCTION
One of the main objectives in the IoT (Internet of Things) is to
provide operations or automated logic without any human inter-
vention. These operations are generally executed in a centralized
unit of the IoT network according to the input data recorded by
the IoT devices. The number of devices in IoT networks can be
typically significant, and their identification, authentication, and
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authorization are vital in IoT networks to achieve a highly secured
environment. Since most IoT networks depend on a centralized
unit (e.g., server, cloud), providing a secure environment is a real
challenge because once the centralized unit is compromised with,
the overall network structure can no longer be considered secure.
From the point of view of users or IoT owners, the central entity
of the IoT network cannot be considered a fully trusted party. It
is because the operations that run on a centralized unit (which
can be considered as a trusted party) are not auditable, thus can
alter the provided results. Replacing the centralized entity of an IoT
network with blockchain technology can be a sufficient solution to
achieve a secure environment, as blockchain provides traceability,
auditability and immutability of data. Moreover, with its ability
to execute smart contracts, this technology can provide a trustful
execution of any business logic.

1.1 Motivation
Nowadays, multiple blockchains exist, each of which has specific
requirements, such as the digital signature, encoding format, and
many others to interact with them. The constrained IoT devices
(embedded systems) integration with blockchain technology is chal-
lenging because of the following main issues:

(1) The device must be securely authenticated to the blockchain
network. Therefore a hardware resource-intensive elliptic
curve digital signature must be applied.

(2) The hardware resources can be very limited in IoT devices
such as their limited memory storage capacity, their compu-
tational power or their battery lifetime. Due to the memory
constraint, a constrained device cannot contain a compli-
cated API of significant size. These constraints make it more
difficult for the IoT device to communicate with different
types of blockchains.

(3) In several cases, the transaction allowing the interaction
with the blockchain must contain metadata about the actual
ledger state. Thus, this metadata must be downloaded before
the transaction creation. In the case of IoT, this procedure
is critical because the number of communication (message
sending) of IoT devices must be limited. Their energy con-
sumption is highly increased due to the radio module activa-
tion. The blockchain’s transaction size was not necessarily
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tailored for the use of constrained IoT communication proto-
cols such as LoRaWAN or BLE Bluetooth. The "IoT-friendly"
communication protocols typically apply a payload size of
256 bytes.

(4) The choice of the IoT communication protocol significantly
impacts the device’s energy consumption, the topology, and
the range of the IoT network.

In order to find an optimal solution to these issues, our principal
objective is therefore to verify if some very Low-Power IoT de-
vices could interact with multiple blockchains and smart contracts
automatically and in an authenticated manner. This objective is
separated into three parts. First the device must perform a digital
signature for authenticating itself to the given blockchain. The IoT
device also runs a highly optimized generic API that can access
multiple types of blockchain without computing any specific
blockchain-related requirements. The device sends information
to the blockchain but does not download any information from
it. Finally, the device uses LoRaWAN IoT-efficient communication
protocol for sending its data.

1.2 Contribution
In order to achieve the goals mentioned above, a highly optimized
API written in C language was developed to be used in constrained
IoT devices. As the IoT device’s application does not include the
specific task for blockchain transaction creation, a specific gate-
way module API was also developed. The gateway module API
based on Rust language includes all the necessary tools to han-
dle the messages of the IoT devices, parses them to know the
targeted blockchain, and finally, creates the transaction for the
specified blockchain. It should be noted that the gateway module
API-generated transaction includes the IoT device’s payload. The
current state of the gateway module API allows the interaction with
Hyperledger Fabric [4] and a blockchain based on the Substrate
framework [2], but it is not limited to targeting only these two
blockchains. Generic smart contracts were also implemented to
allow the secure authentication and data storage of the IoT devices.

The structure of the article is as follows: We give in Sect. 2
an evolving state of the art of blockchain technology and embed-
ded device implementations, followed by the problem of creating
blockchain transactions. Our proposed Lightweight Transaction
Library and the gateway module API are detailed in Sect. 3. The
results of our implementations are presented in Sect. 4 with both
the additional energy consumption in the IoT devices due to the
proposed library and the effects on the different blockchain used.
Finally we conclude this article in Sect. 5.

2 STATE OF THE ART
Blockchain is a distributed database that guarantees data immutabil-
ity and the traceability of blockchain events. The blockchain is also
a peer-to-peer network in which the blockchain members are iden-
tified and authenticated thanks to their public keys [14] [17]. Data
can be set to the blockchain via the so-called blockchain transac-
tions, signed by the transaction issuer’s private key. Elliptic curve
cryptography is applied to verify the signature over the transactions,
which allows identifying if the issuer takes part in the blockchain
network and if the transaction was not altered during its sending

[14] [9]. The newly validated transactions are collected in a block
added to the top of the chain of blocks by including the previous
block’s hash value. Since blockchain technology provides a secure
environment, deploying digital codes on it, is advantageous because
the execution logic and results cannot be altered. The previously
mentioned business logic is also called smart contract [15].

