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SUMMARY

Computer vision systems, such as image classifiers, object detectors and video
analysis tools, serve diverse applications, ranging from autonomous vehicles and
drone navigation to medical image analysis and anomaly inspection in the manu-
facturing industry. The development of these systems relies heavily on well estab-
lished practices, which include the adoption of conventional training and eval-
uation metrics and benchmark datasets. However, we argue that standard ap-
proaches are sub-optimal with respect to the ultimate objectives of the computer
vision systems. In this thesis, we question whether the training and evaluation of
computer vision systems for object detection and long-term action recognition are
typically aligned with human-defined end goals.

Object detectors are deployed for object tracking in autonomous vehicles and
drones, but also as user assistive tools in medical image analysis and anomaly in-
spection in industry. Regardless of the end use, object detectors are trained with
standard optimization and evaluation strategies. By investigating whether the op-
timization and evaluation methods of object detectors correlate with human qual-
ity judgments, we discover a discrepancy between established metrics and human
preferences. To address this, we propose an alternative training loss that better
aligns object detectors with human preference.

Subsequently, we ask whether object detections can be used to improve long-
term human action recognition in videos. We find that explicitly focusing on the
region containing the detected human is beneficial to long-term action recogni-
tion models. Unexpectedly, we also find that including a temporal attention mod-
ule does not help recognizing the videos. Motivated by this result, we investigate
how much temporal information is needed to solve long-term action recognition
in three popular video datasets. Our results show that most of these videos can be
recognized without any long-term temporal information. This suggests that mod-
els trained on these videos might exploit short-term shortcuts, instead of learning
long-term temporal dependencies. Importantly, these models would not perform
successfully on new videos where long-term reasoning is necessary.

As a follow-up, we investigate the impact of the temporal receptive field in long-
term action recognition models. The size of the temporal receptive field deter-
mines the capability to encode long-term information in videos, like the actions
order and duration. We experimentally verify that large temporal receptive fields
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VIII SUMMARY

are sensitive to order and can overfit on the exact action orders seen at training
time. Contrarily, short temporal receptive fields are more robust to order permu-
tations and perform better on a current long-term video dataset. This result fur-
ther demonstrates the irrelevance of long-term information in current long-term
action recognition datasets. Our research findings highlight the importance of us-
ing training and evaluation metrics that match the intended use of the computer
vision systems and choosing training and evaluation datasets that carefully repre-
sent the problem at hand.



SAMENVATTING

Computervisiesystemen, zoals beeldclassificatoren, objectdetectoren en videoana-
lysesoftware, dienen verschillende toepassingen, variërend van autonome voer-
tuigen en drone-navigatie tot medische beeldanalyse en anomalie-inspectie in de
productie-industrie. De ontwikkeling van deze systemen is sterk afhankelijk van
gevestigde praktijken, waaronder het gebruik van conventionele trainings- en eva-
luatiemethoden en benchmarkdatasets. We betogen echter dat standaardbenade-
ringen suboptimaal zijn met betrekking tot de uiteindelijke doelstellingen van de
computersystemen voor beeldanalyse. In dit proefschrift stellen we de vraag of de
training en evaluatie van computersystemen voor objectdetectie en voor langdu-
rige gebeurtenisherkenning (long-term action recognition) doorgaans overeenko-
men met door mensen gedefinieerde einddoelen.

Objectdetectoren worden ingezet voor het volgen van objecten in autonome voer-
tuigen en drones, maar ook als gebruikersondersteunende hulpmiddelen in medi-
sche beeldanalyse en anomalie-inspectie in de industrie. Ongeacht het eindge-
bruik worden objectdetectoren getraind met standaard optimalisatie- en evalu-
atiestrategieën. Door te onderzoeken of de optimalisatie- en evaluatiemethoden
van objectdetectoren overeenkomen met menselijke kwaliteitsbeoordelingen, vin-
den we een discrepantie tussen gevestigde metrieken en menselijke voorkeuren.
Om dit te adresseren, stellen we een alternatieve trainingsverliesfunctie (training
loss) die ervoor zorgt dat objectdetectoren beter overeenkomen met menselijke
voorkeur.

Vervolgens vragen we ons af of objectdetecties kunnen worden gebruikt om lang-
durige, menselijke gebeurtenisherkenning in video’s te verbeteren. We vinden dat
expliciet focussen op het gebied dat de gedetecteerde mens bevat gunstig is voor
het modelleren van langdurige gebeurtenisherkenning. Onverwachts vinden we
ook dat het opnemen van een temporele aandachtsmodule niet helpt bij het her-
kennen van de video’s. Gemotiveerd door dit resultaat onderzoeken we hoeveel
temporele informatie nodig is om langdurige gebeurtenisherkenning op te lossen
in drie populaire videodatasets. Onze resultaten tonen aan dat de meerderheid
van deze video’s kunnen worden herkend zonder enige langdurige temporele in-
formatie. Dit suggereert dat modellen die getraind zijn op deze video’s mogelijk
kortstondige sluiproutes benutten in plaats van langdurige temporele afhankelijk-
heden te leren. Belangrijk is dat deze modellen niet succesvol zouden presteren bij
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nieuwe video’s waar langetermijn redeneren nodig is.
Als vervolg hierop onderzoeken we de impact van het temporeel receptief veld

in modellen voor langdurige gebeurtenisherkenning. De grootte van het tempo-
reel receptief veld bepaalt het vermogen om langdurige informatie in video’s te
coderen, zoals de volgorde en duur van de gebeurtenissen. We verifiëren expe-
rimenteel dat grote temporeel receptieve velden gevoelig zijn voor volgorde en
kunnen overfitten op de exacte volgorde van gebeurtenissen die geobserveerd zijn
tijdens de training. Daarentegen zijn korte temporeel receptieve velden robuus-
ter tegen volgordepermutaties en presteren ze beter op een huidige dataset van
langdurige video’s. Dit resultaat toont verder de irrelevantie aan van langdurige
informatie in huidige datasets voor langdurige gebeurtenisherkenning. Onze on-
derzoeksresultaten benadrukken het belang van trainings- en evaluatiemetrieken
gebruiken die overeenkomen met de beoogde toepassing van de computersyste-
men voor beeldanalyse, en het kiezen van trainings- en evaluatiedatasets die het
voorliggende probleem zorgvuldig vertegenwoordigen.



RIASSUNTO

Sistemi di visione artificiale (computer vision), come classificatori di immagini,
rilevatori di oggetti (object detectors) e strumenti di analisi video, servono a una
vasta gamma di applicazioni, che vanno dalla guida autonoma dei veicoli alla nav-
igazione dei droni fino all’analisi delle immagini mediche e all’ispezione delle ano-
malie nell’industria manifatturiera. Lo sviluppo di questi sistemi si basa pesan-
temente su pratiche consolidate, che includono l’adozione di metriche di train-
ing e valutazione convenzionali e set di dati di riferimento. Tuttavia, sosteniamo
che questi approcci standard siano sub-ottimali rispetto agli obiettivi finali dei sis-
temi di computer vision. In questa tesi, mettiamo in discussione se il training e
la valutazione dei sistemi di computer vision per il rilevamento degli oggetti e il
riconoscimento delle azioni a lungo termine (long-term action recognition) siano
tipicamente allineati con gli obiettivi finali definiti dall’uomo.

Gli object detectors vengono impiegati nei veicoli autonomi e nei droni per il
tracciamento degli oggetti, ma anche come strumenti assistivi nell’analisi delle
immagini mediche e nell’ispezione delle anomalie nell’industria. Indipendente-
mente dall’uso finale, i rilevatori di oggetti vengono addestrati con strategie stan-
dard di ottimizzazione e valutazione. Investigando se i metodi di ottimizzazione e
valutazione dei rilevatori di oggetti correlino con i giudizi di qualità umana, sco-
priamo una discrepanza tra consolidate metriche di valutazione e le preferenze
umane. Per affrontare questo problema, proponiamo una metrica di training al-
ternativa che allinea meglio i rilevatori di oggetti con le preferenze umane.

Successivamente, ci chiediamo se gli object detectors possano essere utilizzati
per migliorare il riconoscimento delle azioni umane a lungo termine nei video. I
nostri risultati indicano che concentrarsi esplicitamente sulla regione contenente
la persona che compie l’azione sia vantaggioso per i modelli di riconoscimento
delle azioni a lungo termine. Inaspettatamente, scopriamo anche che includere
un modulo di attenzione temporale non aiuta a riconoscere i video. Motivati da
questo risultato, indaghiamo quanto sia necessaria l’informazione temporale per
risolvere il riconoscimento delle azioni a lungo termine in tre popolari dataset di
video. I nostri risultati mostrano che la maggior parte di questi video può essere ri-
conosciuta senza alcuna informazione temporale a lungo termine. Ciò suggerisce
che i modelli addestrati su questi video potrebbero sfruttare scorciatoie a breve ter-
mine, invece di apprendere dipendenze temporali a lungo termine. È importante
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notare che questi modelli non avrebbero successo su nuovi video dove è neces-
sario un ragionamento a lungo termine.

Come follow-up, indaghiamo l’impatto del campo recettivo temporale (tempo-
ral receptive field) nei modelli di riconoscimento delle azioni a lungo termine. La
dimensione del campo recettivo temporale determina la capacità di codificare in-
formazioni a lungo termine nei video, come l’ordine e la durata delle azioni. Veri-
fichiamo sperimentalmente che ampi campi recettivi temporali sono sensibili all’
ordine delle azioni. Questo può provocare overfitting agli ordini esatti delle azioni
visti durante la fase di training. Al contrario, i campi recettivi temporali corti sono
più robusti alle permutazioni dell’ordine e hanno prestazioni migliori su un dataset
di video a lungo termine. Questo risultato dimostra ulteriormente l’irrilevanza
delle informazioni a lungo termine negli attuali set di dati per il riconoscimento
delle azioni a lungo termine. Le scoperte della nostra ricerca mettono in evidenza
l’importanza di utilizzare metriche di addestramento e valutazione che corrispon-
dano all’uso previsto dei sistemi di visione artificiale e di scegliere dataset di train-
ing e valutazione che rappresentino attentamente il problema in questione.



1
INTRODUCTION

Artificial Intelligence (AI) is present in our every-day life: smartphones use AI to
categorize our pictures, we ask ChatGPT [1] to compose captivating poems and
we generate beautiful visuals with Midjourney [2]. The AI technology that aims to
understand and generate images and videos is called computer vision. Detecting
objects in images and classifying human actions in videos are examples of tasks
that computers and smartphones can solve automatically by means of computer
vision algorithms. Relevant other applications can be found in a number of fields,
including healthcare, manufacturing and autonomous driving.

Over the last twenty years, we have witnessed a tremendous progress in com-
puter vision. In 2005, a state-of-the-art visual recognition systems could correctly
categorize the images of the PASCAL VOC datasets in four classes: bicycles, cars,
motorbikes, people [3]. Nowadays, computer vision systems can learn to recog-
nize several thousands of image categories. A dataset that helped scale Computer
Vision is ImageNet [4], first released in 2009. ImageNet is a collection of more than
a million annotated images, belonging to one thousand classes. The dataset has
been extended through the years and the current version contains more than 14M
images. Because ImageNet is so large and diverse, successfully recognizing its im-
ages is considered a proxy to solve image classification. But is this really the case?

Let us inspect the ImageNet dataset a bit further. Each image has a class la-
bel that represents its content, the so called ground-truth. It is assumed that the
ground-truth label is unique and that it thoroughly describes the image content.
Figure 1.1 shows example of images from four different object classes. What is
noticeable from this example is that, in addition to the ground-truth labels, the
images contain objects that could be delineated by alternative labels. Namely, the
ground-truth labels are sometimes insufficient or ambiguous. For example, the
first image on the second row belongs to the class Canoe. However, the image also
contains a person paddling and two Golden Retrievers.

1
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Figure 1.1: Example of images from the ImageNet (ILSVRC2010) dataset [4]. The text in
green shows the annotated ground-truth labels for four different classes. Alter-
native labels, marked in red, that fit the images just as well are considered wrong
in the standard image classification training and evaluation paradigms.
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In the standard image classification training and evaluation paradigms, classify-
ing this image as Golden Retriever is simply considered wrong. As a consequence,
a model that predicted the class Golden Retriever would be unfairly penalized. We
might argue, instead, that an optimal image classifier should analyze the image
thoroughly and predict the classes Canoe, Golden Retriever, Man, Paddle, Water.
In 2021, Yun et al. [5] addressed this problem by relabeling ImageNet, taking into
account multiple different objects in a single image. Nonetheless, the single labels
of ImageNet are still widely used to evaluate state-of-the-art image recognition sys-
tems, testified by the 11.8k citations that the ImageNet paper obtained in 2023.

