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1 Introduction 

1.1 Background 

A Supply chain (SC), or logistic network, is a network of connected and interdependent actors 

involved in different activities to fulfill customer demand. A typical supply chain might include 

suppliers of raw materials or components, manufacturers, distributors, retailers, and customers, all 

linked to each other by upstream and downstream flows of products, services, funds, and 

information (Chopra & Meindl, 2015; Christopher, 2011; Mentzer, Keebler, Nix, Smith, & 

Zacharia, 2001; Simchi-Levi, Kaminsky, & Simchi-Levi, 1999). Supply chain management (SCM) 

involves integrating actors and coordinating material, information, and financial flows to improve 

the competitiveness of the whole supply chain (Stadtler, Kilger, & Meyr, 2002). While the 

expansion and complexity of modern supply chains have driven several advances in supply chain 

management in recent decades, they have also introduced risks and made supply chains more 

vulnerable to disruptions. Critical advances in supply chains and their associated risks can be 

summarized as follows: 

Just‐in‐time: The concept of Just‐in‐time (JIT) was introduced first by Toyota to have competitive 

advantages through waste elimination, inventory reduction, and efficiency improvement. In a JIT 

strategy, the materials and products will be available only when they are needed. This results in a 

minimum inventory level, consequently increasing the supply chain's vulnerability to unexpected 

events. Thus inventory reduction strategies, such as JIT, would be efficient only if they are 

established with an acceptable level of resilience to disruption (Cedillo-Campos, 2014; Jiang, 

Rigobon, & Rigobon, 2022; Ye, Suleiman, & Huo, 2022). 
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Reduction of suppliers: There has been a growing trend of reducing the number of suppliers during 

recent decades because of advantages such as reduction of transaction and administrative costs, 

benefits of economies of scale, making stronger relationships with suppliers, and developing or 

sharing technologies (Behdani, 2013; Choi & Krause, 2006). Despite several benefits that supplier 

reduction strategy brings to an industry, it might also result in more severe supply chain disruptions 

due to the failure of a supplier that is the only source of supply for a particular component (Cajal-

Grossi, Del Prete, & Macchiavello, 2023; Remko, 2020). 

Outsourcing: Outsourcing is defined as the strategy of receiving semi‐finished or finished products 

or services from outside of the company, such as third‐party specialists, instead of producing these 

products or delivering these services internally (Dolgui & Proth, 2013). A company might 

outsource functions such as distribution, manufacturing, accounting, and information systems 

(Christopher, 2011). The main reason behind an outsourcing strategy is to focus on business core 

competencies. The core competency refers to activities or skills through which the company 

achieves long‐term competitive advantages in the market (Tompkins, Simonson, Tompkins, & 

Upchurch, 2005). The risks associated with outsourcing include loss of control due to the expansion 

of network boundaries as well as increasing the complexity of the supply network in terms of 

increasing links and nodes, which bring their own risk of failures (Kazancoglu et al., 2023; 

Pellicelli, 2023).  

Centralized distribution: Flows of products are better facilitated within geographical boundaries 

(e.g., the European Union) due to the lack of trade barriers and tariff reductions. Therefore, 

companies are tempted to centralize their production and distribution facilities. Besides that, to take 

advantage of economies of scale, companies shift toward producing a large volume of few products 

in a particular plant instead of a full variety of products. The centralized facility strategies increase 

the disruption risks as a result of long‐distance transportation as well as lack of flexibility and 

redundancy (Christopher, 2011; Parast & Oke, 2022; Rezapour, Farahani, Dullaert, & De Borger, 

2014).  

Globalization: Globalization of a supply chain is the act of offshoring activities related to sourcing, 

manufacturing, and assembly (Stecke & Kumar, 2009). The motivation for a supply chain to use 

offshoring can be access to domestically unavailable or cheaper resources, technical expertise, and 

access to new markets (Behdani, 2013). As the globalization strategy expands to new geographical 

regions, it brings a variety of risks: long lead times, heavy reliance on transportation, exchange rate 

fluctuations, and natural, criminal, and political risks (Shih, 2020). 

While supply chain advances offer competitive advantages to the organizations involved, they also 

increase the vulnerability of supply chains to disruptions. Christopher and Peck (2004) define 

supply chain vulnerability as "an exposure to serious disturbance, arising from risks within the 

supply chain as well as risks external to the supply chain”. Numerous examples in the literature 

that show unexpected adverse events provide evidence of high uncertainty and turbulence in today's 

business environment. In a recent example, several US and European manufacturers and retailers 

suffered from disruptions due to the pandemic, which suspended operations in China and resulted 

in supply shortages (Li, Chen, Collignon, & Ivanov, 2021). In another example, Ford was forced 

to close five of its production plants for several days due to the limited air traffic after the 9‐11 

terrorism attack. Also, because of the bankruptcy of one of Land Rover's key suppliers, the 

company laid off almost 1400 of its workers in 2001 (Tang, 2006). Other examples exist related to 

the earthquakes in China in 2008, the tsunami in Japan in 2011, earthquakes in Chile in 2011 and 
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2015, Typhoon Haiyan in the Philippines in 2013, and the most recent Covid-19 crises (Fahimnia, 

Tang, Davarzani, & Sarkis, 2015; Jabbarzadeh, Fahimnia, Sheu, & Moghadam, 2016; Klibi, 

Martel, & Guitouni, 2010; Rinaldi, Murino, Gebennini, Morea, & Bottani, 2022).  

To be competitive in today's turbulent marketplace, besides concentrating on primary objectives 

such as cost minimization or service maximization, supply chains need to develop disruption 

management strategies to decrease both short‐term and long‐term negative impacts of disruptions 

on business performance. One of the ways industries can approach inevitable disruptions is by 

becoming resilient (Christopher, 2011; Jabbarzadeh et al., 2016).  

Supply chain resilience is an emerging topic in supply chain risk management. Since resilience is 

a multi-dimensional and multi-disciplinary concept, no well‐established and widely accepted 

definition exists. Ponomarov and Holcomb (2009) try to develop a comprehensive and integrated 

definition of supply chain resilience by reviewing the concept of resilience from various 

perspectives, including social, ecological, organizational, psychological, and economic disciplines. 

Based on their definition, resilience is "the adaptive capability of the supply chain to prepare for 

unexpected events, respond to disruptions, and recover from them by maintaining continuity of 

operations at the desired level of connectedness and control over structure and function." This 

definition of supply chain resilience comprises three dimensions: readiness, response, and 

recovery. Hohenstein et al. (2015) provide a complementary definition by defining supply chain 

resilience as "the ability to be prepared for unexpected risk events, responding and recovering 

quickly to potential disruptions to return to the original situation or grow by moving to a new, more 

desirable state to increase customer service, market share, and financial performance." Compared 

to Ponomarov and Holcomb (2009), Hohenstein et al. (2015) add 'growth,' achieving a new and 

improved position after recovery. The authors believe that while readiness is associated with 

proactive disruption management, response, recovery, and growth focus on how a disruption is 

handled after it has occurred. 

This research applies the term "supply chain resilience" to refer to the ability of supply chains to 

manage disruption proactively and reactively in an efficient manner. Given this, the term "supply 

chain disruption management" is used interchangeably in this thesis with the term supply chain 

resilience. Also, the term supply chain stress-testing is used interchangeably in this thesis with the 

term supply chain vulnerability analysis.   

Various supply chain resilience frameworks have been put forward in which principles of a resilient 

supply chain and drivers for achieving resilience are identified qualitatively (Blackhurst, Dunn, & 

Craighead, 2011; Christopher & Peck, 2004; Ponomarov & Holcomb, 2009). Also, various 

quantitative methods have been developed to address different aspects of supply chain resilience. 

These methods propose models for assessing the vulnerability of a supply chain to disruptive risk 

as well as evaluating mitigation and recovery policies against disruption to improve resilience 

(Fahimnia, Tang, Davarzani, & Sarkis, 2015; Hosseini, Ivanov, & Dolgui, 2019; Pires Ribeiro & 

Barbosa-Povoa, 2018). 

The first step in improving supply chain resilience or, in general, supply chain risk management is 

to identify risks and assess them. The approaches toward assessing risk mainly depend on the 

availability of information about disruptive risks. These approaches assume that the probability of 

occurrence of a disruptive risk and its magnitude are known or can be estimated. Although 

probability‐based approaches toward risk modeling work acceptably for typical supply chain 

disturbances or operational risks, they are misleading for dealing with less frequent or unknown 
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disruptions (Heckmann, Comes, & Nickel, 2015). The main reason is that information related to 

rare events can hardly be obtained, and even if the information becomes available, it may not be a 

reliable representation of the future due to the unpredictability of these kinds of risks. Also, 

probability‐based approaches typically give the same weight to both high frequency‐low impact 

events and low frequency-high impact events, resulting in underestimation of the losses due to the 

aggregation over time horizons. Moreover, the managers ignore the disruptive risks because they 

believe that the probability of their occurrence is very low, so it can be neglected.  

Model-based approaches for supporting supply chain resilience must be capable of assessing the 

vulnerability of a supply chain despite unknown or incomplete information about risk, considering 

the unpredictable nature of disruptive risks. In this thesis, we suggest a consequence-based 

approach toward risk analysis of the supply chain. Instead of focusing on identifying the root causes 

of risks and determining their characteristics, such as probability of occurrence and intensity, one 

concentrates on analyzing the negative impact of disruptions on supply chain performance. For 

example, no matter whether a strike or congestion in a port disturbs a water transportation activity 

within the supply chain, the focus is on answering the question of what will happen if that transport 

activity is disrupted. Similarly, the focus is not on understanding whether a flood, bankruptcy, or 

cyber-attack stops a supplier's functionality within the supply chain; this research tries to answer 

what would happen if that supplier stopped working. However, a big challenge for consequence-

based risk analysis of a supply chain is that, considering the complexity of a supply chain that 

consists of thousands of interdependent and globally distributed actors, generating a comprehensive 

set of possible disruptive events is hard. Also, developing effective disruption management 

strategies under many possible disruption scenarios is another challenge that is important for 

improving resilience.  

The way in which a disruptive event propagates through a supply chain network depends on the 

structure of the supply chain. Therefore, the vulnerability of a supply chain is directly related to its 

structure. Considering the structure of the supply chain network in resilience practices and 

analyzing supply chain disruption at the network level is crucial. To compare the resilience of 

different supply chain network structures, researchers frequently adopt a graph theoretical 

perspective and focus on the topology of the supply chain. From this perspective, different network 

structures imply different configurations of nodes (facilities) and links (transport links). Supply 

chain resilience can be assessed by exposing nodes and links to disruptions. However, 

conceptualizing different supply chain networks based only on different configurations of nodes 

and links disregards key operational characteristics that may affect supply chain functioning and, 

thus,  resilience. This research investigates the strength of several supply chain structures, which 

differ in several operational characteristics, including product structure, sourcing strategy, and 

production strategy. Although these functional characteristics play an essential role in research on 

supply chain design, research on the impact of these three operational characteristics on the 

resilience of different supply chain structures remained uninvestigated.  

A successful supply chain resilience practice depends on reliable stress-testing of the supply chain. 

Reliable stress-testing of a supply chain depends on the availability of information about the supply 

chain structure where relations among different supply chain actors are clear. However, the 

complexity and globalization of today's supply chains make it difficult for decision makers to 

access data and information, especially from actors more than a few tiers upstream or downstream. 

Also, as a dynamic system, a supply chain changes structure and configuration over time. Here, 
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there is a need for an approach to stress-test a supply chain to improve its resilience that can deal 

with a lack of information about the structure of the supply chain.  

1.2 Research question 

With the aim of supporting the resilience of a supply chain in a complex, unpredictable, and 

turbulent business environment, the following research question is defined as the main question to 

be addressed in this research: 

What is an adequate approach for model-based risk analysis of a supply chain to support its 

resilience? 

To answer the above question, three sub-questions are formulated as follows: 

1. How can consequence-based risk analysis overcome the challenges of conventional risk 

analysis approaches for improving supply chain resilience? This research question 

investigates how consequence-based risk analysis can treat the challenges of the 

unpredictability of disruptive risks, the complexity of a supply chain, and the robustness of 

disruption management strategies in model-based approaches for supporting supply chain 

resilience. To this end, we treat supply chain disruption management as a problem of decision 

making under deep uncertainty (DMDU) to benefit from approaches developed in this domain, 

specifically robust decision making.  

2. What operational aspects affect the resilience of a supply chain structure? 

This research question aims at incorporating operational aspects of a supply chain in structural 

vulnerability analysis of the supply chain. To this end, various supply chain network structures, 

which differ in three operational aspects, including product structure, sourcing strategy, and 

production strategy, are stress-tested and compared to find key operational characteristics that 

affect the resilience of a supply chain structure.  

3. How to do model-based stress testing of a supply chain despite a lack of precise information 

about the supply chain structure? 

This research question aims at addressing uncertainties related to supply chain structure in 

resilience practices. To this end, we adopt an ensemble modeling approach, which implies that 

instead of relying on one single supply chain structure, one can generate multiple structures for 

a supply chain using stochastic parameters and draw conclusions from a range of possible 

outcomes. 

1.3 Research approach  

Literature review: To conduct our research, we start with a review of current model-based 

approaches for supporting supply chain resilience to reflect on the limitations of the existing 

literature. The results from the literature review highlight the need for the consequence-based risk 

analysis approach, which is the underpinning approach in conducting risk analysis in this research. 

This approach addresses the challenges of the unavailability of risk information in resilience 

practices, which is the case in the problems associated with all three sub-questions of this research. 

See Chapter 2 for the details of the literature review.  
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Simulation modeling: To measure the impact of potential disruptions on supply chain performance 

and to evaluate resilience strategies, we model the behavior of supply chains using simulation. 

Several researchers highlight that in situations where supply chains consist of a complex network 

of actors and activities and in situations where multiple resilience strategies are to be evaluated, 

simulation is the most promising approach due to its flexibility for exploring a variety of what-if 

scenarios (Schmitt & Singh, 2009). Among several simulation formalisms, we adopt discrete event 

simulation (DES), a widely used and promising approach for simulating supply chains (Oliveira, 

Lima, & Montevechi, 2016). A DES model consists of entities interacting in a process‐based 

system environment where entities queue for services or compete for resources (Brailsford, 2013). 

In a DES model, the behavior of a system is described as a sequence of events where the state of 

the system changes when an event occurs at a particular instant in time (Robinson, 2004). The 

supply chain simulation model developed in this research is used to conduct experiments to address 

all three sub-questions in this thesis. The details of the simulation model are given in Chapter 3.  

Exploratory modeling: To answer the research questions of this research, several experiments are 

designed. To perform and analyze the experiments, we adopt the exploratory modeling approach. 

Exploratory modeling is a model‐based methodology that uses computational experiments to 

analyze complex and uncertain systems (Bankes, 1993; Kwakkel & Pruyt, 2013). Exploratory 

modeling involves exploring a comprehensive set of scenarios that cover uncertainties about input 

variables and models for various outcomes of interest and possible solutions (Kwakkel, Walker, & 

Marchau, 2010) to get insights into systematic system behavior patterns across the scenarios. The 

approach has been successfully applied in different contexts ranging from transportation 

management to climate adaptation (Halim, Kwakkel, & Tavasszy, 2016). Exploratory modeling is 

applied to address all three sub-questions in this thesis.  

1.4 Outline of the thesis 

Figure 1 shows an overview of the thesis. In Chapter 2, we elaborate on the need to shift from 

cause-based risk analysis to consequence-based risk analysis of a supply chain, with supporting 

arguments from the literature review. The concept of consequence-based risk analysis underpins 

the approaches for addressing the research questions of this thesis. In Chapter 3, we describe the 

simulation model developed for conducting the experiments related to this research. Chapter 4 

addresses research question 1 by proposing an approach for designing resilient supply chains using 

consequence-based risk analysis and robust decision making. In Chapter 5, we address research 

question 2 by exploring the relation between supply chain resilience and network topologies with 

different operational aspects. In Chapter 6, we address research question 3 by proposing an 

approach for supporting supply chain ensemble modeling as a model-based decision-support tool 

toward supply chain resilience. The last chapter closes the thesis with conclusions and 

recommendations for research and practice.  
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2 Toward consequence-based disruption management 

of the supply chain 

In this chapter, we discuss the importance of moving from cause-based to consequence-based risk 

analysis in supply chains, supported by evidence from the literature review. The principle of 

consequence-based risk analysis forms the foundation for addressing three research questions 

explained in section 1.2.  

2.1 Introduction to supply chain disruption and resilience 

Supply chains today are more complex than ever before. Various trends such as globalization, 

outsourcing, lean manufacturing, single-sourcing strategy, and short product life cycles add to the 

complexity of today’s supply chains (Diabat, Govindan, & Panicker, 2012; Finch, 2004; Prater, 

2005; Rinaldi, Murino, Gebennini, Morea, & Bottani, 2022; Tukamuhabwa, Stevenson, Busby, & 

Zorzini, 2015)J. Blackhurst, Craighead, Elkins, & Handfield, 2005; M.s Christopher, Mena, Khan, 

& Yurt, 2011; Kamalahmadi & Parast, 2016; Stecke & Kumar, 2009; C. S. Tang, 2006; Wagner & 

Bode, 2006; Zhao, Kumar, Harrison, & Yen, 2011; Zhao et al., 2011). Although supply chain 

advances bring competitive advantages to the involved organizations, they also make supply chains 

more vulnerable to disruptions. The complexity of a supply chain can lead to significant disruptions 

in its performance when an unexpected adverse event, natural or man-made, happens.  

The vulnerabilities of complex supply chains can be explained in relation to the concept of 

embedded supply chains which implies that a supply chain is highly interconnected with broader 

economic, social, environmental, and technological systems instead of operating independently 

(Carter & Rogers, 2008). From this perspective, vulnerabilities are potential risks that can disturb 

the supply chain operations due to the involvement of the supply chain in various external systems, 
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such as economic, social, and environmental systems. The supply chain vulnerabilities in relation 

to the complexities of an embedded supply chain can be explained as follows:  

- Economic factors: embedded supply chains are influenced by trends and fluctuations in the 

global economy, such as changes in trade policies, tariffs, and exchange rates or downturns 

of the economy, which result in demand and supply fluctuations (Escaith, Lindenberg, & 

Miroudot, 2010). 

- Social factors: social factors, such as labor practices and ethical standards can contribute to 

vulnerabilities of an embedded supply chain. For example,  social unrest, poor working 

conditions, or violations of ethical norms can lead to operational disruptions (Ding et al., 

2023). 

- Environmental factors: climate change, natural disasters, and sustainability regulations, 

have a significant influence on embedded supply chains. For example, extreme weather can 

damage infrastructure, delay shipments, or increase costs, making the supply chain more 

fragile (Seuring & Müller, 2008). 

- Geopolitical factors: Political instability, trade wars, and changes in government policies 

can disrupt operations, alter trade routes, and impose new regulatory requirements. These 

geopolitical factors can lead to sudden and unpredictable disruptions ( Bednarski et al., 

2024). 

- Technological factors: As supply chains become more digitized, they also become more 

vulnerable to cybersecurity threats and technological failures (Ho et al., 2022).  

There are several examples of supply chain disruption over the last decades. One example is the 

2011 tsunami in Japan, which disrupted Japanese suppliers of Toyota, General Motors, and silicon 

wafer industries (Hosseini, Ivanov, & Dolgui, 2019; Tordecilla, Juan, Montoya-Torres, Quintero-

Araujo, & Panadero, 2021). In another example, Ford’s supply chain was disrupted after the 

September 11, 2001, terrorist attacks because of the shutting down of US air transport (Sheffi & 

Rice Jr., 2005). A recent example is the COVID-19 pandemic, which resulted in the suspension of 

many operations globally from and to China. (Aldrighetti, Battini, Ivanov, & Zennaro, 2021). Other 

examples of supply chain disruptions are Hurricane Mitch and the Taiwan earthquake in 1999, 

explosions at a container warehouse of toxic chemicals at the Port of Tianjin, China in 2015, and 

Hurricane Harvey in 2017 (Niels Bugert & Lasch, 2018). 

In the supply chain risk management literature, researchers distinguish between disruption risks 

and operational risks. While disruption risk refers to a low-probability but high-impact type of risk, 

such as natural disasters, operational risk is associated with a high-probability but low-impact kind 

of risk, such as uncertainty in demand, supply, and capacity (Bier, Lange, & Glock, 2020; Dolgui, 

Ivanov, & Rozhkov, 2020). Although disruptive risks occur less frequently than operational risks, 

they can quickly spread and propagate through the entire supply chain network. This phenomenon 

is called the ripple effect (Dmitry Ivanov & Dolgui, 2019; Dmitry Ivanov, Sokolov, & Dolgui, 

2014; Liberatore, Scaparra, & Daskin, 2012). The ripple effect of disruptive risks has significant 

negative impacts on supply chain performance, including increasing cost and loss of profit, delay 

in delivery, loss of market share, and reputation (Aldrighetti et al., 2021; Bier et al., 2020; J. 

Blackhurst et al., 2005; Hendricks & Singhal, 2003; D Ivanov, Tsipoulanidis, & Schönberger, 

2017; Vanany, Zailani, & Pujawan, 2009; Yildiz, Yoon, Talluri, & Ho, 2016).  

Studies show that despite the concerns about the increase of supply chain disruptive risks and their 

negative consequences (Chopra & Sodhi, 2004; Fahimnia, Tang, Davarzani, & Sarkis, 2015; Sheffi 
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& Rice Jr., 2005; Sodhi & Christopher, 2012), only few companies consider disruption 

management actively, and most of the companies do apparently not believe in disruption 

management practices, and only react to disruption once it happens (Kamalahmadi & Parast, 2016; 

Sáenz & Revilla, 2014). Fiksel et al. (2015) relate the belief of the ineffectiveness of disruption 

management practices to the fact that conventional risk management practices rely on the 

availability of statistical information about risk; however, disruptive risks are unpredictable, so 

there may be no reliable information about them to use for developing effective disruption 

management strategies. However, having a disruption management strategy can bring competitive 

advantages to a supply chain and even improve its market share and reputation (Golan, Jernegan, 

& Linkov, 2020; Kwak, Seo, & Mason, 2018). Nokia and Ericsson's disruption case of 2000 is a 

good example of the importance of a disruption management strategy for companies. Fire at a 

semiconductor plant of a supplier of both Nokia and Ericsson resulted in the damage of millions of 

microchips. Nokia was able to handle the situation by changing the design of its chips and making 

use of backup suppliers. The company even made a profit from the disruption. Ericsson, however, 

took no action by waiting for the supplier to recover from the disruption and, therefore, lost a 

considerable amount of money from the situation (Niels Bugert & Lasch, 2018; Lee, 2004; Tang, 

2006). 

To manage disruptive risk, supply chains must become resilient (Sheffi, 2005). Resilience is 

defined as the capability of the supply chain to resist disruptions and quickly return to normal or to 

a better status (Jennifer Blackhurst, Dunn, & Craighead, 2011; Hosseini & Ivanov, 2019; Pettit, 

Croxton, & Fiksel, 2019; Tukamuhabwa et al., 2015). To achieve resilience, supply chains can use 

proactive and/or reactive strategies (Aldrighetti et al., 2021; Tomlin, 2006). The proactive 

resilience strategies are concerned with increasing resistance and robustness against disruption 

(Klibi, Martel, & Guitouni, 2010; Lin & Wang, 2011). Examples of proactive resilience strategies 

are redundancy practices that take action before disruption, such as buffer capacities, backup 

suppliers, and contingency inventory for mitigating risk (Dmitry Ivanov & Dolgui, 2019). In 

contrast, reactive resilience strategies aim to modify supply chain processes and structures in 

response to disruptions. (Knemeyer, Zinn, & Eroglu, 2009; Paul, Sarker, & Essam, 2014). Reactive 

strategies are mainly achieved through flexibility and adaptation (Dolgui, Ivanov, & Sokolov, 

2020; Y. Li, Chen, Collignon, & Ivanov, 2021).  

The resilience of a supply chain is closely related to its vulnerability. Carvalho et al. (2012) define 

vulnerability as the incapacity of a supply chain network to react to disruption. Therefore, reducing 

the vulnerability of a supply chain directly increases its resilience. Vulnerability assessment of a 

supply chain is the basis of the resilience practices. Sheffi and Rice (2005) argue that vulnerability 

assessment tries to answer questions like “what can go wrong? What is the likelihood of that 

happening? What are the consequences if it does happen?”. 

Supply chain resilience has recently gained extensive attention among both researchers and 

practitioners. The supply chain resilience literature can be classified into two categories: 

qualitative-based studies and quantitative-based studies. The first category focuses on identifying 

principles of a resilient supply chain as well as drivers for achieving resilience from a qualitative 

point of view. An example of research in this category is Christopher & Peck (2004), the most cited 

paper in this category, which defines the principles of a resilient supply chain as supply chain 

reengineering, agility, collaboration, and supply chain risk management culture. Several other 

qualitative supply chain resilience frameworks have been put forward (Jennifer Blackhurst et al., 

2011; W. Christopher, Johnny, & Robert, 2007; Pettit, Fiksel, & Croxton, 2010; Ponomarov & 
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Holcomb, 2009; Wieland & Marcus Wallenburg, 2013). Hohenstein et al. (2015) provide a 

synthesis of supply chain resilience frameworks in terms of proactive (pre-disruption) and reactive 

(post-disruption) strategies. Kamalahmadi and Parast (2016) provide a literature review on 

definitions of supply chain resilience, principles, and strategies.   

The second category focuses on developing quantitative methods to address different aspects of 

supply chain resilience. The studies in this category deal with proposing decision support models 

for assessing the vulnerability of a supply chain to disruptive risk as well as evaluating mitigation 

and recovery policies against disruption for improving resilience. An example is Datta et al. (2007) 

who try to improve the resilience of a multi‐product, multi‐national supply chain by developing an 

agent‐based model of a supply chain to investigate the effect of various strategies for promoting 

resilience, including decentralized informational structure, flexible decision rules, regular 

monitoring of key performance indicators, and information sharing with other supply chain 

partners. The authors find that flexibility in all the elements of the supply network, demand-led 

adaptive production planning, and sequencing and distributing materials based on a combination 

of push and pull strategies are the key strategies to improve resilience.  

Researchers use various methods to address the problem of supply chain resilience quantitatively. 

Hosseini et al. (2019) divide these methods into five categories including mathematical and 

optimization modeling, structural equations modeling, Bayesian networks, simulation techniques, 

and multi-criteria decision making. The authors also identify five main categories of solution 

techniques for solving model-based approaches toward supply chain resilience, including exact 

methods for solving optimization models, exact solver commercial software such as GAMS, 

CPLEX, Lingo, meta-heuristic algorithms, Multi-criteria decision making such as AHP, ANP, and 

VIKOR, and Fuzzy logic and grey set theory. In another classification, Bier et al. (2020) identify 

two categories of risk modeling methods in quantitative-based approaches toward supply chain 

disruption management: Direct methods and proxy methods. The direct methods assess the impact 

of risk by analyzing the probability distribution of disruptive events through the supply chain 

network. In this category, several scholars adapt approaches from the risk management discipline, 

including Value-at-Risk analysis (Madadi, Kurz, Taaffe, Sharp, & Mason, 2014; Mizgier, 2017; 

Mizgier, Wagner, & Jüttner, 2015), the Z-score analysis (Basole & Bellamy, 2014; Basole, 

Bellamy, Park, & Putrevu, 2016), the ANOVA method (Kauppi, Longoni, Caniato, & Kuula, 2016) 

and the HAZOP method (Adhitya, Srinivasan, & Karimi, 2009). Several scholars also adopt 

simulation-based approaches for risk modeling of a supply chain, including discrete event 

simulation (Reyes Levalle & Nof, 2015; Y. Wang & Xiao, 2016), Monte-Carlo simulations 

(Levitin, Gertsbakh, & Shpungin, 2013; R. Li, Dong, Jin, & Kang, 2017; Mizgier, 2017; Mizgier 

et al., 2015), Bayesian networks (Garvey, Carnovale, & Yeniyurt, 2015; Ojha, Ghadge, Tiwari, & 

Bititci, 2018), agent-based simulations (Basole & Bellamy, 2014; Priya Datta, Christopher, & 

Allen, 2007b; Reyes Levalle & Nof, 2015), dynamic simulations (Adhitya et al., 2009; Xiao, Cao, 

Sun, & Zhou, 2016), and Petri nets (J. W. Wang, Ip, Muddada, Huang, & Zhang, 2013). In the 

categorization of Bier et al. (2020), proxy methods are the methods that consider risk assessment 

and structural aspects of the supply chain. The authors highlight that the majority of the methods 

in this category rely on graph modeling of the supply chain network to benefit from metrics from 

graph theory and social network analysis, such as degree centrality, betweenness centrality, and 

closeness centrality (Yan, Choi, Kim, & Yang, 2015).  
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2.2 Approaches for modeling uncertainty associated with disruptive 

risk 

Modeling uncertainty associated with disruptive risk is at the heart of quantitative-based 

approaches for supporting supply chain resilience. The central aspect of uncertainty modeling in 

most research domains, including supply chain disruption management, is the availability of 

information. However, this is difficult in complex systems where different types of uncertainty are 

present (Heckmann, Comes, & Nickel, 2015). In such systems, uncertainty modeling is a complex 

aspect of risk management practices. Scholars argue that decision processes are dependent on three 

conditions: certainty, risk, and uncertainty (Rosenhead, Elton, Gupta, & Rosenhead, 1972). In this 

definition, certainty refers to a situation where all decision-related parameters and variables are 

deterministic and known, and the relation between information as input and the decision as output 

is clear. Risk and uncertainty, on the other hand, refer to situations where there is a lack of decision-

related information due to reasons such as a lack of time and resources to collect and process 

information or the complexity of the system under study. Heckmann et al. (2015) argue that 

decision-making under risk relies on probability distributions, which define the relation between 

input and output. However, decision making under uncertainty deals with a lack of information 

about the probability distribution of the model parameters. Heckmann et al. (2015) argue that 

supply chain risk management concerns decision-making under risk and under uncertainty 

depending on the availability of information and different uncertainty models used to describe each 

situation. Owen and Daskin (1998) categorize supply chain uncertainty modeling approaches into 

probabilistic-based approaches and scenario planning approaches. Probabilistic approaches 

consider the probability distribution of uncertain parameters. These approaches mainly rely on 

historical data to determine or estimate the probability of uncertain risk parameters. Examples of 

work in this category include Baghalian et al. (2013), Cui et al. (2010) and Fang et al. (2013). 