2.1 Blockchain and low power IoT
Multiple research works on integrating the IoT devices with block-
chain technology can be found in the literature. In this section, we
discuss the related work which had the most significant impact
on our implementation. In the works of Pincheira et al. [12] [13],
the authors’ overall goal was to establish direct communication
between the IoT devices and the Ethereum blockchain [16]. The
authors deployed an Arduino C library which allows the creation of
Ethereum transactions locally in the IoT device. The valid Ethereum
transaction creation requires the digital signature of the transaction,
which must be done by a private key of a registered blockchain
participant. One of the conclusions of this article is that the digital
signature procedure should be accelerated because its creation
can take a significant amount of time. The authors proposed a
network architecture in which the transactions are forwarded to
the blockchain via a gateway using the LoRaWAN protocol.

Other works [10] [6] propose an IoT API written in C++ to cre-
ate valid blockchain transactions for the Hyperledger Sawtooth
blockchain. In these works, the authors highlight that the Hyper-
ledger Sawtooth blockchain requirements for valid transaction cre-
ation are different than in the case of the Ethereum blockchain. In
the case of Hyperledger Sawtooth the transaction structure is dif-
ferent, and at least two signature is required (one on the transaction
and one on the batch containing the transaction). In that study, the
authors are convinced that IoT device’s communication protocols
like LoRaWAN are more efficient for sending transactions.

2.2 Blockchain transactions
As mentioned, each blockchain has different requirements to cre-
ate valid blockchain transactions. In the case of the Ethereum
blockchain, the Recursive Length Prefix (RLP) serialization method
is used for encoding the transaction. Hyperledger Sawtooth uses
protocol buffers and CBOR encoding for serialization. Moreover,
this transaction is encapsulated in a batch that requires its signa-
ture in addition to the transaction’s signature. With Substrate based
blockchains, SCALE (Simple Concatenated Aggregate Little-endian
Encoding) is used for all data sent and received in the network. Sub-
strate has its own SCALE codec implementation and is optimized
for WebAssembly execution.

The nonce and metadata problem can also be considered a typi-
cal challenge in IoT blockchain integration. For example, Ethereum
is one of the most popular blockchain allowing the deployment of
crypto-currency transactions and complex business logic via smart
contracts. Substrate blockchain is a modular framework which
allows the deployment of new complete blockchain network struc-
tures. In these two blockchains the nonce value must be incre-
mented every time a new transaction is generated. However, the
locally incremented nonce in the IoT and the nonce value in the
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blockchain may differ, which will cause the rejection of the trans-
action. The synchronization of nonce can avoid this problem, but
in that case, the IoT device must perform additive communication.
The same communication issue takes place, for example, in the
case of EOS.IO [8] blockchain because it requires that the transac-
tion issuer downloads some current metadata from the blockchain
(otherwise, the transaction will be rejected).

Another issue is the signature requirements. For example, Hy-
perledger Sawtooth and Hyperledger Fabric use the SHA-2 crypto-
graphic hash functions in the signature schemes. However, Ethereum
uses Keccak. Requirements are also related to the elliptic curves
used in the signature schemes. While Hyperledger Sawtooth, Ethe-
reum, and Substrate apply the secp256k1 curve, for signing the
Hyperledger Fabric transactions, the P-256 curve must be used.

Connecting an IoT device to multiple blockchain networks can
be highly complicated due to the different requirements, not to
mention that implementing multiple APIs requires more storage
space. It must also be noted that in the related works, the transaction
signature is verified by the blockchain protocol. This paper proposes
a so-called Lightweight Transaction Protocol (LTP) in which the IoT
device signs a lightweight transaction (generic structure) embedded
in a real blockchain transaction by the gateway module API. The
gateway creates the transaction according to the requirements of
the given blockchain. The proposed generic smart contract then
verifies the lightweight transaction signature (signed by the IoT
device).

2.3 TheThingsNetwork and other solutions
TheThingsNetwork (TTN) [3] is an IoT ecosystem that creates
networks, devices and solutions using LoRaWAN [7]. TTN pro-
vides full solutions to deploy/manage gateways, applications, and
end-devices. TTN is the middleware between gateways and the
application server.

