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I knew exactly what to do.

But in a much more real sense,
I had no idea what to do.

Michael Scott

You will be alone with the gods,
and the nights will flame with fire.

Do it. Do it...Do it!
All the way.

Charles Bukowski
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SUMMARY

This thesis explores risk-aware operational decision-making methods to support the in-
tegration of Renewable Energy Sources (RES) into the energy system by enhancing en-
ergy flexibility under operational uncertainty. Amidst the urgent global shift towards RES
to combat climate change, this work identifies and addresses the challenges posed by the
intermittent and uncertain nature of renewable energies, such as wind and solar power,
to grid stability and energy reliability.

Central to this objective is the use of Demand Response (DR) strategies to balance en-
ergy supply and demand dynamically using electricity spot markets, mitigating the risks
associated with the variability and uncertainty of renewable energy sources. A signifi-
cant contribution of this work lies in the examination of the water-energy nexus through
a case study of the Noordzeekanaal–Amsterdam-Rijnkanaal in the Netherlands. This
area serves as a prime example of how critical water management infrastructure can be
optimized to support and advance the country’s energy transition goals without com-
promising its primary function of flood protection. This thesis presents a new pump-
scheduling strategy that provides DR services by optimising the energy cost of pump-
ing based on hourly electricity prices. We analyse the cost-saving potential through
DR, showing significant benefits can be gained by exploiting the flexibility in the wa-
ter system. By analysing both the Dutch and German markets with different RES pene-
tration over multiple years, this thesis also shows that as renewable energy penetration
increases, the potential benefits are expected to increase.

Operational uncertainty, arising from the intermittent nature of RES, fluctuating de-
mand, and the volatility of electricity prices, presents significant challenges to main-
taining grid stability and optimising energy use. The complexity of decision-making is
further compounded by the involvement of various mechanisms such as markets, bal-
ancing, and congestion management, each introducing its own set of uncertainties to
actors willing to exploit energy flexibility. To depict the consequential operational un-
certainty, this thesis describes predictive models and stochastic methods that aid in nav-
igating the intricacies of operational uncertainty effectively. By employing deep learn-
ing techniques, specifically a neural network architecture designed to forecast multi-
ple distribution quantiles simultaneously, we enhance the process of operational un-
certainty estimation. This thesis also presents methods for generating realistic scenar-
ios that consider the autocorrelation in data, enabling risk-aware DR strategies through
scenario-based stochastic programming. However, as the amount of sources of uncer-
tainty increase, the computational burden of such an approach increases exponentially.
To mitigate this curse of dimensionality and alleviate the computational burden of con-
trol methods, this thesis presents a subset selection and scenario tree generation method
that allows for developing sparse uncertainty representations.

Accurate forecasts are essential for effective energy planning and management, which
is an increasingly difficult task as the energy landscape becomes more complex and in-
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xii SUMMARY

terconnected. In this context, the ability to predict Day Ahead Market (DAM) prices with
higher accuracy enables stakeholders to make more informed bidding and operational
decisions, potentially reducing costs and enhancing the efficiency of the energy system
as a whole. Recognising the significance of market integration in electricity price fore-
casting, this thesis explores how European markets influence one another and the impli-
cations for DAM price forecasting models. It presents an EU-wide data analysis to reveal
the dynamics between interconnected markets and their collective impact on price set-
tlements to improve price forecasting performance for the Dutch market.

Integrating stochastic predictive and optimisation techniques into DR strategies of-
fers opportunities to unlock the flexibility of energy assets under uncertainty. By imple-
menting this thesis’ proposed framework for risk-aware pump scheduling, we quantify
the uncertainties within the energy market and meteorological conditions and optimise
the operational decision-making process for pump-controlled open canal systems. This
approach’s core is the stochastic Model Predictive Control (MPC) problem that incorpo-
rates scenario forecasts of future inflows, sea water levels, and hourly electricity prices.
Integrating Exceedance Risk constraints within the stochastic MPC allows for managing
the risks associated with water level violations, enabling an informed trade-off between
minimising energy costs and maintaining water safety. This risk-aware decision-making
model represents a departure from traditional deterministic control methods, provid-
ing a more nuanced approach that acknowledges and accommodates the unpredictable
nature of weather phenomena and electricity market volatility.

As natural extension to modelling uncertainty and adopting risk-aware decision-
making approaches to accommodate the volatile nature of RES, this present the appli-
cation of the proposed techniques in electricity grid management. As solar becomes
a more dominant component of the Dutch power system, grid congestion emerges as
an urgent issue. Addressing this, this thesis presents RayCast, an irradiance nowcast-
ing model that utilises satellite-derived cloud characteristics to forecast solar irradiance
quantiles. The proposed approach advances the capability to predict solar energy gen-
eration in space and time, thus addressing one of the grid operators’ main hurdles: the
uncertainty in incoming radiation. The application of RayCast in a real-world scenario
shows that by integrating the model into operational practices, as demonstrated with
data provided by Dutch DSO Alliander, a tangible improvement can be realised in fore-
casting congestion related to solar generation.

All proposed approaches for modelling uncertainty and optimal control aid in effi-
ciently managing energy resources and support the broader goal of integrating RES by
providing a framework for risk-aware operational decision-making.



SAMENVATTING

Dit proefschrift onderzoekt risicobewuste operationele besluitvormingsmethoden om
de integratie van hernieuwbare energiebronnen (RES) in het energiesysteem te onder-
steunen door de energieflexibiliteit onder operationele onzekerheid te vergroten. On-
der de dringende mondiale verschuiving naar hernieuwbare energiebronnen om kli-
maatverandering te mitigeren, identificeert en adresseert dit proefschrift de uitdagingen
die het grillige en onzekere karakter van hernieuwbare energiebronnen, zoals wind- en
zonne-energie, voor de stabiliteit en de betrouwbaarheid van de energievoorziening met
zich meebrengt.

Centraal bij deze doelstelling staat het gebruik van Demand Response (DR)-strategieën
om vraag en aanbod van energie dynamisch in evenwicht te brengen met behulp van
elektriciteitsspotmarkten, waardoor de risico’s die gepaard gaan met de variabiliteit en
onzekerheid van hernieuwbare energiebronnen worden beperkt. Een belangrijke bij-
drage van dit proefschrift ligt in water-energie nexus onderzoek door middel van een
case study van het Noordzeekanaal-Amsterdam-Rijnkanaal in Nederland. Dit gebied
dient als voorbeeld van hoe de kritieke infrastructuur voor waterbeheer kan worden ge-
optimaliseerd om de energietransitiedoelstellingen van het land te ondersteunen en te
bevorderen, zonder de primaire functie van bescherming tegen overstromingen in ge-
ding te brengen. Dit proefschrift presenteert een nieuwe strategie voor het maken van
pompschema’s die DR-diensten levert door de energiekosten van gemalen te optima-
liseren op basis van uurlijkse elektriciteitsprijzen. We analyseren het potentieel voor
kostenbesparing via DR, waaruit blijkt dat er aanzienlijke voordelen kunnen worden be-
haald door de flexibiliteit in het watersysteem te benutten. Door zowel de Nederlandse
als de Duitse markt met verschillende RES-penetratie over meerdere jaren te analyse-
ren, laat dit proefschrift ook zien dat naarmate de penetratie van hernieuwbare energie
toeneemt, de potentiële voordelen naar verwachting zullen toenemen.

Operationele onzekerheid, die voortkomt uit het onderbroken karakter van hernieuw-
bare energiebronnen, de fluctuerende vraag en de volatiliteit van de elektriciteitsprijzen,
vormt een aanzienlijke uitdaging voor het handhaven van de stabiliteit van het elektri-
citeitsnet en het optimaliseren van het energieverbruik. De complexiteit van de besluit-
vorming wordt versterkt door de betrokkenheid van verschillende mechanismen zoals
markten, balancering en congestiebeheer, die elk hun eigen reeks onzekerheden intro-
duceren bij actoren die bereid zijn energieflexibiliteit te exploiteren. Om de operationele
onzekerheid die uit deze mechanismes voortvloeid in beeld te brengen, beschrijft dit
proefschrift voorspellende modellen en stochastische methoden die helpen bij het na-
vigeren van de complexiteit die operationele onzekerheid met zich meebrengt. Door ge-
bruik te maken van deep learning-technieken, met name een neurale netwerkarchitec-
tuur die is ontworpen om meerdere distributiekwantielen tegelijkertijd te voorspellen,
verbeteren we het proces van operationele onzekerheidsschatting. Dit proefschrift pre-
senteert ook methoden voor het genereren van realistische scenario’s die rekening hou-
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den met de autocorrelatie in tijdreeksen, waardoor risicobewuste DR-strategieën moge-
lijk worden gemaakt door middel van op scenario’s gebaseerde stochastic programming
methoden. Naarmate het aantal bronnen van onzekerheid toeneemt, neemt de reken-
last van een dergelijke benadering exponentieel toe. Om deze vloek van dimensionaliteit
te verzachten en de rekenlast van controlemethoden te verlichten, presenteert dit proef-
schrift een methode voor het selecteren van subsets en het genereren van scenariobo-
men die het mogelijk maakt om schaarse onzekerheidsrepresentaties te ontwikkelen.

Nauwkeurige verwachtingen zijn essentieel voor effectieve energieplanning en -beheer,
en dat wordt steeds moeilijker naarmate het energielandschap toeneemt in complexi-
teit en onderlinge verbondenheid. In deze context stelt het vermogen om Day Ahead
Market (DAM)-prijzen met grotere nauwkeurigheid te voorspellen, belanghebbenden in
staat beter geïnformeerde biedingen en operationele beslissingen te nemen, waardoor
mogelijk de kosten worden verlaagd en de efficiëntie van het energiesysteem als geheel
wordt verbeterd. Dit proefschrift erkent het belang van marktintegratie bij het voorspel-
len van elektriciteitsprijzen en onderzoekt hoe Europese markten elkaar beïnvloeden en
de implicaties voor DAM-prijsverwachtingssmodellen. Het presenteert een EU-brede
data-analyse om de dynamiek tussen onderling verbonden markten en hun collectieve
impact op prijsschikking bloot te leggen om zo de prestaties van prijsverwachtingsmo-
dellen voor de Nederlandse markt te verbeteren.

Het integreren van stochastische verwachtingsmethoden en optimalisatietechnie-
ken in DR-strategieën biedt mogelijkheden om de flexibiliteit van energieactiva onder
onzekerheid te ontsluiten. Door het in dit proefschrift voorgestelde raamwerk voor het
risicobewust opstellen van pompschema’s te implementeren, kwantificeren we de on-
zekerheden binnen de energiemarkt en meteorologische omstandigheden en optima-
liseren we het operationele besluitvormingsproces voor pompgestuurde open kanaal-
systemen. De kern van deze benadering is het stochastische Model Predictive Control
(MPC)-probleem dat scenarioverwachtingen van toekomstige instromen, zeewaterstan-
den en uurlijkse elektriciteitsprijzen omvat. Door beperkingen op het gebied van over-
schrijdingsrisico’s binnen het stochastische MPC te integreren, kunnen de risico’s die ge-
paard gaan met overschrijdingen van het waterpeil worden beheerd, waardoor een wel-
overwogen afweging kan worden gemaakt tussen het minimaliseren van de energiekos-
ten en het handhaven van de waterveiligheid. Dit risicobewuste besluitvormingsmodel
wijkt af van traditionele deterministische controlemethoden en biedt een meer genuan-
ceerde aanpak die de onvoorspelbare aard van weersverschijnselen en de volatiliteit van
de elektriciteitsmarkt erkent en accommodeert.

Als natuurlijke uitbreiding van het modelleren van onzekerheid en het aannemen
van risicobewuste besluitvormingsmethoden om tegemoet te komen aan de volatiele
aard van RES, presenteert dit proefschrift een toepassing van de voorgestelde technie-
ken in het beheer van elektriciteitsnetwerken. Nu zonne-energie een steeds dominan-
ter onderdeel van het Nederlandse energiesysteem wordt, wordt netcongestie op het
elektriciteitsnetwerk een steeds urgenter probleem. Om hieraan bij te dragen presen-
teert dit proefschrift RayCast, een ’irradiance nowcasting’-model dat gebruik maakt van
satelliet-afgeleide wolkkarakteristieken om zonnestralingskwantielen te modelleren. De
voorgestelde aanpak vergroot het vermogen om een verwachting van de opwekking van
zonne-energie in ruimte en tijd te maken, en adresseert daarmee een van de belangrijk-
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ste hindernissen voor de netbeheerders: de onzekerheid in de binnenkomende straling.
De toepassing van RayCast in een echt scenario met gegevens van de Nederlandse DSO
Alliander, laat zien dat door het model te integreren in operationele praktijken een tast-
bare verbetering kan worden gerealiseerd in het voorspellen van congestie gerelateerd
aan de opwekking van zonne-energie.

Alle voorgestelde benaderingen voor het modelleren van onzekerheid en optimale
operationele besluitvorming helpen bij het efficiënt beheren van energiebronnen en on-
dersteunen het bredere doel van het integreren van RES door een raamwerk te bieden
voor risicobewuste operationele besluitvorming.





1
INTRODUCTION

We’re marooned on a small island, in an endless sea.
Confined to a tiny spit of sand, unable to escape.

But tonight, it’s heavy stuff.

Pendulum

This thesis aims to assist in integrating Renewable Energy Sources (RES) into the energy
system. In doing so, it explores methods that allow for the exploitation of energy flexibil-
ity under uncertainty. The focus lies on operational decision-making under uncertainty,
where several approaches are considered for quantifying operational uncertainty and its
application in optimal real-time control. One key case study area for the exploitation of
flexibility through Demand Response is the Noordzeekanaal–Amsterdam-Rijnkanaal, an
essential waterbody for flood defences in the Netherlands that is operated by large under-
shot gates and a pumping station to redirect water into the North Sea. The area represents
an interesting case where meteorological uncertainties affect both safety-critical processes
(i.e. water level management) and the energy system they operate in. This thesis offers
insights into how physical and market risk can be estimated and considered in water- and
energy management, unlocking flexibility in a world rich in uncertainty.

Parts of this chapter are under review for publication in Water Resources Research.
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2 1. INTRODUCTION

1.1. THE EUROPEAN ENERGY TRANSITION LANDSCAPE
The energy transition represents a path towards sustainability and resilience in the face
of global climate change. In Europe, this journey is characterized by the integration of
intermittent Renewable Energy Sources (RES), the smooth operation of an integrated Eu-
ropean energy market, and the transition from a centralized to a distributed grid infras-
tructure. These elements are key in achieving the European Union’s (EU) goals for a
climate-neutral future. However, overcoming challenges in infrastructural limitations,
policy and market dynamics, and the variability of RES is essential to secure an indepen-
dent and climate-neutral energy system.

1.1.1. GOALS AND CHALLENGES
Wind and solar energy led the European energy transition, marking a significant change
in the energy production landscape. As of 2023, renewables contributed to 44% of Eu-
rope’s electricity generation, with wind energy surpassing gas in electricity production
for the first time [1]. This reflects not only the technological advancements that are made
but also the success of the EU policy framework, for example, through the European
Green Deal, which sets a target to reduce greenhouse gas emissions by at least 55% by
2030 from 1990 levels with the ambition of a climate-neutral continent by 2050 [2].

However, as the more readily accessible opportunities for renewable energy deploy-
ment become more scarce, the focus shifts towards innovation in energy storage [3] and
management and expanding renewable capacity in less accessible locations. The vari-
ability and intermittency introduced by renewable sources like wind and solar power
pose significant challenges to grid stability and reliability. This necessitates advanced
energy and grid management strategies to ensure a consistent balance between supply
and demand, prevent the local congestion of grids, safeguard against potential black-
outs, and ensure power quality.

1.1.2. EVOLVING MARKETS
To support renewable integration, a shift was made to spot markets and short-term trad-
ing. The Day Ahead Market (DAM) and Intraday Market (IDM) are the two main instru-
ments in balancing the supply and demand of electricity in real-time by offering variable
prices of electricity based on the expected (change in) renewable energy availability. Fig-
ure 1.1 depicts the energy delivery timeline with the markets and roles in the energy sys-
tem.

On the DAM, energy is traded daily, with bids made for the following day. Consumers
buy energy in hourly blocks and are responsible for consuming it within the period for
which it is purchased. Every day at 12:00 CET, bids are collected by the market operator
and the market is cleared at the price where supply meets demand.

On the other hand, the IDM is a continuous market where participants trade 15-
minute, 30-minute or hourly energy blocks throughout the day, up to 5 minutes before
delivery. On the IDM, buy- and sell orders are matched individually, leading to varying
contract prices. This thesis treats the volume-weighted price over the three hours before
delivery (ID3-price) as the closing price. In practice, every bid would have a different
price. This would result in a distinct price for each trade, depending on the time of trad-
ing or even the specific party traded with. The IDM allows users to buy and sell energy
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throughout the day, correcting their day ahead plan while preventing them from caus-
ing imbalance. The IDM is seen as the market containing the highest potential to trade
renewable energy in the future [4], as it accommodates the uncertain and intermittent
nature of renewables through short-term trading in short blocks.

Besides the regular market mechanisms, DSOs and TSOs employ several mecha-
nisms to mitigate imbalances and congestion. TSOs apply aFRR and mFRR to mitigate
imbalances by activating participants beforehand, where they apply FCR for immedi-
ate response. DSOs are tasked with congestion management, which they do by calling in
flexibility or changing topology. However, participating in these mechanisms can require
strict constraints to satisfy, making them less accessible to regular assets.

Both the DAM and the IDM incentivise participants to adjust energy planning for
favourable prices that reflect the scarcity of supply and the marginal cost of production.
In this thesis, we focus primarily on these two markets. However, the Futures and aFRR
markets are included in the analysis presented in Chapter 2.

Figure 1.1: The energy delivery timeline depicting the energy markets, their function,
and the role of the activity of the grid operators at several stages before time of delivery.

A fully integrated European energy market envisions the free flow of energy across
borders, optimizing renewable resource use and enhancing energy security by lever-
aging diverse meteorological conditions across Europe [5]. Initiatives like market cou-
pling (XBID) [6] make cross-border trading more easily accessible and improve renew-
able resource utilization and electricity supply security, but also cause price convergence
within the European system [7]. The price waves travelling through the European bid-
ding zones observed during the recent energy crises highlight the integrated system’s
shared strengths and weaknesses, underscoring that national energy transition policies
must consider the broader European context.

The move towards more responsive and efficient markets is facilitating the reduction
of reliance on fossil fuels and moves us towards achieving the EU’s climate goals. How-
ever, this transition introduces new complexities and volatilities into the energy market,
demanding adaptive regulatory frameworks. The European Agency for the Cooperation
of Energy Regulators (ACER) emphasizes the importance of regulatory evolution to sup-
port effective spot markets and short-term trading, highlighting the need for market de-
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signs that ensure transparency, security, and flexibility [8]. As markets accommodate and
reward flexibility, participants need to adopt energy management strategies that exploit
flexibility and unlock the balancing potential of spot markets.

1.2. FLEXIBILITY, THE NEW RENEWABLE
Flexibility in the energy sector is increasingly recognized as a cornerstone for success-
fully integrating RES into the power grid [9]. As countries move towards more sustain-
able energy solutions, the inherent intermittency of variable renewable resources such
as wind and solar power presents new challenges, as depicted in Figure 1.2. In Europe,
we keep our grid operating at a 50 Hz frequency, to which we have adjusted our appli-
ances and infrastructure to operate optimally. This frequency stays stable when demand
and supply are in balance, where the frequency increases with a generation surplus (pos-
itive imbalance) and the frequency decreases with a generation deficit (negative imbal-
ance). Unlike traditional energy sources that can be controlled to meet demand, renew-
able energy generation is variable and dependent on factors like weather conditions and
time of day. This variability introduces the need for innovative approaches to maintain
a stable and reliable energy supply—enter the concept of flexibility.

Figure 1.2: A depiction of the challenge of balancing the electricity grid. It is a metaphor
for how renewable electricity supply (left) is balanced with demand (right) in order to
maintain a grid frequency of 50 Hz.

1.2.1. DEMAND RESPONSE

Demand Response (DR) refers to the changes in electric usage by end-use customers
from their normal consumption patterns. These signals are achieved through prices that
reflect scarcity of supply and marginal cost of production. The variable supply of renew-
ables leads to changing electricity prices over time, and induce lower electricity use at
times of high market prices. The Transmission System Operator (TSO) and Distribution
System Operator (DSO) can send activation signals to flexible assets when grid reliability
is jeopardized to prevent system failure. By enabling dynamic adjustments of demand,
DR contributes to the grid’s stability, reduces the need for peak generation capacity, and
optimizes energy costs for consumers. European spot markets are designed to incen-
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tivise consumers to adjust their energy usage in response to variable prices, giving DR its
business case. By incorporating DR into energy systems, consumers can leverage market
mechanisms to achieve a more resilient, cost-efficient, and sustainable energy system.

Besides leading to cost-efficiency, DR helps renewable integration through the merit-
order effect as depicted in Figure 1.3. The merit-order describes the activation order
of electricity production sources by their marginal cost of production. As demand in-
creases, the necessary generation capacity to fulfil demand increases, requiring a new
and more expensive source to start producing electricity and driving up the electricity
price. By actively steering consumption towards low electricity prices, consumers auto-
matically aim for a higher share of renewables in the mix, potentially preventing more
polluting sources further down the merit order from being activated.

Demand [MW]
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Figure 1.3: The merit-order curve where electricity production sources are activated in
order of their marginal cost of production, and thereby shapes the price-volume curve.
The bar width indicates the available generation capacity of different electricity sources,
whereas their height represents their marginal cost of production.

Figure 1.4 shows a toy example of how flexibility can be exploited to minimize en-
ergy costs for a given consumer. In this example, we compare a demand profile that is
applied when there a fixed price scenario with DAM and IDM optimised energy demand.
We constrain the maximum power to be 3.5 kW, the minimum power to be 0.5 kW, the
maximum ramp rate to be 0.75 kW per hour, and the total energy consumption to be the
same for all scenarios. The demand is redistributed by optimizing hourly demand over
DAM prices, realizing 22.8% energy cost savings compared to the original demand. Af-
ter DAM closure, re-optimizing the demand over the IDM prices leads to a total of 56%
cost decrease. In this toy example, there is a single opportunity to capitalize on price dif-
ferentials between the DAM and IDM; in reality, this differential varies throughout time,
leading to multiple trading opportunities for the same energy.

1.2.2. UNCERTAINTY & OPERATIONAL CHALLENGES

In the previous sections of this Introduction, we show that many available mechanisms
(markets, balancing, and congestion) can benefit from DR strategies. Opportunities
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Figure 1.4: Toy example of a user that has peak demand in mornings and early evenings.
This user, however, can optimize operations as it has inherent flexibility in its system.
This flexibility is exploited by optimising demand over (a) DAM and (b) IDM prices. The
arrows indicate how the optimized load differs from the initial schedule with the same
total energy use, constrained minimum and maximum demand, and constrained ramp-
ing.

might arise from different markets and mechanisms simultaneously. Including more
markets increases the complexity of decision-making and the sources of uncertainty for
participants. Still, it is likely to amplify the business case for DR since it is possible to
capitalize on opportunities in separate processes of the electricity system, as shown in
the toy example in Figure 1.4. Portfolio optimization on both the DAM and IDM allows
for the exploitation of day-ahead forecast inaccuracies in the market, with multiple pos-
sible opportunities before delivery. As numerical weather models give updates every few
hours, expected conditions can change with every new update, leading to new trading
opportunities.

Different combinations of mechanisms require customised control that can make
trade-offs between the various opportunities. This gets complicated by the operational
uncertainty in prices or activation signals. Figure 1.4 shows a two-step optimization us-
ing a single price-curve for each market. Including multiple mechanisms would require
a constant trade-off for profitability, while the signals or prices can be subject to high
volatility and uncertainty. At the same time, in the case of DR from complex systems,
there are likely local processes, also affected by uncertainty, that constrain the load pro-
file and limit the flexibility.

One approach for controlling processes under operational uncertainty is ‘predict-
and-optimise’ [10], where prices or activation signals are forecast and used to optimise
decisions or portfolios based on the most recent knowledge. However, a strategy rely-
ing on forecasts must also cope with forecast errors. These errors involve financial risk
through market participation at disadvantageous times, uncertain net demand or sup-
ply, and physical risk in user processes or grid infrastructure.

In DR, the uncertainty emanates from weather phenomena, fossil fuel markets, fluc-
tuating demand, and, consequently, electricity prices and activation signals. Since many
energy management activities are currently performed on a day-ahead basis, the ex-
pected day-ahead forecast error plays a large role in real-time management, for example,
through the IDM where Balance Responsible Parties (BRPs) correct their positions.
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This unpredictability and complexity call for enhanced predictive models that ade-
quately reflect the operational uncertainty given the latest information. Moreover, inte-
grating stochastic optimization methods into DR strategies can mitigate the risks associ-
ated with operational uncertainty. These methods enable the consideration of multiple
possible future scenarios in the decision-making process, thus providing a more com-
prehensive strategy that accounts for a wide range of outcomes. By adopting a prob-
abilistic approach to forecasting and optimization, stakeholders can better prepare for
and adapt to the inherent volatility associated with RES and demand fluctuations and
the operational risk involved in their processes.

The increased complexity in operational decision-making under varied sources of
uncertainty motivates this thesis to explore operational uncertainty quantification and
risk management methods. It proposes methods to capture dependencies between weather,
markets, and control decisions, and shows how to exploit these in control. By unlocking
DR potential from assets without violating local constraints, this thesis aids with inte-
grating variable renewable energy into the energy system.

1.3. THE DUTCH WATER-ENERGY NEXUS
The water-energy nexus represents the interdependent relationship between water and
energy management. It is an active area of study in the pursuit of sustainable develop-
ment, capturing the intersections across various fields, including drinking water sup-
ply [11], heating systems [12], and electricity generation [13], each showing their unique
ways that water and energy are intertwined.

Historically, the Netherlands has been utilizing windmills to pump water and man-
age water levels within networks of canals, dykes, and polders. The transition to fuels-
based and electric pumping stations offered more reliable, controllable, and thereby
faster-responding water management systems. Besides enhancing the efficiency of man-
aging the Netherlands’ water systems, it also caused a growing interdependence between
the water and energy sectors.

This thesis evaluates the water-energy nexus within the context of the Netherlands’
open canal systems, exploring how this historic and critical infrastructure can be opti-
mized to support the country’s energy transition goals.

1.3.1. ENERGY TRANSITION STATUS

The Netherlands has set ambitious environmental targets, outlined in the National Cli-
mate Agreement and the EU Green Deal. These frameworks collectively aim to substan-
tially reduce carbon emissions by 2030 and establish a carbon-neutral energy system by
2050. Recent statistics reveal a promising trajectory towards these goals, with RES hav-
ing a significant presence in the Dutch energy system. In 2022, renewable electricity’s
contribution rose by 20% from the previous year, accounting for 40% of the country’s
total electricity production [14]. Arguably, the COVID pandemic’s role in the electricity
consumption patterns also affected the statistics. The share of renewable energy in the
Netherlands’ final energy consumption has also seen an uptick, reaching 15% in 2022.
Solar energy, in particular, witnessed a 45% increase in consumption due to the substan-
tial rise in installed capacity, now exceeding 19 GW. Wind energy production capacity
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grew by 14% in the same period, with onshore wind energy being the larger share [15].
Despite these positive trends, challenges remain in meeting the 2030 target of a 49%

reduction in greenhouse gas (GHG) emissions set by the Climate Act [16]. The Nether-
lands faces the task of significantly accelerating its efforts in renewable energy deploy-
ment and GHG emissions reduction to align with these ambitious goals. The transition
away from natural gas, especially with the phase-out of Groningen gas production, fur-
ther increases the urgency for alternative energy solutions and the reinforcement of re-
newable energy infrastructures [17]. The rapid integration of rooftop photovoltaic (PV)
systems, driven by high electricity prices and net metering policies, has introduced sub-
stantial stress on the national grid, leading to imbalances and congestion. TenneT, the
Dutch TSO, mentions that flexibility is a key building block for a reliable and affordable
grid [18].

1.3.2. THE WATER MANAGEMENT SYSTEM

The Netherlands is a low-lying country in the Rhine-Meuse delta, with the rivers Rhine,
Meuse and Scheldt flowing through it. A large part of the country lies below mean sea
level, making managing water levels of local and national waterways necessary. The wa-
ter levels and type of management (fixed, flexible or dynamic) are decided locally, by a
waterboard, for the smaller canals. Nationally, the Dutch Ministry of Infrastructure and
Water Management, Rijkswaterstaat (RWS), determines water levels typically based on
agricultural needs, land-subsidence mitigation, shipping requirements and flood risk.
Many of these canals are controlled with Model Predictive Control (MPC), which still is
an active research topic in water resources management [19].

Water system control involves a sophisticated infrastructure network that redirects,
stores, and pumps excess rainfall from below-sea-level areas to the North Sea. This sys-
tem operates in stages: from drainage canals in polder areas to main drainage canals,
and finally out to rivers or the sea. Managing this water system currently consumes ap-
proximately 147 GWh of electricity annually [20]. However, with the anticipated rise in
sea levels, groundwater seepage and pump head are expected to increase, leading to a
corresponding rise in the operational energy consumption of the water system [21].

Designed to withstand extreme weather events, the system’s capacity for significant
water level increases provides a buffer in critical times. Incorporating variable speed
pumps offers additional flexibility, enhancing energy use efficiency within the water sys-
tem [11]. Allowing for more dynamic water levels in everyday cases would increase the
flexibility in pump scheduling and unlock DR strategies. It could be used to reduce the
CO2 emission caused by the pumping stations’ electricity consumption during the en-
ergy transition, and could contribute to stabilising the Dutch electricity grid and energy
system.

The Dutch water system has an installed pump capacity of 200 MW and potential
energy storage of 1700 MWh in the canals [22]. By harnessing the inherent flexibility
within the water management system, the Netherlands has an opportunity to pioneer by
optimizing its necessary pump usage to facilitate the energy transition. This approach
echoes the historical practice of "pumping when the wind blows," illustrating a full-circle
moment where traditional methods merge with modern technologies to address envi-
ronmental challenges.
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1.4. THIS THESIS
In this thesis, we seek to unlock flexibility potential in the energy system with a prob-
abilistic and risk-aware control framework. By examining the operational flexibility of
electric pumping stations and their role in the broader energy system, this thesis aims
to contribute to a more sustainable and integrated approach to managing the interde-
pendencies between water and energy in the Netherlands. However, the proposed tech-
niques in this thesis are not limited to operational water management and could be ap-
plied in any operational control under uncertainty.

This thesis aims to answer the question

How to exploit flexibility in energy-related processes such that benefits, in
terms of reducing cost, CO2 emissions, and increasing balance and

congestion regulating volume, are generated while complying to localized
constraints and objectives under uncertainty?

In answering this question, we build on the ’predict-and-optimize’ approach and ex-
tend it to incorporate operational uncertainty. Special attention is paid to the Noordzeekanaal–
Amsterdam-Rijnkanaal water system, a critical system for water defence controlled by a
6 MW pumping station, which is used to showcase DR applications from safety-critical
systems.

1.4.1. CASE STUDY AREA FOR DEMAND RESPONSE
One main aspect of the Dutch water management system is the Noordzeekanaal–Amsterdam-
Rijnkanaal (NZK-ARK). It’s an intricate open canal system equipped with multiple un-
dershot gates and has a pumping station at IJmuiden, which aids in consistently direct-
ing water into the North Sea, regardless of the sea’s variable water levels. Water from four
regional water boards flows into the NZK–ARK, helping in the redirection of excess rain-
water. This water is methodically channelled or pumped out to the North Sea. A detailed
representation of this water system, focusing on the inflow and outflow mechanisms, is
provided in Figure 1.5.