The ImageNet case is an example where the method used to develop computer
vision systems – here, training and evaluating algorithms to classify the single-label
images of ImageNet – do not exhaustively serve the intended objective: automatic
visual recognition. In this thesis, we question whether there exist other cases where
the development of computer vision solutions does not align with the intended
objective set by humans. In particular, in this dissertation, we focus on two appli-
cations: object detectors as user assistive tools and long-term action recognition
in videos. Our findings reveal that: 1) There exist a mismatch between the user
preference and the evaluation metrics commonly used to evaluate object detec-
tors; 2) Current long-term action recognition datasets do not encourage learning
long-term reasoning in computer vision models, but rather the use of unintended
shortcuts.

1.1 CONCEPTS OF COMPUTER VISION

"Human beings live in the realm of nature, they are constantly surrounded by it and
interact with it." Dialectical Materialism (A. Spirkin).

Since the early months of life, humans learn to interact with the world. We do so
by receiving sensory stimuli and reacting to them. Among the five senses, vision
collects a large source of information that humans use to navigate in the world. A
fundamental question in AI is: Can we teach machines to understand our visual
word like humans do?

Computer vision is the science that tries to make sense of the visual world from
image sensory data, like monocular and binocular cameras. This thesis focuses on
understanding images and videos captured by standard digital cameras. This sec-
tion introduces the computer vision tasks and techniques that will be the subject
of the upcoming chapters.
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4 1. INTRODUCTION

1.1.1 IMAGE CLASSIFICATION

Image classification is a core task in computer vision. The goal is to predict the
label that best describes the subject in a given image. The classification can be
single-label, if one main object is present in the image, or multi-label, if the image
contains multiple objects. In computer vision, image classification is achieved by
training a machine learning model to learn a function that maps an image to its
class label(s). During the training process, the model learns to classify a dataset of
labeled images whose true class labels, known as the "ground-truth", are provided.
A successfully trained model should be able to correctly classify new, previously
unseen images.

Typically, the model input comprises gray-scale pixel values of RGB values, rang-
ing from 0 to 255. In the RGB representation, which is a triplet of values describing
red, green and blue, the input is said to have three channels. The model outputs a
vector of scores, indicating how likely the input image is to belong to a predeter-
mined set of classes.

CAT DO
G CATDO

G
DO

G CAT

Color pixels
(RGB)

Input
layer Hidden layers Output

layer

Predicted class
probability

True class
probability

0.7 cat

0.3 dog

1.0 cat

0.0 dog

Loss function

Error = 0.15

Figure 1.2: Top: Example of single-label image classification. Is there a cat or a dog in the
images? The text in red shows the ground-truth label. Bottom: Illustration of a
model for image classification. The model predicts class probabilities, which are
compared to the ground-truth. The error is measured by the loss function and is
minimized during training.

The state-of-the-art models used in computer vision are called neural networks.
The name comes from the fact that these models are loosely inspired by the neu-
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ral activity in the brain. Neural networks transform the input image representa-
tion trough a set of sequential operations, consisting of linear functions that have
learnable parameters and non-linear activation functions. A set of linear trans-
formation and activation functions composes one model layer. Current models
typically contain several layers: that is why they they are said to be deep neural
networks. This structure makes deep neural networks potentially capable to ap-
proximate complex mathematical functions.

Neural networks for image classification can flexibly learn which visual features
to use to make a good classification. To distinguish cats and dogs, the model could
learn to consider, among others, the length of the ears, the shape of the muzzle, the
roundness of the pupils, the size of the nose and the texture of the fur. However,
as visible in Figure 1.2, these features can vary significantly across samples of the
same class. In addition, the same feature might appear differently with changes in
light conditions and camera position. To guarantee that neural networks learn fea-
tures that transfer robustly to new images of cats and dogs, the number of images
seen at training time should be vast and should capture as many as possible varia-
tions of cats and dogs. In addition, neural networks should have enough capacity
to store all features variations, namely, a large number of learnable parameters.

During training, the model parameters are repeatedly updated to minimize the
amount of misclassified images. The misclassification error is measured by a dif-
ferentiable loss function. In single-label classification, a commonly used loss func-
tion is Cross-Entropy (CE):

LC E =−
n∑

i=1
ti log pi , (1.1)

where n is the number of possible classes, t is the true probability of the image
corresponding to class i , namely 0 or 1, and pi is the model prediction. If the model
learned to output pi = 1 for every class, LC E would always be zero. To prevent this
trivial solution, the softmax activation function is applied on the model output.
This ensures that the predicted scores range from 0 to 1 and sum to 1, like the class
probability. This way, LC E approaches infinity when the wrong class is predicted.

In multi-label classification, multiple classes can occur simultaneously in one
image. For each co-occurring class, the true class probability t is equal to 1. This
scenario might be useful if a cat and a dog appear in the same image and we want
to identify both. In this case, the softmax activation function is replaced by a sig-
moid, to allow the sum of the predicted scores to be greater than 1, and the Binary
Cross-Entropy loss is used:

LBC E =−
n∑

i=1
ti log pi + (1− ti ) log(1−pi ). (1.2)
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LBC E is minimized when the predicted score of each object class contained in the
image is 1 and the predicted score for the other classes is 0.

The algorithm used to optimize neural networks is called gradient descent. Re-
peatedly, the model parameters are updated to move towards the (local) minimum
of the loss function. The direction of this update step is given by the gradient of
the loss function with respect to the model parameters. Many versions of this op-
timization algorithm have been proposed to improve convergence speed and sta-
bility. Two popular optimizers are Stochastic Gradient Descent [6] and Adam [7].

To assess the performance of an image classifier, the trained models are tested
on a separate dataset, called the test set. A commonly used evaluation metric is the
percentage of correctly classified images. However, this number can be misleading
if the dataset is unbalanced. For example, if the test set contained 990 images of
dogs and only 10 image of cats, a faulty model that always predicts the class dog
would show 99% accuracy. In this case, precision and recall are more informative
metrics:

Precision = # true positives

# true positives + # false positives
, (1.3)

Recall = # true positives

# true positives + # false negatives
. (1.4)

The faulty model would result in perfect precision for the class cat (no pictures
of dogs have been wrongly classified as "cat"), but zero recall (no cats have been
correctly identified). Often, precision and recall are combined into a single metric,
called F1 Score, that corresponds to their harmonic mean:

F1 = 2× precision× recall

precision+ recall
. (1.5)

In multi-label classification, image classifiers predict scores ranging from 0 to
1 for each class in the dataset. Class scores that are above a pre-set confidence
threshold are treated as positives. High thresholds encourage high precision, be-
cause they allow for positive predictions only when the model is very confident.
On the other hand, lower thresholds allow for higher recall. In an ideal model, low-
ering the confidence threshold increases the recall without drastically compromis-
ing the precision. A multi-label classification model can be evaluated by calculat-
ing the F1 Score for each class or from its precision-recall curve. This curve can be
constructed by plotting the values for the precision and recall obtained with vary-
ing confidence thresholds on, respectively, the y and x-axis. The information given
by the precision-recall curve can be summarized by two metrics: the Area Under
the Curve (AUC) or the Average Precision (AP). The AP is calculated by taking the
weighted mean of the precision achieved at each confidence threshold, with the
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increase in recall from the previous threshold used as the weight. For n thresholds,

AP =
n∑

i=1
(Ri −Ri−1)Pi , (1.6)

where Pi and Ri are the precision and recall obtained for the i -th confidence thresh-
old. The AP is calculated for each class and the mean Average Precision (mAP) is
usually reported.
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Figure 1.3: Illustration of the precision-recall curves for three classes. The classification is
perfect for the class dog, good for class cat and poor for class plant.

Several neural network designs for image classification have been proposed over
the years. The multilayer perceptron (MLP) is the simplest model. It consists of
at least three layers of linear transformations and non-linear activation functions.
MLPs are termed fully-connected because, in each layer, every unit in the input
vector influences every unit in the output vector. To make 2D images compati-
ble with the 1D input vectors expected by MLPs, images are first flattened. This
solution is not ideal, as it disregards the information about the spatial disposi-
tion within the image. Another drawback is the sensitivity of MLPs to translations
within an image, meaning that even a slight shift in object position can drastically
alter the network’s representation. As a consequence, the predicted class for the
same object in two different positions might be different.

Convolutional neural networks (CNNs), illustrated in Figure 1.4, solve the limi-
tations of MLPs by leveraging the convolution operation. In a convolutional layer,
the image representation is created by comparing the input image with a set of
small 2D kernels, shifting across height and width. Each convolutional kernel is
a matrix of parameters optimized to encode a specific 2D pattern. The similar-
ity between an image region and a convolutional kernel is measured through the
dot product, which is high when the two strongly correlate. Since multiple ker-
nels are convolved with the input, the output features include multiple channels,
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each encoding diverse information. The CNN architecture preserves information
relative to the spatial structure of the image. In addition, because of the shifting,
the same convolutional kernel can efficiently detect the same pattern in different
locations. Usually, in a convolutional layer, the convolution operation is followed
by a ReLU activation function and pooling. Pooling reduces the dimension of the
feature maps to reduce memory and time complexity. This spatial compression
also cause the subsequent layers to encode patterns at a larger scale. Specifically,
the size of the image region that influences the output in each convolutional layer
is called receptive field. The growth of the receptive field through the layers allows
the model to capture multiple levels of abstraction in the image, from edges and
basic textures to complex geometrical shapes.

Input Pooling F.C.Conv.
+ ReLU SoftmaxPoolingConv.

+ ReLU

cat
dog

...

...

Figure 1.4: Illustration of a convolutional neural network for classification of cat vs. dog. The
model contains several convolutional layers, comprising the convolution opera-
tion, a ReLU activation function and pooling. In the last layer, the image repre-
sentation is flattened in a 1D vector, input to a fully connected layer (F.C.) and a
softmax to predict scores per class.

The pioneering CNN architecture, AlexNet [8], was introduced in 2012. Since
then, CNNs have been a go-to model for image classification and many variants
were proposed. Notably, the residual neural networks (ResNet) [9] enhanced image
classification through an architecture change that enables the successful training
of very deep models. Only recently, an alternative model inspired by natural lan-
guage processing, the vision transformer [10], has become a popular competitor of
convolutional neural networks. One of the main difference of transformers is the
global receptive field, which can capture spatial relationships anywhere across the
image at any layer. This guarantees a higher level flexibility compared to CNNs.
However, despite the competitive results achieved by vision transformers in the
last three years, there is yet no evidence that these models are superior to convolu-
tional neural networks [11]. Besides image classification, convolution is deployed
for feature extraction in many computer vision tasks, including object detection
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and action recognition.

1.1.2 OBJECT DETECTION

The task of object detection consists in predicting the class and the location of
every object in a given image. Object detectors find application in several fields,
including anomaly detection in medical images, like MRIs, CT scans and x-rays,
crop monitoring and pest detection in agriculture, and manufacturing, by scan-
ning products on assembly lines. The localization result is usually represented
through a rectangular bounding box centered around each object of interest. Com-
pared to image classification, object detection has an additional level of complex-
ity which results in the need of sophisticated model architectures. An object detec-
tor takes as input image color pixels and, for each object, outputs class probability
scores and box coordinates, usually expressed by the coordinates (x,y) of the top
left box vertex and the height and width of the box.

Figure 1.5: An object detector’s input (left) and output (right).

Training an object detector is performed in a similar way as for an image clas-
sifier, by minimizing a loss function. Different from image classification, the ob-
ject detection loss comprises two terms: the classification error, usually given by
the Cross-Entropy loss, and a localization error. This is expressed by a regres-
sion loss, like L1 and L2, or the Smooth L1 loss, which generally provides a more
stable convergence. Given the ground-truth t = {tx , ty , th , tw } and the prediction
p = {px , py , ph , pw }, expressing the box coordinates of the top-left corner (x,y),
height and width (h,w):

L1 = ∑
i∈{x,y,h,w}

|ti −pi |; (1.7)
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L2 = ∑
i∈{x,y,h,w}

(ti −pi )2; (1.8)

L1Smooth = ∑
i∈{x,y,h,w}

li , li =
{

1
2β (ti −pi )2, if |ti −pi | <β,

|ti −pi |− β
2 , otherwise.

(1.9)

In the Smooth L1 loss, β is a hyperparameter that determines the smoothness of
the loss function around the origin.

The localization accuracy is typically measured by means of Intersection over
Union (IoU), which indicates how much the predicted box and the ground-truth
box overlap. Boxes with different positions and size might result in the same amount
of overlap with the ground-truth box. Therefore, the IoU metric is to some degree
not sensitive to box translations and box size. A detection is considered correct if
the predicted object class is correct and the IoU is above the acceptance thresh-
old. Similarly to multi-label classification, the performance of object detectors is
expressed in terms of mean Average Precision (mAP). Usually, the value of the mAP
for different IoU thresholds (e.g., from 0.5 to 0.95) is reported.

