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I. Introduction

Since the beginning of the Apollo space �ight program, entry guidance has been widely treated

by engineers and researchers. The �rst, successful approach, used for several programs (Apollo,

Space Transportation System [1]), was based on the planning of an entry trajectory in terms of the

drag-velocity plane. The rationale for this choice resides in the fact that the typical environmental

constraints (dynamic pressure, heat �ux and load factor), as well as the range-to-go, can be e�ciently

represented in this drag-velocity plane. The longitudinal guidance can then be derived in several

ways. For instance, assuming the equilibrium-glide approximation [2], extracting the longitudinal

states (altitude, speed, �ight-path angle) from the drag acceleration and its derivatives [3], or

implementing constraints-tracking guidance schemes [4]. Similar results can be obtained if the drag-

velocity plane is replaced by the drag-energy plane [5�7]. In any case, approximations, disturbances

and modeling errors make the use of a feedback controller necessary to track the scheduled nominal
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drag pro�le. In addition, a bank-reversal logic is usually implemented to keep the heading error

within prescribed limits, chosen to steer the vehicle towards the terminal area for energy management

(TAEM). In parallel to these approaches, the use of techniques based on optimal control [8�11] has

achieved signi�cant improvements. The increased CPU capabilities, together with the development

of dedicated algorithms, have led to the possibility to transcribe the problem into a discrete, �nite-

dimensions problem (i.e. a nonlinear programming problem), which can be e�ciently solved with

one of the available well-known NLP solvers [12, 13]. The drawback of this approach is that the

computed solution is optimal within the limits of the accuracy of the models, and the closeness of

the in�ight conditions to the nominal ones used to compute it. Even in the presence of tracking

controllers, large o�-nominal conditions can signi�cantly deteriorate the performance of the system.

A possible approach to mitigate the e�ect of large entry dispersion can be the generation of several

reference trajectories corresponding to di�erent initial conditions. During the entry the closest one

to the in�ight conditions is selected and tracked. However, this approach, here called Neighbor-

Trajectory Tracking (NTT) does not guarantee necessarily the best performance, and to verify it,

it has been used as benchmark for the performance of the method proposed here.

Signi�cant steps in the use of interpolation-based techniques have already been performed. Saraf

et al. [14] used interpolation schemes applied to extremal drag-energy pro�les for generating landing

footprints for entry missions. Schierman et al. [15] implemented a two-dimensional trajectory

database-based scheme to compute online a trajectory by using piecewise-linear functions, and

solved the online trajectory-generation problem as a linear programming problem. Lockner et al. [16]

developed a more extensive approach based on Tensor Product Splines [17], which perform excellent

for the Lunar Landing problem. Arslantas et al. [18, 19] used a similar technique for reachability-set

computations. Sagliano et al. [20] merged this approach with pseudospectral methods to provide a

real-time capable method able to deal with (limited) o�-nominal conditions. However, this approach

does no longer provide good performance when the initial dispersion increases. This is due to the

fact that the optimal-solutions' behavior may signi�cantly di�er over the considered range, and

therefore the multivariate scheme does not approximate the behavior of the system well.

In the current work, the multivariate pseudospectral interpolation (MPI) technique is extended
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to deal with larger initial conditions by dynamically selecting a subspace of the stored database,

leading to the proposed adaptive multivariate pseudospectral interpolation (AMPI) approach. A

larger database of optimal trajectories is generated, and a multivariate interpolation approach is

applied to a subset of trajectories, properly selected by the onboard software. The result is a highly-

adaptive onboard trajectory-generator, which satis�es the tough requirements of memory and power

of the onboard computers even in the presence of larger entry-interface dispersions. The rationale

for the choice of this method is double: �rst, it naturally comes out from observing the transcription

and the properties associated with the use of pseudospectral methods. Second, the basic multivariate

interpolation application in low-dimensions (one in the case treated by Saraf et al. [14], and up to

three in the work developed by Lockner et al. [16]) performed very well, and the results encouraged

to explore its application in case of larger number of dimensions. Moreover, the concept shown here

is quite straightforward, while other approximators, like neural networks, require more complexity,

both in terms of network architecture needed to capture the behavior of the system, and for what

regards its training. With the AMPI instead, once that the database is computed, no further tuning

is required, as the framework is directly provided by the use of pseudospectral methods.

A strong advantage of this method is also associated with the capability to deal with asymmetric

entry scenarios (i.e., scenarios where high-crossrange capability is required). In this case the bank-

reversal logic is limited, as there is no guarantee that the heading error will enter the heading

corridor (a pre-requisite for bank reversals). Moreover, this scenario cannot easily be handled with

enhanced drag-energy approaches, which require a smooth drag-energy pro�le [23]. Moreover, in

case important modi�cations to the scenario are required (e.g., a di�erent landing site or di�erent

conditions at the entry interface) a complete, updated guidance scheme can be easily obtained, by

generating a new database without any modi�cation of the �ight software.