At IJmuiden, the gate operations are dictated by specific water level differentials.
They can be activated when there’s a 16 cm water level difference and deactivated at
12 cm. This modulation is necessary to account for the contrasting densities of salt and
freshwater, along with inherent system friction [23]. With automated controls in place,
these gates have a maximum discharge rate of 500 m3 s−1, a precaution to protect the
foundation of the gate complex. The IJmuiden station incorporates six distinct pumps,
with a combined maximum discharge of 260 m3 s−1 and peak power consumption near-
ing 6 MW, underscoring the system’s energy-intensive nature.

The NZK–ARK’s considerable surface area, coupled with its variable water level capa-
bilities and significant energy demands for pumping, positions it as an exemplary case
for exploring DR strategies. However, given its critical role in the Netherland’s main flood
defence infrastructure, any implementation of DR must not compromise flood risk man-
agement. In addition to that, the pumping station is positioned in a congested area of
the grid [24], necessitating the adoption of sophisticated, reliable control techniques that
can seamlessly integrate energy efficiency measures without undermining the system’s
primary purpose of flood protection.
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Figure 1.5: The Netherlands, Noordzeekanaal–Amsterdam-Rijnkanaal. a) The water
management area of different local water authorities are shown by color. Pumping sta-
tions owned by local water authorities are shown by red diamonds, gate structures with
red rectangles, and the IJmuiden gate- and pumping station with a yellow diamond. b)
The water level regime of the NZK-ARK showing target ranges and warning/emergency
levels.

1.4.2. THESIS STRUCTURE

Chapter 2 aims to answer the question: What are the potential benefits in terms of cost
reduction and CO2 mitigation of applying DR strategies to safety-critical systems like wa-
ter pumping stations? This chapter explores the potential benefits of applying DR to the
NZK-ARK, a critical piece of the Dutch water defence system and a large energy con-
sumer. By formulating a new MPC problem, in which we propose a multi-market strat-
egy, DAM and IDM prices are used to optimize energy-cost optimal pump schedules. Us-
ing Dutch and German market data over different years and variable renewable energy
market penetration, we show that the potential benefits of applying DR are high, where
up to 56% of cost savings can be made with perfect foresight. The difference between
the German and Dutch markets indicates that as variable renewable energy market pen-
etration increases, so does the potential profitability of DR. The analysis with perfect
foresight serves as a benchmark for evaluating performance when considering opera-
tional uncertainty, and allows us to establish the benefits of multi-market DR separately
from the predictive capacity of uncertainty models..

Chapter 3 asks: What are effective methods for estimating operational uncertainty to
improve control performance and decision-making in water and energy systems? This
chapter describes several methodologies applied to model operational uncertainty in
multiple parts of this thesis. It details how neural networks are trained and optimized
for forecasting purposes, what architecture is used to quantify uncertainty and generate
probabilistic forecasts, a method for multi-distribution sampling with fixed correlation
between variables is explored for the purpose of time series sampling, and a scenario-
reduction method is proposed to condense a large uncertainty representation into an
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optimal subset and sparse scenario tree representation.
Chapter 4 addresses the question: How does European energy market integration im-

pact DAM price forecasting, and what features improve the accuracy of these forecasts?
This chapter explores how data on European market integration can be used to inform
DAM price forecasts. We perform an extensive analysis of features for national price
forecasting models, giving insights into the mechanisms that make markets affect each
other. We show that flexibility in the energy system could be important for the influ-
ence the system has on price settlement in a connected market. This knowledge is then
used to develop a DAM price forecasting model, where EU market integration features
are shown to improve forecasting accuracy of Dutch DAM prices with statistical signifi-
cance. The findings in this chapter are later applied in Chapter 5 to investigate the effect
of operational uncertainty in DR.

Chapter 5 examines: How does operational uncertainty affect the performance of the
DR strategies and control framework applied to the NZK-ARK system? This chapter evalu-
ates the performance of the operational forecasting and control framework, as defined in
Chapter 2, when applied to the NZK-ARK case study area. We develop probabilistic fore-
casting models for the incoming pumped discharge, North Sea water level, and DAM and
IDM electricity prices to be used in a stochastic MPC in a receding horizon fashion. We
apply risk-aware constraint formulations for a computationally efficient and pragmatic
trade-off between energy cost savings and water level violations.

Chapter 6 poses the question: How can probabilistic irradiance forecasting models
improve grid management and congestion mitigation in regions with high solar penetra-
tion? This chapter showcases the potential application of earlier proposed uncertainty
estimation tools in a different context than water resources management. We introduce
RayCast, a spatially distributed Quantile Regression irradiance nowcast, that proficiently
predicts irradiance quantiles using satellite data. We showcase its potential for grid man-
agement through a case study with Dutch DSO Alliander, where we improve the coverage
percentage of a QR net-load forecast at a transformer station characterized by its high
degree of solar penetration and grid congestion.

In Chapter 7, we summarize our conclusions and the societal impact of our work,
and give suggestions on further research directions that would complement the work
described in this thesis. The chapter ends with practical considerations for operational
water resource management aimed at the Dutch sector and acknowledgements to peo-
ple either directly or indirectly involved in this thesis.

This thesis describes a risk-aware framework for DR services under operational un-
certainty. This framework is depicted in Figure 1.6, describing how the steps in the pro-
posed framework are connected to the chapters in this thesis.

The mathematical notation applied in this thesis is specific to each chapter. There-
fore, the meaning of the symbols used in the following chapter should be obtained from
the corresponding text rather than from a different chapter.
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Figure 1.6: The proposed framework for DR under operational uncertainty and how it is
connected to the chapters of this thesis.
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PUMPING WHEN THE WIND BLOWS

This is where our worlds collide, this is where we come alive.

Koven

In this chapter, we propose the use of multiple electricity spot markets to enable price-
based Demand Response for open canal systems in the Netherlands, where many large
pumping stations are used for flood mitigation and control of groundwater levels. In the
new strategy for pump-scheduling we combine the Day Ahead and Intraday electricity
markets to be used in a hierarchical receding horizon economic Model Predictive Con-
trol (MPC). A cost analysis is performed for the potential of multiple market-strategies
and the automatic Frequency Restoration Reserves, using actual market and water system
data. We show new insights in the trade-off between CO2 emissions and operating cost,
the difference between the German and Dutch market, and temporal changes in market
conditions and Demand Response profitability due to increased renewable energy market-
penetration.

We observe that the German energy market is rewarding DR more than the Dutch equiva-
lent, due to the higher renewable energy market penetration. The proposed multi-market
strategy leads to a cost decrease of 10% and 16% in the Netherlands in 2017 and 2019,
respectively. When applying German market scenarios, we found a cost saving potential
of 56% and 50% in 2017 and 2019, respectively. The cost-saving potential for the aFRR-
market was found to be up to 12% in the Netherlands and 28% in Germany, through a
conservative analysis. The results suggest that the proposed control system, optimising
costs over the day ahead, intraday and possibly the aFRR markets, is profitable compared
to the current strategy in both the current and future electricity market.

Parts of this chapter have been published in the Journal of Hydroinformatics [1].
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2.1. INTRODUCTION

2.1.1. DEMAND RESPONSE IN THE NETHERLANDS

With climate change mitigation as a driving force, Renewable Energy Sources (RES) are
becoming a larger part of the energy mix [2]. The Netherlands has passed a climate law,
in which the country commits to a 49% reduction of carbon dioxide (CO2) emission by
2030 and 95% reduction by 2050 (compared to emission levels in 1990) [3]. Solar and
wind energy are promising RES, and are becoming more profitable due to technological
advancements. While these generating techniques are valuable for the energy transition,
they bring some new challenges. One of these challenges is that the amount of energy
generated at a certain time is as predictable as the weather. Big consumers will have
to be more active when energy is available, and less when it isn’t. The availability of
energy is reflected in the price of flexible energy markets through scarcity of a product.
This economic incentive to customers to shift energy use in time is known as Demand
Response (DR) [4, 5].

Currently, energy prices are correlated with sustainable energy production, as shown
in Section 2.2.2. When wind power generation peaks unexpectedly, the price of energy
decreases. This price decrease can even result in negative energy prices since paying
consumers can, at times, be less expensive than shutting down inflexible power plants.
By consuming energy at the right time, money can be saved, or even earned by energy
users; this gives DR a business case. DR can be enabled by participating in flexible en-
ergy markets, which give incentives to change energy usage through time-of-use pricing.
Currently, these markets are changing to accommodate sustainable energy and flexibil-
ity in consumption [6].

Since the Dutch market currently has a low share of renewable energy, we take the
German market as a representative of a future scenario for the Dutch market. Germany’s
energy mix is increasingly dominated by wind and solar energy [7], which are the same
sources the Dutch energy transition is moving towards [8]. In addition, the market struc-
tures are relatively similar in the two countries. Both countries make use of a Day Ahead
Market (DAM) and Intraday Market (IDM). However, the balancing services are not open
for public participation in Germany; this has already been realised in the Netherlands,
where any Balance Responsible Party (BRP) can participate in the imbalance market [9].

2.1.2. CURRENT STATUS OF DR APPLICATIONS

With rapid advances in intelligent electricity demand management systems and the growth
of aggregators, many more energy users are participating in DR [10]. In fact, even power
network expansion and renewable energy investment decisions have to explicitly con-
sider a future with DR [11]. Currently, some new assets that participate in DR include
drinking water systems and Heating, Ventilation and Air-Conditioning systems. The
DR strategies applied mostly involve a DAM. However, there is still variation in strategy.
Some research the economic potential of the IDM [12], while others combine the DAM
with the IDM to optimise cost [13]. Considering multiple market mechanisms can sig-
nificantly improve economic efficiency of DR [14]. This type of spot market-based DR is
called time-of-use pricing and is part of the price-based DR class [5]. The potential cost-
and emission-reduction through DR increases with renewable energy penetration [15].
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DR strategies that include a short-term flexible energy market (like the IDM or market-
based balancing services) typically use mixed-integer formulations of the optimisation
problem to indicate buy/sell scenarios [5]. When studying DR literature, applications
relate to energy markets in France [16], the UK [12], Canada [17], the USA [18], Den-
mark [13], and South-Africa [19]. The Dutch or German market is hardly ever taken as
case-study. Some studies show the economic potential of the Frequency Restoration Re-
serves (FRR) for photovoltaic-battery systems [20], where a rule-based control was sim-
ulated with Dutch market data. FRR potential was also explored for heat pumps in Ger-
many [21] by simulating with a rule-based control system. In [22], a stochastic Model
Predictive Control (MPC) was applied in a simulation of residential heating, energy stor-
age and community-integrated energy systems in order to explore the technical feasibil-
ity and economic potential.

In this chapter, we propose a new pump scheduling strategy that combines both the
DAM and IDM, and consider scenarios with both the Dutch and German markets over
two years. We analyse market data from both countries, showing the effect of renewable
energy market-penetration on the correlation between the carbon intensity (CI) of elec-
tricity and the DAM price (Section 2.2.2). Actual open-source market data for the DAM,
automatic Frequency Restoration Reserves (aFRR), and German IDM markets were used,
and licensed Dutch IDM data was used. The MPC formulated (Section 2.3.2) results in a
Mixed Integer Quadratic Program (MIQP), which is solved to near global optimality using
Gurobi [23], and applied in a closed-loop simulation in receding horizon fashion. The
MIQP formulation results from water system constraints that indicate pump- and gate-
discharge possibilities, electricity market participation is formulated continuously. The
proposed multi-market strategy is compared with a reference strategy, where energy use
is minimised and energy is traded on the futures market for a monthly fixed price. The
analysis was performed for the years 2017 and 2019 to show temporal changes in market
conditions. More recent data was excluded to purely explore market changes due to the
increase in renewable energy integration, and to exclude effects from the pandemic or
the invasion of Ukraine. Besides participation in spot markets (Section 2.4.2), we present
an estimate of the economic potential for participating in the aFRR market, for which the
potential of successful activation for downward regulation is analysed (Section 2.4.3).

2.2. MARKET AND BALANCING MECHANISMS
We evaluate the following mechanisms for DR purposes: the DAM, IDM, futures mar-
ket and aFRR market. Direct participation in the aFRR market is not simulated, but its
potential is explored based on a post-analysis using actual aFRR activation data (Sec-
tion 2.4.3) and MPC simulations with participation on the DAM and IDM (Section 2.4.2).
Both the DAM and the IDM incentivise participants to adjust energy planning for favourable
prices that reflect scarcity of supply and marginal cost of production. Minimising the
operational cost of energy will lead to a shift in energy use when prices change, a mech-
anism known as price-based DR [5].

The German market is taken as representative for a future Dutch market. The Ger-
man RES mix is similar to the planned future mix in the Netherlands [7, 8], while the
countries have a similar market structure, climate and socio-economically driven elec-
tricity consumption patterns. Germany uses similar market mechanisms as the Nether-
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lands, although the markets do differ in some rules and in volume. Alternative markets
have significantly different conditions: Denmark has a relatively small market domi-
nated by RES, the Norwegian system is dominated by hydropower generation, the French
market is dominated by nuclear generation, the Belgian mix doesn’t contain a high share
of intermittent renewables, and the UK market contains a relatively low degree of inter-
connectivity with other markets. Therefore we deem the German market as most feasible
representative for a future Dutch market.

Figure 2.1 shows the 2-Dimensional Kernel Density Estimate (KDE) of the Dutch (Fig-
ure 2.1a) and German (Figure 2.1b) DAM and IDM price over recent years. The price
difference between the two markets causes change in the scheduled energy use or pro-
duction. The distribution of the Dutch prices is varying more over the years than the
distribution of the German prices. A possible explanation is the maturity of the markets:
the German market is more mature in volume and therefore possibly more stable.
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(c) Estimated CI over DAM
price.

Figure 2.1: 2-Dimensional KDE of the Dutch (a) and German (b) DAM and IDM price,
and the estimated CI over the DAM price (c). Darker color indicate a higher empirical
probability.

2.2.1. GRID BALANCING MECHANISMS

The integration of RES has introduced a growing complexity in energy systems, leading
to the need for advanced balancing mechanisms to minimize energy imbalances. Short-
term trading and flexibility in energy use have been identified as effective strategies to
address this challenge The Dutch Transmission System Operator (TSO), TenneT, is re-
sponsible for balancing the grid. It does so by employing balancing mechanisms, like
the imbalance market. Because large volumes of energy cannot yet be stored with eco-
nomic efficiency, power supply and demand have to be matched continuously. Imbal-
ance on the grid can negatively affect power quality or can eventually result in damage to
the infrastructure itself. TenneT balances the grid using back-up (emergency) produc-
tion capacity or asking producers to reduce production. Another option is to ask large
consumers to in- or decrease consumption, which is currently being applied to green-
houses, hospitals, and small industries. Demand-side balancing of the grid is mostly
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implemented using automated control, powered by a near-real-time feed of the imbal-
ance and energy price [9].

Positive contributions to the imbalance are rewarded, while negative contributions
will be penalized. This is called ’passive contribution’, and the feed is freely available
while BRPs act on this market automatically [24]. Participation in the imbalance market
requires strategic energy consumption, a challenge for operations with fixed ramp-up
times like pumping stations, indicating a need for tailored solutions. Therefore, imbal-
ance should be minimized using short-term trading and flexibility in energy use, reflect-
ing the growing complexity introduced by the integration of RES and the need for ad-
vanced balancing mechanisms.

Positive contributions to the imbalance are rewarded, while negative contributions
will be penalised. This is called ’passive contribution’, and the feed is freely available
while BRPs act on this market automatically [9]. To act profitably on the imbalance mar-
ket, the balancing party would want to consume as much energy as possible within 15
minutes. For a pumping station like the one in IJmuiden, which takes about 15 minutes
to boot-up and then preferably keeps running for at least one hour, participation on the
the imbalance market would probably result in minimum financial gains or even losses.
Therefore, imbalance should be minimised using short-term trading and flexibility in
energy use.

The aFRR is a reserve capacity market used to restore the grid frequency automati-
cally when deviations from 50 Hz occur. In this market, BRPs can bid for upward regu-
lation or downward regulation. Bidding is done in 15-minute blocks, and the BRP gets a
15-minute notice before activation. This market would be feasible for a pumping station
to participate in, due to the 15-minute ramp-up time. The aFRR does constrain its par-
ticipants to a minimum bid of 1 MW, a constraint that can be avoided by partnering with
an aggregator that combines multiple small bids into larger bids. Figure 2.2 shows the
probability of occurrence of downward activation on the aFRR market for certain down-
ward regulating prices and activation sequence lengths. The German market shows a
higher profit potential for downward regulating services. Interestingly, the data shows
small differences over the years, indicating that the increase in renewable energy gen-
eration does not increase the demand for downward regulation through the aFRR. The
IDM, which is more easily accessible to BRPs, might be providing the necessary balanc-
ing while allowing BRPs to mitigate risks of trading for disadvantageous prices.

2.2.2. CARBON INTENSITY OF GRID ELECTRICITY

Optimising on energy costs can lead to a decrease in emitted CO2 [15] due to the corre-
lation between sustainable energy production and energy price. Two national markets
are evaluated: the Dutch and the German market. The Netherlands has a low share of
RES, while the German energy mix contains a larger share. The merit-order effect, where
RES with low marginal costs of electricity are activated before more polluting sources
with higher marginal costs, increases the correlation between CI and energy price in the
German market.

Due to incorrect European Network for Transmission System Operators in Europe (ENTSO-
E) Electricity generation by source time series, a CI time series of the grid was not eas-
ily estimated. First, historic solar and wind generation time series are calculated using
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Figure 2.2: Probability of occurrence of downward activation through the aFRR market.
The figure shows the percentage of time at which downward activation occurred in color,
the year and the length of the activation sequence (15min, 30min, 45min, 60min) on the
x-axis. On the y-axis is the downward regulating price at ≤ 0, or less than a quantile value
of the DAM prices that year.

’Renewables.Ninja’ capacity factor time series [25, 26] for both the Netherlands and Ger-
many. The yearly installed capacities were linearly interpolated over time in order to
have time series of installed capacity. The resulting renewable energy generation time
series are corrected with the yearly produced renewable energy volumes by scaling the
time series to match the reported yearly produced generation volumes. For every hour,
the emitted carbon from renewables is calculated based on the CI of electricity produced
by renewable sources [27, 28]. The total emitted carbon per year is then calculated using
the load and the reported yearly averaged CI [29, 30]. The yearly emitted carbon from
renewables is then calculated, and subtracted from the total emitted carbon. Conse-
quently, the emitted carbon from non-renewable sources remains. The yearly average
‘rest’ CI is calculated using the previously calculated non-renewable carbon emission,
and the amount of load not supplied by renewables. The yearly averaged CI is then lin-
early interpolated over the intermittent dates to a ‘rest’ CI time series. The CI time series
of all generation is consequently calculated by dividing the emitted carbon at each hour
by the load.

Figure 2.1c shows the estimated CI of the two national grids plotted over the DAM
prices for 2017 and 2019. For both considered markets, a correlation can be seen be-
tween the DAM price and the CI of energy. In Germany, the spread of the CI is larger
than in the Netherlands. The Netherlands contains relatively efficient coal- and gas-
fired power plants, while Germany still uses brown-coal plants to produce electricity to
some degree [31]. Also, Germany has a larger share of renewables which at some times
can even fulfill all the electricity demand, leading to a strong correlation between DAM
prices and CI.
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Table 2.1: Pump power and discharge curves [33].

Pump RPM/Discharge Q-dH relationship [m3/s], [m] P-dH relationship [kWh], [m]
1&3 n = 64.3 rpm Q =−5.4174 ·d H +44.93 P = 208.08 ·d H +536.85

2&4
n = 64.3 rpm Q =−5.4174 ·d H +44.93 P = 208.02 ·d H +536.85
n = 48.2 rpm Q =−6.4977 ·d H +33.149 P = 192.36 ·d H +217.26

5&6
n = 50 m3/s Q =−1.9822 ·d H 2 +1.9726 ·d H +44.93 P = 443.91 ·d H +476.3
n = 40 m3/s Q =−1.8544 ·d H 2 +7.774 ·d H +44.93 P = 379.09 ·d H +373.18
n = 30 m3/s Q =−7.1021 ·d H +48.164 P = 282.97 ·d H +417.32

2.3. METHODS: MODELLING THE WATER SYSTEM AND DR PAR-
TICIPATION IN THE CASE STUDY AREA

We apply the multi-market strategy to the water system of the NZK-ARK. The NZK-ARK
is a complex open canal system, containing multiple undershot gates and a pumping
station at IJmuiden to enable the discharge of water into the North Sea, whether the sea
water level is high or low. The system receives water from four waterboards (local water
authorities) who discharge excess rainwater into the system, which is then pumped or
sluiced out to the North Sea. The NZK-ARK is also used for ship traffic, which imposes a
strict lower and upper bound on the water level. These constraints prevent cargo-ships
from hitting the bottom and to make sure ships can pass bridges. Figure 1.5a shows the
water system and its incoming and outgoing fluxes.

At IJmuiden, the gates are opened at a difference in water level of 16cm, and closed
at 12cm [32]. This difference in pressure is needed to overcome the difference in density
of fresh and salt water together with internal friction. The gate is controlled automati-
cally and has a maximum discharge of 500 m3s−1, resulting from a physical constraint to
ensure stability of the bed of the gate-complex. The pumping station in IJmuiden con-
tains six pumps, with a combined maximum power consumption of around 5 MW. The
pumps can only pump up to a certain water level difference, when the height differential
is too high they will automatically shut down. Currently, pumping station IJmuiden is
controlled through an MPC that minimises energy use while energy is bought on the fu-
tures market. In this MPC, the prediction horizon is 24 hours, and the water level is kept
between -0.3m+NAP and -0.5m+NAP. For DAM participation, a prediction horizon of at
least 36 hours is necessary to submit a full bid before market closure. In this chapter, a
prediction horizon of 48 hours was applied to investigate the economic potential of DR
for the water system.

Table 2.1 contains the Q-dH (discharge - pump height), and P-dH (power - pump
height) relationships for each of the six pumps. To solve a single MPC problem for the
whole pumping station, we formulate a single simplified Q-dH curve by using the sep-
arate Q-dH curves for the pumping station as described in Section 2.3.3. We used the
P-dH curves in Table 2.1 to formulate a single equivalent PQH-curve for the pumping
station, which describes pump power consumption as function of pump discharge and
pump height. The novel method we have applied to formulate the representative PQH-
curve is described in Section 2.3.3.
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2.3.1. WATER SYSTEM MODELLING

In the MPC’s internal model, we represent the canals of the system as simple storage
components: i.e. a bucket with a fixed surface area that is used to describe the relation-
ship between storage and water level in the canals. A similar model is currently being
applied in the control system of the NZK-ARK. Large depth and width cause low flow
speeds to occur, resulting in negligible friction [34]. The incoming fluxes are the water-
board discharge and the discharge measured in Maarssen, the outgoing fluxes are the
pump- and gate-discharge into the North Sea. Delay or routing is not taken into account
and is assumed negligible due to the low flow speeds taking place in the system, leading
to negligible friction.

The gate-complex in IJmuiden has 7 square tubes, which contract in the middle to
regulate discharge. They are 5.9m wide and the height of the “throat” of a tube is 4.8m
above the bottom. It has a maximum discharge of 500 m3s−1, imposed for the stability of
the bed and structure [35]. These seven square tubes can be (partially) closed to regulate
the flow. The equation describing its behaviour is [36]

Qmax [t ] = n ·α ·B ·hk ·
√

2 · g · (hi [t ]−ho[t ]), (2.1)

with Qmax [t ] as the maximum discharge at time t , n the amount of tubes, α the con-
traction coefficient, B the width of a tube, hk the height of the center of the tube, g the
gravitational constant, hi [t ] the water level of the NZK at time t and ho[t ] the water level
of the North Sea at time t .

The pumping station in IJmuiden consists of 6 pumps: two fixed-speed pumps, two
pumps with two settings, and two variable speed pumps. The combined maximum dis-
charge is 260 m3s−1. The pumping station is modelled by simplifying it to a single pump.
Pump-characteristics are combined to estimate the equivalent characteristics. Since
there are 6 pumps present in the pumping station, with different properties, multiple
Q-dH curves and power-curves are used to describe the station. Table 2.1 shows these
curves for all three types of pumps present in the station. To account for the effect of
the wind on the water level, wind data of the Royal Netherlands Meteorological Institute
(KNMI) station in IJmuiden has been used to estimate the water level change.

We solve the MPC problem to determine the optimal control settings for multiple
gates and the pumping station at IJmuiden. The gates and pumping stations are repre-
sented using a single gate and single pump with an aggregated Q-dH and QPH-relationship.

2.3.2. ECONOMIC MPC FORMULATION WITH MULTIPLE MARKETS

We propose a two-stage MPC for participating in DR through the use of both the DAM
and IDM. The MPC involves buying energy on the DAM for 24 hours and then iteratively
deciding on how to deviate from this plan based on rewards on the IDM. As such it solves
two optimisation problems in a receding horizon fashion subject to physical constraints
for the water system. IDM trading occurs with a shrinking horizon stretching until the
next DAM-bid is made. The combination of both the DAM and IDM has been shown
to significantly improve performance compared to participating in a single market [14].
While the other alternative, the current strategy involving the futures market, does not
reward flexibility in consumption.
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The two-stage MPC applying the multi-market strategy is compared to a reference
scenario without DR, where energy use is minimised and energy is purchased for a fixed
price on the futures market.

Two objective functions belong to the proposed multi-market strategies, where an
objective function is formulated for both the day ahead planning and the intraday trad-
ing phase. A third objective function is applied in the reference strategy without DR. For
the DAM planning, an indication of the hourly prices of the next day is needed. In this
research we have assumed perfect knowledge, where we minimise costs based on the
observed prices to estimate economic potential for DR participation. In future work we
will include probabilistic forecasts of the DAM and IDM price, for example by generat-
ing price scenarios and apply tree-based MPC [37]. The economic objective function for
DAM bidding is

min J1 :=
N∑

t=0
(P [t ] · ∆t

γc
· cd a[t ])︸ ︷︷ ︸

day ahead bid

, (2.2)

where

P [t ] := ap · Qp [t ]2 +bp · d Hp [t ]2 · Qp [t ]+ cp · Qp [t ] · d Hp [t ], (2.3)

d Hp [t ] := hns [t −1]−h[t −1]−dhw [t −1], (2.4)

and P [t ] is the pumping power in kW, ∆t the timestep size in seconds, γc is used to con-
vert kWs to MWh, cd a is the DAM price in [€/MWh], t is the timestep index, N is the
prediction horizon length in number of timesteps, ap , bp , cp are the fitted parameters
for the pump power-curve, dhw and hns stand for the increment of water level at the
gates and pumps due to wind effects and the water level of the North Sea, respectively.

The IDM allows for extra flexibility since the market allows trading up to 5 minutes
before consumption. This makes the IDM a valuable addition to the DAM, since un-
foreseen external disturbances on the water system could be made up for or exploited
by trading the energy surpluses or deficits during the day. We used the ID3 IDM price,
which is the volume weighted price of a certain delivery hour in a 3 hour window pre-
ceding delivery. The economic objective function used for IDM trading is

min J2 :=
td∑

t=0
((P [t ] · ∆t

γc
−Epl an[t ]) · ci d [t ])︸ ︷︷ ︸

intraday trading

+
N∑

t=td

(P [t ] · ∆t

γc
· cd a[t ])︸ ︷︷ ︸

day ahead bid preparation

, (2.5)

where Epl an[t ] the energy bought on the DAM for time t, ci d the IDM price, td the
timestep at which the next DAM bid starts. The first term allows for IDM trading, where
deviations from the DAM bid are allowed at IDM prices for the time a DAM bid has been
made (until td ). The second term prepares the next DAM bid (starting at td ) where costs
are minimised based on DAM prices for the remaining length of the prediction horizon
(N ).

We compare the proposed multi-market strategy with a reference strategy where en-
ergy is bought on the futures market for a monthly fixed price. In the reference strategy,
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the objective is to minimise energy use of pumping, resembling the current strategy em-
ployed by RWS. The objective function for the reference scenario is

min J3 :=
N∑

t=0
P [t ] · ∆t

γc
,︸ ︷︷ ︸

energy use minimisation

(2.6)

with P [t ], ∆t, N and γc as defined above.

2.3.3. WATER SYSTEM CONSTRAINTS
There are various safety and performance constraints (e.g. water level and discharge
limits) that need to be dealt with explicitly by the model predictive controller.

Although the lower bound on water level is a strict constraint for transport purposes,
it may be tolerable to marginally violate the upper bound for small time periods. There-
fore, the upper bound of the water level constraint was relaxed with a slack variable, and
a penalty for exceeding the upper bound was introduced in the objective function. This
was done to improve robustness of the computational model, so the problem would not
become infeasible in high-water situations but rather the small violations could be anal-
ysed a posteriori. The lower and upper water-level bound constraints are reformulated
as

h[t ] ≥ hmi n , (2.7)

h[t ] ≤ hmax + s[t ], (2.8)

where the discretised slack variable s[t ] represents the constraint violations on the max-
imum water height hmax at timestep t . The upper bound relaxation is implemented as
a lazy constraint, meaning it is only active when a constraint violation on the un-relaxed
upper-bound occurs. The penalty function

f1(·) := γs ·
N∑

t=0
s[t ]. (2.9)

sums up the discrete slack variables (i.e. bound violations per timestep), which auto-
matically minimises the time and magnitude of constraint violations. This is added to
the economic cost in the MPC optimisation problem in Equation (2.4), Equation (2.5)
and Equation (2.6). The constant γs was chosen a posteriori to be sufficiently high, in
order to prevent compromises between energy costs and constraint violation.

The water level associated with a given storage is calculated using a mass balance:
the difference in water level is equal to the net flux that leaves or enters the body, divided
by the surface area of the wetted water body. Because water is assumed in-compressible,
a mass balance can be expressed in terms of volume

h[t ] = h[t −1]+ ∆t

Anzk
∗ (Qi n[t −1]−Qg [t −1]−Qp [t −1]), (2.10)

where h[t ] is the water level of the NZK-ARK at time t in m+NAP, ∆t the timestep size in
seconds, Anzk the surface area of the NZK-ARK in m2, Qi n[t ] the incoming discharge of
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the ARK (the discharge in Maarssen, water coming from the Oranjesluizen and pumped
discharge from the waterboards) at time t in m3/s, Qg [t ] the discharge from the gates,
and Qp [t ] the discharge of the pumping station in IJmuiden at time t in m3/s.

The gates can only discharge when the water level of the North Sea is lower than the
water level of NZK-ARK, and the pumping station can only discharge when the water
level of the North Sea is higher than the water level of the NZK-ARK. To ensure this, a
big-M formulation is applied. Two binary variables, zg and zp are introduced, which
indicate the possibility of using the gates or pumping station, respectively

h[t ]−hns [t ]−d Hg ,mi n + (1− zg [t ]) ·Mg ≥ 0, (2.11)

h[t ]−hns [t ]−d Hg ,mi n − zg [t ] ·Mg ≤ 0, (2.12)

hns [t ]−h[t ]−d Hp,mi n + (1− zp [t ]) ·Mp ≥ 0, (2.13)

hns [t ]−h[t ]−d Hp,mi n − zp [t ] ·Mp ≤ 0, (2.14)

where hns is the water level of the North Sea, d Hg ,mi n the minimum water level dif-
ference needed to discharge with the gate, and d Hp,mi n the minimum water level dif-
ference needed to discharge with the pumps. The big-M constants, Mg and Mp were
chosen sufficiently large.