All devices are secured with credentials (AES encryption on the
payload and a network key) directly into the TTN web-interface. It
is possible to secure the end-device payload using custom AES keys
that are unknown by TTN, thus the application server decrypt the
payload. In addition, the network layer of TTN is secured with a 4
byte signature (sliced AES-CMAC RFC4493) using the network key
and the concatenation of multiple fields of a LoRaWAN network
protocol. Similar ecosystems and companies use the same global
architecture as TTN.

TheThingsNetwork is a free Network server, open to all, pushing
the idea of an open LoRaWAN network. The Things Industries is a
paid solution offering a private network separated from the open
community. ChirpStack [1] is an open source project, a manual
solution for LoRaWAN deployment, development, and network
management. In other words, it provides a solution to deploy a
private gateway. Other organizations exists, mainly in the telecom
operator sector, and multiple companies are actively deploying
their LoRaWAN network creating their own private LoRaWAN
stack solution (e.g. providing network subscriptions to specific
LoRaWAN companies).

The common issue with these solutions is that they are all based
on a centralized network management model. This centralization
can be a significant issue when dealing with a high number of

gateways and can create network organization monopoles. Niya
et al. [11] have already associated LoRaWAN and blockchain to
remove trusted third parties, in which they use TTN to receive the
transmitted end-device payload. However, our approach removes
the TTN layer and transmits the payload directly to a blockchain
after the gateway receives it.

3 ARCHITECTURE AND PROPOSED
IMPLEMENTATION

3.1 Background
Substrate blockchain [2] is an entirely modular blockchain frame-
work that allows the modification of all of its components. The
modification possibilities are vast, including the possible changes
in signature schemes, consensus algorithms, and transaction struc-
tures. Its key feature is the connectivity with Polkadot, a relay-chain
that provides shared security between multiple Substrate-based
chains (also called parachains). This blockchain framework can
probably allow a straightforward adaptation of blockchain to IoT
technology.

Hyperledger Fabric [4] is one of the most popular private block-
chains adapted to be used in complete ecosystems and enterprise use
cases. The main particularities of this blockchain are that the smart
contracts can be developed in different programming languages
such as Golang, JavaScript, and Java. Another particularity is that
the credentials used in this blockchain provide an easy way to
deploy attribute-based access control.

3.2 Lightweight Transaction Protocol
We propose a novel protocol called Lightweight Transaction Pro-
tocol (LTP) that aims to enable blockchain transaction for very
constrained embedded devices. The protocol is based on a spe-
cific data structure, asymmetric cryptography, requires blockchain
smart contracts, and targets wireless wide area networks such as a
LoRaWAN (Long-Range Wide Area Network). LTP has an associ-
ated library called Lightweight Transaction Library (LTL) written
in C/C++ that is compatible with the Arduino IDE environment.
The LTP is an additional layer of the LoRaWAN communication
protocol, thus all LTP packets are encapsulated in LoRaWANUplink
messages (more precisely in the LoRaWAN PHY payload), depicted
in Fig. 1.

The LTP requires to implement a blockchain module on the Lo-
RaWAN gateway which acts as a blockchain transaction demulti-
plexer. In Fig. 2 is the proposed Lightweight Transaction Protocol
implementation using low power end-devices, a gateway, and two
blockchains.

The LTP implementation uses i) Protobuf data format to serialize
the structured LTP data, ii) the C library trezor-crypto for data
hashing and signature generation and iii) LoRaWAN library called
rfthings-stm32l4 which is derived from LacunaSpace code. The sig-
nature is based on ECDSA with the secp256k1 curve, thus using
32 bytes private key and a 33 bytes compressed public_key. The
blockchain_id and the action are encoded on 1 byte and are repre-
sented in Protobuf by an enumerations type. The smart_contract_name
is encoded on 1 to 12 bytes and represented in Protobuf by a string.

The smart contract will verify the LTP transaction using the
LTP payload (public key, the signature, and the message). Thus,

121



IoT ’22 , November 07–10, 2022, Delft, The Netherlands Manon Arnaudo, Luc Gerrits, Ilya Grishkov, Roland Kromes, and François Verdier

Preamble PHDR PHDR_CRC PHYPayload CRC

public_key

Uplink message

LTP payload signature message

LTP message blockchain_id smart_contract_name action Sensors_data

MHDR MACPayload MICPHYPayload

FHDR FPort FRMPayloadMACPayload

1 Byte 9-250 Bytes 4 Bytes

7 Bytes 1 Bytes 1-242 Bytes

33 Bytes 65 Bytes 65 Bytes

1 Byte 1-13 Byte 1 Byte X Bytes

8 Bytes 2 Bytes 4 bits 14- 255 Bytes 2 Bytes

L
ig

h
t T

ra
n
s
a
c
tio

n

P
ro

to
c
o
l

L
o
R

a
W

a
n

Figure 1: LoRaWAN and LTP message structure
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Figure 2: The proposed LTP implementation

LTP requires smart contracts to operate. The smart contract i)
manages the authorized end-devices to send data ii) verifies the
signature and iii) stores the data on-chain. More details of the smart
contract are in the Sect. 3.3.1 and Algorithm 1.