The veri�cation of the method is performed by coupling the method with a feedback controller,

and comparing the results with those obtained by the tracking of the closest reference trajectory be-

longing to the database. Both systems use the same feedback controller. The paper is organized as

follows. In Sec. II the reference scenario based on the SHEFEX-3 mission is given, while the frame-

work for the generation of the optimal trajectories is described in Sec. III. In Sec. IV the adaptive
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multivariate pseudospectral interpolation method, and the algorithms for its implementation are

explained in detail. In Sec. V a comparison between the solutions provided by the AMPI algorithm

and the corresponding optimal trajectories is shown, together with a CPU time analysis to assess

the real-time capability of the method. In Sec. VI the closed-loop simulation campaign results are

discussed, and a comparison w.r.t. the neighbor-trajectory tracking approach is performed. Finally,

Sec. VII concludes this paper with some �nal remarks.

II. Reference Mission Description - SHEFEX-3

The reference scenario is one of the proposed mission pro�les for SHEFEX-3 [27], depicted in

Fig. 1. SHEFEX (SHarp Edge Flying EXperiment) is a DLR-led series of missions for scienti�c

experiments and development of European technologies for atmospheric reentry. The considered

launch site is Andøya Rocket Range, on the western coast of Norway, while the terminal area is

located in Greenland. The entry interface is characterized by a steeper �ight-path angle and a lower

Mach number w.r.t. other entry missions, like those of the Space Shuttle or the X-33 [3, 5, 9].

The mission, from the point of view of the guidance system, terminates at the TAEM interface,

associated with a Mach number equal to ∼= 2. This requires good accuracy in terms of �nal altitude

and �nal velocity. The nominal entry and terminal conditions are shown in Table 1.

Figure 1: SHEFEX-3 entry vehicle.

Table 1: Nominal entry and terminal conditions for SHEFEX-3 guided �ight.

State Initial Value Terminal Value
h (km) 100.1 23.5± 2.5
θ (deg) -11.60 −45.75
φ (deg) 71.89 66.40
V (m/s) 4712.3 595± 25
γ (deg) -10.31 free
ψ (deg) -85.92 free

4



III. Optimal Trajectory Generation

Once the interfaces are de�ned, it is possible to formulate the related optimal-control problem

(OCP). The requirements of the mission include a minimization of the dispersions around the

terminal point, for the prescribed ranges of altitude and velocity. The solution to this problem will

provide us the reference trajectory and the reference controls, which satisfy all our requirements.

Constraints, such as dynamic pressure, heat �ux and vertical load factor, are also taken into account,

since they are limited by the vehicle's structure.

In this speci�c case the cost function will be formulated to reduce the �nal dispersion, therefore,

it is computed as the di�erence between the current and the desired �nal states, speci�cally the

longitude and the latitude. The �nal altitude and velocity are included in the cost function as well

albeit with smaller weights, to include the condition M = 2 in the database computation. For what

regards the mathematical models used, an oblate, rotating Earth is considered, where the gravity

acceleration is modeled as central �eld with only the J2 term included. The atmosphere is modeled

with the U.S. Standard Atmosphere 1976 (US76) model [26]. while the aerodynamics model has

been provided by the DLR Institute of Aerodynamics and Flow Technology. For the states full

ranges are taken. For the controls, the angle of attack is scheduled as a function of time, and more

speci�cally, it is modeled as two constant values connected by a linear transition at a �xed time.

The bank angle and the bank-angle rate limits are explicitly introduced in the transcription process,

while bank-angle accelerations have been veri�ed a-posteriori. Reference values for the controls are

shown in Table 2.

Table 2: Flight control system constraints.

Controls Values / Ranges
Upper angle of attack αU (deg) 42
Lower angle of attack αL (deg) 17.5
Begin of α maneuver tα,U (s) 58
End of α maneuver tα,L (s) 88

Bank angle σ (deg) [-60, 60]
Angle of attack rate α̇ (deg/s) [-5, 5]
Bank angle rate σ̇ (deg/s) [-5, 5]

Angle of attack acceleration α̈ (deg/s2) [-4, 4]
Bank angle acceleration σ̈ (deg/s2) [-4, 4]
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A. Cost Function

The objective of the optimal-control problem is to minimize the quadratic cost function J :

J = wθ [θ(tF )− θref ]
2

+ wφ [φ(tF )− φref ]
2

+ wh [h(tF )− href ]
2

+ wV [V (tF )− Vref ]
2

(1)

The terminal conditions in terms of altitude and velocity have been included as soft constraints

(through Eq. (1)) in the transcription to relax the trajectory-database computation. The weights

wi are equal to 1 for longitude θ and latitude φ, and equal to 10-4 for altitude h and velocity V .

