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Probing primordial black holes and dark matter clumps in the Solar System
with gravimeter and Global Navigation Satellite Systems networks
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We show that the Global Navigation Satellite System (GNSS) and gravimeters on Earth and in space can
potentially offer the most accurate direct measurement of local density of near-Earth asteroid-mass
primordial black holes (PBHs) and dark matter (DM) clumps in the Solar System by means of gravitational
influence. Using semianalytical methods and Monte Carlo simulation, this paper revisits the analysis of the
trajectories of DM clumps in the Solar System, including both captured objects and hyperbolic trajectories.
A link is thus made between the frequency and distance of Earth overflights for a given mass flux, and
a direct measure of dark matter clump density in the Solar System. We then model the signature of a close
fly-by of a DM object on orbital data from GNSS satellites and gravity measurements from gravimeters. We
thus obtain a first assessment of the single probe sensitivity. It paves the way for an exhaustive statistical
analysis of 28 years of gravimeters and GNSS data to obtain observational constraints on the density of
the PBHs and DM clumps within the Solar System, for the mass range ½108–1017� kg. In addition, our
methodology offers a possibility of direct detection in cases where DM clumps are endowed with an
additional long-range clump-matter fifth force beyond gravity.

DOI: 10.1103/PhysRevD.110.063029

I. INTRODUCTION

The nature of dark matter (DM), representing about 27%
of the total mass-energy density of the Universe [1], is still
unknown and has remained for more than 50 years one
of the deepest mysteries in physics. Whereas there are
multiple indirect probes of the existence of DM on galactic,
extragalactic, and cosmological scales, there is currently no
observational evidence coming from smaller scales. It is
therefore plausible that DM clusters into compact sub-
galactic structures, possibly fragmenting into even smaller
parts, referred to here as DM clumps. The particle nature of
DM is also still a matter of debate and there are various
theoretical scenarios in which all the DM, or a significant
fraction of it, is made of massive compact dark objects.
These scenarios include, e.g., primordial black holes
(PBHs) [2,3], dark quark nuggets [4], dark blobs or other
composite states [5,6], strangelets [4], nontopological
solitons [7], mirror DM [8,9], axion or scalar miniclusters
[10,11], axion [12,13] or boson stars [14,15], etc.
This work focuses on DM clumps, compact objects,

or PBHs with a mass between 1011 to 1020 kg. This mass

range is especially relevant because microlensing of stars
becomes ineffective in detecting compact DM objects
below 1020 kg [16]. PBHs that are by definition black
holes formed in the early Universe, are further constrained
due to their expected evaporation through Hawking radia-
tion. Below 1011 kg, they evaporate in a shorter time than the
age of the Universe and so are not expected to survive today.
There is no constraint between 1014 and 1020 kg. Between
1011 and 1014 kg, there are some constraints on their
abundance from their partial evaporation, but these are
subject to large uncertainties [17] and rely on the still
speculative evaporation process. Altogether, it is possible
that asteroid-mass compact DM objects or PBHs [16]
constitute a significant fraction or even the totality of theDM.
As those DM clumps or compact objects travel in our

Galaxy, they eventually pass through the Solar System,
itself in motion around the Galactic Center towards the
Cygnus constellation. This opens the possibility of a close
approach of the Earth [6,18–24], provided the DM clumps
are sufficiently stable and dense not to be tidally disrupted
as they pass through the inner Solar System. In addition,
some of them could be trapped by the Sun’s gravitational
potential, thereby increasing the local DM density [25]. For
PBHs, it was even proposed that they could explain the
suspected Planet 9 [26]. PBHs in the Oort clouds could be
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detected if they accrete matter [27], or using continuous
gravitational-wave searches [28] if there are PBH binaries.
To the best of our knowledge, there are currently no

direct experimental measurements of the density of DM
clumps or PBHs in the Solar System, for masses ranging
from 1011 to 1020 kg. The only constraints that exist are
based on extrapolations of local dark matter density
measurements in the galactic region where the Solar
System is located. These indirect constraints are obtained
by including the effects of accretion, capture, and ejec-
tion by Solar System bodies in the case of dark matter
particles such as weakly interacting massive particles
(WIMPs) [29–32]. In addition, the density of DM particles
like WIMPs in the Solar System could be probed using the
signals from space probes or the precise ephemeris of
planets [25]. However, it will be discussed in Sec. II E that
such constraints are not transferable to the case of DM
clumps or PBHs of asteroidal mass. Finally, gravitational-
wave (GW) detectors can also be used to observe such dark
objects and constrain their abundance [19]. Indeed, close
overflights of DM clumps or PBHs are supposed to exert an
acceleration on the test masses of a GW detector. For
example, the LIGO/Virgo detectors are suitable for masses
below 105 kg only [21] given that the detector sensitivity is
optimal at frequencies between 10 and 104 Hz. In the
future, the Laser Interferometer in Space Antenna (LISA)
operating at much lower frequencies will be sensitive to
objects with a mass ranging from 108 to 1015 kg due to the
very long baselines [21,24]. However, the expected rate of
discoverable signals remains limited to 3 × 10−3 for a
purely gravitational clump-matter interaction, well beyond
the detector’s lifetime. Finally, the recent analysis by [33]
proposes to use the measurement of the distance between
the Earth and the other planets of the inner Solar System to
detect PBHs fly-bys at a few A.U. However, the sensitivity
is limited to PBHs with a mass greater than 1016 kg.
The aim of this study is to propose a methodology for

setting the first constraints on the density of DM clumps in
the Solar System by direct observation. For those DM
clumps or objects passing sufficiently near the Earth, tiny
changes in the gravitational field could be detected by the
Global Navigation Satellite System (GNSS), and/or gra-
vimeters on Earth and in space. For GNSS, like the U.S.
Global Positioning System (GPS), the EU Galileo, the
Chinese BeiDou, or the Russian Glonass constellations,
any change in the gravitational potential should affect
satellite orbits. The precise atomic clocks onboard GNSS
satellites along with GNSS signal carrier phase analysis
allows an accurate determination of these orbits, reaching a
precision at the centimeter level. Given that up to 28 years
of orbit data are publicly available, one has at disposal
many years of data from an Earth-size DM detector that
have not been exploited so far. For superconducting
gravimeters, the world record of the longest measurement
of variations of a local gravitational field by one instrument

is detained by the Belgian superconducting gravimeter in
Membach [34], operated by the Royal Observatory of
Belgium since 1995. The level of precision is of order
10−11 g within 1 minute (where g ≃ 9.81 m=s2 is the Earth
gravitational acceleration). The goal of the present paper is
to study for the first time how to use and combine GNSS
and gravimeter data in order to postdetect near-Earth DM
clumps or compact objects like PBHs, or to set limits on
their abundance in the Solar System.
Our work takes place in line with a recent tendency to

test fundamental physics with geodetic tools such as GNSS
[20,35–39] and superconducting gravimeters [40–42],
using data mining over the long-term time series. For
example, the authors of Refs. [37–39] seized the opportunity
to transform a failure into a success: because of a technical
problem, a launcher brought in 2014 two Galileo satellites
on a wrong orbit with a large eccentricity. The resulting
modulation of the gravitational redshift of the onboard
atomic clocks allowed the redshift determination with high
accuracy, thus making a precise test of general relativity.
Other works [20,35,36] tested DM models made of macro-
scopic topological defects based on light scalar fields
coupling quadratically with the Standard-Model fields.
The resulting apparent spatial variation of the fundamental
constants should affect the GNSS atomic clock frequency.
Hence, strong constraints have been brought on models
either through a direct transient signature or nontransient
signatures due to the back action of the Earth’s mass on the
scalar field. Recently, gravimeters from the Black Forest
and Northern Benin were also used in [40,42] to set limits on
light PBHs orbiting around or inside the Earth but without
being able to set a significant limit on their cosmological
abundance.
Here, we propose to jointly exploit and cross-correlate

gravimetry and GNSS data to track anomalies in the gra-
vitational potential of space origin, e.g., induced by DM
clumpsor PBHs.ForGNSS inparticular, this is the first study
that calculates their direct gravitational influence on the
satellite orbits. For gravimeters, we investigate the case of
transient signatures whereas previous work only focused on
the periodic signatures of PBHs captured by the Earth, which
we find to be much less likely than near-Earth passages.
Our analysis also goes beyond simple approximations by

numerically integrating trajectories in the Solar System and
by performing Monte Carlo simulations of a realistic DM
clumps/objects population, which allows us to fully take
into account the gravitational focusing effect of the Sun and
to compute more precisely the rate of three-body captures
induced by the different planets of the Solar System. The
final product of our analysis relates the GNSS and
gravimeter sensitivity to the expected number of detectable
events and the resulting limit on the cosmological abun-
dance of DM clumps/objects.
The paper is organized as follows. In Sec. II we introduce

the theoretical scenarios leading to asteroid-mass DM
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clumps or compact objects, such as PBHs, as well as the
relevant limits on their abundance. A quick first estimate of
the expected number of events and the possible limits from
GNSS and gravimeters is realized, using simplifying
assumptions. In Sec. III we discuss the hyperbolic trajec-
tories of unbound objects under the Sun’s gravitational
influence. The event rate of Earth close fly-by is then
estimated. The rate of capture by Solar System planets is
analyzed in Sec. IV. The expected signatures in gravimeter
and GNSS orbit data are modeled in Sec. V, which can
be compared to the sensitivities estimated in Sec. II. In
Sec. VI, a preliminary analysis based on superconducting
gravimeter data series and Galileo orbital solutions will
provide a first assessment of the “one-probe,” i.e., one
satellite or one gravimeter, sensitivity. Our conclusion and
the perspectives of our work are presented in Sec. VII.

II. THEORETICAL MODELS AND SIMPLE
ESTIMATES

A. Dark matter clumps

Some models predict that the DM halo clusters into
compact subgalactic structures, possibly fragmenting into
even smaller parts. If DM is made of particles, there is no
theoretical lower limit on the mass of DM structures,
because there is no lower bound on the self-interaction
strength between dark matter particles nor between dark
matter and standard model particles, and because the
possible mass of DM particles is theoretically uncon-
strained. Limits on the mass of DM particles can never-
theless appear in fixed theoretical frameworks, e.g., a limit
of 10−18 eV was recently claimed assuming that DM
particles are produced after inflation through a process
with a finite correlation length [43]. A similar bound of
3 × 10−19 eV was obtained for fuzzy dark matter, coming
from the dynamical heating of stars in ultrafaint dwarf
galaxies [44]. The DM particle mass mDM is relevant for
dark matter clumps because it enters in the associated de
Broglie wavelength, λ ¼ h=ðmDMvDMÞ for nonrelativistic
particles, where h is the Planck constant and vDM is the DM
particle velocity, being itself associated to the fluctuation
size for matter waves. λ becomes smaller than the Earth
diameter for mDM ≳ 10−10 eV, for galactic velocities.
There are multiple theoretical frameworks, like ultralight

axions or fuzzy DM, in which DM forms compact mini-
halos, clumps, or solitonic cores, with a mass between 109

and 1015 kg. For instance, in fuzzy dark matter, solitonic
cores can form with a comparable size to the Compton
wavelength, which can be much smaller than the Earth’s
size. Those types of models have recently attracted more
attention due to the absence of WIMP detection in colliders
and in direct or indirect detection experiments. Dark matter
clustering or inhomogeneities on very small scales is
therefore an interesting possibility. Setting new limits on
this clustering would help to distinguish various plausible

dark matter candidates. Another possibility that is relevant
for our work is the formation of compact dark matter
objects such as boson clouds or axion stars, which could
also have a mass in the asteroid range depending on the
model. Black holes formed in the very early Universe,
called primordial black holes (PBHs), is another possibility
discussed in more details hereafter.