The discharge of the gate is a decision variable in the optimisation problem. The gate
discharge relationship in Equation (2.1) was simplified through piecewise linearisation
(PL). The feasible gate discharge region and the PL can be see in Figure 2.3a. The majority
of the feasible region is constrained by the upper bound on gate discharge, rather than
the Q-dH relationship. The gate discharge is bound to [0, 500], and the upper bound
on gate discharge is multiplied with the binary variable zg that indicates gate discharge
possibilities

Qg [t ] ≤ (ag ·d Hg [t ])+bg [t ]) · zg [t ], (2.15)

d Hg [t ] := h[t ]−hns [t ], (2.16)

with Qg [t ] being the gate discharge at time t , and ag and bg being the fitted parameters
for the PL of the upper bound on gate discharge.
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(a) Q-dH relationship for the undershot gates.
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(b) Q-dH relationship for the pumping station.

Figure 2.3: Feasible (green) and infeasible (red) region for the discharge from undershot
gates (a) and the pumping station (b) in IJmuiden.
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Pump discharge capacity given a certain pump height is generally described through
the use of Q-dH curves, where the (maximum) discharge is a function of the pump
height. In the case of IJmuiden, six pumps are present with different curves describing
their maximum discharge as a function of pump height. In order to represent the pump-
ing station as one big pump, the different Q-dH relationships of the 6 separate pumps
found in Table 2.1 are aggregated. For a given water level difference d Hp , the maximum
discharge of the six pumps combined is equal to the sum of the maximum discharges for
the individual pumps

Qp [t ] ≤
6∑

i=1
Qi (d Hp [t ]), (2.17)

d Hp [t ] := hns [t ]−h[t ], (2.18)

with Qp [t ] being combined pump discharge for the pumping station, and Qi the max-
imum discharge of pump i as function of the pump-height d Hp . The resulting quadratic
description of the Q-dH relationship is approximated through PL, as shown in Figure 2.3b.
The PL is applied as an upper bound constraint on pump discharge, where the total up-
per bound is multiplied with the binary variable zp indicating pump discharge possibil-
ities

Qp [t ] ≤ (ap [i ] · (hns [t ]−h[t ])+bp [i ]) · zp [t ] for i ∈ (1,2,3), (2.19)

with ag and bp representing the coefficients of the PL-approximation of the Q-dH rela-
tionship.

In practice, the power consumption of the pump station can vary, depending on mul-
tiple operating conditions like pump configuration, pump height and discharge. The de-
rived Q-dH curve for the pumping station acts as upper bound constraint for discharge
at a given head difference. However, when deciding a combination of (Qp ,d Hp ), en-
ergy use should be considered. Although the energy use of the pumping station could
be directly represented using binary variables to act as an on/off switch for every sepa-
rate pump, this results in computationally infeasible large scale mixed-integer nonlinear
programs [38]. A novel approach that is in-between was applied. In the approach, the
pumping station was represented using a single aggregate power curve so that the result-
ing MPC optimisation problem is a non-convex MIQP. Discretising the feasible domain
in Equation (2.17) results in solving a MIQP for each aggregate (Qp ,d Hp ) combination,
optimising individual pump combinations and their respective discharges in order to
minimise pump power consumption. Gurobi [23] was used to solve the MIQP. The func-
tion

P [t ] := ap ·Qp [t ]2 +bp ·d Hp [t ]2 ·Q + cp ·d Hp [t ] ·Qp [t ] (2.20)

was fitted through these points, where parameters of the least squares fit were found to
be: ap = 0.033, bp = 0.061 and cp = 11.306. This equivalent power curve was used in the
objective function as described in Equation (2.3).

2.3.4. MPC OPTIMISATION PROBLEM
For our system, two aspects of important are i) water level constraints cannot be violated
at any time step and ii) financial optimality needs to be close to global optimality since
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we are exploring economic potential for the approach. As such mathematical optimisa-
tion methods that certify closeness to global optimality and satisfy physical constraints
are applied. To calculate optimal control settings for pumps and gates, the model is
expressed as a non-convex MIQP, to be solved with certification on bounds to global op-
timality with Gurobi [23]. The NonConvex parameter was set to 2, the MIPGap set to 2%,
the Absolute MIPGap set to €1,-, and the time limit set to 15min. Figure 2.4 shows the
percentage that combined termination conditions occurred for the individual optimi-
sation problems. The figure shows that in all scenarios over 99.8% of the optimisation
problems is solved at the termination conditions, rather than cut-off at the time limit.
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Figure 2.4: Percentage of occurrence of the combined termination conditions for the
individual optimisation problems. Gurobi termination settings are at an absolute opti-
mality gap of €1, or at a relative optimality gap of 2%.
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The MPC implementation then solves the two optimisation problems (to minimise
J1 and J2) in a receding horizon fashion, where the DAM participation (J1) is optimised
for every td time steps, and participation in the IDM is decided by solving J2 every hour
in a shrinking horizon fashion. The iterative two phase optimisation problem, and the
reference problem (J3) can be stated as:

DAM planning phase: min
(·)

J1(·)+ f1(·), (2.21a)

IDM trading phase: min
(·)

J2(·)+ f1(·),and (2.21b)

Futures market trading: min
(·)

J3(·)+ f1(·). (2.21c)

The above are solved subject to the following constraints:

hmi n ≤ h[t ] ≤ hmax + s[t ] (2.22a)

h[t ]− (h[t −1]+ ∆t

A
· (Qi n[t −1]−Qg [t −1]−Qp [t −1])) ≤ δwb (2.22b)

h[t ]− (h[t −1]+ ∆t

A
· (Qi n[t −1]−Qg [t −1]−Qp [t −1])) ≥−δwb (2.22c)

h[t ]−hns [t ]−d Hg ,mi n + (1− zg [t ]) ·Mg ≥ 0 (2.22d)

h[t ]−hns [t ]−d Hg ,mi n − zg [t ] ·Mg ≤ 0 (2.22e)

Qg [t ] ≤ (ag · (h[t ]−hns [t ])+bg [t ]) · zg [t ] (2.22f)

hns [t ]−h[t ]−d Hp,mi n + (1− zp [t ]) ·Mp ≥ 0 (2.22g)

hns [t ]−h[t ]−d Hp,mi n − zp [t ] ·Mp ≤ 0 (2.22h)

Qp [t ] ≤ (ag [i ] · (hns [t ]−h[t ])+bp [i ]) · zp [t ] for i ∈ (1,2,3) (2.22i)

d H 2[t ] = (hns [t ]−h[t ])2 (2.22j)

zg ∈ (0,1) (2.22k)

zp ∈ (0,1) (2.22l)

with

P [t ] := ap · Qp [t ]2 +bp · d H 2[t ] · Qp [t ]+ cp · Qp [t ] · d Hp [t ], (2.22m)

d Hp [t ] := hns [t −1]−h[t −1]−dhw [t −1] (2.22n)

and the decision variables h, Qg , Qp stand for, respectively, the water level of the NZK,
gate discharge and pump discharge. The slack variable s stands for the upper bound
relaxation for water level constraints. The variables Qi n stand for the discharge flowing
into the NZK-ARK system. Constants hmi n , hmax , ∆t, A, δwb , ag , bg , dp , ep , fp , d Hg ,mi n

and d Hp,mi n stand for minimum and maximum water level allowed in the NZK-ARK,
timestep size, storage area of the NZK-ARK, relaxation of the water balance constraint,
fitted parameters for gate and pump discharge approximates and minimum water level
difference needed for gate and pump discharge. Variables zg and zp are binary variables
indicating gate- and pump-discharge possibilities through big-M constraints on the wa-
ter level difference between the canal and the North Sea. The additional objective func-
tion terms f1(·) (Equation (2.9)) is a linear penalty function on upper bound violations of
the water level.
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2.4. RESULTS & DISCUSSION
We simulate two 1-year periods, where costs are minimised using the multi-market strat-
egy. We also simulate a reference scenario without DR, where energy use is minimised
and energy costs are calculated using a monthly fixed futures market price. For the elec-
tricity markets, two years of real market data were used (2017, 2019). The hydrological
forcings (incoming discharge and sea water level) of the system for the period (01-04-
2017 - 31-03-2018) are used for both 2017 and 2019 simulations. The hydrological data
was kept the same in order to be able to distinctly study the effect of a changing mar-
ket and RES market penetration on DR profitability. Actual DAM and IDM data is used,
where for the IDM the ID3 IDM price was aggregated from the separate bids. For both
the market data and the hydrological forcings, perfect forecasts are assumed. The use
of perfect forecasts gives a economic potential, where actual performance in practice
would also rely on forecast accuracy. Given the uncertain nature of renewables and their
influence on electricity prices, a stochastic problem is likely to give superior results. This
is will be discussed in Chapter 5. For the reference scenarios, the monthly-averaged fu-
tures market price is assumed. In practice, the actual price depends on the time the
contract was signed and for how long, and can therefore differ significantly per user. In
the Dutch case, this is the ENDEX market price while the Phelix-DE market price was
used in the German case. The combination of minimising energy use while buying on
the futures market is equivalent to the current strategy applied by RWS.

2.4.1. SYSTEM DYNAMICS
Figure 2.5 shows the actual and planned (at the time of the day ahead bid) fluxes (a, c),
energy use and electricity prices (b, d) of water system using the multi-market strategy.
The figure shows both the Dutch (left) and the German (right) market scenarios. The
MPC tends to focus pumping on times where the water level difference with the North
Sea is low when prices are positive, decreasing energy use. Both the gates and pumps
don’t violate the big-M constraint, forcing water to flow downwards and be pumped up-
wards only. In the depicted day, the North Sea is too high for the gates to be used. Neg-
ative prices can be seen in the German DAM, while they only occur in the Dutch IDM.
Minimising cost when negative prices occur effectively leads to a maximisation of en-
ergy use. In the Dutch market, the MPC decides to sell energy bought for October 28th
on the IDM for advantageous prices, and buys extra energy for October 29th for nega-
tive prices, counteracting a positive imbalance on the grid. On the German market, the
MPC already maximises energy use on the DAM, restricting trade options on the IDM.
However, some energy is sold on October 29th where positive prices occur on the IDM,
counteracting a negative imbalance on the grid.

2.4.2. EVALUATION OF DR PROFITABILITY
The summarised performance of different scenarios can be seen in Table 2.2. It shows
the relative costs of the proposed multi-market strategy compared to the reference fu-
tures market strategy. The relative energy use, the relative CO2 emission, the average
price of the used energy, the average CI of the used energy, and the percentage of energy
that was used for negative energy prices are shown in the picture.

In both markets, optimising costs over the DAM and IDM leads to a significant cost
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Figure 2.5: Optimised fluxes of the NZK-ARK (a, c), pump energy use and energy prices
(b, d) for the Dutch market (left) and the German market (right). Thin and dashed lines
show the planned course of action and the resulting water level at the time of day ahead
market closing. Filled and thicker lines show the actual actions performed and the re-
sulting water level after intraday trading.

decrease. In the German market the difference between spot and futures market partic-
ipation is the largest, which can be explained by the higher share of renewable energy
generation. Inflexible supply can lead to higher price volatility [39], rewarding flexibility.
Uncertainty in energy generation makes a guaranteed base-load more expensive. Inflex-
ibility in energy use is penalised when there is a higher market penetration of renewable
energy and a lack of storage solutions, leading to negative energy prices.

Also, the large difference in relative costs between the market strategies can be ex-
plained by the increased price on carbon emission allowance [40]. This increased price
creates a larger price difference between renewable (with low CI) and fossil energy (with
high CI). Due to their unpredictable nature, renewable energy makes up a higher share
of the spot markets volume. This makes the increased carbon emission price mostly no-
ticeable in the futures market, where base-load contracts can be supplied through the
use of fossil sources, explaining the relatively low spot market prices in Germany com-
pared to the futures market prices. If both futures (i.e. Endex, Phelix-De) and spot mar-
kets (i.e. DAM, IDM) have a low penetration of renewable energy, like in the Dutch sce-
nario, the spot market would experience the same price increase as the futures market.
This would explain why the difference between the German DAM and Futures market is
higher than the difference between their Dutch equivalents.

In both the Dutch and German scenario, energy use is higher for the spot market sce-
narios than in the reference scenarios (where energy use is minimised), explaining the
increase in carbon emission. The carbon emission does increase more slowly than the
energy use, indicating a lower average CI of the used energy. The average price and CI of
the used energy can be seen in Table 2.2, in both markets the average price of the used
energy is lower for the spot market scenarios. The increase in energy use does not lead to
an increase in costs. In the German case, the average price for the spot market scenarios
is about a third of the average price for the reference scenarios. Also, a significant per-
centage of energy was used for negative prices, causing the MPC problem to maximise
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energy use. This explains the low average price, high cost savings, and high amount of
extra energy use.

Even though the average price of the energy differs significantly between the futures
and spot market scenarios, the average CI of the used energy is relatively similar. This
shows that the base-level of the CI of the energy is not low enough to make up for the
extra amount of energy being used. This holds for both the Dutch and the German mar-
kets. However, the average CI of the used energy is somewhat lower for the spot market
scenarios, which can be explained by the correlation between CI and energy price shown
in Figure 2.1c. In the German 2019 scenario, a 29% increase in energy use leads to a 5%
CO2 emission increase. This indicates that Germany is nearing a point where an increase
in energy use would not lead to increased CO2 emissions. Something that can possibly
already be realised by limiting the energy use maximisation when negative prices occur,
even though it’s optimal for balancing the markets. However, these numbers should be
taken as an indication since the CI time series was estimated as described in Section 2.2.2
and not measured.

The relative cost differences show the influence of a higher futures market price on
the potential cost savings through DR. Higher uncertainty in generation due to renew-
ables make futures prices carry more risk-premiums, rewarding flexibility on the spot
market while penalising inflexibility on baseload contracts.

Table 2.2: Relative profitability of DR over spot markets compared to futures market par-
ticipation with fixed monthly prices. The rows show four scenarios of applying the multi-
market MPC in DE and NL, using market data from two different years. The profitability
of the multi-market strategy is divided by the profitability of the reference strategy with-
out DR.

Country Year Rel. costs Rel. energy use Rel. CO2
Average energy price Average CI % of energy volume

used with negative pricesSpot Futures Spot Futures
NL 2017 0.90 1.07 1.05 31.81 37.60 421.22 428.84 0.00

2019 0.84 1.29 1.16 30.94 47.31 271.59 301.51 0.92

DE
2017 0.44 1.32 1.15 11.93 35.44 319.52 365.43 11.44
2019 0.50 1.29 1.05 17.67 45.43 222.10 273.41 14.25

2.4.3. AFRR POTENTIAL ANALYSIS
To investigate the potential for pumping station IJmuiden to be active on the aFRR mar-
ket, we perform an analysis on the previous results where the pumping station is active
on the DAM and IDM. The simulation data was used to determine if and when there was
room within the constraints to realise a larger pump discharge. We assume the upper
limit on the possible discharge to be the amount of water flowing into the system while
being constrained by the Q-h curve of the pumping station, i.e. the added pumped vol-
ume would never lower the water level in the system. This ensures that water level con-
straints would not be violated by the additional use of the pumps, leading to a conser-
vative estimate of extra pump capabilities. The extra room for pump use is translated
into the amount of energy corresponding to this combination of maximum discharge
and pump height. The energy already bought on the DAM and IDM is subtracted from
this amount.
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Table 2.3: Summarised results of aFRR market economic potential analysis: downward
regulating volume and relative cost savings for scenarios with individual and aggregated
market participation.

Country Year aFRR cost savings [%]
Downward regulating
volume [MWh]

Individual Aggregated Individual Aggregated

NL
2017 7.68 12.65 150.61 234.07
2019 3.84 5.23 75.59 103.26

DE
2017 18.60 27.85 485.90 773.61
2019 12.33 20.70 216.36 369.12

The resulting data is used for two different analyses. In the first analysis, all DR events
resulting in extra power consumption of more than 1 MW are selected to analyse aFRR
potential during individual market participation (i.e. in the absence of an aggregator).
In the second analysis, all DR events are selected to analyse aFFR potential when co-
operating with an aggregator, thus allowing for small bids to be placed. In both cases,
we selected the periods where downward activation in the aFRR market occurred simul-
taneously with a negative downward activation price. This allows us to calculate the
maximum additional amount of energy that could have been profitably used for grid
balancing purposes per timestep.

Table 2.3 shows the summary of results for the aFRR potential analysis. The results
show that the aFRR market has the potential to compensate a part of the energy cost for
pumping station IJmuiden. Although cost savings seem small, this analysis doesn’t take
the selling of energy due to aFRR participation into account. The DAM and IDM bids are
not corrected for the energy bought on the aFRR, and the remaining pump schedule re-
mained unchanged. Besides that, the maximum amount of pumping for aFRR purposes
was constrained to keep the water level equal. Re-optimising pump schedules and spot-
market participation after aFRR activation would result in a less conservative estimate
of the actual economic potential for aFRR participation. This will be left for future work.
The results show that partnering with an aggregator could allow for substantial extra cost
savings and regulating volume compared to participating on the market as a single bid-
der. The supplied downward regulating volume decreased from 2017 to 2019 in both the
Dutch and German market scenario’s. This indicates that the IDM is capable of supply-
ing the necessary extra regulating volume due to renewable energy generation. The IDM
is more accessible to BRPs, and carries relatively lower risk of disadvantageous prices
due to the possibility to trade before delivery.

2.5. CONCLUSION
In this chapter, we propose an economic two-stage MPC scheme to enable a large flood
defense pumping station to participate in DR services. We explore how participating on
the DAM gives more certainty of supply and costs while the IDM allows for short-notice
trading, to make up for or exploit unforeseen events or dealing with uncertainties in the
state of the open canal system. Therefore, a multi-market strategy is proposed, where
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pumping is scheduled a day ahead by buying energy on the DAM and then adjusted in a
receding horizon fashion (every hour) when energy prices of the IDM are rewarding. We
show that a larger profit can be realised for the pumping station when energy prices are
more volatile, which can be expected to accompany a higher RES market penetration.

To demonstrate this, we explore the difference between the German and Dutch mar-
kets, whose grids have a significantly different energy mix. We show that the proposed
MPC is able to counteract both positive and negative imbalances on the grid through
price-based DR. We also explore the effect of temporal market changes by using both
2017 and 2019 market data. A 56% and 50% cost decrease was found in the German mar-
ket scenarios for the years 2017 and 2019 respectively, compared to the reference sce-
nario. Negative energy prices on the German market were found to result in increased
energy use and CO2 emissions. The Dutch market scenario shows a 10% and 16% cost
decrease in 2017 and 2019, respectively. The difference in potential cost saving shows
that the German market rewards flexibility more than the Dutch market.

We have shown that CO2 savings are not yet present or well quantifiable in both Ger-
man and Dutch cases. The efficiency of pumping is time-dependent due to tides, re-
sulting in an increased energy use when shifting pumping schedules for DR while the CI
of the grid does not decrease enough for CO2 emission savings to be present. Besides
that, negative energy prices can lead to a significant increase in energy use. Although
this is optimal from a market-perspective, it might not be preferred by the stakeholders.
Also, generation by source time series are incorrect in the ENTSO-E transparancy plat-
form, requiring us to estimate the CI time series through renewable energy production,
observed load and reported CI estimates.

We show that participating in the aFRR market has economic potential, resulting in
cost savings of up to 28% in the aggregated German scenario in 2017 based on our con-
servative analysis. Receiving a warning signal 15-minutes before activation makes the
market feasible for the pumping station to participate in. The analysis shows that ag-
gregating participants, allowing them to circumvent the 1 MW minimum-bid constraint
through pooling, results in higher participation and lower costs. In both German and
Dutch markets, the aFRR economic potential decreased from 2017 to 2019. The sup-
plied downward regulating volume decreased as well, indicating that the IDM could be
providing the extra balancing services required for renewable energy.

To conclude, we have shown that the economic potential for DR applied to open
water systems is significant. However, it would be interesting to quantify the impact of
uncertainty in system state, hydrological forcings (e.g. incoming discharge and sea water
level) and energy prices. Operationalising the strategy in a feasible way would probably
require the consideration of uncertainty. However, this chapter focuses on the economic
potential of DR participation, leaving the consideration of uncertainty for Chapter 5. It is
also known that variable speed pumps and more efficient configurations of more smaller
pumps, in comparison to a single large pump, can expand the envelope for participation
in DR [12]. Therefore, cost benefit analysis for the upgrading of the pumping station
should be evaluated also explicitly considering performance in DR.
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3
MODELLING OPERATIONAL

UNCERTAINTY FOR CONTROL

Bounce with it, rock with it,
lean with it, drop with it,

snap with it.

All my fellas tip your hat with it.

Acraze & Cherish

The previous chapter showed the significant economic potential for Demand Response
participation from the Noordzeekanaal–Amsterdam-Rijnkanaal. However, this potential
was estimated using a simulation with perfect foresight. This chapter introduces the meth-
ods applied in the remainder of this thesis to model operational uncertainty. First, the
techniques that are used for probabilistic forecasting are described. After that, we discuss
multivariate sampling techniques that allow us to sample time series. Finally, techniques
for selecting an optimal subset are discussed, which allow for a sparse representation of
operational uncertainty by generating weighted scenario fans and trees. The proposed
techniques are validated in a Proof of Concept, where Day Ahead Market arbitrage us-
ing a battery is simulated under uncertainty, showing increased performance over naive
benchmarks.

Parts of this chapter have been published in other work [1, 2, 3]
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3.1. PROBABILISTIC FORECASTING

3.1.1. COMBINED QUANTILE REGRESSION DEEP NEURAL NETWORKS
In this thesis, we propose the use of Quantile Regression (QR), where quantiles of a prob-
ability density of a value are given instead of merely an expected value. Specifically, we
apply the Combined Quantile Regression Deep Neural Network (CQRDNN), as depicted
in Figure 3.1, which was introduced to mitigate the crossing quantile problem encoun-
tered in ensemble models, where each quantile is represented by a separate model [4].
The CQRDNN mitigates this issue by employing a combined quantile loss function, en-
abling simultaneous training of multiple quantiles within a single Deep Neural Network.
This is achieved by applying a distinct loss to each output node while minimizing the
average loss across all output nodes. Consequently, the CQRDNN prevents divergence
of separate quantile models to different local optima due to stochastic sampling during
training, thereby improving the quantiles consistency in exhibiting monotonic increase.

To train the CQRDNN model, a combination of pinball loss functions [5] is utilized,
defined as

LCQ = 1

N

∑
τ∈T

Lτ, where (3.1)

Lτ = max(τ ·e, (τ−1) ·e), and (3.2)

e = z − y, (3.3)

where N represents the number of quantiles considered, T denotes the set of quan-
tiles {τi , i = 1 : n}, L represents the loss, τ denotes a quantiles in T, and e represents the
quantile forecast error, with y indicating the observed value and z denoting the quan-
tile forecast. Due to the asymmetrical penalization of over- and under-predictions, the
CQRDNN learns to regress a variable that is anticipated to exceed the actual target for a
fraction τ of the samples, representing a quantile.

3.1.2. FEATURE AND HYPERPARAMETER OPTIMIZATION
For accurate and effective application of ML models it is necessary to optimize both the
features applied in the model and the hyperparameters of the model. The Tree Parzen
Estimator (TPE) algorithm, which is a variant of Sequential Model Based Optimization,
is capable of simultaneously optimizing both features and hyperparameters [6, 7, 4]. It
allows for the construction of a custom search space with a large number of dimensions
which can be either discrete, continuous, or a combination.

The TPE employs Bayes’ rule to create a surrogate model. The primary differentiator
here is how the TPE segments the search space by evaluating the likelihood of the ob-
served loss being above or below a threshold, typically denoted as y∗. In this work, we
apply the TPE to optimize the features and hyperparameters of our CQRDNNs, where
the loss being optimized for is the combined pinball loss function.

This surrogate model describes the probability of the loss being higher (h(x)) or lower
(l (x)) than a specified threshold value (y∗) as a function of the search space instantiation:

p(y |x) = p(x|y) ·p(y)

p(x)
, (3.4)
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Figure 3.1: Architecture of the CQRDNN with n f features, n1 nodes in the first hidden
layer, n2 nodes in the second hidden layer, and 5 quantile output nodes representing the
same random variable [4].

In the above equation, y represents the model performance, and x denotes a search
space instantiation.

Consequently, the model performance is estimated based on the features and hyper-
parameters, where p(x|y) is defined as

p(x|y) =
{

l (x) if y < y∗

h(x) if y ≥ y∗.
(3.5)

Within the TPE algorithm, samples are drawn from both l (x) and h(x), after which
the ratio l (x)

h(x) is evaluated for all samples. The next suggested candidate is the one with
the highest expected improvement, i.e., the candidate with the largest ratio between low
and high probabilities in l (x) and h(x), respectively. In our case, we apply the combined
pinball loss function (Equation (3.1)).

3.2. SCENARIO GENERATION AND SELECTION

3.2.1. NON-PARAMETRIC BAYESIAN NETWORKS
To assess decision-making processes in uncertain environments, generating operational
scenarios is essential. The Non-Parametric Bayesian Network (NPBN) approach is use-
ful here. It employs univariate parametric distributions based on quantiles from the
CQRDNN to depict the marginal distributions of the variable at a timestep, while bi-
variate copulae are used to model temporal dependencies as observed in the data. Par-
ticularly, in the NPBN, Gaussian copulas are used1 due to their ability to effectively han-

1In previous literature, Non-Parametric Bayesian Networks are sometimes referred to "Gaussian copula-
based" Bayesian Networks.
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dle a large number of variables by simplifying the process of joint distribution sam-
pling [8]. This feature makes NPBN effective for scenario generation [3] with scenar-
ios that obey both the forecast marginal distribution and the observed auto-correlation.
In this thesis, we apply NPBNs to sample scenarios containing multiple time steps of
incoming waterboard discharge, the water level of the North Sea, and the Day Ahead
Market (DAM) and Intraday Market (IDM) electricity prices.

In NPBNs, multivariate distributions are characterized by univariate marginals and
a copula to represent the dependencies. The joint density of an NPBN with n variables
is factorized as:

f1,...,n(x1, . . . , xn) = f1(x1)
n∏

i=2
fi |Pa(i )(xi |xPa(i )), (3.6)

Here, f1,··· ,n denotes the joint density of the n variables, fi represents the marginal dis-
tribution of each variable, and fi | j represents the conditional distributions. Each ran-
dom variable xi is associated with a node i , and the parent nodes of node i form the set
Pa(i ) = i1, . . . , ip(i ). The arcs in the NPBN are assigned one-parameter conditional cop-
ulas [9], parameterized by Spearman’s rank correlations [10]. The arc from the parent
node im to node i is assigned a conditional rank correlation.

3.2.2. ENERGY DISTANCE CLUSTERING
While generating a set of scenarios that fully describes the uncertainty space is invalu-

able, it is equally valuable to have a practical size, especially in simulation and optimiza-
tion contexts where computational resources are constrained. Hence, it is beneficial to
distil the original scenario set into an optimal subset with statistical properties that best
approximates the properties of the original set. The criterion we use for this selection is
the “minimal energy distance" between the reduced set and the original set of scenarios.
The energy distance was applied since it tends to show better statistical approximation
properties than the more widely used Wasserstein distance [11].

The energy distance quantifies the dissimilarity between two distributions. This met-
ric describes the distances between the elements of X and X∗, and then corrects these
with the distances found between members within X and X∗ themselves [11, 12].

Mathematically, the energy distance is formulated as

Ep (X,X∗) = 2
∑

i∈I

∑
j∈I ∗

pi p∗
j d p

i j−
∑

i∈I

∑
j∈I

pi p j d p
i j −

∑
i∈I ∗

∑
j∈I ∗

p∗
i p∗

j d p
i j , (3.7)

d p
i j = |xi −x j |p , (3.8)

(3.9)

where X denotes the original scenario set with index set I , and scenarios (time series
set elements) xi for i ∈ I with respective probabilities pi . X∗ denotes the considered
subset with index set I ∗ ⊂ I , with corresponding scenarios x∗, and probabilities p∗.
The term d p

i j denotes the p-norm distance between two scenarios, with p = 1 being our

choice for this study. Since the primary set (X) remains unaltered when during scenario
selection, the middle term is often neglected. This revised metric is termed the Energy
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Score. Probabilities p∗ of X∗ can be optimized for the minimal Energy Score relative to X
using the quadratic program

p∗ = argmin
p∗ Ep (X,X∗),

s.t.
∑

p∗ = 1.
(3.10)

To select an optimal subset X∗ (i.e. the subset for which the chosen distance metric is
minimal), we can compute the Energy distances for all potential subsets where |I | = N .
This method works for small scenario sets but becomes impractical for larger sets. The
forward selection algorithm [13] was suggested to greedily append scenarios to the sub-
set X∗ until the required subset size is attained. This approach is detailed in Algorithm 1,
accompanied by an illustrative example founded on the Bernoulli walk, presented in
Figure 3.2.

Original set

Weights
|P| 1

Energy distance subset, E1 = 5.14

Weights
0.23
0.22

0.13
0.23

0.18

Figure 3.2: Scenario reduction and weight redistribution of the Bernoulli walk using the
Forward Selection algorithm and the Energy distance metric.

Algorithm 1: Forward Selection(X, I , N)

1 X∗ ←;
2 I ∗ ←;

while |I ∗| <N do
// Execute the forward selection algorithm, adding scenarios to the

subset until reaching N.
3 i∗ ← argmini∈I \I ∗ Distance(X,X∗∪xi ) // Acquire the scenario index

yielding the smallest Energy Score.
4 I ∗ ←I ∗∪ i∗ // Update the optimal subset’s index set.
5 X∗ ← X∗∪xi∗ // Update the optimal subset.

end
6 p∗ ← Probabilities(X∗) // Extract the scenario probabilities of the

optimal subset either through the optimal redistribution rule or
using the quadratic program defined in Equation (3.10).

7 return X∗, I ∗, p∗
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3.2.3. SCENARIO TREE REDUCTION

Building on the concept of scenario reduction, scenario trees further simplify the task
by offering a structured representation. The core principle here is to model the inher-
ent growth of uncertainty over forecast horizons. To transition from scenario subsets to
tree representations, we utilize a method inspired by [13]. However, we search for the
optimal tree shape and use the energy distance [11] instead of the wasserstein distance
to calculate distances. The subsequent trees model the progression of uncertainty over
time, as depicted in Figure 3.3.

0 1 2 3 4 5

Original scenario subset

0 1 2 3 4 5

1 = 1
I1 = 1 2 = 2

I2 = 2 3 = 3
I3 = 3 4 = 4

I4 = 5 5 = 5
I5 = 5

Intermediate scenario subset

0 1 2 3 4 5

1 = 1
I1 = 1 2 = 1

I2 = 2 3 = 3
I3 = 3 4 = 4

I4 = 4 5 = 5
I5 = 5

Final scenario tree

Figure 3.3: Tree construction for the Bernoulli walk using the Energy distance.