Aldrighetti et al. (2021) argue that, in the literature on supply chain resilience, the most used 

approach for defining disruption probability is the scenario approach. In such an approach, the 

stochastic parameters are modeled as a set of discrete scenarios with their associated probability of 

occurrence. For example, Klibi and Martel (2012) and Snoeck et al. (2019) model disruptions as 

meta-events with generic impacts which are called multi-hazards. In their approach, facilities have 

different incident profiles regarding impact and time to recovery. For mapping potential threats, 

the authors partition the geographic territory of the supply chain operations into a set of hazard 

zones, each with a corresponding exposure level. Finally, multihazard scenarios occur 

independently, and probability distributions are generated from the expert opinion, historical data, 

and the literature. This probability modeling formulation permitted a wide variety of expected 

disruption costs (EDC) to be included, such as damage costs, backlog costs,  recovery/restoration 

costs, procurement cost penalties, and transportation cost penalties. 

 In another work, Salimi and Vahdani (2018) used a spatial statistic model to approximate supply 

chain failure probabilities. The authors create their model by averaging the probability of a disaster 

event (from historical data) and a spatial dependency. In another example, to design a resilient 

supply chain network Fattahi and Govindan (2018) and Fattahi et al. (2017) generate random 

scenarios of a disruption in storage capacity in each period by assuming a Bernoulli distribution 

for disruption probability. As the complexity of the problem under study increases, researchers 

apply more advanced probability formulation methods. Decision-tree and probabilistic graphical 

models are two techniques adopted by several scholars for probability formulation. An example is 
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the work by Kamalahmadi and Parast (2017), who develop a scenario-based mathematical program 

where the authors use decision-tree analysis to determine the probability distribution of disruption 

scenarios dependent on supplier failures and regional disruptions. In another work, Hosseini et al. 

(2019) used a Bayesian network to calculate the probability of supplier disruption due to various 

random disruption risks such as earthquakes, floods, hurricanes, and labor strikes. Their analysis 

considers the dependency between the suppliers and the disruptive events.  

The scenario planning approach refers to the method of modeling uncertainty by identifying a 

number of plausible future scenarios to determine efficient strategies under all scenarios (Owen & 

Daskin (1998). Several scholars have adopted scenario planning to address supply chain resilience. 

For example, Breuer et al. (2013) develop an agent‐based simulation model to assess the impact of 

thirty scenarios of disruptive events on the sensitive logistic nodes of a supply chain. The authors 

attempt to build scenario-specific strategies to maintain the flow of goods after disruption. Simchi-

Levi et al. (2015) developed a methodology for stress-testing critical supply chain entities to design 

strategic, tactical, and operational decisions. The authors use the risk-exposure index, time-to-

recovery, and time-to-survive metrics for designing a robust supply chain. Thekdi and Santos 

(2016) introduce a performance metric for characterizing resilience, and by applying a scenario 

approach, they assess economic sensitivity to sudden-onset disruptions such as labor strikes, 

terrorist attacks, and hurricanes.  

2.3 Limitations of the current disruption modeling approaches  

Reviewing the literature highlights several concerns and gaps in common approaches for modeling 

uncertainty related to disruptive risks. This section elaborates on these gaps.  

Many of the current approaches in the literature of disruption modeling assume that the probability 

of disruptive risks is known or can reliably be estimated. Although probability‐based approaches 

toward risk modeling work acceptable for typical supply chain disturbances or operational risks, it 

would be misleading to use them for dealing with less frequent or unknown disruptions (Heckmann 

et al., 2015). Aldrighetti et al. (2021) argue that probability estimation of disruptive events might 

not be a reliable approach because data related to rare events can hardly be obtained, and even if 

the data becomes available, it may not be a reliable representative of the future. Disruptions happen 

unpredictably with various natures, frequency of occurrence, and intensity, so it is almost 

impossible to characterize them based on historical data (Dolgui, Ivanov, & Sokolov, 2018; He, 

Alavifard, Ivanov, & Jahani, 2019; Torabi, Baghersad, & Mansouri, 2015). Chan and Kroese 

(2011) argue that even minor errors in the probability estimation of disruption can impact the 

analysis result significantly. Besides concerns regarding probability estimation of disruptive risks, 

probability‐based approaches normally give the same weight to both high frequency‐low impact 

events and low frequency‐ high impact events, resulting in underestimation of the losses due to the 

aggregation over time horizons (Klibi et al., 2010). As a result, disruptive risks are ignored by 

managers because they believe that the probability of their occurrence is very low, so they can be 

neglected (Johnson & Nagarur, 2012). Another reason for neglecting low-frequency, high-impact 

events is that managers are often fully engaged with daily operational issues with short term 

impacts within their supply chains, which leads to a focus on high-frequency, low-impact events 

over the more significant but less frequent risks (Akkermans & Van Wassenhove, 2018). 
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Additionally, in supply chains, the focus is often on past risk events, and the importance of risk 

management is typically recognized only when a major disruption occurs (Urata & Pel, 2018).  

There are also several limitations associated with scenario planning approaches toward disruption 

modeling. In most current scenario planning approaches, a specific limited set of disruptive 

scenarios is selected to represent future risks related to a supply chain. However, such a narrow 

view of the future is misleading since, in reality, the number of plausible future scenarios is infinite, 

and potential extreme events for which no information and experience exist should not be ignored 

(Golan et al., 2020; Klibi et al., 2010; Olivares-Aguila & Vital-Soto, 2021; Tordecilla et al., 2021). 

Gao et al. (2019) highlight that disruption scenarios with a higher degree of unknowns must be 

included in resilience practices. Another gap in scenario-based approaches relates to the fact that 

most of the studies treat risks independently of each other and ignore scenarios of risks that can 

affect several entities in the network at the same time, known as compound risk (Basole & Bellamy, 

2014; Bier et al., 2020; N Bugert & Lasch, 2018; Klibi & Martel, 2012; Klibi et al., 2010; Zobel & 

Khansa, 2014). Considering only the impact of an individual disruption is misleading because the 

combination of unexpected events may have diverse and complicated effects that should be 

considered in designing a resilient system (Raymond et al., 2020). An example of compound risk 

is the tsunami earthquake in Japan, which disrupted manufacturers in the region and blacked out 

transportation links to Japan. A recent example is the COVID-19 pandemic, which affected many 

global supply chain entities (Golan et al., 2020).  

The final gap relates to the fact that in most approaches, a single mathematical or simulation model 

of a supply chain is developed to model the impact of the selected disruptive scenarios on a few 

performance measures of interest. There are two concerns regarding this approach. First, in 

complex supply chains with many interdependent actors, there might be a lack of information to 

build a single reliable model for representing the supply chain under study. Second, there might be 

situations where different decision makers cannot decide or do not have any clear opinion about 

their outcomes of interest on which the impact of the disruptive risk should be assessed, and 

therefore, including one or two predefined supply chain performance metrics would be misleading. 

2.4 Consequence-based risk analysis 

The limitations of current supply chain disruption modeling approaches are primarily rooted in the 

unpredictable nature of disruptive risks, making an estimation of cause, frequency of occurrence, 

and magnitude of disruptive risks difficult. Thus, there is a need for methods to improve supply 

chain resilience despite the lack of data and information regarding disruptive events.  

This research aims to contribute to the literature on supply chain disruption management in the 

presence of information ambiguity by proposing the consequence-based supply chain risk analysis 

concept. Our proposed approach focuses on the consequences of plausible disruptions at elements 

along the supply chain rather than on the root cause of the disruption. In contrast with conventional 

risk modeling approaches, which deal with identifying the root causes of a risk and determining its 

characteristics, such as its probability of occurrence and intensity, our approach concentrates on 

analyzing the consequence of potential risks associated with a supply chain regardless of the root 

cause. For example, no matter whether a strike or congestion in a port disturbs a water 

transportation activity within the supply chain, the focus is on answering the question of what will 

happen if that transport activity is disrupted. Similarly, the focus is not on understanding whether 
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a flood, a bankruptcy, or a cyber-attack stops a supplier's functionality within the supply chain; 

instead, we try to answer what would happen if that supplier stopped working. The proposed 

approach overcomes the need to estimate the probability of a risk, which is challenging for 

disruptive risks. This approach results in effective disruption management because resilience 

strategies are developed regardless of whatever happens in the future. Our approach contributes to 

identifying vulnerable elements of the supply chain that are not detectable by human reasoning, 

such as suppliers higher upstream in the supply chain network.  

Among the few papers that consider a consequence-based approach toward risk modeling, Simchi-

Levi et al. (2015) develop a mathematical model of a supply chain to quantify the financial and 

operational impact of potential failures at each supplier facility regardless of the cause of failure. 

The authors argue that their approach identifies the critical but low-cost suppliers that managers 

overlook since they tend to focus typically on the suppliers with high expenditures. In another 

work, Ghavamifar et al. (2018) assess the impact of disruption scenarios such as disruptions at 

distribution centers, disruption in transportation links between the manufacturing plants and 

distribution centers, and between the resellers and distribution centers. The authors consider both 

partial and complete disruption scenarios.  

Recent supply chain disruption cases due to surprise events such as epidemic outbreaks and 

geopolitical tensions shed light on the need for more research on consequence-based risk analysis 

because the approach could contribute to the proactive improvement of resilience independent of 

what might happen. A significant challenge in consequence-based risk analysis toward disruption 

management, specifically in complex supply chains, is the need to investigate a wide range of risk 

consequences associated with thousands of interdependent, dynamic, and globally distributed 

supply chain elements. In such a supply chain, some vulnerability sources might have remained 

uninvestigated due to the limited data availability, especially from actors more than a few tiers 

upstream or downstream.  Also, reliable consequence-based risk analysis needs consideration of 

not only imaginable scenarios of risk consequences but also an exploration of not-yet-experienced 

and implausible scenarios for risk consequences. Here, consequence-based risk analysis needs to 

be conducted through a scenario structuring approach that ensures a systematic process for 

consideration of many scenarios of disruption, including unexpected events. Consequence-based 

risk analysis for improving a supply chain's resilience will be an efficient approach if it is conducted 

collaboratively to allow consideration of the views of different supply chain stakeholders on 

uncertainties and outcomes of interest. Rather than anticipating what will happen in the future, 

consequence-based risk analysis tries to increase awareness about supply chain vulnerabilities and 

the effectiveness of different disruption mitigation strategies by exploring potential failures and 

their consequences within the supply chain. Conducting a comprehensive and systematic 

exploration and communicating interpretable results with supply chain stakeholders is another 

challenge of consequence-based risk analysis. This research adopts the emerging decision support 

paradigm called decision making under deep uncertainty (DMDU) to address these challenges. 

This paradigm emerged in the context of climate change adaptation in response to limits to 

predictability. A foundational idea in this paradigm is to apply models for exploring rather than 

predicting the future, referred to as exploratory modeling. DMDU is concerned with dealing with 

decision problems that involve deep uncertainty and complexity, the two aspects of the issue of 

consequence-based risk analysis of a complex supply chain. Deep uncertainty refers to the situation 

where decision makers do not agree or do not know the explicit relations between the inputs and 

outputs of a system or its boundaries. Moreover, it reflects the situation where outcomes of interest, 
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their importance to the system under study, and the probability distribution of the uncertain 

parameters are not clearly defined (Lempert, Popper, & Bankes, 2003). It also refers to situations 

where decisions are made in interaction with the system over time (Haasnoot, Kwakkel, Walker, 

& ter Maat, 2013). This research investigates the applicability of DMDU approaches in addressing 

supply chain resilience problems.  
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3 Simulation model 

The concept of consequence-based risk analysis underpins the approaches for addressing the 

research questions in this thesis. Consequence-based risk analysis is a model-based approach that 

uses a simulation model to analyze, predict, and manage risk in the supply chain. This chapter 

elaborates on the supply chain simulation model developed for performing experiments related to 

each research question. The main objective of the simulation model is to assess the impact of 

disruption scenarios on supply chain performance and evaluate the efficiency of various resilience 

practices. In the rest of this section, the details of the simulation model are explained.  

3.1 Modular modeling approach 

A modular and parametrized modeling approach is adopted in this research to develop the 

simulation model. In this approach, pre-built model components are designed so that different 

simulation models can be generated automatically from various configurations of model 

components. The approach uses parametrized simulation components so the modeler can create, 

run, and adjust the model without reprogramming (Goodall, Sharpe, & West, 2019; Huang, 2011). 

This approach reduces the modeling complexity and enables the simulation model's scalability to 

range from small to significant supply chain networks. For building the simulation model, Simio, 

a discrete-event simulation package (Houck & Whitehead, 2019) is used. The simulation model in 

this research consists of several building blocks for handling processes and events. These building 

blocks include Demand Generator, Demand Handler, Order Handler, Production Plant, Inventory 

Component, and  Inventory End (Figure 1). Four main components of the model are generated 

from these building blocks: Market, Manufacturer, Supplier, and Inventory. Several supply chain 

models can be generated through different configurations of these four model components.  
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Figure 1. Building blocks of the simulation model. 

3.2 Simulation model overview and logic 

We try to simulate the supply chain in such a way that it mimics the complexities of a real-world 

supply chain. To this end, we consider the development of an assemble-to-order (ATO) supply 

chain in which the focal company starts assembling the final product when the actual order from 

the customer arrives. Figure 2 represents a sample ATO supply chain diagram that shows a possible 

configuration of our simulation model. The supply chain consists of two markets: an ATO 

manufacturer as the focal company, two make-to-order (MTO) suppliers, one make-to-stock 

(MTS) supplier in the first tier, and two MTO suppliers and five MTS suppliers in the second tier. 

Supply chain processes start with receiving the order from the focal company from the market. The 

focal company places the order for sub-assembly components with MTO suppliers and begins 

production with the inventory of components from its MTS suppliers. When the MTO supplier 

receives the order from the focal company, it also places the order for the required components to 

its MTO sub-suppliers. It starts production with the inventory of components from its MTS sub-

supplier. Other suppliers within the supply chain also follow the same procedures. The 

manufacturer and suppliers keep an inventory of components as well as an inventory of end 

products. When the focal company receives the required components from the MTO suppliers, it 

finalizes the production procedure and sends the shipment to the final customer. 

It should be noted that inventories from MTS suppliers are managed based on the product demand 

forecast. This supply chain model can be expanded in terms of the number of markets, tiers, and 

suppliers. The rest of this section explains the model components in more detail and discusses 

several assumptions underlying the simulation model.  
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Figure 2. Schematic of a sample supply chain. 

3.2.1 Model components 

The simulation model consists of four main components as described below:  

Market component: The Market component in the simulation model represents the market in 

which the demand for the final product (end item) is generated. The component consists of two 

building blocks: demand generator and demand handler. The demand generator generates demand 

within defined time intervals. Demand uncertainty is captured through stochastic interarrivals of 

demand in the demand generator. The generated demand is then passed to the demand handler. The 

demand handler creates an order from the demand and passes it to the ATO manufacturer for further 

processing. A supply chain can consist of several markets. In our model, we assume two types of 

markets: nearby and faraway. The nearby market is close to the location of the focal company, and 

the faraway market is far beyond the focal company's geographic boundaries. For example, for a 

focal company located in Europe, customers within Europe are considered as the nearby market, 

and customers within Asia as a faraway market.  

Manufacturer component: The Manufacturer component represents the focal company within the 

supply chain, which produces the final product (end item) for the last customer. The manufacturer 

adapts the assemble-to-order (ATO) production strategy and starts assembling the final product 

(end item) after receiving the actual order from the Market. The manufacturer has three building 

blocks: order handler, production plants, and demand handler. The order handler receives orders 

from the market and determines order information such as order ID, order amount, selling price, 

expected production time, expected transportation time, etc. The order handler then creates a 

production order from the market order and gives it to the production plant. Before starting 

production procedures, the production plant checks inventories of the needed components (items) 

based on the bill of materials. The bill of materials is a list of components required to produce final 

product (end item). Inventories of the required components (items) are received from suppliers 
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with make-to-stock (MTS) or make-to-order (MTO) manufacturing strategies. Inventories of MTS 

suppliers are handled through the MRP system in which, at the beginning of each production 

period, the needed inventory of components (items) is calculated and ordered to associated 

suppliers. However, for MTO components' suppliers, the focal company puts an order to the 

supplier only when the actual order arrives. The demand handler takes care of this procedure. The 

demand handler calculates the needed inventory of the components (items) based on the bill of 

materials and then sends it to the associated MTO suppliers. When all the components (items) for 

producing customer orders (end item) are ready, the production plant starts producing the final 

product (end item). The uncertainty related to the production time is addressed by defining a 

stochastic process time per unit. The manufactured product (end item) is shipped to the associated 

customer through an order handler. The focal company can have two types of suppliers: nearby 

and faraway. The nearby supplier is close to the location of the focal company, and the faraway 

supplier is far beyond the focal company's geographic boundaries.  

Supplier component: The supplier component represents suppliers who produce components 

(items) for focal companies or other suppliers within the supply chain. Suppliers are spread through 

different tiers of the supply chain. A supplier can produce for one or more customers within a 

supply chain. In the case of producing for more than one customer, the supplier is called a shared 

supplier. Suppliers are producing based on MTS or MTO strategies. The MTS supplier uses past 

sales data to forecast the demand and determines how much stock to produce for the next 

production period. Incoming orders are fulfilled from the inventory of end products of the MTS 

supplier. The MTS supplier keeps inventories of the required components (items) for production 

from MTS sub-suppliers based on its MRP system. On the other hand, the MTO supplier starts 

producing when the actual order arrives from the customer. The MTO supplier keeps inventories 

of the required components (items) for production from both MTS and/or MTO sub-suppliers. The 

supplier uses an MRP system to order components (items) from MTS sub-suppliers. However, the 

supplier places the order for components (items) with MTO sub-suppliers when the actual order 

arrives. The supplier component in the simulation model consists of three building blocks:  an order 

handler which handles the orders from customers, the production plant which takes care of 

producing products, and the demand handler that handles demand request for the required 

components to the related sub-suppliers and synchronize the replenishment orders. A supplier can 

have two types of sub-suppliers: nearby and faraway. The nearby sub-supplier is near the location 

of the supplier, and the faraway sub-supplier is far beyond the supplier's geographic boundaries.  

Inventory component 

The inventory component represents the location in which inventories of end products (end item) 

or components (items) are kept. Both focal company and suppliers within the supply chain carry 

inventories of end products and components in their location. The produced end products are sent 

to the inventory of the end product before shipping to the final customer. The shipments from 

suppliers of the components are sent to the inventory of components in the customer's location. 

The inventory of end products keeps track of products produced by the production plant. Inventory 

of components keeps track of ordered components to the suppliers.  

3.2.2 Handling transportation 

In the simulation model, transportation of the shipments is handled by the order handler inside the 

ATO manufacturer or suppliers. When produced products arrive in the inventory of the end 
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product, the inventory sends a message to the order handler. The order handler then sends the 

shipment to the final customer within the transportation time of the order. Two types of 

transportation time are considered in the simulation model. Short transportation time is the 

transport time for sending shipment to a nearby customer and long transportation time is the 

transport time for sending the shipment to a faraway customer. This way, we model the 

geographical dispersion between supply chain entities. Uncertainty related to transportation time 

is captured by defining a triangular probability distribution for the transportation time within the 

model.  

3.2.3 Data tables 

All the inputs to the model are read from several data tables, which are imported from Excel sheets. 

These tables are generated automatically from a network generator, which will be explained later 

in this chapter. The input tables and their attributes are shown in Appendix A. An output table is 

also defined in the model where the information about all the orders to the focal company and all 

suppliers within the supply chain are recorded. The attributes of the order table are shown in 

Appendix B. This table is used for calculating the forecasted demand, average lead times, total 

revenue, etc.  

3.2.4 Performance metrics 

In our simulation model, the following performance metrics are calculated: 

• Market lead time: Time between placing an order and receiving the corresponding 

shipment. This performance metric measures the efficiency and responsiveness of the 

supply chain. Shorter market lead times show improved performance in terms of fulfillment 

of the order and, as a result, satisfaction of the final customer.  

• Total cost: Summation of the production cost, purchasing cost, and transportation cost. This 

performance metric allows tradeoffs between cost and effectiveness of the supply chain.  

• Total revenue: Sales volume times selling price. This performance metric reflects the 

overall profitability of the supply chain in terms of revenue generation.  

• Time to detect disruption: Time between the start of the adverse event and recognizing the 

first impact on supply chain performance. This performance metric plays an important role 

in assessing and improving the resilience of the supply chain, where the quick detection of 

disruption is crucial for minimizing the adverse effects of disruptions.  

• Total recovery time: Time between the detection of the disruption and the return to business 

as usual. This performance metric evaluates the resilience and recovery capabilities of the 

supply chain. Shorter recovery times indicate a more resilient supply chain capable of 

returning to normal operations after a disruption. 

Among the performance metrics, market lead time, total cost, and total revenue give insights 

into the supply chain's normal operations which provides a baseline for performance that is 

essential for comparing against performance during disruptions. However, time to detect 

disruption and total recovery time give insights into the performance of the supply chain under 

a disruptive situation.  Each of these metrics provides valuable insights into different aspects 
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of supply chain performance, both under normal conditions and during disruptions, making 

them highly relevant to our research on improving supply chain resilience. 

3.2.5 Modeling a disruptive risk 

We model disruption scenarios to assess potential disruptions' impact on supply chain performance. 

To this end, we define seven model properties representing the attributes of disruption as follows: 

•     Disrupted tier: a variable representing the tier of supply chain in which the disruption 

happens.  

• Disrupted region: a variable representing the geographical region in which the disruption 

happens. 

• Disrupted component: a variable representing the type of component (product) of which the 

availability is disrupted.  

• Disrupted element: a variable representing the type of facility that is disrupted. 

• Disruption duration: a variable representing the duration of a disruption. 

• Post-disruption capacity: a variable representing the remaining capacity of the disrupted 

element after disruption. It is a variable for representing the intensity of a disruption. After 

a disruption, the remaining capacity of the disrupted element can vary between zero to a 

hundred percent depending on the severity of the disruptive event.  

• Recovery rate of disrupted capacity:  a deeply uncertain variable representing the time it 

will take for the disrupted element to recover fully after implementing a post-disruption 

contingency plan. It is a variable for representing the intensity of a disruption and it is 

independent of the managerial choice for mitigating disruptions. This variable is considered 

deeply uncertain because it depends on several factors that are out of control of a decision 

maker such as scarcity of the backup capacity that might be constrained due to the 

disruption as well; or long waiting time for availability of the backup capacity due to the 

existence of a queue for accessing the backup capacity. For example, imagine the disruption 

of a production plant due to a fire accident in a factory. It may take a few weeks to several 

months for the factory, depending on the severity of the fire, to rebuild or repair the 

production plant and get it back to normal. This is different from the recovery time of the 

supply chain as a performance metric, which refers to the time it takes for a disrupted supply 

chain to deliver products to end customers within a normal (no disruption) lead time.    

Different configurations of different values of the above disruption variable result in various 

disruption scenarios. The values of the disruption properties are given to the model as an input. 

Then, the model triggers the associated disruption scenario at the defined time of disruption.  

3.2.6 Mitigation strategies 

We model the mitigation strategy of the supply chain against disruption using a model property 

called mitigation. In our model, a supply chain can have four strategies against disruption: 

• Expensive-Fast: this represents a mitigation strategy with high cost of implementation but 

a short time to availability. An example of such a mitigation strategy is the usage of strategic 

stock where a firm keeps inventory of strategic products and products that could become a 
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bottleneck. Although such a strategy involves extra cost, it enables a quick replacement of 

the disrupted capacity in case of a disruption. 

• Cheap-Slow: this represents a mitigation strategy with a low cost of implementation but a 

longer time to availability. An example of such a mitigation strategy could be the 

implementation of a backup strategy where a firm has backup suppliers for its critical 

components that enable the firm to switch to alternative sources in case of disruption. Since 

the backup supplier is activated only when the primary supplier disrupts, it may involve 

less cost to the firm in comparison with the strategic stock policy. It may, however, take 

longer for the backup capacity to become available in comparison to the strategic stock 

policy.  

• Medium: this represents a mitigation strategy with an average cost of implementation and 

an average time to availability. The “average” refers to a value that represents a midpoint 

between the low and high extremes of both cost and time. The cost associated with the 

Medium strategy is calculated as the midpoint between the low cost of the Cheap-Slow 

strategy and the high cost of the Expensive-Fast strategy. The time associated with the 

Medium strategy is determined as the midpoint between the longest and shortest times to 

availability .An example of such a mitigation strategy is to use a mix of investing in strategic 

stock and a backup supplier strategy. In this strategy, the firm makes a tradeoff between 

cost of the mitigation measures and time to availability of the mitigation measures.  

• Acceptance: we also explored a scenario in which no mitigation strategy such as strategic 

stock or backup is used by the firm to replace disrupted capacity. In the acceptance strategy, 

a firm waits for the disrupted capacity to become available again. In this strategy, the 

company does not invest anything in resilience, and it is a good reference strategy to 

compare the other strategies with. 

3.2.7 Model Validation 

To ensure that our simulation model works as expected, we conducted sensitivity analysis and 

scenario testing in different stages of the model development.  We built a toy model of a stylized 

supply chain to check the robustness of our model to changes in the input parameters. We tested 

the correct working of the stylized model across several scenarios, including extreme scenarios. 

This allowed us to refine the model and improve its validity iteratively.  

3.3 Running experiments 

For the experiments in this dissertation, we run the model for 220 weeks, in which the model 

reaches a steady state. We consider a warm-up period of 16 weeks. It should be mentioned that 

these values are adjustable based on the requirements of an experiment. We assume a disruptive 

event is triggered at week 44. We consider five replications for each scenario to address 

stochasticity related to the uncertain model parameters such as demand, process time, and 

transportation time. Our research considers an exploratory modeling approach toward generating 

disruption scenarios. This approach explores a large ensemble of plausible disruption scenarios 

rather than focusing on a few (Bankes, 1993; Kwakkel & Pruyt, 2013). To conduct exploratory 

modeling, we use the Exploratory Modeling and Analysis (EMA) workbench (Kwakkel, 2017). 
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The EMA workbench is an open-source Python library that supports exploratory modeling by the 

generation and execution of a series of computational experiments as well as the visualization and 

analysis of the results of the computational experiments. We connect the EMA workbench to our 

Simio-based simulation library by developing a Simio-EMA interface. We sample over several 

values of disruption attributes (explained before), including disrupted tier, disrupted geographical 

region, disrupted component, disrupted supplier, disruption duration, post-disruption capacity, and 

recovery rate of disrupted component using Latin Hypercube sampling to generate thousands of 

disruption scenarios. Table 1 shows the possible ranges of disruption attributes we consider for this 

research. 

 

Table 1. Disruption attributes and their possible value ranges  

Deep uncertainties Possibility 

Region Nearby - Faraway- Both nearby and 

faraway 

Tier Each tier separately- All tiers 

Component Shared/Not shared among several 

suppliers 

Disrupted element Production plant-Transportation link-

Inventory 

Disruption duration Long-Medium-Short 

Post-disruption capacity Large-Medium-small 

Recovery rate Fast-Medium-Slow 

3.4 Network generator 

We use a Python-based network generator to generate input data for the simulation model and 

connect it to our Simio-based simulation library. The network generator is capable of generating a 

variety of supply chain networks using several supply chain characteristics, including the number 

of tiers, percentage of assembled components in each tier, number of suppliers of a supplier in each 

tier, number of shared suppliers in each tier, percentage of faraway vs. nearby suppliers in each tier 

and percentage of MTO vs. MTS suppliers in each tier. Combining different values of these 

network-related variables results in the generation of various supply chain network topologies. The 

supply chain networks can be randomly generated by sampling across different values of the 

network-related variables or by giving the generator predefined values of network variables. The 

generator then automatically creates components of the simulation model and input data tables for 

the simulation model based on the supply chain network topology. An example of a network 

generated by the network generator is shown in Figure 3.  

The simulation model and python code for the network generator are available at 

https://github.com/bzohoori/Bahareh_Model.git. 
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Figure 3. Example of a 3-tier supply chain network configuration created by the network 

generator. 
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Appendix A. Simulation model input tables 
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Appendix B. Simulation model output table 
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4 Improving supply chain resilience using 

consequence-based risk analysis and robust decision 

making 

This chapter has been based on a paper that is under review at a scientific journal. 

 

This chapter addresses the first sub-question introduced in section 1.2. We investigate how 

consequence-based risk analysis can treat the challenges of the unpredictability of disruptive risks, 

the complexity of a supply chain, and the robustness of disruption management strategies in model-

based approaches for supporting supply chain resilience. To this end, we treat supply chain 

disruption management as a problem of decision making under deep uncertainty (DMDU) to 

benefit from approaches developed in this domain, specifically robust decision making.  

 

Abstract  

In response to supply chain disruptions over the past several years, improving supply chain 

resilience has become an important research topic. Conventional methods for resilience 

improvement of a supply chain mostly rely on the estimation of the risks that could impact the 

supply chain, with the aim of identifying the main sources of vulnerabilities in need of resilience 

practices. However, a major limitation of the conventional approaches for resilience improvement 

of a supply chain is the limited predictability of potential disruptive risks in terms of their 

probability of occurrence and their magnitude. Therefore, consequence-based risk analysis is 

suggested as an alternative in this paper. In consequence-based risk analysis, rather than relying on 
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knowing the likelihood of occurrence and magnitude of the impact of potential risk events, one 

explores the effects of plausible scenarios of risk consequences on supply chain performance, 

independent of the root cause, to find vulnerabilities within the supply chain in need of resilience 

practices. In such an analysis, a risk consequence is characterized by several parameters that are 

deeply uncertain, and a combination of different values of those parameters generates various 

scenarios for disruptions that can be explored by supply chain decision makers. A major challenge 

in consequence-based risk analysis of a supply chain is the generation of a comprehensive set of 

disruption scenarios and their exploration, particularly in the case of complex supply chains 

consisting of thousands of interdependent and globally distributed actors. Also, to effectively 

manage disruptions when using consequence-based risk analysis, it is crucial to identify resilience 

practices that are effective in as many future scenarios as possible. To address these challenges, we 

draw on the paradigm of decision making under deep uncertainty (DMDU). This paradigm 

emerged in the context of climate change adaptation in response to limits to predictability. A 

foundational idea in this paradigm is to apply models for exploring rather than for predicting the 

future. Robust decision making (RDM) is one of the approaches in DMDU that focuses on 

identifying planning strategies that result in satisfactory outcomes across a large set of scenarios 

regarding the future. RDM uses large-scale computational experimentation for analyzing complex 

and uncertain systems. We investigate the potential of using RDM for supporting consequence-

based risk analysis for complex supply chains using a stylized assemble-to-order supply chain. We 

conclude that our approach can support effective decision making for evaluating the resilience of 

a complex supply chain by systematic and data-driven exploration among a wide range of 

disruption assumptions that otherwise might have remained uninvestigated by human reasoning. 