B. PBH and existing limits

PBHs may have formed through various mechanisms
including the collapse of order 1 density fluctuations
produced during inflation or reheating, phase transitions,
or topological defects; see, e.g., [45–47] for reviews of recent
developments. The detection of gravitational waves and the
intriguing properties of compact binary coalescences have
rekindled the idea that a significant fraction or even the
totality of theDMcould bemade of PBHs [48–50]. Contrary
to black holes of stellar origin, there is no intrinsic limitation
on the PBH mass other than from their evaporation through
Hawking radiation and from the current size of the Hubble
horizon. There exist a lot of astrophysical and cosmological
limits on their abundance. In the context of this work, we are
interested in light, asteroid-mass PBHs. These are interesting
because there is still an open window between 1014 and
1020 kg where the abundance of PBHs still remains uncon-
strained.1 At lower mass, between 1011 and 1016 kg, all the
limits repose on the black hole evaporation process, for
instance based on gamma-ray sources or on the energy
injection in the primordial plasma that should have signifi-
cantly impacted the temperature anisotropies of the cosmic
microwave background. However, as recently pointed out
in [17], all of these limits still have important model
dependencies and uncertainties. Taking them into account,
it is not excluded that PBHs significantly contribute to the
DMformasses above approximately1013 kg. This iswithout
considering that the black hole evaporation itself is still a
theoretical conjecture that has not been proven observatio-
nally. The Hawking radiation can also depend on the
underlying fundamental theory.
As a consequence, it is highly interesting to search for

complementary probes of asteroid-mass PBHs that are not
relying on the Hawking evaporation mechanism. This is the
case here because the signal from near-Earth PBHs in
GNSS and gravimeters is solely induced by the gravita-
tional Newtonian force.

C. Dark matter in the Solar System

Previous works dealing with the gravitational detection
of DM objects in the Solar System relied on the simple
approximation a constant object flux. Despite its simplicity,

1See, however, [51] for model-dependent limits or [52] for
observational hints in this range, coming from the destruction of
stars in dwarf galaxies by captured PBHs.
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this approach can nevertheless provide a first and useful
estimate as well as an upper bound for the expected number
of detections for a given sensitivity of GNSS and gravim-
eters. One can then derive plausible bounds on the DM
clump, compact object, or PBH abundance for each
technique, in case of absence of observation.
The number of DM objects No of mass mo passing at a

distance d of the center of the Earth during a survey
duration Ts can be calculated using the mass flux relation:

No ≈ noπd2VDMTs; ð1Þ

where VDM is the relative velocity of the DM object with
respect to a specific reference frame, in our case the Earth-
centered inertial (ECI) coordinate frame. no is the number
of density of dark objects,

no ¼
foρDM;⊙

mo
; ð2Þ

where fo is the DM density fraction made of such dark
objects and ρDM;⊙ is the DM density in the Solar System
neighborhood, estimated from the rotation curve of the
Milky Way to be about [53,54]

ρDM;⊙ ≃ 0.4 GeV=cm3 ≃ 0.009M⊙ pc−3: ð3Þ

The mass range of interest for our analysis will be
mDM ¼ ½1010; 1020� kg, for which one could expect more
than one event for a survey duration of several years and at
a distance typically larger than the size of the Earth radius
but still smaller than the typical interplanetary distance, as
discussed below.
The DM velocity in our galactic halo can be described by

a Maxwellian-Boltzmann distribution that is relatively
independent of the galactocentric radius. The associated
probability density function is therefore given by

fVðVDMÞ ¼
ffiffiffi
2

π

r
1

Δ3
V2
DMe

−V2
DM=ð2Δ2Þ; ð4Þ

where Δ is the velocity dispersion, related to the rms
velocity for DM of about Vrms ≈ 220 km=s by Δ ¼
VRMS=

ffiffiffi
3

p
[32].

D. g-force variations

The typical normalized change in local gravitational
acceleration, δg=g, due to a near-Earth DM object, can be
estimated by assuming that its gravitational force on the
sensor, here a GNSS satellite or a ground-based gravimeter,
is aligned with the Earth gravitational force:���� δgg

���� ¼
���� δFG

FG

���� ≈mDM

M⊕

�
r⊕=s

R

�
2

; ð5Þ

where FG is the gravitational force, M⊕ is the mass of the
Earth, r⊕=s is the Earth-sensor distance, and R is the dis-
tance of the DM object to the Earth center. This approxi-
mate expression is valid as long as R ≫ r⊕=s. Figure 1
shows δg=g as a function of the object mass and nearest
distance, assuming a velocity VDM ¼ 200 km=s, based on
the simple estimation of Eq. (5). The isocontours for which
No ¼ 1 assuming Ts ¼ 1 and 20 yr are also displayed and
can be compared to roughly estimated GNSS and gravim-
eter sensitivities introduced in Sec. I.
The dashed orange line in Fig. 1 represents the possible

sensitivity obtained after a full statistical analysis based on
cross-correlation between a hundred GNSS satellites and
a dozen superconducting gravimeters around the world.
Using these simple estimations, the current sensitivities are
about 4 orders of magnitude too low for hoping a direct
postdetection in the available data. However, this simple
estimate is also highly conservative and neglects important
effects that are investigated in our paper. First, it is based on
Eq. (3) for the local DM density in the object mass flux.
However, this simple estimate does not consider the full
distribution of velocities and the possible enhancement of
the DM density close to the Earth due to (1) the gravita-
tional focusing by the Sun or (2) the possible capture
through the Solar System bodies. Hence, to determine the
event rate, we will compute in Sec. III the fly-by distance d
and VDM using a semianalytical approach for the DM
clump trajectories, and will obtain the phase space density
close to the Earth. We will then model the shape of the

FIG. 1. Estimation of the change in local gravity intensity δg=g
as a function of the DM clump mass, mDM, and the Earth-clump
distance. The approximate “single-probe” sensitivities of the
gravimeter (10−11) systems are displayed, in comparison to the
“galactic limit” based on the simple estimate of the flux assuming
one event per year (solid green line) and one per 20 years (dashed
green line). The sensitivity offered by GNSS systems (not
displayed) is lower in this quick estimate, which will be contra-
dicted by the in-depth study in Sec. V. The stacked system
(orange dashed line) represents the possible sensitivity after a
statistical analysis based on the cross-correlation over the GNSS
constellations and a dozen gravimeters.
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GNSS and gravimeter signals to obtain a better determi-
nation of the sensitivity level.

E. Constraints by spacecrafts and planetary ephemeris

Constraints on the distribution of DM in the Solar
System exist in the case of WIMP clouds, which would
have a continuous influence on planetary ephemerides and
spacecraft positions [25,30], where uncertainty is domi-
nated by the lack of knowledge about the mass of the
asteroid belt. Let us start from the naive assumption of
directly transposing constraints on the density of “WIMPs”
obtained from planetary ephemerides to constraints on the
density of dark matter clumps of asteroidal mass. Then,
the permanent presence of a cloud of WIMPs should be
equivalent to a very episodic presence of asteroid-mass
clumps in hyperbolic (or highly elliptical) orbits, so a
transient phenomena by nature. In this case, the constraints
provided by planetary ephemerides would be in Fig. 1
stronger than for an individual probe (gravimeter or
satellite), but weaker than for a statistical correlation on
a ensemble of gravimeters or a GNSS constellation over
several years of data.
Actually, we can assert that the current constraints on

WIMP dark matter in the Solar System are not directly
applicable to transient phenomena for several reasons.
First, the applicability of the constraints on DM in the
Solar System obtained by planetary ephemeris is still a
matter of debate. Indeed the usual method consists in the
simple calculation of the additional perturbative acceler-
ation induced by DM mass. However, a recent study [55]
pointed out that the proper procedure would be to use the
planetary ephemeris to constrain a hypothetical DM dis-
tribution in the Solar System directly at the level of the
numerical integration of the equations of motion. This
would imply to fit the data to the modeled ephemeris using
a statistical analysis, and interpret the significance of the
residual. Indeed, the various correlations between the
parameters have to be intrinsically taken into account.
The main principles of such an analysis have been

recently described in [33]. They simulated the long-term
variation of the distance between the Earth and other
planets in the inner Solar System due to a transitory
passage of a PBH within a few astronomical units. They
estimate a potential detection sensitivity of one event per
decade, for PBHs with a mass greater than 1016 kg, making
their study complementary to ours.
In addition, measurements of the density of dark matter

clouds are based on “snapshots” of the situation in the Solar
System, on the scale of 100 years. However, the transit
frequency of dark matter clumps of asteroidal mass remains
very low, with very small masses involved. Indeed, we
show in this paper that the constraints we project to obtain
after a full correlation analysis imply a state of equilibrium
with a total DM clump mass of 0.001 Ceres mass in a
1.5 A.U. (astronomical units) sphere around the Sun, for

individual DM clumps endowed with a mass between 108

and 1017 kg. A much larger timescale is therefore needed,
of the order of the Solar System’s lifetime, for the
multiplication of transits to be considered as equivalent
to a permanent cloud of clumps. In this way, constraints
could be imposed by models of the evolution of the Solar
System over the long term, including dark matter clump
transits. To our knowledge, there is no guarantee that the
constraints given by such a study would be meaningful, as
they would be plagued by major uncertainties about the
Solar System evolution model.

III. HYPERBOLIC TRAJECTORIES
OF UNBOUND OBJECTS

In order to create a large Monte Carlo synthetic pop-
ulation, a semianalytical approach of a DM object fly-by is
used. The orbit characteristics are defined by the following
Keplerian elements: the semi-major axis a, the eccentricity
e, and the true anomaly θ. In addition, for the three-
dimensional orientation of the orbit, one needs the right-
ascension of the ascending node (RAAN) ΩDM, the
argument of the periapsis ωDM and the inclination iDM.

A. Semianalytical model

Only two parameters are required to fully determine the
two-dimensional hyperbolic orbit:

(i) the impact parameter: B, and
(ii) the hyperbolic excess velocity: V∞.