The Backward Tree Reduction method depicted in Figure 3.3, while effective, has its
limitations. It relies on predefined parameters like node locations (Φ) and the maximum
children count per node (Θ), while fixing these parameters can yield suboptimal trees. To
circumvent this limitation, a Genetic Algorithm (GA) is used to dynamically adjust these
parameters. GAs can search effectively through complex search spaces with non-linear
constraints and objectives. We apply it to optimize tree structures for a given scenario
set by solving the optimization problem

Φ∗,Θ∗ = argmin
Φ,Θ

Distance(X̃ , X ∗)

s.t.
∑

x∈X̃

|x|
N ·H

≤β,
(3.11)

where we solve for optimal split locations (Φ∗) and number of nodes (Θ∗) by minimiz-
ing the distance between tree X̃ and original subset X ∗. We define tree complexity as
the number of time-discretized variables necessary to describe the scenario set (i.e. the
sum of the length of all sub-scenario time series in each node of the tree), where the
length of a sub-scenario time series is defined as |x|. The solution is constrained to a tree
complexity reduction fraction, β, of the original complexity defined by subset size N and
time series length H . In this work, we apply a β value of 0.5 to constraint tree complexity.
In this thesis, we apply a β value of 0.5 to constraint tree complexity reduction with a
minimum of 50%, which was selected a posteriori based on the speed at which the GA
could find feasible solutions.
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3.2.4. PROOF OF CONCEPT
To illustrate the performance of the scenario generation and reduction methods dis-
cussed in this chapter, we present a proof of concept involving a battery storage system
engaged in DAM arbitrage. The objective is to maximize arbitrage profits by optimally
charging and discharging the battery, based on forecast DAM prices. The system is con-
trolled by an MPC scheme that relies on probabilistic forecasts of future prices, maxi-
mizing the expected profit of a DAM bid.

We benchmark the following approaches:

• Naive random sampling: 10 random samples are generated from the marginal dis-
tributions at each time step without considering temporal relationships.

• Naive sampling with energy distance clustering: 100 random time series are gener-
ated using the same method as in the naive approach, but energy distance cluster-
ing is applied to select the 10 optimal weighted time series that best represent the
uncertainty space.

• NPBN sampling with energy distance clustering: Scenarios are generated using the
NPBN approach, which preserves temporal dependencies and uses energy dis-
tance clustering to select 10 optimal weighted scenarios.

Closed-loop simulations are performed with a 48-hour control horizon, where only
the first 24 hours are used for bidding decisions. We evaluate the cumulative profit from
DAM arbitrage for 10 repetitions of the naive method (10 scenarios), 1 run with 100 sce-
narios, naive sampling with clustering, and NPBN sampling with clustering.

Figure 3.4 presents the cumulative profit for the benchmarked approaches in Octo-
ber 2020. The results show the potential of the proposed NPBN approach, where our pro-
posed with 10 scenarios has slightly better performance than the naive approach with
100 scenarios, while both outperform the energy distance clustered naive and the naive
with 10 scenarios. By preserving temporal characteristics, the NPBN method constrains
the sampling to more realistic scenarios. This proof of concept applies a stochastic ob-
jective to formulate a deterministic control plan. Future improvements involve intro-
ducing scenario-based control strategies that could further exploit temporal dependen-
cies, allowing each scenario to reflect a unique trajectory for uncertainty evolution.

Oct
2020

05 12 19 26
200

0

200
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1000

To
ta

l p
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)

Naive (N=10)
Naive (N=100)

Naive with energy distance clustering (N=100, N * =10)
NPBN sampling with energy distance clustering (N=100, N * =10)

Figure 3.4: Cumulative profit for DAM arbitrage under various approaches of represent-
ing price uncertainty. The modelled battery has a usable capacity of 2 MWh, a maximum
(dis)charge power of 2.5 MW, and a round-trip efficiency of 98.6%.
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3.3. CONCLUSION
This chapter presents methodologies for modelling operational uncertainty, which serves
as the cornerstone of the predictive and optimization frameworks throughout this thesis.
By introducing the CQRDNN for probabilistic forecasting, we addressed the limitations
of traditional quantile regression methods, particularly the issue of crossing quantiles.
This advancement ensures consistent quantile estimates, enhancing our ability to cap-
ture uncertainties in critical variables such as energy prices and water inflows.

We employed the TPE to optimise regression model performance for simultaneous
feature selection and hyperparameter optimization. This dual optimization process fine-
tunes models and input data concurrently, leading to improved accuracy and computa-
tional efficiency by identifying optimal features and hyperparameters.

We propose the NPBN approach for robust scenario generation, which preserves
both marginal distributions and temporal dependencies. This capability is essential
for generating realistic multivariate time series scenarios, facilitating informed decision-
making in complex systems like energy markets and water management.

Recognizing the computational challenges of handling extensive scenario sets, we
explored scenario reduction techniques using energy distance clustering. This method
enables the selection of an optimal subset of scenarios that closely approximates the
full uncertainty space, which is crucial for applications with limited computational re-
sources by providing a sparse yet statistically representative set of scenarios.

We introduced scenario trees with optimized shapes through a GA to describe the
temporal evolution of growing uncertainty. This approach ensures a small complexity
representation without compromising the accuracy of uncertainty modelling, effectively
modelling the progression of uncertainty over time.

The practical applicability of these methodologies was demonstrated through a proof
of concept involving a battery storage system performing DAM arbitrage. The combina-
tion of NPBN sampling and energy distance clustering outperformed naive approaches,
including a 10 times larger scenario set, underscoring the effectiveness of our methods
in optimizing operational decisions under uncertainty.

The methodologies developed in this chapter lay a robust foundation for the subse-
quent chapters, which will be applied to a real-world case study.
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4
ELECTRICITY PRICE FORECASTING

IN EUROPEAN DAY AHEAD MARKETS

You’re in my system, baby, deep in my system.
You’ve got me going crazy inside my system.

Nu:Tone

An ingredient for successfully trading on the energy markets to save costs is the ability to
forecast electricity prices. More accurately forecasting electricity prices would allow for
better energy planning and management since, in practice, the price is settled after bid-
ding. As explained in Chapter 1, there is a notable trend towards European energy market
integration.

In this chapter, we explore European feature importance in Day Ahead Market (DAM)
price forecasting models, and apply the knowledge to improve forecasting performance.
We propose a greedy algorithm to search over candidate countries for European features
to be used in a DAM price forecasting model, that can be applied to several regression
and machine learning modelling methodologies. We apply the algorithm to build price
forecasting models for the Dutch market, using candidate countries selected through an
integrated analysis based on open-source European electricity market data. Feature im-
portance is visualised using an Auto Regressive and Random Forest model, and explained
using cross-border flow and DAM price data. Two types of models (LEAR and the Deep
Neural Network) are considered as price forecasting models with and without European
market features. We show that in the Dutch case, taking European market integration into
account improves forecast accuracy with statistical significance.

Parts of this chapter have been published in IEEE Access [1].
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4.1. INTRODUCTION
Demand response (DR) is an energy management technique where energy consumers
are incentivised to shift their energy use in time [2, 3]. In market based DR, the incen-
tive is economic through variable pricing. The electricity price reflects the availability
of (renewable) energy through scarcity of a product. Low prices correspond with an en-
ergy surplus and low marginal cost of energy, where high prices correspond with energy
scarcity and high marginal cost of energy. The introduction of spot markets allows for a
different electricity price in every hour, 30-minutes and even 15-minutes. In Europe, the
Day Ahead Market (DAM) is the main spot market for trading electricity. On the DAM,
energy is traded in hourly blocks with corresponding prices. The DAM is well studied in
the context of Electricity Price Forecasting (EPF) [4].

The European grid is well connected and the inter-connectivity of countries is ex-
pected to increase in the future. In 2002, members of the EU vowed to have 10% of their
generation capacity in cross-border transmission capacity [5]. A future "European Su-
pergrid" could even connect the European grid to North Africa [6, 7, 8]. Inter-connectivity
of the European grid will help reach greater efficiencies, improve resilience to climate
change and will enhance energy flexibility [9]. The development of European infras-
tructure will improve internal market efficiencies, enhance security of supply and en-
able Renewable Energy Sources (RES) market penetration [5]. Inter-connectivity enables
cross-border electricity trading, opening up national electricity markets to foreign de-
mand. These facts already make a strong case for the consideration of European market
integration in a DAM price forecasting model. French market features (e.g. load, prices,
generation), for example, have been shown to be more important than Belgian features
when forecasting the Belgian DAM prices [10]. However, the analysis was limited to one
neighbouring country and only a Deep Neural Network (DNN) was applied. Similarly, a
study [11] has shown that including Energy Exchange Austria’s (EXAA) prices as features
improves forecast accuracy in all other EU DAM markets, especially in the Dutch and
French DAM forecasting models. However, the connection between the Dutch DAM and
the EXAA is also shown to be getting weaker over time. Possibly due to the further inte-
gration of the Dutch market with the APX UK market. In another study [12], price fore-
casts of other European markets are used as exogenous input for an Italian DAM fore-
casting algorithm, significantly improving performance. The effect of European market
integration is not only seen in the DAM, but also in the Intraday Market (IDM) [13]. In
general, the effect of European market integration is understudied in the context of EPF.

Machine Learning (ML) techniques have been shown to be effective at forecasting
electricity prices, both in the DAM [4] and the IDM [14, 15]. Specifically, the MultiLayer
Perceptron (MLP) has been successfully applied to forecast DAM prices in Spain and
Pennsylvania-New Jersey-Maryland [16, 17]. The more complex structured Deep Neural
Network (DNN) was successfully applied in Belgium [18], Nord-Pool markets, Germany,
France and Pennsylvania-New Jersey-Maryland [19].

Many other methods have been applied to forecast DAM prices [4]. According to an
EPF benchmark study on the Belgian market, a two-layer DNN generally outperforms
both statistical and other ML models, given the same features [18]. The Lasso Estimated
Auto Regressive (LEAR) [19], or fARX-Lasso [20], is the best performing non-ML method
and should be considered as a benchmark [19], especially since ML methods have been
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shown to not always outperform statistical models [18].

The performance of the different modelling approaches varies over different mar-
kets [19], but a recent case-study on the Dutch market is missing in literature. Many
statistical methods rely on the calibration of linear relationships. While they can still
be powerful modelling approaches, they might not perform well with high-resolution
data like hourly prices with high volatility [18]. Price volatility in electricity markets can
be pronounced due to the continuous need for balancing supply and demand [21]. It
can differ significantly per month, and is subject to external price drivers like energy
demand, demand elasticity, congestion, (renewable) energy generation, fuel prices, cur-
rency exchange rates and inter-connected electricity markets [22, 21, 23, 10]. With an in-
creasing renewable energy penetration in electricity markets, price volatility is expected
to increase due to the intermittent nature of renewables, in the absence of sufficient
energy storage [23]. However, effective policy, cooperation between TSO’s and intraday
trading can presumably prevent a significant increase in price volatility on the DAM [24].
It is possible that as renewable energy penetration increases, price volatility would in-
crease and ML methods would increasingly outperform statistical methods.

To summarize, market integration can be expected to play a large role in price set-
tlement of European Day Ahead Markets. The increasing inter-connectivity may even
increase external market influences on national markets. The current state of the art in
EPF generally limits market integration features to a single external market, while the
inter-connectivity of the grid and different local conditions would make it likely for na-
tional markets to be affected by multiple external markets. Also, little clarification is
given on the actual market mechanisms that make the markets affect each other. In re-
cent literature, a case study is missing on the Dutch market. And while it is expected that
ML methods perform better than statistical methods in times of high price-volatility, this
has not been confirmed with statistical significance.

In this chapter we perform an EU wide, data-based analysis of European market fea-
ture (e.g. price and load) importance in DAM price forecasting models of European bid-
ding zones. Open-source data from the ENTSO-E transparency platform [25] was used
exclusively. Yearly cross-border flows are analysed, after which we apply a Least Absolute
Shrinkage and Selection Operator (LASSO) [26, 27] estimated Auto Regressive model, and
a Random Forest [28] model to identify European feature importance (Section 4.4). The
results are used to select candidate European countries whose features are to be con-
sidered in a Dutch DAM forecasting model. We perform a benchmark using only Dutch
features (Section 4.5.2). Then, we propose a greedy approach to search through can-
didate countries for the best performing combination of features for a DAM forecasting
model (Section 4.5.1). We apply two different types of models in the search for market in-
tegration features: the LEAR [19, 20] and the DNN. The LEAR is a linear regression model
estimated with the LASSO. The DNN will be applied in two different configurations: the
single-market DNN [18] (SM-DNN) and the multi-market DNN [10] (MM-DNN). The
SM-DNN [18] forecasts all 24 hourly DAM prices of a bidding zone simultaneously, while
the MM-DNN forecasts the 24 hourly prices of multiple bidding zones simultaneously.
Temporal variations in relative model forecasting performance will be analysed (Sec-
tion 4.5.4) using univariate Diebold-Mariano-tests (DM-tests) on the hourly forecasts
and Kernel Density Estimates DAM prices.
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4.2. ELECTRICITY PRICE FORECASTING METHODS
In order to test whether our proposed methodology for including market integration
features in a Dutch price forecasting model leads to a performance increase, several
benchmarking models are proposed. Using a naive forecast as general benchmark, we
compare its performance with 4 other Dutch price forecasting models without European
features. The full AutoRegressive (fAR) and the fAR with Exogenous variables (fARX) [29,
20] are compared with the Lasso Estimated AutoRegressive (LEAR) [19, 20], consisting
of the LASSO- or EN-estimated fARX. In this study we considered both the LASSO- and
EN-estimated LEAR, and selected the best performing model based on a preliminary
analysis. Since the Deep Neural Network (DNN) has recently been shown to be the best
performing model in an EPF benchmark for the Belgian market [18], we include it in the
benchmark for a Dutch price forecasting model.

The best performing models without European features will be used in the greedy
algorithm in order to quantify their performance increase due to the inclusion of Euro-
pean features. The DNN will be included since it has already successfully been applied
to improve the accuracy of the Belgian price forecast using French market features [10].
However, we consider two configurations of the DNN. First, we apply the SM-DNN with
European features. The SM-DNN is used to forecast the 24 hourly Dutch DAM prices
only, while European features are included in the input. Second, we apply and the MM-
DNN, where the 24 hourly DAM prices of multiple bidding zones are forecast in the same
model [10]. The MM-DNN is depicted in Figure 4.1, where the model is applied to fore-
cast the Dutch and N other bidding zones’ hourly DAM prices. We evaluate all models
on their forecast accuracy of the Dutch DAM prices only.

4.2.1. LASSO AND ELASTIC-NET
The Least Absolute Shrinkage and Selection Operator (LASSO) [26] is a least squares lin-
ear regression model, where an additional l1-norm penalty is applied to the weights in
order to regularise the model and enforce sparsity of the solution. The LASSO solves the
optimisation problem

min
1

2
||z −Φθ||22 +λ||θ||1, (4.1)

where z ∈ RN×1 is a vector of outputs, Φ ∈ RN×p is a matrix of features and θ ∈ Rp×1 is a
vector of weights. The regularisation parameter λ ∈R can be used to control the trade-off
between sparsity of the solution and the approximation error.

The Elastic-Net (EN) is a linear regression model fit with both an l1 and l2 penalty
norm on the weights of the model. During model selection, both the penalty gradient
on the weights (λ) and the l1l2 ratio (ρ) are optimised. A ρ of 0 would result in a Ridge
Regression problem, while a ρ of 1 results in a LASSO. The objective function when fitting
the EN is:

min
1

2
||z −Φθ||22 +λρ||θ||1 + λ(1−ρ)

2
||θ||22, (4.2)

where variables have the same representation as in the LASSO objective (4.1), and ρ

represents the l1l2 ratio.
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RANDOM FOREST

The Random Forest (RF) algorithm was developed by Breiman [28]. It is an ensemble
classification or regression approach using random regression trees, hence the name
Random Forest. The RF is a collection of tree-predictors whose output - in the case of
regression - is an unweighted average of the outcomes of the separate trees:

h(x) = 1

K

K∑
k=1

h(x;θk ), (4.3)

where h is the averaged output of regression trees h(x;θk ) with input x, feature space θ,
subspace θk ⊂ θ and K regression trees. The RF estimates a features’s importance based
on the amount of splits in the trees in comparison to the amount of samples the feature
splits. It is also referred to as the ’Gini importance’ or the ’mean decrease impurity’ [30].

KERNEL DENSITY ESTIMATION

A kernel density is a non-parametric method that can be used to estimate the proba-
bility density function (PDF) of a random variable. If (x1, x2, ..., xn) is a sample from the
univariate distribution f , its kernel density estimator is then described by

f̂h(x) = 1

nh

n∑
i=1

K (
x −xi

h
), (4.4)

where K is the kernel (in our case we have applied the Gaussian kernel function) and h
is the bandwith (in our case this has been selected using Scott’s method [31]). The KDE
has been applied using the Scipy python package [32].

4.2.2. LASSO ESTIMATED AUTO REGRESSIVE MODEL
The Lasso Estimated Auto Regressive (LEAR) is a fARX-model estimated using the LASSO
(Appendix 4.2.1) [20, 19]. For DAM forecasting considered here, the fARX is given by the
following formula:

pd ,h =
24∑

i=1
(βh,i pd−1,i +βh,i+24pd−2,i +βh,i+48pd−3,i )

+βh,73pd−7,h +
3∑

j=1
(βh, j pmin

d− j +βh, j pmax
d− j +βh, j pavg

d− j )

+βh,83zd ,h +βh,84zd−1,h +βh,85zd−7,h +
7∑

k=1
βh,85+k Dk

+
7∑

k=1
βh,92+k Dk zd ,h +

7∑
k=1

βh,99+k Dk pd−1,h +εd ,h ,

(4.5)

where pd ,h is the price on day d and hour h, β are the weights or coefficients, pmin
d , pmax

d
and pavg

d are the minimum, maximum and average price of day d , zd ,h is the logarithm
of the load for historic data, and the load forecast of day d , Dk are weekday dummies for
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all days of the week where holidays are all 0, and ε is the model error. The model can be
written more compactly as

pd ,h =
n∑

i=1
βh,i Xd ,h,i +εd ,h , (4.6)

where Xd ,h,i are the n = 106 regressors or features in Equation (4.5).
The model is trained by solving the least-squares estimate of the model, with either

an l1-norm for the LASSO-estimation or an l1l2-norm for the EN-estimation. With suf-
ficiently large penalty term some weights will become (near) zero [33], effectively per-
forming variable selection. More information on the LASSO- or EN- estimation can be
found in Section 4.2.1.

4.2.3. DEEP NEURAL NETWORK
A DNN is a feed forward Artificial Neural Network (ANN) that is trained using back prop-
agation. It contains a minimum of 3 layers: an input layer, an output layer and at least
1 hidden layers. Following the standard notation in EPFs, we will use the name MLP for
ANNs with 1 hidden layer and DNN for ANNs with 1 or more. Although the definition
of what is "deep" might be debatable, it is out of the scope of this paper and we simply
follow the current standard terminology used in literature [18, 10, 19].

The DNN is trained with the Adaptive Moment Estimation (ADAM) [34]. Figure 4.1
shows an MM-DNN with 2 hidden layers (z1, z2), where n f is the number of input fea-
tures in the input layer x, n1 and n2 are the number of nodes in hidden layer 1 and 2,
respectively. The output layer (P ) consists of 24 nodes for each country included in the
forecast, one for each hour of the day (h). In the case of Figure 4.1, the DNN is used to
forecast Dutch DAM prices together with a variable number (N ) of other bidding zones.
In the case of a DNN with one hidden layer, the output layer is fully connected to the first
hidden layer.

Features are optimised as hyperparameters similarly to [10], where a single binary
choice-option for country load features is added to the search space. In our case these
are the historic load, and load forecast of the countries considered in the forecast, which
are added or removed through a single binary choice-option per country. Historic prices
are always included as model features. The TPE algorithm [35] was applied to efficiently
optimize features and hyperparameters.

4.2.4. DIEBOLD-MARIANO TEST
The DM-test is a statistical measure to compare accuracy of two forecast timeseries.
Given a target timeseries (yt ) and two forecasts (ŷ1t , ŷ2t ), the error timeseries (ei ,t ) are
calculated (Equation 4.7a). In this chapter we apply the Mean Absolute Error (MAE)
(Equation (4.7b)) as loss function (L ). Based on this, a loss differential timeseries (δt ) is
calculated (Equation 4.7c), which is then used to perform the one-sided DM-test.

ei ,t = ŷi ,t − yi ,t , i = 1, 2 (4.7a)

Li ,t = ||ei ,t ||1, (4.7b)

δt =L1,t −L2,t , (4.7c)
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Figure 4.1: Multi-Market Deep Neural Network (MM-DNN) with input layer (x), two hid-
den layers (z1, z2) and output layer (P ). The MM-DNN is applied to forecast Dutch DAM
prices (PN Lh ) simultaneously with N other bidding zones’ prices (PCx,h , with x ∈ (1, ..., N )
and h ∈ (1, ...,24)). If N = 0, the DNN forecasts a single market’s prices, the Dutch prices,
only. If N = 1, the dual-market DNN as proposed in [10] results.

The one-sided DM-test tests the null hypothesis (H0) that forecast timeserie 1 is more
accurate than or equally accurate as forecast timeserie 2. The alternative hypothesis
(H1) is that forecast 2 is more accurate than forecast 1. In the context of DAM forecasting,
the DM-test can be applied to either the full DAM timeseries (e.g. multivariate DM-test)
or to evaluate forecasting performance for each hour separately (e.g. univariate DM-
test).

H0 : E(δt ) ≤ 0, (4.8a)

H1 : E(δt ) > 0 (4.8b)

4.2.5. GREEDY ALGORITHM FOR EUROPEAN FEATURE SEARCH
In order to include EU market integration in a bidding zone’s DAM forecasting model, we
propose a greedy algorithm as defined in Algorithm 2. We apply the algorithm to prevent
over-fitting on the large amount of available data by selecting only the relevant features.
Starting with a candidate set of features (e.g. Θ1 contains only Dutch features), a model
(Mi ) is trained and its hyperparameters are optimised. The model is evaluated to test
its predictive performance (pi ) on the bidding zone of interest’s prices, in our case the
Dutch bidding zone’s, and added to a set (P i ) together with model performance (pi ) and
features (Θi ) of the current iteration (i ). After the first iteration, all candidate countries
(Φ) are consecutively added to the latest feature set (Θi ), to be used in the price forecast-
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Figure 4.2: Dutch historic price, load and load-forecast with train, validation and test
splits indicated for model training.

ing model. The model is trained, its hyperparameters are optimised, and its forecasting
performance on the bidding zone of interest (P j ) is evaluated and added to set (P ). After
all candidate countries are evaluated, the best performing model’s features are selected
from the set (P ). Those features are added to the feature set (Θi ), while they are removed
from the candidate feature set (Φ). The procedure will then be repeated until either per-
formance stops increasing, or all candidate features are added to the model.

The candidate set of features (Φ) was selected using the data analysis described in
Section 4.4, where all countries that result from at least one of the analyses (cross-border
flow, ARX or RF) are selected. The candidate set of country features used for the Dutch
market are summarised in Table 4.1.

Our proposed greedy algorithm can be applied to any model that allows for a large
amount of features, and assists with preventing over-fitting. In this chapter we indepen-
dently apply the algorithm to three different modelling approaches (Section 4.5.3). We
perform both hyperparameter optimisation and feature selection on the validation set
of the Dutch DAM prices. Finally, all models are evaluated on the test set to evaluate the
increase in model performance. No model selection is performed on the test set.

4.3. DATA AND TOOLS
The data used for this study is taken from the ENTSO-E transparency platform [25]. His-
toric DAM price-series, historic loads and historic day ahead load forecasts are used.
The data was split in train-, validation- and test-sets, as depicted in Figure 4.2. Data
from 2015-2019 was used, with the year 2019 being used as test data. In order to be able
to include the most recent information in training, 2017 was taken as validation data in-
stead of 2018. A single split limits the data leakage that occurs in the first week of the
2018, where data from the validation set is used in the lagged features. There still is no
data leakage from the test set.



4.4. EUROPEAN FEATURE IMPORTANCE ANALYSIS

4

63

Algorithm 2: GreedyFeatureSearch(Θ1,Φ)

1 i ← 1
2 P ←;
3 p ←;
4 M ←;
5 Mi ← Tr ai nModel (Θi )
6 pi ← Eval uateModel (Mi )
7 P i ← (Θi , pi ,Mi )

while (pi ≤ pi−1∨i > 1)∧|Φ| > 0 do
// execute algorithm while performance improves, or until all

country features are included in the model
8 P ←;
9 M ←;

for j = {1, ..., |Φ|} do
// train and evaluate the i th model by adding a single country’s

( j) features at a time
10 M j ← Tr ai nModel ({Θi ∪Φ j })
11 P j ← Eval uateModel (M j )

end
12 j ← argmin j (P )
13 Θi+1 ← {Θi ∪Φ j }

// add best performing country’s features (Φ j ) to i th model
14 Φ← {Φ\Φ j }
15 i ← i +1
16 pi ← P j

17 Mi ← M j

18 P i ← (Θi , pi ,Mi )
end

19 return P

The LEAR models are build and trained, and the features were Z-score standardised
using the scikit-learn python package [30]. The DNN was made using Tensorflow [36]
and trained with the ADAM optimiser [34]. The TPE SMBO algorithm is implemented
using the Python Hyperopt package [35]. The DM-tests are performed using the python
EPF-toolbox [19].

4.4. EUROPEAN FEATURE IMPORTANCE ANALYSIS
In order to identify possible European features that influence the Dutch market, a EU-
wide analysis is performed on cross-border flow data and DAM prices.

European cross-border flow data [25] was analysed to identify trading patterns be-
tween countries. Figure 4.3 shows the cross-border flows between countries whose data
is available through the ENTSO-E transparency platform. The data shows that France is
the largest net exporter of the EU, while Italy is the largest net importer of the EU. The
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Nordic markets (FI, SE, DK and NO) seem to be a relatively independent block, mostly
trading amongst each other.

Figure 4.3: Cross-border flows between European countries, units in [MWh/year] based
on 2018 data [25]

.

For each bidding zone, a LASSO-estimated ARX-model is trained and its weights are
analysed. The model is estimated by fitting

pd ,h =
N∑

i=1
βi pi ,d−1,h +

M∑
j=1

β j+N z j ,d ,h +εd ,h , (4.9)

where N is the number of bidding zones, M the number of countries, pi ,d ,h the price of
bidding zone i and z j ,d ,h the load forecast of country j , on day d and hour h, β are
the weights or coefficients, and εd ,h the model error. The analysis allows us to gain
insight in the relative importance of European features with respect to domestic fea-
tures. The analysis fits the general EPF modelling approach, where historic prices and
the load (forecast) are used to forecast next day’s price. Figure 4.4a shows the normalised
weights resulting from the ARX-models. The incoming arrow width indicates the rel-
ative weight of transmitting country features for the receiving country’s price forecast-
ing model. For countries containing multiple bidding zones, the weights of the bidding
zones are summed. Weights are masked at a minimum of 5% normalised importance.

Since the LASSO estimated ARX is a linear model, it is possible that non-linear rela-
tionships are not well reflected in the analysis. To overcome this limitation, a RF-model
is applied in similar fashion. The RF is trained to forecast the 24 hourly DAM prices of a
bidding zone simultaneously, using the same features as the ARX-model. The RF is able
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to capture non-linear relationships, and can similarly show relative features importance.
More information on the RF model can be found in Appendix 4.2.1. Figure 4.4b shows
the normalised feature importance resulting from the RF-models. The RF seems to give
a higher importance to domestic market features compared to the ARX.

(a) ARX normalised weights (b) RF normalised feature importance

Figure 4.4: Normalised weights for the ARX model (a) and normalised feature impor-
tance for the RF model (b) forecasting the DAM prices of day d , using the prices of day
d − 1 and the load forecast of day d of all European bidding zones and countries. The
weights of the load and separate bidding zone’s prices are summed for each country.

Both the ARX- and RF-analyses show that Norwegian market features seem to per-
form well in many other European price forecasting models, while Norwegian models
perform well using only Norwegian features. Compared to Sweden, which exports more
in an absolute sense, Norwegian features perform well in a large number of forecasting
models of other European markets. This could be do to the amount of storage present
in the Norwegian system, possibly allowing them to export more dynamically. It would
enable them to export at times the merit-order curve in other bidding zones is relatively
high and steep, expressing more influence on price settlement. Another explanation
could be the relative large transmission losses that come with the oversea cables that
connect Norway to many other European markets, making high foreign prices neces-
sary to make up for the transmission losses. Figure 4.5a shows the correlation matrix of
Norwegian export and the DAM Prices of the importing markets. The figure shows that
Norwegian exports correlates positively with the importing market’s DAM prices. The
correlation is the strongest in Denmark and Sweden, but is positive for all neighbouring
markets. The positive correlation between Norwegian export and Swedish prices is as
positive as to other connected market prices. This indicates that the difference between
overland- and oversea-connected markets, and as such the possible effect of transmis-
sion losses on export behaviour, can’t be observed to have an effect on the correlation
between Norwegian export and the neighbouring price.



4

66 4. ELECTRICITY PRICE FORECASTING IN EUROPEAN DAY AHEAD MARKETS

The Spanish and Portuguese markets seem to function as an independent block from
the other EU markets, with French features having low importance in their price mod-
els. This could partially be explained by the Pyrenees separating them, which makes
overland transmission cables relatively expensive [37]. This would result in the relatively
low degree of interconnection of Spain with other EU member states [38].

Even though France is the largest net exporter of electricity, its feature importance
in neighbouring market models is relatively low. One explanation could be the large
share of nuclear power in France, making its export possibilities relatively inflexible.
This makes it possible that the information in French features is captured in the his-
toric prices of those markets, and less information from France is needed to quantify its
effect on price settlement. Figure 4.5b shows the correlation matrix of French electricity
export and the importing market’s DAM prices. The figure shows that the correlation be-
tween electricity export and DAM prices is weak, and in some cases negative. This can
similarly explain the relative low importance of Italian features in other markets’ models,
regardless of its high net import. Figure 4.6 shows the correlation matrix of Italian import
and the transmitting market’s DAM prices. Again, only weak correlations are observed. A
constant Italian demand in foreign markets (e.g. Slovenian, Swiss and French) could be
captured in the historic prices of those markets, and less Italian information is needed to
quantify this effect. Although cumulatively, Italian feature importance is relatively high
in both the ARX- and RF-models.

(a) Norwegian exports (b) French exports

Figure 4.5: Correlation matrices of Norwegian (a) and French (b) electricity exports with
importing markets’ data. Based on 2018 data.

Germany and Switzerland trade a significant amount of electricity, but their features
are not selected each other’s price forecasting model. Germany has a large renewable
energy share, making constant trading behaviour less likely. However, it could be that a
part of the export is from intraday trading. If that is the case, cross-border training would
have a smaller effect on DAM prices.

Both the ARX- (Figure 4.4a) and the RF-analyses (Figure 4.4b) show there is no straight-
forward relationship between cross-border flows and feature importance in a foreign
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Figure 4.6: Correlation matrix of Italian electricity import and the DAM prices of export-
ing markets. Based on 2018 data.

price forecasting model. Norwegian features have high importance in many markets,
while French feature importance is limited. France exports a lot more electricity than
Norway, but their interconnectivity, means of generation and, as such, their inherent
flexibility are vastly different. This can also be seen in the correlation matrix of their
export and the importing markets’ DAM prices. Italian features appear in many ARX-
models (Figure 4.4a), but with low importance compared to other markets regardless of
its large net import. A possible explanation is the ability of a bidding zone to time its
import and export with advantageous prices. However, more research is necessary to
conclude this definitely.