Prediction
Ground-truth

Intersection

Union

B
B’

A
A’

Given A = (475, 1082), B = (1255, 70), A0 = (542, 1223), B0 = (1350, 148):

IoU =
Area(Intersection)

Area(Union)
=

(xB � xA0) ⇤ (yA � yB0)

Area(GT) + Area(Pred.) � (xB � xA0) ⇤ (yA � yB0)
=

754672

903288
⇡ 0.835

Given A = (475, 1082), B = (1255, 70), A0 = (542, 1223), B0 = (1350, 148):

IoU =
Area(Intersection)

Area(Union)
=

(xB � xA0) ⇤ (yA � yB0)

Area(GT) + Area(Pred.) � (xB � xA0) ⇤ (yA � yB0)
=

754672

903288
⇡ 0.835

Figure 1.6: Illustration of the calculation of Intersection over Union (IoU) score.

The model architectures for object detection can be grouped in two main cate-
gories: two-stage detectors and one-stage detectors. Both methods utilize models
for image feature extraction, like CNNs or vision transformers. In two-stage de-
tectors, region of interest are first extracted from the image through an algorithm
called selective search [12]. The localization and classification of an object is then
performed for each region of interest. Fast R-CNN [13] is a pioneering approach
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belonging to this category that, by design, does not require storing in memory the
proposed image regions. Among the advantages of this approach is the possibil-
ity of sharing of information between the classification and localization modules,
which improves efficiency and accuracy.

One-stage detectors, like YOLO [14], perform the detection task without relying
on a preliminary region proposal step. These models predict multiple boxes and
class probabilities simultaneously from the entire input image. While two-stage
detectors are usually more accurate, one-stage detectors are significantly faster,
thus preferable for applications where inference speed is more important than ac-
curacy.

Several datasets have been proposed to train object detections systems, notably
the MS COCO [15] dataset. MS COCO comprises 91 objects classes appearing
in 328k labeled images. The images contain multiple objects, possibly cluttered
and occluded, which makes the detection challenging. The dataset was annotated
through crowdsourcing. Specifically, crowdworkers were instructed to identify ob-
ject instances in a given image and, in a second stage, manually draw the outline
of each object. Rectangular bounding boxes were automatically extracted from the
outlines. Consequently, MS COCO’s bounding boxes are tight around each object.
Because of its large size and the variety of the images, MS COCO effectively cap-
tures the complexities of object detection in real-world settings. Since its release,
MS COCO has been extensively used and cited by over 41k research papers.

All the proposed object detectors evaluated on this dataset are considered suc-
cessful if they predict bounding boxes as tight as possible to the objects of interest.
This approach is standard in the literature, but it disregards the specific end use
of the object detectors. In this thesis, we focus on the case when object detections
are shown as an end product to humans. Given this setup, we investigate whether
predicting tight bounding boxes is always in line with human preference. We also
question whether the IoU metric, which is to some extent invariant to the box po-
sition and size, reflects well the quality judgments of humans.

1.1.3 ACTION RECOGNITION

Another task in computer vision is action recognition, which consists in predict-
ing a label that best describes what is happening in a given video. Applications of
action recognition can be found in surveillance, sport analytics or industrial au-
tomation. A baseline method for action recognition is using an image classifier on
individual video frames. However, this approach cannot model temporal informa-
tion, which is necessary to distinguish certain types of actions, like opening a door
vs. closing a door. On the other hand, analyzing the video data altogether provides
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richer information, including temporal dynamics, motion and speed.
Video data can be represented as a spatio-temporal 3D volume, made of 2D

frames stacked along the time dimension. One of the popular solutions to model
spatio-temporal data is 3D convolution. Its functioning is analogous to 2D con-
volution, except for the input, convolutional kernel and output being 3D volumes.
The 3D kernels capture spatial and temporal information simultaneously, by shift-
ing through the height, width and time dimensions. In a 3D convolutional network
(3D CNN), a layer comprises 3D convolution, non-linear activation functions and
3D pooling. Thanks to the 3D convolution and 3D pooling, the model receptive
fields grows both in space and time, making it possible to capture information over
a large time-span in the deeper layers. Popular 3D CNNs architectures are I3D [16]
and 3D ResNet [17], whose temporal receptive fields in the last layer measure, re-
spectively, 99 and 217 frames.

H
ei

gh
t

Width

Tim
e

3D Conv. 
KernelInput

3D 
Pooling

Figure 1.7: Illustration of 3D convolution (denoted by ⊗) and pooling operations, used to
extract information in spatio-temporal input data.

It is a common practice to pre-train action recognition models on large-scale
video datasets, like Kinetics [16], to learn various spatio-temporal patterns that
might be useful to recognize actions in smaller downstream datasets. However,
Byvshev et al. [18] discovered that Kinetics is biased towards appearance and can
be largely solved without temporal information. As a consequence, models trained
on this dataset might learn to focus on static information, without effectively en-
coding motion and other temporal dynamics. Other pre-training datasets, like
HowTo1M [19], should be chosen for tasks that require action recognition mod-
els to understand temporal information.

In action recognition, the input videos are limited to a few seconds duration and
are trimmed to contain a single action. This simple approach might not be rep-
resentative of a video recorded in the wild. As an example, a video recording of a
soccer game usually lasts several minutes and contains multiple actions, like kick-
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ing, running, hitting the ball. Consecutive actions might be correlated and form
a long-term action, in this case, playing a soccer game. To study long-term action
recognition, several datasets and methods have been proposed. Current datasets
mostly involve cooking, sports or instructional videos. Since this type of video is
longer in duration and is made of multiple short actions over time, models with
large temporal receptive field have been designed to capture long-term depen-
dencies over a larger time-span than traditional 3D CNNs. Some examples include
multi-scale temporal convolution [20] or modeling long videos with graph struc-
tures [21]. Inspired by the appearance bias discovered by Byvshev et al., in this
thesis, we challenge the assumption that long-term information is necessary to
solve current long-term video datasets and study the performance of models with
limited temporal receptive field.

1.2 UNDESIRABLE LEARNING BEHAVIORS

Deep neural networks, deployed in computer vision, are typically trained to achieve
a specific objective, such as accurate image classification or action recognition.
However, the learning process of these models can sometimes lead to sub-optimal
results. In this thesis, we investigate whether the learning behavior of computer
vision models aligns with the final objective. This section illustrates two undesired
learning behaviors that are common in deep neural networks, namely overfitting
and shortcut learning.

1.2.1 OVERFITTING

Computer vision models learn to perform a task on the training dataset. If the
training process is successful, hopefully the models should be able to perform the
task on new data. However, in situations where the training data is limited and
the models have large capacity, the models might memorize the specific charac-
teristics of the training data, including random noise, and fail to generalize on new
data. This phenomenon is called overfitting and is a common undesired behavior
in neural networks. To evaluate the models performance on new data, it is com-
mon practice to split the dataset in a training set and a test set. Since the two sets
come from the same data distribution, they are independent and identically dis-
tributed (i.i.d.). Observing perfect training accuracy and poor accuracy on the i.i.d.
test set signals the presence of overfitting.

It is possible to mitigate overfitting deploying various methods. One of these is
data augmentation, which consists in artificially increasing the amount of training
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data by creating modified copies of the original data samples. In images, com-
mon modifications include random cropping, horizontal flipping, affine transfor-
mations and color jittering. A second approach is by adding a regularization term
to the loss function, which inhibits the model from learning too complex solution,
thereby preventing memorizing overly specific characteristics of the training data.

1.2.2 SHORTCUT LEARNING

Shortcut learning is an undesirable learning behavior that can be encountered in
deep neural networks. It occurs when a model learns a decision rule that suc-
cessfully solves a task not by reasoning in a human-like fashion, but by means of
unintended cues. Two noteworthy examples of shortcut learning have been found
in image classification. Geirhos et al. [22] showed that convolutional neural net-
works trained on ImageNet are prone to focus on object texture over shape. De-
spite showing high accuracy on ImageNet, these models struggle to recognize line
drawings and silhouettes, a task that humans tend to perform easily. In addition,
the BagNet model proposed by Brendel et al. [23] revealed the use of unintended
features to recognize some of the ImageNet classes, for instance using the fingers
of fishermen to recognize Tench, a cyprinid fish.

Compared to overfitting, shortcut learning is harder to discover. While overfit-
ting manifests itself when the test accuracy is significantly lower than the training
accuracy, even with i.i.d. data, in shortcut learning both training and test accuracy
can be high. Therefore, shortcut learning can be diagnosed only by testing on out
of distribution (o.o.d.) samples or carefully analyzing what is causing the model
predictions. Geirhos et al. illustrated these different learning behaviors [24] in a
taxonomy, shown in Figure 1.8.

While overfitting is attributable to inadequate training, shortcut learning might
be due to specific characteristics of the available data. For example, rosette fur tex-
ture is a discriminative feature of the class Leopard. In the absence of other object
classes containing leopard fur texture, an image classification model can learn to
predict Leopard solely by detecting this specific texture, while ignoring the rest of
the image. This prediction rule can lead to the misclassification of images contain-
ing leopard print clothing. Analogously, static cues in videos might be used to rec-
ognize actions, overlooking temporal dynamics. For instance, action recognition
models could overly exploit the correlation between actions and objects observed
during training [25]. If the object piano appears only in videos belonging to the ac-
tion class Playing Piano, an action recognition model might predict this class every
time a piano appears in a video [26]. The bias towards appearance in the Kinetics
video dataset, analyzed by Byvshev et al. [18], can be seen as a shortcut opportu-
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Figure 1.8: Illustration of the shortcut learning problem in neural networks, inspired by
Geirhos et al. [24]. Left: A toy classification problem, cats (C) vs. dogs (D). Hu-
mans consistently classify the images based on the characteristic shape of cats
and dogs, while a model using shortcut features leans to distinguish the images
based on the shape color fill. Right: Taxonomy of decision rules. Using overfit-
ting features results in poor classification on any dataset different than the train-
ing set, whereas shortcut features might fail only on out of distribution test sets.
Human-like intended features perform successfully on any dataset.

nity in action recognition, where static frames are sufficient to recognize an entire
action video.

Shortcut opportunities have been identified in image classification and action
recognition. In this thesis, we investigate whether shortcut opportunities occurs
also in long-term action recognition datasets. Since long-term actions usually last
several minutes and contain multiple short-term actions, it is commonly believed
that models capable of long-term reasoning are necessary for accurate classifica-
tion. However, if short-term shortcut opportunities exist, it is possible to recognize
these videos solely exploiting short-term information. For example, detecting a
coffee mug in a short video clip might be sufficient to recognize the long-term ac-
tion of making coffee from the Breakfast dataset [27], a popular dataset of cooking
videos. Discovering shortcut opportunities in long-term action recognition is im-
portant to understand the behavior of current models, identifying their limitation
and exploring potential improvements.
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1.3 ORGANIZATION OF THIS THESIS

In this thesis, we explore whether computer vision systems are typically aligned
with their human-defined end goals. In particular, we investigate whether the
training and evaluation metrics used in object detection systems conform with
what humans consider good or bad object detections and how to make these mod-
els more in line with human preference. Subsequently, we examine whether long-
term information is necessary to classify long-term action videos in current datasets,
or if it is sufficient to exploit short-term shortcuts.

The remainder of this thesis is composed of the following original contributions:

Chapter 2 Object detectors are employed to assist humans in several applica-
tions, including industrial inspections and medial image analysis. In this chap-
ter [28], we investigate whether the evaluation metrics of object detectors, in par-
ticular the IoU, are in line with human quality judgments. The IoU is low if the
predicted object detections have different size and position with respect to the
ground-truth detections. However, the IoU does not take into account if the pre-
dicted box is too small or too large, nor the shifting directions. We conduct fully
controlled experiments where we ask humans to evaluate object detections with
variable size and position, but same IoU. We found that humans perceived qual-
ity is higher for larger over smaller detections and that position matters for asym-
metric objects. This is the first work to show that the IoU metric is insufficient to
evaluate object detectors meant for human applications.

Chapter 3 In this chapter [29], we extend the evaluation in Chapter 3 to three real,
widely used, object detectors. We find that these object detectors predict too large
and too small bounding boxes equally often, and thus are not in line with human
preference. We propose to scale the predicted detections and found that the up-
scaled object detections are preferred by humans over the model predictions, even
if they result in a very low AP. This result confirms the mismatch between human
quality perception and object detectors evaluation metrics. It also suggests that the
ground-truth object detections might not be in line with the human preference.
Finally, we propose an asymmetric loss function that favors large object detections,
without the need of re-annotating object detection datasets. We find that fine-
tuning with the asymmetric loss results in object detections preferred over fixed
up-scaling, probably due to the former being more sensitive to the object size.