The impact parameter is the minimum distance between the
main celestial body and the asymptote of the hyperbolic
trajectory. The excess velocity is reached by the body as the
distance from the Sun tends to infinity.
The semi-major axis a for the hyperbolic trajectory is the

distance from the crossing point of asymptotes to the
periapsis. This parameter is defined as negative:

a ¼ −
μ⊙
V2
∞
; ð6Þ

where μ⊙ ¼ GM⊙ is the Sun’s standard gravitational
parameter. The eccentricity is then calculated as

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

h2E
μ2⊙

s
; ð7Þ

where h is the specific orbital angular momentum which is
computed as a function of B and V∞:

h ≈ BV∞: ð8Þ
In Eq. (7), E denotes the specific mechanical energy which
is also a function of orbital parameters,

E ¼ 1

2
V2
∞ −

μ⊙
r∞

; ð9Þ
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where r∞ is the initial condition simulating the infinite
distance to the Sun. We use the concept of sphere of
influence (SOI) [56] to estimate r∞:

r̄SOI;⊙ ≈ 0.923jamj
�
m
M

�
2=5

; ð10Þ

where am is the semi-major axis of the smaller mass m
orbiting the larger mass M. The infinite radius is then
r∞ ≈ r̄SOI;⊙. The combination of the Sun’s mass M⊙, the
mass of the closest galactic mass, and the distance from
the sun to the Galactic Center [32] enables to determine the
Solar System SOI, resulting in r∞ ∼ 2 × 1015 m. Hence, the
excess velocity is restricted, V∞>0.16km=s, following (9).
Given the three Keplerian elements (a, e, and θ) defined

within the orbital plane, the radial distance to the Sun is
then finally computed as

rðθÞ ¼ að1 − e2Þ
1þ e cosðθÞ : ð11Þ

The following expression provides the true anomaly as a
function of time:

θðtÞ − θ0 ¼
Z

t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ⊙að1 − e2Þ

p
r2ðt0Þ dt0; ð12Þ

where θ0 is the initial true anomaly. Finally, additional
transformations are required from the perifocal coordinate
system to the Sun’s equatorial frame to orient the orbit in
the Cartesian three-dimensional space.

B. Closest approach

The closest distance approach d of the DM clump with
respect to Earth is computed as the minimum of
jjrðtÞ − r⊕ðtÞjj, with r⊕ðtÞ being the Earth’s position vector
with respect to the Sun (see Fig. 2). For the DM clump, the
position and velocity vectors are first computed in PQW
coordinates (perifocal coordinates) centered on the Sun as

rðtÞ ¼ rðtÞ½cosðθÞp̂þ sinðθÞq̂�; ð13Þ

VðtÞ ¼ μ⊙
h

· ½− sinðθðtÞÞp̂þ ðeþ cosðθðtÞÞÞq̂�; ð14Þ

where the unit vector p̂ is directed towards the periapsis of
the orbit, q̂ is directed towards the θ ¼ 90 deg direction
and ŵ is perpendicular to the orbital plane (towards the
direction of the angular momentum vector). Then, the
position and velocity vectors are translated into a Sun-
centered inertial (SCI) Cartesian coordinate system using

RPQW→SCI ¼ RzðΩDMÞRxðiDMÞRzðωDMÞ; ð15Þ

where Rz and Rx are the unit rotation matrices. A similar
transformation has been done for the Earth position and
velocity vectors.

Finally, the relative velocity VDM=⊕ is simply computed
at the specific time of closest approach as

VDM=⊕ ¼ jjVDM=⊙ − V⊕=⊙jj: ð16Þ

C. Input and output parameters

To estimate the closest approach of the DM clump with
respect to Earth, a Keplerian hyperbolic orbit is constructed
for every (B, V∞) pair and ensemble of Keplerian angles
iDM, ωDM, and ΩDM. As there is no particular reason for
the DM clumps to have certain values for those angles,
they are all uniformly distributed as iDM ∼ U½0; π� rad and
ΩDM;ωDM ∼ U½0; 2π� rad. Using (4), the distribution of
hyperbolic excess velocities (relative speed of DM with
respect to the Sun) is obtained from

V∞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
DM þ V2

⊙ − 2VDMV⊙ · cosðσÞ
q

;

where V⊙ ∼ 208 km=s [32] is the Sun’s velocity with
respect to the Galactic Center and σ is the relative angle
between VDM and V⊙ (uniformly distributed: σ ∼ U½0; π�).
The DM velocity, VDM, is distributed with a Maxwellian-
Boltzmann distribution as explained in Sec. II C. The
resulting new distribution for V∞ is denoted in this study
as “pseudo-Maxwellian” visualized in Fig. 3.
These Keplerian initial conditions of the DM clumps can

be translated to a Cartesian state vector ½r∞;V∞�T.
Additionally, a circular orbit for the Earth is simulated
from an initial condition θ0;⊕ taken as θ0;⊕ ∼ U½0; 2π�. The
reference for this angle is taken from the line of apsides,
represented as the black line in Fig. 2. The set of used
variables for the Monte Carlo simulations and desired
output are summarized in Table II of Appendix A, with
additional technical details.
Let us assume that the obtained minimum distance d is

distributed around the input value B ¼ 1 A:U:, without

FIG. 2. Three-dimensional simplified representation of DM
heliocentric fly-by rðtÞ with the inclination angle iDM. The Earth
⊕ orbit is also modeled with the line of apsides (black line)
defining θ0;⊕.
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taking into account the gravitational focusing by the Sun.
Thus, in order to focus on the events of interest, namely
the smallest observed distances with d < 1 A:U: (referring
to Fig. 1), an additional simulation is performed with
B ∼ U½0.98; 1.025� A:U: The probability PB for this case
scenario to happen is

PBðBmax; BminÞ ¼
0.045

Bmax − Bmin
PBð0.98; 1.025Þ;

compared to the more general case with Bmax ¼ 100 A:U:
and Bmin ¼ 0.01 A:U: A similar approach is followed for
the inclination distribution for which, iDM ∼ U½0°; 0.05°�:

Piðimax; iminÞ ¼ 2
0.05°

imax − imin
Pið0°; 180°Þ;

where the factor 2 in the right-hand side reflects that a
retrograde orbit iDM ∼ 180° provides the same result
as iDM ∼ 0°.

D. Event-rate estimations

Figure 4 shows the output of the MC simulation in terms
of the minimum distance d to the Earth and the velocity
distribution VDM=⊕, see (16). The associated mass flux
ṁDM is presented as a heat map. Given that a model of point
mass has been introduced, the notion of mass flux is
independent on the actual mass distribution of the DM
clump in the standard Galactic halo. For example, Fig. 4
shows that a mass flux of 1010 kg=year has a close en-
counter with the Earth at a distance of about 2 × 10−3 A:U:
and a relative velocity around 500 km=s. This means that
these event frequencies with these given fly-by character-
istics are equivalent:

(i) a (single) clump with a mass of 1010 kg every year,
(ii) a clump with a mass of 1012 kg every century,
(iii) a clump with a mass of 8.3 × 108 kg every month,

and cannot be distinguished without an underlying model
for DM halo fragmentation; see Sec. II.

A gap of points around a velocity of 45 km=s and a
distance of 0.5–0.7 A.U. is observed in Fig. 4, which inter-
estingly is close to the Solar System escape velocity at the
Earth’s orbital distance, namely 42.4 km=s. Considering
Earth’s velocity with respect to the Sun (≈30 km=s), it is
unlikely to have relative velocities around and/or below the
Earth’s velocity itself, and when this happens the low
relative velocities imply that the perihelion of the deflected
heliocentric orbits are very close to the Sun (approximately
1 A.U. from the Earth).
Figure 5 shows the histogram for the minimum distance

d distribution for the constraining assumption on the
Sun impact parameter B ∼ U½0.98; 1.025� A:U: Some
clump trajectories intercept the orbital sphere of GNSS
constellations, with value of d less than 2 × 10−4 A:U:, for
a probability of occurrence Nevent=Ntotal of about 10−4.
These close approaches are associated to velocities within

FIG. 3. Pseudo-Maxwellian distribution for V∞
(Ntot ¼ 4 × 104).

FIG. 4. Resulting distribution from Monte Carlo simulation of
minimum Earth-clump distance d and velocity VDM=⊕, with mass
flow ṁDM heat map, for the constraining assumption on the
impact parameter (B ∼ U½0.98; 1.025� A:U:).

FIG. 5. Histogram of the minimum distance d distribution from
Monte Carlo simulation for the constraining assumption on the
impact parameter (B ∼ U½0.98; 1.025� A:U:).
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the range of 60–500 km=s as can been seen in Fig. 4. This
is due to the fact that these velocities exceed the 30 km=s
orbital speed of the Earth, allowing the clump to overtake it
more easily. Combining Figs. 4 and 5, fly-by events
intercepting the orbital sphere of GNSS constellations
represent a mass flux of 107 kg per year.
Finally, the influence of the inclination angle iDM on the

distribution of d is described in Appendix A and turns out
to be negligible.

E. Sun gravitational focusing

Knowing the orbital properties of DM clumps or PBHs,
it is possible to estimate the enhancement in the number of
near-Earth trajectories due to the gravitational focusing by
the Sun. From the MC simulations with a wide uniform
prior for B and with the full distribution for DM velocities
VDM, in particular from the distribution of the minimum
distance to Earth d as a function of B shown in Fig. 6,
one expects that trajectories significantly impacted by the
gravitational focusing so that they lead to a close approach
are very rare. The ones with B very close to 1 A.U. leading
to a close approach are also rare, so it is not straightforward
to infer the importance of each case with respect to the other
and it is worth further investigating the relevance of the
gravitational focusing effect.
For this purpose, we have performed another MC simu-

lation focusing on small velocities, with a restricted uniform
prior on VDM between 0.5 and 10 km=s, for which the
gravitational focusing is typically important. The results are
shown in Fig. 7. They show that only a small fraction of
trajectories lead to d < 0.1 A:U: with impact parameters
between 1 and 100 A.U. and only two trajectories over 106

lead tod < 0.01 A:U:Given that theMC is restricted to about
a Oð10−2Þ fraction of all possible trajectories, this gives an
extremely lowprobability, of order 10−6, that thegravitational
focusing leads tod < 0.01 A:U: For comparison,we obtain a

probability of order 10−6 in the case where the gravitational
focusing effect is irrelevant.
Alternatively, for a small interval around a given B,

one can calculate, for all the possible values of V∞, the
enhancement in the DM density at the trajectory perihelion,

rp ¼
μ

V2
∞

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2V4

∞

μ2

s
− 1

#
; ð17Þ

due to the gravitational focusing effect. This enhancement
goes like ρDM;rp=ρDM;⊙ ¼ ðB=rpÞ2, simply due to the
reduction of the flux section area (rp ∝ B when the
gravitational focusing effect is significant). This enhance-
ment factor is shown in Fig. 8. In this figure, we also
represent the line corresponding to rp ¼ 1 A:U:, i.e., on
the Earth orbit. A significant enhancement factor between

FIG. 6. Minimum Earth to impact parameter distance as a
function of the heliocentric impact parameter with the broader
distributions.

FIG. 7. Minimum Earth to impact parameter distance as a
function of the heliocentric impact parameter with the small V∞
distribution.

FIG. 8. Local density enhancement factor as a function of the
impact parameter and excess velocity with the pericenter as the
chosen characteristic distance.
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10 and 40 can be obtained, but only for very low values of
V∞ ≲ 5 km=s that would correspond to less than a percent
of all possible trajectories (see Fig. 3). Therefore, the
concerned number of trajectories is so low that it largely
compensates the enhancement in density.
In summary, using two arguments based on MC simu-

lations and on the estimation of the possible DM density
enhancement due to the gravitational focusing, one can
conclude that this effect remains small and cannot boost
the expected number of near-Earth trajectories for galactic
DM objects.

IV. DARK MATTER CAPTURE
IN THE SOLAR SYSTEM

Different capture mechanisms of interstellar DM objects
might have strongly enhanced the DM density in the solar
system. A capture can result from the energy loss of a DM
object due to themomentum transfer in a three-body problem
involving the Sun, one of the planets, and the DM object
itself. The deflection of a trajectory can be calculated by
assuming that the DM object mass is negligible compared to
the planet mass. As a preamble, it is worth mentioning that
any capture requiresV∞ ≲ 40 km=s [57] considering Jupiter
as the third body. This already shows that only objects with
Galactic velocities in the lower end of the Maxwellian
distribution can be captured. In what follows, we will
consider separately the deviation of a trajectory by the
Sun or by one of the planets of the Solar System.