For the Dutch price model, Table 4.1 summarises the results of the analysis perform
in this section. It stands out that directly connected markets (BE, FR, NO and GB) arise
from the ARX- and RF-analyses. The ARX- and RF-models identify second-order mar-
ket effects through Danish (DK), French (FR) and Italian (IT) features. German features
are considered due to the relatively large amount of trading between the two markets.
For the Belgian, British and German price forecasting models, Dutch features seems to
contain information on their prices as well. However, for the French, Italian, Danish and
Norwegian models, Dutch features are not of high importance.
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4.5. DUTCH DAM PRICE FORECASTING WITH EU MARKET IN-
TEGRATION

To search for the best combination of European features for several Dutch price forecast-
ing models, we apply the greedy algorithm (Algorithm 2) to three modelling approaches
independently. The algorithm will be applied to search over the previously defined can-
didate countries (Φ). Table 4.1 shows the summarised results for the European feature
candidate selection, applied to the Dutch market. For countries containing multiple bid-
ding zones (NO, DK, IT), a single bidding zone (NO-2, DK-1, IT-NORD) is selected for the
remaining analysis.

Table 4.1: Candidate countries to be included in the search for Dutch price forecasting
features, based on cross-border flows, ARX-, and RF feature importance. A country is
selected as candidate when it shows up in at least one of the analyses.

Cross-border flows LASSO Random Forest
Germany Norway Italy
Norway Italy France
Belgium Belgium
Great Britain Denmark
France Great Britain

4.5.1. MODEL TRAINING

For model training of the LEAR and DNN, two slightly different approaches are taken.
In the LEAR models, all fARX-variables are considered possible features for the candi-
date countries. The penalty-factors (λ, ρ) are optimised on the validation set. For the
DNN, a feature- and hyperparameter search is performed using the TPE algorithm (Sec-
tion 4.2.3). The search space (Φ) that we have defined for the DNN’s is shown in Ta-
ble 4.2. The best performing models, evaluated on the validation set, are selected for all
modelling approaches.

4.5.2. DUTCH BENCHMARK

In order to be able to say whether the inclusion of European features improves the per-
formance of the Dutch forecast, a benchmark is performed using the Naive, fAR, fARX [29,
20], LEAR [20, 19] and DNN [18] models without European features. For the fAR, fARX
and LEAR, a single model is trained for each hour of the day. While the DNN is applied
to forecast the 24 prices simultaneously.

The results in Table 4.3 show that the LEAR sets a tough benchmark to beat, out-
performing the DNN. Figure 4.7a shows the results of the multivariate DM-test. The test
confirms that the LEAR model’s forecast is significantly more accurate than all other fore-
casts using only Dutch features, while the DNN’s forecast is significantly more accurate
than all others’ but the LEAR’s.
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Table 4.2: TPE search space for the DNN models. Load features are added as a hyperpa-
rameter for every country that is considered in the forecast.

Hyperparameter Variable type Search space
Number of layers Integer [1,2]

Nodes per layer Integer
Layer 1: 50 - 450
Layer 2: 50 - 250

Dropout rate Continuous 0 - 0.5
Batch size Integer 71 - 74

Regularisation (l2-norm) Continuous 1e−5 - 5e−2

Batch normalisation Binary [False, True]
Random seed Integer 1 - 300
Load features Binary [False, True]

Table 4.3: Performance on the test set (2019) of the benchmark models for Dutch DAM
price forecasting.

Naive fAR fARX LEAR DNN
MAE [€/MWh] 5.68 4.78 4.63 4.40 4.52
rMAE [-] 1 0.85 0.82 0.78 0.80
sMAPE [%] 14.45 11.91 11.70 11.00 11.36

4.5.3. GREEDY SEARCH FOR EUROPEAN FEATURES
Algorithm 2 is applied to search for the best feature combination in a Dutch DAM fore-
casting algorithm. The LEAR and DNN models are applied in the search for European
features, where the DNN is both applied to forecast the Dutch price only (SM-DNN),
and as a multi-market forecasting model (MM-DNN). All models are evaluated for their
ability to forecast Dutch DAM prices only. Table 4.4 shows the forecast metrics of the
LEAR models, showing an increase in accuracy as features from more countries are in-
cluded. Model performance stopped increasing after 5 added countries (GB, DK, NO,
FR and DE). The largest improvement can be found after the second and fourth itera-
tion, when Danish and French features are included in the model. The uneven increase
in performance could mean that there are system effects in price settlement, which are
hard to quantify using only two markets. The LEARSal l model using all European features
shows similar performance to the LEAR with features from set SL,1. It still has improved
performance over the LEAR model with only Dutch features. This can be explained by
the strong regularisation ability of the LASSO, effectively enforcing sparsity in the solu-
tion. However, there is still some degree of over-fitting resulting in a lower loss than most
models with less features. Figure 4.7b shows the results of the multivariate DM-test of
the forecasts. It shows that as features from more countries are included in the model,
the performance increases significantly. This leaves the LEAR with features from set SL,5

as statistically significant best performing LEAR-model.
Table 4.5 shows the results from the European feature search applied to the SM-DNN.

No significant increase can be seen after the first iteration, where British features are
added to the model. After three iterations, test performance increased with respect to
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(a) Benchmark models without European fea-
tures (b) LEAR models with European features

(c) SM-DNN models with European features (d) MM-DNN models with European features

Figure 4.7: Multivariate DM-test results of the Dutch DAM benchmark models (a), the
LEAR models with European features (b), the SM-DNN models with European features
(c), and the MM-DNN models with European features (d). In the figure, the color indi-
cates the p-value (green-yellow: p ≤ 0.05, light red-dark red: 0.5 < p < 0.1, black: p ≥ 0.1)
of the one-sided DM-test on whether the forecast of the model on the X-axis is more ac-
curate than the forecast of the model on the Y-axis.

the Dutch-only model. However, the fourth iteration resulted in the model with the low-
est test loss. Interestingly, the same countries except Germany are selected as in the
LEAR model in different order. Model performance decreased after the second iteration,
while the validation loss decreased. This could indicate that relevant market dynam-
ics can change depending on the year. The inclusion of Norway lead to the largest loss
decrease, which can possibly be explained by Norway’s high feature importance found
in Section 4.4. Figure 4.7c shows the results of the multivariate DM-test between the
forecasts of the SM-DNN’s. It shows little statistical significance in improved forecast ac-
curacy. The model with features from set SD,4 does show some significant performance
increase. The SM-DNN with features from set SD,4 has the most convincing p-values
for improved forecast accuracy compared to models with features from sets N L, SD,1

and SD,3. In general, the forecast error decreased by including more European features.



4.5. DUTCH DAM PRICE FORECASTING WITH EU MARKET INTEGRATION

4

71

Even though not all improvements are statistically significant, the final model includ-
ing features from set SD,4 is arguably better than the DNN with only Dutch features. The
SM-DNNSal l model with all European features shows a large performance decrease, even
compared with the SM-DNN using only Dutch features. This indicates that even though
the degree of l2 regularisation is taken as a hyperparameter, the model is hard to train
with this amount of features.

Table 4.6 shows the performance of the models generated in the European feature
search for the MM-DNN. The model is trained by minimizing the MAE of the price fore-
casts over all countries included in the model. Naturally, trade-offs are made between,
for example, Dutch and French price forecasting accuracy. This could both lead to a per-
formance decrease due to trade-offs, or to a performance increase by preventing over-
fitting. The greedy algorithm select the same markets in the same order as the single
market DNN, but stops one iteration sooner.

The MM-DNN with features from SD,2 and SD,3 outperform the single market DNN
with the same features. Indicating that forecasting prices of multiple markets could in-
deed lead to better single-market performance. Forecast accuracy generally improved
with the inclusion of more European features. The MM-DNN with countries from set
SD,3 is significantly better than all other MM-DNN models and the DNN using only
Dutch features. Although the significance of the improvement from SD,2 to SD,3 is de-
batable. The MM-DNNSa l l model with all European features shows a large performance
decrease. The rMAE larger than 1 shows the forecast performance is lower than the naive
model. The larger performance decrease in the MM-DNN could be explained by a trade-
off between target accuracy’s. The loss function while training the model combines the
losses for all bidding zones, which could result in a trade-off between price forecasting
performance in the Dutch and other bidding zones.

Table 4.7 shows the countries whose features are added in every iteration and for
all applied modelling approaches. Table 4.8 shows the improvements of the applied
modelling approaches when European market integration features are included in the
model. All approaches show improvements with an increasing number of market in-
tegration features. For the Netherlands, the first countries whose features are included
by the greedy algorithm are Great Britain and Denmark for all modelling approaches.
French features are included in all modelling approaches, and in some cases Norwegian
and German features are included as well. The third country added by the greedy algo-
rithm differs between the LEAR and the DNN’s. In the LEAR, Norway is chosen as third
external market, while in the DNN French features are included. This could indicate that
the relationship between the Norwegian market and Dutch prices are more linearly ap-
proachable than the relationship between the Dutch price and French market. A possi-
ble explanation is that the effect of the dynamics between the French and British market
on the Dutch price, are better captured in the DNN’s.

The largest improvements are found in the MM-DNN, but it doesn’t perform better
than the LEAR. The large relative improvement of the MM-DNN could mean that mar-
ket integration dynamics are better captured by non-linear relationships, resulting in a
larger possible improvement in non-linear models in comparison to linear models.

The SM-DNN doesn’t perform as well as the MM-DNN, which could be explained
by two factors: during training, it is possible that the MM-DNN’s were able to overcome
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local optima when different features are included. This would result in improvements
in accuracy that are not due to the information in the data, but due to the training pro-
cess. Another factor could be the prevention of over-fitting by generalizing tasks [10].
However, extensive optimisation of the DNN-type model performance was not within
the scope of the research. Meaning that it is possible that other DNN configurations or
other training methods could result in DNN models that outperform the LEAR.

Table 4.4: Dutch DAM LEAR models with European features. Notation: SL,1 =
{N L,GB}, SL,2 = {SL,1,DK }, SL,3 = {SL,2, NO}, SL,4 = {SL,3,F R}, SL,5 = {SL,4,DE }, Sal l in-
cludes all European features in the model.

NL SL,1 SL,2 SL,3 SL,4 SL,5 Sal l

MAE [€/MWh] 4.40 4.39 4.35 4.33 4.29 4.26 4.38
rMAE [-] 0.78 0.77 0.77 0.77 0.76 0.75 0.77
sMAPE [%] 11.00 11.02 10.89 10.85 10.76 10.69 10.92

Table 4.5: Single-market DNN forecasting models with European features. Notation:
SD,1 = {N L,GB }, SD,2 = {SD,1,DK }, SD,3 = {SD,2,F R}, SD,4 = {SD,3, NO}, Sal l includes all
European features in the model.

NL SD,1 SD,2 SD,3 SD,4 Sal l

MAE [€/MWh] 4.52 4.52 4.58 4.49 4.43 5.61
rMAE [-] 0.80 0.80 0.81 0.79 0.78 0.99
sMAPE [%] 11.36 11.31 11.47 11.26 11.08 13.79

Table 4.6: Multi-market DNN forecasting models, evaluated on Dutch price forecasting
performance only. Notation: SD,1 = {N L,GB}, SD,2 = {SD,1,DK }, SD,3 = {SD,2,F R}, Sal l

includes all European features in the model.

NL SD,1 SD,2 SD,3 Sal l

MAE [€/MWh] 4.52 4.53 4.45 4.36 6.29
rMAE [-] 0.80 0.80 0.79 0.77 1.11
sMAPE [%] 11.36 11.38 11.19 10.95 15.33
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Table 4.7: Countries whose features are selected by the greedy algorithm for every itera-
tion and per model type.

LEAR SM-DNN MM-DNN
Iteration 1 GB GB GB
Iteration 2 DK DK DK
Iteration 3 NO FR FR
Iteration 4 FR NO -
Iteration 5 DE - -

Table 4.8: Performance increase of the applied modelling approaches due to the inclu-
sion of market integration features.

LEAR DNN MM-DNN
∆MAE [%] 3.1 2.0 3.5
∆rMAE [%] 3.85 2.5 3.75
∆sMAPE [p.p.] 0.31 0.29 0.41
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4.5.4. TEMPORAL VARIATION IN PERFORMANCE
While the multivariate DM-tests give a good relative representation of forecast accuracy,
electricity prices are known to be more volatile in some hours than others. Figure 4.8
shows the Kernel Density Estimates (see Appendix 4.2.1) of the Dutch DAM prices in Au-
gust and October 2019. It can be seen that the DAM price behaves differently throughout
the day, with low price volatility in the early morning and late evening, and more volatile
prices during midday. Figure 4.9 shows the univariate DM-test of LEAR model with fea-
tures from SL,5 against the benchmark LEAR and DNN, DNNSD,4 and MM-DNNSD,3 . It
can be seen that the LEAR forecasts are more accurate than the DNN models’ forecasts
mostly at hours with low price volatility. Figure 4.10 shows the same DM-test but applied
to model MM-DNNSD,3 . It can be seen that the MM-DNN forecasts are more accurate
than the LEAR type model forecasts at times with some degree of volatility, but not when
it is too high. These months have been chosen for the sake of simplicity, the results can
also be seen in other months. Renewable energy generation forecasts are not included
as features, but could assist with forecasting highly volatile prices. The analysis indicates
that as prices are becoming more volatile, stochastically trained non-linear models start
outperforming mathematically optimised and regularised linear models. This makes the
DNN modelling approach worth considering for the future Dutch DAM forecast, as it is
possible that electricity prices will become more volatile in the future [23].

(a) August (b) October

Figure 4.8: Kernel density estimates of Dutch DAM prices in August (a) and October (b)
2019. The X-axis shows the hours of the day, the Y-axis shows the price in [€/MWh], and
the color shows the probability of occurrence [-].
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(a) August

(b) October

Figure 4.9: Univariate DM-test of LEARSL,5 model’s hourly forecasts in August (a) and
October (b), being more accurate than the hourly forecasts of the models on the Y-axis.

(a) August

(b) October

Figure 4.10: Univariate DM-test of MM-DNNSD,3 model’s hourly forecasts in August (a)
and October (b), being more accurate than the hourly forecasts of the models on the Y-
axis.



4

76 4. ELECTRICITY PRICE FORECASTING IN EUROPEAN DAY AHEAD MARKETS

4.6. CONCLUSION

In this chapter, we propose a method for searching optimal combinations of European
features in DAM price forecasting models. By using the Dutch market as a case study, we
show that taking European market integration into account in regression and machine
learning models can improve the forecasting performance of the best performing DAM
models. We identify and visualize European feature importance, showing that flexibility
in the energy system might affect a country’s feature importance. This is confirmed by
the correlation between electricity export and DAM prices. We have proposed a greedy
algorithm to search for European features in a DAM price forecasting model, using can-
didate countries resulting from an analysis on before-mentioned feature importances.
The proposed greedy algorithm improved forecasting performance of all proposed mod-
elling approaches with statistical significance.

The algorithm was applied to the Dutch market, using three different modelling ap-
proaches: the LEAR [20, 19], the SM-DNN [18] and the MM-DNN [10]. A benchmark
was performed using the LEAR and DNN including only Dutch features. The algorithm
was able to identify features while preventing over-fitting on the data, which did hap-
pen in the models when including all European features. The greedy algorithm first
chose British and Danish market features, after which either Norwegian or French were
included in the model, differing between the LEAR and the DNN’s. The LEAR model,
which is known to have good regularisation properties, performed best when features
from 5 other countries are included in the model. The SM-DNN model performed best
with features from 4 other countries, and the MM-DNN performed best with features
from 3 other countries. The largest improvement was found in the MM-DNN, which can
be explained by either the training process (as discussed in Section 4.5.3) or the non-
linear nature of market dynamics. However, in the Dutch case the LEAR model with
market integration features is the overall best performing model. Temporal variations
in model performance are shown, and a relationship between price volatility and rela-
tive model performance was found. The LEAR generally performs better than the DNN
during hours with low volatility, while the DNN-type models show some improved per-
formance over the LEAR in hours with high volatility. This could indicate that as prices
are expected to become more volatile in the future [23], non-linear models could out-
perform linear models. The LEAR model performed relatively well using all European
features, which can be explained by its strong regularisation properties. The DNN type
models that used all European features showed a decrease in performance, also with
respect to using only Dutch features. The MM-DNN showed the largest performance
decrease, which could be due to the multi-market loss function. This could result in
trade-offs between price forecasting performance on the Dutch market and other bid-
ding zones. In future work, other modelling approaches could be used in the proposed
greedy algorithm. Also, different lengths of the training data could be used, other hy-
perparameter configurations of the DNN could be set, and model ensembles could be
made, in order to optimise forecasting performance. More features could be used, like
renewable energy generation forecasts. Weights could be added to the MM-DNN loss
function to optimize Dutch price forecasting performance. Other years of data can be
used to train and test the models, allowing the investigation of temporal changes in mar-
ket dynamics. Also, the analysis could be applied to different European markets to test
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the sensitivity of a certain market’s model accuracy to market integration features. This
would also allow for an extended analysis on the relative performance of linear and non-
linear models under different scenarios of price volatility.
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5
INCORPORATING RISK IN

OPERATIONAL WATER RESOURCES

MANAGEMENT

There’s no room in the ring for overbearing pride.
Closing your mind to the prospect of failure will only ensure your defeat.

Master Roshi

This chapter presents an innovative approach to risk-aware decision-making in water re-
source management. Recognizing the limitations of deterministic methods in the face of
weather and energy system uncertainty, we propose a stochastic Model Predictive Control
framework incorporating probabilistic forecasting, scenario generation, and stochastic
optimal control. The multi-market Demand Response strategy for the Noordzeekanaal–
Amsterdam-Rijnkanaal (NZK-ARK), as described in Chapter 2, is extended to include op-
erational uncertainty of incoming discharge, outgoing sea water level, and the Day Ahead
and Intraday hourly electricity prices. We propose using Combined Quantile Regression
Deep Neural Networks (Section 3.1 and Non-parametric Bayesian Networks to generate
scenarios with realistic temporal dependencies (Section 3.2). Key to our approach is the
use of Exceedance Risk (ER) constraints on water level bounds within the Model Predictive
Control, enabling a more nuanced and risk-aware decision-making process.

We simulate historical multi-market participation with real water system and electricity
price data, where the control of the NZK-ARK system is simulated under uncertainty in a
receding horizon fashion over multiple years. We show that incorporating uncertainty sig-
nificantly reduces operational costs – by up to 44 percent-point compared to a determin-
istic approach. We show that our proposed ER constraint formulation leads is effective in
reducing energy cost and maintaining safe water levels.

Parts of this chapter have been submitted for publication in Water Resources Research.
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5.1. INTRODUCTION
The Netherlands, facing unique geographical challenges, has developed significant ex-
pertise in water management. Much of its land is below sea level, requiring methods to
manage precipitation and groundwater levels. In the past, pumping stations with rule-
based or deterministic model predictive control (MPC) have been central to these man-
agement efforts. However, as climate change can lead to more unpredictable weather,
the limits of deterministic approaches are being reached. This situation incentivised a
move towards adaptive strategies, leveraging real-time data and probabilistic forecasts
in the optimization process. These advances allow for better adaptation to climate vari-
ations and changes in water catchment areas [1, 2, 3].

Stochastic MPC approaches can employ chance constraints to ensure that certain
conditions are met with a predefined probability level [4]. However, their inherent binary
nature, indicating that they either meet the conditions or don’t, overlooks the potential
magnitude or likelihood of constraint violations, which is critical in applications such as
water management. Additionally, while robust optimization techniques aim to handle
uncertainty by considering the worst-case scenarios, they can also be overly conserva-
tive, leading to suboptimal or overly cautious operational decisions that may not capi-
talize on potential opportunities or efficiencies. In stochastic MPC, uncertainty can be
considered explicitly by expressing the uncertain variables as parametric PDF, or implic-
itly through scenarios sets. In recent literature, the main focus has been on implicit ap-
proaches, possibly due to their ability to include model uncertainty or the possibility to
condense scenarios sets into tree-shapes to reduce computational complexity [2]. Gen-
erally, explicit approaches do not account for autocorrelation in disturbances or forecast
errors [1, 5], which can relatively easily be implicitly taken into account in scenario sets.

Adapting to the unpredictability of weather and its impact on water levels requires
sophisticated forecasting methods. The integration of probabilistic forecasts not only
enhances prediction accuracy but also enhances dynamic responses such as Demand
Response (DR) in the energy sector to achieve a necessary balance between supply and
demand. DR refers to the changes in electric usage by end-use customers from their
normal consumption patterns. These signals are achieved through prices that reflect
scarcity of supply and marginal cost of production. The variable supply of renewables
leads to changing electricity prices over time, and induces lower electricity use at times
of high market prices. By enabling dynamic adjustments of demand, DR contributes to
the electricity grid’s stability, reduces the need for peak generation capacity, and opti-
mizes energy costs for consumers. In DR, inaccuracies in forecasting can significantly
impact system efficiency, leading to both operational challenges and financial conse-
quences for consumers and producers. With the increasing reliance on renewable en-
ergy sources, accurately forecasting energy production has become more complex. This
unpredictability and complexity call for enhanced predictive models that adequately
reflect the operational uncertainty given the latest information. Moreover, integrating
stochastic optimization methods into energy management strategies can mitigate the
risks associated with operational uncertainty. These methods enable the consideration
of multiple possible future scenarios in the decision-making process, thus providing a
more comprehensive strategy that accounts for a wide range of outcomes. By adopting
a probabilistic approach to forecasting and optimization, stakeholders can better pre-
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pare for and adapt to the inherent volatility associated with Renewable Energy Sources
and demand fluctuations and the operational risk involved in their processes [6, 7, 8],
inspiring research in uncertainty estimation in forecasting and making it an increasingly
present industry requirement [9, 10, 11]. However, ensemble forecasts have become a
standard in hydro-meteorological forecasting as well, due to their ability to capture fore-
cast uncertainty [2, 12].

Central to this study are the uncertainties faced in operational water resources man-
agement, from variable discharges to dynamic seawater levels influenced by tides and
winds. The inherent volatility of energy spot markets, combined with real-time supply-
demand dynamics, and the integration of renewable energy, exemplify the need for ad-
vanced forecasting methodologies. This motivated our exploration into probabilistic
methodologies, such as the Combined Quantile Regression Deep Neural Network [10]
(CQRDNN) and the Non-parametric Bayesian network [13] (NPBN). Our framework in-
tegrates probabilistic forecasting, scenario generation, and reduction approaches. We
further extend the scenario-based MPC approach into Tree-based MPC (TB-MPC) [14,
15] formulations for improved and sometimes necessary computational efficiency in
large uncertainty representations.

Our approach emphasizes risk-based constraints, inspired by the Conditional-Value-
at-Risk (CVaR) approach, also known as the mean excess loss [16]. CVaR represents the
tightest convex formulation of a chance constraint [17], while its linear formulation leads
to reduced computational complexity. Unlike traditional chance constraints or robust
optimization methods, CVaR represents the tail distribution of potential outcomes, re-
vealing worst-case scenarios and associated risks. We propose the use of Exceedance
Risk (ER) constraints that are formulated similarly to CVaR, but are tailored for the ap-
plication in operational water resources management. In the Dutch water sector, risk-
awareness is key to system design and policy-making. Our work considers probabilistic
risk of exceedances for water levels in real-time operational control. We formulate a
stochastic MPC problem, where the states are stochastic variables driven by uncertain
disturbances and parameters, and the objective and constraints are formulated as ex-
pectation of cost and probabilistic constraint violations, respectively. As such, the opti-
mal control problem of the MPC requires solving stochastic optimization problems via a
scenario-based approach. We also specifically consider CVaR-type stochastic problems
to model water-level exceedance risks.

In response to the societal challenges posed by climate variability and the energy
transition on water management systems, this chapter introduces several novel method-
ologies to capture dependencies between weather, markets, and control decisions, and
shows how to exploit these in control for our case study area, the drainage canal Noord-
zeekanaal–Amsterdam-Rijnkanaal (NZK-ARK). Firstly, we have developed a Combined
Quantile Regression Deep Neural Network (CQRDNN) (Section 3.1.1), which leverages
deep learning to provide probabilistic forecasts of water levels and energy demands.
Unlike traditional models, CQRDNN incorporates a quantile-based approach that in-
herently manages forecast uncertainty, offering a range of potential outcomes that are
crucial for effective decision-making under uncertainty. Secondly, we introduce a Non-
parametric Bayesian network (NPBN)(Section 3.2.1) for generating dependent scenarios
that respect the temporal dynamics of water systems and energy markets. This method
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allows for a more realistic simulation of future states, enhancing the strategic planning
capabilities of water resource managers. This approach not only improves computa-
tional efficiency—critical for real-time operational adjustments—but also incorporates
advanced risk-based constraints tailored for water management. We further propose
a scenario-tree generation method(Section 3.2.3) to further reduce the computational
complexity of the optimization problem, allowing for TB-MPC. Finally, we propose novel
Exceedance Risk (ER)(Section 5.3) constraints, allowing our framework to mitigate po-
tential risks more effectively than traditional methods, which often overlook the magni-
tude of violations.

By examining the operational flexibility of electric pumping stations and their role in
the broader energy system, this chapter aims to contribute to a more sustainable and in-
tegrated approach to managing the interdependencies between water and energy in the
Netherlands. The presented innovations collectively enhance the ability of water man-
agement systems to operate efficiently in the face of uncertainty, optimizing both wa-
ter usage and energy expenditure. The integration of these methodologies not only ad-
dresses the immediate needs of operational control but also sets a foundation for future
research and application in sectors grappling with similar variability and uncertainty,
notably in the context of energy flexibility and DR.

5.2. DEMAND RESPONSE IN THE NETHERLANDS: CASE STUDY

IJMUIDEN
In this section, we describe the case study for our proposed framework. First, we de-
scribe the water system; the NZK-ARK, located in IJmuiden, the Netherlands (Section 5.2.1).
Then we describe the Dutch electricity markets that are considered for DR services which
recent studies have shown to offer significant flexibility and cost reduction potential [18]
(Section 5.2.2).

5.2.1. THE NOORDZEEKANAAL–AMSTERDAM-RIJNKANAAL

The NZK–ARK is an intricate open canal system. It’s equipped with multiple undershot
gates and has a pumping station at IJmuiden, which aids in consistently directing water
into the North Sea, regardless of the sea’s variable water levels. Water from four regional
water boards flows into the NZK–ARK, helping redirect excess rainwater. This water is
methodically channelled or pumped out to the North Sea. A detailed representation
of this water system, focusing on the inflow and outflow mechanisms, is provided in
Figure 1.5a. A simplified schematic of the system is presented in Figure 5.1.

The operations at the IJmuiden pumping station highlight the complexities in decision-
making caused by the presence of operational uncertainty. IJmuiden is not only Europe’s
largest pumping station, but also plays a key role in managing ship traffic, controlling
saltwater intrusion, and working with four local water authorities. The complexity of its
operations is further amplified with the possible addition of Demand Response (DR) and
energy trading in the spot market. Previous work has shown that a control strategy that
taps into varying electricity prices from the Day Ahead Market (DAM) and the Intraday
Market (IDM) could prove more cost-effective than the current method, especially as the
penetration of renewable energy grows. [18]However, that analysis was based on perfect
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foresight and did not consider operational uncertainty. The interaction between water
management and energy usage in pumping stations is increasingly significant within the
context of the water-energy nexus [19, 20, 21]. Despite this significance, the opportunity
to optimize pump schedules with regard for the energy markets is still largely untapped
in practice.

Figure 5.1: The Netherlands, Noordzeekanaal–Amsterdam-Rijnkanaal. (a) The water
management area of different local water authorities are shown by color. Pumping sta-
tions owned by local water authorities are shown by red diamond, gate structures with
red rectangles, and the IJmuiden gate- and pumping station with a yellow diamond. (b)
The water level regime of the NZK-ARK showing target ranges and warning/emergency
levels. (c) NZK-ARK schematic for control, where the purple-outlined items indicate
forecast variables, and the green-outlined items indicate control variables.

Within the MPC’s internal model, the canal is depicted as a linear reservoir with pre-
defined surface area. This approach is consistent with the current control system of the
NZK–ARK. Owing to the canal’s considerable depth and width, water movement occurs
at reduced speeds, ensuring that friction remains minimal [22]. The primary sources of
water inflow come from the water board discharges and water from the Rhine directed
through Maarssen, the outflow is directed towards the North Sea.

At IJmuiden, the gate operations are dictated by specific water level differentials.
They can be activated when there’s a 16 cm water level difference and deactivated at
12 cm. This modulation is necessary to account for the contrasting densities of salt and
freshwater, along with inherent system friction [23]. With automated controls in place,
these gates have a maximum discharge rate of 500 m3 s−1, a precaution to protect the
foundation of the gate complex. The IJmuiden station incorporates six distinct pumps,
with a combined maximum power consumption nearing 5 MW. For modelling conve-
nience, the MPC represents these multiple pumps as a singular entity, merging their
unique attributes. Even though there are six individual pumps, an integrated approach
is adopted, utilizing various Q–dH curves to represent the pumping station’s overall dis-
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charge ability. Another composite representation is designed to represent the pumping
station’s energy use in a single equivalent PQH-curve, encapsulating pump energy con-
sumption in relation to discharge levels and the pump head. A comprehensive descrip-
tion of these modelling techniques is available in [18].

At present, the IJmuiden pumping station operates using MPC, focusing on energy
efficiency by drawing power from the Futures market with fixed-price contracts. It works
with a 24-hour prediction, ensuring water levels stay within set limits. To better fit the
needs of energy trading on the DAM, we’ve expanded the prediction horizon to 48-hours.
This change allows for a detailed look at the cost-saving potential of energy cost opti-
mization over flexible energy markets for the NZK–ARK system, and aligns the control
system with DAM rules. We’ve considered uncertainties in sea water levels, incoming
discharge from local water authorities, and electricity prices. While sea water levels and
discharge, which directly impact system limits, are exhaustively combined, electricity
prices are evaluated on their own, focusing on reducing expected costs without needing
more decision points.

5.2.2. ENERGY MARKETS IN THE NETHERLANDS

The energy trading landscape in the Netherlands is predominantly facilitated through
the DAM and the IDM. On the DAM, energy transactions are made a day in advance,
with consumers placing bids for the upcoming day in hourly blocks. By 12:00 CET each
day, bids are collected on the Amsterdam Power Exchange (APX)-Endex. The market
then establishes a price equilibrium where demand meets supply. These two markets are
the main markets for trading renewable energy in Europe and reward the exploitation of
energy flexibility through DR services.

In contrast, the IDM offers a more dynamic trading environment, allowing partici-
pants to continuously buy or sell energy in quarterly, half-hourly, or hourly segments,
sometimes up to just 5 minutes before the actual delivery time. Due to this flexible na-
ture, individual buy and sell orders set varying contract prices. This study utilizes the
volume-weighted price over the three hours leading up to delivery, termed the ID3-price.
However, in real-world scenarios, every transaction could exhibit a distinct price. The
IDM serves as a platform to adjust day-ahead plans and sidestep potential imbalances.
Given its adaptability, many speculate that the IDM is poised to become the primary
trading platform for renewable energy in the near future [24], a hypothesis that is being
confirmed by the yearly doubling of traded volume.

Both DAM and IDM incentivise participants to tailor their energy schedules in re-
sponse to price signals that echo supply scarcity and production costs. By adhering
to such price-sensitive DR strategies, there’s potential for shifts in energy consumption
patterns in correspondence with price changes [25]. Figure 5.2 shows a 2-Dimensional
Kernel Density Estimate (KDE) that sheds light on the evolving trends of DAM and IDM
prices in the Netherlands. Interestingly, Dutch prices have demonstrated more pro-
nounced fluctuations over the years, which might be attributed to various factors, in-
cluding the maturity of the market, changing consumption patterns in the COVID pan-
demic, the lack of nuclear base-load in France, and the Russian invasion of Ukraine lead-
ing to a reduced gas and oil supply to Europe, and increased prices due to embargos. This
caused spot market fluctuations to increase from around 0 - 75 [€/MWh] in 2019 to -200
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- +600 [€/MWh] in 2022. Interestingly, the relative ID3 price seems normally distributed
around the DAM price and has stayed in a similar range since 2020.
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Figure 5.2: 2D-KDE of top: the Dutch IDM electricity prices over the DAM prices, bottom:
the relative IDM prices over the DAM prices (2019-2022). Blue indicates the empirical
probability where darker colors indicate a higher empirical probability. Dots represent
the individual samples.