Chapter 4 Chapters 2 and 3 focus on the utilization of object detections to assist
human applications. In this chapter [30], we investigate whether object detections
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can be used to improve human behavior recognition in minute-long videos. Un-
der the hypothesis that focusing on the human subjects enhances human action
recognition, we introduce a multi-region action recognition model that takes mul-
tiple spatial regions as input and adaptively chooses where to direct attention. We
include an "actor-focused" region, centered around the person performing the ac-
tivity, which we extract by means of an object detector. We also investigate whether
an analogous attention mechanism in the temporal dimension helps recognizing
human behavior. While multi-region attention significantly improves the results
over the baseline, we surprisingly find that temporal attention does not help, and
even deteriorates the performance. This result is counter-intuitive, as we would
expect an auxiliary temporal model to enhance the performance by drawing at-
tention on the most discriminative moments in a minute-long video.

Chapter 5 In complex, minute-long activities, like a football game, we would ex-
pect that not every minute is equally important. For example, in a football video a
penalty kick is probably more informative than the halftime. However, in Chapter
4 we find that temporal attention does not enhance human action recognition. To
understand this finding, in this chapter [31], we perform an in-depth analysis of
three common long-term action recognition datasets. We find that the Breakfast
and CrossTask datasets contain short-term actions that directly map to long-term
action classes. We hypothesize that recognizing these short-term actions is suffi-
cient to correctly infer the long-term classes, without the need of long-term model-
ing. We conduct two types of user studies, where we ask the participants to classify
the long-term action in the dataset videos after seeing the full videos or short video
segments. We find a very small difference in long-term action recognition perfor-
mance from the two groups of participants. This shows that the videos from the
three analyzed datasets do not need long-term information to be correctly classi-
fied. Computer vision algorithms are likely to make use of short-term shortcuts
to correctly classify these videos, without encoding any long-term information.
We recommend to use different datasets to study the problem of long-term action
recognition.

Chapter 6 Current video understanding algorithms based on convolutional neu-
ral networks extract temporal information from videos through their temporal re-
ceptive field (RF). In this chapter [32], we investigate whether the temporal RF can
overfit on specific long-term information at training time, in particular short-term
action order. We propose Video BagNet, a 3D convolutional network with small
temporal RF. We show that models with large temporal RF encode strict short-term
action orders and fail when the orders at training and test time are different. On



1

18 1. INTRODUCTION

the other hand, Video BagNet is less sensitive to permutations of the short-term
actions. We find small temporal RFs perform better on the MultiTHUMOS dataset,
confirming that long-term modeling is not necessary in current datasets.

Other publications Additional papers published during the research that are not
integral to this thesis can be found in the List of Publications.
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2
HUMANS DISAGREE WITH THE IOU FOR

MEASURING OBJECT DETECTOR LOCALIZATION

ERROR

The localization quality of automatic object detectors is typically evaluated by the
Intersection over Union (IoU) score. In this work, we show that humans have a dif-
ferent view on localization quality. To evaluate this, we conduct a survey with more
than 70 participants. Results show that for localization errors with the exact same
IoU score, humans might not consider that these errors are equal, and express a pref-
erence. Our work is the first to evaluate IoU with humans and makes it clear that
relying on IoU scores alone to evaluate localization errors might not be sufficient.

2.1 INTRODUCTION

The main difference between image classification and object detection is that an
object detector also has to predict the object’s location, typically indicated by a
bounding box around the object. Object location can be used as a first step for a
downstream task, e.g., instance segmentation [1], or human pose estimation [2].
Alternatively, in this paper, we focus on the setting where an object detection is
presented to humans as an end result, where examples include visual inspection [3],

This chapter has been published as:
O. Strafforello, V. Rajasekar, O. S. Kayhan, O. Inel and J. C. van Gemert. “Humans disagree with the IoU
for measuring object detector localization error”. In: IEEE International Conference on Image Processing
(ICIP). 2022, pp. 1261-1265

Code available at:
https://github.com/ombretta/humans_vs_IoU
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Figure 2.1: Left: Two localizations where the magenta box (0.5 IoU) is accepted, and the
cyan box (0.3 IoU) is rejected by object detectors. Right: Two equally accepted
localizations (0.5 IoU) by object detectors. Which boxes do you accept?

or focusing attention in medical images [4]. We do not evaluate the object detector
itself [5]. Instead, we evaluate if the predicted object location by object detectors
aligns with what humans consider a detected object.

Evaluating object detectors. Object detectors are commonly evaluated [5–9]
with mean average precision (mAP): the mean of the per-class average precision
scores. Average precision is the area under the precision-recall curve, created by
ranking all detections by confidence and then checking if they are correct accord-
ing to the ground truth. The detection is correct if (1) the assigned class label is
correct and (2) the detection location has sufficient overlap with the ground truth.
The Intersection over Union (IoU) score is used to determine the overlap. The lo-
cation of a detection is correct if the IoU score is higher than a threshold, typically
0.5 or higher [6, 10]. In this paper, to the best of our knowledge, we are the first to
investigate how well the IoU measure aligns with human localization quality judg-
ments.

Human annotation for object detection. Extensive crowdsourcing studies are
performed to draw bounding boxes around objects in images [11, 12] or the precise
shape of the object [13, 14]. Experiments in which crowd workers validate object
detections showed that annotators tend to be lenient when validating bounding
boxes, i.e., bounding boxes with IoU < 0.5 are still accepted [15]. Furthermore,
analyses performed in [16] suggest that to efficiently and accurately localize all ob-
jects in an image, several crowdsourcing tasks are needed, such as verifying box
correctness, verifying object presence, or naming the object. In this paper, we ex-
tend the work in [16–18] with four user studies investigating which bounding boxes
humans accept and prefer.

Contributions. We make the following contributions: (1) We design four user
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studies to explore what kind of detections humans prefer and accept as good de-
tections.1 (2) We investigate the relationship between a too small bounding box
and a too large bounding box, where they both have the same IoU score. (3) We
analyze the impact of object symmetry and bounding box position in human pref-
erence and acceptance of detectors’ output. (4) We experiment with various object
sizes (small, medium, large) and recommend future studies.

Our results show that humans disagree with IoU for measuring localization er-
rors.

2.2 EXPERIMENTAL APPROACH

We perform four controlled experiments to evaluate the relation between IoU and
human localization quality judgments and study which object detections are ac-
cepted or preferred by humans. We do not train or test any object detection models
since they are highly influenced by many design choices, e.g., model parameters,
dataset. Thus, our boxes are generated according to the ground truth. We relate
our findings to machine-evaluated detections. For machine-evaluated detections,
we use the common IoU, measuring the localization performance of the predicted

box Bp with the ground truth box Bg t , as IoU = Bp∩Bg t

Bp∪Bg t
.

We address two important features of object localization: (i) Box Size and (ii) Box
Position, which are affected by the IoU score, in four online user studies (two stud-
ies per feature).2 We also experiment with various object sizes (small - S, medium -
M, large - L)3 and IoU values (0.3, 0.5, 0.7, 0.9) to study differences and similarities
between humans and detection algorithms.

Procedure and participants. All studies follow the same procedure. Participants
are given an example to introduce the task. The task consists of a masked image
to indicate which object is investigated, the question that directly specifies the ob-
ject name, and the possible answers. The images are chosen from the MS COCO
dataset [10]. We ran the studies using Qualtrics4. The user studies have been dis-
tributed among research group members and authors’ peers.

Box Size. As illustrated in Fig. 2.2, we use two different box sizes, small and
large, with the same IoU score. The box aspect ratio and position is taken from
the ground truth box. In the Size Preference study, we investigate the box size, and
ask participants which box size they prefer for a detection. They can choose one

1Data and analysis is available at https://github.com/ombretta/humans_vs_IoU.
2Ethical approval was not required - we do not collect personal identifiers.
3We adopt the definition of object size provided with the MS COCO dataset (https://cocodataset.org/

#detection-eval).
4https://www.qualtrics.com/



2

26
2. HUMANS DISAGREE WITH THE IOU FOR MEASURING OBJECT DETECTOR

LOCALIZATION ERROR

option among: large box, small box or “the size of the box does not matter”. In the
Size Acceptance study, we show either a small or a large box and ask participants
if they accept or reject it as an object detection. For both studies we evaluate IoU
values (0.3, 0.5, 0.7, 0.9) and include all object sizes (S, M, L). In the Size Preference
study, we annotate 72 images, with six images per each combination between ob-
ject size and IoU value. In the Size Acceptance study, we annotate 96 images (eight
per combination).

Figure 2.2: Size preference experiment. The columns indicate Small, Medium and Large ob-
ject categories. The colors represent IoU scores of each box: Red (0.9), Green
(0.7), Magenta (0.5) and Cyan (0.3). Top row: small bounding boxes; Bottom row:
large bounding boxes. The small and large boxes of same color have the same
IoU scores.

Box Position. As illustrated in Figure 2.3, we applied two positional shifts to the
ground truth box, for symmetrical and asymmetrical objects, using a fixed IoU
value of 0.5. Unlike the size experiment, the predicted box size is fixed and only
the position of the box changes to evaluate the effect of the position. Depending on
the orientation of the object, the predicted box is shifted horizontally (back, front)
or vertically (top, bottom). Since symmetrical objects do not have front and back
sides, we consider front as the right side and back as the left side of the object. Sim-
ilarly to the size surveys, in the Position Preference study, we ask participants if they
prefer a particular part or side of the object for detection. The Position Acceptance
study investigates if users would accept the bounding box as a correct detection.
In both position surveys, we use 20 images, which are equally distributed across
object types (symmetrical, asymmetrical) and box positions (front/top, back/bot-
tom), with 5 images per category.
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Figure 2.3: Position preference experiment. The experiments show the bounding box loca-
tions for IoU score 0.5 by shifting them horizontally or vertically. Top row: sym-
metrical objects; Bottom row: asymmetrical objects.

2.3 RESULTS

Analytical method. To study the human preference and acceptance of bounding
box sizes and positions, we apply several statistical tests. We apply the Chi-square
test [19] to find out if there are any associations between variables such as object
size and preferred box size or IoU value and preferred box size. To understand
whether differences in preference proportions (e.g., small boxes, large boxes, no
preference), or acceptance proportions (e.g., front box, back box) are statistically
significant, we apply the Z-test [20] and the Cochran’s Q test [21]. While the Z-
test can only be applied to compare two proportions, the Cochran’s Q test can be
applied on any number of proportions. In case of statistically significant differ-
ences, we apply a posthoc Dunn test with Bonferroni correction [22] to see which
proportions are different. Since for each study we perform multiple comparisons
and statistical tests, we use a lower significance threshold than 0.05 (by applying a
Bonferroni correction), i.e., α = 0.05

#test s .

Size Preference. Figure 2.4(a) shows, per IoU and object size, the percentage of
preferred bounding box sizes. For 0.9 IoU value, people have no size preference —
for each object size, the option no preference is either the most chosen, or similarly
chosen as large boxes. For IoU values of 0.9, posthoc Dunn tests with Bonferroni
correction show that no preference is statistically preferred for small and medium
objects, but not for large objects. The prevalence of no preference is sensible: for
IoU > 0.9, the difference in appearance between small and large boxes is subtle to
the human eye.

For all other evaluated IoU values, 0.7, 0.5, 0.3, and for all three evaluated ob-
ject sizes, the Cochran’s Q test shows that there are statistically significant differ-
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(a) Size Preference Study

(b) Size Acceptance Study

Figure 2.4: Results from studies Size Preference and Size Acceptance. a) Percentage of pre-
ferred bounding box size (small, large, no preference) for each IoU (0.3, 0.5, 0.7,
0.9) and object size (S, M, L). b) Percentage of accepted bounding box size (small,
large) for each IoU and object size. The large boxes are mostly preferred and ac-
cepted by humans.

ences in the preference of boxes. Posthoc Dunn tests with Bonferroni correction
indicate that large boxes are statistically significantly more preferred by humans.
Small bounding boxes are always the least preferred while large bounding boxes
are always the most preferred, irrespective of object size. We observe a gradual
preference increase of small bounding boxes as the IoU value increases, and a
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comparatively higher increase in having no preference (see Figure 2.5(a)). Using a
Chi-square test, we found an association between the IoU value and the preferred
bounding box size (χ2(2)=1227.84, p < 0.006). We also notice a gradual decrease in
the preference of small bounding boxes with the decrease of the object size. These
results are shown in Figure 2.5(b). Using a Chi-square test, we found a statisti-
cally significant association between the object size and the size of the preferred
bounding box (χ2(2)=62.05, p < 0.006).

(a) IoU Value vs. Bounding Box Size

(b) Object Size vs. Bounding Box Size

Figure 2.5: Results from Size Preference study. a) Percentage of preferred bounding box size
(small, large, no preference) for each IoU value (0.3, 0.5, 0.7, 0.9). b) Percentage
of preferred bounding box size for each object size (S, M, L).

