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On the Effects of Intertidal Area on Estuarine Salt Intrusion
Gijs G. Hendrickx1 and Stuart G. Pearson1

1Department of Hydraulic Engineering, Delft University of Technology, Delft, The Netherlands

Abstract Worldwide, estuaries are increasingly constrained by human interventions, such as wetland
reclamations. Intertidal area has an important influence on the extent of estuarine salt intrusion. Previous
research has shown conflicting effects of intertidal area on the salt intrusion. Therefore, this study explores this
interaction for three estuary classes: (a) salt wedge, (b) partially mixed, and (c) well‐mixed. Our findings show
that the effect of intertidal area on the salt intrusion depends on the estuary class: enlarging the intertidal area
reduces the salt intrusion for salt wedge and partially mixed estuaries, but vice versa for well‐mixed estuaries.
These opposing responses are explained by the balance between salt fluxes driven by the estuarine circulation
versus by the tidal oscillation. In general, enlarging intertidal area results in the suppression of the estuarine
circulation. Such system understanding is especially relevant in an era of increasing coastal urbanization.

Plain Language Summary Worldwide, estuaries are increasingly modified due to human activities,
like reclaiming wetlands (i.e., areas that are submerged at high tide but exposed at low tide). Changes in these
intertidal zones of estuaries can affect how far the salty water reaches inland, so‐called salt intrusion. Past
studies have given conflicting answers as to how the intertidal area influences salt intrusion. This study focuses
on three classes of estuaries: (a) salt wedge (poorly‐mixed), (b) partially mixed, and (c) well‐mixed. We have
found that the impact of the intertidal area on salt levels depends on the estuary class. Increasing the intertidal
area reduces salt intrusion for salt wedge and partially mixed estuaries, while an opposite effect occurs in well‐
mixed estuaries. These different outcomes are connected to the balance between salt transport by density‐driven
currents and that driven by the tides. Our contribution to the understanding of these complex natural dynamics is
of growing relevance in an age of magnified pressures on estuaries.

1. Introduction
Estuaries are human attractors due to their provision of freshwater and fertile soils, which has led them to become
heavily modified over time (Pont et al., 2002). The supply of freshwater by the rivers is essential for these regions
due to their connectivity with the sea, which promotes salinization—and thereby contamination—of the fresh-
water reserves (Costall et al., 2018). This can lead to water stress—that is, the shortage of freshwater (Wada
et al., 2011)—, which is amplified by the high population densities found in coastal regions near estuaries. Water
scarcity occurrences and their severity are likely to increase due to (relative) sea level rise, and increased fre-
quency and duration of droughts induced by climate change (Distefano & Kelly, 2017; Veldkamp et al., 2015). In
addition to their direct reduction of the freshwater supply, both sea level rise and increased droughts also promote
salt intrusion, which indirectly puts a strain on the freshwater availability.

Meanwhile, estuaries are increasingly constrained due to human interventions, increasing their vulnerability to
the changing environment (Pont et al., 2002). These human modifications often include the reduction of intertidal
area and the channelization of the estuary: for example, the Westerschelde in the Netherlands (Nnafie et al., 2019;
van Dijk et al., 2021); the Newark Bay in the United States (Chant et al., 2018); and the Yangtze River in China
(Lyu & Zhu, 2019). These developments have increased the vulnerability of these estuarine systems to storm
surges (e.g., Temmerman et al., 2013; Zhang et al., 2021) as well as salt intrusion, threatening the freshwater
availability (e.g., Hendrickx et al., 2023; Yang & Wang, 2015). Besides the increased vulnerability, the chan-
nelisation and its associated reduction—or even complete removal—of intertidal area greatly damages the
estuarine ecosystem (e.g., Seitz et al., 2014; van der Wal et al., 2017; van Wesenbeeck et al., 2014).

Recent studies have shown that intertidal areas influence the salt intrusion in estuaries (e.g., Geyer et al., 2020;
Hendrickx et al., 2023; Lyu & Zhu, 2019; Siemes, 2024; Zhou et al., 2020), hence the freshwater availability.
Tidal flats have been found to reduce salt intrusion (Hendrickx et al., 2023; Lyu & Zhu, 2019), but their influence
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has also been shown to be negligible, or even enhance salt intrusion
(Siemes, 2024). This discrepancy begs the question of what the influence of
intertidal areas is on salt intrusion, and what the underlying mechanisms are.