Our approach can contribute to enhancing supply chain resilience by identifying and managing 

sources of vulnerabilities that are hard to detect, such as vulnerabilities beyond the first or second 

tier of the supply chain network. The proposed approach helps to assess the robustness of different 

disruption management responses to these vulnerabilities, which is crucial for an effective 

investment in supply chain resilience.  

Keywords: Supply chain disruption, Resilience, Consequence-based risk analysis, Decision 

making under deep uncertainty, Robust decision making, Exploratory modeling 

4.1 Introduction  

A multitude of events in the past years have resulted in major supply chain disruptions in many 

different industries.  Craighead et al. (2007) define supply chain disruption as "unplanned and 

unanticipated events that disrupt the normal flow of goods and materials within a supply chain and, 

as a consequence, expose firms within the supply chain to risks". In a recent example of supply 

chain disruption, several US and European manufacturers and retailers were disrupted due to the 

Covid-19 pandemic that suspended operations in China, resulting in supply shortages (Li, Chen, 

Collignon, & Ivanov, 2021). Other examples are for instance the closure of five production plants 

by Ford for several days due to the limited air traffic after the 9‐11 terrorism attacks and a fire in a 

semiconductor supplier's plant of Ericsson that resulted in a loss of 400 million euros in 2000 

(Tang, 2006). There are many other cases of adverse events that resulted in supply chain disruptions 
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such as earthquakes in China in 2008, the tsunami in Japan in 2011, earthquakes in Chile in 2011 

and 2015, Typhoon Haiyan in the Philippines in 2013, and the COVID-19 pandemic and 

geopolitical tensions in 2020-2022 (Fahimnia, Tang, Davarzani, & Sarkis, 2015; Jabbarzadeh, 

Fahimnia, Sheu, & Moghadam, 2016; Klibi, Martel, & Guitouni, 2010; Simchi-Levi & Simchi-

Levi, 2020; Diaz, Cunado, & de Gracia, 2023) 

The extent to which a supply chain is disrupted due to an adverse event is determined by the 

vulnerability of the supply chain. Wagner and Bode (2006) define supply chain vulnerability as "a 

function of certain supply chain characteristics and that the loss a firm incurs is a result of its supply 

chain vulnerability to a given supply chain disruption". The level of vulnerability to adverse events 

differs from supply chain to supply chain. Complex supply chains, consisting of thousands of 

globally distributed interdependent suppliers, are more vulnerable than simple ones. In such 

complex supply chains, a disruption in any node or link can quickly propagate through the entire 

supply chain, resulting in a substantially degraded overall performance (Dolgui, Ivanov, & 

Sokolov, 2018; Ivanov, Sokolov, & Dolgui, 2014). Such negative impacts can be reduced by 

empowering the supply chain to be able to resist and recover from adverse events (Knemeyer, Zinn, 

& Eroglu, 2009), or in other words, to make the supply chain resilient to disruption. Resilience is 

a multidimensional and multidisciplinary concept. In the literature on supply chain management, 

the most common definition of resilience belongs to Ponomarov and Holcomb (2009) who define 

resilience as "the adaptive capability of the supply chain to prepare for unexpected events, respond 

to disruptions, and recover from them by maintaining continuity of operations at the desired level 

of connectedness and control over structure and function".  The existing research for supporting 

supply chain resilience focuses on either (i) developing frameworks for identifying key drivers of 

supply chain resilience and developing strategic guidelines to achieve them (Blackhurst, Dunn, & 

Craighead, 2011; Christopher & Peck, 2004; Craighead et al., 2007); or (ii) developing methods to 

support stress testing of a supply chain with the aim of identifying vulnerability sources in need of 

resilience practices, as well as assessing the effectiveness of different resilience practices to cope 

with disruptions. The focus of this research is on the latter category. The literature offers two 

approaches for stress testing of a supply chain aimed at improving its resilience: Probability-based 

approaches and scenario-based approaches. In probability-based approaches, the more 

conventional approach, the underpinning assumption is that the probability of occurrence and the 

impact of risk is known or can reliably be estimated (Simchi-Levi, Kaminsky, & Simchi-Levi, 

1999). Next, damage is calculated as a function of the harmful impact of a risk event on supply 

chain performance and the probability of occurrence of the risk event (Heckmann, Comes, & 

Nickel, 2015). Several scholars applied probability‐based approaches for quantifying risk 

associated with a supply chain (Deleris, Elkins, & Pate-Cornell, 2004; Fang, Zhao, Fransoo, & Van 

Woensel, 2013; Wu & Olson, 2008; Yu & Goh, 2014).  

Alternatively, in scenario-based approaches toward stress testing of a supply chain, a set of 

scenarios that represent plausible supply chain disruptions is selected. Next, the supply chain 

performance is assessed under each scenario. The goal is to identify sources of vulnerability in the 

supply chain that have a high negative impact on supply chain performance and to develop 

mitigation strategies that can reduce the impact of these disruptions (Babazadeh & Razmi, 2012; 

Klibi & Martel, 2012; Sawik, 2013).  
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The literature on the methods for stress testing of a supply chain reveals several research gaps. 

First, probability‐based approaches are fine for common supply chain disruptions and high 

frequency-low impact risks. However, such approaches can be highly misleading when dealing 

with less frequent or unknown disruptions (Heckmann et al., 2015). Probability-based approaches 

focus on the root causes of risk and their probability of occurrence. However, estimation of the 

likelihood of a natural disaster, factory fires, and many other adverse events is nearly impossible 

(Chopra & Sodhi, 2004; Simchi-Levi, Schmidt, & Wei, 2014). Also, probability‐based approaches 

normally give the same weight to high frequency‐low impact events and low frequency‐high 

impact events resulting in an underestimation of losses due to the aggregation over time horizons 

(Klibi et al., 2010). Moreover, disruptive risks are ignored by managers because they believe that 

the probability of their occurrence is very low, so these risks can be neglected (Johnson & Nagarur, 

2012). In contrast, scenario-based approaches are more effective if one is dealing with low 

frequency-high impact risks, for which identifying the root cause, frequency of occurrence, and 

impact of the risk is almost impossible. This type of risk is caused by rare events that, if they 

happen, significantly reduce supply chain performance. 

A second research gap, specific to scenario-based approaches, is that usually only a limited set of 

scenarios is selected for representing future risks. These selected scenarios are typical disruptions 

that could happen in critical elements of the first or second tier in the supply chain. However, given 

the complexity of today's supply chains and the unpredictable nature of disruptive events, it is 

insufficient to rely on human reasoning for selecting possible disruption scenarios for stress testing 

a supply chain. Given the large number of actors in today's complex supply chains, vulnerabilities 

may exist further upstream or downstream (Simchi-Levi et al., 2014).  

A third research gap is that only few researchers consider the impact of compound events and 

compound effects in addressing supply chain disruption management (Klibi & Martel, 2012; Klibi 

et al., 2010; Zobel & Khansa, 2014). Considering only the impact of individual disruptions is 

misleading because a combination of unexpected events, or an event that impacts multiple actors 

in the supply chain at the same time, may have diverse and complicated effects that should be 

considered in resilience practices (Raymond et al., 2020).  For example, the 2011 tsunami in Japan 

disrupted all Toyota's suppliers in a specific region at the same time (Matsuo, 2015).  

A fourth research gap is how to assess the robustness of strategies to cope with supply chain 

disruptions (Hosseini, Ivanov, & Dolgui, 2019). Identifying disruption management strategies that 

have satisfactory outcomes under various disruption scenarios is one of the main foundations of a 

resilient supply chain. However, in a situation where one is dealing with a large set of disruption 

scenarios, identifying robust strategies is challenging.  

The aforementioned gaps lead to the following central research question for this paper: what is an 

appropriate approach for supporting resilience improvement in a supply chain that is capable of 

addressing limitations of the conventional approaches for considering intrinsic limits to the 

predictability of disruptive risks, complexity of a supply chain, and robustness of disruption 

management strategies in resilience practices? To overcome the limits to the predictability of 

disruptive risks, this paper suggests using consequence-based risk analysis of a supply chain. In 

contrast to the conventional cause‐based risk analysis approaches that deal with identifying the root 
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cause of a risk and estimating its characteristics such as the probability of occurrence and the 

intensity, the consequence‐based risk analysis focuses on exploring plausible scenarios of 

consequences of risks at elements along the supply chain, no matter what would be the root cause, 

to get insights in the vulnerabilities within a supply chain. For example, no matter how often and 

for how long a flood or a bankruptcy or a cyber-attack stops the operations of a supplier within a 

supply chain, the consequence-based risk analysis investigates the vulnerability of the supply chain 

to a disruption of that supplier. Conducting a reliable consequence-based risk analysis is still 

challenging, specifically in complex supply chains, because it needs an investigation of a wide 

range of risk consequences associated with thousands of interdependent, dynamic and globally 

distributed elements of the supply chain. In such a supply chain, some vulnerability sources might 

have remained uninvestigated due to the limited data availability especially from actors more than 

a few tiers upstream or downstream. Also, a reliable consequence-based risk analysis needs 

consideration of not only imaginable scenarios of risk consequences, but also an exploration of 

not-yet-experienced and implausible scenarios for risk consequences. This research explores the 

potential of an emerging methodology called decision making under deep uncertainty (DMDU) for 

supporting consequence-based risk analysis of a complex supply chain towards improving its 

resilience. DMDU is concerned with dealing with decision problems which involve deep 

uncertainty and complexity; the two aspects of the problem of consequence-based risk analysis of 

a complex supply chain. Deep uncertainty refers to the situation where decision makers do not 

agree or do not know the explicit relations between the inputs and outputs of a system or its 

boundaries. Moreover, it reflects the situation where outcomes of interest and their importance to 

the system under study as well as the probability distribution of the uncertain parameters are not 

clearly defined (Lempert, Popper, & Bankes, 2003). It also refers to  situations where decisions are 

made in interaction with the system over time (Haasnoot, Kwakkel, Walker, & ter Maat, 2013). 

Deep uncertainty methods use multiple views of the future to prioritize decisions that have 

satisfactory outcomes under as many scenarios as possible (Lempert et al., 2003). In contrast with 

the conventional decision making paradigm that deals with predicting the future and acting based 

on that prediction, the DMDU paradigm deals with exploring the future and adapting in response 

to the unforeseen future (Walker et al., 2013; Stanton & Roelich, 2021). Among several deep 

uncertainty methods, this paper particularly focuses on robust decision making (RDM) (Lempert 

& Collins, 2007; Lempert, Groves, Popper, & Bankes, 2006; Lempert et al., 2003) for performing 

a consequence-based risk analysis of a supply chain. We conceptualize a supply chain as consisting 

of nodes, where operations for processing and storage of materials take place, and links where 

transport operations take place. RDM enables the stress testing of a supply chain over a 

comprehensive set of plausible scenarios of risk consequences compromising any nodes or links 

individually or multiple nodes and/or links simultaneously. We account for spatio-temporal 

correlations among disruptions. We characterize a risk consequence by several deeply uncertain 

parameters and then using the RDM approach, that enables the generation of many disruption 

scenarios by sampling across combinations of disruption characteristics. A set of thousands of 

simulation runs is then analyzed using statistical analysis tools to discover systematic patterns of 

behavior to identify vulnerable elements in the supply chain. Finally, several disruption 

management plans are evaluated to identify the most robust plans for tackling these vulnerabilities. 

For testing our approach, we developed a stylized supply chain of an assemble-to-order (ATO) 
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manufacturer and modeled risk events in its network. The system is represented using a scalable 

discrete-event simulation model that captures the complexity of a real-world supply chain. 

The paper is organized as follows. In section 4.2 we explain our research method. Section 4.3 

introduces the case study and presents the results of applying the method. Finally, the discussion 

and conclusions are presented in Section 4.4.  

 4.2 Research method 

4.2.1 Background on robust decision making (RDM) 

Several approaches have been developed to support decision making under deep uncertainty (e.g. 

Haasnoot et al., 2013; Kasprzyk, Nataraj, Reed, & Lempert, 2013; Kwakkel, Walker, & Marchau, 

2010; Lempert et al., 2006; Walker, Rahman, & Cave, 2001). Robust decision making (RDM) has 

proven to be a promising approach for decision making under deep uncertainty (Lempert et al., 

2006). The underpinning concept in RDM is to use computational experiments to explore a wide 

range of possible futures rather than trying to predict the future. In RDM one runs models hundreds 

or thousands of times over a wide set of scenarios that cover uncertainties in the input variables. 

Using statistical analysis and visualization tools, decision makers gain insight into systematic 

patterns of behavior of the system across the scenarios. RDM aims at identifying and evaluating 

robust strategies: strategies that have satisfactory outcomes across many possible states of the 

system and its environment. The possible solution strategies can be tested in separate sets of model 

runs, analyzing their individual and combined effectiveness across the set of scenarios. Solution 

strategies that are effective over a large number of scenarios are called 'robust'. In this regard, RDM 

shares similarities with the minimax approach developed by Wald (1950) and the minimax regret 

approach introduced by Savage (1951). RDM focuses on identifying strategies that perform well 

across a broad range of possible futures. it is similar to Wald's minimax approach, which aims at 

minimizing the worst-case loss, and Savage's minimax regret approach, which aims at minimizing 

the maximum regret of not choosing the best possible action. Both Wald's and Savage's approaches 

emphasize robustness in decision-making under uncertainty, which aligns with RDM's goal of 

ensuring strategies that are effective despite deep uncertainty. Compared to the Wald and Savage 

approaches,  RDM considers a broader scope for handling uncertainty by exploring a wide range 

of plausible futures without requiring precise probability estimates or predefined scenarios. This 

approach ensures that strategies remain effective across unexpected conditions. However, Wald 

and Savage methods may not fully capture the complexity of deep uncertainty. While conventional 

decision theory deals with selecting a few scenarios upfront, RDM provides a posteriori decision 

support where decision makers can discuss scenarios that matter the most for decision making after 

the analysis (Bryant & Lempert, 2010; Lempert & Collins, 2007). RDM starts with decision 

framing in which decision makers identify objectives, uncertainties and possible strategies for the 

system under study. After that, computer models are used to generate a large data set of results, 

where each result is the outcome of running one future scenario, either for the system as-is (for 

analysis) or combined with one or more solution strategies (for analyzing the robustness of the 

strategies). Using data analysis techniques, the vulnerabilities of the existing system are identified 
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together with the evaluation of possible intervention strategies. Then decision makers can make a 

tradeoff among alternative strategies to select the most robust strategy that has the most satisfactory 

outcomes under as many futures as possible. The RDM steps are explained in more detail with 

respect to consequence-based risk analysis of a supply chain in sub-section 4.2.2.  

There are two categories of research in the literature on RDM. The first category focuses on the 

application of RDM for addressing a decision making problem under deep uncertainty. Examples 

are applications of RDM in flood risk management (Lempert et al., 2013a; Ramm, Watson, & 

White, 2018), water management (Groves & Bloom, 2013; Lempert & Groves, 2010; Rosenzweig 

et al., 2011), and climate change (Lempert, Schlesinger, & Bankes, 1996). The second category of 

research on RDM focuses on the expansion of methods for supporting RDM. As an example 

Kasprzyk et al. (2013) expanded RDM for multiple objectives (MORDM). In this study researchers 

demonstrated how global optimization with multi-objective evolutionary algorithms (MOEAs) can 

be used to explore tradeoffs across planning alternatives. In another study Herman & Zeff (2014) 

advanced the MORDM framework to address investment decisions regarding long-term and short-

term water plans in four cities in a region of North Carolina, U.S.. 

Despite the rich applications of RDM in disciplines like water management and climate adaptation, 

RDM has not yet been extensively used for supply chain management. A few exceptions are Halim, 

Kwakkel, & Tavasszy (2016), Gruchmann et al. (2019) and Paul & Venkateswaran (2020). As an 

example Halim et al. (2016) used scenario discovery and worst-case discovery to investigate the 

effect of deep uncertain factors on the competitive position of the Port of Rotterdam. 

This paper adds to the literature of supply chain risk management by adapting the RDM approach 

to support consequence-based risk analysis of a complex supply chain for improving its resilience, 

where information about risks associated with the supply chain is largely unknown or can be poorly 

characterized.  

4.2.2 RDM framework for Consequence-based risk analysis  

In order to investigate the applicability of the RDM approach for addressing the gaps in the 

approaches for supporting resilience improvement of a complex supply chain, this research adopts 

the underpinning framework of RDM. The framework uses a series of steps as shown in Figure 1. 

In the rest of this section, we explain how the RDM steps can be operationalized for consequence-

based risk analysis for supply chains.  

Step 1: Decision structuring: The first step of RDM starts with structuring the information 

regarding the problem under study. Here, decision makers define objectives, potential strategies 

for meeting objectives, and uncertainties that might affect success of possible strategies. To this 

end, RDM employs the XLRM framework (Lempert et al., 2003). The elements of the framework 

are: 

X: External factors; the uncertainties outside the control of decision makers. In consequence-based 

risk analysis of a supply chain, external factors include deeply uncertain attributes of a risk 

consequence within the supply chain. A risk consequence can be defined as a disruption within the 

supply chain network with several attributes: 
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•     Disrupted tier: a deeply uncertain variable representing the tier of supply chain in which 

the disruption happens.  

• Disrupted region: a deeply uncertain variable representing the geographical region in which 

the disruption happens. 

• Disrupted component: a deeply uncertain variable representing the type of component 

(product) of which the availability is disrupted.  

• Disrupted element: a deeply uncertain variable representing the type of facility that is 

disrupted. 

• Disruption duration: a deeply uncertain variable representing the duration of a disruption. 

• Post-disruption capacity: a deeply uncertain variable representing the remaining capacity 

of the disrupted element after disruption. It is a variable for representing the intensity of a 

disruption. After a disruption, the remaining capacity of the disrupted element can vary 

between zero to a hundred percent depending on the severity of the disruptive event.  

• Recovery rate of disrupted capacity:  a deeply uncertain variable representing the time it 

will take for the disrupted element to recover fully after implementing a post-disruption 

contingency plan. It is a variable for representing the intensity of a disruption and it is 

independent of the managerial choice for mitigating disruptions. This variable is considered 

deeply uncertain because it depends on several factors that are out of control of a decision 

maker such as scarcity of the backup capacity that might be constrained due to the 

disruption as well; or long waiting time for availability of the backup capacity due to the 

existence of a queue for accessing the backup capacity. For example, imagine the disruption 

of a production plant due to a fire accident in a factory. It may take a few weeks to several 

months for the factory, depending on the severity of the fire, to rebuild or repair the 

production plant and get it back to normal. This is different from the recovery time of the 

supply chain as a performance metric, which refers to the time it takes for a disrupted supply 

chain to deliver products to end customers within a normal (no disruption) lead time.    

Given the possible ranges of these deeply uncertain attributes, many possible scenarios of risk 

consequences can be generated and explored regardless of the cause of the risk and its probability 

of occurrence. We explore what, where, when, how long, and how intense an element of a supply 

chain can be disturbed and unable to function.  

L: Policy levers; the mitigation actions that the decision makers would like to explore. In 

consequence-based risk analysis of a supply chain, policy levers are actions for reducing the 

negative impacts of supply chain disruptions. Examples are flexibility-based strategies such as 

multiple sourcing, flexible contracting, flexible product configurations, flexible transportation, and 

flexible manufacturing processes, or redundancy-based strategies such as extra inventory, back up 

suppliers and overcapacity (Behdani, Adhitya, Lukszo, & Srinivasan, 2012).  

M: Performance metrics; the outcomes that decision makers are interested in. In consequence-

based risk analysis of a supply chain, outcomes of interest can be any of the supply chain 

performance metrics such as total market lead time, total cost, and total revenue. The outcomes of 

interest also can be any of the resilience-related performance metrics such as total recovery time of 

the supply chain or time to detect disruption.  
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R: Relationships; one or more models representing the dependencies among external factors. In 

consequence-based risk analysis of a supply chain, analytical models or simulation models can be 

used for measuring the impact of potential disruptions on supply chain performance, as well as 

evaluating disruption management strategies (Rajagopal, Prasanna Venkatesan, & Goh, 2017). 

Several researchers highlight that when supply chains consist of a complex network of actors and 

activities and in case multiple resilience strategies are to be evaluated, simulation is the most 

promising approach due to its flexibility for exploring a variety of what-if scenarios (Schmitt & 

Singh, 2009).  

Step 2: Case generation: In the second step of RDM, computer models are used to generate a 

large database of simulation model results. Here, one systematically varies the assumptions about 

the uncertainties (external factors) defined in step one of RDM to generate many plausible 

scenarios. Each unique set of assumptions is a scenario. Thousands of scenarios are generated that 

are each analyzed using the simulation model or analytical model to generate a database of 

performance outcomes for each scenario. The choice and combination of assumptions is called the 

experimental design. In RDM the experimental design is established by sampling uniformly across 

the uncertainty space that is spanned by the combination of the external factors. In consequence-

based risk analysis of a supply chain, scenarios of risk consequences are generated by defining 

value ranges for each of the attributes of a disruption and sampling across them. Using the 

simulation model, the impact of these scenarios on supply chain performance metrics, possibly 

including disruption management strategies, are evaluated.  

Step 3: Vulnerability analysis: In the third step of RDM, statistical analysis and visualization 

approaches are employed to help identifying future scenarios in which the objectives of decision 

makers are not satisfied. To this end RDM uses scenario exploration and discovery (Bryant & 

Lempert, 2010). Scenario discovery is a method that helps in identifying combinations of external 

factors where a candidate strategy fails or succeeds. In consequence-based risk analysis of a supply 

chain, analyzing a large ensemble of disruption scenarios together with their associated impacts on 

the supply chain performance measures results in the identification of the vulnerability sources, 

such as suppliers or transport links, specific geographical locations, disruption durations longer 

than a specific time or post disruption capacities less than a specific amount. Accordingly, the 

performance of candidate strategies against disruptions are evaluated over a large variety of 

possible disruption scenarios to assess their effect on the identified vulnerabilities. 

Step 4: Trade-off analysis: The information obtained from the third step of RDM helps decision 

makers to highlight the vulnerabilities within the system of study and to develop and evaluate 

alternative strategies that have satisfactory outcomes under as many future scenarios as possible, 

in other words, robust strategies to tackle the vulnerabilities. In consequence-based risk analysis of 

a supply chain, this results in identifying the disruption management strategies that have 

satisfactory outcomes under as many disruption scenarios as possible.  
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Figure 1. RDM framework for Consequence-based risk analysis (Adapted from Lempert et 

al. (2013)). 

4.3 Case illustration and results 

4.3.1 Stylized supply chain 

In order to examine the applicability of the RDM approach and to demonstrate its key aspects in 

addressing consequence-based risk analysis of a supply chain, we developed a stylized supply chain 

of an assemble-to-order (ATO) manufacturer to model disruption in its network. In an ATO supply 

chain, the final manufacturer (the focal company that has direct contacts with end customers) 

assembles a final product from sub-assembly components at the moment when actual orders arrive 

from end customers in a market. The final manufacturer receives sub-assembly components from 

suppliers of different tiers who are distributed geographically. The stylized supply chain in this 

research is instantiated using a python-based supply chain network generator specifically 

developed for the purpose of this research. The network generator is capable of generating a variety 

of supply chain networks using supply chain characteristics such as the number of tiers, the number 

of suppliers in each tier, the geographical dispersion of the suppliers, the ratio between make-to-

order (MTO) and make-to-stock (MTS) suppliers, and the number of shared suppliers in each tier. 
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This research used the values of supply chain characteristics presented in Table 1. As shown in 

Figure 2, the stylized supply chain consists of MTO and MTS suppliers in three tiers within Asia 

and Europe. The ATO manufacturer, located in Europe, assembles components from suppliers in 

tier 1, which are located either in Europe or Asia, and sells its finished product in two separate 

markets in Asia and Europe. Suppliers in tier 1 and beyond assemble parts and materials they 

receive from their sub-suppliers. We developed the simulation model of the stylized supply chain 

explained in this section as the underpinning model for illustrating the key aspects of applying 

RDM in consequence-base risk analysis for a supply chain. The following sub-section presents the 

results of the case study.  

Table 1. Values of supply chain characteristics for developing the stylized supply chain 

Supply chain characteristics Value 

Number of tiers 3 

 Tier 1 Tier 2 Tier 3 

Number of sub-suppliers of a supplier in 

each tier 

5 4 3 

Percentage of assembled components in 

each tier 

with: 80% 

without:20% 

with: 50% 

without:50% 

with: 80% 

without:20% 

Percentage of MTS vs MTO suppliers in 

each tier 

MTS:20% 

MTO:80% 

MTS:50% 

MTO:50% 

MTS:80% 

MTO:20% 

Geographical dispersion of suppliers Asia: 20% 

Europe: 

80% 

Asia:50% 

Europe:50% 

Asia:80% 

Europe:20% 

Number of shared suppliers in each tier 2 1 0 
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Figure 2: Network of the stylized supply chain. 

4.3.2 Result 

In this section we demonstrate the results of applying RDM to consequence-based risk analysis of 

the stylized supply chain. The subsection structure follows the steps of the RDM framework for 

Consequence-based risk analysis of a supply chain as shown in Figure 1. 

4.3.2.1 Decision structuring (step 1) 

In the first step, we identify the key elements of the XLRM framework from analyzing the stylized 

supply chain. 
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Uncertainties (X): Uncertainties related to the stylized model can be categorized into two groups. 

The first group includes stochastic uncertainties that typically exist in the supply chain 

environment, such as uncertainties related to demand, production times, and transportation times. 

These stochastic uncertainties are addressed through multiple runs of the discrete-event simulation 

model. The second group of uncertainties contains the ones related to disruptions and these are 

deeply uncertain parameters that should be addressed through RDM analysis. The deeply uncertain 

parameters here are classified in two groups:  a) supplier-related parameters that identify the tier, 

the region, and the component (product) of the supplier who is disrupted and b) disruption-related 

parameters that include duration of disruption, the disrupted element, post-disruption capacity of 

the disrupted element, and recovery rate of the disrupted element. The definition of the deeply 

uncertain parameters is given in sub-section 4.2.2.  

Consequence-based risk modeling, which is the underling approach for modeling disruption in this 

paper, is addressed by using a combination of different values of the deep uncertainties. This way 

many scenarios of consequences of a risk associated with a supply chain can be explored 

independent of the cause of the risk and its probability of occurrence. We explore what, where, 

when, how long and how intense an element of a supply chain cannot fulfill its function as a result 

of the risk consequence.  

A summary of the uncertainties is provided in Figure 3. The categorical range associated with each 

deep uncertainty is shown in Table 2.  
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Figure 3. Categories of uncertainties. 

 

Table 2. Deep uncertainties and their associated ranges 

Deep uncertainties Range 

Disrupted region Asia-Europe-Both Asia and 

Europe 

Disrupted tier 1-2-3-All three tiers 

Disrupted component Shared-Not shared- Both Shared 

and Not shared 

Disrupted element Production plant-Transportation 

link-Inventory 

Disruption duration Long-Medium-Short 

Post-disruption capacity Large-Medium-Small 

Recovery rate Fast-Medium-Slow 
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Policy levers (L): in supply chain disruption management toward improving resilience, the policy 

levers include mitigation actions used by supply chain managers to cope with disruptive events. 

Examples are the use of multiple sourcing, flexible transportation, flexible manufacturing 

processes, extra inventory, back up suppliers and overcapacity. Since this paper is a methodological 

paper in which we aim to investigate the applicability of the RDM approach to support improving 

resilience, rather than focusing on detailed aspects of mitigation strategies to cope with disruptions, 

we define four stylized mitigation strategies to represent how RDM can be applied to explore 

robustness of the different mitigation strategies. For the sake of clarity, we represent a mitigation 

strategy using two variables: the cost of replacing the disrupted capacity, and the time to 

availability, which indicates the lead time of implementing the strategy. By combining different 

values of these two variables, we define four hypothetical mitigation strategies as follows:  

• Expensive-Fast: this represents a mitigation strategy with high cost of implementation but 

a short time to availability. An example of such a mitigation strategy is the usage of strategic 

stock where a firm keeps inventory of strategic products and products that could become a 

bottleneck. Although such a strategy involves extra cost, it enables a quick replacement of 

the disrupted capacity in case of a disruption. 

• Cheap-Slow: this represents a mitigation strategy with a low cost of implementation but a 

longer time to availability. An example of such a mitigation strategy could be the 

implementation of a backup strategy where a firm has backup suppliers for its critical 

components that enable the firm to switch to alternative sources in case of disruption. Since 

the backup supplier is activated only when the primary supplier disrupts, it may involve 

less cost to the firm in comparison with the strategic stock policy. It may, however, take 

longer for the backup capacity to become available in comparison to the strategic stock 

policy.  

• Medium: this represents a mitigation strategy with an average cost of implementation and 

an average time to availability. An example of such a mitigation strategy is to use a mix of 

investing in strategic stock and a backup supplier strategy. In this strategy, the firm makes 

a tradeoff between cost of the mitigation measures and time to availability of the mitigation 

measures.  

• Acceptance: we also explored a scenario in which no mitigation strategy such as strategic 

stock or backup is used by the firm to replace disrupted capacity. In the acceptance strategy, 

a firm waits for the disrupted capacity to become available again. In this strategy, the 

company does not invest anything in resilience, and it is a good reference strategy to 

compare the other strategies with. 

Relationships (R): To model the relationships of an ATO supply chain as well as modeling the 

behavior of the supply chain under disruption together with the evaluation of mitigation strategies, 

we developed a discrete event simulation model. The details of the simulation model are explained 

in chapter 3 of this dissertation. 

Performance metrics (M): to measure the impact of disruption on performance of the stylized 

supply chain and also evaluate the robustness of various disruption mitigation strategies, we 

consider several performance measures including market lead time, time to detect disruption, total 
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recovery time, total cost, and total revenue. The definition of the performance measures is given in 

chapter 3 of this dissertation.   