3.3 Gateway module API
Figure 2 represents a generic representation of the gateway contain-
ing the LoRaWAN radio module in a Chirpstack gateway module
and the proposed Gateway module API. The radio module is as-
sociated with a Chirpstack gateway module which converts the
LoRaWAN packages into UDP/MQTT packages [5]. MQTT is a
lightweight protocol that makes easier the communication between
client and broker (server) applications using publish/subscribemeth-
ods. Usually the UDP/MQTT packages are forwarded to a back-
end (e.g., the Things Network server). In our implementation, the
back-end is replaced by our gateway module API which creates
blockchain transactions and forward them to multiple types of
blockchain.

Thanks to an MQTT Client implemented in the gateway module
API, the API can receive the MQTT packages forwarded by the

ChirpStack module. The packages are set to a generic queue in order
to avoid any loss. It is worth noting that the core implementation of
the gateway module API is based on Rust programming language.
The ThreadPool official Rust library was applied to achieve a multi-
threaded environment and thus accelerate tasks execution.

Algorithm 1: Generic Smart Contract required by LTP
1 PUT_DATA (Data, Signature, 𝑃𝑢𝑏𝐾𝑒𝑦𝐼𝑜𝑇 ):
2 𝑒𝑥𝑖𝑠𝑡𝑠 = verify_ID_Storage(𝑃𝑢𝑏𝐾𝑒𝑦𝐼𝑜𝑇 )
3 if 𝑒𝑥𝑖𝑠𝑡𝑠==true then
4 𝑣𝑎𝑙𝑖𝑑 = verify_Signature(𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 , 𝑃𝑢𝑏𝐾𝑒𝑦𝐼𝑜𝑇 , 𝐷𝑎𝑡𝑎);
5 if 𝑣𝑎𝑙𝑖𝑑 == true then
6 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = get_Counter(𝑃𝑢𝑏𝐾𝑒𝑦𝐼𝑜𝑇 );

store_Data(𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ,𝑃𝑢𝑏𝐾𝑒𝑦𝐼𝑜𝑇 );
increment_Counter(𝑃𝑢𝑏𝐾𝑒𝑦𝐼𝑜𝑇 );

7 else
8 return error;
9 end

10 else
11 return error;
12 end
13 GET_DATA (𝑃𝑢𝑏𝐾𝑒𝑦𝐼𝑜𝑇 , 𝑑𝑎𝑡𝑎𝐼𝑛𝑑𝑒𝑥 ):
14 𝑒𝑥𝑖𝑠𝑡𝑠 = verify_ID_Storage(𝑃𝑢𝑏𝐾𝑒𝑦𝐼𝑜𝑇 );
15 if 𝑒𝑥𝑖𝑠𝑡𝑠==true then
16 𝑑𝑎𝑡𝑎 = get_Data(𝑃𝑢𝑏𝐾𝑒𝑦𝐼𝑜𝑇 , 𝑑𝑎𝑡𝑎𝐼𝑛𝑑𝑒𝑥 );
17 if 𝑑𝑎𝑡𝑎 != nil then
18 return 𝑑𝑎𝑡𝑎
19 else
20 return error;
21 end
22 else
23 return error;
24 end

In order to retrieve the lightweight transactions generated by the
IoT devices, the thread pool instantiates as many threads as possible
on the host architecture. After retrieving a lightweight transaction
forwarded via anMQTT package, the LTP parser sub-module parses
the lightweight transaction in order to determine which blockchain
was targeted by the IoT device’s (i.e., blockchain_id, see Fig. 1). This
information is required because the gateway module API includes
the given blockchain SDK or client application which must be exe-
cuted for valid transaction creation. The LTP parser sub-module
also provides the Lightweight Transaction Protocol payload (de-
picted in Fig. 1) to the blockchain client application.

The LTP payload contains valuable information for the valid
blockchain transaction creation, such as the name or the address of
the smart contract that must be called (i.e., smart_contract_name),
the function/action to be executed in the smart contract (e.g., put
or get data) and it also contains the data measured by the sensor
(e.g., Sensors_data). One of the most important criterion of valid
transaction creation is the digital signature of the transaction’s
payload, therefore the signature on the LTP payload. The digital
signature is performed by a private key whose public pair is known
by the blockchain.

In the current state of our gateway module API, the golang SDK
of Hyperledger Fabric and the Rust client application of Substrate
blockchain are available, and each API contains one private key.