The aim of this paper is to investigate the effects of intertidal area on the salt
intrusion for different estuary classes. Thereby we address the research
question how tidal flats influence estuarine salt intrusion. Instead of exploring
all possible estuarine configurations (as in, e.g., Hendrickx et al., 2023), we
limit ourselves to the three main estuary classes allowing for a more detailed
analysis.

2. Method
Central to this study on the effect of intertidal areas on the salt intrusion is a
sensitivity analysis exploring different descriptions of tidal flats (Section 2.1).
The effects are determined using a three‐dimensional hydrodynamic model:
Delft3D Flexible Mesh (Section 2.2); and we use a salt flux decomposition to
distinguish the driving mechanisms of salt transport. This decomposition
method is presented in Section 2.3.

2.1. Sensitivity Analysis

To explore the effects of intertidal area on the salt intrusion, we use idealized estuarine morphologies: funnel‐
shaped estuaries with a centralized channel. The morphology of the idealized estuaries are inspired by the
Western Scheldt (the Netherlands), Pungue (Mozambique), and Hau (Vietnam). These are defined by estuary‐
scale parameters in a similar fashion as in Hendrickx et al. (2023). The forcing conditions (tidal range and
river discharge) and the parametric design of the tidal flats are varied to investigate their effects on the salt
intrusion in an estuary. Table 1 gives an overview of the input space explored in this study.

The depth and width of the tidal flats follow from two ratios we have varied (Table 1): (a) the flat depth ratio,
rd (∈ {0.00, 0.25, …, 1.00}); and (b) the flat width ratio, rW (∈ {1.0, 1.2, …, 2.0}). These are similarly defined as
in Hendrickx et al. (2023) resulting in the flat depth (df) and width (Wf):

d f =
1
2
rda (1)

where rd is the flat depth ratio [–]; and a the tidal range [m];

Wf = (rW − 1)Wc (2)

where rW is the flat width ratio [–]; and Wc the channel width [m].

Hendrickx et al. (2023) showed that spatially varying bottom friction—that is, separate bottom friction values for
the channel and the intertidal areas—had little effect on the salt intrusion length. As such, we have applied a
uniform bottom friction coefficient (n, Table 1).

The cross‐sectional profile of the estuaries follow a generalized normal distribution. The flat depth ratio (rd)
defines the base of the distribution; and the flat width ratio (rW) defines the cut‐off of the distribution's tail
(Figure 1a). Thus, the channel remains constant for all estuarine layouts to which an intertidal area is added based
on these two ratios. These ratios are explored using a factorial space, which results in a two‐dimensional space (rd,
rW‐space).

The effects of tidal flats on the salt intrusion are considered for three estuary classes: (a) salt wedge, (b) partially
mixed, and (c) well‐mixed. The classification is based on the estuarine Richardson number (Fischer, 1972):

RiE =
gβs0Q
Wcu3

t
(3)

Table 1
Input Parameters Including Their Values or Ranges and Corresponding
Units

Parameter Symbol Value Unit

Tidal range a 1.0–4.0 m

River discharge Q 200–10,000 m3 s− 1

Channel depth dc 10.0 m

Channel width Wc 2,500 m

Flat depth ratio rd − 1.0–1.0 –

Flat width ratio rW 1.0–2.0 –

Bottom friction n 0.023 m− 1/3s

Convergence γ 5.6 × 10− 5 m− 1

Note. The idealized geomorhology of the estuaries is inspired by the West-
erschelde (The Netherlands), Pungue (Mozambique), and Hau (Vietnam).
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where g is the gravitational acceleration [g = 9.81 ms− 2]; β the haline contraction coefficient
[β = 7.6 × 10− 4 psu− 1]; s0 the salinity (at the mouth) [s0 = 30 psu]; Q the river discharge [m3s− 1];Wc the channel
width (Wc = W − Wf = W/rW) [m]; and ut the tidal flow velocity [ms− 1], which is estimated as:

ut ≈
a

2
̅̅̅
2

√

̅̅̅̅̅g
dc

√

where a is the tidal range [m]; and dc the channel depth [m]. This estimation of the tidal velocity equals the root‐
mean‐squared velocity of a monochromatic wave.