A. Deflection by the Sun

A direct capture by the Sun is possible due to the Sun’s
motion around the Solar System barycenter. The deflected
orbital velocity Vf of a DM object caused by the Sun
having a velocity U⊙ with respect to the Solar System
barycenter is given by [57]

V2
f ¼ V2 þ 4U2

⊙ − 4U⊙V cosðβ∞Þ;

where β∞ is the deflection angle and V is the “unperturbed”
heliocentric velocity in a hyperbolic orbit with no energy
transfer effect caused by the Sun’s movement around the
Solar System barycenter, given by

VðrÞ2 ¼ V2
∞ þ 2μ⊙

r
: ð18Þ

The deflection angle is related to the eccentricity of the
two-body problem initial hyperbolic trajectory through
cosðβ∞Þ ¼ 1=e and U⊙ can be related to a fraction of
the orbital velocity VJ of Jupiter, being with a mass MJ the
main contributor to the Sun motion, with an additional
numerical factor α ≈ 0.21 [57],

U⊙ ¼ 2α
MJ

M⊙
VJ: ð19Þ

A capture is then characterized by the condition Vf < Vesc,
where Vesc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ⊙=r

p
is the Solar System escape velocity.

To evaluate if the DM clump has been captured by the Sun,
a condition on the difference between final deflected
velocity and escape velocity, ΔVfðrÞ¼VfðrÞ−VescðrÞ<0
is checked over all possible orbital radii r. When a DM
object is directly captured by the Sun, the bounded orbit has
a semi-major axis ab given by

ab ¼ −
�
VfðrÞ2
μ⊙

−
2

r

�−1
: ð20Þ

B. Three-body capture due to a planet

The second capture mechanism consists in a strong
deflection of the trajectory by a planet, leading to an elliptical
orbit for theDMclump ofwhich one of the focal points is the
Solar System barycenter. Our calculation of the velocity
deflection due to a planet (P) fly-by is mainly based on [32]
and consists on producing a synthetic Monte Carlo popula-
tion of analytical DM clump hyperbolic trajectories.
Therefore, no numerical simulations are implementedwithin
this section of the study. Consequently, due to the analytical
nature of the method, additional probabilistic corrections are
required andwill be described below. Furthermore, this study
adds to the methodology in [32] by correctly computing the
real 3Dnature of theDMandplanetaryorbits (with the angles
iDM,ΩDM, andωDM). Two othermethods [31,57] can also be
found in the literature. In the study of Khriplovich et al. [31],
the methodology is completely performed analytically, in
which the mass estimation is derived from analytical and
probabilistic laws. Lastly, Napier et al. [57,58] perform both
orbital numerical simulations and analytical derivations of
the capture cross section of interstellar objects. Thus, by
simplifying the numerical nature of orbital simulations, this
study provides a faster approach in estimating DMdensity in
the Solar System.
First, theDMclumpvelocity in a frame at restwith the Sun

can be found using Eq. (14), in which θ is the true anomaly at
the planet-Sun distance, denoted by aP, p̂ and q̂ are the
perifocal coordinates (PQW) unit vectors within the DM
clump’s orbital plane. The planet’s orbit is then assumed to be
circular, leading to the following planet velocity vector:

VP=⊙ ¼ VP½− sinðθPÞp̂0 þ cosðθPÞq̂0�; ð21Þ

where θP is the true anomaly of the planet, taken as a
randomly distributed angle between 0 and 2π, p̂0 and q̂0 are
the perifocal coordinates unit vectors within the planet’s
orbital frame.Weobtain the expression of p̂0 and q̂0 in theDM
perifocal coordinate system p̂0 and q̂0 using Eq. (15) and its
inverse transformation with the DM orbit inclination angles.
To facilitate the computation of the final heliocentric

velocity Vf, the DM’s radial, along-track and cross-track
reference frame (RSW) is used leading to [32]
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Vf ¼

2
64

VDMk cosðβPÞ þ VDM⊥ sinðβPÞ
−VDMk sinðβPÞ þ VDM⊥ cosðβPÞ

0

3
75 − VP=⊙jRSW;

ð22Þ
where VDMk and VDM⊥ are the DM clump parallel and
perpendicular to the radial direction velocities in the
planet’s rest frame and βP is the deflection angle caused
by the planet. These two velocity components and deflec-
tion angle can be computed using the procedure presented
in [32]. Lastly, the capture condition similar to the one for
the Sun is checked:

jjVf jj < Vescðr ¼ aPÞ ¼
ffiffiffiffiffiffiffiffi
2μ⊙
aP

s
: ð23Þ

The resulting bounding orbit has a semi-major axis ab
which can be computed using Eq. (20) in the case
of r ¼ aP.
The Monte Carlo simulation of an ensemble of orbits

provides only the probability that an orbit fulfills Eq. (23) at
the sphere of radius aP centered on the Sun. This occur-
rence probability of captured events is denoted as Pc;MC. In
addition, it is necessary to add corrections (not performed
in [32]) to the result obtained, which take into account
simplified analytical probability laws.
The first probability relates to the crossing of the DM

clumps’ orbit with the planet’s orbit around the Sun. Under
the assumption of a uniform distribution of impact param-
eters, this fraction denoted as fP1 , can be approximated as

fP1 ≈
�
Bmax

2r∞

�
2

; ð24Þ

where Bmax is computed as in [57]

B2
max ¼ a2P þ 2jajaP: ð25Þ

Furthermore, in addition to the fractional probability of
crossing the planet’s orbit, only a small fraction of DM
objects actually enters the planet’s SOI. This fraction fP2
can be approximated as [57]

fP2 ≈
�
rSOI;P
2aP

�
2

:

Combining all of the above, the corrected probability of
captured objects, Pc, can be computed as

Pc ¼ Pc;MCfP1fP2 : ð26Þ

C. Capture and ejection rates

Assuming that the Solar System is moving in the DM
halo throughout its existence, the total flux of DM mass
crossing the Solar System since its creation reads

MDM ∼ πr̄2∞ρDM;⊙V⊙ΔtSS cosðθSSÞ
�
1þ V̄2

esc

V̄2
∞

�
; ð27Þ

where ΔtSS ≈ 1.4 × 1017 s is the Solar System’s age and
θSS ≈ 30° is the complementary angle to the angle between
the ecliptic plane and the galactic plane. The last term in
Eq. (27) approximates the Sun’s gravitational focusing with
the average escape velocity V̄esc ∼ 165.3 km=s, taken over a
radial distance interval ½10−3; 104� A:U:, and the average
excess velocity V̄∞ ¼ 274 km=s (see Fig. 3). Given all the
aforementioned estimates, MDM ∼ 134M⊙ (compared to
203M⊙ in [32]).
Each planet contributes to the capture by a fraction

Mc ≈MDM · Pc. Table I shows the capture probabilities Pc
and mass estimates Mc computed in this study in com-
parison with results obtained previously in the literature.
With regards to [31,32], the results found in this study are 1
order of magnitude more conservative relative to [32], but
less conservative in comparison with [31]. These discrep-
ancies are described in detail in Appendix B. The order of
magnitude of the total mass captured by the planets since
the Solar System formation is about 8 × 1018 kg, in
comparison to the value of 2 × 1018 kg obtained in [31].
The captured mass by the Sun is constrained by
Mc < 1017 kg, making its contribution negligible.
The input data of our semianalytical simulation for the

computation of closed orbits and their properties resulting
from the capture process by Solar System bodies are
described in Appendix B. The results of the simulation show
that DM clumps or PBHs follow a strongly elliptical orbit
around the Sun after their gravitational capture, due to their
high velocities. Indeed, the eccentricity of the simulated
orbits eb exceeds 0.91 whereas the majority of captured DM
objects have pericenter values below 1 A.U., with a mean of
≈ 0.3 A:U:, resulting in possible Earth close approaches.
However, the captured objects have orbital periods far
beyond the human lifetime due to the high semi-major axis.
In addition, the ejection rate is a significant concern as

found in [29,59,60] and would then lead to a high decrease
of the DM population in the Solar System. Given that
the pericenter rp of the new bound orbit is well below the
orbital distance of Jupiter, the chance of ejection of the DM
clump is considerably increased [58]. The survival fraction
fsðtÞ of [58] can be used for that purpose and leads to

TABLE I. Capture probability Pc per planet with total mass
captured Mc in the Solar System, in comparison with the values
found in the literature [31,32].

Planet Pc [-] Mc [kg] [31,32] values [kg]

Earth 3.0 × 10−18 5.9 × 1016 3.8 × 1017, 3.9 × 1015

Jupiter 1.8 × 10−14 3.5 × 1018 4.9 × 1019, 1.2 × 1018

Saturn 1.3 × 10−14 2.5 × 1018 2.8 × 1019, 3.7 × 1017

Uranus 6.4 × 10−15 1.2 × 1018 1.3 × 1019, 5.7 × 1016

Sun <10−15 <1.8 × 1017 � � �
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fsðΔtSSÞ ≈ 10−5, given the age of the Solar System. The
resulting equilibrium or steady-state mass is in the range
1.149–4.594 × 1013 kg for our semianalytical method for
the capture rate. This result is close to the steady-state
estimate by [58] of1014 kg, using purely numericalmethods.
Therefore, our assessment of the additional density in the
Earth’s vicinity reads

ΔρDM ∼ 1013=ð4π=3ð1 A:U:Þ3Þ ≈ 2ρDM ð28Þ
which does not represent a significant increase in density.

V. EXPECTED SIGNATURES

We propose to use gravimeters and GNSS satellites as
two complementary networks of sensors to probe passing
DM clumps. For gravimeters, a perturbation in the gravi-
tational field could be measured, coming from the radial
component of the Newtonian force induced by a third body,
whereas for satellites, the observable is a perturbation in the
nominal reference orbit.
The signature of aDMclump fly-by is again obtainedwith

seminumerical simulations of the clump hyperbolic orbit,
based on Eq. (11). However, the calculation is now per-
formed in the Earth-centered frame.We denote by rDMðtÞ the
position of the clump relative to Earth when Eq. (12) is used
to compute the clump trajectory. The parameters ðV∞; B; θ0Þ
are again used to define the hyperbolic trajectory in the
orbital plane, but now they denote the impact parameter, the
excess velocity, and the initial true anomaly relative to Earth.
Finally, ðiDM;ωDM;ΩDMÞ define the orbital plane with res-
pect to the Earth’s celestial sphere in Cartesian coordinates.

A. GNSS

The Global Navigation Satellite System (GNSS) consists
in constellations of around 30 satellites at an altitude of
about 20 thousands kilometers with a revolution period of
a bit more than 10 hours. The four global constellations
are Galileo (EU), GPS (USA), GLONASS (Russia), and
BeiDou (China). The GNSS relies on precision timing
signals provided by on-board atomic clocks. The clock
synchronization errors and the precise orbits are routinely
computed with a high degree of accuracy and are publicly
released by the International GNSS Service (IGS) [61].