Size Acceptance. In Figure 2.4(b), we show the percentage of accepted small and
large boxes, for each IoU value and image size. For each IoU value, the acceptance
of small bounding boxes decreases with the decrease of object size, the smaller
the object, the less accepted the small bounding boxes. Large bounding boxes are
always more accepted than small bounding boxes, disregarding IoU values and
object sizes. The exception are medium objects with 0.9 IoU, where small boxes
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are statistically significantly more accepted (z=-2.82, p < 0.008). For the rest of the
cases, large bounding boxes are statistically significantly more accepted than small
bounding boxes for IoU values of 0.3, 0.5 and 0.7 and all object sizes (p < 0.008),
but are not more accepted for neither small nor large objects with 0.9 IoU. We also
found, c.f. Z-test, that (1) large bounding boxes are always statistically significantly
accepted (p < 0.008) and (2) small bounding boxes are only statistically signifi-
cantly more accepted for 0.9 and 0.7 IoU (all object sizes) and large objects with
0.5 IoU.

Position Preference. Figure 2.6(a) presents the results of the Position Preference
user study. For symmetrical objects, participants have no preference regarding
the position (front/top or back/bottom) of the bounding box, no preference being
chosen the most. According to the Cochran’s Q test, we also find that there are
statistically significant differences in proportions among the three options chosen
by study participants (χ2(2)=268.76, p << 0.017). A pairwise posthoc Dunn test
with Bonferroni correction indicates that there are statistically significant differ-
ences between the proportions in which no preference and front bounding boxes
are preferred (p << 0.017), as well as between the proportions of no preference and
back bounding boxes (p << 0.017).

For asymmetrical objects, however, the most preferred bounding box is posi-
tioned at the front of the object. The Cochran’s Q test shows that the difference
in proportions among the three options is statistically significant (χ2(2) = 576.74,
p << 0.017). Posthoc analysis using the Dunn test with Bonferroni correction shows
that these differences are statistically significant between each two possible an-
swers (front and no preference, front and back).

Position Acceptance. Figure 2.6(b) presents the results of the Accepted Box Po-
sition study. For both symmetrical and asymmetrical objects, the front bounding
box is accepted in higher proportions than the back bounding box. For symmet-
rical objects, we found sufficient evidence, c.f. Z-test, that the proportion of back
(z = -7.16, p < 0.008) and front (z = -12.62, p < 0.008) bounding boxes of being
accepted is higher than the proportion of not being accepted. For asymmetrical
objects, however, only front bounding boxes are statistically significant accepted
(z = -20.18, p < 0.008). Similarly, for each object type, we analyze whether one type
of bounding boxes is more accepted than the other. For both symmetrical and
asymmetrical objects, the front bounding boxes are statistically significant more
accepted than back bounding boxes.
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(a) Preferred Box Position

(b) Accepted Box Position

Figure 2.6: Results from studies Position Preference and Position Acceptance. a) Percentage
of preferred bounding box position (front, back, no preference) for symmetri-
cal and asymmetrical objects. b) Percentage of accepted bounding box position
(front, back) for symmetrical and asymmetrical objects.

2.4 DISCUSSION

In this paper, we performed four user studies to understand which object detec-
tions are preferred and accepted by humans. We addressed two main features
of object localization, namely the scale (large, small) and the position (front/top,
back/bottom) of the bounding boxes, and we experimented with objects of various
sizes (small, medium, large) and symmetries (symmetrical and asymmetrical).

Our studies show a statistically significant relationship between the IoU value
and the preferred bounding box size, as well as between the object size and the
preferred bounding box size.

Large bounding boxes are both the most preferred and the most accepted, while
object detectors accept and prefer large and small boxes similarly if the boxes have
the same IoU scores. We also found that for asymmetrical objects, the position of
the bounding box matters for study participants, since they tend to choose bound-
ing boxes that define or help them identify the object. This observation contrasts
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current state-of-the-art object localization models [23–29], where all bounding box
positions are considered correct, regardless of their orientation, when the IoU is
higher than the threshold.

Object detection models, when intended for humans, should be developed in a
user-centric manner i.e., they should incorporate end-users preferences and com-
ply with end-users needs. Thus, future studies should focus more on understand-
ing which aspects of the objects should be captured by bounding boxes. The cur-
rent study can also be extended by considering multiple datasets, occluded or
truncated objects or images with multiple objects, as well as bounding boxes that
are not centered, or which are shifted in random positions. Nevertheless, future
studies should consider improving object detectors based on human preferences.
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3
ALIGNING OBJECT DETECTOR BOUNDING BOXES

WITH HUMAN PREFERENCE

Previous work shows that humans tend to prefer large bounding boxes over small
bounding boxes with the same IoU. However, we show here that commonly used
object detectors predict large and small boxes equally often. In this work, we in-
vestigate how to align automatically detected object boxes with human preference
and study whether this improves human quality perception. We evaluate the per-
formance of three commonly used object detectors through a user study (N = 123).
We find that humans prefer object detections that are upscaled with factors of 1.5 or
2, even if the corresponding AP is close to 0. Motivated by this result, we propose an
asymmetric bounding box regression loss that encourages large over small predicted
bounding boxes. Our evaluation study shows that object detectors fine-tuned with
the asymmetric loss are better aligned with human preference and are preferred over
fixed scaling factors. A qualitative evaluation shows that human preference might
be influenced by some object characteristics, like object shape.

Object detectors identify and localize objects in an image. We focus on the com-
mon setting where detections are presented to a human by drawing a bounding
box around the objects. In this paper, we evaluate how to best present object de-
tections to humans, which is paramount for all applications that rely on show-
ing detection to humans, such as visual inspection [1–3], anomaly detection [4–6],

This chapter has been published as:
O. Strafforello, O. S. Kayhan, O. Inel, K. Schutte and J. C. van Gemert. "Aligning object detector bounding
boxes with human preference". In: Proceedings of the European Conference on Computer Vision (ECCV)
Workshops. 2024
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35



3

36 3. ALIGNING OBJECT DETECTOR BOUNDING BOXES WITH HUMAN PREFERENCE

or medical imaging [7, 8]. Previous work showed that humans prefer larger over
smaller boxes with the same localization error [9]. This was concluded in an on-
line study with a fully controlled setup, where ground truth bounding boxes are
precisely matched to the localization error. However, it is not directly clear if this
controlled setting translates to the real world, where object detector outputs are
imperfect. In this work, we extend [9] to real-world settings and real object detec-
tors, which is important for reproducibility, and realistic, practical applications of
scientific results.

Predicted Scaled by 2.0Scaled by 0.5

Figure 3.1: Scaling the predicted bounding box of Faster R-CNN [10] on the COCO [11] val-
idation set. Average Precision (AP) (top) versus human preference (bottom). A
scaling factor of 1.0 corresponds to the original bounding box size. Upscaling
and downscaling the size of the bounding boxes severely deteriorates AP. How-
ever, our study shows that humans prefer larger bounding boxes, even if they
give nearly 0 AP.

Object detectors, such as two-stage [10, 12], single stage [13–15], anchorless [16–
18], and transformers-based detectors [19–22] minimize a classification loss and
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a localization loss for bounding box fitting. The localization loss is symmetric for
errors in bounding box size: a predicted box that is 10% too large will give the same
loss as a box that is 10% too small. Here, we investigate how this symmetry affects
human perception of object detections.

Object detectors are typically evaluated using average precision (AP) [23–25],
which depends on the accuracy of the object classification and of the bounding
box localization, as measured by the Intersection over Union (IoU) with the ground
truth box. We are not the first to reconsider object detection evaluation [26–28],
yet, those works all assume that a perfect-fitting bounding box is best. In contrast,
here we investigate if a perfect-fitting bounding box may not be the best box for pre-
senting detections to humans.

We make the following contributions: (1) We analyze three popular object detec-
tors and find that they predict small and large bounding boxes equally often. (2)
We analyze how humans perceive the predictions of the object detectors focusing
on the bounding box size. As shown in Figure 3.1, we find that humans prefer up-
scaled object detections, even with corresponding AP close to 0. (3) We propose
an asymmetric loss function that favors the prediction of large over small boxes.
Our evaluation shows that fine-tuning with the asymmetric loss better aligns ob-
ject detections with human preference. All our collected data, analyses, and code
are available on GitHub1.

3.1 RELATED WORK

3.1.1 PRESENTING OBJECT DETECTIONS TO HUMANS

We take a nuanced view on evaluating object detection by identifying two distinct
use-cases. Case 1: A bounding box is used as pre-processing for a follow-up algo-
rithm such as instance segmentation [29–31], video object detection [32–34], hu-
man pose estimation [35–37], action recognition [38], etc. Case 2: A bounding box
is drawn on the image, and the full image is presented directly to a human, with rel-
evant use-cases such as visual inspection [1–3], anomaly detection [4–6], medical
imaging [7, 8], etc. We argue that these two use-cases deserve different treatment.
For case 1, where the bounding box is a pre-processing step, it is difficult to con-
sider all possible follow-up algorithms, and a tightly fitting box around the object,
as evaluated using IoU, seems reasonable. For case 2, however, the bounding box
is the final end result and is shown to a human being. Case 2 allows directly evalu-
ating the end result in user studies, to understand what humans actually prefer in

1https://github.com/ombretta/humans-vs-detectors
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their object detection. This is the focus of our paper.

3.1.2 EVALUATING OBJECT DETECTORS

All object detectors such as two-stage models [10, 12, 39, 40], single stage ap-
proaches [13–15, 41], pointwise/anchorless methods [16–18], and transformers-
based detectors [19–22] are commonly evaluated [24, 25, 42, 43] with mean average
precision: the mean of the per-class average precision scores. Average precision
(AP) is the area under the precision-recall curve, created by ranking all detections
by confidence, and then checking if a detection is correct according to the ground
truth. The correctness of a detection depends on the classification: if the assigned
class label is wrong, the detection is wrong. A second criterion for correctness is
that the location and size of the detection have sufficient overlap with the ground
truth box. For determining the overlap, the Intersection over Union (IoU) score
Bp∩Bg t

Bp∪Bg t
is used, where Bp is the predicted bounding box, and Bg t is the ground

truth bounding box. The location of a detection is correct if the IoU score is higher
than a certain threshold, typically 0.5 or higher [11, 42]. Usually, the reported AP
corresponds to a specific IoU threshold, such as 0.50 (AP50), or the average across
several IoU thresholds, such as AP@[0.5 : 0.95].

We are not the first to consider object detection evaluation [26–28, 44–46], yet,
those works all assume that a predicted bounding box perfectly overlapping with
the ground truth bounding box is best. In contrast, we here challenge the view that
a best fitting bounding box is always best for presenting detections to humans. We
base our challenge on the work of Strafforello et al. [9] who show in precisely con-
trolled experiments on ground truth boxes that humans prefer larger boxes over
smaller boxes. In this paper, we investigate the practical ramifications of Straf-
forello et al. [9] by aligning real-world object detectors with human preference.

3.1.3 OPTIMIZING OBJECT DETECTORS

Object detectors are typically optimized using an object classification loss and a
bounding box regression loss for accurate localization, by aligning the IoU of the
predicted box with the ground truth box. The regression loss, usually an L2 [47]
or smoothed L1 [10, 14] function, forces the box coordinates to be as close a pos-
sible to the ground truth, where the IoU is often optimized as an additional loss
term [10]. Previous work proposed novel object detector losses to improve the ac-
curacy, measured in AP. Examples include using the Absolute size IoU (AIoU) [48]
and the SCALoss [49]. Other work designed a new loss term to achieve compu-
tational efficiency [50]. In our paper, we propose a simple asymmetric regression
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loss function that enhances the performance of object detectors with respect to
human quality judgments. Previous work used asymmetric loss in Bayesian esti-
mation [51] and for classification [52]. To the best of our knowledge, we are the
first to use an asymmetric loss for bounding box regression.

3.1.4 HUMAN ANNOTATIONS FOR OBJECT DETECTION

The adoption of crowdsourcing platforms such as Amazon Mechanical Turk [53]
or Prolific [54] facilitated the collection of large training and testing datasets for
computer vision tasks [55–60], in contrast to using in-house annotators [23, 61].
For object detection, crowdsourcing studies are extensively used to draw bounding
boxes around objects that appear in images [62, 63] and videos [64] and to draw the
precise shape of the object [59, 60]. To eliminate the need for clustering or averag-
ing several bounding boxes for the same object, in [65, 66], the authors proposed a
three-step workflow, where one annotator performs one step: (1) draws a bound-
ing box around an object; (2) validates the drawn bounding box and (3) decides
whether there are still objects that need to be annotated in the image. These steps
are repeated until all objects in an image are annotated with bounding boxes. Ex-
periments in which the crowd validates object detections showed that annotators
tend to be lenient when validating bounding boxes, i.e., bounding boxes with IoU
< 0.5 are still accepted [67]. Furthermore, analyses performed in [68] suggest that
to efficiently and accurately localize all objects in an image, several crowdsourcing
tasks are needed, such as verifying box correctness, verifying object presence, or
naming the object.