4.3.2.2 Case generation (Step 2) 

The second step of RDM is the generation of a database of plausible disruption scenarios and their 

impact on performance measures. To this end we perform exploratory modeling: a model-based 

technique that can systematically explore a very large ensemble of plausible scenarios (Bankes, 

1993; Kwakkel & Pruyt, 2013). To conduct exploratory modeling we use the Exploratory Modeling 

and Analysis (EMA) workbench (Kwakkel, 2017). The EMA workbench is an open-source Python 

library that supports exploratory modeling by the generation and execution of a series of 

computational experiments as well as the visualization and analysis of the results of the 

computational experiments. The EMA workbench is interfaced to the discrete event simulation 

model of the stylized supply chain and is used to define computational experiments to conduct with 

the simulation model, to analyze the results of these experiments, and to store the results. For the 

generation of disruption scenarios, we sampled over the 7 uncertainties explained in table 2 and we 

used 1000 scenarios that were drawn from the input space using Latin Hypercube sampling. We 

combine this with the four different strategies against disruption: Expensive-Fast, Cheap-Slow, 

Medium and Acceptance. This produces 4000 experiments in total. To address stochasticity (see 

sub-section 4.3.2.1), 5 replications of each experiment are run of the discrete event simulation 

model of the stylized supply chain using different seeds.   

4.3.2.3 Vulnerability analysis (Step 3) 

The exploration we performed in the previous section resulted in a data base of 4000 computational 

experiments that we analyzed using the EMA workbench and that will be discussed in the rest of 

this section.  

A high-level analysis first looks at the impact of deep uncertainties on supply chain performance. 

To this end a feature scoring approach is used, which is a machine learning alternative to global 

sensitivity analysis for identifying the most influential uncertain factors on model outcomes 

(Geurts, Ernst, & Wehenkel, 2006). Several techniques exist to support feature scoring (Nahar et 

al., 2021). In this study we selected the so-called 'extra-trees algorithm', mainly because of its 

accuracy for non-linear regression problems (Jaxa-Rozen & Kwakkel, 2018). Figure 4 shows the 

results of the extra trees feature scoring for the stylized supply chain. The figure indicates which 

of the disruption parameters have the greatest relationship to the performance metrics. A higher 

number (color towards the yellow) implies a higher impact of the parameter (x-axis) on the 

performance metric (y-axis). The results in Figure 4 show that among disruption parameters, the 

disrupted element has the highest impact on supply chain total cost and supply chain total revenue. 

However, post-disruption capacity of the disrupted element influences market lead time the most. 

Also, the disrupted component has the highest impact on total recovery time of the stylized supply 

chain.  

To get more in-depth insights on how combinations of deep uncertainties affect the outcomes of 

interest regarding supply chain performance under disruption, we apply Scenario discovery (Bryant 

& Lempert, 2010). In scenario discovery the computational experiments are analyzed subsequently 
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with statistical machine learning algorithms to identify combinations of key factors that identify 

those situations where the objectives are met or are not met. For instance, in our stylized supply 

chain we are interested in identifying combinations of factors that cause an unacceptable supply 

chain performance in terms of high values for time to detect disruption. The scenario discovery 

method we use is the Patient Rule Induction Method (PRIM) (Friedman & Fisher, 1999). PRIM 

can be applied to identify combinations of values of input parameters of a model that result in 

similar characteristic values for an outcome of the model. To this end, PRIM looks for a set of 

subspaces of the input space where the values of the output variables are noticeably different from 

their average values. PRIM describes such subspaces with n-dimensional 'boxes' within the input 

space. Several alternative boxes are generated by the PRIM algorithm, which are different in terms 

of coverage (proportion of the total number of cases of interest), density (the fraction of the cases 

of interest to the total number of cases in a box), and number of restricted dimensions (limited set 

of dimensions of the model input space). The decision maker can select a box for interpretation of 

the result based on a trade-off between different values of coverage, density and restricted 

dimensions (Kwakkel, Auping, & Pruyt, 2013). The first step in applying PRIM is to specify the 

result of interest. For instance, suppose that for the stylized supply chain we are interested in the 

values of time to detect disruption higher than 10000 hours. Figure 5 shows the results of the PRIM 

analysis. Figure 5(a) shows the tradeoff between coverage, density and the number of restricted 

dimensions. We are interested in a scenario (i.e., a combination of factors) that captures a high 

proportion of the total number of cases of interest (i.e., a high coverage) while the fraction of the 

cases of interest to the total number of cases in that scenario is noticeable (i.e., a high density) 

(Bryant & Lempert, 2010). Figure 5(b) shows that with a coverage of 82% and a density of 74%, 

when post-disruption capacity is medium or small, simultaneous disruption of both shared and not-

shared components, or a disruption of only the not-shared components can result in an unacceptable 

supply chain performance in terms of a high time to detect disruption. 



60                                                                               Model-based Risk Analysis of Supply Chains for Supporting Resilience 

 

 

Figure 4. Results of the feature scoring analysis. 

 

 
 

(a)               (b) 

Figure 5. Result of the PRIM analysis for time to detect disruption with a trade-off between 

coverage and density (left) and the selected box information (right). 
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4.3.2.4 Trade-off analysis (Step 4): 

A simple tradeoff analysis on how different strategies against disruption affect the performance 

measures of the stylized supply chain is presented in Figure 6. As depicted in Figure 6(a), for the 

stylized supply chain, almost all four strategies have the same performance in terms of the time to 

detect disruption. Figure 6(b) shows that the total recovery time has better values under the 

Expensive-Fast strategy. Figure 6(c) shows that total cost has its worst value under the Expensive-

Fast strategy and best value under the Cheap-Slow strategy. Market lead time and total revenue 

have their worst values under the Acceptance strategy (Figure 6(d) and Figure 6(e)).   

We can also make a robustness tradeoff among different strategies. There are several metrics for 

measuring robustness (McPhail et al., 2018). For the stylized case we adopt a so-called regret-

based metrics (Savage, 1951) in which the regret for a decision policy is calculated as the difference 

between the performance of the selected policy and the performance of the best policy under a 

particular scenario. In particular, we apply the maximum regret metric (J. D. Herman, Reed, Zeff, 

& Characklis, 2015) in which we calculate maximum regret values for all scenarios, and the robust 

policy is the policy with the lowest maximum regret value. Figure 7 presents the parallel 

coordinates plot of robustness values of the four different strategies against disruption. The 

favorable strategy is the one that has the lowest values of regret across all four scenarios. As it is 

shown in Figure 7, the Acceptance strategy has a low regret on total cost and total revenue but a 

high regret on the three other objectives. The Expensive-Fast strategy is the most robust strategy 

in terms of market lead time but it has high regret for total cost and total revenue. The Cheap-Slow 

and Medium strategies have high regret for market lead time and total revenue but they are robust 

strategies in terms of total cost. Both strategies have an average performance in terms of time to 

detect disruption and total recovery time.  

This information helps supply chain decision makers with different risk attitudes (risk averse or 

risk seeking) to make tradeoffs among potential risk mitigation strategies based on their preference 

and supply chain mission.  

 

 

(a)                                                                         (b) 
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(c)                                                                             (d) 

 

            (e) 

Figure 6. Box plot of KPIs values form experiments for four different strategies against 

disruption. 
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Figure 7. Parallel coordinates plot of robustness values (maximum regret metric) of four 

different strategies against disruption. 

4.4 Discussion and conclusion 

This paper provides a method for assessing and enhancing the resilience of a supply chain 

considering the deeply uncertain nature of disruptive risks. We propose the concept of 

consequence-based risk analysis in which the focus is on assessing the consequence of plausible 

risks at elements along the supply chain for identifying the most important vulnerabilities in need 

of resilience investment. In contrast with conventional risk modeling approaches that deal with 

identifying the root cause of a risk and determining its characteristics, such as probability of 

occurrence and intensity, our approach concentrates on analyzing the consequence of potential 

risks associated with a supply chain, regardless of the root cause of risk. For example, no matter 

whether a strike or a congestion in a port disturbs a water-based transportation activity within the 

supply chain, the focus is on answering the question of what will happen if that transport activity 

is disrupted.  

We treat consequence-based risk analysis as a problem of decision making under deep uncertainty 

(DMDU) to benefit from approaches developed in this field. Specifically, we apply the robust 

decision making (RDM) approach, which provides supply chain decision makers with methods for 

identifying the most important exposures to disruption and for determining disruption mitigation 

strategies that have satisfactory outcomes over many plausible disruption scenarios instead of being 

optimal under one expected scenario of disruption, which is typical done in conventional 

approaches toward supply chain disruption management. In RDM, no probabilities are assigned to 

future disruption scenarios. Therefore, the approach overcomes the need for estimation of risk in 

stress testing of a supply chain and therefore the mitigation strategies are developed regardless of 

sub-optimal risk assessment procedures. This results in an improvement of the supply chain 
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resilience to disruption, since all consequences of the risks are analyzed in detail and vulnerable 

spots on the supply chain are identified.  

RDM has been applied for many years to support strategic planning problems under deep 

uncertainty in a variety of fields, including climate change, flood and water risk management, and 

economic policy. Deep uncertainty is not yet extensively considered in the supply chain risk 

management literature. However, with several serious supply chain disruption cases as a result of 

unlikely events such as a pandemic and geopolitical tensions, it is crucial to incorporate deep 

uncertainty in supply chain risk management practices nowadays. This research shows that 

approaches from the DMDU field can be applied successfully for addressing supply chain 

management problems that suffer from deep uncertainties.  

A stylized case study was used to represent the applicability of RDM in consequence-based risk 

management of a supply chain. We developed a simulation model of a hypothetical ATO supply 

chain to mimic response of the supply chain to a variety of risk consequences as well as assessing 

the effect of different risk mitigation approaches. The modular and component-based approach we 

use for developing supply chain simulation model in this research can be used further for generation 

of variety of real-world supply chain models consisting of any number of actors across several tiers 

of the supply chain all around the word. For generating scenarios of risk consequences, we first 

characterize a risk consequence with several variables. Then using exploratory modeling, many 

scenarios of risk consequences are generated by combinations of different values of the variables. 

We use several data mining approaches to analyze the generated results. Analyzing the results of 

exploratory modeling provides decision makers with insights about the most and the least important 

disruption variables contributing to the vulnerability of a supply chain. For example, in our stylized 

supply chain, the feature scoring analysis shows that the disrupted element, disrupted component, 

and post-disruption capacity are the most important disruption features that should be considered 

in resilience practices. Also, the recovery rate of disrupted capacity and the disrupted region are 

the least important factors for the vulnerability of the stylized supply chain so they can be ignored 

in resilience practices. Supply chain decision makers can study the behavior of the important 

disruption factors on supply chain vulnerability in more detail and consider those factors when 

developing resilience strategies. On the other hand, decision makers can leave out the factors that 

do not contribute to the vulnerability of their supply chain.  

The results of exploratory modeling also provide decision makers with insights about combinations 

of disruption factors that contribute to the vulnerability of a supply chain. For example, in our 

stylized supply chain, the PRIM analysis showed that poor supply chain performance in terms of 

time to detect disruption can result from disruption of not-shared components in cases where the 

post-disruption capacity is low. A decision maker should consider mitigating of disruptions with 

these profiles to avoid poor supply chain performance in terms of time to detect disruption. The 

same analysis can be conducted for other supply chain performance measures as well, to support 

resilience improvement for a supply chain.  

Exploring the results of disruption scenarios and their associated impact on supply chain 

performance helps in identifying sources of vulnerability in the supply chain, which are not easily 

detectable by human reasoning. Typically, supply chain decision makers tend to focus on assessing 



Chapter 4-Improving supply chain resilience using consequence-based risk analysis and robust decision making 65 

 

 

vulnerability of the strategic suppliers, for example suppliers of the first tier. However, in complex 

supply chains consisting of thousands of actors that are distributed globally, hidden risks of 

disruption can be present anywhere within the supply chain network. Our approach enables a 

vulnerability assessment of more upstream suppliers and facilities, detection of critical production 

plants, transport links or distribution centers within a supply chain, and identifying a combination 

of risk factors that contribute to an unacceptable impact on supply chain performance, for instance 

caused by concurrent disruptions in multiple tiers, multiple locations or multiple facilities of the 

network. Considering compound risks in supply chain risk management practices is still limited in 

the current literature.  

Our approach can help decision makers to make a trade-off among a variety of disruption mitigation 

strategies for enhance the resilience of their supply chains. Robust decision making can help in 

identification those disruption mitigation strategies that have satisfying outcomes under as many 

disruption scenarios as possible. This provides the opportunity for supply chain decision makers 

with conflicting objectives to help with the selection of resilience practices. To show how our 

approach can contribute, a simplified application of a mitigation strategy is demonstrated.  

Our approach enables iterative stress testing of a supply chain by providing multiple views of the 

future to test several candidate mitigation strategies over many scenarios and refine the strategies 

in light of the result.  

Of course, there are several limitations to this study. For showing how consequence-based risk 

analysis of a supply chain can be addressed by the RDM approach, we worked with a hypothetical 

stylized supply chain. Therefore the analysis of the results in this research is based on hypothetical 

data and it still lacks empirical evidence. The approaches and insights from this research should 

therefore be tested with real world data.   

One possible limitation of this study is that the policy levers that define mitigation strategies for 

the stylized case study are selected in such a way that they avoid redesigning the supply chain 

structure. For example, we consider mitigation strategies such as keeping extra inventory or back-

up suppliers and capacity. We do not consider strategies such as buying from competitors or 

building new factories.  

In this research we address both deep uncertainties and stochastic uncertainties within a supply 

chain. Deep uncertainties are treated by exploratory modeling and stochastic uncertainties are 

treated by carrying out multiple runs of the discrete-event simulation model. We consider demand, 

production time, and transportation time as stochastic uncertainties, and region of disruption, tier 

of disruption, disrupted component, disrupted element, disruption duration, post-disruption 

capacity, and recovery rate of the disrupted element as deeply uncertain parameters for this 

research. Although other uncertain supply chain related variables such as cost and quality are 

important in risk management of a supply chain as well, we mostly focused on uncertainties related 

to time. Although we consider demand, production time and transportation time as stochastic 

uncertainties in this study, they could easily be treated as deeply uncertain parameters as well.  

A final limitation is that the values of the deeply uncertain parameters and of the mitigation 

strategies are selected as categorical variables for this paper.  A more elaborate selection of values 
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could enhance the study and make it easier to translate the results to decision makers in a real case. 

All methods used can deal with continuous variables or integer variables in addition to categorical 

variables, so it is for sure not a limitation for the proposed method. 

We demonstrated in this paper that the application of RDM is feasible for managing disruptions in 

complex supply chain networks and unpredictable business environments. The approach enables 

decision makers to quickly recognize what is important in terms of vulnerability of the network, 

and what corrective actions are interesting, from exploration among the large amount of 

information generated from many scenarios of disruption.  

Our approach contributes to the literature of supply chain risk management in several aspects. First, 

our approach addresses the gap of conventional risk assessment approaches that are dependent on 

a correct estimation of risk attributes, which is hard or impossible in complex supply chains. In our 

method, one can explore among scenarios of consequences that a risk may have on supply chain 

performance instead. Second, our approach contributes to the literature of scenario-based 

approaches toward risk assessment of a supply chain, where, instead of considering a few scenarios 

of risk consequences, one can explore among many thousands of what-if scenarios that are 

generated by combination of uncertain risk consequences to draw decision-relevant conclusions. 

In addition, the MTS-MTO strategy of suppliers, multi-tier supply chain networks, shared sub-

suppliers, and region-based suppliers are some relatively unexplored aspects of supply chain 

resilience research that we consider in our study. We also look at compound risk instead of only 

focusing on a single point of failures, as mostly addressed by other researchers. 

Moreover, our approach is a simulation-based approach where the behavioral aspects of the supply 

chain are characterized in more details in comparison with similar research in the field where a 

mathematical or abstract model of the supply chain is used. This may pose questions on the 

efficiency of the proposed approach, especially in gathering the necessary information for 

developing the simulation model. Most of the data that is needed for developing the simulation 

model in this approach can be provided by the ERP system of the modeled organizations. However, 

obtaining information on suppliers beyond the second or third tier of the network may be hard since 

some suppliers are reluctant to share information.  

Many of the approaches in the literature of supply chain risk management require a precise 

estimation of the probability and the impact of all risks to consider. In situations where risk 

attributes are unknown or contested, our approach can be a valuable addition to supply chain risk 

management enabling decision makers to obtain valuable decision-relevant insights for improving 

resilience of their supply chains without having to provide data that is often simply not available.  
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5 The relation between supply chain topology and 

resilience: a simulation study 

This chapter has been based on a paper that is under review at a scientific journal. 

 

This chapter addresses the second sub-question introduced in section 1.2. We investigate the effect 

of operational aspects of a supply chain in structural vulnerability of the supply chain. To this end, 

various supply chain network structures, which differ in three operational aspects, including 

product structure, sourcing strategy, and production strategy, are stress-tested and compared to find 

key operational characteristics that affect the resilience of a supply chain structure.  

 

Abstract 

Supply chain resilience is a key concern in today's fluctuating business environment. Stress-testing 

a complex supply chain at the network level helps identify sources of vulnerability while offering 

possible courses of action for improving resilience. To study the resilience of complex supply chain 

networks, researchers frequently adopt a graph theoretic perspective where different network 

structures are represented by a configuration of nodes (facilities) and links (transport). By exposing 

nodes and links to disruptions, the resilience of different supply chain network structures can be 

assessed. However, conceptualizing supply chain networks based only on a configuration of nodes 

and links disregards key operational characteristics that may affect the functionality of a complex 

supply chain and, thus, its resilience. To address this gap, this research compares the resilience of 

supply chain topologies that differ in three operational aspects: product structure, sourcing strategy, 
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and production strategy. We expose different network topologies to a variety of disruptions and 

draw conclusions about key operational characteristics that affect the resilience of a complex 

supply chain. The automated approach we applied in this research toward the generation of 

different supply chain network topologies and their related simulation models can aid supply chain 

decision makers in stress testing the resilience of real-world supply chain networks.  

Keywords: Supply chain management, Supply chain resilience, Supply chain risk management, 

Simulation, Exploratory modeling 

5.1 Introduction 

The expansion of today's business environments has been driving advances in supply chain 

management strategies in recent decades. Advances such as Just-In-Time strategies, outsourcing, 

globalization, and centralized distribution bring competitive advantages to supply chains, but they 

also increase the number of possible vulnerabilities (Christopher & Peck, 2004). Given the various 

sources of vulnerability, coupled with uncertainties in the business environments, today's supply 

chains face risks of short‐term to long-term disruptions (Fahimnia, Tang, Davarzani, & Sarkis, 

2015a; Jabbarzadeh, Fahimnia, Sheu, & Moghadam, 2016; Klibi, Martel, & Guitouni, 2010). The 

large number of supply chain disruption cases in the past decades has a clear implication for 

managers: in order to compete in today's turbulent business environment, companies need to strive 

for resilient supply chains (Sheffi, 2005). A resilient supply chain is capable of returning to its 

original or desired state after a disruption by reacting quickly through flexible and agile processes 

(Christopher, 2016). The starting point in assessing the resilience of a supply chain toward 

enhancing its resilience is to stress test the supply chain to identify vulnerable elements and to 

define appropriate mitigation strategies to manage these vulnerabilities by improving resilience. A 

common approach for stress testing a supply chain to measure its resilience is to expose individual 

elements of the supply chain to disruption and then measure the impact of the disruption on supply 

chain performance. However, in complex supply chains consisting of thousands of globally 

distributed and interdependent actors with different sourcing strategies, many disruptions have 

effects far beyond the disrupted element, and they propagate farther into the supply chain, affecting 

the supply chain's overall performance (Dolgui, Ivanov, & Sokolov, 2018; Ivanov, Sokolov, & 

Dolgui, 2014). This implies that besides the vulnerable supply chain elements themselves, the 

structure of the supply chain and the way different actors are connected and interact with each other 

also influence the effects of disturbances in a supply chain and determine its resilience. Here, 

supply chain managers need to have an understanding of the vulnerability relating to the structure 

of their supply chain instead of only focusing on the vulnerability of individual elements and trying 

to change their supply chain structure to a more resilient one (Kim, Chen, & Linderman, 2015a). 

To assess the resilience of supply chain network structures, many scholars adopt graph theory 

(Basole & Bellamy, 2014; Kim et al., 2015a; Zhao, Kumar, Harrison, & Yen, 2011). In graph 

theory-based studies, elements of a supply chain are represented as nodes and links (vertices and 

edges), and different configurations of nodes and links result in different topologies of supply chain 

networks. The three most common types of supply chain topologies in the resilience literature are 

the scale-free network, the small-world network, and the random network (Basole & Bellamy, 

2014; Kim et al., 2015a).  Li et al. (2020) argue that not all real-world supply chains can be 

described by only three types of topologies. The authors suggest that supply chain topologies 

should be described by a number of network characteristics. This implies that instead of focusing 
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on a few topologies, one can generate a broader set of supply chain topologies by combining 

different network characteristics. To this end, Li et al. (2020) adopt a set of commonly used network 

characteristics from graph theory to generate different topologies. These characteristics include 

degree centrality, betweenness centrality, closeness centrality, eigenvector centrality, clustering 

coefficient, eccentricity, information centrality, and communicability. Although this topological 

perspective of supply chain structures brings many insights regarding its resilience, it overlooks 

some important characteristics of a supply chain network that influence resilience in the real world. 

For example, how is the resilience of a given network structure affected by the prevalence of make-

to-stock (MTS) versus make-to-order (MTO)? Or, how does the number of tiers in the supply chain 

and the connectivity between tiers through shared suppliers affect supply chain resilience? 

To address this gap, this paper looks at a supply chain topology from a new perspective, where 

different topologies are described by a group of operational characteristics of a supply chain. In 

this research we consider six operational characteristics of a supply chain, which we believe are 

worthwhile addressing in making today's complex supply chains more resilient. We categorize the 

characteristics into three groups: product structure, sourcing strategy, and production strategy.  

From the product structure perspective, we consider a network variable representing the percentage 

of components outsourced for each supplier in each tier of a supply chain. Outsourcing is defined 

as the strategy of receiving semi‐finished or finished products or services from outside of the 

company, so-called third‐party specialists, instead of producing these products or delivering these 

services internally (Dolgui & Proth, 2013). A company might decide to outsource functions such 

as distribution, manufacturing, accounting, and information systems (Christopher, 2016). 

Outsourcing is popular among complex supply chains because it allows supply chains to focus on 

their core business competencies.  

From the sourcing strategy perspective, we consider four network variables representing the 

number of tiers, the number of suppliers of a supplier in each tier, the number of shared suppliers 

in each tier (a supplier who produces for more than one customer in a supply chain) and the 

percentage of faraway versus close-by suppliers in each tier (we use this variable as the 

simplification of the actual geographical dispersion of suppliers over a supply chain network). 

Outsourcing and globalization strategies create multi‐tier and globally expanded supply chains 

(Mena, Humphries, & Choi, 2013). The motivation for setting up a global supply chain is access 

to domestically unavailable or cheaper resources, technical expertise, and access to new markets 

(Behdani, 2013). Using a shared supplier strategy, in which multiple actors of a supply chain source 

from the same set of suppliers, is popular nowadays because it contributes to benefits such as 

achieving economies of scale as well as increasing reliability and quality of supply (Qi et al., 2015).  

From the production strategy perspective, we consider a network variable representing the 

percentage of suppliers with the Make-to-Order (MTO) production strategy in each tier, where the 

other suppliers use the Make-to-Stock (MTS) strategy. In order to cope with fluctuations in market 

demand, today's supply chains apply postponement strategies that delay supply chain activities 

until the demand information becomes available, avoiding unnecessary production (Yang & Burns, 

2003). An MTO supplier manufactures the end product when the customer places the order.  

The combination of different values of the operational network variables results in the generation 

of a variety of supply chain topologies. This paper explores how sensitive the resilience of different 

network topologies is to changes in the values of the operational network variables. We consider 

three performance measures for assessing resilience:  change in market lead time, the time to detect 

disruption and total recovery time. Market lead time is the time between placing an order and 

receiving the shipment. A change in market lead time is calculated as the difference between the 

market lead time of an order during a disruption and the market lead time of that same order in a 
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normal situation. The time to detect disruption is the time between the start of the adverse event 

and the ability to detect the first impact on supply chain performance. The total recovery time is 

the time between the detection of the disruption and the return to business as usual. Figure 1 

represents the relation between the research variables of this research. 

 

Figure 1. Conceptual framework of the research variables. 

The remainder of this paper is organized as follows. In Section 5.2, we provide the background of 

the research. In section 5.3, we elaborate on the method we used in this research. Section 4 explains 

the experimental design for conducting the research. Section 5.5 presents the numerical results 

together with a discussion. Finally, conclusions are drawn in section 5.6.  

5.2 Background of the research 

Supply chain resilience has been a well-established area of study within supply chain risk 

management, with increasing attention and relevance in recent years. Resilience is a 

multidimensional and multidisciplinary concept. Ponomarov and Holcomb (2009) tried to develop 

a comprehensive and integrated definition of supply chain resilience by reviewing the concept of 

resilience from a variety of perspectives, including ecological, social, psychological, 

organizational, and economic disciplines. Based on their definition, resilience is "the adaptive 

capability of the supply chain to prepare for unexpected events, respond to disruptions, and recover 

from them by maintaining continuity of operations at the desired level of connectedness and control 

over structure and function". This definition of supply chain resilience comprises three dimensions: 

readiness, response, and recovery. There are two research directions in the literature on supply 

chain resilience. In the first direction, researchers look at supply chain resilience from a qualitative 

point of view and develop conceptual frameworks for identifying elements of a resilient supply 

chain together with their drivers (Blackhurst, Dunn, & Craighead, 2011; Bode & Macdonald, 2017; 

Christopher & Peck, 2004; Craighead, Blackhurst, Rungtusanatham, & Handfield, 2007; 

Kamalahmadi & Parast, 2016; Pettit, Fiksel, & Croxton, 2010; Ponomarov & Holcomb, 2009; 

Wieland & Marcus Wallenburg, 2013). In the second direction, researchers develop or use various 

quantitative methods for measuring resilience of a supply chain and investigate the effect of various 

strategies for enhancing resilience (Fahimnia, Tang, Davarzani, & Sarkis, 2015b; Hasani & 

Khosrojerdi, 2016; Hosseini & Barker, 2016; Hosseini, Ivanov, & Dolgui, 2019; Ivanov, Dolgui, 
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Sokolov, & Ivanova, 2017; Pires Ribeiro & Barbosa-Povoa, 2018; Rajagopal, Prasanna 

Venkatesan, & Goh, 2017).   

As supply chains become more complex by involving many globally dispersed suppliers in 

multiple tiers with complex relations that highly influence the way disruptions propagate through 

supply chains, the network perspective becomes an emerging area in the literature of quantitative-

based approaches toward supply chain resilience. Several researchers reveal that network structure 

has a significant impact on supply chain network resilience (Blackhurst, Rungtusanatham, Scheibe, 

& Ambulkar, 2018; Brintrup & Ledwoch, 2018; Dolgui et al., 2018; Ledwoch, Yasarcan, & 

Brintrup, 2018; Zhao et al., 2011) 

Common to the approaches for studying the resilience of complex network structures is a 

comparison of different network structures by modeling the supply chain network as a graph with 

nodes and links. A graph-based approach has the advantage that it can use a variety of methods to 

provide insights into the supply chain network structures  (Bier, Lange, & Glock, 2020; Kim, Chen, 

& Linderman, 2015b; Sokolov, Ivanov, Dolgui, & Pavlov, 2016). Network structures differ in 

graph-based characteristics such as degree centrality, betweenness centrality, closeness centrality, 

eigenvector centrality, clustering coefficient, eccentricity, information centrality, and 

communicability. In line with graph-based approaches, our research compares different supply 

chain network structures created from different configurations using a number of operational 

features of a supply chain (rather than just a configuration of vertices and edges) to try to identify 

the most influential operational factors for resilience. We specifically include a number of 

operational characteristics such as the percentage of components outsourced for each supplier in 

each tier, the number of tiers, the suppliers of a supplier in each tier, the number of shared suppliers 

in each tier, the percentage of faraway suppliers and the percentage of suppliers with the MTO 

production strategy in each tier. Although several researchers have considered these operational 

characteristics in several supply chain management studies, to the best of the authors' knowledge, 

there is no research that reflects on the importance of these factors together with their interactions 

on the resilience of a supply chain.  

5.3 Research method 

In this research, we investigate how operational aspects of a supply chain's topology influence its 

resilience. In other words, we study the relation between a number of network-related attributes of 

a supply chain as independent variables and several resilience-related measures of the supply chain 

as dependent variables of the research.  

A schematic overview of the steps of the proposed method for this research is provided in Figure 

2. The first step is the generation of different supply chain topologies. Different topologies are 

generated by combining different values of six network-related variables: the percentage of 

assembled components in each tier, the number of tiers, the number of suppliers of a supplier in 

each tier, the number of shared suppliers in each tier, the percentage of faraway suppliers in each 

tier and the percentage of MTO suppliers in each tier. To generate a variety of networks, a Python-

based network generator has been developed as part of this research. The generator can generate a 

variety of supply chain topologies by sampling across different values of the network-related 

variables. Instead of sampling, predefined values of network variables also can be given to the 

generator.  
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In the second step, we instantiate different supply chain simulation models based on the parameters 

of different topologies generated in the first step. In this research, supply chain model components 

are built in the simulation environment Simio (Houck & Whitehead, 2019) and connected to the 

network generator developed in the first step so that simulation models with different supply chain 

topologies are generated automatically. The details of the simulation model are given in chapter 3 

of this dissertation.  

In the third step, we explore the impact of disruption on different network topologies. To this end, 

we adopt exploratory modeling. Exploratory modeling is a model‐based methodology that uses 

computational experiments to analyze uncertain and complex systems (Bankes, 1993; Kwakkel & 

Pruyt, 2013; Kwakkel, Walker, & Marchau, 2010; Moallemi et.al, 2020, Kwakkel, 2017; kwakkel 

& Haasnoot, 2019). Exploratory modeling involves exploring a wide set of scenarios that cover 

uncertainties pertaining to input variables and models for a variety of outcomes of interest and 

possible interventions with the aim of getting insights into systematic patterns of behavior of the 

system across the scenarios. In exploratory modeling, thousands of scenarios are generated and 

evaluated using the model(s) to generate a database of outcomes for each scenario. This database 

can be analyzed using data mining to draw conclusions about which assumptions do, and which 

ones do not make a difference for the outcomes. For example, one can identify which assumptions 

regarding the uncertain variables impact outcomes of interest significantly and which assumptions 

do not matter; or which combination of assumptions results in a particular outcome of interest. In 

this research we define seven disruption-related uncertainties for exploring a variety of disruption 

scenarios that a supply chain may encounter in the future: a disruption at a certain location (region 

of disruption, tier of disruption, disrupted component), the disrupted element, the disruption 

duration, the post-disruption capacity and the recovery rate of the disrupted element. To conduct 

exploratory modeling, we use a connector between the developed Simio library and the exploratory 

modeling and analysis (EMA) workbench (Kwakkel, 2017). EMA is an open source Python library 

that supports exploratory modeling by generating and executing a series of computational 

experiments and analyzing the results of these computational experiments. Results of the 

experiments are analyzed to draw conclusions on how changing of network variables influence the 

resilience of each network topology.  
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Figure 2. Steps of the research method. 