Most SDKs are written in a specific programming language,
which makes it difficult to integrate with the basic functionality of
the gateway module API (written in Rust). In the case of Hyperldger
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Fabric, the golang SDK was first compiled into a C shared library
which can be called by the Rust language using specific CString and
pointer structures. Another challenging part of SDKs integration
is related to the blockchain requirements (i.e., transaction struc-
ture and content). Substrate blockchain transactions must contain
a nonce value that specifies the number of transactions sent by a
blockchain member. If the blockchain detects a difference of the
nonce presented in the transaction and the one on the ledger state,
than the transaction will be rejected. In a multi-threaded environ-
ment, increasing correctly the nonce value requires the application
of mutexes, which also makes the API more complex.

3.3.1 Generic Smart Contract. In general, the given blockchain
technology requires the use of a specific language to develop smart
contracts (e.g., Substrate uses Rust, Ethereum Solidity). The LTP
business logic has been implemented in Rust and Golang, which
allows its application in Substrate and Hyperledger Fabric, respec-
tively. Algorithm 1 presents the proposed business logic imple-
mented in the previously mentioned smart contracts, which are
called by the gateway module API. The business logic contains
two main functionalities 𝑃𝑈𝑇_𝐷𝐴𝑇𝐴 and 𝐺𝐸𝑇_𝐷𝐴𝑇𝐴, for storing
and recovering IoT device data. The 𝑃𝑈𝑇_𝐷𝐴𝑇𝐴 function (the last
operation to be called after the IoT device sends data) first checks
whether the IoT device is registered in the smart contract, and the
device’s public key is used as the device identifier. If the device
exists in the database, the next step is the verification of the ECDSA
signature [9]. The counter value associated with the IoT device iden-
tifier (𝑃𝑢𝑏𝐾𝑒𝑦𝐼𝑜𝑇 ) is recovered if the signature is valid. The counter
value specifies the number of data sent by the device (incremented
every time new data is added to the blockchain state). Finally, the
data is stored according to the device’s counter value and identifier.
It must be noted that every time new data is added (i.e. the counter
value is incremented), composite keys are generated to facilitate the
storage in the blockchain state. External applications can recover
data by calling the smart contract 𝐺𝐸𝑇_𝐷𝐴𝑇𝐴 function. The IoT
device’s public key and the number of the data (𝑑𝑎𝑡𝑎𝐼𝑛𝑑𝑒𝑥) sent
must be specified. If the device is registered, the data associated
with the number of the data is provided to the caller.

4 RESULTS
4.1 Results on the end-device
4.1.1 Context and development board. The implementation of LTP,
using LTL, was done on a development board (called UCA board)
realized in the LEAT Laboratory. It is a board used for educational
purposes, but can also be used in more advanced projects. The
board is equipped with an Ultra-low-power Arm Cortex M4 32
bit STM32L476RG processor, 245 KB flash memory, running at
80 MHz, and uses LoRaWAN communication protocol thanks to
the SX1262 Semtech module. The sent data is generated by two
sensors: the HP203B precision barometer and altimeter sensor and
the ICM20948 accelerometer. The HP203B retrieve temperature,
altitude and pressure data. The ICM20948 retrieve x, y, and z axis
accelerations. The board is programmed using Arduino IDE v1.8.19.

We used the OTII Arc device to measure the energy consump-
tion. The OTII interface allows serial link communication with
the development board, which is used to synchronize the software

and energy consumption. Measurement (time, current, energy, and
serial output) are exported in CSV files with a 4KHz sampling
frequency and an accuracy of ±(0.1% + 150𝜇𝐴). Software is syn-
chronized (for each analyzed functions) with two or three bytes
which are sent on the OTII serial link at a bit rate of 115200 bauds,
which adds a delay of 0.19ms to 0.29ms on the measurements. We
configure the LoRaWAN transmission of the end device with a
spreading factor of 7, an end-point output power (TXPower) of 16
dBm, a custom preamble length of 984 symbol, disabled reception
and a transmission frequency of 865MHz. The energy engaged by
the LoRaWAN module amplifier can fluctuate according to the mea-
surement environment, thus the experiments are conducted in a
fixed environment, avoiding external disturbances.

The LoRaWAN protocol allows us to send payloads of 242 bytes
if we use a spreading factor of 7. The use of the LTL requires mini-
mum 124 bytes because of the blockchain transaction requirements.
Protobuf encoding consist of key-value pairs, with the key repre-
senting two information. Increasing the number of fields in the
Protobuf message causes the encoding of the key to vary (i.e. it
may be using more than one byte). The remaining 118 free bytes
can be used for other purposes. If only floating values are sent, the
payload will contain 22 fields, assuming 5 bytes per field (1 for the
key + 4 bytes for float representation).