The estuarine Richardson number describes the level of stratification in the estuary resulting in the aforemen-
tioned three classes: (a) RiE > 0.8, salt wedge; (b) 0.08 < RiE < 0.8, partially mixed; and (c) RiE < 0.08, well‐
mixed. The chosen forcing conditions—that is tidal range, a, and river discharge, Q—per class are given in
Table 2 including their estuarine Richardson numbers. These forcing conditions result in similar classifications of
the estuaries according to the classification by Geyer and MacCready (2014, not shown). Note that the forcing
conditions representing the estuarine classes in Table 2 investigate only a small part of the input space to enable
in‐depth analyses of the driving mechanisms. For a fuller coverage of the input space, we refer the reader to
Hendrickx et al. (2023).

2.2. Hydrodynamic Model

The idealized estuaries as described in Section 2.1 are simulated using a process‐based hydrodynamic modeling
software: Delft3D Flexible Mesh (Kernkamp et al., 2011). This software solves the Reynolds‐averaged Navier‐
Stokes equations assuming hydrostatic pressure and implementing the k‐ɛ turbulence closure model.

The model domain of the parametric design consists of two sub‐domains: (a) the shelf, and (b) the estuary. The
shelf domain is a square of 30 × 30 km. The grid resolution varies from 1,000 × 1,000 m at the offshore
boundaries to 62.5 × 62.5 m near the mouth of the estuary. In between, the grid resolution transitions in steps of a

factor of two: 500 × 500, 250 × 250, and 125 × 125 m. The different grid
resolutions are connected using triangular grid cells.

The estuary domain is a deformed rectangle of 200 km length and varying
width, depending on the intertidal area definition (Table 1). The deformation
follows from the convergence, as the estuary's channel width exponentially
decreases from 2,500 m (Table 1) to a minimum channel width of 600 m. The
grid resolution in the estuary moves from 62.5 × 62.5 m at the mouth to
<250 × 1,000 m at the upstream boundary. The high resolution region
reached until 150 km landward after which the grid transitions to a coarser

Figure 1. Parametric design of estuaries: (a) Cross‐section: rd is the flat depth ratio; rW the flat width ratio (Table 1); AHWc the
channel cross‐sectional flow area; and AHWf the flat cross‐sectional flow area (Equation 7). LW: low water; MSL: mean sea
level; HW: high water. (b) Planar view.

Table 2
Boundary Conditions per Estuary Class

Class a (m) Q (m3s− 1) RiE (–)

Salt wedge 1.0 10,000 16.2

Partially mixed 2.0 500 0.101

Well‐mixed 4.0 200 0.00507

Note. The estuarine Richardson numbers are based on Equation 3.
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resolution in a similar fashion as in the shelf domain. The <250 m near the upstream boundary follows from the
deformation of the rectangular grid induced by the convergence.

Due to the focus on salt dynamics, the estuaries are simulated in three dimensions, where the vertical is dis-
cretisied with a hybrid Z, σ‐layering. Five σ‐layers are placed on top of the Z‐layers, which are more suitable for
computing pycnoclines (Stelling & van Kester, 1994). The interface between the two vertical discretization
methods is at zZ,σ = − 4.0 m resulting in Δσ ∈ [0.4, 1.2] m depending on the tidal range and moment in the tidal
cycle. Within the estuarine domain, the Z‐layers have equal thickness ΔZ = 1.0 m, which grows beyond
zcst = − 10.0 m in the offshore domain—that is, the shelf domain—with a factor of 1.10.

2.3. Salt Flux Decomposition

The transport of salt is driven by multiple factors with differing relevance depending on the boundary conditions
and estuarine morphology. Decomposing the salt fluxes provides insights into these driving forces (e.g., Dronkers
& van de Kreeke, 1986; Garcia et al., 2022; Lerczak et al., 2006; Ralston et al., 2010). The total salt flux is the
product of the flow velocity and the salinity, integrated over the cross‐sectional area normal to the flow velocity,
positive in the landward direction:

F =∫ us dA (4)

where u is the flow velocity [ms− 1]; s the salinity [psu]; and A the cross‐sectional area [m2]. The over‐bar rep-
resents temporal averaging over a tidal cycle.