1. Signal modeling for one satellite

The expected signature of a DM clump on a GNSS
satellite orbit is obtained by computing the Newtonian
acceleration of the satellite induced by such a third body,
and by determining the resulting three-dimensional
Keplerian osculating orbit as a function of time, based
on Eq. (11). Initially, the GNSS orbit is determined by
ða; e; i;ω;Ω;M0ÞGNSS, where M0 is the initial mean
anomaly. The true anomaly is then calculated with
Eq. (12), whereas Eq. (7) is used as a check.

Given these orbital paths, the orbit perturbation on the
GNSS is then computed as a third-body perturbation
acceleration leading to

δãðtÞ
gðtÞ ¼ −

μDM
gðtÞ

�
r − rDM

jjr − rDMjj3
þ rDM
jjrDMjj3

�
; ð29Þ

where r is the position (with respect to Earth) of the GNSS
satellite and gðtÞ is the reference gravity field value for
the GNSS constellation. The last term in (29) comes from
the fact that the noninertial reference frame centered on the
Earth is in free fall in the clump gravitational potential. This
global term is identical for all GNSS satellites.
The deviation of the GNSS reference orbit due to

the aforementioned perturbation is performed by solving
the Keplerian elements using Gauss’ variational equa-
tions [62,63]:

da
dt

¼ 2a2

h2

�
e sinðθÞãr þ

p
r0
ãθ

�
; ð30Þ

de
dt

¼ 1

h
fãrp sinðθÞ þ ãθ½e r0 þ ðpþ r0Þ cosðθÞ�g; ð31Þ

dθ
dt

¼ h
r20

−
1

eh
½−ãrp cosðθÞ þ ãθðpþ r0Þ sinðθÞ�; ð32Þ

di
dt

¼ ãz
r0
h
cosðθ þ ωÞ; ð33Þ

dω
dt

¼ −
dθ
dt

þ h
r20

− ãz
r0
h
cotðiÞ sinðθ þ ωÞ; ð34Þ

dΩ
dt

¼ ãz
r0
h
sinðθ þ ωÞ

sinðiÞ ; ð35Þ

where r0ðtÞ is the initial reference orbit, p is the orbital
semilatus rectum: p ¼ h2=μ, μ here refers to the Earth’s
celestial parameter and ãr, ãθ, and ãz are the radial,
tangential, and vertical components (within RSW satellite
frame) of the perturbation acceleration. These represent the
response of the satellite to a transient input and provide
actual observables. Since a singularity is encountered in the
present case of a (quasi)circular orbit, the relations are
transformed according to those found in [64] with modified
Keplerian elements ex and ey, so that ey=ex ¼ tanðωÞ and
u ¼ θ þ ω. Considering the typical orbital parameters of a
Galileo satellite, an outline of the reaction of one satellite is
shown in Fig. 9. The overall nature of the output is a step,
with only the change in true anomaly being unstable and
periodical, potentially due to the insufficient orbital stiff-
ness of the satellite.
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2. Signal modeling for the Galileo satellites constellation

GNSS constellations will simply be modeled using the
samemethodology as above, and tracking the various orbital
positions. The data to simulate the constellation orbits are
taken from [65] with the Galileo constellation as case study.
Currently, the Galileo constellation includes 24 active
satellites placed in medium earth orbit with semi-major axis
of 29599.8 km.As illustrated byour simulation inFig. 10, the
Galileo satellites are distributed into three orbital planes with
an nominal inclination of 56°, distributed evenly around the
equator according to three different right ascensions of the
ascending node, RAAN. These satellites on a same orbital
plane are equally spaced by various phase differences in the
true anomaly.
The signature of a DM clump fly-by in Fig. 11 is

obtained by combining the modeling of the DM clump

orbit, the simulation of the orbits of the various satellites,
and the gravitational perturbation induced by the DM
clump (29). This forms the basis for observing the corre-
lation between the signals from the different probes when
considering different scenarios related to the incidence
direction, the closest approach distance, and the excess
velocity of the DM clump. In Fig. 11, the semi-major axis
has been chosen as the reference Keplerian element for data
analysis, as it offers a direct estimate of distance and energy,
see Sec. III translating the Earth as the main attractor: μ⊕.
It is also the orbital parameter whose variation can be
measured with the best precision, see Sec. VI.
Let us briefly analyze the signal of Fig. 11which simulates

the fly-by of a DM clump 1015 kg with an (Earth) impact
parameter B ¼ 15500 km, V∞ ¼ 300 km=s, and iDM ¼
90 deg. The impulse responses form an envelope, with half
of the constellation having a negative settling, due to the
geometric orbital distribution of the satellites in Fig. 10. The
simulation also shows a slight delay between different
satellites and a larger impact on the orbit whenever the
DM clump passes close to the satellite. Finally, it is essential
to mention that the entire constellation acts nearly as one
system. If an event occurs, it would be detected for all
satellites. Therefore, the limits of the envelope provide the
associated fly-by masses that could be observed.

3. Sensitivity analysis for different parameters

In this subsection, we visualize how the semi-major axis
a is sensitive to a given change in the DM orbital
parameters, focusing on the effect of B and V∞. This is
important for future statistical data analysis, e.g., to know if
the satellites react in unison, or if there is a delay conducive
to time correlation analysis.
The sensitivity in terms of B is driven by the fact that

da=dt is proportional to the acceleration in Eq. (30), with a
FIG. 10. Numerically simulated DM and Galileo constellation
orbits with the final position of the satellites.

FIG. 9. Single satellite reaction to gravitational impulse for a clump (1015 kg) passage with B ¼ 10; 000 km, V∞ ¼ 15 km=s, and
iDM ¼ 0 deg (with a half-day simulation time and Δt ¼ 1 s).
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caveat for B < 30; 000 km. In that case, the DM clump can
be observed twice by the constellation. Indeed, two effects
are combined in Eq. (29):
(1) the Earth center recoil, common to all Galileo

satellites and maximum at the moment of Earth
closest approach, and

(2) the delayed satellite closest approach, different for
each Galileo satellite.

Hence the complex double-step pattern seen in Fig. 11 or in
Fig. 12 for lower values of B. For B > 30; 000 km, the
system comprising the Earth and Galileo satellites can be
considered as a point object from the DM clump point of
view. Hence, the complex time pattern gradually disappears
for larger value of B in Fig. 12. In parallel, the effect is
weaker but the event duration is longer, losing the char-
acteristic step profile.

For what concerns the effects of V∞ shown in Fig. 13,
the key element when B < 30; 000 km is the duration of
the constellation crossing. Indeed, the double-step pattern
appears narrower as speed increases while the amplitude of
the effect decreases. In the case where B < 30; 000 km, the
change in the acceleration profile is nearly the same for the
entire constellation and becomes independent of V∞.

B. Gravimeters

In this section, we will model the signature of the DM
clump fly-by over a network of nine stations provided with
superconducting gravimeters, distributed around the world.
In the future, this would allow, through time correlations

FIG. 11. Impulse response to the semi-major axis of the entire Galileo constellation for a clump (1015 kg) passage with
B ¼ 15500 km, d ¼ 14495.5 km, V∞ ¼ 300 km=s, and iDM ¼ 90 deg.

FIG. 12. Entire Galileo constellation signal variation as a
function of B with V∞ and iDM fixed at 15 km=s and 90°.

FIG. 13. Entire Galileo constellation signal variation as a
function of V∞ with B and iDM fixed at 15500 km and 90 deg.
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and template-based searches, to seek for the synchronous
occurrence and the propagation of glitches in the gravita-
tional potential.

1. Earth crossing

The Earth crossing occurs when the Earth’s closest
approach of the hyperbolic orbit is smaller than the
Earth’s radius or d < R⊕. For the sake of simplicity, it
will be assumed in this section that DM interacts with
ordinary matter only via the gravitational force, and not via
the electromagnetic nor strong or weak nuclear forces.
Amethod similar to that of [40]will be used to estimate the

gravitational signal in the case of a DMcluster passing inside
the Earth. The gravimeters should then feel two distinct
effects. We ignore in this analysis the tidal effect of the DM
clump generating on the Earth’s interior structure. The first
one is due to the Earth’s center of mass recoil, d2X⊕=dt2, as
Earth falls in the DM clump gravitational potential. The
second effect is due to the actual acceleration component on
the gravimeter caused by the DM clump, denoted as gDM.
The first effect can be approximated as follows:

d2X⊕

dt2
≈

mDM

MencðrDMÞ
·

�
d2rDM
dt2

− rDMθ̇
2

�
; ð36Þ

where it is assumed that mDM ≪ Menc with MencðrÞ being
the Earth’s enclosed mass at the radial distance rDMðtÞ, and
θ̇ðtÞ is the time derivative of the true anomaly.
The enclosed mass is computed using the preliminary

reference Earth model (PREM) [66,67], which assumes
that the Earth is spherical and that the density, ρ⊕, only
depends on the radial distance from the center. This enclosed
mass is then

MencðrÞ ¼
Z

r

0

4πr2ρ⊕ðr0Þ dr0: ð37Þ

Equation (37) shows that the capture by the Earth of a DM
object which crosses its surface seems highly unlikely since a
strong gravitational pull would be essential to slow down
highly energetic DM clumps. Additionally, any resulting
elliptical orbit that intersects the Earth’s surfacewould require
highly fine-tuned initial conditions to be stable over longer
periods of time. This, therefore, shows the issues with the
premise presented in [40], in which a DM clump would
have been captured by Earth and would have a circular orbit
inside of it.
Although the hyperbolic orbit is assumed Keplerian, the

DM clumps will be gradually less deflected as it enters
inside of the Earth, since MencðrÞ ≤ M⊕ for all r ≤ R⊕. A
Runge-Kutta 4 (RK4) numerical integration was used to
simulate the orbit from the moment it enters the Earth with

d2rDM
dt2

¼ −G½MencðrDMÞ þmDM�
rDM
r3DM

: ð38Þ

The associated trajectory can be visualized and compared to
the assumption of a point mass for the Earth in Fig. 14. The
DMclump initially follows the classicalKeplerian orbit, then
becomes less and less deviated inside the Earth in compari-
son with the point-mass model, as predicted by Gauss’s law.
Assuming that the DM clump is a point mass relative to

the size of the Earth, the radial acceleration gDM;r induced
by the DM clumps reads as follows:

gDM;r ¼ −μDM
rg − rDM

jjrg − rDMjj3
·

rg
jjrgjj

; ð39Þ

where rg is the position of the gravimeter. This position is
computed as follows [40,42]:

rg ¼ R⊕ cosðθlÞ½cosðω⊕tþΛlÞ; sinðω⊕tþΛlÞ; tanðθlÞ�T;
ð40Þ

where θl and Λl are the latitude and longitude of the
gravimeter and ω⊕ is the Earth’s rotational rate, as
illustrated in the simulation of Fig. 14 (purple line).
Finally, the time-dependent normalized gravimeter read-

ing, δgrðtÞ=g, is calculated with

δgrðtÞ
g

¼ 1

g

�
gDM;r þ

d2X⊕

dt2
rDM

jjrDMjj
·

rg
jjrgjj

�
; ð41Þ

where g is the mean gravity value at the position of the
gravimeter. A projection from theDM clump orbital plane to
the radial direction of the gravimeter is required for the
d2X⊕=dt2 term as gravimeters only measure in the radial
direction.