While the Futures market provides long-term or base-load trading opportunities, its
fixed pricing model doesn’t facilitate the intermittent nature of renewable energy. As en-
ergy supply becomes more uncertain, it is expected that fixed-price contracts will carry
higher risk premiums, giving flexibility a business case. Energy users might turn to the
Futures market to hedge against risks, and producers find it useful to guarantee consis-
tent sales. However, its inherent rigidity with predetermined prices makes it less suited
for strategies that aim to exploit energy flexibility.

In the following sections, we extend the multi-market approach as defined in [18]
to incorporate operational uncertainty. The proposed strategy combines both DAM and
IDM, optimizing the strengths of each. Combining multiple markets promises to amplify
the efficacy of market-based DR initiatives [26]. With the rising prominence of renewable
energy sources, the roles of DAM and IDM are set to further magnify in order to keep
supply and demand in balance.

5.3. RISK-AWARE OPTIMAL CONTROL
In this section, we describe the control model and methods that we propose to optimize
the gate and pump schedule for IJmuiden with regard for uncertainty. We start with
an introduction to stochastic MPC and our justification for the use of ER constraints
(Section 5.3.1), continued by the water system constraints (Section 5.3.2) and the multi-
market trading objective (Section 5.3.3). The full MPC control problem is fomrulated in
Section 5.3.4.

5.3.1. STOCHASTIC MODEL PREDICTIVE CONTROL
Stochastic MPC is a powerful extension to Deterministic MPC for control problems in
the presence of uncertainties [4]. It leverages mathematical optimization to make op-
timal control decisions based on probabilistic information about system dynamics and
disturbances. The key idea behind stochastic MPC is to formulate the control problem
as a stochastic optimization problem, where the objective is to find a control policy that
minimizes an expected cost while considering the constraints and uncertainties in the
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system. In addition to handling uncertainties in a single time step, stochastic MPC can
be extended to multi-stage scenarios, where the uncertainty evolves over the prediction
horizon. This extension enables the controller to make decisions that take into account
the changing nature of uncertainties over time. By making use of real-time updated in-
formation and probabilistic forecasts in the optimization, stochastic MPC can help water
systems cope with changes in the climate or catchment, and mitigate impacts of extreme
hydrological events [1].

Robust optimization techniques play a significant role in stochastic MPC by address-
ing uncertainties and maintaining system performance under worst-case scenarios. Scenario-
robust optimization aims to find control policies that can withstand uncertainties by
optimizing over a range of possible scenarios or uncertainty realizations. By considering
the most unfavorable outcomes in the scenario set, scenario-robust optimization pro-
vides assurances regarding system stability and performance, even when uncertainties
deviate from their nominal distributions. In stochastic MPC, scenario-robust optimiza-
tion techniques are integrated into the optimization framework, enabling controllers to
account for uncertainties while minimizing the potential impact of worst-case scenar-
ios on system behavior. By explicitly considering worst-case scenarios and their associ-
ated constraints or objectives, scenario-robust optimization provides a reliable control
framework. This approach is particularly valuable in safety-critical systems or applica-
tions where deviations from nominal conditions can have severe consequences, such as
the NZK-ARK where constraint violation can lead to flooding.

Robustness in MPC can extend to both constraints and objectives. In scenario-robust
constraint formulation, constraint violation will not be tolerated in the whole range of
uncertainty realizations. Scenario-robust optimization ensures that the system remains
within predefined safety bounds under all considered scenarios, providing a reliable
control strategy. Although in most cases, subjecting to constraints even in the most un-
likely considered scenarios can be considered conservative. The authors hypothesize
that this robustness in control has a price when put in context of DR.

We propose the use of CVaR-inspired constraints for managing risk by controlled re-
laxing of robustness in decision-making, while minimizing the expected value of the
energy cost by trading over multiple markets. Unlike traditional measures like chance
constraints that focus solely on a probability threshold or variance constraints that con-
strain a variance around the expectation, CVaR considers the size of the tail of the dis-
tribution beyond the threshold. By capturing the tail of the risk, CVaR provides a more
comprehensive measure of the risk associated with the system’s outcomes while being
the tightest convex approximation of the chance constraint [17].
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The constraint can be formulated as a linear constraint with a slack variable, while
being a coherent risk measure [27]. Consider the optimization problem

min
x

E[C (x,W )] (5.1)

s.t. CVaRα[C (x,W )], (5.2)

where x represents the control variable, and W represents the set of possible uncertainty
realizations. The cost function C (x,W ) captures the system’s cost under control variable
x and uncertainty set W . The CVaRα constraint ensures that the Conditional Value at
Risk of the cost function remains below a certain threshold γ with confidence level α.
This constraint can be discretely approximated by introducing a slack variable and two
linear constraints [28]

ζ+ (1−α)−1
∑

w∈W

p[w] · z[w] ≤ γ, (5.3)

z[w] ≥C [x, w]−ζ ∀ w ∈W , (5.4)

where ζ represents the VaR, α the confidence level, w an uncertainty realization in set
W with probability set p, γ the CVaR upper bound, C the cost function, and z the newly
introduced slack variable representing the cost exceeding the VaR.

Operational water resources management, however, generally requires the risk mea-
sure to reflect the risk of water level bound exceedance and, therefore, the tail should
be calculated with respect to a fixed threshold. As a fixed threshold would not always
equal the VaR, we call this reformulation Exceedance Risk (ER) constraints. This con-
straint imposes a limit on the risk associated with the constraint violation (i.e. violation
of the upper bound on the water level in the canal), ensuring that the system operates
within acceptable bounds with confidence level α. By incorporating ERα constraints, the
optimization algorithm ensures that the system satisfies the constraint with predefined
statistical confidence. As γ approaches the threshold and α approaches 1, the constraint
converges towards a scenario-robust constraint where no constraint violation is allowed
in any of the considered uncertainty realizations.
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5.3.2. WATER SYSTEM CONSTRAINTS
In this section, we describe the constraint formulation of the stochastic MPC based on
the already published deterministic model [18]. The constraints describe the water bal-
ance on the linear reservoir model(Eq. (5.5a)), and constraints on gate discharge formu-
lated as big-M constraints (Eq. (5.5c), (5.5d)) using binary indicator variable zg , which
is 1 when the gate discharge is actuated, and gate discharge curve (Eq. (5.5e)). The
physical constraints for pump discharge are similarly formulated with big-M constraints
(Eq. (5.5f), (5.5g)) using binary indicator variable zp and the pump discharge curve (Eq. (5.5h)),
the lower bound constraint on the water level (Eq. (5.5i)), and a quadratic constraint on
a new variable to make the pump energy use in the objective bi-linear (Eq. (5.5j)).

hnzk [t , w] = hnzk [t −1, w]+ (qi n[t −1, w]

−qg [t −1, w]−qp [t −1, w]) · ∆t

Anzk

∀ t ∈ T and w ∈Wq×h , (5.5a)

dh[t , w] := hnzk [t , w]−hN S [t , w], (5.5b)

dh[t , w]−dh−
g + (1− zg [t , w]) ·Mg ≥ 0 ∀ t ∈ T and w ∈Wq×h , (5.5c)

dh[t , w]−dh−
g − zg [t , w] ·Mg ≤ 0 ∀ t ∈ T and w ∈Wq×h , (5.5d)

qg [t , w] ≤ (ag ·dh[t , w]+bg ) · zg [t , w] ∀ t ∈ T and w ∈Wq×h , (5.5e)

−dh[t , w]−dh−
p + (1− zp [t , w]) ·Mp ≥ 0 ∀ t ∈ T and w ∈Wq×h , (5.5f)

−dh[t , w]−dh−
p − zp [t , w] ·Mp ≤ 0 ∀ t ∈ T and w ∈Wq×h , (5.5g)

qp [t , w] ≤ zp [t , w] ·
6∑

i=1
(ap [i ] ·−dh[t , w]+bp [i ]) ∀ t ∈ T and w ∈Wq×h , (5.5h)

hnzk [t , w] ≥ h− ∀ t ∈ T and w ∈Wq×h , (5.5i)

H [t , w] = (hN S [t −1, w]−hnzk [t −1, w])2 ∀ t ∈ T and w ∈Wq×h , (5.5j)

with time steps t ∈ [0,T ], prediction horizon T , sea water level uncertainty realization
set Wh , incoming discharge uncertainty realization set Wq , their exhaustively combined
set Wq×h = (Wq ×Wh), the water level of the NZK-ARK hw

nzk,t with probabilities pq ·ph , the
outgoing gate discharge scenarios q w

g ,t with probabilities pq ·ph , the outgoing pump dis-
charge scenarios q w

p,t with probabilities pq ·ph , incoming discharge scenarios q w
i n,t ∈ Wq

with probabilities pq , and the North Sea water level scenarios hw
t ∈Wh with probabilities

ph .
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The upper bound constraint on the water level is formulated as a ERα constraint
(Eq. (5.6a),(5.6b)) or as scenario-robust constraint (Eq. (5.7)). The ERα constraints are
formulated to represent the expectation of the water level exceeding the given bound;
we formulate linear ER constraints inspired by the CVaR formulation proposed in [28],
described in Equation (5.3) and (5.4). By introducing slack variable zwl ∈ [0,∞) for all
scenarios and time steps, the constraint can be efficiently formulated as

h++ (1−α)−1 · ∑
w∈W ∗

zwl [t , w] ·p[w] ≤ γ ∀ t ∈ T, (5.6a)

zwl [t , w] ≥ hnzk [t , w]−h+ ∀ t ∈ T and w ∈Wq×h , (5.6b)

where h+ is the water level threshold after which we consider violations for which
we use the currently applied target water level (-0.4m+NAP), zwl is the slack variable
measuring the upper bound violation of the water level in the NZK for each uncertainty
realization w and timestep t ∈ T , α the confidence level, and γ the upper bound on the
acceptable ERα expressed in water level of the NZK (m+NAP) (i.e. the expectation of the
scenarios that violate h+ with confidence level α).

In this formulation, the slack variable zwl represents the water level exceedance of
a scenario and timestep with respect to h+. The sum of the probability-weighted ex-
ceedances over all scenarios is the expected water level violation at each timestep, mak-
ing the formulation a discrete approximation of the conditional expectation of water
level bound violation, given that the water level in that scenario is higher than h+.

As α approaches 1, conditionalising the expectation of the exceedance towards the
h+ will increase and become tighter. When γ = h+, the constraints in Equations (5.6)
become scenario-robust (i.e. allow no constraint violation in any of the considered un-
certainty realizations) and are reformulated as

hnzk [t , w] ≤ h+ ∀ t ∈ T and w ∈Wq×h , (5.7)

where h+ is applied as upper bound constraint on the water level over all timesteps, tak-
ing all uncertainty realizations into considerations. The continuous decision-variables
in this problem are water level hnzk , gate discharge qg , pumped discharge qp , slack vari-
able describing water level violations zwl and the quadratic pump head H . Two binary
variables, zg and zp are present to describe pump- and gate opportunities due to the
water level variations between the NZK-ARK and the North Sea.

5.3.3. MULTI-MARKET TRADING OBJECTIVE
To create a cost-effective pump schedule, we minimize the expected energy cost over
all possible control actions over the combined uncertainty of waterboard discharge and
water level of the North Sea, and all possible Intraday and Day Ahead market prices.

J I DM := min· E|∆Et ,w1 · c I D
t ,w2

|, ∀t ∈ TI DM and w1 ∈Wq×h and w2 ∈Wi dm|d am , (5.8)

JD AM := min· E|Et ,w1 · cD A
t ,w3

|, ∀t ∈ TD AM and w1 ∈Wq×h and w3 ∈Wd am , (5.9)

with the set of possible DAM price realizations Wd am and the set of possible intraday
price realizations that is conditionalised to the observed DAM prices of that day Wi dm|d am .
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The difference between the actual energy use and the energy bought on the Day Ahead
Market ∆Et ,w1 and the intraday price c I D

t ,w2
are used for intraday trading in J I DM . The en-

ergy consumption Et ,w1 and the Day Ahead price cD A
t ,w2

are as used for Day Ahead trading
in JD AM ,

5.3.4. FULL MPC CONTROL PROBLEM
The full MPC control problem is defined as

J I DM := min· E|∆Et ,w1 · c I D
t ,w2

|, ∀t ∈ TI DM and w1 ∈Wq×h and w2 ∈Wi dm|d am , (5.10)

JD AM := min· E|Et ,w1 · cD A
t ,w3

|, ∀t ∈ TD AM and w1 ∈Wq×h and w3 ∈Wd am , (5.11)

subject to

hnzk [t , w] = hnzk [t −1, w]+ (qi n[t −1, w]

−qg [t −1, w]−qp [t −1, w]) · ∆t

Anzk

∀ t ∈ T and w ∈Wq×h , (5.12a)

dh[t , w] := hnzk [t , w]−hN S [t , w], (5.12b)

dh[t , w]−dh−
g + (1− zg [t , w]) ·Mg ≥ 0 ∀ t ∈ T and w ∈Wq×h , (5.12c)

dh[t , w]−dh−
g − zg [t , w] ·Mg ≤ 0 ∀ t ∈ T and w ∈Wq×h , (5.12d)

qg [t , w] ≤ (ag ·dh[t , w]+bg ) · zg [t , w] ∀ t ∈ T and w ∈Wq×h , (5.12e)

−dh[t , w]−dh−
p + (1− zp [t , w]) ·Mp ≥ 0 ∀ t ∈ T and w ∈Wq×h , (5.12f)

−dh[t , w]−dh−
p − zp [t , w] ·Mp ≤ 0 ∀ t ∈ T and w ∈Wq×h , (5.12g)

qp [t , w] ≤ zp [t , w] ·
6∑

i=1
(ap [i ] ·−dh[t , w]+bp [i ]) ∀ t ∈ T and w ∈Wq×h , (5.12h)

hnzk [t , w] ≥ h− ∀ t ∈ T and w ∈Wq×h , (5.12i)

H [t , w] = (hN S [t −1, w]−hnzk [t −1, w])2 ∀ t ∈ T and w ∈Wq×h , (5.12j)

h++ (1−α)−1 · ∑
w∈W ∗

zwl [t , w] ·p[w] ≤ γ ∀ t ∈ T , (5.12k)

zwl [t , w] ≥ hnzk [t , w]−h+ ∀ t ∈ T and w ∈Wq×h , (5.12l)

(5.12m)

where

Et ,w := ap · qp [t , w]2 +bp · H [t , w] · qp [t , w]+ cp · qp [t , w] · −dh[t , w] ·∆t , (5.12n)

∆Et ,w := Et ,w −Ebid, (5.12o)

where decision variables hn zk (water level of the NZK-ARK), qg (gate discharge), qp

(pump dischagre), zg (binary indicator for gate discharge opportunities), zp (binary in-
dicator for pump discharge opportunities), H (quadratic constraint for dh2 in the objec-
tive), and zwl (the slack variable used for the ER constraint) are optimized to minimize
the expected energy cost of pumping under uncertainty.
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5.4. RESULTS AND DISCUSSION
In this section, we describe the results of the proposed framework applied to the case
study area; the NZK-ARK. We simulate historical multi-market participation with the real
water system and electricity price data, where the optimal control of the NZK–ARK sys-
tem is simulated under uncertainty in a receding horizon fashion over multiple years
and months. We first describe the probabilistic forecasting of incoming discharge from
four local water authorities into the canal, the water level of the North Sea, and the DAM
prices using the methodology described in Sections 3.1.1 and 3.1.2. We then describe
how scenarios are generated and reduced to optimal subsets using the method described
in Section 3.2.1, 3.2.2 and 3.2.3. Finally, we perform closed-loop simulations for several
months in 2019, 2020, and 2021 in Section 5.4.4. We analyse the difference between the
deterministic (perfect forecasts and deterministic ’point’ forecast), and stochastic MPC.
We vary the stochastic MPC with different numbers of scenarios and risk-acceptance set-
tings, including ER and scenario-robust constraints. Figure 5.3 depicts the workflow that
is applied in this manuscript. It describes the steps that are take to model operational
uncertainty in each source, and what study is performed to evaluate performance.

Figure 5.3: The applied workflow in this manuscript, describing what steps were taking
to model operational uncertainty for each variable.
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5.4.1. PROBABILISTIC FORECASTING
The system, as depicted in Figure 5.7, is schematized as depicted in Figure 5.1. We fore-
cast the pumped discharge into the NZK-ARK and the adjacent water level of the North
Sea, as depicted with purple outlines in the Figure, where green outlines depict control
variables. The Rhine discharge is taken as known since the same authority regulates
the incoming water as the pumping station; Rijkswaterstaat. To train and optimize a
CQRDNN to forecast pumped discharge by the four local water authorities, the sea water
level of the North Sea, and the DAM electricity prices, we apply the same hyperparam-
eter search space for all modelling tasks while changing the feature search space. The
feature and hyperparameter search space applied in this work can be found in Table 5.1.
Model selection is performed based on the combined pinball loss (Equation (3.1)) and
an independent validation dataset. All results shown in this work are from independent
test datasets. In the case of the DAM, we retrain the model every week to cope with the
effects of COVID and the fast-changing energy system on the market. Figure 5.4a shows
example operational forecasts for the considered sources of uncertainty.

Table 5.1: Feature and hyperparameter search space dimensions for the optimization of
the CQRDNN in several forecasting tasks. 2Sea water level is only included in the feature search
space for waterboards that have the option to discharge into the North Sea directly.

Hyperparameters Waterboard discharge North Sea water level DAM price
N layers Discharge lag range Lagged water level range Lagged price range
Neurons per layer Lagged wind data range Lagged wind data range Include prices of d-7
Dropout rate Rolling window size Rolling water level window size Load data
Regularization Include precipitation window Include hourly wind data Lagged load range
Batch normalization Include evaporation window Include 10min wind data Include load of d-7
Random seed Include temperature window Include wind direction data Include load forecast for targets

Include discharge window Include day of the year Include onshore wind generation data
Include wind forecast Include hour of the day Include offshore wind generation data
Include precipitation forecast Include solar generation data
Include sea water level 1 Market integration

We had access to data from the beginning of 2014 to January 2021. Data from 2019 -
2021 is used as test set, data from 2016 was used as validation set to optimize features and
hyperparameters, while the remaining data was used to train the models. The validation
year was selected based on a preliminary analysis of discharge rates in order to select
an average year. In essence, the CQRDNN is trained to model a rainfall-runoff system
affected by human influences through the control of pumps. We optimize a ‘rolling win-
dow’ where we take the sum of the fluxes over a variable window length (rolling window
size in Table 5.1). Besides optimizing the window size, we also optimize for the features
to include (i.e. precipitation, evaporation) with a binary search space. Waterboards Ri-
jnland and HHNK have the option to discharge directly into the North Sea. Therefore,
we include the sea water level and wind as optional features too since these determine
possibility of direct discharge to the sea. This approach works best for the waterboard
Waternet, possibly due to the relatively low amount of storage present in the Waternet
system. The NZK-ARK is used as a drainage canal (in Dutch: ’boezem’), where most wa-
terboards have an intermediate drainage canal with higher storage capacity. This could
make Waternet’s system less influenced by human behaviour. In the case of Rijnland, the
main pumping stations are not variable speed pumps, leading to discrete pump modes
that CQRDNN regression seems to have difficulties with. It could also indicate that pump
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Figure 5.4: Operational forecast examples (a) discharge from the four local water au-
thorities (HHNK, Rijnland, HDSR, and Waternet), the water level of the North Sea, and
the DAM electricity price. Performance metrics of the forecasting models (b), where the
metrics are averaged over the 48h lead time for all years in the receding horizon simula-
tions.

scheduling can’t be forecast based on the current feature data only, leading to high upper
quantiles due to the inability to time the actual pumping.

The model forecasting the water level of the North Sea seems to perform well in sta-
ble conditions. A model was trained with perfect foresight for the wind forecast since
historic meteorological forecasts are not easily accessible, and fully optimizing for the
best model is out of the scope of this work. For the North Sea water level model, we used
2016 and 2017 data as training set, 2018 data as validation set, and 2019 - 2021 as test set.

The Day Ahead price forecasting model is based on the methodology presented in [10],
and we had access to data from 2015 onward. The search space, however, was expanded
to include renewable energy data. Due to the unstable markets during the time of simu-
lation, the model was retrained on a weekly basis to be able to learn from the most recent
data. In general, the model represents the curve of the price profile well but tends to miss
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the most extreme cases.
Figure 5.4b shows some averaged performance metrics over the lead time of the

models. The CRPS shows the Continuous Ranked Probability Score, which is a com-
bined score for all quantiles in the forecast and is expressed in the unit of the forecast
variable. The MAE is the Mean Absolute Error calculated with the 50th percentile of the
forecasts. The PICp80 stands for the Prediction Interval Coverage Percentage at the 80%
confidence interval, representing how many observations were between the 90th and
10th percentile. The PINAW80 stands for Prediction Interval Normalized Average Width
at the 80% confidence interval. Some models show some performance decrease over
the length of the test sets, which would be especially visible in the decrease of PICP and
therefore the validity of confidence intervals.

The models could be optimized further in order to improve performance but seem
to perform well on average. Every model can be optimized for performance, especially if
performance evaluation is purely metric-based. We test model goodness based on oper-
ational performance, to be measured in constraint violation and energy cost - compared
to perfect foresight. In this work, we focus on the probabilistic control framework and
closed-loop simulation testing; the aim is not the exhaustive optimization of each single
model based on classical time-series forecast metrics.

5.4.2. SCENARIO GENERATION AND REDUCTION
To generate scenarios with realistic temporal dependency, we first fit parametric distri-
butions, as available in the Scipy [29] python package, on the quantile forecasts, to be
used in an NPBN with pre-defined structure as depicted in Figure 5.5a. For all variables
that are forecast using the CQRDNN, we apply the same NPBN structure.

Forecasting electricity prices on the IDM requires renewable energy production data
that is updated during the day. ENTSO-E’s open database [30] is of insufficient quality to
accurately model the IDM. Therefore, we model IDM price uncertainty using an NPBN
that conditionalizes the IDM price to the DAM price and already observed IDM prices,
as depicted in Figure 5.5b. We use the distributions of the relative ID3 price (e.g. ID3

DAM ) to
model and infer IDM prices.

N0 N24

N1 N2 N22 N23 N25 N26 N46 N47
. . . . . .

(a)

DA0 DA1 DA2 DA22 DA23 DA24

ID0 ID1 ID2 ID3 ID21 ID22 ID23 ID24
. . .

. . .

(b)

Figure 5.5: Non-parametric Bayesian Network structures for uncertainty modelling of
(a) DAM prices, incoming discharge, and the water level of the North Sea (adopted
from [13]), and (b) IDM prices. Ni represents the i -th hour forecast lead time, DAi and
IDi represent the DAM and IDM prices for the i -th hour of the day.

In order to sufficiently represent the uncertainty space, we sample 1000 timeseries
from the BN for each variable. This number was selected a posteriori based on a trade-off
between the computational feasibility of the optimization problem and the complete-
ness of the uncertainty representation. We then apply Algorithm 1 to select an optimal
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subset with new weights. To transform the scenario set into a fan, we cluster the root
node to a single scenario. We select a root node size of three hours, which corresponds
with the time when the IDM has the most liquidity. To reduce computational complex-
ity, we also consider scenario trees. A scenario tree can significantly reduce the amount
of decision variables necessary to describe the optimization problem. We apply a GA as
described in Section 3.2.3 to reduce the selected subset to a scenario tree and constrain
a minimum 50% reduction in tree complexity. Figure 5.6 shows an example reduced
scenario subset, a scenario fan, and a scenario tree, for the water level of the North Sea.
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Figure 5.6: The energy-distance optimal scenario subset of size 10, and the constructed
scenario fan and scenario tree with 50% complexity reduction for North Sea water level
at a single simulation timestep.
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5.4.3. STOCHASTIC MPC
To investigate the effect of the variations in risk-acceptance on the water level, we ex-
plore the output of the MPC’s internal model. Within the internal MPC model, there is a
pump discharge, gate discharge, and water-level decision variable for each timestep and
all scenario combinations. However, since we need a single implementable output for
control, a root node of 3h is maintained where the values of the energy-distance optimal
scenario are used, leading to a deterministic pump- and gate schedule for the coming
three hours.

Figure 5.7b shows the water level in the internal MPC model for a single control
timestep of the simulation with receding horizon implementation. We can see how, as
the ER α and γ change, the output water level changes, effectively translating ER param-
eters into operational consequences.
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Figure 5.7: (a) The MPC model input and output from the internal model with con-
straints that are robust towards to the worst case in the reduced set, and (b) the output
water level from MPCs with different ER α and γ constraint settings and the same input.
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5.4.4. CLOSED-LOOP SIMULATION TESTING
We perform closed-loop simulations of energy market participation for January, April,
July, and October for 2019 and 2020, and January for the year 2021 (due to data availabil-
ity). The months are simulated separately due to the framework’s runtime resulting from
the computational demands of the optimisation problem. The simulations were run on
Snellius, the Dutch National Supercomputer [31], and a single month of simulation still
took 22.5h to run on average. The MPC problem was solved using Gurobi [32] with the
relative MIPGap set to 0.01, the absolute MIPGap to €1, the NonConvex parameter set to
2, and a time limit of 15min if a solution was found, else the optimization would continue
until the first feasible solution was found.

We perform a sensitivity analysis on the amount and shape of the scenarios, where
we consider 1 (e.g. a deterministic forecast with deterministic constraints), 3, and 5 sce-
narios per source of uncertainty in either a fan or tree shape, and where all scenarios are
selected based on the energy distance subset selection method described in Algorithm 1.
We then compare a scenario-robust approach with several ER settings (α ∈ {0.99,0.9,0.8},
γ ∈ {−0.395,−0.3}), and we compare all simulated scenarios and energy costs with a sim-
ulation using a deterministic perfect forecast. Figure 5.8 shows the relative yearly cost of
the simulations of market participation compared to the perfect forecast.
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Figure 5.8: Relative yearly cost of the simulated months compared to the simulations
with a perfect forecast. The left figure shows the relative cost for the simulations with
ER-constrained water levels, while the right figure shows the relative cost of the simula-
tions with scenario-robust control. Scenario-robust with one scenario is the same as a
deterministic problem and is depicted as ‘Det.’. Red indicates that the simulated costs
were higher than the cost for the simulation with perfect forecasts, while blue indicates
the cost were lower.

Figure 5.8 shows a clear value in a probabilistic approach compared to a determin-
istic (i.e. scenario-robust with 1 scenario) approach, especially in 2019. All considered
probabilistic approaches result in lower energy costs than the deterministic approach.
However, large variations in relative performance can be seen over the years. The lowest
performance increase was seen in 2020 when the COVID pandemic hit. One possible
explanation is that the difficulty of forecasting electricity prices increased in 2020 and
2021, leading to suboptimal operational uncertainty estimation.

When comparing ER approaches with scenario-robust approaches, the figure shows
that, on average, ER approaches result in lower energy cost than scenario-robust ap-
proaches. ER approaches with low α and high γ are notable exceptions. ER approaches
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seem to perform worse than the scenario-robust approaches, which a lack of interven-
tion can explain. As the future probability of a high water level becomes more tolerable,
the scenario will become more likely at some point, activating the upper-bound con-
straint. Suppose this happens too close to the execution time. In that case, more energy
has to be traded on the IDM since the DAM is already closed, limiting the economic
potential of multi-market trading.

Increasing the size of the scenario set does not always lead to better results. When
the MPC problem is hard to solve, the optimal solution would not be reached within the
cut-off time. A more scarce scenario-tree representation, therefore, generally performs
better with 5 scenarios. In 2021, which only consists of January, the difference between
a fan- or tree uncertainty representation is the largest. January 2021 was a wet month,
with an average simulation runtime for the 5-scenario fan approach was 58h, while the
average simulation runtime for the 5-scenario tree approach was 27h. This is consistent
with our hypothesis that time constraints can affect the optimal scenario set size for
uncertainty representation.

In one simulation with actual forecasts, we observe a lower cost than in the perfect
forecast scenario. This can be explained by a forecast error at the right time when IDM
prices were advantageous. Even with the perfect forecast, IDM prices are only known
after DAM closure, leading to the absence of speculation on IDM prices. This could lead
to more profitable energy on the IDM, even though the initial DAM bid was suboptimal.
The portfolio could be further optimized if IDM and DAM prices were available for the
optimization problem at the same time. However, that would increase the complexity of
the optimisation problem and might not be practically feasible using the same problem
formulation.

In general, it can be seen that the benefits of the proposed stochastic method vary
over the years. The year 2019, when electricity prices were easiest to forecast, seemed
to have the most optimal results with up to 44 p.p. cost savings compared to the de-
terministic forecast, and even contained a simulation with lower cost than the perfect
forecast scenario. In 2020, when the COVID pandemic just started, the profitability of
the proposed strategy decreased, but the stochastic method still allows 10 p.p. cost sav-
ings compared to a deterministic approach. We also see that the value of taking risks
decreases in 2020, while that benefit is present in 2019 and 2021 when the electricity
markets were relatively calm compared to 2020.

Figure 5.9 shows the probability distributions of the observed water levels of the
NZK-ARK and a set of simulated water levels. The figure shows that a deterministic fore-
cast can lead to a sharp distribution around the target water level. This is possibly caused
by forecast inaccuracies, causing the control system to correct when water levels rise.
This is consistent with the higher energy cost since flexibility can’t be exploited well. The
difference between scenario-robust and ER constraints can be seen in the figure. While
both strategies have a similar distribution shape, ER constraints allow for a shift of the
distribution and a slight flattening of the shape. When the complexity of the problem
is lower, it seems like there is slightly more constraint violation occurring, as depicted
by the distribution of the simulated water level with a tree-shaped uncertainty repre-
sentation. None of the strategies will lead to a significant added risk compared with the
observed water levels. Arguably, there can be a large difference between modelled and
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actual water levels, but we believe the main conclusions stand. When comparing the
distributions with the regime depicted in Figure 1.5b, we conclude that a lot of flexibility
is left unexploited and that having less conservative control could well benefit both the
energy transition as Rijkswaterstaat, the operator of the IJmuiden pumping station.
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Figure 5.9: Histogram and KDEs of the simulated and observed water levels in the NZK-
ARK. From left to right, the figure shows the distribution of the simulated water level
with an optimization using deterministic forecasts, scenario-robust optimization with 5
scenario forecasts, two optimization problems with ER-constrained water level, and the
observed water level in the NZK-ARK.

5.5. SUMMARY AND CONCLUSION
This chapter has presented a framework for incorporating risk into the operational man-
agement of water resources, focusing on the Netherlands’ unique water management
challenges. Our approach centred around the NZK–ARK system and effectively inte-
grates probabilistic forecasting and optimal control strategies in a real-world setting,
integrating uncertainty from various sources.

In our proposed framework, we apply a Combined Quantile Regression Deep Neu-
ral Network (CQRDNN) to estimate operational uncertainty, while a Non-Parametric
Bayesian Network (BN) was applied to model auto-temporal relationships of forecast
variables. Our methodology for scenario reduction, employing the Energy distance met-
ric, has shown that it is feasible to distil a comprehensive set of scenarios into an optimal
subset, while closed-loop performance does seem be partially dependent on the number
of scenarios in the subset.