5.4 Experimental design 

In this section, we describe how we set up the experiments for the purpose of this research. We 

start with defining value ranges for each of the network variables. The list of network variables and 

their ranges are presented in Table 1. Then, using the network generator, we generate different 

network topologies by changing the values of network variables to enable the comparison of the 

resilience of the generated networks. We perform two sets of experiments. In the first set of 

experiments, we change the values of the network variables one at a time and keep the values of 

other variables constant. For example, we set the value of the variable "Number of tiers" to high 

(number 4) and set the values of the other six variables to their medium values to generate a High-

Tier network. By doing so, we generate twelve different supply chain network topologies: High-

Tier, Low-Tier, High-Supplier, Low-Supplier, High-Shared supplier, Low-Shared supplier, High-

MTO, Low-MTO, High-Assemble, Low-Assemble, High-Faraway and Low-Faraway supply chain 

topologies. Here, we look at the direct effect of the network variables. Figure 3 shows a supply 

chain network generated by the network generator where the value of all network variables is set 

to "Medium".  

 In the second set of experiments, we look at the interaction effects of the network variables, where 

we change the values of two network variables at a time and keep the values of the other variables 

constant. As an example, we set the value of the variable "Number of tiers" to high (number 4), the 

value of the variable "Percentage of MTO suppliers in each tier" to low (25 percent), and the value 

of the rest of variables to medium to generate a High tier- Low MTO network. Out of all possible 

combinations, we select four network topologies to explore: High tier-Low MTO, High tier-High 

MTO, Low tier-Low MTO, and Low tier-High MTO. These networks are selected to answer the 

following question:  
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• How is the vulnerability of a high-tier supply chain affected by a change in the percentage 

of MTO suppliers? Is the result different for a low-tier supply chain?  

Table 1: Values of six network-related variables for running experiments 

Network-related variables Ranges 

Low Medium High 

Number of tiers 2 3 4 

Number of suppliers of a supplier in each tier 3 5 7 

Number of shared suppliers in each tier 0 2 4 

Percentage of MTO suppliers in each tier 25 50 75 

Percentage of assembled components in each 

tier 

25 50 75 

Percentage of faraway suppliers in each tier 25 50 75 

 

Figure 3. An example of a generated supply chain network with medium values for all 

network variables. 

To assess the resilience of the network topologies, we expose the created supply chain models of 

the different topologies to a variety of disruption scenarios. To do so, we define seven disruption 

parameters and sample across different values. These parameters are disruption location (region of 

disruption, tier of disruption, disrupted component), disrupted element, disruption duration, post-

disruption capacity, and recovery rate of the disrupted element. The categorical range associated 

with each disruption parameter is given in Table 2.  
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Table 2. Disruption-related parameters and their value ranges 

Deep uncertainties Range 

Region Close - Faraway- Both close and 

faraway 

Tier Each tier separately- All tiers 

Component Shared/Not shared among several 

suppliers 

Disrupted element Production plant-Transportation link-

Inventory 

Disruption duration Long-Medium-Sort 

Post-disruption capacity Large-Medium-small 

Recovery rate Fast-Medium-Slow 

 

We generate 1000 disruption scenarios by drawing values for the seven disruption parameter using 

Latin Hypercube sampling and expose each network topology to the disruptions scenarios. To 

ensure that the network topologies are each confronted with the exact same set of disruption 

scenarios we use seed management for generating the random values, both within Simio and in the 

EMA workbench. By doing so we ensure reproducibility of the experiments and also decrease the 

variance of the results to enable a better interpretation. The results of experiments are presented in 

the next section.  

5.5 Results and discussion 

In this section, we report the results of the simulation runs based on the experiments explained in 

section 5.4. First, we report the results of the direct effect of the network variables and then the 

results of the interaction effect of the network variables.  

5.5.1 Direct effects 

The output of the direct effect of the network variables is illustrated in Figure 4. The box plots in 

each sub-figure represent the variance of performance metrics for different networks across 

disruption scenarios. Before diving into the analysis of the results,  it should be noted that in several 

disruption scenarios generated by the EMA workbench, the supply chain network under study is 

not affected. For example, in a network with only two tiers, a scenario of disruption in the fourth 

tier does not make any difference, or for a network with zero faraway suppliers, a disruption in a 

faraway supplier is meaningless. These non-disruptive scenarios generate values of zero for the 

performance metrics of our simulation model which results in a peak of zero values in our statistics 

that skew the data distributions. Therefore, we decided to drop the non-disruptive scenarios from 

our final data set for analysis.  

Regarding the performance metric "Change in market lead time", Figure 4(a) shows that networks 

with a high percentage of faraway suppliers, a high number of tiers, a high number of suppliers in 

each tier, and a high percentage of MTO suppliers experience the highest change in market lead 

time, and thus they are less resilient in terms of on-time delivery of the products to the final 
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customers. These results support our expectation about the fact that when the depth, width and 

geographical dispersion of a supply chain increase, the vulnerability of the supply chain also 

increases. The high vulnerability of the network with a high percentage of MTO suppliers can be 

explained by the fact that in a network with a high percentage of MTO suppliers, production only 

starts when the actual order arrives. So there is no inventory of products in these supply chains to 

be considered as back-up or safety stock during the disruption. This is in line with the result for the 

change in market lead time of the network with a low percentage of MTO suppliers, which shows 

the lowest vulnerability among the networks.  

Regarding the performance metric "Time to detect disruption", Figure 4(b) reveals that most of the 

networks are vulnerable. Exceptions are the networks with a high number of shared suppliers, a 

low percentage of faraway suppliers, a low percentage of assembled components, and a low number 

of suppliers. The reason behind the short disruption detection time in a supply chain with a high 

number of shared suppliers is that since disruption of a shared supplier affects several suppliers in 

a higher tier, the disruption propagates faster in these kinds of networks. Also, the detection of a 

disruption in nearby suppliers is much faster in the other networks. Among all, the networks with 

a high number of tiers and a high percentage of MTO suppliers experience the highest values for 

time to detect disruption. The network with a low percentage of MTO products experiences less 

variance in the results, but the values of the time to detect disruption are still quite high for this 

type of network. The reason is that a high amount of inventories of MTS suppliers in this network 

delays the detection of disruption since the MTS  

Regarding the performance metric "Total recovery time", Figure 4(c) shows that the networks with 

a high number of tiers, a high number of suppliers, a high percentage of MTO suppliers, and a high 

percentage of assembled components have the highest recovery time, and are thus more vulnerable 

to disruption. This result is in line with our expectation that the more complex a supply chain is, 

the longer it takes for it to get back to business as usual. The best performance in terms of recovery 

time belongs to the networks with a low percentage of faraway suppliers, a low percentage of MTO 

suppliers and low percentage of assembled components.  
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(c) 

Figure 4: Distribution of disruption results over different network topologies. 

We perform a more detailed analysis by statistical test in order to get better insights about 

meaningful differences between the networks that differ in the value of the same network variable. 

Here, we answer the questions of "How does the resilience of a supply chain network vary as a 

function of the number of tiers, number of suppliers of a supplier, number of shared suppliers, 

percentage of MTO suppliers, percentage of faraway suppliers, and percentage of assembled 

components in the network?" To answer these questions, we compare disruption results of High-

Tier with Low-Tier, High-Supplier with Low-Supplier, High-Shared supplier with Low-Shared 

supplier, High-MTO with Low-MTO, High-Assemble with Low-Assemble and High-Faraway 

with Low-Faraway networks. To this end, we perform the Mann-Whitney U test, which is a 

statistical test that checks for any statistically significant differences between two data sets (Mann 

& Whitney, 1947). The Mann-Whitney U test compares the mean ranks of two datasets. The Mann-

Whitney U test is non-parametric, so it does not rely on data distribution assumptions, which is the 

case in our research. However, before performing the Mann-Whitney U test, we check for the 

normality of the results by performing Kolmogorov–Smirnov (KS) test. The P value of KS test 

answers this question: What is the chance that a randomly selected value from the population with 

the larger mean rank is greater than a randomly selected value from the other population? We 

perform statistical test using IBM SPSS. The results are presented in Table 3. The results of KS 

test shows the rejection of normality of data distributions for all the networks. This means that we 
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are eligible to perform Mann-Whitney U test. Regarding the change in market lead time, the result 

of Mann-Whitney U test shows that all two datasets have significant differences with each other 

(p-value of zero). The results show that higher values of the number of tiers, number of shared 

suppliers, percentage of MTO suppliers, percentage of faraway suppliers, percentage of assembled 

components, and number of suppliers in each tier result in higher vulnerability of a supply chain 

network in terms of delay in delivery of final product. The highest difference in change in market 

lead time belongs to High-Tier and Low-Tier networks. Regarding time to detect disruption also, 

high values of network variables result in longer detection of disruption. Except for high number 

of shared suppliers which results in faster propagation of disruption and therefore the detection of 

disruption. The highest difference belongs to the High-Supplier and Low-Supplier networks. 

Regarding total recovery time, results show that higher values of network variables results in longer 

recovery time. The highest difference belongs to High-MTO and Low MTO networks.  

Table 3: results of statistical tests 

 

5.5.2 Interaction effect 

To show the interaction effect of the network variables, we select four combinations to represent 

in this paper. These combinations are selected to answer the following question: 

How vulnerability of a supply chain with a high number of tiers is affected by the change in 

percentage of MTO suppliers? Is the result different for a supply chain with a low number of tiers? 

To answer the above question, we analyze the distribution of the disruption results of four 

networks, including Low Tier-Low MTO, Low Tier-High MTO, High Tier-Low MTO, High Tier-

High MTO (Figure 5). As shown in Figure 5(a), in both networks with a low number of tiers and a 

high number of tiers, the change in market lead time increases when the percentage of MTO 

suppliers decreases. This behavior can be explained by the fact that networks with a low number 

of MTO suppliers include more MTS suppliers. As a result, based on the assumption of the 

simulation model, more disruptions ,in terms of inventory disruptions, occur in these networks, 

which results in experiencing a higher change in market lead time. However the network with 

higher tiers experience a higher variance and higher values for the market lead time. Figure 5(b) 

shows that in both the networks with a low number of tiers and those with a high number of tiers, 

the time to detect disruption increases when the percentage of MTO suppliers decreases. This 

Kolmogorov–Smirnov

Check for normality

Kolmogorov–Smirnov

Check for normality

Kolmogorov–Smirnov

Check for normality

Low-Tier 0 679 0 751 0 706

High-Tier 0 911 0 793 0 866

Low-Shared supplier 0 514 0 963 0 717

High-Shared supplier 0 918 0 851 0 755

Low-MTO 0 607 0 351 0 707

High-MTO 0 1067 0 373 0 879

Low-Faraway 0 655 0 720 0 736

High-Faraway 0 851 0 742 0 749

Low-Assemble 0 625 0 634 0 684

High-Assemble 0 825 0 813 0 749

Low-Supplier 0 184 0 517 0 184

High-Supplier 0 283 0 1083 0 283

Network

Change in Market Lead Time Time to detect disruption Total recovery time

Mann-Whitney U Mann-Whitney U Mann-Whitney U

p-value Mean Rank p-value

0 0.035 0

0 0 0.038

p-value p-value Mean Rank p-value p-value Mean Rank

0 0 0.01

0 0 0

0 0.017 0

0 0.043 0.03
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behavior can also be explained by the high number of MTS suppliers since their stocks delay the 

detection of the disruption. However, networks with a high number of tiers experience higher 

values of time to detect disruption than those with a low number of tiers. Figure 5(c) shows that 

when the percentage of MTO suppliers decreases, the total recovery time increases. We can explain 

this behavior by the model assumption that does not contain a partial delivery of an order for MTS 

suppliers. Therefore, when a disruption happens, it takes a longer time for an MTS supplier to 

deliver the whole amount of disrupted products in comparison with an MTO supplier since they 

deliver per order, which is usually much smaller amounts. However, the highest values for recovery 

time belong to the networks with a high number of tiers.  

 

(a) 

 

(b) 
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(c) 

Figure 5. Result of experiments with interaction effects of network variables. 

5.6 Conclusions 

The structure of a supply chain plays an important role in the propagation of disruption and thus, 

its resilience. This research provides supply chain decision makers with an approach for 

vulnerability assessment of their supply chain structure toward improving its resilience. Graph 

theory-based approaches for investigating the resilience of different supply chain topologies ignore 

consideration of important characteristics of a supply chain network because of the simplification 

of a supply chain network to the configuration of nodes and links. This paper provides an approach 

for tackling this problem. We look at a supply chain network topology from product structure, 

sourcing strategy, and production strategy perspectives, which is different from the typical graph 

theory-based perspective. The simulation-based approach we applied for modeling different 

topologies of a supply chain network allows exploration among detailed aspects of a supply chain, 

including operational aspects, that may contribute to the network's resilience. The modular and 

component-based approach we use for developing the supply chain simulation model in this 

research can be used further to generate a variety of real-world supply chain models consisting of 

any number of actors across several supply chain tiers all around the world. The models of the 

variety of supply chain topologies are generated in this research by different combinations of seven 

network variables: number of tiers, number of shared suppliers in each tier, percentage of MTO 

suppliers vs. MTS suppliers in each tier, percentage of faraway versus nearby suppliers in each tier, 

percentage of assembled components in each tier and number of sub-suppliers of a supplier in each 

tier. By stress-testing different supply chain topologies, we draw conclusions about the contribution 

of each network variable to the vulnerability of a supply chain topology. However, it is important 

to note that the findings from this study are dependent on the characteristics of our hypothetical 

supply chain which doesn’t fully capture the complexities of real-world supply chains. Therefore, 



88                                                                               Model-based Risk Analysis of Supply Chains for Supporting Resilience 

 

while the results offer valuable insights, they should be interpreted with caution, and further studies 

are needed to validate the findings of this study in real-world supply chains.  

The results show that deeper, wider, and more geographically dispersed network topologies are 

more vulnerable to disruption than shallow, narrow, and dense network topologies. This result can 

be interpreted by the fact that the increased number of tiers and geographical dispersion of a supply 

chain increases its complexity. This complexity results in more interdependencies among supply 

chain entities, which can increase vulnerabilities when an adverse event happens. Also, managing 

resources can be more challenging in a dispersed supply chain network. When adverse events 

happen, organizing and deploying resources in a dispersed network may result in longer and more 

intense disruption. Moreover, resource allocation in deeper and more dispersed networks might be 

more challenging due to the distribution of resources. This has a negative influence on addressing 

disruption quickly. On the other hand, due to the concentration of resources in dense networks, 

addressing disruption can be quicker despite the rapid propagation of disruption in such networks.  

We also conclude that a high percentage of suppliers with MTS strategy in a network results in a 

late detection of disruption, while a high number of shared suppliers in a network result in a fast 

detection of disruption. Our results are also in line with the fact that as the complexity of a network 

decreases in terms of depth, width, and dispersion, the time to return to business as usual also 

decreases. In this research, we show that change in the number of tiers of a supply chain network 

has the highest impact on the vulnerability of market lead time. However, the percentage of MTO 

suppliers versus MTS suppliers in a network plays the most important role in total recovery time 

after disruption. The time to detect disruption is also mostly affected by the number of suppliers in 

each tier. We consider a consequence-based risk analysis approach toward modeling a disruption 

in the supply chain network. In contrast with conventional risk modeling approaches that rely on 

knowing the probability of occurrence and intensity of risk, the consequence-based risk approach 

focuses on analyzing the consequences of potential risks associated with a supply chain regardless 

of the root cause of the risk. To this end, we define a disruption with several parameters and sample 

across different values of those parameters for the generation of disruption scenarios. This approach 

enables supply chain risk management without having precise information about risk, which is the 

case for rare and extreme events.   

There are several limitations to this study. Real-world supply chains are more complicated than the 

supply chain model we used in this research. We use a small-scale assemble-to-order supply chain 

to show the applicability of our approach. However, our scalable approach can be applied for stress 

testing much larger, real-world supply chains. No aspects of the applied method depend on the 

network size. Calculation times are expected to scale linearly with the network size since we do 

not optimize and just 'replay' the activities of the supply chain in the simulation model. In this 

research, we limit the operational aspects of a supply chain to seven variables. As future work, one 

can consider exploring other operational aspects of a supply chain network. In this research, the 

strategy to cope with disruption is acceptance and waiting till the disturbance is over. However, 

real-world supply chains apply different strategies to cope with disruptions. As future work, one 

can explore the effects of different mitigation strategies in different network topologies. The use of 

a simulation model coupled to a network generator makes it very easy to study supply chains with 

different topologies, different types of disturbances, different organizational components, and 

different mitigation strategies.  
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6 Supply chain ensemble modeling: supporting model-

based decision making for supply chain resilience 

This chapter has been based on a paper that is under review at a scientific journal. 

 

This chapter addresses the third sub-question introduced in section 1.2. We investigate how 

uncertainties related to supply chain structure can be addressed in resilience practices. To this end, 

we adopt an ensemble modeling approach, which implies that instead of relying on one single 

supply chain structure, one can generate multiple structures for a supply chain using stochastic 

parameters and draw conclusions from a range of possible outcomes. 

 

Abstract 

Ex-ante stress testing of a supply chain to identify its vulnerabilities is crucial for improving 

resilience. Valid stress testing of a supply chain depends on the availability of reliable data about 

the supply chain structure and potential disruptive events. However, the complexity and 

globalization of today's supply chains make it difficult for decision makers to access supply chain 

data, especially from actors more than one tier upstream or downstream. As dynamic systems, 

supply chains also encounter changes in their structure and configuration over time. Moreover, 

various recent adverse events have revealed the limit to predictability of potential disruptions. 

Therefore, a major question is how to do stress testing of a supply chain despite structural and 

parametric uncertainties, as well as a lack of reliable data. Analogous to how model ensembles are 

used in for example climate modeling and weather forecasting, this paper proposes a framework to 

assist the generation of ensembles of supply chain networks, stress test the networks under an 

ensemble of disruption scenarios, and draw conclusions about the vulnerability of different supply 

chain networks that can help in improving their resilience. Using the proposed framework, decision 
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makers can get insights into the resilience of their supply chain networks, even though they do not 

have access to precise information. 

 

Keywords: Supply chain disruption and resilience; stress-testing; ensemble modeling; decision 

making under deep uncertainty; exploratory modeling. 

6.1. Introduction 

The complexity of today's supply chains, combined with globalization and fluctuations in business 

environments, cause a significant increase in the risk of supply chain disruptions. Several high-

influence supply chain disruption cases over the past two decades have turned supply chain 

resilience into an increasingly important topic in the literature of supply chain risk management 

(Ivanov & Dolgui, 2021). To improve the resilience of a supply chain, stress testing to predict the 

impact of potential disruptions is crucial. The first step for stress testing a supply chain is to model 

its behavior under disruption. Mathematical analysis, simulation, and graphical modeling are the 

most dominant approaches in this regard (Rajagopal, Prasanna Venkatesan, & Goh, 2017). 

Common to these approaches is the use of a model that describes the supply chain network for 

testing both the impact of a set of disruption scenarios and the effectiveness of different mitigation 

strategies. Several papers study supply chain stress testing and resilience through model-based 

approaches (Hägele et al., 2023). Some researchers focus on improving supply chain resilience by 

increasing the preparedness of the supply chain for disruptive risks  (Babazadeh & Razmi, 2012; 

Berger et al., 2022; Klibi & Martel, 2012; Sawik, 2011; 2013; Alikhani et al., 2023; Aldrighetti et 

al., 2021). For example, Alikhani et al. (2023) propose a framework for an efficient selection of 

resilience strategies in supply chain network design. The authors argue that because of various 

sources of disruption, selecting resilience strategies among several candidate options is 

challenging. To address this challenge the authors adopt resource dependence theory and two-stage 

stochastic programming to assess the positive or negative synergistic effects of a resilience strategy 

under resource constraints to identify a combination of strategies for resilient network design of a 

supply chain. For checking the reliability of their result, the authors propose a simulation-based 

stress testing approach together with a sensitivity analysis to see if the selected resilience strategies 

have satisfactory outcomes under disruption. Some researchers focus on analyzing the ripple effect 

of disruptions (Dolgui, Ivanov, & Rozhkov, 2020; Dolgui & Ivanov, 2021; Ivanov, Dolgui, & 

Sokolov, 2019; Ghadge et al., 2021; Hosseini & Ivanov, 2022). For example, Hosseini and Ivanov 

(2022) developed a framework based on Bayesian network analysis to calculate the ripple effect of 

a disruption in the resilience assessment of a supply chain.  Digital supply chain twins, a virtual 

representation of a real supply chain for monitoring, adopting, and optimizing supply chain 

operations, is another direction of research which has received attention recently (Ivanov & Dolgui, 

2020; Ivanov 2023; Frazzon, Freitag, & Ivanov, 2021). Ivanov (2023) proposes a decision-making 

framework for applying digital twins for stress-testing and resilience improvement of a supply 

chain.  

In the studies of supply chain disruption management and supply chain resilience, researchers 

usually face the challenge of estimating the uncertainties about future disruptive events and the 

way a disruptive event propagates through the supply chain network. Also, the complexity of 

today's supply chains makes it hard for decision makers to access precise information on thousands 

of supply chain actors spread around the world, which is needed to build a valid model for stress 

testing of the supply chain to improve its resilience (Ambulkar, Blackhurst, & Grawe, 2015). 

https://scholar.google.nl/citations?user=QB6rJukAAAAJ&hl=en&oi=sra
https://scholar.google.nl/citations?user=yxK6B_oAAAAJ&hl=en&oi=sra
https://scholar.google.nl/citations?user=QB6rJukAAAAJ&hl=en&oi=sra
https://scholar.google.nl/citations?user=yxK6B_oAAAAJ&hl=en&oi=sra
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Furthermore, supply chains are dynamic and continuously change in size, shape, and configuration 

over time, e.g., by the selection of new partners, accessing new markets, sourcing from new 

locations, and developing new products (Dolgui & Ivanov, 2020; Gross, MacCarthy, & Wildgoose, 

2018; MacCarthy et al., 2016). In these situations, stress testing of a supply chain should include 

structural uncertainty. The problem of uncertainty related to the structure of the supply chain in 

model-based approaches for supporting supply chain resilience has been addressed by some 

researchers. Klibi and Martel (2012) propose a risk-based modeling approach to generate plausible 

future scenarios for evaluating and designing supply chain networks. The authors define three event 

types to describe plausible future risks for supply chain networks: random, hazardous, and deeply 

uncertain events. A three-phase hazard modeling approach is then proposed by the researchers: (1) 

the modeling of supply chain network hazards, characterized by multihazards, vulnerability 

sources, and exposure levels; (2) the estimation of the arrival of an external event, its intensity, and 

its duration; and (3) the assessment of impact in terms of damage and time to recovery. A Monte 

Carlo approach is subsequently used to generate plausible future scenarios. In a more recent study 

that focuses on incorporating the structural dynamics of a supply chain for researching resilience, 

Ivanov and Dolgui (2019) propose an approach for supply chain disruption management that is less 

dependent on the certainty of knowledge about the environmental fluctuations that a supply chain 

may encounter. In the paper, the authors develop a framework for the design and management of 

low-certainty-need supply chains. 

To model uncertainties related to future conditions of a system under study, including structural 

uncertainties, scholars from other disciplines, particularly in climate change and weather 

forecasting, increasingly use ensemble modeling or ensemble forecasting approaches. An ensemble 

approach implies that instead of relying on one single valid model to conceptualize the system 

under study, one can generate multiple models within the boundaries of several uncertain model 

parameters and draw conclusions from a range of possible outcomes (Gneiting & Raftery, 2005). 

This way, simulations of future conditions are generated with multiple models instead of just one 

model (Parker, 2013). The increasing application of ensemble modeling in the literature on climate 

change and weather forecasting is noticeable (Gneiting & Raftery, 2005; Storer, Gill, & Williams, 

2020; Tsai, Elsberry, Chin, & Marchok, 2020; Wolff, O'Donncha, & Chen, 2020). Gneiting and 

Raftery (2005) argue that a single deterministic model for forecasting can be misleading since a 

'best weather prediction' relies on 'best input data', which is not always available considering the 

many sources of uncertainties in the available data. The authors suggest using ensemble modeling 

for making weather forecasts by including multiple runs of numerical weather prediction models 

that differ in two uncertain model parameters: the initial conditions and the numerical 

representation of the atmosphere. Palmer (2002) also suggests using ensemble forecasts for weather 

and climate risk assessment. The author argues that it is crucial to include scenarios with extremes 

in ensemble modeling because events that happen rarely can still result in a significant financial 

loss. 

This research explores the application of ensemble modeling for supply chain stress testing to 

improve supply chain resilience. Particularly, we focus on the data-driven simulation-based aspect 

of ensemble modeling that deals with parametrization and creation of simulation models from data 

sources, the combination of multiple simulation models to capture the behavior of complex 

systems, and the application of data analytics techniques to draw conclusions about complex 

relations within the system under study. The application of data-driven simulation-based 

approaches for supporting supply chain resilience is explored by several researchers, including 
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Ivanov (2023) who demonstrates how digital supply chain twins combined with real data and 

analytics can contribute to supply chain resilience improvement. Reviewing the literature shows 

that the application of ensemble modeling, which mainly focuses on combination of diverse models 

of a supply chain for addressing the uncertainties related to the structure of a complex supply chain, 

is still relatively new. An early example is Zhu et al. (2014), who study the application of ensemble 

modeling in addressing order priority in make-to-order systems.  

Our research proposes a framework for ensemble modeling of a supply chain to improve its 

resilience, in cases where decision makers have to deal with imperfect information on the supply 

chain structure and on potential disruptions. We adopt exploratory modeling as the main research 

method. Exploratory modeling is a model‐based approach that uses computational experiments to 

analyze systems with significant uncertainties. It involves exploring a comprehensive set of 

scenarios that cover uncertainties for input variables and models, for a variety of outcomes of 

interest and possible solutions, with the aim of getting insights into systematic patterns of behaviour 

of the system across the scenarios (Bankes, 1993; Kwakkel& Pruyt, 2013; Kwakkel, Walker, & 

Marchau, 2010; Moallemi et al., 2020). Exploratory modeling is an approach for supporting 

decision making under deep uncertainty (Kwakkel, 2017; Kwakkel & Haasnoot, 2019), where deep 

uncertainty describes a class of uncertainty that is not well modeled by the tools of probability and 

statistics (Bankes, 2002), e.g., because of non-linear behaviour in the system or unknown 

distributions of the likelihood and effects of (rare) events. Exploratory modeling has proven to be 

a promising approach with successful applications in different contexts, including economics 

(Lempert et al., 2006), water management, transportation management (Halim, Kwakkel, & 

Tavasszy, 2016b), energy management (Merrick & Weyant, 2019; Trutnevyte, Stauffacher, & 

Scholz, 2012), and climate adaptation (Lempert et al., 2013). The application of exploratory 

modeling for supply chains remains relatively unexplored. Among a few works, Paul and 

Venkateswaran (2020) study the problem of medicine supply chains during an epidemic, where 

they consider deep uncertainty related to epidemic behaviour. The authors applied exploratory 

modeling and analysis (EMA) to explore ensembles of many plausible behaviours of an epidemic 

characterized by deeply uncertain parameters in their supply chain models. The authors 

investigated critical combinations of input parameter ranges that would cause extreme numbers of 

casualties. Based on this, they were able to propose robust supply chain policies to avoid these 

extreme outcome scenarios. 

This paper demonstrates the applicability of the exploratory modeling framework that uses 

ensemble modeling of supply chains to help increase their resilience. We characterize the supply 

chain network and the potential disruptions with a set of parameters and consider these parameters 

to be deeply uncertain variables. The problem of supply chain disruption management when precise 

information is missing, will be formulated as a problem of decision making under deep uncertainty, 

and as a result, it can benefit from approaches proposed in this field of research. The remainder of 

this paper is organized as follows: Section 6.2 explains the framework for supply chain ensemble 

modeling. Section 6.3 describes a software implementation of the proposed framework. Section 

6.4 illustrates how our framework can be implemented using a sample case. Section 6.5 contains 

the discussion, and section 6.6 presents the conclusions of this research.  
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6.2 Supply chain ensemble modeling framework 

Figure 1 presents the proposed framework for supply chain ensemble modeling to improve supply 

chain resilience. The heart of our framework is the XLRMs framework that is used in exploratory 

modeling for structuring the problem under study (Lempert, Popper, & Bankes, 2003). The 

elements of the XLRM framework are: 

X: External factors; the uncertainties outside the control of decision makers. 

L: Policy levers; the actions that the decision makers would like to explore. Since we do not 

consider mitigation strategies in this research, policy levers are not used in this study. 

R: Relationships; one or more models representing the dependencies among external factors, 

policy levers, and performance metrics. 

M: Performance metrics; the outcomes that decision makers are interested in. 

Exploratory modeling systematically varies the assumptions about the external factors or external 

factors and policy levers (if applicable). Each unique set of assumptions is called a scenario. 

Thousands of scenarios with a varied set of external factors (and policy levers) are generated, and 

they are evaluated using the model(s) in order to generate a dataset of outcomes for these scenarios. 

This dataset can be analyzed to draw conclusions about which external factors do, and which ones 

do not make a difference for the outcomes. For example, one can identify which assumptions 

regarding the external factors impact outcomes of interest significantly, and which assumptions do 

not matter for the model; or which combination of assumptions results in a particular outcome of 

interest. This way, one can identify 'regions' in the outcome space that one should try to avoid, and 

'regions' in the output space that are favorable. Relating this back to the external factors and policy 

levers, one can try to identify what (combinations of) factors and levers can prevent the system 

from ending up in an unfavorable outcome region. 

The framework of supply chain ensemble modeling used in this research is shown in Figure 1. The 

framework consists of three components. In the rest of this section, we explain the components of 

the proposed framework in more detail.  

 

Figure 1. Framework for supply chain ensemble modeling to improve resilience. 

6.2.1 Supply chain network generation 

Our approach for supply chain ensemble modeling starts with generating an ensemble of supply 

chain networks for exploring supply chain resilience. We parameterize a supply chain network with 

a set of six supply chain network variables:  
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• Number of tiers: a variable representing the number of tiers in the supply chain. 

• Number of suppliers: a variable representing the number of suppliers of a supplier in each 

tier. 