B. Dynamics

During entry, the vehicle's motion is described by the following set of di�erential equations [23]:

ḣ = V sin γ

θ̇ =
V cos γ sinψ

r cosφ

φ̇ =
V cos γ cosψ

r

V̇ = −D − g sin γ + ω2r cosφ (sin γ cosφ− cos γ sinφ cosψ)

γ̇ =
L cosσ

V
+

(
V

r
− g

V

)
cos γ+

+ 2ω cosφ sinψ +
ω2r

V
cosφ (cos γ cosφ+ sin γ sinφ cosψ)

ψ̇ =
L sinσ

V cos γ
+
V

r
cos γ sinψ tanφ− 2ω (tan γ cosφ cosψ − sinφ) +

+
ω2r

V cos γ
sinφ cosφ sinψ

σ̇ = uσ

(2)

r is the radial position, γ and ψ are the �ight-path angle and the heading angle, the latter being equal

to zero when the vehicle �ies towards the local north. D and L are the drag and lift accelerations,

while g is the gravity acceleration, and m is the mass of the vehicle, equal to 500 kg. Finally, ω is

the Earth's rotation rate, equal to 7.2921 · 10−5 rad/s. From Eq. (2) one can see that the state has

been augmented by adding the bank angle. This permits to limit the bank-angle rate, which is the

e�ective control input to the system.
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C. Constraints

Three constraints are included in the transcription, that is, the dynamic pressure, q, the stag-

nation heat �ux, Q̇ (computed by using the cold-wall model for a laminar boundary layer), and the

vertical load factor, nz. These three constraints can be computed according to

q = 1
2ρV

2, Q̇ = kq
√
ρV 3, nz = |L cosα+D sinα|

g0
(3)

where ρ is the atmospheric density, expressed in kg/m3, kq is a constant depending on the material

and the geometry of the thermal protection system, for SHEFEX-3 equal to 1.2444 ·10−3 kg1/2/m3,

and g0 is the gravity acceleration at sea level, (g0 = 9.782 m/s2). The structural limits of the

vehicle and the active thermal-protection system dictate a limit for the above constraints. These

limits are equal to q̄U = 5 ·104 N/m2, Q̇U = 6.5 MW/m2, and nz,U = 10 g, respectively. With these

de�nitions, the optimal-control problem to be solved is complete.

IV. Adaptive Multivariate Pseudospectral Interpolation

The trajectory computation via AMPI is composed of �ve phases. The �rst two operations are

performed o�ine, while the last three are online operations. The AMPI scheme is depicted in Fig.

2.

0

OFFLINE

AMPI Scheme

Trajectory 
Database 

Generation

Reference 
Subspace 
Selection

Low-Density 
Multivariate 
Interpolation

LD – HD 
Pseudospectral 

Conversion

Inflight 
Conditions p

Onboard-generated 
Trajectory

Conversion Matrix 
Computation

ONLINE

0

Parameter Space 
Definition and 

Discretization pi 

Figure 2: Scheme of Adaptive Multivariate Pseudospectral Interpolation.
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The o�ine part involves the proper discretization of the parameters, which can be o�-nominal,

and determined during the �ight (e.g., the states at the entry interface, provided by the navigation

subsystem), and the computation of the corresponding trajectory database. It is then possible

to apply the second part of the AMPI, which will run online. A speci�c range for each of the

parameters needs to be determined and sampled, resulting in a series of discrete parameters, pi.

Using these parameters, a corresponding series of parametric optimal-control problems is solved.

This will result in a trajectory database to be stored online. A further output of the trajectory-

database generation is the LD-HD conversion matrix, used, as the name suggests, to convert the

low-density (LD) trajectory (less stringent in terms of on-board memory requirements) into a more

meaningful high-density (HD) solution, with a process of loss-less conversion, as we will see. During

the mission, the in�ight parameters, p0, di�erent from the nominal ones, will be analyzed to select

the reference subspace from the entire trajectory database. The selected subspace will provide the

basis to perform a multivariate interpolation process to compute the low-density representation of

the trajectory. Finally, the previously computed LD-HD conversion matrix is used to transform

the LD into the HD solution, that is, the onboard trajectory, and the reference controls. All these

aspects will be explained in detail in the next subsections.

A. De�nition and discretization of the parameter space

The �rst step is the proper de�nition of the parameter space. In this context we will consider

as parameters the six (three components for the position, and three components for the velocity)

entry-interface conditions, provided by the navigation solution. However, without loss of generality,

we can refer to d parameters, and de�ne the parameter space as composed of d vectors p1, . . . ,pd.