4.1.2 Detailed analysis of LTL. The use of the two sensors con-
sumes power but allows the reporting of a practical example. In the
first case, the LTL library is not used, the 24 bytes are sent directly
by LoRaWAN protocol (Fig. 3). An average current of 10.91mA can
be observed during the sensing period and an average current of
91.45mA when the board is sending the data (LoRaWAN).

Figure 3: Overall current consumption to transmit 24 bytes
of sensor data without LTL

In the second case, the LTL library is used, thus adds 130 bytes
to the payload which is a total of 154 bytes sent by LoRaWAN (Fig.
4). We are sending six floating values which consist of 30 bytes in
total because of the Protobuf encoding. The end-device thus sends
a lightweight transaction containing six data fields retrieved by the
sensors. An average current of 10.85mA can be observed during the
sensing period, an average current of 19.62mA when building the
lightweight transaction by LTL, and an average current of 91.24mA
when the board is sending the data (LoRaWAN).

A benchmark of measurements is described in Table 1. To ob-
serve the stability and variance of the results we performed 10
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Figure 4: Overall current consumption to transmit 24 bytes
of sensor data with LTL

consecutive measurements. ΔT is the elapsed time and ΔE is the en-
ergy consumed between the wake-up phase of the micro-controller
and the end of sending phase.

Without LTL With LTL
Memory Footprint (kBytes) 57.1 115.1
Data sent by LoRaWAN (Bytes) 24 154
Avg ΔT (s) 1.40 1.70
Avg ΔE (mJ) 311.31 370.65
STD ΔE (mJ) 0.22 0.42

Table 1: Energy, memory footprint, and time impact of LTL
(on 10 measurements)

The impact of LTL on the end-device, for the same sensor data,
costs an average of 21.4% more time, 19.1% more energy and an
additional 130 Bytes has be be sent. An increase of 101.6% can also
be observed in the memory footprint when using LTL.

Note: LTL is compiled with secp256k1 pre-computed elliptic
curve (EC) points provided in the trezor-crypto library. Disabling
pre-computed EC points will increase computation time by an order
of 4 and reduce memory by 14%. The optimization of Arduino IDE
is configured to generate smallest code.

Energy consumption depends on the length of the message,
which varies when using or not LTL. To isolate the LTL consump-
tion independently of the sensors, we disconnected them and we
propose a comparison giving its results in Fig. 5. The comparison
is obtained by averaging 10 measurements and increasing the data
size of the payload. The data consists only of N floating values. As
explained in Sec. 4.1.1, using Protobuf in LTL, one floating value is
encoded into 5 bytes. However, when not using LTL it is possible to
send directly the 4 bytes representing the float value. To summarize,
the data size is a function defined as:

• Without LTL: 𝑓 (𝑁 ) = 𝑁 ∗ 4
• With LTL: 𝑓 (𝑁 ) = 𝑁 ∗ 4 + 130 + 𝑃𝑟𝑜𝑡𝑜𝐹𝑖𝑒𝑙𝑑𝐾𝑒𝑦
N = the number of floating values
ProtoFieldKey = Protobuf encoding field key

𝑃𝑟𝑜𝑡𝑜𝐹𝑖𝑒𝑙𝑑𝐾𝑒𝑦 =

{
1, if N < 15
2, if N ≥ 15

The curve without LTL shows a linear energy consumption
starting at 282.78 mJ and going up to 337.43 mJ. With LTL, the
energy consumption is between 337.43 mJ and 380.04 mJ. Globally,

using the LTL library represents an increase in energy from 54.65
mJ to 66.5 mJ (for 4 and 88 bytes respectively).

Figure 5: Energy per transaction as a function of the number
of bytes sent

We compare the energy consumption of the runtime using the
minimal (4 bytes) and the maximal (88 bytes) payload. The results
given in Table 2 shows that the sign message function (i.e. sign
the LTP transaction) has the biggest impact of the LTL energy con-
sumption. The use of the library is always about 4 mJ and does not
depend on the data size sent. However, LoRaWAN communication
takes 333.17 mJ to send 4 bytes and 375.75 mJ to send 88 bytes.
Thus the overall energy consumption depends on this LoRaWAN
communication step and not on LTL. Therefore, increasing data size
will primarily increase the energy consumption of the LoRaWAN
communication.