• Number of shared suppliers: a variable representing the number of suppliers in each tier 

that produce for more than one customer in the supply chain.  

• Percentage of assembled components: a variable representing in each tier which 

percentage of a product consists of assembled components made by a sub-supplier (using 

both push-based and pull-based sourcing), as opposed to the percentage of the product 

consisting of raw materials (using push-based sourcing).  

• Percentage of faraway suppliers: a variable representing the percentage of faraway versus 

nearby suppliers in each tier. 

• Percentage of MTO suppliers: a variable representing the percentage of suppliers in each 

tier with a make-to-order versus a make-to-stock production strategy.  

These variables are used as input parameters of the supply chain network generator: a model that 

generates an ensemble of supply chain network configurations by sampling different combinations 

of the network-related parameters.  

6.2.2 Disruption simulation 

To explore the effect of potential disruptions on the different supply chain network configurations 

generated in step A, we parameterize a disruptive event with a set of disruption-related variables, 

including disrupted tier, disrupted component, disrupted element, disrupted region, disruption 

duration, post-disruption capacity, and recovery rate of the disrupted element. Each of these 

variables is treated as a deeply uncertain parameter where we do not know (or use) the distribution 

function of that parameter. In a sense, all parameters are sampled uniformly as a result (e.g., using 

Latin Hypercube Sampling), resulting in a good coverage of the overall disruption space and 

including a variety of combinations of the disruption-related variables. Of course, when for some 

variables, the distributions are known in reality, sampling can also be done as a combination of 

uniform sampling for the deeply uncertain variables and stochastic sampling for the variables for 

which a distribution is known. Yet, the uniform sampling will provide a good overview of the entire 

range of possibilities of disruptions that may occur. 

Together with the supply chain network configurations (the output from step A), the disruption-

related parameters are input to the 'supply chain network simulator' that models the impact of the 

disruption scenarios on the various supply chain network configurations. We consider three 

performance metrics for measuring the impact of disruptions: change in market lead time, time to 

detect the disruption, and recovery time from the disruption.  

6.2.3 Vulnerability analysis 

To investigate the vulnerability of a supply chain network for both network-related and disruption-

related parameters, two search strategies can be applied: open exploration and directed search 

(Kwakkel & Haasnoot, 2019). Open exploration includes systematically exploring the set of 

plausible models to generate a set of computational experiments that covers the 

uncertainty/decision space. The approach involves systematically sampling points from the 
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uncertainty space (in our case the n-dimensional space spanned by all uncertain network-related 

parameters and disruption-related parameters) together with their associated performance metrics 

by using techniques such as Monte Carlo sampling, Latin Hypercube sampling, or factorial 

methods. The generated set of computational experiments is analyzed using sensitivity analysis 

algorithms or scenario discovery algorithms, where the former answers the question of what the 

impacts of uncertain factors are on the output, and the latter answers the question of what the 

uncertain factors (or combination of uncertain factors) are that cause or predict the output of interest 

(Halim, Kwakkel, & Tavasszy, 2016a; Kwakkel & Pruyt, 2015; Moallemi et al., 2020). In this 

research, open exploration can be applied to answer questions such as: what are the most influential 

network-related and disruption-related factors that result in vulnerabilities of a supply chain, or 

what combination of factors results in a good or poor performance of a supply chain under 

disruption?  

In contrast to open exploration, directed search explores the uncertainty space in a more goal-

oriented manner to find particular points of interest. The directed search approach relies on 

optimization algorithms to answer questions such as: what is the best/worst case that can happen, 

or where are the boundaries in the uncertainty space that lead to a switch of outcomes? In this 

research, directed search can be applied to answer questions such as: which supply chain network 

configurations have the best/poorest performances under a worst-case disruption scenario?  

6.3. Software implementation 

To implement the proposed exploratory modeling framework, we developed several pieces of 

software and a simulation model: 

(i) A Python-based network generator for generating supply chain network configurations from 

combinations of network-related parameters. The generator was specifically developed for this 

research. The parameters that can be varied to generate a specific type of network are given in 

section 6.2.1 above. Figure 2 shows an example of a supply chain network configuration created 

by the network generator. The generator also provides the data needed for creating simulation 

models of the network configurations.  

(ii) A Simio (Houck & Whitehead, 2019) based supply chain network simulator that is capable of 

automatically instantiating a discrete-event simulation model of each of the network configurations 

created by the network generator. The details of the simulation model are given in chapter 3 of this 

dissertation. The model can simulate any supply chain network generated in step A (supply chain 

network generation was explained in section 6.2.1) with arbitrary complexity. To instantiate supply 

chain models, a supply chain network configuration generated by the network generator is 

translated to the information needed for the discrete-event simulation model developed in Simio. 

This information is stored in input data tables, and the supply chain simulation model is instantiated 

automatically from these tables during the model initialization phase.  

(iii) A Python-based package for performing exploratory modeling. We made a connector between 

Simio and the Exploratory Modeling and Analysis (EMA) workbench, an open-source Python 

library that supports exploratory modeling by generating and executing an ensemble of 

computational experiments, as well as the visualization and analysis of the results of these 
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computational experiments (Kwakkel, 2017).    

 

Figure 2. Example of a 3-tier supply chain network configuration created by the network 

generator. 

6.4. Assessing supply chain vulnerability using the ensemble modeling 

framework 

In this section, we demonstrate the implementation of our framework using a stylized and 

simplified supply chain network. Following the framework, we start with identifying network-

related parameters and their value ranges for the generation of the ensemble of supply chain 

network configurations (see Table 1). The explanation of each network variable is given in section 

6.2.1. We take 50 samples of the values of the network parameters, resulting in the generation of 

50 different network configurations. In the next step, we define the disruption-related parameters 

and their value ranges (see Table 2). Note that we use nominal or ordinal values for the variables 

to keep the model simple; these values can be replaced by ranges in the supply chain model as well. 

For example, in our supply chain case, a short disruption duration refers to two to three weeks of 
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disruption, a medium disruption duration refers to one to two months of disruption, and a long 

disruption duration refers to four to six months of disruption in a supply chain element. Similarly, 

a large post-disruption capacity refers to an availability of eighty percent of the normal capacity of 

the disrupted element after disruption, a medium post-disruption capacity refers to an availability 

of fifty percent of the normal capacity of the disrupted element after disruption, and a small post-

disruption capacity refers to an availability of zero capacity of the disrupted element after 

disruption. Finally, a fast recovery rate of a disrupted element refers to the recovery of eighty 

percent of the lost capacity per day, a medium recovery rate of a disrupted element refers to the 

recovery of forty percent of the lost capacity per day, and a slow recovery rate of a disrupted 

element refers to the recovery of five percent of the lost capacity per day. 

 The generated supply chain network configurations, together with the disruption-related 

parameters, are inputs for the supply chain network simulator to explore the impact of the ensemble 

of disruption scenarios on resilience-related performance metrics of different supply chain 

networks. We take 200 samples over the values of the disruption parameters for each network 

configuration. Considering the 50 network configurations, this produces 10,000 experiments in 

total. We run the model for 220 weeks, in which the model reaches a steady state for all scenarios. 

We chose the warm-up period to be 16 weeks, to build up a representative inventory and work-in-

progress for all supply chain actors. We assume a disruptive event is triggered in week 44, allowing 

us to gather statistics about the undisrupted period. To address stochasticity related to the 

production times and transportation times, five replications of each experiment are run using 

different seeds, and the average values of the performance metrics over five replications are 

considered for the analysis. We performed a sensitivity analysis and confidence interval analysis 

to explore how the number of replications influences the variability and reliability of the output 

results. We calculate the half-width of the 95% confidence intervals for the most important 

performance indicators and express them as a percentage of the mean value of the performance 

indicators. We ensure that five replications are sufficient in our case because they result in a 

percentage of the mean values being less than 5%, which is an acceptable level of precision in our 

simulation. In the following sub-sections, we demonstrate the results of the experiments. 

Table 1. Network-related parameters and their possible values for the example case 

Network-related variables Value ranges 

Number of tiers 1-4 

Number of suppliers of a supplier in each tier 1-4 

Number of shared suppliers in each tier 0-2 

Percentage of assembled components in each tier 10%-90% 

Percentage of faraway suppliers in each tier 10%-90% 

Percentage of MTO suppliers in each tier 10%-90% 
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Table 2. Disruption-related parameters and their possible values for the example case 

Disruption-related variables Value ranges 

Disrupted tier Each tier separately - All tiers 

Disrupted component Shared/Not shared among several suppliers 

Disrupted element Production plant -Transportation link - Inventory 

Disrupted region Nearby - Faraway - Both nearby and faraway 

Disruption duration Long - Medium - Short 

Post-disruption capacity Large - Medium - Small 

Recovery rate of the disrupted element Fast - Medium - Slow 

 

6.4.1 Result of open exploration 

6.4.1.1 Feature scoring for identifying influential factors 

A high-level analysis first looks at the impact of the model parameters on the outcomes of interest. 

Therefore, a feature scoring approach is used, which is a machine learning alternative to global 

sensitivity analysis for identifying the most influential uncertain factors on model outcomes 

(Geurts, Ernst, & Wehenkel, 2006). Several techniques exist to support feature scoring (Nahar et 

al., 2021). For this study, we selected the so-called 'extra-trees algorithm' mainly because of its 

accuracy in solving non-linear regression problems (Jaxa-Rozen & Kwakkel, 2018). Figure 4 and 

Figure 5 shows the results of the extra trees feature scoring for the network-related parameters and 

disruption-related parameters respectively. The figures indicate which of the parameters have the 

greatest relationship to the performance metrics. A higher number (color towards the yellow) 

implies a higher impact of the parameter (x-axis) on the performance metric (y-axis). The result of 

the feature scoring analysis in Figure 4 shows that among the network-related parameters, the 

number of tiers, the number of suppliers in each tier, and the percentage of MTO suppliers in each 

tier are three main factors that influence change in market lead time in case of a disruption. These 

factors also influence the time to recover from disruption and return to business as usual in a supply 

chain. The results also indicate that the time to detect a disruption in a supply chain is mainly 

influenced by the number of tiers in a supply chain. The result of the feature scoring analysis in 

Figure 5 also shows that among the disruption-related parameters, the tier in which the disruption 

takes place and the disrupted component (whether it is shared or not shared among several suppliers 

in a supply chain) are the two factors that influence all three supply chain performance indicators 

the most in case of a disruption.  
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Figure 4. Result of the feature scoring analysis over the network-related parameters. 
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Figure 5. Result of the feature scoring analysis over the disruption-related parameters. 

6.4.1.2 SHAP Analysis for analyzing interaction effects 

We also study the interaction effects between network-related and disruption-related parameters. 

We chose to apply SHAP (SHapley Additive exPlanations) analysis (Lundberg et al., 2020), which 

is a method for explaining the output of machine learning models. The approach relies on "Shapley 

values" from game theory to measure the interaction effects of the features of a model. In game 

theory, Shapley values show the contribution of a player to the final goal of the game. In machine 

learning, SHAP values measure the impact of model features on model output for a prediction. In 

a SHAP analysis, the features are ranked based on their importance, defined as their contribution 

to the model prediction. A feature with a high SHAP value is more important than a feature with a 

low SHAP value.  SHAP analysis also allows for investigating how interactions between the 

features contribute to the model prediction. This can be done by calculating SHAP interaction 

values that quantify feature combinations' impact on model prediction. This is done by exploring 

how a model feature's impact changes when combined with several other features of the model.  

We apply the SHAP library, a Python-based package, to look at interaction effects between 

network-related and disruption-related parameters. The calculations are based on a gradient-

boosted decision tree model trained on the dataset of the experiment results. More information can 

be found on the SHAP documentation website 1. We calculate the SHAP interaction values for all 

 
1 See https://shap.readthedocs.io/en/latest/tabular_examples.html#tree-based-models and for more information, see the ‘Basic 

SHAP Interaction Value Example in XGBoost’ example. 

https://shap.readthedocs.io/en/latest/tabular_examples.html#tree-based-models
https://shap.readthedocs.io/en/latest/tabular_examples.html#tree-based-models
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combinations of network-related and disruption-related parameters for each performance metric. 

In Figures 6 to Figure 8, we show only the significant and interpretable pairwise interaction effects 

of the parameters for each of the three performance metrics. The vertical spread of the SHAP 

interaction values in the figures describes the interaction effect between the two parameters. Figure 

6(a), Figure 6(b), and Figure 6(c) show the interaction effect of the parameters for the performance 

metric 'Change in market lead time'. The figures show that the disruption-related parameter 

'Disrupted component' has significant interaction effects with three network-related parameters, 

'Number of tiers', 'Number of suppliers', and 'Percentage of MTO suppliers'. The results from the 

SHAP analysis indicate that the effect of a disruption of a non-shared component (which is 

produced only for a single customer within a network) on supply chain market lead time increases 

when the number of tiers and the number of suppliers increase in a supply chain (left side of Figure 

6(a) and Figure 6(b)). However, the effect of a disruption of a shared component (which is produced 

for several suppliers within a network) on supply chain market lead time increases when the number 

of tiers and the number of suppliers decrease in a supply chain (right side of Figure 6(a) and Figure 

6(b)). These results could be explained by the fact that in a supply chain, the components that are 

shared among several suppliers are mostly simple and less-complex components, e.g., standard 

parts, while the components that are produced for a single supplier are more customized and have 

a more complex design. The high number of tiers and suppliers in a supply chain implies that the 

customized components need to be produced with the collaboration of more suppliers, and if a 

disruption happens in such a network the effect on market lead time would be more. However, in 

small supply chains with a low number of tiers and suppliers, a disruption of a standard part that is 

shared among several suppliers could result in a significant effect on change in market lead time. 

Such an effect is less in complex supply chains as the delay caused by the disruption of standard 

parts could be absorbed by the long lead time of suppliers of more complex parts. Figure 6(c) on 

the left side shows that as the percentage of MTO suppliers decreases in a supply chain, the effect 

of disruption of non-shared components on supply chain market lead time increases. This result 

can be explained by the fact that a decrease in the number of MTO suppliers means an increase in 

the number of MTS suppliers and as a result, an increase in the inventory stock in the supply chain. 

A high inventory stock in a supply chain can increase vulnerability when unexpected adverse 

events happen. Figure 6(c) on the right side also shows that the effect of disruption of shared 

components on the supply chain market lead time increases as the percentage of MTO suppliers 

increases in a supply chain. This finding could be explained by the fact that in a supply chain with 

a high percentage of MTO suppliers, most of the components, including shared components, are 

produced based on customer orders. When a disruption happens in such a network, the customers 

of shared components should wait in a queue to receive their orders, and this affects market lead 

time. The higher the percentage of MTO suppliers in a network, the longer the queue for receiving 

the orders after the disruption, and thus, the effect on market lead time will be larger.   

Figure 7(a) and Figure 7(b) show the interaction effects of the model parameters for the 

performance metric 'Time to detect disruption'. The figures show that the network-related 

parameter 'Percentage of MTO suppliers' has significant interaction effects with two disruption-

related parameters, 'Disrupted tier' and 'Post-disruption capacity'. Figure 7(a) shows that as the 

percentage of MTO suppliers increases in a supply chain, which implies a decrease in the number 

of MTS suppliers, the effect of major loss of capacity (medium or small post-disruption capacity) 

on the time to detect disruption increases. This could be explained by the fact that the higher the 

percentage of MTO suppliers, the lower the inventory stock levels in a supply chain. High inventory 

stocks could delay the identification of a disruption. However, when there are no inventory stocks, 
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a disruption might be recognized immediately. Figure 7(b) shows that as the percentage of MTO 

suppliers increases in a supply chain, the time to detect disruption in different tiers of a supply 

chain also increases. This could be explained by the fact that a higher number of MTO suppliers in 

a supply chain results in a longer market lead time of the final product, and therefore the disruption 

might not be recognized immediately in such supply chains. The figure shows a different pattern 

for disruptions in tier 1, which could be explained by the direct relation of the suppliers in tier 1 

with the ATO focal company that results in the immediate detection of any disruption in tier 1.  

Figure 8(a), Figure 8(b), and Figure 8(c) show the interaction effects of the parameters for the 

performance metric 'Total recovery time'. The figures show that the disruption-related parameter 

'Disrupted component' has significant interaction effects with two network-related parameters, 

'Number of Suppliers' and 'Percentage of MTO suppliers'. Also, the disruption-related parameter 

'Post-disruption capacity' has a significant interaction effect with the network-related parameter 

'Percentage of MTO suppliers'. Figure 8(a) on the left side shows that the effect of a disruption of 

a non-shared component on the supply chain's total recovery time increases as the number of 

suppliers increases in a supply chain. However, the effect of a disruption of a shared component 

on supply chain recovery time increases when the number of suppliers decreases in a supply chain 

(right side of Figure 8(a)). These results could be explained by the fact that a high number of 

suppliers in a supply chain implies that the customized components need to be produced with the 

collaboration of more suppliers and if a disruption happens in such a network the effect on recovery 

time would be larger. However, in small supply chains with a low number of tiers and suppliers, a 

disruption of a standard part that is shared among several suppliers would result in a significant 

effect on recovery time. Such an effect is lower in complex supply chains as the delay caused by 

the disruption of standard parts could be absorbed by the long lead time of suppliers of more 

complex parts, and therefore the effect on recovery time would be less. Figure 8(c) shows that as 

the percentage of MTO suppliers increases in a supply chain, which implies a decrease in the 

number of MTS suppliers, the effect of a major loss of capacity (medium or small post-disruption 

capacity) on recovery time increases. This could be explained by the fact that a higher percentage 

of MTO suppliers means a lower number of inventory stock in a supply chain. The availability of 

inventory stock would accelerate the recovery from a disruption. However, when there is no 

inventory, the recovery time would increase. 

  

(a) (b) 
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Figure 6. Plots of the SHAP interaction values for change in market lead time. 

 

  

(a) (b) 

Figure 7. Plots of the SHAP interaction values for time to detect disruption. 

 

  

(a) (b) 
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                           (c) 

Figure 8. Plots of the SHAP interaction values for total recovery time. 

6.4.1.3 Scenario discovery using PRIM for identifying important combinations of 

uncertainties 

To get a more in-depth insight into how combinations of uncertainties affect the outcomes of 

interest, we apply scenario discovery (Bryant & Lempert, 2010). In scenario discovery, the 

computational experiments are subsequently analyzed with statistical machine learning algorithms 

to identify combinations of key factors that identify those situations where the objectives are met 

or are not met. For instance, in our supply chain case we are interested in identifying combinations 

of factors that cause an unacceptable supply chain performance in terms of high values for the 

change in market lead time. We are also interested in identifying combinations of factors that cause 

an acceptable supply chain performance in terms of a short time to detect disruption and a short 

recovery time. The scenario discovery method we use is the Patient Rule Induction Method (PRIM) 

(Friedman & Fisher, 1999). PRIM can be applied to identify combinations of values of input 

parameters of a model that result in specific outcomes of the model. To find these combinations, 

PRIM searches the entire dataset for patterns or trends and interprets them. It looks for a set of 

subspaces of the input space where the values of the output variables are noticeably different from 

their average values. PRIM describes such subspaces with 'boxes' in the input space. Several 

alternative boxes are generated by the PRIM algorithm in which the relation between input 

variables and outcomes of interest are labeled with a coverage (proportion of the total number of 

cases of interest), density (the fraction of the cases of interest with respect to the total number of 

cases in a box), and the number of restricted dimensions (limited set of dimensions of the model 

input space). When PRIM finishes the generation of the boxes, the decision maker can select a box 

for interpretation of the result based on a tradeoff between coverage, density, and restricted 

dimensions (Kwakkel, Auping, & Pruyt, 2013). For example, suppose a decision maker selects a 

box from the PRIM analysis with 80% coverage and 70% density to understand the relationship 

between input variables and the outcome of interest of a system. It means that the selected box 

describes the system based on 80 percent of the entire dataset and 70 percent of the outcome of 

interest. The high coverage value of a box ensures that the selected box is a reliable representative 

of the entire dataset. The high density value of a box ensures that the results interpreted by the box 

are statistically significant. In the rest of this section, we discuss the result of PRIM analysis for 

this research.  
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The first step in applying PRIM is to specify the result of interest. For example, suppose that for 

'Change in market lead time' we are interested in values higher than 2500 time units, for 'Time to 

detect disruption' we are interested in values less than 3000 time units, and for 'Total recovery time' 

we are interested in values less than 1000 time units. Figure 9, Figure 10, and Figure 11 show the 

results of the PRIM analysis for change in market lead time, time to detect disruption, and total 

recovery time, respectively. Figures 9(a), 10(a), and 11(a) show the tradeoffs between coverage, 

density, and the number of restricted dimensions for each of the three performance measures. The 

colored dots represent PRIM boxes with different coverage, density, and restricted dimensions. We 

are typically interested in a scenario with high coverage and density. Figure 9(b), Figure 10(b), and 

Figure 11(b) represent the result of a selected PRIM box for each of the performance metrics. The 

top right corner of the figures shows the coverage and density of the selected boxes. The input 

variables in selected boxes are represented on the left side of the figures, where the statistical 

significance (p-value) of the value range of an input variable is represented between brackets. 

Figure 9(b) shows that with a coverage of 53% and a density of 86% (box 10 in Figure 9(a)), supply 

chains with three or four tiers, where a supplier in each tier has four suppliers in which up to 70 

percent of those suppliers are faraway, are vulnerable to a change in the market lead time of more 

than 3000 time unit. In other words, 53 percent of the poor supply chain performance in terms of 

change in market lead time results from supply chain networks with three or four tiers where a 

supplier in each tier has four suppliers, in which up to 70 percent of those suppliers are faraway. 

Figure 10(b) shows that with a coverage of 58% and a density of 96% (box 3 in Figure 10(a)), 

supply chains with fewer than three tiers where a supplier in each tier has fewer than three suppliers, 

perform the best in terms of time to detect disruption. Figure 11(b) shows that with a coverage of 

46% and a density of 94% (box 4 in Figure 11(a)), supply chains with two tiers or one tier can have 

acceptable performance in terms of total recovery time of less than 1000 time units, over a range 

where suppliers in each tier assemble components in between 20 and 90 percent of the cases. 

 

 
 

(a) (b) 

Figure 9. Result of the PRIM analysis for change in market lead time with tradeoff between 

coverage and density (left) and the selected box information (right). 
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(a) (b) 

Figure 10. Result of the PRIM analysis for time to detect disruption with tradeoff between 

coverage and density (left) and the selected box information (right). 

 

 

(a) (b) 

Figure 11. Result of the PRIM analysis for total recovery time with tradeoff between 

coverage and density (left) and the selected box information (right). 

6.4.2 Results of directed search 

Besides using open exploration, the vulnerability analysis can be complemented by a directed 

search. Directed search relies on optimization techniques to answer questions such as: what is the 

best that could happen or what is the worst that could happen? In this research, we use a directed 

search to answer the question of which supply chain network configuration has the worst 

performance under a worst-case disruption scenario. Answering such a question provides insight 

into the most vulnerable network configurations in need of improved resilience.  Here, we use an 

optimization algorithm to search over the network-related parameters for a reference scenario for 

disruption in which all disruption-related parameters take their extreme values (worst-case 

scenario). We formulate the multi-objective optimization problem as follows: 

Decision variables: 
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• Number of tiers 

• Number of suppliers of a supplier in each tier 

• Percentage of MTO suppliers in each tier 

• Percentage of assembled components in each tier 

• Percentage of faraway suppliers in each tier 

• Number of shared suppliers in each tier 

Objectives (note that we are interested in the worst case)  

• Maximize change in market lead time 

• Maximize time to detect disruption 

• Maximize total recovery time   

Solving the above optimization problem gives us information about those combinations of 

network variables (leading to different supply chain structures in this research) that have a poor 

performance in case of disruption. Knowing the network variables that lead to poor performance 

helps supply chain decision makers to avoid or redesign their supply chain as part of their risk 

management practices.  To solve this multi-objective optimization problem, we used ε-NSGA2, a 

state-of-the-art genetic algorithm for solving multi-objective optimization problems (Reed, Kollat, 

& Devireddy, 2007). In order to make sure that the algorithm has converged to the optimal 

solutions, the number of functional evaluations (nfe) should be around 10,000. Due to limited 

available computer power, we only used 100 nfe to show the applicability of the approach. The 

Pareto front solution sets are shown in Table 3. The results include the values of six network-related 

parameters as model decision variables and three supply chain performance metrics as model 

objectives. Each result shows a combination of values for the network-related parameters that 

represent a supply chain structure (network type) with poor performance in case of a massive 

disruption. We label each of the 11 optimization results in the table to make it easier to refer to 

them in the discussion section. For example, we label the solution in the first row of Table 3 

"network Type 1", which indicates a supply chain structure with 4 tiers, 3 suppliers of a supplier, 

40% MTO suppliers in each tier, 60% assembled components in each tier, 80% faraway suppliers 

in each tier, and 1 shared supplier in each tier.  

Figure 12 also shows the values of the objective functions of the problem from the optimization 

using a parallel coordinates plot. These plots are useful for visualizing data with three dimensions 

or more. Each vertical line represents a dimension in the data set. In our case, we have three vertical 

lines, each representing a supply chain performance metric. In a parallel coordinates plot, a data 

point with several dimensions is illustrated by a line connecting the vertical lines. In our case, a 

data point consists of three objective values from the optimization solution (the three last columns 

in Table 3). We have 11 data points in total. These data points are illustrated by colored lines in 

Figure 12. The worst solution is the straight line at the top of Figure 12, where all three performance 
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metrics have their highest values. However, Figure 12 shows that each solution indicates a tradeoff 

between the three objective functions. This means the solutions are non-dominated and there is not 

a solution with superior performance for all three objectives. Therefore, decision makers need to 

make a tradeoff between the solutions based on their preference for one of the performance 

indicators. For example, in our sample, the results of the optimization in Table 3 show that supply 

chain designs similar to network types 9, 4, and 3 should be avoided by decision makers who 

consider a change in market lead time as the main resilience-related performance metric of their 

supply chain. Similarly, supply chain designs similar to network types 11, 7, and 2 should be 

avoided by decision makers who consider time to detect disruption as the main resilience-related 

performance metric of their supply chain.  

 

Table 3. Optimization results for worst-case scenario 

 Decision variables Objectives 

 Numbe

r of 

tiers 

Number of 
suppliers 

of a 

supplier in 
each tier 

Percentage 

of MTO 
suppliers in 

each tier 

Percentage of 

assembled 
components in 

each tier 

Percentage 

of faraway 
suppliers in 

each tier 

Number 
of shared 

suppliers 

in each 
tier 

Change in 

market 

lead time 

Time to 

detect 

disruption 

Total 

recovery 

time 

Network 

type 1 
4 3 40 60 80 1 6444 4600 27327 

Network 
type 2 

2 2 60 30 90 0 5894 4633 26894 

Network 

type 3 
4 4 60 60 30 1 6924 4506 30285 

Network 
type 4 

4 3 90 80 80 1 6995 4504 30842 

Network 

type 5 
3 2 40 60 90 1 6392 4603 19310 

Network 
type 6 

4 2 80 70 50 2 6836 4602 26678 

Network 

type 7 
2 3 30 50 50 1 5887 4635 26891 

Network 
type 8 

3 4 50 20 30 1 6692 4529 30281 

Network 

type 9 
3 3 40 80 30 0 7094 4298 25949 

Network 
type 10 

4 3 20 60 60 2 5877 4601 29077 

Network 

type 11 
2 4 30 50 70 0 5807 4644 26347 
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Figure 12. Parallel coordinates plot showing tradeoffs between optimization solutions. 

6.5. Discussion and managerial insights 

This paper proposes supply chain ensemble modeling as a data-driven model-based decision-

making approach for supporting stress testing of a supply chain to improve its resilience, 

considering the lack of access to precise data about the structure of a complex supply chain as well 

as the unpredictability of disruptive events. Many recent supply chain disruptions, such as the 

COVID-19 pandemic or the war in the Ukraine, highlight that to ensure continuity of their business 

in case of adverse events, supply chain managers need to be prepared by identifying vulnerability 

sources of their supply chain and implementing proper disruption management actions. The 

literature includes a variety of model-based approaches, including simulation and optimization 

models, for tackling the problem of supply chain stress testing to potentially improve resilience. 

Earlier research typically points out that the quality of model-based approaches for supporting 

supply chain resilience relies on the availability of data and information. However, the 

unpredictable nature of disruptive events and their low frequency makes historical-based 

estimation of a disruption and recovering from it challenging. In light of this challenge, there is a 

growing research field in data-driven model-based decision-making approaches for supporting 

supply chain resilience improvement. These approaches rely on supply chain data analytic methods 

for assessing the vulnerability of a supply chain and improving its resilience. One of the main 

challenges for conducting reliable data-driven stress testing of a supply chain is the unavailability 

of complete and high-quality data about disruptions and about the entire supply chain network 

structure. Disruptions are mostly deeply uncertain events that can hardly be predicted based on 

historical data. In addition, globalization and the complexity of today's supply chains, which result 

in an expansion of network boundaries and an increasing number of nodes and links in a network, 

make it hard for decision makers to capture precise and aggregated information about the many 

actors of a supply chain and their interactions, especially actors beyond the second or third tier of 

the network. This research contributes to the literature of data-driven model-based decision-making 

approaches for supply chain stress testing by studying supply chain ensemble modeling. Ensemble 



114                                                                               Model-based Risk Analysis of Supply Chains for Supporting Resilience 

 

modeling involves exploring the range of possible outcomes by running a large set of simulations 

that differ in assumptions and parameter values. Ensemble modeling has proven to be a promising 

approach to deal with the difficulty of making predictions in highly uncertain complex systems 

such as weather forecasts. In this research, we demonstrate how supply chain ensemble modeling 

can contribute to the theory and practice of supply chain stress testing and resilience.    