P = {pi} n1 ,...,nd

i1=1,...,id=1 (4)

The result will be a set of parameters, which cover the entire envelope enclosed in the d-dimensional

space P. Indeed, for a complex mission, such as atmospheric entry, several in�ight conditions can

di�er from the nominal ones, and this aspect directly a�ects the database size, too. According to

the information provided by the responsible DLR team for the Launch and Ascent trajectory, the
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following six-dimensional parameter space for the entry interface have been de�ned.

p1 = δh = [−250, 0,+250] m, p4 = δV = [−70, 0,+70] m/s

p2 = δθ = [−0.5, 0,+0.5] deg, p5 = δγ = [−0.5, 0,+0.5] deg

p3 = δφ = [−0.5, 0,+0.5] deg, p6 = δψ = [−0.5, 0,+0.5] deg

(5)

From Eq. (5) one can observe that three values for each of the six initial conditions are con-

sidered. Therefore, 36 di�erent combinations of initial conditions are included in the trajectory

database.

B. Generation of Trajectory-Database

With the de�nitions given in the previous section, it is now possible to modify and solve the

parametric optimal-control problem de�ned in Sec. II. Speci�cally, we can use the values obtained

from the discretization of the parameter space, resulting in a modi�cation of the initial state:

x(t0) = x∗(t0) +

[
δhi δθj δφk δVl δγm δψn

]T
, i, j, k, l,m, n = [1, 2, 3] (6)

where x∗(t0) is the nominal entry interface, described in Table 1. In total, 36 trajectories have been

computed by solving the parametric OCP de�ned in Eqs. (1)-(3), together with Eq. (6).

The states and the controls evolution for the entire database are depicted in Figs. 3(a) and 3(c),

while the database trajectories are shown in Fig. 3(d). The constraints (satisfying the requirements)

are illustrated in Fig. 3(b). In Fig. 3(d) one can see that all the trajectories terminate in the

proximity of the TAEM. The circles show the parametrized dispersions for the latitude and longitude.

In 3-D also the altitude parametrization would be seen, while the other three uncertainties cannot

be visualized, but are taken into account, as one can see from the analysis of the single states.

Small variations in the latitude and longitude were observed, but always within the limits de�ned

by the requirements. From Figs. 3(a) and 3(c) one can see that all states and controls are smooth.

Speci�cally, the vehicle follows an oscillating entry, clearly visible in the altitude and the �ight-path

angle pro�les, as a result of the combination of the �ight-path angle at the entry interface and the
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limitations on the bank angle.

Initially the entry is dominated by the gravity, as the atmospheric density is too small to be of

signi�cance. Therefore, during the �rst 70 s the altitude decreases almost linearly to less than 40 km.

The velocity slightly increases during these �rst seconds of the entry, because of the combination of

the small value of D in comparison with g. Only when the drag and the lift increase, the �ight-path

angle tends to become smaller in magnitude; the velocity vector changes direction, and decreases in

magnitude. From 70 s to 480 s the oscillating behavior is clearly visible from the evolution of the

�ight-path angle. After this phase the velocity is not large enough to generate a lift acceleration

able to counteract the gravity, and the �ight path tends to become steeper. The quasi-skip entry

allows for achieving the nominal range of about 1400 km.
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It is important to stress that pseudospectral methods belong to the local optimization schemes.

Therefore, what they generate is a feasible trajectory, which locally satis�es the necessary conditions

[28]. However, this is not an issue here, as we are interested to generate solutions, which simply

satisfy our requirements, and these are veri�ed during the trajectory-database generation. For this

reason, in case more than one optimal solution exists for a given parametric optimal-control problem

to be solved, the optimizer will �nd only one of them (the one, which results to be a local optimal

solution) during the trajectory-database generation. Therefore, no ambiguities are possible, as they

are excluded once that the database is computed. Another important point is the selection of

the database points. Since the equations dominating the problem are nonlinear, it is di�cult to

theoretically estimate how the database points should be selected. The choice of the points can be

done in practice as a trade-o� between the accuracy we want to have (increasing with the number

of nodes), and the data size and the time required to compute the trajectories (decreasing with the

number of nodes). For the current case the database required a memory of about 12 Mb.

C. Selection of reference subspace

The d-dimensional space P previously de�ned covers the range of the possible o�-nominal initial

conditions taken into account. In the basic MPI approach [20], for each parameter an upper and a

lower value were considered, and a corresponding optimal trajectory was generated. In that case,

the database was made of 26 extremal trajectories, which are taken and combined to provide an

approximated solution corresponding to the in�ight initial conditions.

In the AMPI, for each of the initial six conditions we are considering three levels instead of

two, as described by Eq. (5). Therefore the needed trajectories become 36 instead of 26. From this

larger database, 26 neighbor-trajectories, enclosing the o�-nominal initial conditions, are selected

and combined to compute the corresponding trajectory. An intuitive 2-D example is depicted in

Figs. 4(a) and 4(b).