The salt flux decomposition discriminates between four salt flux components: the salt flux related to (a) net flow
or river discharge, (b) tidal oscillation, (c) estuarine circulation, and (d) time‐dependent shear. These components
are build up by differing the mathematical moment of temporal and/or spatial integration. Equations 5a–5e list the
building blocks, where ξ is either representing the flow velocity, u, or the salinity, s:

ξ1 =
∫ ξ dA
∫ dA

(5a)

ξ2 =
∫ ξ dA
∫ dA

− ξ1 (5b)

ξ∗ = ξ − ξ2 − ξ1 (5c)

ξ3 =
ξ∗ dA

dA
(5d)

ξ4 = ξ∗ − ξ3 (5e)

Thus, ξ1 represents the average over the tide and integration over the cross‐section; ξ2 the integration over the
cross‐section; ξ3 the average over the tide; and ξ4 the remainder. The sum of the flow velocity components, that is,
Equations 5a–5e with ξ = u, equals the flow velocity, u: ∑4

i=1ui = u. Subsequently, the resulting four salt flux
components are defined as:

F1 = u1s1∫ dA (6a)

F2 = u2s2∫ dA (6b)

F3 =∫ u3s3 dA (6c)

Journal of Geophysical Research: Oceans 10.1029/2023JC020750
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F4 =∫ u4s4 dA (6d)

where Fi follows the prior numbering of salt flux components [psu m3s− 1]: F1

relates to the net flow; F2 to the tidal oscillation; F3 to the estuarine circu-
lation; and F4 to the time‐dependent shear. The sum of these salt flux com-
ponents represents the total salt flux:

F ≈ ∑
4

i=1
Fi

The salt flux related to the net flow (F1) is offshore‐directed (negative),
compensating for the other components, which are generally all landward‐
directed (positive). The flux component related to the time‐dependent shear
is a residual term (Equation 5e) and generally an order of magnitude smaller
than the other fluxes; therefore, it is often excluded from analyses or included
in either F2 or F3 (e.g., Dronkers & van de Kreeke, 1986; Garcia et al., 2022;
Lerczak et al., 2006; Ralston et al., 2010). In this study, we focus on the salt
flux components related to the tidal oscillation (F2) and the estuarine circu-
lation (F3) for these reasons.

3. Results
The salt intrusion length is normalized relative to the reference cases without
tidal flats, L0

s (i.e., rW = 1.0). The values of these reference salt intrusion
lengths are L0

s,SW = 11.9 km (salt wedge), L0
s,PM = 43.1 km (partially mixed), and L0

s,WM = 27.9 km (well‐mixed).
The effects of the flat depth and width ratios (rd and rW) can be encapsulated by a single, combined variable: the
wet cross‐sectional area of the tidal flats. In Figure 2, the cross‐sectional area of the channel as well as the tidal
flats are considered at high water at the mouth of the estuary. This is reflected by adding the tidal amplitude to the
depth profile:

AHW =∫
W
d(x0,y) +

1
2
a dy (7)

where d(x0, y) is the cross‐section profile based on the generalized normal distribution at x = x0, that is, at the
mouth. The cross‐sectional area of the channel, AHWc , considers the width‐integration over the channel width (Wc);
the remainder reflects the cross‐sectional area of the tidal flats, AHWf (Figure 1a). Further results are presented
using the areal ratio, AHWf /AHWc (similar to ratios used in Dronkers, 1978; Okubo, 1973).

The cross‐sectional flow area of the tidal flats (AHWf ) increases from salt wedge to well‐mixed estuaries (Figure 2)

due to the larger tidal range imposed to achieve the different estuary classes (Table 2).

For both the salt wedge and partially mixed estuary classes, an increased areal ratio reduces the salt intrusion
length, while the opposite is true for the well‐mixed estuary (Figure 2). In case of the well‐mixed estuary,
increasing the intertidal area can more than double the salt intrusion length compared to the reference case (i.e.,
without intertidal area).

The spatial distributions of the salt flux components show a shift from being dominated by the estuarine circu-
lation in a salt wedge estuary (Figure 3a) to tidal oscillation in a well‐mixed estuary (Figure 3c). The introduction
of intertidal area does little to change the dominant salt flux component in these estuaries that are strongly
dominated by either the estuarine circulation or the tidal oscillation related salt fluxes.