In supply chain ensemble modeling, a large ensemble of plausible supply chain models and 

disruption scenarios are generated and explored using computational experiments for reasoning 

about the vulnerabilities of a supply chain, which is a first step in making supply chains more 

resilient. This paper contributes to the literature on model-based supply chain stress testing by 

considering the uncertainty regarding the structure of a supply chain in supply chain stress testing, 

which is rooted in a lack of access to precise and aggregated information about the complete set of 

supply chain actors. Where most of the studies in the literature consider developing a single model 

for assessing the impact of disruptions on supply chain performance, this paper considers an 

ensemble of plausible models in order to incorporate uncertainties in the dynamics of the supply 

chain network as well as unavailability of information about the structure of complex supply 

chains. For generating the ensemble of supply chain structures, we characterize a supply chain with 

several network-related parameters, i.e., number of tiers, number of suppliers, number of shared 

suppliers, percentage of assembled components, percentage of faraway suppliers, and percentage 

of MTO suppliers. Different combinations of these network parameters generate different supply 

chain structures. These structures are generated automatically by a Python-based network 

generator, and subsequently used in a data-driven approach to instantiate the corresponding 

simulation models. This way, we contribute to the literature of supply chain modeling and 

simulation by allowing a modeler to create, run, and adjust a variety of supply chain simulation 

models without programming. Our approach allows simulation-based analysis of a supply chain 

even when there is a lack of information about the supply chain structure to build a reliable 

simulation model. Our approach also contributes to the literature on supply chain disruption 

management by enabling disruption modeling where an estimation of disruption attributes, such as 

the likelihood of occurrence, magnitude, and propagation, is largely unknown. Therefore, we 

propose a consequence-based risk analysis approach for modeling disruptions. In contrast with 

conventional risk modeling approaches that deal with identifying the root cause of a risk and 

determining its characteristics, such as probability of occurrence and intensity, the consequence-

based risk approach focuses on analyzing the consequences of potential risks associated with a 

supply chain regardless of the root cause of the risk. For example, no matter whether a strike or 

congestion in a port disturbs a waterborne transportation activity within the supply chain, the focus 

is on answering the question of what will happen if that transport activity is disrupted. To explore 

the variety of disruption scenarios, we characterize a risk consequence with several parameters, 

including disrupted tier, disrupted component, disrupted element, disrupted region, disruption 

duration, post-disruption capacity, and recovery rate of the disrupted element. Different 

combinations of these disruption parameters generate different disruption scenarios. We also look 

at scenarios of compound risks rather than only focusing on single points of failure, which are 

mostly addressed in model-based stress testing approaches in the literature. Considering only the 

impact of individual disruptions is misleading because a combination of unexpected events, or an 

event that impacts multiple actors in the supply chain at the same time, may have diverse and 

complicated effects that should be considered in resilience practices. To generate ensemble supply 

chain structures and disruption scenarios, we perform exploratory modeling: a model-based 

technique that can systematically explore a large ensemble of plausible scenarios. The application 
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of exploratory modeling, which facilitates the generation of thousands of what-if scenarios about 

supply chain structures and disruptions and their analysis, is another contribution of this research 

to the literature on scenario-based supply chain stress testing approaches. The literature on 

scenario-based approaches for supply chain stress testing usually covers only a limited set of 

scenarios for representing future risks. These selected scenarios are typical disruptions that could 

happen (or already did happen) in critical elements of a supply chain. However, it is insufficient to 

rely on human reasoning for selecting possible disruption scenarios, given the complexity of 

today's supply chains and the unpredictable nature of disruptive events. Another contribution of 

our research relates to considering the a posteriori approach for treating uncertainty. Probability-

based approaches for stress testing of a supply chain mostly adopt an a priori approach for treating 

uncertainty, which implies that for making good decisions for improving a supply chain's 

resilience, all information about uncertainties should be present before performing the stress 

testing. However, our approach adopts an a posteriori analysis, which explores the space of 

plausible assumptions about uncertainties to increase the reliability of stress testing across a large 

range of possible futures of a supply chain. In our approach, we don't give priority to any of the 

scenarios to minimize the risk of making a wrong judgment, which is common in ex-ante stress 

testing of a complex supply chain in an unpredictable business environment.  

Supply chain ensemble modeling provides supply chain decision makers with an approach to tackle 

the challenges of stress testing their supply chain in practice. While the complexity of today's 

supply chains makes it hard for supply chain decision makers to completely understand the 

structure of their supply chain and model it, the ensemble modeling approach still allows decision 

makers to investigate vulnerabilities of their supply chain by exploring a variety of supply chain 

structures, which are generated based on different input parameters and assumptions about a supply 

chain network. Ensemble modeling allows supply chain decision makers to investigate the 

robustness of different strategies for managing vulnerabilities of the supply chain by testing them 

under a variety of supply chain structures and under many disruption scenarios (the aspect of 

ensemble modeling of possible interventions is out of the scope of this paper).  The ensemble 

modeling approach proposed in this research allows supply chain decision makers to deal with the 

unpredictability of disruptive risks. While a big challenge for a decision maker in supply chain 

stress testing is to define a range of potential disruption scenarios that can affect supply chain 

functionality, ensemble modeling allows a systematic exploration of the disruption scenarios, 

which helps decision makers to investigate a wide range of scenarios that might have remained 

uninvestigated with human reasoning.  

The used exploratory modeling approach allows the identification of extreme events that have a 

huge impact on supply chain performance and therefore must be considered by decision makers in 

risk management practices. By simulating low-probability, high-impact events, exploratory 

modeling helps a decision maker to identify vulnerabilities, assess potential risks, and develop 

robust strategies for mitigating adverse consequences. The consequence-based risk analysis 

proposed in this research allows a decision maker to investigate potential consequences of 

disruptions in the supply chain network, rather than searching for the possible causes of a disruption 

and their frequency of occurrence and magnitude, which are often impossible to predict for an 

adverse event. The modular simulation modeling approach we developed in this research allows 

supply chain decision makers to model any real-world supply chain without facing programming 

complexities. Analyzing the result of exploratory modeling with data mining approaches can 

provide supply chain decision-makers with insights about the vulnerability of their supply chain. 
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The results from the feature scoring analysis help supply chain decision makers draw conclusions 

about the most influential network factors and disruption factors that contribute to the vulnerability 

of their supply chain. Decision makers can focus on those parameters in developing proper 

resilience improvement actions and leave out the factors that do not contribute much to the 

vulnerability of their supply chain.  While feature score analysis only looks at the influence of 

individual network-related or disruption-related factors on supply chain vulnerability, the SHAP 

analysis can provide decision makers with insights into interaction effects between a network-

related and a disruption-related parameter. Such results can help decision makers to identify which 

disruption-related factors can be mitigated by specific network configurations. For example, one 

implication of SHAP results of the supply chain sample in this research is that in order to improve 

resilience in terms of change in market lead time in supply chains with a high number of tiers and 

suppliers, the vulnerability of non-shared components should be decreased, while in supply chains 

with a high percentage of MTO suppliers, more attention should be given to suppliers of shared 

components.  The results from the PRIM analysis help supply chain decision makers to identify 

the main network-related parameters that jointly contribute to desired or undesired supply chain 

performance across an ensemble of disruption scenarios. For example, in our supply chain sample, 

the PRIM analysis shows that 53 percent of the poor supply chain performance in terms of change 

in market lead time results from supply chain networks with three or four tiers where a supplier in 

each tier has a high number of suppliers, where up to 70 percent of those suppliers are faraway. 

These kinds of results could help decision makers design or adapt a specific supply chain network 

that supports their preference for resilient performance. The results from the optimization can 

provide decision makers with insights about network structures with best/worst performance under 

a specific scenario of disruption. It helps decision makers to identify the optimized configuration 

of the supply chain network that satisfies their objectives in terms of resilience. Supply chain 

decision makers can adapt the structure of their supply chains in such a way that they steer away 

from the more vulnerable network configurations and incorporate characteristics of the less 

vulnerable configurations.   

The supply chain ensemble modeling approach proposed in this research can contribute to several 

emerging concepts in supply chain management, including viable supply chains, reconfigurable 

supply chains, and digital supply chain twins (Ivanov, 2022; Ivanov & Dolgui, 2020; Dolgui, 

Ivanov, & Sokolv, 2020, Ivanov & Dolgui, 2021). Ensemble modeling can contribute to improving 

the viability of a supply chain, which is defined as the ability of a supply chain to survive in the 

changing business environment by replanning and redesigning its structure. Ensemble modeling 

allows for assessing the robustness and flexibility of a supply chain by exploring as many future 

scenarios as possible, where the scenarios are generated systematically through exploratory 

modeling, including unexpected scenarios that may be overlooked in conventional best-estimation 

scenario definition approaches. Ensemble modeling can contribute to the viability of intertwined 

supply chains by taking into account uncertainties related to the structure of such deeply 

interconnected and interdependent supply chains. Ensemble modeling can also help in the design 

of reconfigurable supply chains by allowing decision makers to explore an ensemble of 

configurations of a supply chain and the way they respond under different scenarios. Finally, 

ensemble modeling can support the concept of digital supply chain twins. A digital supply chain 

twin, a computerized digital supply chain model for representing the supply chain state in real time, 

is proposed by researchers to support the visibility of a supply chain to improve its resilience. 

Ensemble modeling could help to include missing information due to network complexity in digital 

supply chain twins.  
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Using all available actual information about the supply chain is crucial for the successful 

implementation of supply chain ensemble modeling in practice. A supply chain decision maker 

needs to collect relevant data from several sources such as ERP records, inventory management 

records, supplier records, transportation records, internal reports, and surveys and interviews. For 

the information that cannot be obtained, the network generator will generate plausible assumptions. 

As we applied an exploratory modeling approach for the generation of supply chain network 

structures and disruption scenarios, we had several challenges regarding scenario generation, 

complexity reduction, and the robustness of scenarios. For scenario generation, we characterized 

both the supply chain structure and the disruption with several parameters. By combining those 

parameters, a variety of supply chain networks and disruption scenarios are generated. By 

exploring the parameters' uncertainty space, we ensure the generation of a comprehensive set of 

scenarios, including typically overlooked scenarios and rare events. The network generator 

developed in this research generates a variety of network scenarios based on the combination of 

different values of the network parameters. Some combinations of the values of network parameters 

generate infeasible network structures. These infeasible network structures are excluded 

automatically from the analysis by the network generator. To avoid a combinatorial explosion, we 

had to make a tradeoff between interpretability and the number of uncertain parameters in the 

scenario generation. We limited the number of network-related and disruption-related parameters 

to avoid a high dimensional uncertainty space, which would make the interpretation of the results 

more difficult. We checked the robustness of the generated set of scenarios by applying a sensitivity 

analysis to several key model assumptions. Another check we carried out was that the generated 

scenarios consider both optimistic and pessimistic scenarios regarding the future. We refined the 

process of scenario generation in an iterative way based on the feedback we got from the robustness 

check.  

6.6. Conclusions 

This paper tackles the problem of model-based stress testing of a supply chain where there is 

limited access to reliable information about the supply chain structure and about future disruptive 

events. We proposed an approach using supply chain ensemble modeling supported by exploratory 

modeling, the latter being a method for supporting decision making under deep uncertainty with 

an emphasis on finding decisions that have satisfactory outcomes under as many scenarios as 

possible. In our approach, rather than estimating the probability distribution of uncertain 

parameters of the model, which is common in conventional supply chain stress-testing approaches, 

we explore a wide set of scenarios that cover uncertainties in several network-related and 

disruption-related parameters to generate a database of outcomes of supply chain performance. 

This database can subsequently be analyzed to get insights into systematic patterns of behavior of 

supply chain networks across the scenarios. 

We faced several limitations in conducting this research. The first one is related to the 

computational limitations that cause very long run times for the optimization algorithm to 

converge, due to the fact that each functional evaluation is based on several replications of running 

the supply chain simulation model. Therefore, we used only 100 functional evaluations for the 

optimization algorithm to show the feasibility of the implementation of directed search. More 

computer power and possibly a more efficient implementation of the data-driven simulation model 
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are needed to ensure that the optimization algorithm converges to the best solutions. A second 

limitation of this study is the generation of disruption scenarios with equal probability in the 

exploratory modeling. In practice, a decision maker might prefer to give priority to disruption 

scenarios with a higher probability. There is an emerging research direction in the literature on 

exploratory modeling that focuses on the a posteriori assignment of likelihood to exploratory 

results. This can be a direction of future work for this research. A third limitation of this research 

is that our supply chain model is not as complex as a real word supply chain. We explore the 

importance of six network-related and seven disruption-related parameters in the resilience of 

supply chain networks, and we study a single assemble-to-order end product. One direction of 

research can be the identification of other drivers of supply chain resilience. We also did not yet 

include mitigation strategies to cope with disruptions. A final direction of further research is to 

explore the effect of different mitigation strategies on the resilience of different supply chain 

structures. By using the mitigation strategies as deeply uncertain variables, the effectiveness and 

robustness of the mitigation strategies can be analyzed by the same techniques that were introduced 

in this paper.  
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7 Conclusions and recommendations 

In this chapter, we synthesize the findings for each research question introduced in Chapter 1 and 

then answer the main research question of this thesis. Next, we elaborate on the scientific reflection 

of our approach and the implications of this research for practice.  

7.1 Conclusions 

After reviewing the limitations of the current model-based approaches for supporting supply chain 

resilience, we posed the main research question of this thesis in Chapter 1 as follows: 

What is an adequate approach for model-based risk analysis of a supply chain to support its 

resilience? 

To answer the above question, we formulated three sub-questions. These questions are revisited 

below.  

Question 1: How can consequence-based risk analysis overcome the challenges of conventional 

risk analysis approaches for improving supply chain resilience?   

 

This research question was answered in Chapter 4 of this dissertation. Drawing on the limitations 

of model-based approaches for supporting supply chain resilience, which mainly arise from the 

unpredictable nature of disruptive risks, we proposed the concept of consequence-based risk 

analysis of a supply chain in which, rather than considering the root cause of a disruption and its 

characteristics such as frequency of occurrence and magnitude, one focuses on consequences of 

plausible disruptions at elements within the supply chain. A big challenge for performing an 
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efficient consequence-based risk analysis of a supply chain is analyzing a comprehensive set of 

future disruption scenarios that the supply chain may encounter. Also, resilience practices for 

overcoming supply chain disruptions must be effective under as many disruption scenarios in the 

future as possible. To answer this research question, we adopted robust decision making (RDM), a 

common approach for addressing decision making under deep uncertainty, and we formulated the 

problem under study with the XLRM framework. We defined a set of characteristics for disruption 

and considered them as deeply uncertain parameters of the problem. These parameters include 

disruption location (region of disruption, tier of disruption, disrupted component), disrupted 

element, disruption duration, post-disruption capacity, and recovery rate of the disrupted element. 

We also identified some characteristics of resilience practices as policy levers of the problem. We 

defined a number of resilience-related measures for measuring the performance of the supply chain 

under disruption. We modeled the relations within the supply chain as well as the behavior of the 

supply chain under disruption. Then, we generated a database of a wide set of plausible disruption 

scenarios and their impact on performance measures using exploratory modeling. Then, by 

analyzing the result, we got information about the vulnerability of a supply chain as well as robust 

resilience practices that work fine under a broad set of disruption scenarios. We concluded that 

RDM helps improve the resilience of complex supply chains that suffer from high uncertainty 

regarding future disruptions. Our approach enables the identification of sources of vulnerabilities 

that are hard to detect by human reasoning, such as vulnerabilities beyond the first or second tier 

of the supply chain network. The proposed approach helps to assess the robustness of different 

resilience responses to these vulnerabilities. 

 

Question 2: What operational aspects affect the resilience of a supply chain structure? 

This research question was addressed in Chapter 5 of this dissertation. Drawing on the need for 

considering supply chain structure in assessing and improving supply chain resilience, we 

identified limitations in the current approaches. These approaches mostly consider a graphical 

perspective to the structure of a supply chain and ignore operational aspects in measuring 

resilience. To address this, we proposed a new approach that is capable of  comparing the resilience 

of several supply chain structures that differ in three operational aspects: product structure, 

sourcing strategy, and production strategy. Using exploratory modeling, we exposed different 

network structures to various disruption scenarios to derive key operational characteristics that 

affect a supply chain's resilience. Our analysis supports our expectation that deeper, wider, and 

more geographically dispersed network topologies are more vulnerable to disruption than shallow, 

narrow, and dense ones. We also concluded that a high percentage of suppliers with an MTS 

strategy in a network results in late disruption detection. In contrast, a high number of shared 

suppliers results in fast disruption detection. Our results also align with the fact that the time to 

return to business as usual decreases as a supply chain network's complexity decreases in depth, 

width, and dispersion. In this research, we showed that a change in the number of tiers of a supply 

chain network has the highest impact on the vulnerability of market lead time. Additionally, the 
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percentage of MTO suppliers versus MTS suppliers in a network plays the most critical role in total 

recovery time after disruption. The time to detect disruption is also affected by the number of 

suppliers in each tier. 

 

Question 3: 3. How to do model-based stress testing of a supply chain despite a lack of precise 

information about the supply chain structure? 

This research question was addressed in chapter 6 of this dissertation. Because of the lack of 

reliable information about the structure of a complex supply chain, and considering the structural 

dynamics of a complex supply chain over time, we proposed ensemble modeling of a supply chain 

to answer the third research question. In this approach, rather than considering a single structure 

for a supply chain, an ensemble of supply chain structures is generated and analyzed to determine 

the vulnerability sources in need of resilience practices. For the analysis, we adopted the 

exploratory modeling approach in which a large set of supply chain models and disruption 

scenarios are generated by parametrizing a supply chain and disruptive risks and sampling over 

them using computational experiments. We showed that by using the proposed approach, decision-

makers could get insights into the resilience of the supply chain networks that fit their supply chains 

the most without having access to complete information on the supply chain structure and its 

parameters. The approach helps to address structural uncertainties associated with complex supply 

chains.  

7.2 Scientific reflections 

The research questions that we address in this research all have roots in the complexity of supply 

chains and the unpredictability of adverse events that make access to data and information for 

improving supply chain resilience challenging. This research contributes to the literature on supply 

chain risk management by introducing the concept of consequence-based risk analysis, which 

focuses on assessing the consequences of plausible risks for the disruption of elements along the 

supply chain rather than focusing on the root cause of these risks. Consequence-based risk analysis 

helps identify the most critical vulnerabilities in need of resilience investment. This approach 

allows for adequate supply chain risk management despite incomplete information on the risks in 

terms of their likelihood and frequency. To address the challenge of implementing consequence-

based risk analysis in complex supply chains, this research treated the problem of supply chain 

resilience as a problem of decision making under deep uncertainty (DMDU). Specifically, we 

applied exploratory modeling, which deals with using models to explore the future rather than 

predict it. Although exploratory modeling has successful applications in other disciplines, 

specifically climate adaptation, supply chain risk management literature has not yet benefited from 

this approach. This research showed that supply chain resilience can be supported by exploratory 

modeling approach by enabling supply chain disruption management without knowing precise 

values of the disruption attributes such as the probability of occurrence, magnitude, and 
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propagation, as well as the supply chain structure. Because uncertainties are inherent aspects of 

many supply chain processes, more research can be done to explore how other supply chain 

management problems, such as strategic, tactical, and operational planning, can be addressed by 

an exploratory modeling approach. For example, exploratory modeling can help supply chain 

decision makers explore the impact of a wide range of possible futures, such as economic 

fluctuations or market dynamics, on strategic decisions, such as network design or facility 

locations. This allows the identification of the strategies that are robust across many futures. 

Regarding tactical planning, exploratory modeling allows exploration among different inventory 

policies or supply chain configurations under various scenarios about demand fluctuations or 

supply disruptions. Exploratory modeling also allows exploration of daily operations of the supply 

chain under a variety of situations, such as machine failures or unexpected transportation delays.   

  

Recent supply chain disruption cases due to unlikely events such as a pandemic and geopolitical 

tensions show that considering deep uncertainty in supply chain risk management practices is 

crucial nowadays for a business's success. The applicability of other DMDU approaches to supply 

chain management problems can be explored in future studies. Interested readers can use Kwakkel 

and Hassnoot (2019), in which the authors review various approaches and tools for supporting 

decision making under deep uncertainty.  

 

We developed a supply chain simulation model to explore disruptive events' impact on supply 

chain performance and evaluated different resilience practices. To this end, we adopted a modular 

modeling approach in which pre-built model components were developed to generate different 

simulation models automatically by assembling different configurations of model components. 

This approach can reduce the modeling complexity, and it enables the simulation model's 

scalability from small to significant size supply chain networks. For the simulation experiments, 

we adopted the discrete-event simulation formalism to capture interactions of technical elements 

of the supply chain and to define the supply chain processes and queues. Since several resilience 

practices are concerned with the behavior of the actors within a supply chain, such as coordination, 

negotiation, and information sharing, one research direction is to incorporate the social interaction 

of the supply chain actors into the supply chain simulation model. This can be done with an agent-

based modeling approach. variety of social interactions within a supply chain, such as supplier-

buyer communication, collaboration on forecasting, or real-time data sharing, can be nicely 

modeled in the agent-based simulation formalism.  

 

For modeling supply chain behavior, we tried to capture the complexities of a real-world supply 

chain as much as possible. Of course, considering every detail of supply chain behavior is neither 

possible nor value-adding. So, we made several simplification assumptions in the modeling process 

to focus on the main scope of our study. For example, since this research focuses more on the 

stress-testing of a supply chain to identify vulnerability sources, we model mitigation strategies 

against disruption at a high level where a mitigation strategy is modeled by fulfilling the disrupted 

element within a given time and cost, either with a backup capacity, a redundant capacity, or 
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waiting for the repair of the disrupted capacity. A research direction is to explore the efficiency of 

different mitigation strategies by more detailed modeling of the mitigation actions. For example, 

the impact of having multiple suppliers with different reliability levels and the costs associated 

with switching between them can be explored in future research. Moreover, the availability of 

alternative transportation modes and the costs and delays associated with these alternatives can be 

explored in response to disruptions.  

While we conducted extensive sensitivity analysis and scenario testing to ensure the robustness 

and validity of our model, a direction for future research could be comparing our model with 

analytical models to understand the alignment between the simulation outcomes and theoretical 

expectations, thereby enhancing the overall validity of our model. 

To demonstrate and test the implementation of the approach, we used a stylized supply chain using 

the components of the developed simulation model. The stylized supply chain has enough 

complexity to represent and test several aspects of our approach. However, applying the approach 

to a real-world supply chain can reveal new insights about the applicability and results of our 

approach. 

In the exploratory modeling approach that we used in this research, an equal probability was 

assigned to each scenario for generating disruption scenarios. Although this approach allows for 

stress-testing of a supply chain, regardless of risk information, it is always worthwhile to prioritize 

disruption scenarios with a higher chance of occurrence. There is an emerging research direction 

in the literature of exploratory modeling with a focus on the a posteriori assignment of likelihood 

to experimental results that can also be applied to this research (Shavazipour, Kwakkel, & 

Miettinen, 2019).  

In this research, we consider several operational characteristics of a supply chain in resilience 

study, including the MTS-MTO strategy of suppliers, multi-tier supply chain networks, shared sub-

suppliers, and region-based suppliers. These characteristics are relatively unexplored aspects of 

supply chain resilience research. We also look at compound risk instead of only focusing on a 

single point of failure, as addressed mainly by other researchers. 

This research contributes to the literature on supply chain resilience by considering the structure of 

a supply chain and its uncertainties in the vulnerability assessment of a supply chain. Rather than 

focusing on graphical approaches for demonstrating the structure of a supply chain, this research 

applies a simulation approach to model the structure of a supply chain. This approach allows for 

consideration of detailed operational aspects of the supply chain in studying the resilience of its 

structure.  

This research proposes ensemble modeling of a supply chain to address the challenge of accessing 

reliable information about the structure of a supply chain due to the complexity and dynamics of 

today's supply chains. In contrast with the common approach of developing a single model for a 

stress test of a supply chain, this paper considers an ensemble of plausible models for doing so to 
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incorporate uncertainties pertaining to future dynamics of the supply chain network as well as the 

unavailability of information about the structure of complex supply chains. 

7.3 Implications for practice 

The importance of stress-testing the supply chain to identify vulnerability sources needing 

improvement is evident, especially nowadays, when supply chains experience short to long-term 

disruptions due to unpredictable events such as natural disasters, pandemics, political tensions, etc.  

Supply chain decision makers ignore disruptive risks in their planning because they believe they 

happen rarely. However, several recent supply chain disruption cases that resulted in the loss of 

reputation and market share of famous companies shed light on the fact that for a successful 

business, disruptive risks should be considered besides operational risks in supply chain planning.  

Supply chains can be made resilient enough to survive a severe disruption. However, there are 

several challenges for a supply chain to be made resilient. Below, we point out these challenges.  

- Supply chain decision makers typically ignore disruptive risks in their planning because they 

believe it is a waste of money to consider rare events that might never happen.  

- Supply chain decision makers believe efficient risk management depends on the availability of 

reliable risk information. However, such information is not available for disruptive risks 

because they are very unpredictable by their nature. 

- The complexity of today's supply chains results in the unavailability of information from supply 

chain actors, especially those highly upstream.  

- In complex supply chains with hundreds of actors spreader throughout the world, decision 

making about supply chain resilience practices becomes challenging because many 

stakeholders have several or even conflicting interests.  

- Addressing supply chain resilience in complex supply chains is a complex problem because it 

involves many decision variables; therefore, coming up with a single optimal solution is 

impossible.  

- Addressing resilience in a real-world supply chain can be challenging because of the 

complexity of developing a reliable simulation model of the supply chain to mimic it's complex 

characteristics.  

This research provides supply chain decision makers with an approach to overcome the above 

challenges as explained below:  

- A robust decision making approach toward identifying resilience practices results in identifying 

efficient strategies for the future. This approach addresses the concern of decision makers about 

the waste of developing resilience strategies that are efficient only under a limited set of 

disruption scenarios.  

- The consequence-based risk analysis approach focuses on exploring the consequences that a 

potential disruption might have on supply chain performance rather than considering the root 
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cause of the interruption. Also, the exploratory modeling approach, which focuses on exploring 

the future rather than predicting it, enables an efficient stress-testing of a supply chain toward 

improving its resilience despite a lack of information about the disruptions. These approaches 

address the concerns of decision makers about the unavailability of information for a reliable 

supply chain risk analysis.  

- Ensemble modeling of a supply chain for considering the uncertainty of the structure of the 

supply chain can address the challenge of accessing information about dispersed actors in 

complex and global supply chains.  

- Treating supply chain resilience as a decision making under deep uncertainty problem, and 

applying exploratory modeling analysis, allows several stakeholders to incorporate their 

respective interests into newly developed resilience practices. Our analysis enables decision 

makers to make tradeoffs among the solutions that fit the interests of different stakeholders 

best.  

- Finally, this research's modular simulation modeling approach helps to reduce the complexity 

of modeling real-world supply chains. 

 

References 

Kwakkel, J. H., & Haasnoot, M. (2019). Supporting DMDU: A taxonomy of approaches and tools. 

Decision making under deep uncertainty: From theory to practice, 355-374. 

Shavazipour, B., Kwakkel, J. H., & Miettinen, K. (2021). Multi-scenario multi-objective robust 

optimization under deep uncertainty: A posteriori approach. Environmental Modelling & 

Software, 144, 105134. 

 

 

 

 

 

 

 

 

 

 



130                                                                               Model-based Risk Analysis of Supply Chains for Supporting Resilience 

 

 



 

131 

Summary 

Advances in supply chains together with more turbulence in today's business environments, 

increase the vulnerability of supply chains to disruption. Various cases of supply chain 

disruptions in recent decades have revealed that besides focusing on efficiency, improving 

resilience is also crucial for a supply chain to be competitive in the marketplace. Resilience, an 

emerging topic in supply chain risk management, refers to the capability of a supply chain to 

recover quickly from a disruption by having proper risk mitigation and contingency plans. 

Various supply chain resilience frameworks have been put forward in which principles of a 

resilient supply chain as well as drivers for achieving resilience are identified qualitatively. 

Also, various quantitative methods have been developed to address different aspects of supply 

chain resilience. These methods propose models for assessing the vulnerability of a supply 

chain to disruptive risks as well as evaluating mitigation and recovery policies against 

disruption. The first step in improving supply chain resilience, or in general, improving supply 

chain risk management, is to identify and assess risks. The approaches toward assessing risk 

mostly depend on the availability of information about the disruptive risks. These approaches 

assume a known probability of occurrence of a disruptive risk and its magnitude, or the methods 

provide ways to estimate these risk parameters. Although probability‐based approaches toward 

risk modeling work fine for common supply chain disturbances or operational risks, they cannot 

deal with less frequent or unknown disruptions. The main reason for this is that information 

related to rare events can hardly be obtained, and even if the information becomes available, it 

may not be a reliable representation of the future due to the unpredictability of these kinds of 

risks. Also, probability‐based approaches usually give the same weight to both high frequency‐

low impact events and low frequency-high impact events, resulting in an underestimation of 

the losses due to the aggregation over time horizons. 

Moreover, managers typically ignore disruptive risks because they believe that the probability 

of their occurrence is very low so the risks can be neglected. Therefore, model-based 

approaches for supporting supply chain resilience should be capable of assessing the 

vulnerability of a supply chain despite unknown or incomplete information about disruptive 
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risks. In this research, we suggest a consequence-based approach toward the supply chain risk 

analysis. Instead of focusing on identifying the root cause of risk and determining its 

characteristics, such as the probability of occurrence and intensity, one concentrates on 

analyzing the negative impact of the disruption on supply chain performance. For example, no 

matter whether a strike or congestion in a port disturbs a water transportation activity within 

the supply chain, the focus is on answering the question of what will happen if that transport 

activity is disrupted. Similarly, the focus is not on understanding whether a flood, bankruptcy, 

or cyber-attack stops a supplier's functionality within the supply chain; instead, we try to answer 

what will happen if that supplier stops working. However, a big challenge in using 

consequence-based risk analysis of a supply chain is the complexity of supply chains, consisting 

of thousands of interdependent and globally distributed actors. As a result, generating a 

comprehensive set of possible disruptive events is hard. Also, developing effective disruption 

management strategies under many possible scenarios is another challenge that should be 

addressed in resilience practices.  

The way in which a disruptive event propagates through a supply chain network depends on the 

structure of the supply chain. Therefore, the vulnerability of a supply chain has a direct relation 

with the structure of the supply chain. Considering the structure of the supply chain network in 

resilience practices and analyzing supply chain disruptions at the network level is crucial. To 

compare the resilience of different supply chain network structures, researchers frequently 

adopt a graph theoretical perspective and focus on the topology of the supply chain. From this 

perspective, different network structures imply different configurations of nodes (facilities) and 

links (transport links). By exposing nodes and links to disruptions, supply chain resilience can 

be assessed. However, conceptualizing different supply chain networks based only on a 

different configuration of nodes and links disregards key operational characteristics that may 

also affect supply chain functioning and, thus, its resilience. Therefore, in comparing the 

resilience of different supply chain structures, it is worthwhile to consider the operational 

aspects of the supply chains as well.   

A successful supply chain resilience practice depends on reliable stress-testing of the supply 

chain. A reliable stress test of a supply chain depends on the availability of information about 

the supply chain structure, where relations among different actors of the supply chain are clear. 