In the MPI approach (Fig. 4(a)) an approximation of a function F(Xi
1, X

i
2) is built by using

the information stored in the points F(XL
1 , X

L
2 ), F(XU

1 , X
L
2 ), F(XL

1 , X
U
2 ), and F(XU

1 , X
U
2 ). The

closer the boundary points are, the more accurate the approximation F(Xi
1, X

i
2) is.

11



(a) (a) MPI approach: the trajectory is
computed by using the four extremal

trajectories of the database.

(b) (b) AMPI approach: the trajectory is
computed by using the four closest

trajectories around the o�-nominal conditions.

Figure 4: Examples of domains for the application of the (a) MPI and (b) AMPI techniques.

For large dispersions this approach may not be accurate enough. In the AMPI approach

the parameter space is organized into a �ner grid; the function of F(Xi
1, X

i
2) is approximated by

using the points F(Xj
1 , X

k
2 ), F(Xj+1

1 , Xk
2 ), F(Xj

1 , X
k+1
2 ), F(Xj+1

1 , Xk+1
2 ). The indices [h̃i, h̃i + 1],

i = 1, . . . , d, representing the reference subspace, is determined by using Algorithm 1. This

subspace, and not the entire space is then used for the computation of the adaptive trajectory.

Algorithm 1 - Selection of reference subspace. Data: Given: parameter-space

elements pi, and initial conditions xi, i = 1,. . . ,d

U1 = [1 1 1 1 1 1]T ;

for i = 1 : d do

ePi = sign(pi −U1xi)

for j = 1 : ni − 1 do

∆pij = ePi
j-ePi

j−1, j = 2. . . ,ni;

if
∑ni

j=1 ePi
j==-ni then

[h̃i, h̃i + 1] = [ni − 1, ni];

end

else if
∑ni

j=1 ePi
j==ni then

[h̃i, h̃i + 1] = [1,2];

end

else

idx = �nd(∆pij 6= 0);

[h̃i, h̃i + 1] = [idx,idx+ 1];

end

end

end

Result: 2d indices [h̃i, h̃i + 1], i = 1. . . ,d
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Once the subspace, represented by the closest 2d trajectories to the o�-nominal initial conditions,

is determined, it is possible to apply the MPI as explained in the next sections.

D. Low-density multivariate interpolation

A solution of the OCP previously de�ned depends not only on the speci�c choice of a parameter

vector p ∈ P, but also on time. Since we are using a transcription based on the �ipped Radau

pseudospectral (FRP) method [20�22], we propose to perform the multivariate interpolation at each

of the collocation nodes de�ned by the roots of the �ipped Radau polynomials [29]. In each discrete

node τk, the interpolated variable fint(τk, xi) can be computed via Tensor-product spline [17].

fint(τk,xi) = s(xi) =

m1∑
i1=1

· · ·
md∑
id=1

ci1,...,idBi1,k1(x1) . . . Bid,kd(xd). (7)

Since each B-spline Bi1,k1 ,. . . ,Bid,kd depends only on a single variable, the d-variate interpolation

problem can be divided into d univariate problems, which can be solved via the numerical stable

and e�cient algorithm of De Boor [30]. In the frame of this work, the order ki of the splines is

equal to 2, while the knot vectors are de�ned as ti =
(
tij
)4
j=1

=
(
pi1, p

i
1, p

i
2, p

i
2

)
, i = 1, . . . , d. They

de�ne a piecewise-linear interpolation in each direction on the given d-dimensional grid, while the

coe�cient matrix is given by the trajectory-database points, C = F(τk,pi), and no further e�ort is

required to determine it. The interpolated solution is therefore evaluated by using Algorithm 2.

Algorithm 2 - Tensor-product spline interpolation.

Data: Given: knot vector t, coe�cients C, spline s ∈ S2,t1

⊗
· · ·
⊗

S2,td , evaluation point

xi ∈ Pc

A0 = C;

for i = 1 : d do

Ai = EvalUnivSpline(ti,Ai−1, xi);

Ai = A′i;

fint(p) = Ai;

end

Result: interpolated values fint(xi) = f(τk,xi)

The EvalUnivSpline function in Algorithm 2 denotes the evaluation of a univariate spline with

coe�cients C at a point xi while the operator (·)′ performs a cyclic rotation, such that A ∈

Rn1,n2,...,nd ⇒ A′ ∈ Rn2,...,nd,n1 .
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The interpolation scheme based on Algorithms 1 and 2 allows for generating onboard trajec-

tories, which cover the entire range enclosed in the parameter space p ∈ P. While there is formal

proof [16] that the interpolated states will always be de�ned within the boundaries given by the

database itself, this may not be true for the constraints, which are nonlinear combinations of the

states. However, this risk is avoided if a su�cient number of nodes is chosen. This, together with the

avoidance of the Runge phenomenon [22, 31], prevents violation of any nonlinear constraint acting

on the system. It is moreover important to emphasize that interpolated trajectories are not formally

solutions of the underlying OCP. However, they represent a good, real-time capable, approximation

of the optimal solutions without the computational burden needed to generate them.