Sensors data size
4 bytes 88 bytes

LTL (mJ)

Encoding message < 1 < 1
Hash message < 1 < 1
Sign message 4.19 4.20
Encoding payload < 1 < 1
Total LTL 4.23 4.24

LoRaWAN communication (mJ) 333.17 375.75
Table 2: Runtime energy consumption of LTL functions

4.1.3 Autonomy estimation. Table 3 shows the estimation of the
end-device’s battery life using previous results (given in Table 1).
The scenario is the following: first, the end-device is sensing and
sending a lightweight transaction containing 24 bytes of sensor
data (i.e. dynamic energy). Then, the microcontroller is in sleep
mode for 120 seconds (i.e. static energy). In sleep mode, the end
device’s current consumption is about 100 µA (ultra-low power).
Therefore, the total energy consumption is the sum of static and
dynamic energy. There are two 2.4 Ah batteries that are considered
perfect, delivering a voltage of 3V until complete discharge.

With:

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛(ℎ𝑜𝑢𝑟𝑠) =
𝐸𝑏𝑎𝑡𝑡𝑒𝑟𝑦 (𝑊ℎ)
𝐸𝑡𝑜𝑡𝑎𝑙 (𝑊 )

𝐸𝑡𝑜𝑡𝑎𝑙 (𝑊 ) = 𝐸𝑡𝑜𝑡𝑎𝑙 (𝐽 )
𝑃𝑒𝑟𝑖𝑜𝑑 (𝑠)

(1)

The end-device battery life drops thus by 13.5% with the use of LTL.
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Without LTL With LTL
Data sent by LoRaWAN 24 154
ΔE static (mJ) 51.89 51.89
ΔE dynamic (mJ) 311.31 370.65
ΔE total (mJ) 363.20 422.54
Estimated battery life (days) 200 173

Table 3: Estimated days of autonomy sending 24 bytes of
sensor data (with and without LTL)

Number of
messages

Substrate
Broadcast

Substrate
Finalized

Fabric
Commited

1 389.80 16476.71 3511.50
16 1200.24 18175.43 3444.26
32 2114.49 18520.19 4479.25
48 2493.45 19636.03 5472.69
64 4018.58 20374.68 6825.06

Table 4: Average latencies of the gateway module API in
milliseconds

4.2 Results on the gateway module API and
blockchain

In our work, a gateway module API was deployed to facilitate the
IoT devices’ interaction with multiple types of blockchain smart
contracts. The API has multiple tasks to execute, such as the parsing
of the LTP protocol messages and the creation of valid transactions.
In the following experiment we measured the average latency of
each LTP transactions from its arrival at the gateway module API
(delivered by the LoRaWAN radio module) until the blockchain
transaction (created from the LTP) is committed (i.e. finalized) on
the blockchain.

The maximum number of LoRaWAN packets that can be received
in parallel by the LoRaWAN radio module is 64, which also means
that the maximum number of MQTT packets (parsed LoRaWAN
packets) present in parallel at the gateway module API cannot ex-
ceed this number. It should be noted that the API’s latency is highly
dependent on the number of simultaneous packets received and the
throughput of the blockchain (the time taken to consider a transac-
tion finalized in the blockchain state). Table 4 shows for the two
blockchains the average latencies when the MQTT packages arrive
in parallel, and the gateway module API instantiates 64 threads to
handle the LTP package parsing, transaction creation, and their
forwarding.

The benchmark can also be considered as the simulation of the
LoRaWAN radio module packets forwarded via the Chirpstack
bridge (depicted in Fig. 2), which forwards MQTT packages simul-
taneously to the gateway module API. The generation of MQTT
packages is performed by a PC that forwards the generated pack-
ages to the gateway using TCP IP transmission. For the package
content generation, 64 different end-device public keys were used,
and the public key for content creation was chosen randomly.

4.2.1 Benchmark and settings. The gateway module API is exe-
cuted on a Raspberry Pimodel 3B+ (Quad-core Cortex-A53@1.2GHz)
as this hardware architecture is one of the most popular and cheap-
est solutions for LoRaWAN gateway deployment.

Substrate blockchain network contained five nodes, and they
were implemented in a cluster environment with a total capacity of

282 GB of RAM and 192 CPU cores. The Aura consensus algorithm
is applied to create blocks and a second consensus algorithm called
GRANDPA to finalize the blocks and transactions.

The deployed Hyperledger Fabric network consists of two peers
and one orderer node (official test network) and was executed
on a 16-core 11th Gen Intel(R) Core(TM) i7-11850H @ 2.50GHz
architecture. The peers and orderer use the Practical Byzantine
Fault Tolerance (PBFT) consensus algorithm.

In order to make our experiments more realistic, the imple-
mentation locations are different, the gateway and the Substrate
blockchain are located in France, and the Hyperledger Fabric im-
plementation is located in the Netherlands.