2. Earth fly-by

For close approach of a DM clump outside the Earth, the
relation for the third-body acceleration becomes

FIG. 14. Numerically simulated DM and gravimeter trajectories.
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δgrðtÞ
g

¼ −
μDM
g

�
rg − rDM

jjrg − rDMjj3
þ rDM
jjrDMjj3

�
·

rg
jjrgjj

: ð42Þ

Given this, a network of gravimeters can be simulated using
the locations found in [68] in a similar manner as done with
the Galileo constellation.

3. Gravimeter signal

Considering the coordinate (Λl; θl) of the Membach
station in Belgium (40) and a simulated trajectory of a
DM clump crossing the Earth (38), an example of a
gravimeter reading is shown in Fig. 15. Unlike GNSS
satellites, the nature of the signature is a transient peak. The
Earth recoil or inertial term dominates for trajectories inside
the Earth by nearly 2 orders of magnitude. The reason is
the increase of the mDM=MencðrÞ ratio, in Eq. (36), as the
clump penetrates the Earth. Furthermore, the local minima
observed in Fig. 15 corresponds to moments when the
gravimeter is blind, as described by rg · rDM ≈ 0.
Beyond the example for a single gravimeter station, the

results for a worldwide network of gravimeters are visu-
alized in Fig. 16. The signature of a DM clump fly-by is
obtained by combining the modeling of the DM clump
orbit, the simulated trajectories of the diverse gravimeter
stations (40), and the radial perturbation of the gravity field
induced by the DM clump (42). Again, this forms the basis
for observing the correlation between the signals from the
different gravimeters when considering different scenarios
related to the incidence direction, the closest approach
distance, and the excess velocity of the DM clump.
The signal shape and strength are highly sensitive to the

latitude and longitude of the station. Some gravimeters
would observe a double peak whereas others only a single
one when the DM is at its closest distance of approach.
The amplitude of the peak shows a maximum difference of

nearly an order of magnitude between different stations.
Hence, some gravimeters could simply not observe a sig-
nificant event whereas other stations close to each other, so
with expected similar signatures, e.g. BFO,Membach, OSG,
and ST, could be used as cross validation or rejection of an
event corresponding to a DM or another massive object fly-
by.A positive detection could then be further confirmed if the
GNSS constellations would also provide a relevant signal.

4. Sensitivity analysis for different parameters

In this subsection, we visualize how the radial perturba-
tion of the gravity field δgr is sensitive to a given change
in the DM orbital parameters, focusing on the effect of B
and V∞ in Figs. 17 and 18. This is important for future
statistical data analysis since specific patterns for different
gravimeter position or values of B and V∞ would suggest a
template bank study for a future statistical analysis.

FIG. 15. Example of a numerically simulated gravimeter total
residual signal (blue line), as it would be seen at the Membach
station (Belgium, θl ¼ 50.609 deg, Λl ¼ 6.010 deg), for a
clump (1015 kg) passage inside of Earth with B ¼ 5000 km,
iDM ¼ 30° and V∞ ¼ 9 km=s. The separate contributions of the
Earth’s recoil and the radial component of direct acceleration are
the red and green lines, respectively.

FIG. 16. Gravitational perturbation reading as seen from a
network of gravimeters for a clump (1015 kg) passage with
B ¼ 15500 km, V∞ ¼ 300 km=s, and iDM ¼ 90 deg.

FIG. 17. Entire gravimeter network signal variation as a
function of B with V∞ and iDM fixed at 15 km=s and 30°.
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As expected in the case of Earth fly-by, an increase in B
(Fig. 17) causes a decrease in the amplitude of the signal due
to the 1=r2 term in Eq. (42). In parallel the signal duration is
approximately proportional to the value of B. As far as the
velocity is concerned, as V∞ increases, the signal’s duration
decreases. Obviously, the faster the clump, the shorter the
signal. The amplitude is slightly increasing because slower
DM clumps have a higher probability to encounter more
closely gravimeters on the ground. The reason is the stronger
deflection of the DM clump trajectory towards the Earth
surface. Finally, as described in Appendix C, the expected
signature is strongly dependent on the DM clump orbital
orientation, due to the rg · rDM term. The high variability in
the maximum amplitude, by 1 to 2 orders of magnitude, can
limit a potential of stacking between stations but favors the
orbit reconstruction in template matching analysis.

VI. SENSITIVITY ANALYSIS

In this section, a preliminary analysis based on super-
conducting gravimeter data series and Galileo orbital sol-
utions will provide a first assessment of the “one-probe,” i.e.,
one satellite or one gravimeter, sensitivity. More precisely, a
threshold level (per single probe) will be assumed by
computing the power spectral density (PSD) of the semi-
major axis for satellites and gravity residuals for gravimeters
as done in [69], as a function of sampling frequency f. In our
analysis, thePSD is computed using thescipy.signal.-
welchmodule function in Python based on theWelchmethod
[70,71]. From this PSD, the standard deviation, σPSD, of the
signal for a given frequency is computed as follows:

σPSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f
2
PSD

r
: ð43Þ

Finally, the one-probe sensitivity to gravitational disturbance
induced by a DM clump fly-by will be determined by the
overlapping area between the measured σPSD and the area of

simulated events, called the envelop, for given values of B,
V∞, and mDM.

A. Data

1. GNSS data

Precise GNSS satellite orbits are computed by the
International GNSS Service since 1994. The precision
has dramatically improved in the first years to reach a
level of stability during the past decade. There are different
levels of precision between orbit solutions for different
constellations, due to the poorer receiver coverage for more
recent constellations such as Galileo and BeiDou. GPS is
currently the constellation offering the best orbit deter-
mination. GNSS satellite orbits are computed on a daily
basis. In order to explore the precision and accuracy of
International GNSS Service (IGS) orbits for GPS satellites,
the authors in [72] differentiated the geocentric positions of
satellites midway between successive daily solutions of the
orbit over a period of more than a year. The resulting
precision ranges between 12 and 18 mm each direction,
depending on the satellite. The official IGS orbit products
accuracy is 25 mm for a given satellite.
The Galileo orbit solutions used in this study have been

computed by the CODE analysis center [73] of the
International GNSS Service (IGS), from the measurements
collected in a network of ground stations distributed around
the world. The satellite orbital products are reported with a
sampling rate ΔT of 5 min. The CODE satellite ephemeri-
des are given as Cartesian coordinates of the satellite
positions in the International Terrestrial Reference Frame
which is an Earth’s centered Earth-fixed reference frame.
Given a sample week of these orbital data files, the position
is first transformed into an Earth-centered inertial (ECI)
frame using a transformation matrix at a given GNSS
time ti.

2 Then, the velocity VðtiÞ is obtained by numerically
differentiating the position:

VðtiÞ ≈
rECIðtiþ1Þ − rECIðtiÞ

tiþ1 − ti
; ð44Þ

where VðtiÞ and rECIðtiÞ are the vectorial orbital speed
and ECI position, andΔT ¼ tiþ1 − ti ¼ 5 min, namely the
interval of the CODE orbital solutions. This can be finally
translated into the semi-major axis:

ãðtiÞ ¼ −
�jjVðtiÞjj2

μ⊕
−

2

jjrECIðtiÞjj
�−1

: ð45Þ

The semi-major axis σPSD we computed from the CODE
orbital solutions [73] is shown in Fig. 19. Below 10−4 Hz,
the noise is dominated by systematic effects like, e.g., the

FIG. 18. Entire gravimeter network signal variation as a
function of V∞ with B and iDM fixed at 15500 km and 30°.

2This matrix is computed using SOFA software [74] with
ASTROPY._ERFA [75].
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solar pressure radiation, with peaks corresponding to the
Galileo orbital period of about 14 h and its harmonics.
The two Galileo satellites PE14 and PE18 with eccentric
orbits (e ¼ 0.162) experience higher periodical deviations
in Fig. 19. All satellites, however, have their PSDs which
converge at higher frequencies with an average value of
1 cm, consistent with the current level of orbital data
precision, and a mean variation raging over 2 orders of
magnitude.

2. Gravimeters data

Superconducting gravimeters, outstanding broadband
seismometers and spring gravimeters have a power spectral
density noise level ranging typically 0.5–10 ðnm=s2Þ2=Hz,
which means that they are able to detect temporal gravity
change ranging 0.06–0.3 nm=s2 within 1 minute [76–78].
Peterson’s New Low-Noise Model (NLNM) [79,80] pro-
vides the lowest noise level a seismometer or a gravimeter
may achieve at the surface of the Earth. As shown in
Fig. 20, this colored noise experiences its lowest level at

0.5 ðnm=s2Þ2=Hz between 1 and 10 mHz, corresponding to
the instrumental noise. Above 10 mHz, the noise increases
due to the macroseismic noise caused by the ocean swell,
then decreases again above 1 Hz before reaching the
instrumental limits.
Since 1995, the superconducting gravimeter in

Membach (Belgium) measures continuously the local
variations of gravity g [34]. This will allow us to proceed
to the data mining of 27 years of very high-quality, archival
gravimetric data of the Royal Observatory of Belgium.
Figure 21 shows the residuals time series for the Membach
station. The residuals are obtained after correcting the time
series from tidal, atmospheric, and polar motion effects.

B. Preliminary data analysis

A preliminary analysis based on the PSD of (1) the
gravimeter residuals data series and (2) the semi-major axis
data series of Galileo satellites provides a first assessment
of the one-probe, i.e., one satellite or one gravimeter,
sensitivity. For that purpose, we have modeled a physical
envelope consisting in a bank template of simulated events
with their characteristic amplitude, jδg=gjmax (42) and Δa
(29) for gravimeters and GNSS, respectively, and duration
ΔtDM. Then, the one-probe sensitivity is determined by the
overlapping area between the PSD and the envelope of
simulated events, identifying 1=f as ΔtDM.

1. Signal duration definition

Template matching requires defining a threshold in
which the signal perturbation is defined with a certain
duration ΔtDM. For the GNSS signal, given its character-
istic steplike pattern in Fig. 11, the signal duration could be
defined either as the settling time or the rise time from 10%
to 90% of the settled value, which due to the highly
observed damped motion are both seen as a good indicators
of the signal duration; see Fig. 22. Both should then be

FIG. 20. PSD of the time series of the Membach station
superconducting gravimeter with three different sampling times
used (adapted from [81]).

FIG. 19. Frequency domain PSD of the semi-major axis time
series from CODE orbital solutions (with 5 minutes interval) for a
period of seven days, from year-day 2022-2960 to 3020.

FIG. 21. Gravitational residuals time series with sample time of
one hour since 1998=01=01. Data is from the Membach station
superconducting gravimeter [34].
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analyzed, by taking the PSD of one signal and checking
which one is more characteristic.
For what concerns the gravitational perturbation induced

by a DM clump on superconducting gravimeters, the 1%-to-
maximum definition of the characteristic pulse in Fig. 16 is
taken as the duration of the signal as summarized in Fig. 23.
However, this definition of the event duration could turn

out to be problematic when we will proceed to data mining
with genuine gravimeter data series. For a simple or double-
peak signalwith δg=g amplitude of10−11, the durationwould
start 2 orders of magnitude lower at 10−13, which is totally
drowned in statistical noise. Hence, the corresponding
masses and closest approach distances d would not lead to
a detectable signal. Alternatively, one can approximate the
DM trajectory as a straight line which starts and ends at a
distance of 10d. In that case of higher velocity clumps (with
V∞ > 50 km=s) and far away from Earth, B⊕ ≈ d, leading
geometrically to a lower bound:

ΔtDMðV∞; B⊕Þ ≤ 2
ffiffiffiffiffi
99

p B⊕

V∞
; ð46Þ

asVDM ≥ V∞. This alternative definition ofΔtDM is actually
an equivalent estimate to the 1% tomaximum rule in Fig. 23,
due to the 1=d2 dependency in (42). Without any accessible
knowledge of the bottom part of the signal below the noise,
ΔtDM depends on (V∞,B⊕), where B⊕ is derived from the
peak amplitude, see Fig. 17, while V∞ is given by the peak
width, see Fig. 18.