3.2 DO HUMANS PREFER LARGER DETECTIONS?

Previous work shows that, for equal IoU, humans prefer too large boxes over too
small boxes [9]. Here, we evaluate if this has practical consequences for real object
detectors. We use three popular object detectors pretrained on MS COCO: Faster
R-CNN [10], RetinaNet [13], and Cascade Mask R-CNN with ResNet-50 [69] + Fea-
ture Pyramid Network [70] backbone [12, 71] all implemented in the Detectron2
library [72].
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(a) Faster R-CNN (b) RetinaNet (c) Cascade Mask R-CNN

Figure 3.2: Amount of large and small bounding boxes are predicted by three object detec-
tors on the MS COCO dataset, for seven IoU intervals, ranging from 0.3 to 1.0.
For all three detectors, with higher IoU thresholds more small than large boxes
are detected.

3.2.1 DO REAL DETECTORS PREDICT TOO LARGE OR TOO SMALL

BOXES?

If real object detectors tend to predict too large bounding boxes, then they are al-
ready well aligned with human preference. Thus, we investigate the relative size
of the predicted bounding boxes with respect to the ground truth bounding box: A
small box has a smaller predicted area, and a large box has a larger predicted area.
We analyze predictions on the MS COCO validation set and count the occurrences
of small and large boxes.

An overview of the distribution of the predicted bounding boxes over various
IoU intervals is shown in Figure 3.2. For all object detectors that we examined,
there is no statistically significant difference in the number of occurrences of large
and small bounding boxes. This holds for small, medium, and large objects. How-
ever, for low IoU ranges, i.e., IoU ∈ [0.3, 0.6) for Faster R-CNN and RetinaNet and
IoU ∈ [0.3, 0.5) for Cascade Mask R-CNN, large bounding boxes are more frequent
than small ones. This is due to random large bounding boxes being more likely to
partially overlap with the ground truth, compared to random small boxes. Consid-
ering intermediate IoU ranges, like IoU ∈ [0.6, 0.7], the number of occurrences of
small and large boxes is not in line with the human preference found in Strafforello
et al. [9]. That is, where humans would choose a large box over a small box with
approximately 70% chance, an object detector would predict small or large with
nearby equal probability.

We conclude that real object detectors generally do not predict too large boxes
more often than too small boxes, and thus seem not well-aligned with human pref-
erence. In the following, we will investigate what this means for human quality
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judgments of real object detectors.

3.2.2 FOR REAL OBJECT DETECTORS, DO HUMANS PREFER TOO LARGE

BOXES OR TOO SMALL BOXES?

Given that, for the same IoU, humans prefer larger boxes and real object detec-
tors do not tend to predict too large boxes, here we evaluate how humans judge
re-scaled boxes. We do this through a user study, where we ask participants to
evaluate five scaling factors, determined by scaling up or down the area of the pre-
dicted boxes with a factor of 1.5 and 2.0: {0.5,0.67,1.0,1.5,2.0}. Large bounding
boxes are cropped to not exceed the image boundaries. Examples of bounding box
scaling for a large and a small object are shown in Figure 3.3. We refer to this study
as Scaling Preference. We ask the participants to choose the boxes they believe best
identify a specific object in an image. The interface used in the user study allows
the participants to select multiple options if they cannot determine a single best
one. We use six random images selected from the MS COCO validation set per each
combination between object size (small, medium, large) and IoU range. We select
five IoU ranges from 0.5 ≤ IoU < 0.6 to 0.9 ≤ IoU < 1.0 that correspond to true pos-
itive predictions, for a total of 90 images. We conduct this Scaling Preference study
on Faster R-CNN, RetinaNet, and Cascade Mask R-CNN.

Scaling the detections of a well-performing object detector results in a slight
change in appearance but a significant drop in AP. For a scaling of 1, the base-
line AP is 36.7%, yet a scaling of 1.5 corresponds to a ≈ 86% decrease in AP. For a
scaling factor of 2.0, the AP is ≈ 0%. Even with a more lenient IoU threshold, the
AP50 decreases rapidly with both upscaling and downscaling. As shown in Table
3.1, this behavior is consistent across the three object detectors.

3.2.3 RESULTS FOR THE SCALING PREFERENCE STUDY

Table 3.2 shows the number of participants and total number of judgments for the
Scaling Preference study. We use the Cochran’s Q test [73] to determine whether
there are statistically significant differences in participants’ preferences regarding
box sizes. In addition, we apply the posthoc Dunn tests with Bonferroni correction
[74] to find what are the scaling factors that result in significant differences in users’
preferences. An overview of the results is provided in Figure 3.4. We group the scal-
ing choices into (i) "Preference for smaller boxes", if a user selected the box scaled
with factor 0.67, the box scaled with factor 0.5 or both; (ii) "Preference for larger
boxes", if a user selected the box scaled with factor 1.5, the box scaled with factor
2.0 or both; (iii) "Preference for original size" if a user selected only the bounding
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Factor 0.5 Factor 0.67 Model prediction Factor 1.5 Factor 2.0

Figure 3.3: Scaling the model detections. Example of a bounding box predicted for a large
object (first row), a medium object (second row) and a small object (third row)
with Faster R-CNN (3rd column) and its scaled versions. In the left two images,
the area of the bounding box is reduced by a scaling factor of, respectively, 0.5
and 0.67, whilst in the right two images the box area is increased by a factor of 1.5
and 2.

Scaling factor Faster R-CNN RetinaNet Cascade R-CNN
AP AP50 AP AP50 AP AP50

0.50 0.0 0.1 0.1 0.4 0.0 0.1
0.67 5.1 37.1 5.4 38.2 5.6 40.7
1.00 36.7 54.1 37.4 56.7 39.6 53.7
1.50 5.5 38.4 6.2 41.3 5.7 41.3
2.00 0.0 0.2 0.3 1.3 0.0 0.2

Table 3.1: AP (i.e., AP@[0.5 : 0.95]) and AP50 (%) calculated for the predictions of three de-
tectors on the MS COCO validation set and for the predicted boxes scaled with
different scaling factors. Scaling the predicted boxes reduces the AP scores dras-
tically.

box predicted by the model and (iv) "No preference" for all the remaining combi-
nations of selections. Larger bounding boxes are consistently selected more often
than small bounding boxes and than the original bounding box size for all three
object detectors. This holds for different object sizes (Figure 3.4, left column), and
IoU ranges (Figure 3.4, right column).

Despite the preference for larger boxes, we cannot find a statistically significant
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Figure 3.4: Results from the Scaling Preference user study. The histograms show the percent-
age of preferred bounding box size per object category (S, M, L) and IoU range,
from 0.5 ≤ IoU < 0.6 to 0.9 ≤ IoU < 1.0, for three object detectors. The plots indi-
cate that humans significantly prefer larger boxes.

difference between the preference for upscaling factor 1.5 and upscaling factor 2.0.
For Faster R-CNN, the preference for larger boxes is composed of 56.77% of se-
lections of both boxes scaled with factor 1.5 and 2.0; of 19.30% of selections for
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scaling factor 1.5 and of 23.93% of selections for scaling factor 2.0. Here, Dunn’s
test shows no statistically significant difference between the preference for scal-
ing factor 1.5 and scaling factor 2.0. This means that larger boxes are preferred,
but there is no single best upscaling factor. One exception holds for the bounding
boxes for small objects predicted with Faster R-CNN: in this case, scaling factor 2.0
is preferred over scaling factor 1.5 (Dunn’s α ≈ 0). This preference is an indicator
that, for small objects, scaling the bounding box with a large scaling factor, like
2.0, results in more satisfactory detections. A majority of votes for the largest box
for small objects, albeit not statistically significant, is observed for the other object
detectors. It is noticeable how larger bounding boxes are preferred to bounding
boxes predicted with high IoU. This indicates that, for representative images of the
diverse MS COCO dataset, humans are likely to prefer bounding boxes larger than
the ground truth bounding boxes.

Faster R-CNN RetinaNet Cascade Mask R-CNN

Participants 39 36 48
Judgments 5400 5220 5632

Table 3.2: Overview of participants and their judgments in the scaling preference study.

3.3 ASYMMETRIC REGRESSION LOSS TO ENCOURAGE

LARGER DETECTIONS

We find that humans consistently prefer larger object detections, while object de-
tectors predict large and small boxes equally often. We propose an asymmetric
bounding box regression loss that encourages larger detections. Our asymmetric
loss is obtained by a simple modification of the smooth L1 localization loss func-
tion used in standard object detectors. We use the asymmetry term α to increase
the loss value when the predicted area is smaller than the ground truth area and
decrease the loss value when is larger. The asymmetric loss is given by

Asymmetric L1,smooth =
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Theα represents the asymmetry term, β determines the standard smoothing in-
terval in which the L1 loss becomes quadratic, and x is the input to the loss func-
tion, which is the difference between the predicted height/width and the ground
truth values, x = xpred − xGT. As shown in Figure 3.5, the asymmetric loss is identi-
cal to the smooth L1 loss when α= 1. We use the asymmetric loss function for the
regression of the boxes’ height and width.

We fine-tune Faster R-CNN, RetinaNet, and Cascade R-CNN on MS COCO for
100k iterations with the asymmetric loss. As a result, the fine-tuned models are
more likely to predict larger boxes over smaller boxes. Figure 3.6 shows the per-
centage of large detections for different α values. Similarly to the fixed scaling fac-
tors in the Scaling Preference study in section 3.2, we observe a decrease in the AP
with the increase of large detections. With α = 10, we obtain 80% to 90% large
predictions without compromising AP too much.

We measure the average size increase of the predicted bounding boxes com-
pared to the ground truth. As shown in Figure 3.7, increasing the α coefficient
results in an increase of the average box size, for all three models and object sizes.
The models fine-tuned with α = 10 return detections scaled compared to ground
truth, on average by factors 1.21±0.24 for Faster R-CNN, 1.21±0.25 for RetinaNet,
and 1.19± 0.22 for Cascade R-CNN, while fine-tuning with α = 100 results in av-
erage scaling of 1.41±0.26 for Faster R-CNN, 1.34±0.28 for RetinaNet, and 1.39±
0.24 for Cascade R-CNN. It is noticeable that the size of small objects’ detections
increases more than for medium and large objects. This is mostly due to small
bounding boxes having more opportunity for expansion in the image, while large
objects’ boxes are already close to the image boundaries.

3.3.1 DOES THE ASYMMETRIC L1 LOSS LEAD TO DETECTIONS CLOSER

TO THE HUMAN PREFERENCE?

We conduct a final user study to investigate whether adopting the asymmetric
L1 loss results in detections closer to human preference. In the evaluation study,
we include the detections from the original pretrained Faster R-CNN (α = 1), the
detections from Faster R-CNN fine-tuned with α 10 and 100, and the detections
scaled by a fixed factor 1.5, which was one of the preferred options in the Scaling
Preference study 3.2. These values for α are chosen to have detection sizes that
notably differ from the Faster R-CNN baseline (Figure 3.7). We ask users to com-
pare the four different detections for the same object and choose the one that, in
their opinion, best identifies the object. We include 45 detections, equally sampled
from the three object categories (small, medium, large). We conduct the study on
Amazon Mechanical Turk [53] and collect 660 judgments.
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Figure 3.5: Asymmetric smooth L1 loss with different α. Larger bounding boxes are penal-
ized less then smaller predictions.

The results are summarized in Table 3.3. The Cochran’s Q test reveals statistically
significant differences between the proportions of preferred object detections. The
detections obtained by fine-tuning with asymmetric loss, α = 10, are always the
most preferred. This preference is statistically significant when considering all ob-
ject categories and small objects (Dunn’sα≤ 0.001). In the other cases, fine-tuning
with α= 10 is significantly more preferred than scaling with a fixed factor (Dunn’s
α≈ 0), thus confirming the advantage of the asymmetric loss over fixed scaling.

The preference for the asymmetric loss over fixed scaling is likely due to the
fixed scaling factor upscaling all boxes equally, irrespective of the object size. Con-
versely, using the asymmetric loss results in boxes upscaled more for small objects
than for medium and large objects, as illustrated in Figure 3.7. This might lead to
higher human preference, since large objects are already easily identifiable with
a tighter box. In fact, as shown in Table 3.3, the fixed scaling 1.5 is almost never
chosen for large objects. In addition, we observe that the most preferred option —
asymmetric loss with α= 10 — leads to detections that are, on average, larger than
the ground truth by a factor between 1.1 and 1.5. We hypothesize that the optimal
scaling factor might lie within this range. Another potential reason why scaling by
1.5 is less preferred is that the fixed scaling strategy retains the aspect ratio of the
original predicted box. This aspect ratio may not be optimal when upscaling the
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Figure 3.6: Average Precision (AP) as a function of the amount of predicted boxes that are
larger than the ground truth boxes. The percentage of large detections increases
with the α parameter, while the AP decreases.

boxes. In contrast, the asymmetric loss function imposes fewer constraints on the
aspect ratio.

Overall, fine-tuning the models with our asymmetric L1 loss results in detections
closer to human preference. We suggest adopting this loss when object detections
are meant to be presented to humans.