However, the complexity and globalization of today's supply chains make it difficult for 

decision makers to access data and information, especially from actors more than a few tiers 

upstream or downstream. Also, as a dynamic system, a supply chain is confronted with changes 

in its structure and configuration over time. Here, there is a need for an approach for stress 

testing a supply chain that can deal with a lack of information about the structure of the supply 

chain.  

We started our research by conducting a literature review on model-based approaches for 

supporting supply chain resilience. This results in the development of the idea of consequence-

based risk analysis of a supply chain, which is the underpinning approach toward risk 

assessment in this research. The approach focuses on the consequence of plausible disruptions 

at elements within the supply chain rather than focusing on the root cause of disruption. A more 

extensive discussion of consequence-based risk analysis is given in chapter 2 of this 

dissertation.  
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In the next step of our research, we developed a supply chain simulation model for performing 

experiments related to this research. The main objective of the simulation model is to assess the 

impact of disruption scenarios on supply chain performance as well as evaluate the 

effectiveness of various resilience practices. To this end, we adopt a modular modeling 

approach in which pre-built and parameterizable model elements are developed so that different 

simulation models can be generated automatically from different configurations of these model 

elements. The approach using parameterized simulation elements implies that the modeler can 

create, run, and adjust the simulation model without reprogramming. This approach reduces the 

complexity of the modeling process, and it supports the scalability of the simulation model from 

small to large supply chain networks. We implemented the modular simulation model in Simio, 

a general-purpose discrete-event simulation package. There are four main model elements in 

our model: market, manufacturer, supplier, and inventory. A wide variety of supply chain 

models can be generated by instantiating different configurations of these model elements. In 

order to generate input data for the simulation, we use a Python-based network generator and 

connect it to our Simio-based simulation library. The network generator is capable of generating 

a variety of supply chain networks based on several supply chain characteristics, including the 

number of tiers, percentage of assembled components in each tier,  number of suppliers of a 

supplier in each tier, number of shared suppliers in each tier, percentage of faraway versus 

nearby suppliers in each tier and the percentage of MTO versus MTS suppliers in each tier. 

Different supply chain network topologies can be generated by choosing different values of 

these network-related variables. The supply chain networks can be randomly generated by 

sampling across different values of the network-related variables or by giving the generator 

predefined values of network variables. The generator then automatically instantiates the 

components of the simulation model as well as the input data tables for the simulation model 

based on the supply chain network topology. More elaboration on the simulation model and 

network generator is given in chapter 3 of this dissertation. 

In chapter 4 of this dissertation, we investigated how robust decision making can assist in 

consequence-based risk analysis of a supply chain. Drawing on the limitations of model-based 

approaches for supporting supply chain resilience that mainly arise from the unpredictable 

nature of disruptive risks, we proposed the concept of consequence-based risk analysis of a 

supply chain. A big challenge for performing an efficient consequence-based risk analysis of a 

supply chain is analyzing a comprehensive set of disruption scenarios that the supply chain may 

encounter in the future. Also, resilience practices for overcoming supply chain disruptions must 

be effective under as many possible future disruption scenarios as possible. To address these 

challenges, we adopted robust decision making (RDM), a common approach for addressing 

decision making under deep uncertainty. We formulated the problem within the XLRM 

framework (where X stands for external factors, L stands for policy levers, R stands for 

relationships, and M stands for performance metrics) and defined various characteristics of 

disruptions as deeply uncertain parameters. These parameters include disruption location 

(region of disruption, tier of disruption, disrupted component), disrupted element, disruption 

duration, post-disruption capacity, and recovery rate of the disrupted element. Similarly, we 

identified characteristics of resilience practices as policy levers and defined resilience-related 

metrics to assess supply chain performance during disruptions. We simulated supply chain 

relations and behavior under disruption. Using exploratory modeling, a comprehensive 

database of plausible disruption scenarios was generated. Analyzing these scenarios revealed 
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insights into supply chain vulnerability and identified resilient practices effective across 

multiple disruption scenarios. Our study demonstrated that RDM enhances the resilience of 

complex supply chains facing uncertain disruptions. By uncovering vulnerabilities beyond the 

immediate supply chain tiers, our approach facilitates the evaluation of robust responses to these 

challenges. 

In chapter 5 of this dissertation, we explored which operational aspects of a supply chain affect 

its resilience. Network-level stress testing of a supply chain plays an important role in resilience 

practices. However, the common graphical perspective to the structure of a supply chain 

network may ignore key operational aspects of the supply chain that can affect resilience. We 

proposed an approach in which we compared the resilience of several supply chain structures 

that differ in three operational aspects, including product structure, sourcing strategy, and 

production strategy. Using exploratory modeling, we exposed different network structures to a 

variety of disruption scenarios to draw conclusions about key operational characteristics that 

affect the resilience of a supply chain. Our analysis confirmed our hypothesis that deeper, wider, 

and more geographically dispersed network topologies are more susceptible to disruptions 

compared to shallow, narrow, and dense network configurations. Furthermore, we found that a 

high percentage of suppliers employing the MTS (Make to Stock) strategy in a network led to 

delayed disruption detection, while a high number of shared suppliers in a network resulted in 

fast detection of a disruption. Our results were also in line with the fact that as the complexity 

of a supply chain network decreases in terms of depth, width, and dispersion, the time to return 

to business as usual also decreases. In this research, we showed that a change in the number of 

tiers of a supply chain network had the highest impact on the market lead time. On the other 

hand, the percentage of MTO (Make to Order) suppliers versus MTS suppliers in a network 

played the most important role in the total recovery time after a disruption. The time to detect 

disruption also was mostly affected by the number of suppliers in each tier. 

In chapter 6 of this dissertation, we investigated how to do model-based stress testing of a 

supply chain despite a lack of required information about the supply chain structure. Given the 

challenge of obtaining reliable information about the structure of complex supply chains to 

enhance resilience and recognizing the importance of accounting for structural dynamics over 

time, we proposed ensemble modeling as a solution. Rather than focusing on a single supply 

chain structure, this approach involves generating and analyzing an ensemble of structures to 

identify vulnerability sources requiring resilience practices. To implement this, we employed 

an exploratory modeling approach, generating a large set of supply chain models and disruption 

scenarios through parametrization and computational experiments. Our findings demonstrate 

that this method enables decision-makers to gain insights into the resilience of supply chain 

networks that best suit their specific needs, even in the absence of precise information. 

Moreover, it effectively addresses structural uncertainties inherent in complex supply chains. 

In the final chapter 7 of this dissertation, we elaborated on the scientific reflection of our work 

together with implications for supply chain decision makers. This research showed that supply 

chain resilience could be improved by the exploratory modeling approach, despite unknown 

information regarding disruption attributes such as the probability of occurrence, magnitude, 

and propagation and despite ambiguity about the structure of the supply chain.  
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Given the inherent uncertainties present in various supply chain processes, this research showed 

that there is ample opportunity for further exploration into how the exploratory modeling 

approach can effectively tackle other supply chain management issues. This includes strategic, 

tactical, and operational planning.  

To investigate the effects of disruptive events on supply chain performance and to assess 

various resilience strategies, a simulation model of a supply chain was developed. To achieve 

this goal, we have adopted a modular modeling approach, where pre-designed model 

components allow for the automatic generation of diverse simulation models from different 

configurations. This method not only simplifies the modeling process but also facilitates 

scalability from small to large supply chain networks. In developing the simulation model, we 

tried to capture the complexities of real-world supply chains. However, accounting for every 

detail in our models was neither feasible nor beneficial. Therefore, we have made several 

simplifying assumptions to focus on the primary objectives of our study. We developed a 

simulation model of a stylized supply chain that captures sufficient complexity of a supply 

chain. However, applying our approach to real-world supply chains may yield additional 

insights about this study.  

For the generation of disruption scenarios in this research, an equal probability is assigned to 

each scenario. However, it might be worthwhile to give more priority to disruption scenarios 

with a higher chance of occurrence. There is an emerging research direction in the literature of 

exploratory modeling that focuses on an a posteriori assignment of likelihood to exploratory 

results, which could be applied to this research as well.  

This research provides supply chain decision makers with an approach to overcome several 

challenges in improving the resilience of their supply chains. First, the robust decision making 

approach helps in the development of resilience strategies that remain effective across a wide 

range of potential futures. This approach can tackle decision makers’ concerns about investing 

resources into developing resilience strategies that are only effective under a limited number of 

disruption scenarios. Second, consequence-based risk analysis approach applied to this research 

emphasizes on exploring the potential impact of disruptions on supply chain performance rather 

than solely focusing on the root cause of the disruption. Additionally, the exploratory modeling 

approach concentrates on exploring the future rather than predicting it. Together, these 

approaches can efficiently stress test supply chains to enhance resilience, even when detailed 

disruption information is not available. Third, ensemble modeling of a supply chain can address 

the challenge of accessing information about dispersed actors of complex and global supply 

chains in resilience practices. Fourth, treating supply chain resilience as a decision making 

under deep uncertainty problem and applying exploratory modeling analysis enables 

consideration of various stakeholders’ preferences in resilience practices and allows them to 

make tradeoffs among potential solutions.  
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Samenvatting 

Nieuwe ontwikkelingen in handelsketens (supply chains), gecombineerd met meer turbulentie 

in de hedendaagse zakelijke omgeving, zorgen voor een grotere kwetsbaarheid van 

handelsketens voor verstoringen. Verschillende voorbeelden van verstoringen van handelsketen 

in de afgelopen decennia hebben aangetoond dat naast het focussen op efficiëntie, het 

verbeteren van de veerkracht (resilience) ook cruciaal is voor een handelsketen om 

concurrerend te zijn. Veerkracht, een opkomend onderwerp in het risicobeheer van 

handelsketens, verwijst naar het vermogen van een handelsketen om snel te herstellen van een 

verstoring door te beschikken over de juiste risicobeperkingsmaatregelen en noodplannen. Er 

zijn verschillende raamwerken voor de veerkracht van handelsketens ontwikkeld waarin zowel 

de principes als de praktische methoden voor een veerkrachtige handelsketen kwalitatief 

worden geïdentificeerd. Ook zijn er kwantitatieve methoden ontwikkeld om verschillende 

aspecten van de veerkracht van de handelsketen te bepalen. Binnen deze methoden worden 

modellen gebruikt voor het beoordelen van de kwetsbaarheid van een handelsketen voor 

ontwrichtende risico's en voor het evalueren van mitigatie- en herstelmaatregelen tegen 

ontwrichting. De eerste stap bij het verbeteren van de veerkracht van een handelsketen, of in 

het algemeen, het verbeteren van het risicobeheer van een handelsketen, is het identificeren en 

beoordelen van risico's. De benaderingen voor het beoordelen van risico's zijn sterk afhankelijk 

van de beschikbaarheid van informatie over de ontwrichtende risico's. Deze benaderingen gaan 

uit van een bekende waarschijnlijkheid van het optreden van een risico en het effect van de 

verstoring, of de methoden bieden manieren om deze risicoparameters te schatten. Hoewel deze 

op waarschijnlijkheid gebaseerde benaderingen van risicomodellering prima werken bij 

algemene verstoringenhandelsketen of bij operationele risico's, kunnen ze niet omgaan met 

minder frequente of onbekende verstoringen. De belangrijkste reden hiervoor is dat informatie 

met betrekking tot zeldzame gebeurtenissen vaak niet kan worden verkregen, en zelfs als de 

informatie beschikbaar komt, is deze mogelijk geen betrouwbare weergave van de toekomst 

vanwege de onvoorspelbaarheid van dit soort risico's. Bovendien geven op waarschijnlijkheid 
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gebaseerde benaderingen gewoonlijk hetzelfde gewicht (expected value) aan zowel 

gebeurtenissen met een hoge frequentie en een lage impact als aan gebeurtenissen met een lage 

frequentie en een hoge impact, wat resulteert in een onderschatting van mogelijke verliezen als 

gevolg van de aggregatie over de tijdshorizon. 

Daarnaast negeren managers ontwrichtende risico's doorgaans omdat ze denken dat de kans dat 

deze zich voordoen zeer laag is, zodat de risico's kunnen worden verwaarloosd. Dit zorgt ervoor 

dat modelgebaseerde benaderingen ter ondersteuning van de veerkracht van handelsketens in 

staat moeten zijn om de kwetsbaarheid van een handelsketen te beoordelen, ondanks onbekende 

of onvolledige informatie over de ontwrichtende risico’s. In dit onderzoek stellen wij daarom 

voor om te focussen op de consequenties van de risico's in de risicoanalyse van de handelsketen. 

In plaats van het identificeren van de hoofdoorzaak van risico's en het bepalen van de 

kenmerken van de risico's, zoals de waarschijnlijkheid dat het risico zich voordoet en de 

intensiteit van de gevolgen, concentreert men zich alleen op het analyseren van de negatieve 

impact van de verstoring op de prestaties van de handelsketen. Het is onbelangrijk of een 

staking of congestie in een haven een transportactiviteit binnen de handelsketen verstoort; het 

gaat om het beantwoorden van de vraag wat er zal gebeuren als die transportactiviteit wordt 

verstoord. Op dezelfde manier ligt de nadruk niet op het begrijpen of een overstroming, een 

faillissement of een cyberaanval de functionaliteit van een leverancier binnen de handelsketen 

belemmert; in plaats daarvan proberen we te beantwoorden wat er zal gebeuren als die 

leverancier niet meer functioneert. Een grote uitdaging bij het gebruik van een risicoanalyse die 

op consequenties gebaseerd is, handelsketen is de complexiteit van handelsketens, die bestaan 

uit duizenden onderling afhankelijke en wereldwijd verspreide actoren. Als gevolg hiervan is 

het moeilijk om een alomvattende verzameling van mogelijke ontwrichtende gebeurtenissen te 

identificeren. Ook het ontwikkelen van effectieve strategieën voor het beheer van verstoringen 

onder een veelheid van mogelijke scenario’s is een uitdaging die moet worden aangepakt voor 

het ontwikkelen van veerkrachtige handelsketen. 

De manier waarop een ontwrichtende gebeurtenis zich door een handelsketen verspreidt, is 

afhankelijk van de structuur van de handelsketen. Daarom heeft de kwetsbaarheid van een 

handelsketen een directe relatie met de structuur van de handelsketen. Het in beschouwing 

nemen van de structuur van de handelsketen (handelsnetwerk of supply chain netwerk) en het 

analyseren van verstoringen op netwerkniveau zijn van cruciaal belang om de veerkracht van 

een handelsketen te vergroten. Om de veerkracht van verschillende netwerkstructuren van de 

handelsketen te vergelijken, gebruiken onderzoekers vaak een theoretisch perspectief gebaseerd 

op grafentheorie, en concentreren ze zich op de topologie van de handelsketen. Vanuit dit 

perspectief worden verschillende netwerkstructuren voorgesteld als verschillende configuraties 

van knooppunten (faciliteiten) en verbindingen (transport). Door knooppunten en verbindingen 

bloot te stellen aan verstoringen kan de veerkracht van de handelsketen worden beoordeeld. Bij 

het conceptualiseren van verschillende handelsketens die alleen gebaseerd zijn op een andere 

configuratie van de knooppunten en verbindingen, wordt echter voorbijgegaan aan belangrijke 

operationele kenmerken die ook van invloed kunnen zijn op het functioneren van de 

handelsketen, en dus op de veerkracht ervan. Bij het vergelijken van de veerkracht van 

verschillende structuren van handelsketens is het daarom belangrijk om ook de operationele 

aspecten van de handelsketen mee te nemen. 
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Het vergroten van de veerkracht van een  handelsketen is afhankelijk van de beschikbaarheid 

van betrouwbare stresstests voor handelsketens. Een betrouwbare stresstest voor  een 

handelsketen is afhankelijk van de beschikbaarheid van informatie over de structuur van de 

handelsketen, waarbij de relaties tussen verschillende actoren in de handelsketen duidelijk zijn. 

De complexiteit en de mondialisering van de hedendaagse handelsketens maken het voor 

besluitvormers echter moeilijk om toegang te krijgen tot relevante informatie, vooral van 

actoren die zich meer dan een paar lagen stroomopwaarts of stroomafwaarts bevinden. 

Bovendien wordt een handelsketen als dynamisch systeem geconfronteerd met veranderingen 

in de structuur en configuratie in de loop van de tijd. Er is dus behoefte aan een aanpak voor 

het stresstesten van een handelsketen, die kan omgaan met ontbrekende informatie over de 

structuur van de handelsketen. 

We zijn ons onderzoek begonnen met een literatuuronderzoek naar modelgebaseerde 

benaderingen voor het ondersteunen van de veerkracht van handelsketens. Dit resulteerde in de 

ontwikkeling van het idee van een risicoanalyse die gebaseerd is op gevolgen in plaats van op 

de oorzaken van de verstoring. De aanpak richt zich op de gevolgen van plausibele verstoringen 

bij elementen binnen de handelsketen, in plaats van een focus op de achterliggende oorzaak van 

de verstoring. Een uitgebreidere discussie over de gevolg-gebaseerde risicoanalyse wordt 

gegeven in hoofdstuk 2 van dit proefschrift. 

In de volgende stap van ons onderzoek hebben we een supply chain-simulatiemodel ontwikkeld 

voor het uitvoeren van de experimenten gerelateerd aan dit onderzoek. Het hoofddoel van het 

simulatiemodel is het beoordelen van de impact van verstoringsscenario’s op de prestaties van 

de gemodelleerde handelsketen en het evalueren van de effectiviteit van verschillende 

oplossingen voor het vergroten van de veerkracht. Daartoe hanteren we een data-gebaseerde 

modelleringsaanpak waarbij vooraf gebouwde en parametriseerbare modelelementen worden 

ontwikkeld, zodat verschillende simulatiemodellen automatisch kunnen worden gegenereerd 

op basis van verschillende configuraties van deze modelelementen. De aanpak waarbij gebruik 

wordt gemaakt van geparametriseerde simulatie-elementen houdt in dat de modelbouwer het 

simulatiemodel kan creëren, uitvoeren en aanpassen zonder opnieuw delen te hoeven 

programmeren. Deze aanpak vermindert de complexiteit van het modelleringsproces en 

ondersteunt de schaalbaarheid van het simulatiemodel van kleine tot grote handelsnetwerken. 

We hebben het data-gebaseerde simulatiemodel geïmplementeerd in Simio, een universeel 

discrete-event simulatiepakket. Er zijn vier belangrijke modelelementen in ons model: markt, 

fabrikant, leverancier en voorraad. Er kan een grote verscheidenheid aan supply chain-modellen 

worden gegenereerd door verschillende combinaties van deze modelelementen te instantiëren. 

Om invoergegevens voor de simulatie te genereren, gebruiken we een op Python gebaseerde 

netwerkgenerator en verbinden deze met onze Simio simulatiebibliotheek. De 

netwerkgenerator is in staat een verscheidenheid aan handelsnetwerken te genereren op basis 

van verschillende kenmerken van de handelsketen, waaronder het aantal niveaus, het 

percentage geassembleerde componenten in elke laag, het aantal leveranciers van een 

leverancier in elke laag, het aantal gedeelde leveranciers in elke laag, het percentage 

leveranciers dat dichtbij of ver weg is in elk niveau, en het percentage MTO (Make to Order) 

versus MTS-leveranciers (Make to Stock) in elk niveau. Er kunnen verschillende 

netwerktopologieën voor de handelsketen worden gegenereerd door verschillende waarden van 

deze netwerkvariabelen te kiezen. Er kunnen willekeurige handelsnetwerken worden 



140                                                               Model-based Risk Analysis of Supply Chains for Supporting Resilience 

 

gegenereerd door de waarden van de netwerkvariabelen te bemonsteren, of specifieke 

handelsnetwerken door de generator vooraf gedefinieerde waarden van de netwerkvariabelen 

te geven. De generator instantieert vervolgens automatisch de componenten van het 

simulatiemodel, evenals de invoertabellen voor het simulatiemodel, gebaseerd op de topologie 

van het handelsnetwerk. Meer uitleg over het simulatiemodel en de netwerkgenerator wordt 

gegeven in hoofdstuk 3 van dit proefschrift. 

In hoofdstuk 4 van dit proefschrift hebben we onderzocht hoe robuuste besluitvorming (Robust 

Decision Making of RDM) kan helpen bij een op consequenties gebaseerde risicoanalyse van 

een handelsketen. Voortbouwend op de beperkingen van modelgebaseerde benaderingen voor 

het vergroten van de veerkracht van handelsketens, die voornamelijk voortkomen uit de 

onvoorspelbare aard van ontwrichtende risico's, hebben we het concept van een op 

consequenties gebaseerde risicoanalyse van een handelsketen voorgesteld. Een grote uitdaging 

hierbij is het analyseren van een rijke set aan verstoringsscenario's waarmee de handelsketen in 

de toekomst te maken kan krijgen. Ook moeten de oplossingen voor het vergroten van de 

veerkracht voor het overwinnen van verstoringen in de handelsketen effectief zijn onder zoveel 

mogelijk verstoringsscenario’s. Om deze uitdagingen het hoofd te bieden, gebruiken we RDM, 

een methode voor het besluitvorming onder diepe onzekerheid (deep uncertainty). We 

formuleerden het probleem binnen het XLRM-raamwerk en definieerden verschillende 

kenmerken van verstoringen als diep-onzekere parameters. Deze parameters omvatten de 

locatie van de verstoring (regio van de verstoring, mate van de verstoring, het verstoorde 

onderdeel), het verstoorde element, de duur van de verstoring, de capaciteit na de verstoring en 

de herstelsnelheid van het verstoorde element. Op dezelfde manier hebben we 

beleidsmaatregelen voor het vergroten van veerkracht geïdentificeerd , die kunnen helpen om 

de prestaties van de handelsketen tijdens verstoringen te vergroten. Hiertoe hebben we supply 

chain-relaties en gedrag onder verstoring gesimuleerd en bestudeerd. Met behulp van 

exploratory modellen is een uitgebreide database met plausibele verstoringsscenario's 

gegenereerd. Het analyseren van deze scenario's bracht inzichten aan het licht over de 

kwetsbaarheid van de handelsketen, en het stelde ons in staat om beleidsmaatregelen te 

identificeren die effectief zijn in meerdere verstoringsscenario's. Ons onderzoek heeft 

aangetoond dat RDM de veerkracht vergroot van complexe handelsketens die met diep-

onzekere verstoringen worden geconfronteerd. Door kwetsbaarheden  bloot te leggen die een 

of meerdere lagen weg liggen in de handelsketen, vergemakkelijkt onze aanpak de evaluatie 

van robuuste beleidsmaatregelen om de problemen in handelsketens aan te pakken. 

In hoofdstuk 5 van dit proefschrift hebben we onderzocht welke operationele aspecten van een 

handelsketen de veerkracht ervan beïnvloeden. Stresstesten op netwerkniveau van een 

handelsketen spelen een belangrijke rol bij het vergroten van veerkracht. Een focus met een 

puur grafisch perspectief op de structuur van een handelsnetwerk kan echter voorbijgaan aan 

de belangrijke operationele aspecten van het handelsnetwerk die de veerkracht kunnen 

beïnvloeden. We stelden een aanpak voor waarin we de veerkracht van verschillende supply 

chain-structuren vergeleken die verschillen op drie operationele aspecten, waaronder 

productstructuur, sourcingstrategie en productiestrategie. Met behulp van exploratory modeling 

hebben we verschillende netwerkstructuren blootgesteld aan een breed scala van 

verstoringsscenario's om conclusies te trekken over de belangrijkste operationele kenmerken 

die de veerkracht van een handelsketen kunnen beïnvloeden. Onze analyse bevestigde onze 
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hypothese dat diepere, bredere en meer geografisch gespreide netwerktopologieën gevoeliger 

zijn voor verstoringen dan ondiepe, smalle en geografisch geconcentreerde 

netwerkconfiguraties. Verder ontdekten we dat wanneer een hoog percentage leveranciers de 

MTS-strategie in een netwerk toepaste, er een vertraagde detectie van verstoringen ontstond, 

terwijl een groot aantal gedeelde leveranciers in een netwerk resulteerde in een snelle detectie 

van een verstoring. Onze resultaten toonden ook aan dat naarmate de complexiteit van een 

handelsnetwerk afneemt in termen van diepte, breedte en geografische spreiding, de tijd om 

terug te keren naar de normale gang van zaken ook afneemt. In dit onderzoek hebben we laten 

zien dat een verandering in het aantal lagen van een handelsnetwerk de grootste impact heeft 

op de doorlooptijd van orders. Aan de andere kant speelt het percentage MTO-leveranciers 

versus MTS-leveranciers in een netwerk de belangrijkste rol in de totale hersteltijd na een 

verstoring. De tijd om verstoringen te detecteren wordt ook grotendeels beïnvloed door het 

aantal leveranciers in elke laag. 

In hoofdstuk 6 van dit proefschrift hebben we onderzocht hoe modelgebaseerde stresstests van 

een handelsketen kunnen worden uitgevoerd, ondanks een gebrek aan de noodzakelijke 

informatie over de structuur van de handelsketen. Gegeven de uitdagingen voor het verkrijgen 

van betrouwbare informatie over de structuur van complexe handelsketens om de veerkracht te 

vergroten en het erkennen van het belang van structurele dynamiek, hebben we ensemble 

modeling als oplossing voorgesteld. In plaats van zich te concentreren op een enkele supply 

chain-structuur, omvat deze aanpak het genereren en analyseren van een verzameling van 

structuren om bronnen van kwetsbaarheid te identificeren die veerkracht vereisen. Om dit te 

implementeren, hebben we een exploratoty modeling aanpak gebruikt, waarbij we een groot 

aantal supply chain-modellen en verstoringsscenario's hebben gegenereerd door middel van 

parametrisering en computerexperimenten. Onze bevindingen tonen aan dat deze methode 

besluitvormers in staat stelt inzicht te krijgen in de veerkracht van handelsnetwerken die het 

beste aansluiten bij hun specifieke behoeften, zelfs bij gebrek aan nauwkeurige informatie. 

Bovendien pakt het op effectieve wijze structurele onzekerheden aan die inherent zijn aan 

complexe handelsketens. 

In het laatste hoofdstuk van dit proefschrift, hoofdstuk 7, gingen we dieper in op de 

wetenschappelijke reflectie van ons werk, samen met de implicaties voor besluitvormers in de 

handelsketen. Dit onderzoek toonde aan dat de veerkracht van handelsketens kan worden 

verbeterd door de exploratory modeling aanpak, ondanks onbekende informatie over 

risicoattributen zoals de waarschijnlijkheid, omvang en frequentie, en ondanks ambiguïteit over 

de structuur van de handelsketen. 

Gegeven de inherente onzekerheden die aanwezig zijn in verschillende supply chain-processen, 

heeft dit onderzoek aangetoond dat er volop mogelijkheden zijn voor verder onderzoek naar de 

manier waarop de verkennende modelleringsaanpak andere problemen op het gebied van 

supply chain-management effectief kan aanpakken. Dit omvat strategische, tactische en 

operationele planning. 

Om de effecten van ontwrichtende gebeurtenissen op de prestaties van de handelsketen te 

onderzoeken en verschillende veerkrachtstrategieën te beoordelen, werd een simulatiemodel 

van een handelsketen ontwikkeld. We hebben een modulaire en datagedreven 

modelleringsaanpak aangenomen, waarbij vooraf ontworpen modelcomponenten de 

automatische generatie van diverse simulatiemodellen uit verschillende configuraties mogelijk 
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maken. Deze methode vereenvoudigt niet alleen het modelleringsproces, maar vergemakkelijkt 

ook de schaalbaarheid van kleine tot grote handelsnetwerken. Bij het ontwikkelen van het 

simulatiemodel hebben we geprobeerd de complexiteit van echte handelsketens vast te leggen. 

Het was echter niet haalbaar en ook niet nuttig om elk detail van de werkelijkheid in onze 

modellen te verwerken. Daarom hebben we verschillende aannames voor de modellen gedaan 

om ons te concentreren op de primaire doelstellingen van ons onderzoek. We hebben een 

simulatiemodel ontwikkeld van een gestileerde handelsketen die voldoende complexiteit van 

een handelsketen weergeeft. Het toepassen van onze aanpak op echte handelsketens kan echter 

aanvullende inzichten over dit onderzoek opleveren. 

In dit onderzoek wordt voor het genereren van verstoringsscenario’s aan elk scenario een 

gelijke waarschijnlijkheid toegekend. Het kan echter de moeite waard zijn om meer prioriteit 

te geven aan verstoringsscenario’s met een grotere kans. Er is een opkomende 

onderzoeksrichting in de literatuur van exploratory modeling die zich richt op het a posteriori 

toekennen van waarschijnlijkheid aan exploratory resultaten, die ook op dit onderzoek zou 

kunnen worden toegepast. 

Dit onderzoek biedt besluitvormers in de handelsketen een aanpak om verschillende 

uitdagingen bij het verbeteren van de veerkracht van hun handelsketens te overwinnen. Ten 

eerste helpt de robuuste besluitvormingsaanpak (RDM) bij de ontwikkeling van 

veerkrachtstrategieën die effectief blijven in een breed scala aan potentiële 

toekomstmogelijkheden. Deze aanpak kan de zorgen van besluitvormers wegnemen over het 

investeren van middelen in het ontwikkelen van veerkrachtstrategieën die alleen effectief zijn 

onder een beperkt aantal ontwrichtingsscenario’s. Ten tweede legt de op consequenties 

gebaseerde risicoanalyse die in dit onderzoek wordt toegepast de nadruk op het onderzoeken 

van de potentiële impact van verstoringen op de prestaties van de handelsketen, in plaats van 

zich uitsluitend te concentreren op de hoofdoorzaak van de verstoring. Bovendien concentreert 

de exploratory modeling aanpak zich op het verkennen van de toekomst in plaats van deze te 

voorspellen. Samen kunnen deze benaderingen handelsketens op een efficiënte wijze aan 

stresstests onderwerpen om de veerkracht te vergroten, zelfs als er geen gedetailleerde 

informatie over verstoringen beschikbaar is. Ten derde kan de ensemble modellering van een 

handelsketen de uitdaging aanpakken van het ontbreken van informatie over verspreide actoren 

binnen complexe en mondiale handelsketens. Ten vierde maakt het behandelen van veerkracht 

van de handelsketen als een besluitvormingsprobleem onder deep uncertainty en het toepassen 

van expolratory modeling het mogelijk om de voorkeuren van verschillende actoren in 

overweging te nemen bij het ontwikkelen van maatregelen voor het vergroten van veerkracht, 

en hen in staat te stellen afwegingen te maken tussen mogelijke oplossingen. 
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