However, the partially mixed estuary shows a transition between these salt flux components (Figure 3b), where
the intertidal area has a profound influence on the spatial distribution of the salt flux components (Figure 4):

Figure 2. Influence of cross‐sectional areas at high water on the salt intrusion
length (Equation 7 and Figure 1a). SW: salt wedge; PM: partially mixed;
WM: well‐mixed.
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Increasing the intertidal area causes the dominant component of the landward salt flux to shift from estuarine
circulation to tidal oscillation. A complete overview of all salt flux components and their dependencies on the
areal ratio for all three estuary classes is given in Figure S1 in Supporting Information S1.

4. Discussion
Salt intrusion is affected by the expansion of intertidal area in two opposite directions: it increases for well‐mixed
estuaries; but decreases for salt wedge and partially mixed estuaries (Figure 2). In case of the well‐mixed estu-
aries, the intertidal area facilitates the influx of saline water over the flats (Figure 5c). This influx is absent for the

Figure 3. Spatial distribution of the major salt flux components (tidal oscillation and estuarine circulation) for all three estuary classes: (a) salt wedge, (b) partially mixed,
and (c) well‐mixed. The spatial distributions are displayed between the mouth (0.0) and the extent of the estuarine salt intrusion (1.0).

Figure 4. Spatial distribution of the major salt flux components: F2, tidal oscillation (Equation 6b); and F3, estuarine circulation (Equation 6c). The color‐grading
represents the areal ratio for the partially mixed estuary class (using Equation 2). Same data as Figure 3b.
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other estuarine classes, where the salt fluxes are negligible on the intertidal areas (Figures 5a and 5b; in line with
Geyer et al., 2020).

The influx over the intertidal flats in well‐mixed estuaries increases with increasing intertidal area: Figure 6
distinguishes between the salt fluxes in the channel and on the tidal flats. For both the salt wedge and partially
mixed estuaries, the in‐ and effluxes are balanced both in the channel and on the flats (Figures 6a and 6b);
however, the flats are a strong importer of saline water for well‐mixed estuaries, which is compensated for via the
channel (Figure 6c).

In well‐mixed estuaries, this influx over the intertidal area and efflux in the channel follows a typical barotropic
circulation pattern (e.g., Bosboom & Stive, 2021; Kjerfve, 1978; Wang et al., 1999). This planar circulation
pattern is also clearly visible in the residual flow patterns (Figure 7c). However, it is missing for the salt wedge

Figure 5. Streamlines of tide‐averaged, depth‐integrated salt fluxes (Equation 4) for the three estuarine classes: (a) salt wedge, (b) partially mixed, and (c) well‐mixed.
The flux‐field represents the estuary with the maximum flat width (i.e., rW = 2.0) and the flat depth at mean‐sea‐level (i.e., rd = 0.0). The width of the streamlines
represent the flux magnitude. Note that the y‐axis is such normalized that the convergence of the estuary is compensated for.

Figure 6. Spatial distribution of the total salt flux (Equation 4, F) distinguishing between the channel and the tidal flats for all three estuary classes: (a) salt wedge,
(b) partially mixed, and (c) well‐mixed.
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and partially mixed estuaries (Figures 7a and 7b). The negligible role of the intertidal area on the salt fluxes for the
salt wedge estuary (Figure 6a) is in line with Geyer et al. (2020); and this statement can be extended to partially
mixed estuaries as well (Figure 6b).

In addition to the total salt fluxes and flow patterns, the enhancement of intertidal areas also changes the dis-
tribution of salt flux components: Figure 4 shows an increasing dominance of the tidal oscillation of the landward
salt flux with increasing intertidal area, that is, increasing areal ratio AHWf /AHWc . (An overview with all estuary
classes is presented in Figure S1 in Supporting Information S1.)