Object cat. # judgments
Chosen object detection (%)

α= 1 α= 10 α= 100 Scal. fact. 1.5

All 660 27.4 37.1 21.2 14.2
Small 229 17.0 31.9 26.6 24.5
Medium 215 27.9 39.5 16.7 15.8
Large 216 38.0 40.3 19.9 1.9

Table 3.3: Users’ preferred object detections (%), computed with Faster R-CNN fine-tuned
with the asymmetric loss function or up-scaled with factor 1.5. Fine-tuning with
α= 10 is always the most preferred option.
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Figure 3.7: Bounding box size increases after fine-tuning object detectors with the asym-
metric smooth L1 loss with parameter α.

3.3.2 QUALITATIVE ANALYSIS OF THE PREFERRED BOXES

We manually analyze the results obtained from the user evaluation of the asym-
metric loss and illustrate some representative examples in Figure 3.8. We notice
that the tight bounding boxes predicted by the Faster R-CNN baseline, namely,
trained with α= 1, are generally preferred for large objects, e.g., the cat in the first
row. Preference for α= 1 also occurs when there are multiple objects behind or in
the proximity of the object of interest. In the image on row 2 of Figure 3.8, larger
bounding boxes partly include the chair behind the one of interest. In this case,
tight boxes delineate better the subject of focus.

Slightly larger boxes, obtained by fine-tuning with our asymmetric loss, α = 10,
are preferred when small parts of the object are not contained in the tight bound-
ing box predicted by Faster R-CNN (e.g., the candle on the birthday cake in Figure
3.8, row 3), or partly covered by the box contour itself, like the ears and tail of the
cat in row 4. We hypothesize that predicted tight bounding boxes leave out pos-
sible object protrusions, despite resulting in high AP. Presumably, humans prefer
large boxes because they can include the whole object. Additionally, in the pres-
ence of a uniform background (e.g., the green grass behind the cat in Figure 3.8,
row 4), humans are generally less concerned if the bounding box is slightly larger.
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α = 1 (Smooth L1 loss) α = 10 α = 100 Scaling factor 1.5

Figure 3.8: Example of human preferences obtained from the user evaluation of the asym-
metric loss. The columns show the percentage of users who prefer the bounding
boxes obtained by the original pretrained Faster R-CNN (α= 1), after fine-tuned
with α 10 and 100, or scaling by a fixed factor 1.5. Generally, humans prefer tight
boxes for large objects (first row) and when the object of interest overlaps with
other objects (second row). Slightly larger boxes, obtained with asymmetric loss,
α = 10 or 100, are preferred when small parts of the object protrude outside too
tight bounding boxes (e.g., the candle on the birthday cake, third row), or partly
covered by the box line itself (fourth row). Large boxes (α = 1 or scaling factor
1.5) are chosen for very small objects (fourth and fifth row). Finally, we found no
preference when all bounding boxes are too visually similar (last row).
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Similarly, the asymmetric loss makes it more likely to include all the small pro-
truding parts of the objects in the predicted boxes.

We observe that the preference for larger boxes, obtained by scaling with factor
1.5 or with the asymmetric lossα= 100 occurs when the objects of interest are very
small, e.g., the mouse and the person walking on the street (row 5 and 6, Figure
3.8). Finally, in a few cases, the original Faster R-CNN detector, the detectors fine-
tuned with the asymmetric loss or manually scaled result in very similar boxes,
indistinguishable by a human eye. In this situation, we observe no clear human
preference, as for the person in the last row in Figure 3.8.

The qualitative analysis suggests that there exists a relationship between the ob-
ject characteristics, especially size (already observed in [9]) and shape, and the pre-
ferred bounding box size. We leave the investigation of the factors that determine
the user preference for future work.

3.4 CONCLUSION

Prior work [9] shows that humans prefer larger boxes in a fully controlled setup.
In this paper, we confirm this result in practice, with real detectors. We evalu-
ate the bounding boxes predicted by three popular object detectors. We find that
the object detectors predict large and small bounding boxes equally often, there-
fore are not aligned with the human preference found in [9]. In addition, humans
consistently prefer larger bounding boxes over the predicted boxes, even with AP
approximately zero. Therefore, we recommend being careful with AP scores when
object detectors are intended for human use: a high AP does not automatically
correspond to high human preference.

It is noticeable how the preference occurs even for bounding boxes predicted
with high IoUs: this suggests that humans are likely to prefer larger bounding boxes
compared to tight ground truth bounding boxes.

We propose an asymmetric loss function that encourages detectors to predict
large boxes more often than small boxes, without having to re-annotate the train-
ing images. Our user evaluation shows that fine-tuning with the asymmetric loss
results in object detections more aligned with human preference. After qualita-
tively analyzing the results collected from our study, we hypothesize that the hu-
man preference is affected by the object characteristics, such as shape and size. For
example, generally tight boxes are preferred for large objects, while larger boxes are
preferred for small objects. Further investigation into these observations may be
considered in the future.
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4
LONG-TERM BEHAVIOUR RECOGNITION IN

VIDEOS WITH ACTOR-FOCUSED REGION

ATTENTION

Long-term activities involve humans performing complex, minutes-long actions.
Differently than in traditional action recognition, complex activities are normally
composed of a set of sub-actions, that can appear in different order, duration, and
quantity. These aspects introduce a large intra-class variability, that can be hard to
model. Our approach aims to adaptively capture and learn the importance of spa-
tial and temporal video regions for minutes-long activity classification. Inspired by
previous work on Region Attention, our architecture embeds the spatio-temporal
features from multiple video regions into a compact fixed-length representation.
These features are extracted with a 3D convolutional backbone specially fine-tuned.
Additionally, driven by the prior assumption that the most discriminative locations
in the videos are centered around the human that is carrying out the activity, we in-
troduce an Actor Focus mechanism to enhance the feature extraction both in train-
ing and inference phase. Our experiments show that the Multi-Regional fine-tuned
3D-CNN, topped with Actor Focus and Region Attention, largely improves the per-
formance of baseline 3D architectures, achieving state-of-the-art results on Break-
fast, a well known long-term activity recognition benchmark.

This chapter has been published as:
L. Ballan, O. Strafforello and K. Schutte. “Long-term Behaviour Recognition in Videos with Actor-
Focused Region Attention”. In: VISIGRAPP (5: VISAPP). 2021, pp. 362-369
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4.1 INTRODUCTION

Long-term activity recognition is getting increasing attention in the Computer Vi-
sion community as it allows for important applications related to video surveil-
lance and sport video analysis. However, this task is intrinsically complex because
of the long duration of the videos, the variability in the activities composition and
the visual complexity of video frames from real world scenarios. Inspired by previ-
ous work on Region Attention [1], we introduce a model that can adaptively select
and focus on the video regions that are most discriminative for the complex activ-
ity classification.

Our method is driven by two assumptions. Firstly, not all the locations and the
moments in the videos are equally important. The activity ”preparing cereal bowl”,
for example, has a precise location in the video frames. Other locations belong to
the background, namely regions where the activity does not happen. Background
locations might show ”distracting” elements that might induce to misclassify the
activity. Similarly, a correct classification of a cooking activity might be possible
just by looking at the last seconds of the videos, that are likely to show the ready
dish. On the contrary, some less informative moments might occur elsewhere, for
instance when the cook is looking for the ingredients. Following this assumption,
we introduce a Region Attention module, that can explicitly choose among mul-
tiple spatial and temporal input regions. This setting acts as a natural data aug-
mentation strategy, and allows to retain only the information that is relevant for
the classification.

The second assumption is that the most discriminative spatial regions in the
videos are the ones placed around the actor that is accomplishing the activity. For
example, for cooking activities, the ingredients and the utensils that are charac-
teristic of the actions, are those that the cook interacts with. Therefore, focusing
on the cook should give sufficient information to understand what dish is being
made. Hence, we introduce an Actor Focus mechanism that allows the model to
explicitly center the attention on the actor.

Due to the large intra-class variability, modelling long-term activities can be dif-
ficult. The recent solutions in the literature involve 3D-CNNs as effective spatio-
temporal feature extractors [2], combined with additional modules that further
process the features in the temporal dimension, including temporal convolution
[3] and self-attention [4–6]. Even though these works reached competitive results
in common long-term activities benchmarks, we argue that the performance of
these models is heavily influenced by the quality of the 3D-CNNs backbone train-
ing. Despite their potential, 3D-CNN architectures are characterized by the down-
side of having a large amount of parameters that makes the learning process ex-
tremely data hungry. Since the datasets for long-term activities are limited in size
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[7–9] learning general video representations with these models without overfitting
on the training set is unfeasible. That is why our approach based on multiple re-
gions is crucial to reach better generalization. We show that the combination of an
optimal backbone fine-tuning, augmented with the multiple regions, with the Re-
gion Attention method and the Actor Focus mechanism achieves state-of-the-art
results on the Breakfast Actions Dataset benchmark [7].

4.2 RELATED WORK

Although a wide range of solutions for short-range action recognition have been
proposed [2, 10, 11], these are not necessarily transferable to long-term activity
recognition, as the two data types are fundamentally different. Short actions (or
unit-actions), such as ”cutting” or ”pouring” are limited in duration and consist of
a single, possibly periodic, movement. Because of this, they are easily recognizable
by looking at a small number of frames, sometimes even one [12]. On the contrary,
long-term activities are composed by a collection of unit-actions, where some of
them might be shared among different classes. For example, the action ”pouring”
belongs both to the classes ”making tea” and ”making coffee”. Because of this, it
is not possible to classify a complex activity by looking at a specific moment, but
the whole time span should be considered. Therefore, more sophisticated archi-
tectures are required.

4.2.1 LONG-TERM MODELLING

The majority of the recently proposed works on long-term modelling enhance the
exploitation of the temporal dimension. Timeception [3], for example, achieves
this with multi-scale temporal convolutions which learn flexibly long-term tem-
poral dependencies. Similarly, [13] consider different temporal extents of video
representations at the cost of decreased spatial resolution. [14] propose a long-
term feature bank of information extracted over the entire span of videos as con-
text information in support to 3D-CNNs. [15] rely on STIP (Spatio-Temporal In-
terest Points) features weighted by their spatio-temporal probability. Another ex-
ample of temporal reasoning is provided by the TRN (Temporal Relation Network)
[16], that learns dependencies between video frames, at both short-term and long-
term timescales. Conditional Gating adopted in TimeGate [17] enables a differen-
tiable sampling of video segments, to discard redundant information and achieve
computational efficiency. According to another recent thread, supported in Video-
Graph [4] and [18], a thorough representation of complex activities can be achieved
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by explicitly modelling the human-object and object-object interactions across
time. The VideoGraph method learns this type of information through a fixed set
of latent concepts depicting the activity evolution, whereas [19] address directly
the object-object interactions, embedding them in a graph structure.

Among the most performing work that utilizes the Breakfast dataset, [5] propose
a new kind of convolutional operation which is invariant to the temporal permu-
tations within a local window. Their proposed model is better suited to handling
the weak temporal structure and variable order of the unit-actions that compose
the long-term activities. On the other hand, ActionVlad [20] develops a system
that pools jointly across spatio-temporal features provided by a two-stream net-
work. Finally, Non-local Nets [6] provide a building block for many deep architec-
tures: computing the response at a position as a weighted sum of the features at all
positions, they capture long-term dependencies in a way that is not feasible with
standard convolutional or recurrent operations.

4.2.2 REGION ATTENTION

The best attempt of weighted averaging approach that could go under the name
of Region Attention, to the best of our knowledge, has been done by [1], who be-
lieve that a good pooling or aggregation strategy should adaptively weigh and com-
bine the information across all parts of multimedia content. Their Neural Aggrega-
tion Networks (NAN) served as a general framework for learning content-adaptive
pooling, emphasizing or suppressing input elements via weighted averaging. The
concept of Regional Attention as developed in Section 4.3 is a direct evolution of
what has been applied on Face Expression Recognition in [21]. The authors built a
so-called Region Attention Network (RAN), capable of extracting features from sev-
eral spatial regions of the original images, and combining them from a weighted
perspective. This method is more robust to occlusion and can better attend to the
specific face parts that characterize the human expressions.

4.3 METHOD

In our approach, we use the Inflated 3D ConvNet (I3D) [2], optimally fine-tuned
for the classification task at hand, as a feature extractor for multiple video regions
and timesteps. These representations are fed to a novel attention module, that
summarizes them into a compact feature vector. We experiment with two variants
of the module: (spatial) Region Attention (RA) and Temporal Attention (TA), used
both individually and jointly.
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4.3.1 I3D AND REGION ATTENTION

The Region Attention module produces fixed-length representations that highlight
the most informative regions received as input. To achieve this, frames are parti-
tioned with an overlapping regular N × N grid, with N = 3, to extract crops. The
attention mechanism is built on top of I3D, which processes the raw videos and
outputs respective feature representations. The full model can be trained in two
steps. To provide coherent features, I3D is fine-tuned on the multiple video re-
gions that will be considered by the attention module. Each video is handled in a
fixed mode: i. the video frames are converted to RGB and normalized within the
range [-1.0, 1.0]; ii. T = 64 timesteps, of 8 consecutive frames each, are uni-
formly selected from the full clip; iii. through a grid-like scheme, R squared spatial
regions are cropped from the fixed-length sample, and resized to I3D input’s spa-
tial size 224× 224. The resulting region crops are partially overlapped, since the
cropping portion is 5/8 of a frame. R = 10 because the full frame is considered to-
gether with the 9 grid regions to preserve global information. R = 11 when Actor
Focus is applied.