By formulating Stochastic Model Predictive Control (MPC) with Exceedance Risk (ER)
constraints, we provide an advancement over traditional deterministic MPC approaches.
ER constraints allow for nuanced risk management by modulating the control response
based on the severity and likelihood of upper-bound violations of water levels. This
novel approach not only manages risks more effectively but also provides a mechanism
for adjusting risk preferences dynamically, illustrated by our ability to warp and shift the
distribution of the simulated water levels as shown in Figure 5.9. Besides leading to a
nuanced description of risk, the constraints are formulated linearly, giving considerable
computational advantages compared to integer programming.

We use ’historical simulations’ with real water system and electricity market data to
demonstrate the advantages of multi-market participation under uncertainty. The opti-
mal control of the NZK–ARK system, simulated over several years, revealed that stochas-
tic MPC could yield substantial energy cost savings compared to deterministic strate-
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gies. These savings highlighted the effectiveness of our approach in adapting to vari-
abilities in climate and market conditions, thereby providing a more resilient and eco-
nomically efficient operational framework that can potentially be applied in many fields.
Furthermore, our results show the utility of employing larger scenario sets for enhancing
decision-making optimality, although we noted the practical constraints of optimization
under tight time frames. The use of scenario trees are shown to be an effective strategy
under these circumstances, facilitating more manageable computations while minimiz-
ing compromising the quality of outcomes.

In examining water levels, our simulated results stayed within acceptable ranges, in-
dicating the operational viability of our approach. While there are observable differences
between simulated and actual water levels, our findings also show that adjusting the ER
parameters effectively modifies risk profiles, offering avenues for further refinement in
future applications.

To conclude, this research advances the field of operational water resource manage-
ment by delivering a robust, adaptable, and economically viable framework capable of
managing the uncertainty and variability inherent in weather and electricity price con-
ditions. This framework not only supports Rijkswaterstaat in optimizing energy costs
but also enhances the safety and reliability of water and energy systems. While our study
focused on the Dutch context, the methodologies and findings are applicable globally,
offering valuable insights for regions facing similar challenges. The proposed methods
also extend beyond water resources, possibly benefiting any application facing similar
uncertainty and risk.
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6
RAYCAST: A SATELLITE-BASED

QUANTILE REGRESSION

IRRADIANCE NOWCAST

Space age!
Forget the glock and cock the laser back.

Camo & Krooked, Jeru The Damaja

As the integration of solar energy in the energy system continues, electricity grid man-
agement is becoming an increasingly difficult task. As grid operators need to innovate in
managing congestion, the uncertainty in incoming radiation is becoming a large obstacle
in operational grid management.

In this chapter, we introduce RayCast: a spatially distributed quantile regression solar ir-
radiance nowcasting model to assist operational management of electricity grids under
meteorological fluctuations. Utilizing data from meteorological stations and satellite-
derived cloud characteristics from Meteosat Second Generation across the Netherlands,
the model proficiently predicts irradiance quantiles, spatially representing the related un-
certainties for up to 6 hours ahead at a 15-minute temporal resolution and 4x6km spatial
resolution. The model is validated through an analysis of spatial and temporal variations
in performance using several deterministic and probabilistic forecasting metrics. Subse-
quently, the model is validated in an operational context, where it is applied in a net-load
forecasting model for a transformer station near Eelde, characterized by significant solar
generation capacity. In this real-world use case, we show that our proposed model in-
creases the ability of a net-load forecasting model to show the possibility of extreme loads
by up to 20 percent-point.

Parts of this chapter are under review for publication in IEEE Transactions on Sustainable Energy.
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6.1. INTRODUCTION
Solar energy has become a serious component in the energy mix of the Netherlands.
Years of advantageous subsidies for consumers have, high electricity prices, and a stub-
born net-metering policy, lifted the country to hold the second-highest adoption rate
for rooftop PV in the world, surpassed only by Australia [1]. Over the past decade, the
Netherlands has significantly augmented its renewable energy resources, especially so-
lar power, to reduce its national carbon footprint and navigate risks showcased by the
recent energy crises, such as the Russian invasion of Ukraine. The installed solar gener-
ation capacity grew from 2.5 GW in 2018 to 14.9 GW in 2022 [2], with an ambitious target
set at 125 GW by 2050 [3].

However, this rapid expansion presents unique challenges, especially for Distribu-
tion System Operators (DSOs). The inherent variability of solar energy, driven by dy-
namic weather conditions like fluctuating cloud cover and changing atmospheric hu-
midity, leads to unpredictable grid fluctuations [4, 5]. These variations introduce volatil-
ity in photovoltaic (PV) production, affecting the stability and management of the utility
grid. Accurate nowcasts (short-term, high-resolution forecasts) are essential to effec-
tively manage these abrupt changes. This chapter builds on existing probabilistic ap-
proaches and aims to enhance the precision and utility of solar irradiance forecasts for
grid management by implementing a Quantile Regression (QR) irradiance nowcast that
considers multiple cloud characteristics [6].

Addressing these uncertainties has led to the development of various methodologies,
ranging from traditional radar observations to advanced machine-learning models. No-
tably, the utilization of sky camera images, artificial intelligence techniques, and short-
term forecasting has paved the way for anticipating disturbances hours in advance, ben-
efiting efficient electricity distribution and energy trading [6, 7, 8, 9, 10]. The application
of QR does not merely show forecast uncertainty, but opens up new risk-aware decision-
making tools for the DSO. Furthermore, recent advancements in nowcasting, particu-
larly through deep generative models, machine learning, and integration of numerical
weather prediction (NWP) models, have significantly enhanced weather forecasting ac-
curacy, informing our approach [11, 12, 13, 14, 15, 16].

As the electrification of transportation, heating, and other sectors continues and
consequent demand on the distribution system grows, facilitating the transport of sub-
stantial solar energy to end-users, particularly through ageing or capacity-limited parts
of the grid, becomes a challenge. Instances such as the spatial disconnect between gen-
eration and consumption in locations like the historic center of Amsterdam, or the in-
stallation of large solar generation plants in scarcely populated areas have caused local
congestion issues and subsequent waiting lists for new grid connections [17].

In this chapter, we explore the implementation of QR for nowcasting solar irradiance
in the Netherlands, using satellite data derived cloud characteristics from Meteosat Sec-
ond Generation (MSG) [18]. We focus on nowcasting Cloud Top Height (CTH) and Cloud
Optical Thickness COT, which we hypothesise to have the highest influence on irradiance
compared to the other available MSG Cloud Physical Properties. COT acts as a surrogate
metric for the amount of solar irradiance that would be able to penetrate clouds, while
the CTH is a measure of how well the cloud can reflect irradiance originating from the
Earth. An AENN [19] is utilized to convert the derived cloud parameters into a proba-
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bility distribution of solar irradiance with a CQRDNN [20] (Chapter 3) for the coming
6 hours at 4x6km spatial resolution. Through a case study with Dutch DSO Alliander,
we validate our model, demonstrating its operational utility in forecasting congestion
issues. This is done by analysing the hit rate and false alarm rate for a QR net-load fore-
cast at a transformer station with a high penetration of solar energy. We compare our
irradiance model with Harmonie [21], the model developed by the Dutch Royal Meteoro-
logical Institute (KNMI) that is currently being applied by the DSO, and confirm that our
approach contributes to the forecasting of congestion issues, an important step towards
improving grid stability and reliability.

6.2. METHODOLOGY
In this section we describe our methodology. First, we explain the algorithms applied
to nowcast cloud characteristics, after which we explain the CQRDNN and the model
validation techniques.

6.2.1. ADVERSARIAL EXTRAPOLATION NEURAL NETWORK

Adversarial Extrapolation Neural Networks (AENN), as depicted in Figure 6.1a, leverage
adversarial learning principles to enhance the extrapolation capabilities of neural net-
works. AENN consists of two types of neural networks: a generator-type network and a
discriminator-type network. The generator network is trained to produce outputs that
resemble the input data, while the discriminator network is trained to distinguish be-
tween the generated outputs and the original input data. The training process of AENN
is similar to that used in Generative Adversarial Networks (GANs). In this approach, we
condition the generator solely on historic satellite observations, eliminating the use of
latent variables. Furthermore, we define a reconstruction loss with respect to the target
variables CTH and COT.

The AENN generator losses are defined as

Lgen(y, ŷ) =α ·Lrec(y, ŷ)+ (1−α) · (β ·Lad v, f (ŷ)

+ (1−β) ·Lad v,s (ŷ)),
, (6.1)

Lrec(y, ŷ) := 1

N

N∑
i=1

||yi − ŷi ||, (6.2)

Lad v, f (ŷ) := 1

N

N∑
i=1

log(1−D(ŷi )), (6.3)

Lad v,s (ŷ) := log(1−D(ŷ)), (6.4)

where, i is the time index of a spatial forecast, Lrec represents the reconstruction
loss, Lad v, f denotes the adversarial loss for the generated outputs, and Lad v,s indicates
the adversarial loss for the original input data. The generator-loss Lgen combines these
losses, and the hyperparameters α and β control their contributions.

The reconstruction loss Lrec(y, ŷ) measures the dissimilarity between the ground
truth target variables y and the generated outputs ŷ. It is computed as the average of
the element-wise absolute differences over all considered pixels.
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The adversarial losses, Lad v, f (ŷ) and Lad v,s (ŷ), assess the generator network’s ability
to produce outputs that are indistinguishable from the original input data. One discrim-
inator is used to classify single forecast frames as fake or real, while the other discrimi-
nator is employed to classify sequences of forecasts as fake or real. The discriminators
are trained with loss

Ldi s (y, ŷ) =− log(D(y))− log(1−D(ŷ)), (6.5)

where in each iteration, the generator network strives to minimize these losses, D(ŷ), by
generating outputs that deceive the discriminator networks. The discriminator networks
aim to accurately distinguish between the generated outputs and the original input data.

By optimizing the generator-loss, Lgen, which combines the reconstruction loss Lrec(y, ŷ),
and the adversarial losses Lad v, f (ŷ) and Lad v,s (ŷ), the AENN method trains the gener-
ator network to produce outputs that both closely reconstruct the target variables and
successfully deceive the discriminator networks. This combination of losses enables the
AENN to enhance the extrapolation capabilities of neural networks.

(a) Training schematic of the AENN.

(b) Schematic of the model chain from MSG input data of COT and CTH, to the forecast of irradi-
ance quantiles, to validation with a net-load forecasting model.

Figure 6.1: RayCast schematics for the training of the AENN (a) and the total model chain
from input data to the validation with a net-load forecast (b).

In our specific case, the AENN models receive a 2-channel input consisting of CTH
and COT as obtained from the MSG satellite product. The models utilize 8 historic ob-
servations, spanning 2 hours, to forecast the next 24 frames, covering 6 hours. These
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timeframes were chosen based on a pragmatic trade-off between forecast accuracy and
usability. MSG is a geostationary optical satellite and can therefore give an updated im-
age of cloud characteristics every 15 minutes while having a spatial resolution of 4x6km
in the Netherlands, but will also have a significant amount of time without data due to
the lack of sunlight, limiting the amount of historic observations that can be used in
a forecast. When more than 2h of historic observations are used, the first operational
forecasts can only be generated after more than 2h of sunlight.

The AENN is trained and validated on 7 years (2011-2018) of MSG data at 15-min
resolution. Two years (2015 and 2017) were used as validation set in order to optimize
the hyperparameters of the model. These years were selected in order to create a diverse
set of COT and CTH combinations in both the training and validation data. The test set
is comprised of the years 2019 and 2020, the most recent data available to the authors.

To summarize, the AENN method combines adversarial learning principles with neu-
ral networks to enhance the extrapolation capabilities of neural networks. By training a
generator network to produce outputs similar to the input data and utilizing discrimi-
nator networks to differentiate between generated and original data, the AENN achieves
improved performance in extrapolation tasks. The generator-loss, which includes the re-
construction loss and the adversarial losses, allows for flexible trade-offs between recon-
struction fidelity and adversarial similarity. This versatility makes the AENN an effective
approach for enhancing neural network extrapolation capabilities.

6.2.2. STUDY SET-UP
In this study, we train the CQRDNN to estimate 13 quantiles of KNMI measured solar ir-
radiance based on the AENN forecasts in the validation set and the calculated Sun zenith
angle (the angle of the Sun with respect to the vertical). This allows the CQRDNN to learn
to estimate forecast uncertainty based on 1) uncertainty in the cloud measurement, 2)
pixel uncertainty due to the KNMI measured irradiance being a point measurement in
a cell, and 3) forecast uncertainty of the AENN since to the model is trained on historic
forecasts. By having a representation of the forecast uncertainty, the uncertainty can be
propagated to forecasting congestion, improving the DSO’s ability to apply risk-aware
decision-making strategies for grid operations.

The Tree Parzen Estimator (TPE) [22] algorithm was utilized for combined feature
and hyperparameter optimization.

6.2.3. HYPERBAND PRUNING
Hyperband pruning [23] is a technique employed in hyperparameter optimization to ef-
ficiently allocate computational resources and expedite the search for optimal hyperpa-
rameter configurations. It combines a multi-armed bandit strategy with early stopping
to identify and discard unpromising hyperparameter settings early in the optimization
process.

The algorithm comprises multiple iterations known as brackets. Each bracket in-
volves training multiple models with different hyperparameter configurations while uti-
lizing limited training resources. The models are trained for a fixed number of iterations
or epochs, and at the end of each iteration, a fraction of poorly performing models is
eliminated based on their intermediate validation performance. In our case we quantify
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performance with the Lrec rather than the Lgen, since we want to prevent optimizing
for weak discriminators by rewarding the inability of the discriminator to correctly label
generated and original clouds.

Hyperband pruning effectively balances exploration (evaluating a wide range of hy-
perparameter configurations) and exploitation (allocating more resources to the most
promising configurations). By swiftly discarding poor configurations and allocating ad-
ditional resources to potentially superior ones, Hyperband pruning facilitates efficient
hyperparameter optimization and expedites the search for optimal configurations. By
intelligently allocating resources and selectively pruning unpromising configurations,
Hyperband pruning can significantly reduce the computational burden associated with
hyperparameter optimization, making it an especially valuable technique for the opti-
mization of large neural networks that need large amount of resources to be trained. In
this work, we apply Hyperband pruning combined with the TPE algorithm to efficiently
optimize the AENN hyperparameters.

6.2.4. MODEL VALIDATION
To assess the effectiveness of our proposed model, we employ two evaluation approaches.
Initially, we conduct an analysis of the model’s performance by comparing its forecasts
against actual irradiance measurements taken at various KNMI locations across the Nether-
lands. This involves examining both deterministic and probabilistic metrics across dif-
ferent lead times to gauge the accuracy of the model. However, since these metrics alone
may not fully reflect real-world applicability, we continue our validation process through
a real-world use-case provided by Alliander, a Dutch DSO. We develop net-load QR fore-
casting models based on the provided data and perform a comparative analysis of fea-
ture importance, contrasting our model’s irradiance forecasts with those generated by
Harmonie [21], a forecasting model developed by KNMI that is currently being applied
by the DSO, to demonstrate our model’s practical utility and efficacy. Further validation
using KNMI’s Harmonie model is not feasible due to limited data availability.

METRIC-BASED EVALUATION

In order to analyze model performance, we quantify the spatial and temporal variation
in model performance with probabilistic and deterministic metrics

MAE(y, ŷ) = 1

N

N∑
i=1

|y − ŷ |, (6.6)

RMSE(y, ŷ) =
√√√√ 1

N

N∑
i=1

(y − ŷ)2, (6.7)

CRPS(y, ŷ) = 1

N

∑
τ∈T

max(τ · (ŷτ− y), (τ−1) · (ŷτ− y)), (6.8)

PICPτ0:τ1 (y, ŷ) = 1

N

N∑
i=1

1ŷτ0
≤y≤ŷτ1

, (6.9)

PINAWτ0:τ1 (y, ŷ) = ŷτ1 − ŷτ0

ymax − ymin
, (6.10)
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where y is the observation, ŷ the expected value of the QR nowcast, and ŷτ the τ-quantile
of the QR nowcast. The MAE and RMSE depict an image of the error of the expected
value of the quantile forecast, the Continuous Ranked Probability Score (CRPS) is a com-
bined weighted metric for the quantile-errors, the Prediction Interval Coverage Percent-
age (PICP) shows the amount of observations that feel within a predefined prediction
interval (PI) (e.g. the 80% PI should cover 80% of the observations), and the Prediction
Interval Normalized Average Width (PINAW) depicts the normalized width of a prede-
fined PI. An ideal 80% PI should therefore have a low PINAW but a PICP of exactly 80%.
In order to construct a spatially distributed image of the derived forecast metrics, in-
verse distance weighting [24] was applied to interpolate model performance between
KNMI weather stations spatially.

REAL-WORLD USE-CASE EVALUATION

To evaluate the practical applicability of the developed nowcasting model, we conducted
an investigation into quantile coverage of extreme net-loads of a net-load forecasting
model, utilizing data from a transformer station located near Eelde, the Netherlands,
characterized by significant solar production. Net-load is the consumption minus the
generation and will be negative when there is a generation surplus. We looked at hit-
and false alarm rates for certain forecast quantiles of the net-load (i.e. 0.1, 0.3, 0.5, 0.7,
0.9), and observed load quantiles. For the purpose of forecasting net-load quantiles, we
employed a Gradient Boosting Regressor [25, 26], applying the data that is practically
utilized by the DSO, as depicted in Figure 6.1b.

The dataset provided encompasses a complete year (2020) of data, recorded at 15-
minute intervals, comprising local weather features derived from the KNMI Harmonie
model (e.g. temperature, humidity, irradiance, ...), temporal features (e.g. the hour of the
day), load profiles as developed by the DSO, and the target variable, namely the net load
as measured at the transformer station. Additionally, we incorporated the irradiance
quantiles obtained through our proposed methodology for fixed lead times.

To optimize hyperparameters (e.g. number of estimators, max depth, learning rate),
a 10-fold Cross-Validation (CV) was performed on the whole dataset, employing the TPE
search algorithm and stratifying the folds based on the hours of the day. For each can-
didate set of hyperparameters, 10 models are trained with a different subset of the data
being the validation set. No feature selection was performed to optimize model perfor-
mance, but the same features that are applied in practice were used. the same setup was
applied for all raycast lead times and for the reference without raycast (but with Har-
monie).

6.3. SPATIOTEMPORAL MODELLING OF CLOUD CHARACTERIS-
TICS

In this chapter, we apply the AENN (Section 6.2.1) to simultaneously forecast CTH and
COT on a 4x6km spatial and 15min temporal resolution. By modelling COT and CTH
simultaneously, the model can learn the relationship between the two characteristics,
possibly leading to more accurate nowcasts. The AENN takes 8 historical observations
(2h) of COT and CTH to forecast the next 24 observations (6h). The use of 8 historical



6

120 6. RAYCAST: A SATELLITE-BASED QUANTILE REGRESSION IRRADIANCE NOWCAST

observations was decided on based on a pragmatic trade-off between forecast accuracy
and forecast length. The AENN’s conditional generator consists of an encoder, a Con-
vLSTM [15], and a decoder. The discriminators comprise multiple convolutional layers
and a fully connected layer (e.g. an MLP layer). For more information about the network
architecture, we refer the reader to the original manuscript [19].

Figure 6.2 shows the model output over the Netherlands for several lead times. The
blurriness of the forecast increased over the lead time, which can be explained by in-
creased uncertainty leading to a more averaged output through the reconstruction loss.
By training the subsequent CQRDNN on the validation dataset, the irradiance quantiles
are theorized to be estimated wider for large lead times due to this uncertainty.

Figure 6.2: The Cloud Top Height as forecast by the AENN (bottom) and the observed
target (top) for several lead times.

6.4. TRANSLATING CLOUD CHARACTERISTICS TO IRRADIANCE

QUANTILES
In order to estimate irradiance on the Earth’s surface, we sample the forecast COT and
CTH from the validation set at the locations of meteorological stations, calculate the sun
zenith angle, and use these as features to construct irradiance quantiles based on mea-
surements with the CQRDNN (Section 3.1.1). Figure 6.3a shows the 2D Kernel Density
Estimates (KDE) of the applied features with the measured irradiance at KNMI stations.



6.4. TRANSLATING CLOUD CHARACTERISTICS TO IRRADIANCE QUANTILES

6

121

The angle of the sun has direct impact on the theoretical maximum amount of energy
arriving at the Earth’s surface. The COT can be used to estimate the amount of radi-
ation that can penetrate the clouds, while the CTH can account for indirect radiation
that possibly bounces back. Figure 6.3b depicts the non-linearity of the relationship be-
tween measured irradiance and cloud characteristics. The irradiance is highest with low
COT and low CTH, possibly due to the penetration of irradiance through the clouds (low
COT) while also scattering back after irradiance bounced from the Earth (CTH). With a
high COT and CTH there are still possibilities for high irradiance, possibly due to the ir-
radiance going underneath the clouds under an angle, making it possible to reach the
Earth’s surface regardless of clouds. This confirms the value of a probabilistic represen-
tation of irradiance, since some combined characteristics at a single pixel can lead to
different outcomes in irradiance, especially when the irradiance comes under an angle.
Figure 6.3c shows the feature importance of a Random Forest Regressor [27] translating
the proposed features into irradiance as measured by the KNMI, confirming that the pro-
posed features are of importance in irradiance modelling. It is noteworthy that we don’t
apply a Random Forest Regressor, but a CQRDNN (Section 3.1.1) to model irradiance
quantiles.

0 5000 10000 15000 20000 25000
Cloud Optical Thickness [-]

0

200

400

600

800

1000

1200

Irr
ad

ia
nc

e 
[W

m
2 ]

0 2000 4000 6000 8000 10000 12000 14000
Cloud Top Height [-]

3000 4000 5000 6000 7000
Sun Zenith Angle [-]

(a) 2D-Kernel Density Estimate of COT (left), CTH (middle), and the Sun zenith angle (right) with
measured irradiance at KNMI stations.
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Figure 6.3: Feature analysis for the translation of cloud characteristics to irradiance
quantiles.
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6.5. RESULTS AND DISCUSSION

In this section we show the results for the irradiance nowcast and discuss their implica-
tions. First, we analyze final model performance in irradiance nowcasting using forecast
metrics, after which we will apply the output in a real-world use case provided by Allian-
der.

6.5.1. MODEL OUTPUT

For a sense of what the model output looks like to users, Figure 6.4 shows the forecast
irradiance quantiles at KNMI station Eelde for random dates in the test set where the
forecast for the coming six hours is shown over the x-axis. Generally, the model gives a
reasonable representation of the irradiance with growing uncertainty over the lead times
(over the x-axis). When the forecast error is large, the quantiles tend to widen, indicating
an increase in forecast uncertainty. The plots indicate that the quantiles are somewhat
conservative, which is exemplified by the number of times the observation is out of the
extreme PIs.
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Figure 6.4: Operational forecast plots for random dates in the test set at a KNMI station in
Eelde with increasing lead time over the x-axis. The dark line indicates the measurement
at the weather station, the red line indicates the expected value of the forecast. The 98%,
90%, 80%, 60%, 40%, and 20% PIs are indicated with red planes around the expected
value.
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6.5.2. SPATIALLY DISTRIBUTED PERFORMANCE METRICS

Figure 6.5 depicts the spatial variation in model performance for a 1h lead time. Due
to limited data availability, no comparison can be made with KNMI’s Harmonie model
in this analysis. The figures show that model performance tends to be slightly higher
in the West of the Netherlands, possibly due to a slightly higher concentration of KNMI
stations. This effect is especially clear in the CRPS of the nowcasts. The PICP, however,
shows a more equally distributed image of performance with a notable difference in the
North- and South-West, as exemplified in Figure 6.4. The 80% PIs have on average a
79.5% coverage percentage, which near to the ideal 80%. The PICP manages to perform
well over the lead time, but with higher CRPS indicating wider PIs, as confirmed by the
PINAW.

Figure 6.5: Inverse distance weighted spatially distributed performance metrics based
on observations on KNMI weather stations. Metrics are calculated based on the nowcast
with a lead time of 1 hour. Metrics are interpolated over the Netherlands using inverse-
distance weighting. Note the inverted scale for PICP, since a higher rate is desirable.

6.5.3. TEMPORAL VARIATION IN MODEL PERFORMANCE

Figure 6.6 shows the difficulty of analyzing generalized model performance, which is ex-
pected to degrade over the lead time. However, in the case of solar irradiance nowcast-
ing, in the begin and end of the day the forecast is relatively easy due to the low amount
of irradiance, which would lead to small errors. The nowcast is most critical when solar
irradiance is high, which is during the middle of the day. This inconsistency in forecast
difficulty skews metrics when not properly taken into account.

Interestingly, model performance seams to peak at a 2h lead time. This could be ex-
plained by the beformentioned difference in forecast task. However, it can also indicate
that initial cloud movement is hard to forecast.
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Figure 6.6: Boxplot of the CRPS for different times of forecasting and leadtimes, with
confidence intervals based on the different KNMI stations.

Figure 6.7 shows more clearly that there is a large variation in forecasting and evalu-
ation difficulty. A small absolute error can lead to significant relative error in the MAPE,
leading to a more evenly distributed MAPE in comparison the the other metrics. This
exemplifies the value of testing the model in a real-world setting, instead of validating
models purely based on metrics.

6.5.4. MODEL VALIDATION WITH DSO DATA

We apply the features (the irradiance quantiles) generated by our proposed approach in
a net-load forecasting model with data provided by Alliander. The net-load is defines
as the differential between demand and generation, where a negative net-load means
a generation surplus. Figure 6.8 depicts the Kernel Density Estimates of the observed
net-load and the expected value of RayCast (left) and Harmonie (right) during the day-
time (with non-zero irradiance). The stronger (spearman) correlation of our proposed
methodology and the net-load indicates a possible added value in the forecast task. The
net-load seems to be more widely distributed over Harmonie irradiance, than it is over
the RayCast irradiance. The correlation seems stronger for the high load and irradiance
values, indicating that the RayCast irradiance might be more useful when it comes to
forecasting extremes. The most occuring net-load is still positive and with relatively low
irradiance, showing that irradiance features, while helpful, aren’t the only important pre-
dictors for the net-load. In this work, however, we focus on irradiance only while keeping
the other features as they are currently being used by the DSO.

Figure 6.9 shows the output for the models generated in each fold of the cross-validation
for a lead time of 2h. To quantify the added value of our approach, we look at times when
an extreme value was foreseen by a net-load forecast quantile with and without our pro-
posed model features. Figure 6.10 shows heatmaps with the net-load forecast quantiles’
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Figure 6.7: The CRPS, MAE, RMSE, and MAPE of the irradiance nowcast splitted by the
hour of the forecast and lead time.

hit- and false alarm rate on the validation set. The figure shows that for extremely low
load observations (observed load quantiles 0.05 and 0.1), Raycast’ features tend to in-
crease the hit rate of the net-load forecast quantile over most lead times and net-load
forecast quantiles with up to 20 per cent points. Although less consistent, the increased
hit rate also applies to high loads with little irradiance, possibly due to better forecasting
of sudden clouds by Raycast. The false alarm rate seems to increase slightly by using
our proposed irradiance features. However, that is to be expected for extreme forecast
quantiles.
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Figure 6.8: Kernel Density Estimate of the observed net-load and the expected value
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Figure 6.9: The output of the quantile net load forecasting models at a 2h lead time for
a transformer station with a large penetration of solar energy. The colors indicate the
prediction interval, the expected value, and the observed net load.
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6.6. CONCLUSION
In this chapter, we have combined the best of spatiotemporal regression (the AENN)
with probabilistic forecasting, leading to a novel approach to dealing with the inherent
uncertainty and variability of solar power generation. The representation of forecast un-
certainty would improve the DSO’s ability to apply risk-aware decision-making strate-
gies to protect infrastructure from extreme loads. Our model demonstrated a practical
performance, evidenced by the quantile representation of irradiance with growing un-
certainty over the lead time. Some spatial variability in model performance was seen,
possibly due to geographical and meteorological variabilities, leaving room for improv-
ing performance across the considered area and beyond.

Additionally, our analysis shed light on temporal variations in the model’s perfor-
mance, giving insights into the impact of different times of day on forecasting profi-
ciency. There is a variation in model performance over the time of forecasting, which
could be caused by variable difficulty in the forecast task. Opportunities for future work
might lie in improving the forecasting performance over the lead time and time of fore-
cast.

Applying the model on real data through a net-load forecasting model for a trans-
former station near Eelde, the Netherlands, confirmed its practicality and relevance in a
realistic operational context. We highlighted the added value of our approach compared
to the irradiance features currently applied by the DSO through hit- and false alarm-rate
analyses. We show that our proposed irradiance nowcast improves the ability of a net-
load forecast to capture extreme events by up to 20 percentage points (p.p.), with con-
sistent improvements over the forecast lead times. The interplay between deterministic
and probabilistic forecasts was investigated, showing that probabilistic forecast features
lead to performance increases, especially for the extreme quantiles of the net load. The
false alarm rate also went up for the extreme forecast quantiles, which is to be expected
since a 0.9 forecast quantile should exceed observations most of the time by definition.

We show a direction for additional inquiries and advancements in irradiance now-
casting, where the intersection between machine learning, meteorology, renewable en-
ergy forecasting, and operational grid management needs further exploration. Future
studies might focus on rectifying the identified limitations of the present model, such as
addressing the conservativeness of prediction intervals and enhancing forecast skill by
incorporating more weather features, such as wind direction and speed or atmospheric
pressure. Furthermore, explorations into the model’s applicability in varied geograph-
ical and infrastructural contexts promise to unfold additional dimensions of its utility
and versatility.



BIBLIOGRAPHY

[1] W. Hemetsberger, M. Schmela, and R. Lopes Sauaia. Global Market Outlook For
Solar Power 2022 - 2026. Tech. rep. Solar Power Europe, 2022.

[2] ENTSO-E. ENTSO-E Transparency Platform. 2018. URL: https://transparency
.entsoe.eu/.

[3] Marijke Kelner et al. Het Energiesysteem van de Toekomst. Tech. rep. 2021. URL:
https://www.netbeheernederland.nl/dossiers/toekomstscenarios-64.

[4] M. Trigo-González et al. “Photovoltaic power electricity generation nowcasting
combining sky camera images and learning supervised algorithms in the South-
ern Spain”. In: Renewable Energy 206 (2023), pp. 251–262. DOI: 10.1016/j.renen
e.2023.01.111.

[5] Jessica Wojtkiewicz et al. “Hour-Ahead Solar Irradiance Forecasting Using Multi-
variate Gated Recurrent Units”. In: (2019). DOI: 10.3390/en12214055. URL: www
.mdpi.com/journal/energies.

[6] B. Nouri et al. “Probabilistic solar nowcasting based on all-sky imagers”. In: Solar
Energy 253 (2023), pp. 285–307. DOI: 10.1016/j.solener.2023.01.060.

[7] Frank P.M. Kreuwel et al. “Forecasting day-ahead 1-minute irradiance variability
from numerical weather predictions”. In: Solar Energy 258 (July 2023), pp. 57–71.
ISSN: 0038-092X. DOI: 10.1016/J.SOLENER.2023.04.050.

[8] Ruiyuan Zhang et al. “Photovoltaic Nowcasting With Bi-Level Spatio-Temporal Anal-
ysis Incorporating Sky Images”. In: IEEE TRANSACTIONS ON SUSTAINABLE EN-
ERGY 12 (3 2021). DOI: 10.1109/TSTE.2021.3064326. URL: https://www.ieee
.org/publications/rights/index.html.