E. LD-HD Pseudospectral conversion

The previous algorithm provides the interpolated values in a small number of nodes, having the

so-called low-density discrete solution. The objective of this section is to convert the LD discrete

solution into a HD discrete solution, able to represent the trajectory with no need to store large

amount of data onboard. The following properties justify the choice of using the pseudospectral

methods for the characterization of the discrete domain: i) Spectral convergence in the case of a

smooth problem; ii) Straightforward implementation; iii) Sparse structure of the associated NLP

problem; iv) Mapping between the covectors of the NLP discrete solution and the costates of the

optimal continuous solution in virtue of the Pseudospectral Covector Mapping Theorem [32], and

v) Removal of the Runge phenomenon [31].

The removal of the Runge phenomenon has an important implication: since all the polynomi-

als generated using the FRP nodes do not have undesired oscillations, the interpolated solutions

computed in these points will be smooth as well. Therefore, a database representing accurate tra-

jectories can be reduced to storing the nodal values, which can be converted into a high-density

discrete solution with no need to evaluate splines, as we will see in the next section. This approach

signi�cantly reduces the onboard memory requirements, as well as the onboard CPU burden.

Let us suppose to have computed the values representing the LD discrete solutions in theNLD+1

FRP nodes (that is, the NLD FRP nodes plus the node at -1. The solution is formed by the time
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vector tLD, the states XLD, and by the controls ULD, having dimensions equal to ns × (NLD + 1)

and nc × (NLD + 1), respectively. The indices ns and nc are the number of states and controls

associated with the problem under analysis. We want to transform the matrix TLD into a matrix

T̄HD, representing the HD states X̄HD and the HD controls ŪHD. Accordingly, the matrix T̄HD

has dimensions equal to (ns + nc)× (NHD + 1).

TLD =


XLD

ULD

 =


X0,X1, ...,XNLD

U0,U1, ...,UNLD

 , T̄HD =


X̄HD

ŪHD

 =


X̄0, X̄1, ..., X̄NHD

Ū0, Ū1, ..., ŪNHD

 (8)

Moreover, the HD time vector t̄HD must be computed. If we apply the de�nition of Lagrange

polynomial to a generic function F (τ), we can write

F (τ) =

NLD∑
i=0

Fi

NLD∏
k=0
k 6=i

τ − τk
τ i − τk

, τ ∈ [−1, 1] (9)

where Fi represents a generic LD variable. It can be replaced with the pth row of TLD as they

are sampled in the same way. Moreover, the continuous variable τ ∈ [−1, 1] can be sampled in the

NHD + 1 high-density discrete nodes. The result will be the HD representation of our variables

T̄p
HD(τ̄m) =

N∑
i=0

Tp
LD,i

N∏
k=0
k 6=i

τ̄m − τk
τ i − τk

, p = 1, . . . , ns + nc, m = 0, . . . , NHD (10)

Equation (10) can be extended to all the rows of the matrix T̄HD, and rewritten in matrix form as

T̄HD = TLDPFRP (11)

where the matrix PFRP has dimensions (NLD + 1)× (NHD + 1), and is given by

PFRP =



NLD∏
k=1

τ̄0−τk

τ0−τk
...

NLD∏
k=1

τ̄NHD
−τk

τ0−τk

... ... ...

NLD−1∏
k=0

τ̄0−τk

τNLD
−τk

...
NLD−1∏
k=0

τ̄NHD
−τk

τNLD
−τk


(12)
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The elements τ̄m represent the high-density discrete pseudotime vector, de�ned between -1 and 1.

Since both the LD nodes τk, and the HD nodes τ̄m are part of the process of the database generation

(as they are part of the transcription), the matrix PFRP can be computed o�ine and stored, with a

signi�cant saving in CPU time, and the trajectory synthesis is reduced to a multivariate interpolation

process de�ned by Eq. (7) and to the matrix multiplication de�ned in Eq. (11). To complete the

generation of the HD solution, we still need the HD discrete physical time vector associated with

the interpolated solution. It can be computed as t̄m =
tf−t0

2 τ̄m +
tf+t0

2 , m = 0, . . . , NHD, where

the initial time t0 is assumed to be known, while the �nal time tf is computed by applying the

multivariate interpolation approach described in Algorithms 1 and 2 to the �nal times stored in

the trajectory database. The trajectory representing the guidance solution is completely generated

with the application of the Algorithms 1 and 2, and Eq. (11).