2. Physical envelop

The physical envelop is the representation of the simu-
lated template bank, where the events are characterized by
an amplitude jδg=gjmax (gravimeters) or Δa (GNSS), and a
duration ΔtDM as seen in Figs. 24–26. To simplify the data
analysis, only the effect of mDM and B⊕ will be analyzed
with several fixed values for V∞. Figures 25 and 26
illustrate the case where V∞ ranges from 2 to 600 km=s.
As a reminder, V∞ ≡ V∞;⊕ in this section. Therefore, the
pseudo-Maxwellian distribution of Fig. 3 is further modi-
fied by the Earth’s speed of revolution around the sun of
about 30 km=s, which makes lower values of V∞ more
likely. The effect of the relative angles ωDM and ΩDM are
assumed to be included due to the different locations of
gravimeter stations and Galileo satellites. Finally, given the
standard deviation threshold computed for both gravimeter
residuals and semi-major axis time series, one can compute
a minimum mass mDM, given a requirement on B⊕ (or the
closest point of approach) by the overlapping area between
the σPSD and the envelope of simulated events, identifying
1=f as ΔtDM. This then constitutes a first-order estimate of
the current state-of-the-art sensitivity for a single probe.

3. Gravimeter sensitivity results

The resulting envelope for the jδgr=gjmax can be seen in
Figs. 24 and 25, with the normalized threshold level σPSD=g
for the Membach station and iDM ¼ 23.5°. This specific
choice was made to obtain a null heliocentric inclination
relative to the 23.5° tilt angle of the Earth’s rotation axis.

FIG. 22. DM semi-major axis perturbation signal representa-
tion with specified maximum amplitude and rise and settling
time, Δtr and tsettle (δ is chosen to be 5% of the final value), as
estimates of the time duration of the signal.

FIG. 23. DM gravitational perturbation signal with specified
maximum amplitude for gravimeters and definition of the time
duration, ΔtDM, of the signal.

FIG. 24. Physical envelope of the maximum jδgr=gj for a DM
clump with mass mDM ¼ 1015 kg as a function of the different
stations. Added to the latter is the Membach station σPSD=
g-threshold level and the same threshold with an additional
1=

ffiffiffiffi
N

p
correction factor.
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Indeed it can be shown in Appendix C that DM clumps
whose orbital plane is close to the ecliptic plane are the most
likely to approach theEarth at close range.There is finally the
potential of stacking with a network of N gravimeters [41]
which could lead to an additional factor of sensitivity of
1=

ffiffiffiffi
N

p
to the σPSD. From both Figs. 24 and 25, we observe

that the range of the signal in the frequency domain ismore or
less constant and frequencies of 5 × 10−5 to 10−2 Hz are the
relevant required frequencies for detection. As a conclusion,
signals with a duration between 102–104 s have a higher
potential to be differentiated from usual hydrogeological and
other noise-related signals.

Considering the diverse stations of Fig. 24, the maxi-
mum gravitational perturbation is mainly governed by

jδgrjmax ≈
μDM
r2min

j cosðαrmin
Þj; ð47Þ

where rmin is the closest approach distance relative to
the gravimeter station and αrmin

is the relative angle
between rg and rDM at the point of closest approach.
We obtain jδgr=gjmax ≈ 3.02 × 10−11 cosðαrmin

Þ for a mass
ðmDMÞmin ¼ 1015 kg and rmin ¼ 15; 000 km, namely the
highest points in Fig. 24. Given this, the different stations
and clump velocities will allow spanning different αrmin

values which can be seen to lower the minimum possible
detection threshold.
Additionally, due to the dominance of stochastic proc-

esses caused by the hydrosphere, atmosphere, or of tectonic
origin on the gravitational signal (see [76]) and also taking
into account a time lag between stations (see Fig. 24), only
masses greater than 1016 kg can be detected at a distance d
of 15,000 km.

4. GNSS sensitivity results

Because of the brief nature of the fly-by, the perturbation
can be approximated as an impulse, resulting in an energetic
change in orbit. It can be seen in Fig. 11 that a steplike pattern
is expected in the semi-major axis, which would be highly
favorable for future template matching analysis. Figure 26
shows the resulting envelope for the jΔajmax as a function of
the inverse rise time, with the threshold level σPSD for the
entire constellation and iDM ¼ 23.5° (for the same reasons as
introduced in the section dedicated to gravimeters). Signals
with a duration between 300–5000 s have a higher potential
to be differentiated from typical orbital perturbations and
other noise-related signals, which can be seen at frequencies
of 10−5 to 10−4 Hz (related to the satellite’s orbital period).
Indeed, the main origin of systematic effects, like, e.g., the
solar pressure radiation or Earth albedo, are well modeled
and already taken into account in the CODE orbit solutions.
Most systematic effects are found for durations correspond-
ing to the orbital frequency (or its first multiples). Then the
sensitivity of GNSS is optimal for events of duration well
below the satellite orbital period.
Considering the overlapping between the PSD and the

envelop of simulated events, the smallest mass that could be
probed by a single Galileo satellite is about 1015 kg for a
fly-by distance below 30,000 km.

C. Conclusion on sensitivity

Following our fast sensitivity analysis, it turns out that
individual GNSS satellites are slightly better sensors to close
DM clump fly-by than a gravimeter station, despite their
similar intrinsic sensitivity. The reasons are the larger
detection area, namely a sphere at the orbital radius, the
event characteristic jumplike pattern, and the lack of

FIG. 26. Physical envelope of the maximum jΔaj of the clump
with mass mDM ¼ 1016 kg, for the entire Galileo constellation,
realized for nine excess velocities (ranging from 2.5 and 5 km=s
to 600 km=s) with each velocity associated to 20 impact
parameters in the range ½10−4–2.1 × 10−2� A:U: Added to the
latter is the σPSD-threshold level of one Galileo satellite (PE01).
The rise time is the reference time of the signal.

FIG. 25. Physical envelope of the maximum jδgr=gj of the
clump with mass mDM ¼ 1016 kg, for a network of nine gra-
vimeters, realized for nine excess velocities (ranging from 2.5 to
600 km=s) with each velocity associated to 20 impact parameters
in the range ½10−4 − 10−2� A:U: Added to the latter is the
Membach station σPSD=g-threshold level and the same threshold
with an additional 1=

ffiffiffiffi
N

p
correction factor.
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short-term local systematic effects. Focusing on the GNSS,
Fig. 27 relates the single-satellite sensitivity (blue dots) to a
minimum clump mass and a corresponding fly-by distance.
In addition to the single-probe sensibility, Fig. 27 shows

the simulation results (orange line) of the expected DM-
clump/Earth encounters over a period of 20 years, given the
measured density of DM in the Solar System neighborhood
as a starting point. These results have been obtained from the
following:
(1) the simulation of the hyperbolic trajectories relative

to the simple passage of DM clumps in the solar
system, given ρDM, and

(2) the steady states density ΔρDM, taking into account
the captured DM clump in the Solar System and the
Sun gravitational focusing.

In terms of the amount ofmass that can be observed at a given
distance, a distance of 15,000 km corresponds to a mass flux
of 106 kg=year, see Fig. 4. This is too small to be detected at
this distance on the human lifetime scale with the GNSS
constellation and gravimeters, since δg ∼ 3 × 10−19 m=s2 for
an event occurrence of 1 year. Similarly, an averaged size
asteroid of 1010 kg would be observed at a distance of
10−2 A:U: with a signal amplitude of ∼10−19 m=s2.
However, this single probe analysis paves the way for a

future statistical analysis based on correlations between a
constellation of probes using the 28 years of publicly
available GNSS and gravimeter data. It turns out that the
GNSS slightly outperforms gravimeters due to the char-
acteristic steplike signal against the transient peak signal
shape in gravimeters, and thus provide a clear pattern for
future data analysis. Such a statistical analysis would
enable to gain between 2 and 3 orders of magnitude in
sensitivity (see the purple area in Fig. 27).
Despite the gain of an exhaustive statistical analysis, the

ratiowith our simulated event rates (orange dots in Fig. 27) is
around 3–4 orders ofmagnitude, so still not enough to hope a

direct detection, considering the measured DM density ρDM
in the Solar System neighborhood, as confirmed by Fig. 28.
However, such bounds on the DM clump density in the Solar
System would be a premiere and the best to be obtained by
direct observation on a terrestrial scale for the mass range
1011–1017 kg, before LISA is operational [24].

VII. CONCLUSIONS AND PERSPECTIVES

This paper presents an exploratory study of the occur-
rence frequency of near-Earth trajectories of asteroid-mass
DM clumps or PBHs. Their expected velocity and mini-
mum distance distributions have been calculated in the case
of a simple passage across the Solar System (SS) and for
strongly elliptical orbits around the Sun after a three-body
gravitational capture. Our analysis also includes an esti-
mation of the ejection rate and the resulting steady state
mass in the SS. We have shown that one does not expect a
significant increase of the number of near-Earth trajectories
for captured objects.
In the second part of the paper, we analyzed two possible

detection methods of such objects and modeled how the tiny
changes in the gravitational field should alter the orbit of
GNSS satellites or could be detectable in the time correlations
of a worldwide network of superconducting gravimeters.
The modeling of DM clump or PBH trajectories in the

SS with Monte Carlo simulations and semianalytical
methods, detailed in Secs. III and IV, led us to estimate
the occurrence of near-Earth trajectories and the resulting
potentially detectable signatures in GNSS or gravimeter
networks. Inversely, the sensitivity of GNSS constellations
and gravimeters has been used in combination with these
methods to forecast constraints on the relative dark matter
abundance of clumps and PBHs as a function of their mass,
in absence of detection. Moreover, we assessed for the first
time the expected signal-to-noise ratio based on the PSD
of gravimeter residuals and on Galileo orbital solutions.

FIG. 27. Orange dots: simulation result of DM clump distance
and integrated mass computed over a 20-year period obtained
from the Monte Carlo simulation. Blue dot: sensitivity to
detection distance for a single probe as a function of the
accumulated clump mass over a 20-year period. Red area:
estimation of the sensitivity enhancement using an exhaustive
statistical analysis based of the correlation of the different probes.