[9] Mitsuru Kakimoto et al. “Probabilistic Solar Irradiance Forecasting by Condition-
ing Joint Probability Method and Its Application to Electric Power Trading”. In:
IEEE Transactions on Sustainable Energy 10.2 (2019), pp. 983–993. DOI: 10.1109
/TSTE.2018.2858777.

[10] Mahdi Khodayar et al. “Convolutional Graph Autoencoder: A Generative Deep
Neural Network for Probabilistic Spatio-Temporal Solar Irradiance Forecasting”.
In: IEEE Transactions on Sustainable Energy 11.2 (2020), pp. 571–583. DOI: 10.110
9/TSTE.2019.2897688.

[11] Chang Hoo Jeong et al. “Enhancing the Encoding-Forecasting Model for Precipi-
tation Nowcasting by Putting High Emphasis on the Latest Data of the Time Step”.
In: (2021). DOI: 10.3390/atmos12020261. URL: https://doi.org/10.3390/at
mos12020261.

129

https://transparency.entsoe.eu/
https://transparency.entsoe.eu/
https://www.netbeheernederland.nl/dossiers/toekomstscenarios-64
https://doi.org/10.1016/j.renene.2023.01.111
https://doi.org/10.1016/j.renene.2023.01.111
https://doi.org/10.3390/en12214055
www.mdpi.com/journal/energies
www.mdpi.com/journal/energies
https://doi.org/10.1016/j.solener.2023.01.060
https://doi.org/10.1016/J.SOLENER.2023.04.050
https://doi.org/10.1109/TSTE.2021.3064326
https://www.ieee.org/publications/rights/index.html
https://www.ieee.org/publications/rights/index.html
https://doi.org/10.1109/TSTE.2018.2858777
https://doi.org/10.1109/TSTE.2018.2858777
https://doi.org/10.1109/TSTE.2019.2897688
https://doi.org/10.1109/TSTE.2019.2897688
https://doi.org/10.3390/atmos12020261
https://doi.org/10.3390/atmos12020261
https://doi.org/10.3390/atmos12020261


6

130 BIBLIOGRAPHY

[12] Suman Ravuri et al. “Skilful precipitation nowcasting using deep generative mod-
els of radar”. In: Nature 597 (2021). DOI: 10.1038/s41586-021-03854-z. URL:
https://doi.org/10.1038/s41586-021-03854-z.

[13] Seppo Pulkkinen et al. “Pysteps: an open-source Python library for probabilistic
precipitation nowcasting (v1.0)”. In: Geoscientific Model Development 12 (10 Oct.
2019), pp. 4185–4219. ISSN: 1991-9603. DOI: 10.5194/gmd-12-4185-2019. URL:
https://gmd.copernicus.org/articles/12/4185/2019/.

[14] Ruben O. Imhoff et al. “Scale-dependent blending of ensemble rainfall nowcasts
and numerical weather prediction in the open-source pysteps library”. In: Quar-
terly Journal of the Royal Meteorological Society 149.753 (2023), pp. 1335–1364. DOI:
https://doi.org/10.1002/qj.4461. eprint: https://rmets.onlinelibrar
y.wiley.com/doi/pdf/10.1002/qj.4461. URL: https://rmets.onlinelibr
ary.wiley.com/doi/abs/10.1002/qj.4461.

[15] Xingjian Shi et al. “Convolutional LSTM Network: A Machine Learning Approach
for Precipitation Nowcasting”. In: Advances in Neural Information Processing Sys-
tems. Ed. by C. Cortes et al. Vol. 28. Curran Associates, Inc., 2015. URL: https://p
roceedings.neurips.cc/paper_files/paper/2015/file/07563a3fe3bbe7
e3ba84431ad9d055af-Paper.pdf.

[16] Remi Lam et al. “Learning skillful medium-range global weather forecasting”. In:
Science 0.0 (2023), eadi2336. DOI: 10.1126/science.adi2336. eprint: https:
//www.science.org/doi/pdf/10.1126/science.adi2336. URL: https://ww
w.science.org/doi/abs/10.1126/science.adi2336.

[17] Netbeheer Nederland. Netbeheerders publiceren landelijke capaciteitskaart voor
producenten duurzame energie. Apr. 2021. URL: https://www.netbeheernede
rland.nl/nieuws/netbeheerders-publiceren-landelijke-capaciteits
kaart-voor-producenten-duurzame-energie--1449.

[18] JF Meirink. “Algorithm Theoretical Basis Document, Cloud Physical Products, SE-
VIRI”. In: EUMETSAT Satellite Application Facility on Climate Monitoring. Avail-
able online at: www. cmsaf. eu. doi 10 (2013).

[19] J. R. Jing et al. “AENN: A GENERATIVE ADVERSARIAL NEURAL NETWORK for
WEATHER RADAR ECHO EXTRAPOLATION”. In: International Archives of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives 42
(3/W9 Oct. 2019), pp. 89–94. ISSN: 16821750. DOI: 10.5194/isprs-archives-
XLII-3-W9-89-2019.

[20] Ties van der Heijden et al. “Electricity Price Forecasting in European Day Ahead
Markets: A Greedy Consideration of Market Integration”. In: IEEE Access 9 (2021),
pp. 119954–119966. ISSN: 21693536. DOI: 10.1109/ACCESS.2021.3108629.

[21] W.C. de Rooy et al. Harmonie verification and evaluation. Tech. rep. Koninklijk
Nederlands Meteorologisch Instituut, 2016.

[22] J Bergstra, D Yamins, and D D Cox. Making a Science of Model Search: Hyperpa-
rameter Optimization in Hundreds of Dimensions for Vision Architectures. 2013.

https://doi.org/10.1038/s41586-021-03854-z
https://doi.org/10.1038/s41586-021-03854-z
https://doi.org/10.5194/gmd-12-4185-2019
https://gmd.copernicus.org/articles/12/4185/2019/
https://doi.org/https://doi.org/10.1002/qj.4461
https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.4461
https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.4461
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.4461
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.4461
https://proceedings.neurips.cc/paper_files/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf
https://doi.org/10.1126/science.adi2336
https://www.science.org/doi/pdf/10.1126/science.adi2336
https://www.science.org/doi/pdf/10.1126/science.adi2336
https://www.science.org/doi/abs/10.1126/science.adi2336
https://www.science.org/doi/abs/10.1126/science.adi2336
https://www.netbeheernederland.nl/nieuws/netbeheerders-publiceren-landelijke-capaciteitskaart-voor-producenten-duurzame-energie--1449
https://www.netbeheernederland.nl/nieuws/netbeheerders-publiceren-landelijke-capaciteitskaart-voor-producenten-duurzame-energie--1449
https://www.netbeheernederland.nl/nieuws/netbeheerders-publiceren-landelijke-capaciteitskaart-voor-producenten-duurzame-energie--1449
https://doi.org/10.5194/isprs-archives-XLII-3-W9-89-2019
https://doi.org/10.5194/isprs-archives-XLII-3-W9-89-2019
https://doi.org/10.1109/ACCESS.2021.3108629


BIBLIOGRAPHY

6

131

[23] Lisha Li et al. “Hyperband: A Novel Bandit-Based Approach to Hyperparameter
Optimization”. In: Journal of Machine Learning Research 18 (2018), pp. 1–52. URL:
http://jmlr.org/papers/v18/16-558.html..

[24] Donald Shepard. “A Two-Dimensional Interpolation Function for Irregularly-Spaced
Data”. In: Proceedings of the 1968 23rd ACM National Conference. ACM ’68. New
York, NY, USA: Association for Computing Machinery, 1968, pp. 517–524. ISBN:
9781450374866. DOI: 10.1145/800186.810616. URL: https://doi.org/10
.1145/800186.810616.

[25] Jerome H. Friedman. “Greedy function approximation: A gradient boosting ma-
chine.” In: The Annals of Statistics 29.5 (2001), pp. 1189–1232. DOI: 10.1214/aos
/1013203451. URL: https://doi.org/10.1214/aos/1013203451.

[26] Jerome H. Friedman. “Stochastic gradient boosting”. In: Computational Statistics
& Data Analysis 38.4 (2002). Nonlinear Methods and Data Mining, pp. 367–378.
ISSN: 0167-9473. DOI: https://doi.org/10.1016/S0167-9473(01)00065-2.
URL: https://www.sciencedirect.com/science/article/pii/S016794730
1000652.

[27] L. Breiman. “Random Forests”. In: Machine Learning 45.1 (2001), pp. 5–32. ISSN:
1098-6596. DOI: 10.1023/A:1010933404324. arXiv: arXiv:1011.1669v3.

http://jmlr.org/papers/v18/16-558.html.
https://doi.org/10.1145/800186.810616
https://doi.org/10.1145/800186.810616
https://doi.org/10.1145/800186.810616
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://doi.org/https://doi.org/10.1016/S0167-9473(01)00065-2
https://www.sciencedirect.com/science/article/pii/S0167947301000652
https://www.sciencedirect.com/science/article/pii/S0167947301000652
https://doi.org/10.1023/A:1010933404324
https://arxiv.org/abs/arXiv:1011.1669v3




7
CONCLUSIONS AND

RECOMMENDATIONS

Everything’s got to end sometime.
Otherwise, nothing would ever get started.

Dr. Who

7.1. CONCLUSIONS
The integration of Variable Renewable Energy (VRE) is a necessary but challenging task.
As the penetration of VRE into the energy system increases, efficient electricity grid man-
agement becomes difficult. The inherent uncertainty and intermittency of VRE increases
the need for flexibility in the energy system, which can be (partially) met with Demand
Response (DR) services. This thesis considers the modelling of uncertainty, as well as
risk-aware decision-making approaches to unlock flexibility in assets and enable DR
participation and more efficient electricity grid management. It provides a framework
that allows for describing and connecting uncertainty from weather, markets, and op-
erations, and how to leverage these to inform risk-aware decision-making for complex
systems. As such, it aims to contribute to the further integration of VRE and speed up
the transition to a renewable energy system. The main contributions of this thesis are:

• Receding horizon Model Predictive Control approach for multi-market partici-
pation from pumping stations.
Motivated by the available flexibility in storage in the Dutch open canal system and
its significant energy and power consumption, we propose a new pump-scheduling
strategy that optimizes the energy cost of pumping based on Day Ahead Market
(DAM) and Intraday Market (IDM) participation in Chapter 2. We perform an
analysis of the cost-saving potential through DR, showing significant benefits to
be gained by exploiting the flexibility in the water system where perfect foresight
of market prices is assumed. By analysing both the Dutch and German markets
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over multiple years, we also show that as renewable energy penetration increases,
the potential benefits are expected to increase as well. This contribution shows
how existing pump infrastructure can be leveraged to participate in DR services
and quantifies the potential benefits while serving as a benchmark method for DR
participation under uncertainty.

• Modelling market integration in electricity price forecasting models.
Within the context of the increasing European market integration, this contribu-
tion shows how market integration affects price settlement and Electricity Price
Forecasting performance in DAMs. In Chapter 4, we performed an EU-wide data
analysis on how European markets are affected by one another. We proposed a
greedy search algorithm to find external market features that improve Dutch DAM
price forecasting accuracy with statistical significance. Better forecasts allow for
better planning and, thereby, more efficient energy use.

• Deep learning techniques for estimating operational uncertainty.
In Chapter 3, we propose a neural network architecture for quantile regression
models to forecast multiple distribution quantiles simultaneously. The method
is later applied to forecast DAM electricity prices, the water level of the North Sea,
and pumped discharges from local water authorities in Chapter 5 and to model so-
lar irradiance based on cloud characteristics in Chapter 6. This contribution has a
broader application than energy- and water management by potentially support-
ing uncertainty modelling in general

• Realistic and sparse uncertainty representations.
Besides proposing a method for operational uncertainty estimation, we also pro-
pose methods for conditional sampling of the uncertainty space and making a
sparse representation in Chapter 3. We sample time series from forecast marginal
distributions while adhering to the observed auto-correlation in the data to ef-
ficiently generate a large number of realistic scenarios. We propose clustering
methods to condense the scenario set into an optimal subset with redistributed
weights based on the energy distance to reduce the computational complexity of
large uncertainty representations. To further reduce computational complexity,
we propose extending the method to generate scenario trees where uncertainty
grows over time. This contribution facilitates optimal decision-making under un-
certainty in a computational resource-constrained setting.

• Optimal and risk-aware pump scheduling for DR participation under uncer-
tainty.
As our main case study for DR, in Chapter 5 we propose a framework for the con-
trol of pumping stations under uncertainty to participate in the DAM and IDM.
We show the benefit of probabilistic control techniques compared to determinis-
tic control, quantified by the energy cost for pumping. One key contribution is the
application of Exceedance Risk (ER) constraints on water level bound violations,
which constrains the tail of the water level distribution in a computationally ef-
ficient way. The formulation of ER constraints allows for the fine-tuning of risk
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acceptance, giving decision-makers a button to optimally trade off system robust-
ness and energy cost. This contribution allows pumping stations to participate
in DR services, potentially transforming how the Dutch water system is managed.
In addition, it allows for risk-aware operational decision-making, leading to risk-
informed decisions and, ultimately, safer water systems.

• Probabilistic irradiance nowcasting using satellite-derived cloud-characteristics.
As solar energy is becoming a dominant influence in the Dutch power system, lo-
cal congestion is equally dominant. In Chapter 6, we developed a solar irradiance
nowcast to forecast irradiance quantiles spatially up to 6h ahead at 15min resolu-
tion. We test our approach in a real case study using data from Dutch Distribution
System Operator Alliander, where we develop probabilistic net-load forecasting
models using the state-of-the-art (KNMI’s Harmonie) and our irradiance forecast.
The results show a significant performance increase in the ability of a net-load
forecast to capture extreme loads without increasing the false alarms generated
by the forecasts. This contribution benefits efficient grid management, where Al-
liander admits that uncertainty in solar generation is their largest hurdle towards
efficient grid management. Our approach potentially benefits solar energy trad-
ing by allowing for a better estimation of the uncertainty in generation, benefiting
portfolio optimization. This contribution aids in managing grid congestion, can
help manage imbalance risk for energy traders and, thereby, reduce energy costs
for consumers.

7.2. SOCIETAL IMPACT
The societal impact of the work presented in this thesis spans several areas, directly con-
tributing to the global effort in combating climate change and enhancing the energy
system’s resilience and efficiency.

• Climate change mitigation
By advancing the integration of renewable energy sources through operational
flexibility and improved forecasting, this research indirectly contributes to reduc-
ing greenhouse gas emissions. The development and application of optimized
scheduling and DR participation facilitate a shift towards cleaner energy sources,
thereby mitigating the adverse effects of climate change.

• Climate change adaptation
The developed probabilistic methods for uncertainty modelling and risk-aware
operational strategies for managing operational uncertainty and optimizing wa-
ter and/or energy systems underpin efforts to adapt to the changing climate. By
ensuring that energy and water management systems are more resilient to variable
and extreme weather conditions, this work supports societal adaptation to climate
change impacts.
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• Energy cost reduction for consumers
Our research shows that improving the efficiency and reliability of energy systems
can lower energy costs. The strategies proposed for demand response and mar-
ket participation can lead to significant savings in energy procurement and op-
erational costs, benefits that can be passed on to consumers. Moreover, better
forecasting and scheduling reduce the need for expensive peaking power plants or
the occurrence of extreme imbalances, contributing to lower electricity prices.

• Reliability of power systems
The innovations in forecasting, scheduling, and risk management introduced in
this thesis enhance the reliability of power systems. By accommodating the vari-
ability of renewable energy sources and improving operational decision-making,
these contributions help ensure a stable and continuous energy supply, essential
for modern societies’ functioning.

7.3. SUGGESTIONS FOR FUTURE RESEARCH

ENHANCED OPERATIONAL UNCERTAINTY MODELLING
• Generative time series modelling

In this thesis, we propose scenario generation for control purposes in two steps;
first, the Combined Quantile Regression Deep Neural Network (CQRDNN) (Sec-
tion 3.1.1) to forecast distributions, and second the Non-parametric Bayesian Net-
work (NPBN) (Section 3.2.1) to sample with realistic temporal dependency. Fu-
ture research could explore generative AI models for producing time series data
immediately. This could streamline the generation of time series data, enabling
direct forecasting that encapsulates realistic temporal dynamics without resorting
to intermediary sampling stages. The NPBN proposed in Chapter 3 is limited to
Gaussian copula’s, where a neural network could potentially infer any statistical
dependency. Investigating models that can inherently capture complex patterns
and dependencies within time series data promises a more integrated approach
to forecasting and scenario generation that requires fewer assumptions about the
data.

• Modelling market integration with Graph Neural Networks
Considering the interconnected nature of EU energy markets, Graph Neural Net-
works (GNNs) are a promising tool for capturing the physical and operational con-
straints enforced by grid topology. Future studies could leverage GNNs to model
the complex interdependencies between markets and energy flows across borders.

• Modelling of the Intraday market
While the DAM has been extensively studied in a modelling context, the Intraday
Market remains relatively underexplored. Challenges related to data scarcity and
the dynamic nature of IDM necessitate a focused investigation into its operational
mechanisms and the potential for renewable energy integration. The proposed
Bayesian Network in Chapter 5 leaves room for improvement in conditional IDM
modelling. In practice, the IDM market would be highly affected by the Day Ahead
forecast errors of market participants and their speculation on future imbalances.
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Further research could uncover strategies to harness IDM dynamics, optimise en-
ergy portfolios more efficiently, and lower operational energy costs.

• Comparative evaluation of weather forecast models
A systematic assessment of weather prediction models across diverse climates and
geographic regions could significantly refine forecasting accuracy for energy and
water resource management. By identifying the strengths and limitations of cur-
rent models, researchers can tailor forecasting techniques to specific environmen-
tal conditions, improving the reliability and efficiency of renewable energy sys-
tems.

• Assessing the value of data on forecasting performance
Shifting the research emphasis from model innovation to the quality and accessi-
bility of underlying data could provide new insights into the drivers of forecasting
accuracy. A comparative study assessing the relative contributions of data quality
versus model complexity to performance outcomes would inform more effective
resource allocation in research and development efforts.

• Standardising operational performance benchmarks
Traditional statistical measures often fall short of capturing the practical value of
forecasts in operational settings. As Goodhart’s law states ’any observed statistical
regularity will tend to collapse once pressure is placed upon it for control purposes’;
a metric will become less valuable as it becomes the objective to solely minimize it
without regard for further usefulness. Proposing new standard benchmarks, such
as the efficacy of battery storage strategies in exploiting electricity price volatility,
would offer a more relevant evaluation of forecast models from a practical per-
spective.

• Exploration of advanced conditional sampling techniques
Extending beyond the use of Gaussian copulas as applied in the NPBNs proposed
in Chapter 3, exploring alternative methods, such as vine copulas or composite
distributions, could improve scenario generation. This research would enhance
the representation of uncertainties in forecasting, providing a more nuanced un-
derstanding of potential future states.

OPERATIONAL WATER MANAGEMENT

• Adaptation of strategies for local water management
The Noordzeekanaal–Amsterdam-Rijnkanaal (NZK-ARK) is, interesting as it may
be, not very representative of local or regional water management. Local systems
are characterized by networks of smaller canals, smaller and staged pumping sta-
tions, and more local objectives like lowering salinity. Investigating the applicabil-
ity of the proposed strategies to local and regional water management systems is
necessary for addressing the diverse challenges faced by these systems. This re-
search could identify scale-able and adaptable solutions that align with different
water management contexts’ specific objectives and constraints.
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• Exploring the potential of collaborative water management
In this thesis, we model the incoming fluxes on the NZK-ARK as stochastic vari-
ables. However, it is expected that there would be benefits through cooperative
efforts among water authorities, including shared market participation and op-
erational coordination. Such collaboration could unlock new efficiencies and re-
silience in the water system, increasing overall safety and lowering energy costs.

• Application of Reinforcement learning in operational water management
Given the complexity and temporal constraints of water management objectives,
reinforcement learning promises to optimize decision-making processes. This ap-
proach could facilitate more adaptive and efficient management strategies that
respond to evolving conditions and emerging challenges, especially in a computa-
tional resource-constrained environment.

• Extending methodologies to hydropower systems
Applying the insights gained from this thesis to hydropower could provide valu-
able perspectives on balancing long-term hydrological planning with short-term
market opportunities. This research might reveal novel approaches to enhancing
the sustainability and profitability of hydropower operations, possibly combined
with environmental flow operations.

• Virtual Power Plant concepts in water management
Integrating local generation, energy storage capabilities, and energy use of pump-
ing into a Virtual Power Plant framework could enhance the flexibility and re-
silience of water and energy systems. In this thesis, we only consider the pumping
station as a controllable asset. Including local generation and storage could lead
to improved operational strategies, unlocking more flexibility in the water system.

• Energy management in urban water systems
The demand response potential within urban water treatment and distribution
systems, especially in energy-intensive processes such as wastewater aeration, presents
an interesting area for investigation. Optimizing energy use in these systems could
lead to efficiency gains and cost savings, contributing to more sustainable urban
water infrastructure.

• DR from an aggregator perspective
In this thesis, we approach DR from the perspective of a single large energy-consuming
asset. However, it would be interesting to research more scale-able approaches
that can run on many smaller assets in a coordinated manner. It would be in-
teresting to investigate how well the proposed approaches in this thesis can be
extrapolated to coordinated assets that operate under localized constraints and
objectives.
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ENERGY FLEXIBILITY
• Optimizing battery management for grid stability

Translating the insights from this thesis into practical battery management strate-
gies could enhance energy storage efficiency and grid stability. This would involve
developing algorithms that optimize charge/discharge cycles in response to un-
certain grid demands and market signals, facilitating a smoother integration of
renewable energy sources. Physical grid constraints could be formulated in a risk-
aware fashion, for example, by constraining a maximum net load to the grid.

• Addressing imbalances with DR
Future research should focus on developing mechanisms to actively address en-
ergy imbalances. In the Netherlands, this could relatively easily be achieved through
passive imbalance due to its low entry requirements. It would, however, be in-
teresting to see what amount of aggregated DR volume could be supplied on, for
example, the aFRR, and with what certainty.

• Comprehensive market modelling for enhanced trading strategies
An in-depth study of the bidding processes and dynamics of continuous trading
within energy markets could lead to developing more sophisticated and advanta-
geous trading strategies. In this thesis, we assume that bids are accepted for the
ID3 price. In practice, this is no guarantee, and all contracts are closed for distinct
prices and volumes. Further research on how the market could be better repre-
sented would provide insights into the operational and economic factors that in-
fluence market behaviour and enable more informed and efficient IDM trading.
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7.4. PRACTICAL CONSIDERATIONS FOR OPERATIONAL WATER RE-
SOURCES MANAGEMENT

In this section, I will describe some practical considerations for water resources man-
agement. It is aimed at the Dutch water sector and, therefore, written in Dutch.

In deze paragraaf heb ik het over praktische overwegingen voor operationeel water-
beheer. Ik beschrijf een in paar - in mijn ogen - noodzakelijke stappen om richting een
robuust en duurzaam watersysteem te gaan. Ik eindig met suggesties voor overwegingen
in systeemontwerp.

DE TOEKOMST VAN OPERATIONEEL WATERBEHEER IN EEN DUURZAAM EN-
ERGIESYSTEEM

De integratie van duurzame energie is essentieel voor de energietransitie, maar vraagt
meer van de spelers in hetenergiesysteem dan voorheen. Er zal meer flexibiliteit nodig
zal zijn om het grillige karakter van duurzame bronnen te faciliteren. Dit biedt kansen
voor een efficiënter waterbeheer waarbij op operationele energiekosten kan worden be-
spaard.

Flexibiliteit binnen het energiesysteem maakt het mogelijk voor kritieke infrastruc-
tuur, waaronder ons watersysteem, om betrouwbaar te functioneren, zelfs tijdens piek-
momenten van duurzame energieproductie of -consumptie. Het meest recente voor-
beeld van hoe de wederzijdse afhankelijkheid tussen water- en energiebeheer fout kan
lopen zijn de boze brieven die sommige waterschappen hebben gehad van de netbe-
heerders. Gemalen hebben een hoger vermogen dan waar ze voor gecontracteerd zijn,
welke capaciteit ten tijde van netcongestie niet meer vergeven kan worden zonder de
leveringszekerheid van het net in gevaar te brengen. Gevolg: de netbeheerder overweegt
gemalen af te sluiten. In tijden van hoogwater zal het toch echt niet anders kunnen, het
is dan pompen of verzuipen. Dit zal flexibiliteit van andere spelers in het energiesysteem
vragen om die piekvraag te kunnen faciliteren. Maar wanneer je van anderen wilt kun-
nen verwachten dat zij het net ontlasten wanneer het moet, is het niet meer dan redelijk
om zelf ook de pompcapaciteit te beperken als het moet en wanneer het kan. Een tijd-
safhankelijke randvoorwaarde op het pompvermogen kan goed worden opgelegd bin-
nen het framework dat is beschreven in dit proefschrift, naast de optimalisatie op uur-
prijzen.

In de afgelopen jaren hebben we gezien dat de situatie op de energiemarkt soms
erg extreem kan worden, in dit geval met name door hoge gasprijzen. Hoewel de en-
ergiemarkt onderhevig is aan schommelingen, biedt een strategische benadering kansen
op besparingen, zelfs in tijden van energieschaarste. Een harde voorwaarde hieraan is
dat de manier van energie inkoop verandert. Vaste contracten moeten worden ingeruild
voor flexibele contracten die op uur- of kwartierbasis werken. Hier zal wel een risico-
acceptatie moeten ontstaan voor enkele uitschieters in uurlijkse of dagelijkse kosten
door hoge uurprijzen of eventueel veroorzaakte onbalans. Die bestaan echter ook de
andere kant op, waar je in sommige gevallen betaald kan worden om je verbruik aan
te passen. De energierekening zal dus niet tot op de euro nauwkeurig en een jaar van
tevoren te begroten zijn. Wat uiteindelijk niet alleen goed is voor de portemonnee, maar
ook voor de onbalans in het systeem.
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In sommige gebieden zijn de gemalen namelijk grote bronnen van onbalans voor
energieleveranciers. Onbalans komt door verbruik dat niet goed een dag van tevoren
was voorzien. De energieleverancier heeft vaak geen hydrologische of systeemspecifieke
kennis, dus wordt een verwachting van de benodigde energie voor malen lastig. In dit
proefschrift laat ik ook zien dat het niet altijd even gemakkelijk is om het gedrag van een
gemaal te voorspellen. Door als waterbeheerder die verwachting (of planning) zelf te
maken en flexibel energie in te kopen weet een leverancier beter wat er in het portfolio
gaat gebeuren en zal de totale onbalans in het systeem lager worden.

Om verder bij te dragen aan het realtime balanceren van het energiesysteem mid-
dels onbalansmechanismen hebben watersystemen naar verwachting een beperkt ver-
mogen. Door slim in te spelen op onbalanssignalen kunnen ze helpen het net te stabilis-
eren, voornamelijk door middel van afregeling (minder gaan verbruiken). Echter wordt
de onbalansmarkt naar verwachting een markt voor snel reagerende en extreem flexi-
bele spelers (e.g. batterijen), terwijl een goede verwachting van de onbalansstatus en/of
prijs nog niet bestaat (als dat er al mogelijk is) waardoor activatie slecht in de planning
kan worden meegenomen. Daarnaast zijn de meeste gemalen nu niet geschikt om snel
(e.g. binnen 5min) op- of af- te regelen.

De kwantificering van operationele onzekerheid en proactieve sturing hebben de po-
tentie om ons water- en energiesysteem efficiënter én veiliger te beheren. Dit vraagt
echter een paradigmaverschuiving in onze traditionele benaderingen. Prognosemod-
ellen moeten geëvolueerd worden om onzekerheden adequaat te weerspiegelen, ter-
wijl sturingssystemen meer complexiteit zullen ervaren waardoor meer rekenkracht en
nieuwe software nodig zijn. Daarbij kan een stochastische output uit het systeem de in-
terpretatie voor de gemaalbeheerder bemoeilijken. Het vergt vertrouwen in en de adop-
tie van geavanceerde algoritmen en technologieën, niet alleen met het oog op kostenre-
ductie, maar ook als een actieve bijdrage aan de energietransitie.

Om op korte termijn stappen te zetten richting een efficiëntere samenwerking tussen
de water- en energiesector zijn twee concrete oplossingen met relatief gemak te imple-
menteren:

• Dynamisch peilbeheer: Implementeer en bevorder de toepassing van dynamisch
peilbeheer, waarbij een grotere peilvariatie wordt toegestaan om aan de behoeften
van het energiesysteem te voldoen. Dit vergt een verkenning van de toelaatbare
variatie die wateroverlast niet in het geding brengt, maar opent mogelijkheden om
de beschikbaarheid van duurzame energie en netcapaciteit in acht te nemen.

• Data-uitwisseling: Ontwikkel en implementeer systemen voor het uitwisselen van
data tussen waterbeheerders, netbeheerders, en energiehandelaren om een betere
planning en operationele afstemming mogelijk te maken. De data uitwisseling
met de energieleverancier zou al vanzelf gaan wanneer Day Ahead wordt ingekocht.
Dit zou bijdragen aan een lagere onbalans door betere inschatting van energieport-
folio’s, en waterbeheerders in staat stellen om op meer doelen te sturen. En wan-
neer het bij waterbeheer bekend is dat hoogwater en netcongestie gelijktijdig op
zullen treden, kan er eerder worden gedacht aan de inzet van noodaggregraten of
in een noodgeval de optie van het gebruik van bergingsgebieden te verkennen.
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Naast deze twee concrete stappen richting integraal waterbeheer voor de huidige
infrastructuur, kan flexibiliteit in het watersysteem ook mee worden genomen in sys-
teemontwerp. Een aantal denkrichtingen voor systeemontwerp zijn:

• In de ontwerpfase kan operationele performance expliciet worden meegenomen.
Alleen dan kan een weloverwogen keuze worden gemaakt tussen de investeringskosten
van infrastructuur, de operationele kosten, en de maatschappelijke bijdrage die de
infrastructuur kan leveren.

• Met de toenemende druk op het elektriciteitsnetwerk is het belangrijk om de net-
capaciteit in overweging te nemen bij de uitbreiding van een gemaal. Proactieve
strategieën, zoals capaciteitsbeperkende contracten of het inzetten van energieop-
slag voor piekafvlakking, kunnen helpen netcongestie te verminderen en bij te
dragen aan een efficiënter water- en energiebeheer. De gecontracteerde aansluit-
capaciteit zal voortaan als harde randvoorwaarde moeten gelden. Overweeg om
de congestie van het netwerk mee te nemen in de NBW-toetsing, waar zowel de
faalkans van leveringszekerheid meegenomen kan worden in de faalkans van het
watersysteem, als dat waterbeheerders de benodigde netcapaciteit in terugkeerti-
jden kan uitdrukken.

• Flexibiliteit kan je inbouwen door dynamisch peilbeheer mogelijk te maken, het
gebruik te maken van variabele snelheidspompen, of het aanschaffen van pom-
pen die sneller op- en af- kunnen regelen. Dit vergroot je operationele handel-
ingsperspectief en daarmee de mogelijkheden om bij te dragen op verschillende
aspecten van het energiesysteem, zoals de onbalansmarkt of netcongestie. Door in
de ontwerpfase al inschattingen te doen van de operationele voordelen van maa-
tregelen (e.g. operationele kosten, bijdrage aan netcongestie, CO2 uitstoot van de
verbruikte elektriciteit) kunnen de extra kosten die worden gemaakt ten behoeve
van de flexibiliteit worden afgewogen en verandwoord.
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