V. Performance assessment

A. Accuracy of AMPI trajectories

In this section a measure of the accuracy of the trajectories generated via AMPI is given. The

comparison between AMPI and OCP solutions is performed as follows: for each of the �rst 100

cases associated with the Monte-Carlo campaign of Sec. VI, the mean and the standard deviation

of the maximum errors (except the �nal time, which has a unique value for each trajectory) are

computed. They quantify the di�erence between the AMPI trajectories and the OCP solutions, and

are given by

µ∗i = 1
n

n∑
i=1

max
k

[∆xi(tk)] , σ∗i =

{
1
n

n∑
i=1

[
max
k

(∆xi(tk))− µ∗i
]2
}1/2

(13)

where k ∈ [1, . . . , NHD + 1] and x = [h θ φ V tF ]. These results can therefore be seen as an upper

boundary for the errors generated by the AMPI, and this analysis is not a�ected by the use of the

tracking controller. Results are depicted in Fig. 5. Speci�cally the �rst plot shows the di�erence in

altitude and velocity as relative error. The second plot shows the maximum relative error in terms

of longitude and latitude. Moreover, the error in terms of �nal time is shown in the third plot of

the same �gure. Flight-path angle and heading angle have not been shown here, as they are not
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constrained. All the errors are shown in percentage.

cases
0 10 20 30 40 50 60 70 80 90 100

-2

0

2

4
max " h (%)
max " v (%)

cases
0 10 20 30 40 50 60 70 80 90 100

-1

0

1

2
max "3 (%)
max "? (%)

cases
0 10 20 30 40 50 60 70 80 90 100

-1

0

1 " t
f
 (%)

Figure 5: Accuracy assessment: AMPI vs OCP - relative errors.

From Fig. 5 it is possible to observe that the maximum error in terms of altitude and velocity

are both equal to 2.1%, while it is equal to 0.5% and 0.3% in terms of longitude and latitude. The

maximum values of the errors are associated with initial conditions close to the mean value of the

intervals included in the database. Therefore, they are a good measure of the worst performance

that the AMPI can generate. The maximum relative error in terms of �nal time tf is equal to 0.8%,

which corresponds to 5.2 s. This means that, despite the non-linearity of Eq. (2), a proper choice of

the database size permits to capture the overall behavior of the system. Larger di�erences between

the AMPI solutions and the true optimal trajectories can be observed in terms of �ight-path angle,

heading angle and bank angle (omitted in Fig. 5). This because these variables have no speci�ed

�nal values. This is true especially for the bank angle; while the �ight-path angle and the heading

angle are consequence of the �ight evolution, the bank angle can be fully controlled by the vehicle,

and shows in general the largest envelope among the three. This is visible in Figs. 3(a) and 3(c),

where the corresponding database envelopes can be observed.

Also in absolute terms AMPI trajectories show a good correspondence w.r.t. the optimal tra-

jectories. For instance, the mean error in terms of altitude is ∼= -232 m, and 1.27 m/s in terms

of velocity. The same conclusions can be drawn for the mean error of longitude (0.052 deg), and

latitude (0.001 deg). For what regards the �nal times tf there is a mean di�erence of -0.5 s, with a

standard deviation of 1.5 s, on a mean total time of 600 s per trajectory.
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B. CPU Time analysis

For what regards the real-time capability of the proposed method, this is indirectly demonstrated by

showing the CPU time required to compute the trajectory via AMPI. Also in this case the �rst 100

cases treated in the MC campaign described in Sec. V have been used. The results are compared

with the CPU times obtained by solving the corresponding OCPs. Obviously, the absolute values

cannot be used as a benchmark for onboard implementation. For this reason we refer to the AMPI as

a real-time capable method, and here we focus on the relative di�erence on a normal machine. The

tests have been repeated �ve times, to check the consistency of the results. However, for readability

purposes, only the �rst three sets of data have been plotted. The CPU time analysis has been

performed with MatlabR2015a, running on a laptop having a CPU i7-3687U and a clock frequency

of 2.10 GHz. Results are depicted in Fig. 6.
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Figure 6: CPU Time analysis: AMPI vs OCP.

In the �rst subplot the results obtained with the AMPI are depicted. The black circles represent

the CPU times associated with the single runs, while the gray line is the mean value, equal in this

case to 116 ms, with a minimum value of 108 ms, and a maximum value of 253 ms (not shown in

Fig. 6). The standard deviation is equal to 13 ms. In the second subplot the same information,

associated with the corresponding OCPs, are plotted. The mean time required to solve the OCP is

26.5 s, with a standard deviation of 14.0 s. Minimum and maximum values observed in this case

are equal to 8.3 and 88.5 s, respectively.

If we refer to the mean values, the AMPI algorithm is about 229 times faster than the algorithm
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required to solve the corresponding OCP. Moreover, the values of the standard deviation give us

indications about the real-time capability of the proposed method. Indeed, when the AMPI is used,

the small standard deviation con�rms reduced variations in the execution time required to generate

a solution. In this case the number of operations required can be predetermined, and does not

depend on the speci�c values that the initial conditions assume. Therefore, the obtained CPU times

are very similar to each other. When the optimal control theory is used instead, larger variations in

the execution time are expected, as it is not possible in general to predict the number of iterations

required to solve a non-convex optimal problem as the one de�ned in Sec. III.