4.2.2 Latency results. The previously explained setup provides us
with the results depicted in Fig. 6. The simulation sends messages
to the module similar to an end-device payload. We can notice that
the measurements where made with 5 different configurations.
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Figure 6: Gateway Blockchain Module Latencies +/- standard
deviation over 5 measurements

The first observation is that the latency of the module increases
when submitting more messages to the gateway, independently of
the blockchain used. The latency depends on the message targeted
blockchain (Substrate based blockchain or Hyperledger Fabric) and
depends on the blockchain transaction finalization we choose. As
explained previously the module will always wait for the HTTP/ws
status after sending a transaction.

In the case of a Substrate based blockchain, a transaction status
can either be broadcasted, inblock, or finalized. When only broad-
casting the transaction, the module does not wait if it has reached
blockchain consensus. When waiting the finalized status, the trans-
action has reached the consensus process and thus stored the trans-
action in the blockchain ledger (i.e. using a block time of 6 seconds,
the consensus GRANDPA is reached after 3 block time, thus 18
seconds).

In the case of Fabric, a transaction status is known directly after
sending the transaction (pending, failed, or committed), thus when
successful, a transaction is committed and has reached the consen-
sus (PBFT) process. The following module latencies are obtain when
sending only one message: 1) 389.80 ms for a Substrate broadcast
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transaction, 2) 16476.71 ms for a Substrate finalized transaction, 3)
3511.50 ms for a Fabric committed transaction.

The latency of the Substrate broadcast mode is five times lower
than the latency in finalized mode. In the latter, the transaction
has to wait three block-time before being finalized. However, in
broadcast mode, Substrate only validates and queues transactions.
Hyperledger Fabric latency is close to Substrate broadcast mode,
which is due to PBFT consensus algorithm.The finalized latency in
Substrate is higher than in Fabric due to performing two consensus
algorithms (Aura and GRANDPA).

If the use case requires ensuring that the transaction has been
stored on the chain, the gateway blockchain module has to be con-
figured to wait the finalized and committed status, thus increasing
latency. This will allow also to implement a downlink message
in the case of a transaction fail. However, in some application, it
is allowed to use the broadcast status, resulting in a much lower
latency compared to using finalized or committed statuses.

Furthermore, the gateway can process multiple messages at the
same time (batches of 16, 32, 48 and 64 messages). The increase
in latency shows the hardware limits of the gateway that cannot
allow the module to increase indefinitely the number of threads.
One batch of 64 transaction has an average latency of 6825.06ms
(using Fabric). Meaning each message will create a new thread and
takes on average 6825.06ms to be committed to the ledger. Sending
too many messages will overflow the number of threads and in the
same way increase latency drastically.

The results in Table 4 are a key element to understand the maxi-
mum LoRaWAN uplink duty cycle of the end-device. If we have a
high probability to send multiple messages at the same time, the
end-device uplink should at least have a duty cycle greater or equal
to the corresponding latency of the number of messages submit-
ted in parallel (e.g., high probability of 16 LoRaWAN messages in
parallel requires the end-device uplink duty cycle to be at least
3444.26ms when using Fabric).

5 CONCLUSION
The principal objective of our research is thus completely reached.
We have shown that even in Low-Power IoT devices we are able
to interact with two (or more) blockchains and smart contracts.
Moreover the devices are authenticated by the smart contracts,
respecting the ECDSA signature verification.

To the best of our knowledge, our proposed work is the first im-
plementation of a lightweight protocol integrating the LoRaWAN
communication protocol for allowing constrained devices to in-
teract with multiple blockchains. Our proposed protocol allows
sending data to the Substrate and Hyperledger Fabric blockchains
with a relatively low overall energy consumption of 422 mJ for
sending 24 bytes of data. The experiments also highlight that the
end-device battery life drops by 13.5% when using LTL, which
can be considered acceptable as it also offers the possibility of in-
teraction with multiple blockchains. Furthermore, the proposed
solution contains a gateway module API which includes the SDKs
of the blockchains mentioned above, handling the valid blockchain
transaction creation and sending. The results show that 64 simul-
taneously forwarded LoRaWAN packages can be converted into
transactions and committed (stored in the blockchain state) with

a latency of 20.3s for Substrate and 6.8s for Hyperledger Fabric
blockchain. This result indirectly means that if a new flow of 64
packets arrived at the gateway within the mentioned latency, the
gateway module API and the blockchain will not be able to handle
all of the transactions, and some of the transactions will be rejected.
Thus the duty cycle and the number of devices per gateway must be
chosen according to these latencies. Details about the LTL library
and the LTP protocol, along with the way of sending the MQTT
messages to the blockchains are detailed in a github repository1.
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