In compound channels like those featured in this study, the abrupt depth change between shallow intertidal areas
and the main channel enhances mixing (e.g., De Leo et al., 2022; Stocchino et al., 2011; van Prooijen et al., 2005).
This mixing is intensified by the tidal influence (He et al., 2023). This increase in tidal mixing is reflected by an
increased contribution of the tidal oscillation to the salt balance. To illustrate the relative contribution of the tidal
flux, Hansen and Rattray (1965, 1966) proposed the use of a salt flux fraction. We have generalized this definition
to reflect the importance of any of the salt flux components:

νi = −
Fi
F1

(8)

Figure 7. Spatial distribution of the flow velocity and salinity, both considered tide‐ (and depth‐averaged), for all three estuary classes: (a, d) salt wedge, (b, e) partially
mixed, and (c, f) well‐mixed. The flow‐fields are represented for the same estuaries as in Figure 5. The width of the streamlines represents the flow magnitude (in the top
row); the blue‐shading the salinity.
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where Fi is salt flux i with i ∈ {2, 3} (i.e., Equations 6b and 6c) [psu m3s− 1]; and F1 the salt flux related to the net
flow (Equation 6a) [psu m3s− 1].

As F1 is the seaward‐directed salt flux and the other salt flux components are landward directed, the flux fraction
νi (Equation 8) quantifies the contribution—or fraction—of the salt flux Fi to the landward flux. Due to the
opposing directions—that is, opposing signs—of the fluxes, Equation 8 includes a minus‐sign such that
νi ∈ [0, 1].

Estuarine circulation reduces with increasing intertidal area—as shown in Figure 4—for all three estuarine classes
(Figures 8d–8f), whereas the tidal flux gains relevance (Figures 8a–8c). When the dominant salt flux component
is related to the estuarine circulation, this suppression by the intertidal area reduces the salt intrusion; thus,
suppressing the estuarine circulation in salt wedge and partially mixed estuaries decreases the salt intrusion
(Figures 2a and 2b). However, in case the dominant salt flux is related to the tidal oscillation, reducing the
estuarine circulation—and hence further enhancing the tidal flux—will promote salt intrusion; this is the case for
well‐mixed estuaries (Figure 2c). This is consistent with the increased tidal dispersion—and correspondingly salt
intrusion—due to tidal trapping identified by Dronkers (1978) and Okubo (1973).

Note, however, that the fractions in Figure 8 do not always add up to 1—especially in case of the well‐mixed
estuary (Figures 8c and 8f). This discrepancy is related to a larger contribution of the time‐dependent shear
(F4) for the partially mixed and well‐mixed estuaries (Figure S1 in Supporting Information S1).

The suppression of the estuarine circulation by the introduction of intertidal area as found in this study contradicts
the findings by Zhou et al. (2020). In their study, the addition of intertidal area instead stimulated the estuarine
circulation. Their modeled increase in estuarine circulation was attributed to tidal straining (Zhou et al., 2020),
using the decomposition method proposed by Burchard et al. (2011). Following this reasoning, the estuarine
circulation must increase in our study as well, since our width‐to‐depth ratio favors tidal straining (Schulz
et al., 2015). This discrepancy is expected to result from the inclusion of a net flow due to the river discharge in
our study, which is neglected in the studies of Schulz et al. (2015) and Zhou et al. (2020). Furthermore, the
simulations executed in our study consider the whole estuarine domain (Figure 1b), while Zhou et al. (2020) only
consider a cross‐sectional slice of the estuary. Thus, the baroclinic effects of enlarging the intertidal area are
magnified where barotropic effects are dominant; for example, increasing ebb‐dominance of an estuary generally
reduces its salt intrusion (e.g., Cheng et al., 2013; Hendrickx et al., 2023; Pein et al., 2018).

In all of the estuaries we investigated, there is a shift from salt fluxes driven by estuarine circulation to tidal
oscillation as the areal ratio increases (Figure 8). However, the effects of areal ratio on salt intrusion differ greatly
(Figure 2): from mild reduction of the salt intrusion for salt wedge estuaries, substantial reduction of salt intrusion

Figure 8. Salt flux fractions as function of the areal ratio related to (a–c) the tidal oscillation, ν2; and (d–f) the estuarine circulation, ν3, for all three estuary classes: (a, d)
salt wedge, (b, e) partially mixed, and (c, f) well‐mixed.
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for partially mixed estuaries, to enhancement of salt intrusion in well‐mixed
estuaries. This discrepancy relates to the ability of the tidal mixing to over-
come the stratification; a balance expressed by the Simpson number (e.g.,
Burchard et al., 2011; Geyer & MacCready, 2014; Simpson et al., 1990):

Si = −
gβd2

c
c f u2

t

∂s
∂x

(9)

with

c f =
gn2

d1/3
c

where the longitudinal salinity gradient is determined on an estuary‐scale, that is, based on the salt intrusion
length; cf is the nondimensional friction coefficient [–]; and n the Manning's n [m− 1/3s] (Table 1).