VI. Numerical Results

A. Simulation Campaign

For the validation of the method, a Monte Carlo campaign of 1000 cases has been simulated. For

each case, random dispersions (3σ) consistent with the ranges of Eq. (5) have been used. Results

are compared with a so-called neighbor-trajectory tracking (NTT) approach. In this case, given the

initial conditions, the trajectory belonging to the database, having the closest initial conditions to

the current ones, is selected as reference solution. A common tracking controller has been added to

the guidance schemes. The states, the state errors, the controls, and the groundtracks are compared

and plotted in Figs. 7(a)-8(c), together with the histograms plotted in Figs. 9(a)-9(c), which show

the di�erences in terms of �nal altitude, velocity and range-to-go. Moreover, the footprints are

showed in 9(d).

The multivariate approach generates meaningful trajectories, as can be seen in Fig. 7(a), and

signi�cantly reduce the error (plotted in Fig. 7(b)) that has to be handled by the feedback con-

troller. This is well visible from Figs. 8(c) and 9(d), where the trajectories and the �nal footprints

(represented as crossrange and range-to-go) are plotted. These �gures show a large improvement

of performance when the AMPI is used, w.r.t. the NTT approach. To quantify the results, three

dispersion circles, having radii equal to 25, 50 and 75 km, have been de�ned. The dispersion area of

the cases associated with the use of the AMPI technique is about 4.2% of the area obtained by using

the same feedback controller to track the NTT solution. Another consequence is that the online
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Figure 7: MC campaign (N = 1000): AMPI vs NNT approach - (a) state, (b) state errors.

adaptation of the trajectory simpli�es the work of the feedback controller (Figs. 8(a) and 8(b)).

Indeed, the proposed technique allows to have smoother angle-of-attack and bank-angle pro�les, and

in general a reduced control activity w.r.t. the nominal tracking, as the feedback control needed for

the compensation of the errors is signi�cantly reduced.

In terms of altitude a reduced dispersion associated with the use of the AMPI is shown in Fig.

9(a). In the worst cases, there is an error of ∼= 200 m w.r.t. the reference value when the AMPI

is used, while this value can be up to 900 m for the NTT. In terms of �nal velocities, both the

systems achieve good performance, (a maximum error of about 2 m/s in both cases). Completely

di�erent are the results in terms of range-to-go, as shown in the histogram of Fig. 9(c). Indeed, 740

cases fall within a distance of less than 6.5 km w.r.t. the nominal target point when the AMPI is

used, despite the large initial dispersions, against 270 cases corresponding to the NTT. The cases

associated with the AMPI method go up to 963 cases against 389 (NTT) if a radius of 10.7 km is

considered.

Table 3: Dispersion Analysis - 1000 MC runs.

Ellipse / Controller [25× 25] [50× 50] [75× 75] Outside
AMPI 1000 0 0 0
NTT 834 164 2 0
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Figure 8: MC campaign (N = 1000): AMPI vs NNT approach - (a) angle of attack, (b) bank
angle, and (c) groundtracks.

Table 3 lists the results of the Monte Carlo campaign in terms of distance w.r.t. the nominal

�nal position. It is possible to see that 100% of the cases fall into the �nest ellipse, i.e., within a

radius of 25 km versus 83.4% of the cases associated to the use of the nominal tracking. Indeed, in

the former case the dispersion area is ∼= 214 km2 while in the case of nominal tracking the resulting

area is ∼= 3,675 km2. The two areas are depicted in Fig. 9(d). Finally, for both the methods, the

constraints are always satis�ed.
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Figure 9: MC campaign (N = 1000): AMPI vs NNT approach - (a) angle of attack, (b) bank
angle, and (c) footprints.

VII. Conclusions

In this work the multivariate pseudospectral interpolation approach has been coupled with an

algorithm of subspace selection to be able to generate online nearly-optimal real time trajectories for

entry scenarios in presence of wide dispersions at the entry interface. The Monte-Carlo campaign has

demonstrated the feasibility of this approach, having as further advantage a signi�cant improvement

in the guidance performances, analyzed both in terms of longitudinal error, and in terms of footprint

dispersion, reduced to ∼= 6% of the one obtained with a more traditional NTT approach.

A further advantage coming from the use of this technique is its lossless reduction of the database

size. High-density discrete trajectories can be obtained by storing a signi�cantly smaller number of

values, reducing the size to ∼= 3% of a database stored in traditional way, and this aspect directly
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relaxes the requirements for the memory of the onboard CPU. This aspect, together with the good

performance obtained, suggest that the proposed method can be a good choice for scenarios having

large dispersions at the entry interface.
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