FIG. 28. Forecast of the detectable dark matter fraction made of
PBHs fPBH for 20 years of GNSS data, based on the one-probe
sensitivity. This illustrates the required improvement of the
sensitivity to lead to significant constraints with fPBH < 1.
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The single probe (i.e., one satellite or one gravimeter)
sensitivity has been calculated in relation with the fly-by
characteristics. However, for having a number of detectable
events of order one per year, one needs a galactic density
millions of times larger than that of DM, even after
considering the gravitational-focusing effect by the Sun.
Nevertheless, our work paves the road for an exhaustive

statistical analysis of existing GNSS and gravimeter data,
combining stacking, template match-filtering techniques,
and time correlations between satellites or gravimeters, as
well as cross-correlations between probes. Such techniques
could importantly improve the network sensitivity, possibly
by 2 orders of magnitude compared to the single-probe
one. Their efficiency would also rely on the ability to
disentangle systematic effects and various noise sources.
Although still below the threshold of detectability based on
local galactic density measurements, such a result would
still be remarkable and unprecedented. It can be translated
in a detection capability in scenarios where the total DM
clump or PBH mass is about 8 × 1018 kg within a sphere of
3 A.U. radius, for individual clump masses between 108

and 1017 kg. For comparison, this represents a mass 400
times less than that of the main asteroid belt orbiting within
the same radius.
GNSS networks seem the most promising for observing

near-Earth DM clumps or PBHs, because these would
induce a typical steplike change in the semi-major axis of
satellite orbits that would be observed in the entire
constellation. By monitoring the amplitude and duration
of this altitude variation for each satellite, one could in
principle reconstruct the mass and trajectory of the object,
an information that could be used in combination with
electromagnetic observations to distinguish a near-Earth
dark object from a small asteroid.
Even if the present technology does not allow to set stringent

limits on DMmodels, unique constraints could be established
on the abundance of dark objects in the SS. These constraints
would be complementary to the ones from planet ephemeris
[33] whose range of validity is limited to DM clumps of mass
larger than 1016 kg. Finally, the simulated trajectories and
population properties, the analysis techniques developed for
GNSS or gravimeter networks, could also be applied to the
future Laser Interferometer Space Antenna (LISA) [24]. The
sensitivity of LISA to changes in the gravitational field at
frequencies of order 10−4 Hz will be unprecedented and
should allow to bring stringent constraints on the density of
dark matter clumps and PBHs.
Our analysis could be improved or extended in several

ways. First, we only considered the case of pointlike objects
but our calculations could be generalized to extended dark
structures of size similar or larger than the Earth. Interesting
constraints could also be established if the dynamics is
influenced by a fifth-force interaction of Yukawa-type. By
analogy with the simulations of [21,24] for μHz GW
detectors, it should be possible to detect or constrain DM

clumpswith 30 years of GNSS and gravimeter data for a fifth
force between matter and the dark sector about 103 times
stronger than gravity. Further investigation would be needed
to calculate the effects on the trajectories in the Solar System
(SS). Enhanced gravitational focusing and a new equilibrium
in the capture vs ejection process in the SS would boost the
occurrence of near-Earth trajectories. Some exotic dark
matter scenarios could also lead to a local 106 enhancement
of the density, leading to observable signatures for gravim-
eters and GNSSs.
The Peterson’s new low-noise model (NLNM) [79,80],

used for our estimations of the gravimeter sensitivity, is
based on the selection of data segments during specifically
quiet periods. Earthquakes, anthropogenic perturbations,
storm surges, rainfall, and atmospheric pressure changes are
all causes of increased noise at levels above the NLNM.
All of these perturbations and systematic effects do not exist
on the Moon. Apart from the fall of meteorites, a well-
thermally insulated instrument would work in a much
quieter environment, and not only in the 1–10 mHz fre-
quency band but at higher and lower frequencies. Hence, the
lunar deployment of broadband seismometers or gravim-
eters would allow stacking measurements and lower the
instrumental white noise effects. The subsequent flattening
and lowering of the σPSD curve in Figs. 24 and 25 at higher
frequencies up to 2 orders of magnitude [82,83] would
improve the sensitivity to lower DM clump masses
to 1014 kg.
Finally, we point out that similar analysis could be

performed for satellites equipped for satellite laser ranging
[84], such as gravity recovery and climate experiment
(GRACE), JASON, LAGEOS, or Sentinel. For instance,
GRACE and GRACE follow-on (GRACE-FO) are two
satellite systems with two different types of on-board
sensors: a Ka-band (microwave) antenna and a laser ranging
interferometer. Tiny changes in the gravitational field of
order nm=s2 [85,86], induced by ground water storage
changes, glacial isostatic adjustments, and earthquakes,
can result in detectable range-rate variations between the
two satellites. Such a technique could also probe near-Earth
trajectories of DM clumps or PBHs and would be comple-
mentary to gravimeters and GNSSs.
Overall, the most fascinating—even if still futuristic—

perspective of our work is to uncover a range of possibil-
ities for in situ studies of black holes or dark matter objects
in the Earth vicinity, which would have groundbreaking
implications for various disciplines of physics.
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APPENDIX A: MONTE CARLO SIMULATIONS
IN THE CASE OF A SINGLE PASSAGE

1. Input and output variables

The set of used variables for the Monte Carlo are
summarized in Table II, where for Earth, Ω and ω are
not needed due to the assumed circular nature of the orbit.
The desired outputs are also shown.
In addition, the relative velocity VDM=⊕ is simply com-

puted at the specific time of closest approach, see (16). It
must be noted that for this problem, a variable time step is
used due to the difference between the timescales of the
Earth and DM clump orbits. This time step reads

ΔtðtÞ ¼ ϵ ·
rDM=⊕ðtÞ
VDM=⊕ðtÞ

; ðA1Þ

with an initial condition set to Δt0 ¼ ϵ and ϵ ¼ 0.03,
chosen for convergence of the Runge-Kutta 4 integrator.
Finally, the initial true anomaly is set to be θ0 ¼ −qθlim

with q a numerical parameter set to q ¼ 0.97 to avoid the

singularity of Eq. (11), but still sufficient to simulate
efficiently a high initial rDMðt0Þ.

2. Influence of the inclination angle

The influence of the inclination angle is shown in
Fig. 29. The smallest distances are obtained for velocities
within the range of 100–500 km=s (Fig. 4) and iDM ∼ 0° or
180° (Fig. 29).
As expected, while approaching iDM → 0 or 180 deg, the

minimum distance to Earth can reach relatively smaller
values down to 10−2 A:U: Interestingly, however, this
effect is much smaller than anticipated as the distribution
of distances is mostly uniform even at the extreme values.
The effect of the inclination is therefore found to be
negligible.

APPENDIX B: CALCULATION OF THE
CAPTURE RATE AND PROPERTIES
OF THE NEWLY BOUND ORBIT

For Monte Carlo simulation of the capture process, the
variables are summarized in Table III. Each planet con-
tributes to the capture by a fraction:Mc ≈MDM · Pc, where
Pc results from the occurrence probability of captured
events PMC;c obtained from the Monte Carlo simulations;
see (26). Table I shows the capture probabilities Pc and
mass estimates Mc computed in this study in comparison
with results obtained previously in the literature:

(i) The ratio between Jupiter and Saturn of the total
mass is about 1 in agreement with [32] but diverging
from [31], where this ratio is smaller than 4. In the
analysis of [31], Jupiter is by far the main contribu-
tor to the capture process, which is not the case in
our study.

(ii) In this study, the estimate of the mass captured Mc
by the Earth, Saturn, Uranus, and Neptune is greatly
enhancement compared with the results obtained
previously in [31], from 1 to 5 orders of magnitude.
For example, the contribution of Uranus is no longer
negligible.

TABLE II. Keplerian elements and additional variables related to the DM clump and Earth orbits, with final
desired outputs for a total population size of 2 × 106.

Orbital variables DM clump orbit Earth orbit

Semi-major axis, a Via V∞, see Fig. 3 a⊕ ¼ 1 A:U:
Inclination, i [rad] U½0; π� and U½0; 8.72 × 10−4� i⊕ ¼ 0

RAAN, Ω [rad] U½0; 2π� Not applicable
Argument of periapsis, ω [rad] U½0; 2π� Not applicable
Initial true anomaly, θ0 [rad] θ0 ¼ �0.97θlim U½0; 2π�
Impact parameter, B [AU] U½0.01; 100� and U½0.98; 1.025� Not applicable
Desired outputs Variable symbol Unit
Minimum Earth/DM clump distance d [A.U.]
DM velocity (with respect to Earth) at distance d VDM=⊕ [km/s]

FIG. 29. Resulting populations from four independent
Monte Carlo simulations of minimum Earth-clump distance
as a function of iDM for the general distribution of impact
parameters.
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With regards to [31], the results for the probability
capture Pc and the mass captured Mc computed in this
study and summarized in Table I seem to be less
conservative for all planets, except for Jupiter. Unlike
our method, the methodology of [31] is entirely analyti-
cal, with mass estimates derived from analytical and
probabilistic laws. The observed discrepancies will
deserve further investigation.
According to Table I, [32] shows a clear overestima-

tion of Mc, not only confirmed by the results of [31]
and of this study, but also by the analysis of [29]. An
explanation found for this discrepancy with [32] could
be the capture radius not taken as the SOI, but a factor
of Hill’s radius as rH ¼ aPðmP=M⊙Þ1=3. This is then
associated to no clear correction by a probability of
orbital intersection and finally an assumed inclination of
0 (the latter was found to increase the probabilities by a
factor of 10, except for Jupiter with an increase factor
of 1.1).
Let us now briefly mention the results of our calculation

of the elliptical orbits of the captured objects. From the
analytical method, higher velocity planets provide more
data points. The semi-major axis ab of the newly elliptical
orbit is increasing with the distance of the planet to the Sun.
In some cases, the extreme values ab > 1000 A:U: are
reached. The newly bound orbit can also be characterized
by its eccentricity eb. The eccentricity can be computed
using Eq. (7), where the orbital energy E ¼ −μ⊙=ð2abÞ and
h ≈ aPðVfÞt, where ðVfÞt corresponds to the tangential
component of Vf and aP is the planet’s orbital radius.
This results in

eb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

a2PðVfÞ2t
μ⊙ab

s
: ðB1Þ

As the final velocities are usually very close to Vesc, the
fractional term a2PðVfÞ2t =ðμ⊙abÞ is very small. This leads to
eb values close to 1. Finally, due to the large eb values,
pericenter values are actually concentrated at low values
with a maximum of only 4 A.U., below Jupiter’s orbital
radius. This enhances the probability of their possible
encounter with the Earth but also their probability of being
ejected by Jupiter.

APPENDIX C: EFFECT OF DM
ORBIT INCLINATION

The change in inclination of the DM orbit in Fig. 30
shows a large variability in the maximum amplitude of the
gravimeter signal, of 1 to 2 orders of magnitude, due to the
angle αrmin

in Eq. (47). The stations can also be observed to
have different signal shapes. The duration is however
nearly unaltered (maximum factor difference of 1.5).

TABLE III. Most important variables and outputs related to the DM clump and planet orbits for a total population
size of 5 × 105 per planet.

Variables Value or distribution Unit

Excess heliocentric velocity, V∞ Distribution in Fig. 3 [km/s]
Impact parameter, B U½0.01Bmax; Bmax� [A.U.]
Inclination, iDM U½0; π� [rad]
RAAN, ΩDM U½0; 2π� [rad]
Argument of periapsis, ωDM U½0; 2π� [rad]
Planet true anomaly, θP U½0; 2π� [rad]

Desired outputs Variable symbol Unit

Bounded semi-major axis distribution ab [A.U.]
Bounded eccentricity distribution eb
Probability of capture Pc

FIG. 30. Entire gravimeter network signal variation as a
function of iDM with V∞ and B fixed at 15 km=s and
15500 km, respectively.
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