The partially mixed and salt wedge estuaries we investigated have a value Si > 0.2, which is marked as the
transition value at which tidal mixing cannot overcome stratification throughout the tidal cycle (e.g., Cheng
et al., 2013; Geyer & MacCready, 2014; Stacey & Ralston, 2005). The estuarine circulation scales with the
Simpson number (Burchard & Hetland, 2010; Geyer & MacCready, 2014), and even more so for large Simpson
numbers (i.e., Si> 0.2; Geyer & MacCready, 2014; Ralston et al., 2008). Thus, increasing the tidal mixing in such
systems reduces the landward salt transport—that is, reduces the salt intrusion.

To further investigate this phenomenon, we extended the input space with two additional sets of boundary
conditions representing estuaries classified as “partially mixed” (following Equation 3; see Table 3). Both added
estuaries showed a similar response to the salt wedge estuary; that is, there is a weak reduction in the salt intrusion
length for increasing intertidal area (not shown).

These scaling relations with the Simpson number and the findings of this study suggest the following: (a) for
Si > 0.2 (permanently stratified), the addition of tidal mixing by enlarging the intertidal area reduces the salt
intrusion length; (b) for Si< 0.2, the addition of tidal mixing enhances tidal dispersion causing the salt intrusion to
increase; and (c) the mitigating effect of intertidal areas on salt intrusion increases the closer the Simpson number
gets to its critical value, that is, Si = 0.2—so long as it remains above this value.

5. Conclusion
The enhancement or reduction of salt intrusion as a function of intertidal area depends on the estuary class
(Figure 2): the enlargement of intertidal area reduces the salt intrusion in salt wedge and partially mixed estuaries;
in well‐mixed estuaries, the effect is opposite.

The driving mechanisms of salt intrusion—that is, the salt flux components (Equations 6a–6d)—are similarly
affected by intertidal area, independent of estuary class. The estuarine circulation is damped by increasing
intertidal area (Figure 8). As estuarine circulation is the dominant driver of landward salt transport in salt wedge
and partially mixed estuaries, suppressing this mechanism results in a reduction of the salt intrusion. However, in
well‐mixed estuaries, the landward tidal salt flux is dominant, which is enhanced by enlarging the intertidal area.
Therefore, the salt intrusion grows with increasing intertidal area in well‐mixed estuaries.

Differences between our study and existing literature can be explained by several factors, including (a) the
addition of a river discharge that influences both the longitudinal salinity gradient and the barotropic circulation
patterns, which can dominate the system; and (b) the model design decisions, which may affect the connectivity
between the channel and intertidal area (e.g., the type of vertical discretization).

Whether the enlargement of intertidal area increases or reduces salt intrusion has been linked to the Simpson‐
number (Si, Equation 9). For permanently stratified estuaries (Si > 0.2), the increase of intertidal area has a
negative effect on the salt intrusion. This is because the introduced mixing due to the intertidal flats reduces the
dominant salt flux driven by the estuarine circulation. On the other hand, for Si < 0.2, larger intertidal areas cause
an increase in salt intrusion, as the additional mixing contributes to the tidal dispersion. The closer the Simpson

Table 3
Simpson Number per Estuary Class Equation 9

Class a (m) Q (m3s− 1) RiE (–) Si (–)

Salt wedge 1.0 10,000 16.2 3.53

Partially mixed 1.0 200 0.325 0.489

2.0 500 0.101 0.244

4.0 10,000 0.254 0.364

Well‐mixed 4.0 200 0.00507 0.0941

Note. Extended input space indicated in italics.
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number is to its critical value of Si = 0.2 (i.e., the tipping point in the stratification‐mixing balance), the stronger
the influence of the intertidal area on the salt intrusion.

Data Availability Statement
The data set used in this study is publicly available (Hendrickx & Pearson, 2024) [Dataset] https://doi.org/10.
4121/c357f1c7‐dea8‐4971‐b5a1‐c54c42e4172a.

Software availability: Processing code for the salt flux decomposition is open‐source (Hendrickx, 2023) [Soft-
ware]: https://doi.org/10.4121/bccbe767‐667b‐40ba‐a4d1‐d8fcad900772.
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