During each I3D training epoch, for each video in the training and validation
splits one of the spatial regions is randomly selected. First, this provides data aug-
mentation. Second, I3D extracts features according to the region given as input,
instead of always seeing a full frame, thus learning the importance of details in
different locations and scale. This behaviour is consistent with the following Re-
gion Attention module, that learns to weight the region features, thus making I3D
a suitable backbone. Within the Region Attention module a weight in [0.0, 1.0] is
assigned to each region feature, through a shared fully-connected layer + Sigmoid
activation. The values are used to compute a weighted average of the features, un-
weighted on the temporal dimension, which is fed into a classification layer. The
full process is shown in Figure 4.1.

4.3.2 TEMPORAL ATTENTION

A similar scoring mechanism can be applied to the timesteps. The idea of using
attention in the temporal dimension derives, for example, from the fact that ini-
tial frames generally have a relatively lower relevance compared to the last frames,
which show the result of the activity. Also, in some timesteps the activity does not
happen at all. However, extended ablation studies showed that Temporal Atten-
tion loses its effectiveness when I3D is fine-tuned, as it appears that the I3D model
collects already sufficient information from the sequence of the timesteps. Finally,
assuming independence between region importance and timesteps importance,
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Figure 4.1: The Region Attention module. From every sample in the dataset a 3 x 3 grid is
used, and the extracted crops are placed next to the full frames for I3D feature
extraction. A fully-connected (FC) layer and a Sigmoid function attribute to each
region a score, through which the features are averaged in a weighted manner
and feed the final classification layer.
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Figure 4.2: The Actor-Focused crop selection through person detection in video frames.
Bounding box coordinates for the actor detected in each frame are averaged and
used to crop the original video around the person performing the activity. The
selected region is added to the others to feed the Region Attention module.

we explored the integration of Region Attention and Temporal Attention by using
concatenation, as shown in Figure 4.3.

4.3.3 ACTOR-FOCUS

A further improvement is driven by the consideration that in a high number of
cases a single person is performing the activity, generally in a static spatial region
of the video. Person detection finds its utility here for the action classification task,
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Figure 4.3: Concatenation of regional and temporal features of a video for classification.
The two feature vectors computed separately from the two modules are concate-
nated along the channels and feed the final classification layer.
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Figure 4.4: I3D + RA architecture. The fine-tuned section (last 3 Inception blocks), together
with the RA module and the classification layer, composes the trainable part of
the framework, highlighted in yellow. Note that the 1x1x1 Convolution, used as a
fully-connected layer in the original I3D architecture, is not used when extracting
the features from fine-tuned I3D.

due to the following: i. detecting the people in the scene allows the focus to be
on the subject performing the activity and on the closest involved entities; ii. I3D
fine-tuning can be carried out exploiting spatial crops centered on the actor, addi-
tionally boosting the ability of the framework to prioritize and highlight the activity
globe against clutter and irrelevant background.

For each video, FacebookAI’s Detectron2 [22] is used to get the person bound-
ing box from each frame. As shown in Figure 4.2, the coordinates are averaged,
images are cropped accordingly and then resized. Specifically, a square with the
same center of the average bounding box and dimensions equal to the biggest be-
tween height and width of the bounding box is taken. Since the person box has
almost always a higher value for the height than for the width, this means that de-
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spite the process of having a fixed averaged bounding box across the video, the
actor is likely not to be cut out of the scene when performing small movements.
These actor-centered videos are fed to I3D and Region Attention together with the
other regions coming from the fixed-grid selection.

4.4 EXPERIMENTS

4.4.1 DATASET

The Breakfast Actions Dataset [7], on which we achieve state-of-the-art results,
comprises 10 classes of long-term activities performed by 52 actors. Videos of the
first 44 actors are used for training, the remaining for testing. We keep 5 actors
from the training split for validation. This gives, respectively, 1322, 411 and 256
videos. The up-to-10-minutes long videos (2 minutes on average) are handled to
be of fixed length and size as explained in Section 4.3. To obtain equal width and
height the horizontal central crop of each original frame is resized and considered
as the selected frame. The resulting frames feed both the grid-like region selection
and the person detection mechanism.

4.4.2 ACTOR-FOCUSED I3D + RA

The full Actor-Focused I3D + RA model, unless otherwise specified, considers 11
regions in total. These include the full frame, kept in order to preserve informa-
tion about the global spatial context from which the regions are extracted, and the
actor-centered region. The original I3D implementation remains unchanged ex-
cept for the very last layer, which is newly initialized considering a 10-fold output
due to the number of Breakfast classes. This allows for the utilization of pre-trained
I3D checkpoints obtained from Kinetics 400 [2].

Experiments where run on Nvidia GeForce GTX 1080 and Tesla V100 GPUs. Due
to the large size of the input and the huge number of parameters of I3D (tens of
millions), the devices capacity enabled a maximum batch size of 4 for the back-
bone fine-tuning. In addition, to make the computation feasible, we restrict the
fine-tuning only to the the last three Inception blocks and freeze the bottom lay-
ers. The features processed by I3D are extracted from the 2×7×7 AvgPool layer,
and feed the conclusive RA step. Again, RA calculates importance scores for each
input region and uses them in a weighted average, to aggregate the multi-regional
input in a compact representation. The output is a 1024-dimensional vector (2048
in the Region + Temporal Attention setting) and is used for the final classification
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step. The full architecture, detailed on input and output shapes, is shown in Figure
4.4.

The developed framework is implemented using PyTorch and trained on single
GPU for 100 epochs, using Adam optimizer with learning rate 10-3, ϵ value 10-8,
weight decay coefficient 10-5, and CrossEntropy loss function calculated on the 10-
fold logits of the last fully-connected layer. Results are calculated on the test set,
while our best models are chosen based on the best validation accuracy obtained
in 100 epochs.

4.4.3 ABLATION STUDIES

TEMPORAL DIMENSION

First, we show that the amount of timesteps considered has a remarkable impact
on classification. Consequently, we confute the assumption that only a few specific
moments in time are sufficient for the classification of complex activities. Previ-
ous work [4] shows that a uniform selection works generally better than sampling
timesteps randomly. Therefore, we keep this setup, and vary instead the quantity
of input timesteps, from 4 to 128. Each timestep is composed of 8 consecutive
frames.

T 4 16 64 128
Acc. % 68.13 83.94 89.84 86.13

Table 4.1: Full framework results varying the timestep number. Best accuracy on the test set
has been reached with T = 64.

The results, shown in Table 4.1, indicate that, for an accurate classification, a suf-
ficiently but not exceedingly high number of timesteps from the videos should be
considered. This finding is coherent with the complex and variable nature of long-
term activities, that are characterized by the presence of several unit-actions. The
unit-actions should be represented by the selected video timesteps. Also, sam-
pling a large amount of timesteps helps reduce the noise in input signals, leading
to a more robust modelling of the underlying features. However, the results show
that an excessively long input might not be optimal. In fact, the highest accuracy
obtained with our full model (89.84%) is achieved with T = 64, while the accuracy
drops when using 128 timesteps. This unexpected outcome can be motivated by
considering that many videos in Breakfast are shorter than 128×8 frames = 1024
frames. In this short videos, the 128 selected segments significantly overlap, thus
introducing high redundancy and altering the temporal dynamics.
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I3D I3D + RA
val. acc. % test acc. % val. acc. % test acc. %

512 equally spaced frames 83.59 80.05 87.89 86.86
T = 64 (8 frames each) 82.03 82.97 87.50 89.84

Table 4.2: Comparison between frame filtering methods on validation and test sets. Despite
a lower accuracy in validation, selecting uniformly 64 timesteps from each video
gives better results on the test set. Here, I3D is fine-tuned according to the Multi-
Regional with Actor-Focus setting.

Following the analysis on the number of video timesteps, we demonstrate that
the overall temporal order of the timesteps carries valuable information. First, we
shuffle the timesteps during the I3D fine-tuning. As convolution is not a permuta-
tion invariant operator, the shuffling has a negative impact on the backbone, and
consequently on the Region Attention. With this setup, we obtain an accuracy of
79.81%. We report the results in Table 4.3, under ”Sh. timesteps”.

Second, we investigate two methods for the feature extraction, that are allowed
by the peculiar architecture of I3D. Specifically, thanks to the cascading layers con-
taining max pooling, I3D shrinks the temporal dimension of the input of a factor.
As each timestep is composed of 8 consecutive frames, the output feature repre-
sentation has the same length as the number of timesteps. Because of this, it is
possible to extract the features one timestep at a time (One-at-a-time) and con-
catenate the results on the time dimension dimension, or to feed in input all the
segments together (One-shot fashion), without changing the output size. The dif-
ference between the two settings is given by the fact that in the One-at-a-time
case, the modelling of one specific timestep is not affected by the neighbouring
timesteps. On the other hand, in the One-shot way the full I3D temporal receptive
field is exploited, combining local with global information.

Experiments show that the One-shot setting brings a noticeable improvement
over One-at-a-time features. Intuitively, considering the context in which timesteps
are placed, helps achieve a better feature representation. The results from these
two setting, respectively, are 89.84% versus 83.7%, as shown in Table 4.3.

The variability in length of Breakfast videos, also within the same class, makes it
challenging to represent all the videos fairly in a fixed-length vector. To this extent,
short videos are well represented by T = 64 timesteps, but this amount of timesteps
might not be enough to cover all the unit-actions in longer videos. Other than the
uniform and random 8-frame timestep selection evaluated in previous work [4],
we experiment with 512 equally spaced frames (One-shot + 512 f.) in Table 4.3.
Despite achieving slightly better performance in validation (Table 4.2), the One-
shot + 512 f. setup results in lower accuracy on the test set. This is probably due
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to the fact that sampling equidistant frames introduces variable frame frequency
in the I3D input. Opposite to this, when sampling timesteps instead of frames, the
frequency within each timestep is fixed, as all the videos have the same frame rate.
The variable frame frequency alters the motion dynamics modeled by I3D, making
the learning process harder.

The last experiment with regards to the temporal dimension is about Temporal
Attention, used as an alternative of spatial Region Attention or in conjunction with
it. As shown in Table 4.3, applying TA and TRA (combined Temporal-Region Atten-
tion, as described in Section 4.3) on top of the convolutional backbone does not
result in interesting improvements. Apparently, I3D itself learns sufficiently strong
fine-grained and long-term temporal patterns in the fine-tuning phase, thus mak-
ing Temporal Attention superfluous. On the other side, it is interesting to note that
without fine-tuning I3D, the best performances are given by the combination of
Temporal and Region Attention. All the above results are summarised in Table 4.3.

I3D setting T Acc. Top Acc.

Not fine-tuned 64 58.88
TA 65.94
RA 69.59
TRA 71.53

One-shot 64 82.97
TA 84.67
RA 89.84
TRA 86.62

Sh. timesteps 64 73.97 RA 79.81
One-at-a-time 64 77.62 RA 83.70
One-shot 512 f. 80.05 RA 86.86

Table 4.3: Ablation results considering the temporal axis. Table sections from the top: i. Re-
gion Attention (RA), Temporal Attention (TA), Temporal-Region Attention (TRA)
on top of not fine-tuned I3D; ii. RA/TA/TRA on top of fine-tuned I3D; iii. same of
ii. with different input settings.

SPATIAL DIMENSION

Having discussed the experiments on the temporal axis, we now analyse the spa-
tial dimension. In the following experiments we compare our full model with two
model variations: i. a simple Region Mean model processes 11 video regions and
computes a compact representation by taking the arithmetic mean of the features,
neglecting the variable importance of the video regions; ii. the multi-regional fine-
tuning strategy for I3D is replaced with a single region, that corresponds to the
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Figure 4.5: Visualization of the different scores that the Region Attention module attributes
to the video regions. The four regions that are visualized correspond, respec-
tively, to the top-3 and last crops, for 2 samples of the activity ”preparing coffee”.
The coloured square in each frame represents the Actor-Focus region. The RA
module sets higher scores for the person-centered and grid-central crops.

person-centered crop in each training video. To this end, we exploit the Actor-
Focus mechanism described in Section 4.3.

The first setting aims to show the improvements brought by RA scoring mech-
anism. Without the weighted average, the drop in accuracy is around 1.76%, as
shown in Table 4.4 (Region Mean versus RA). Secondly, the comparison with the
one region I3D fine-tuning proves the benefit of the multi-regional setup. In fact,
training the network with multiple region crops from the same videos acts as a con-
venient data augmentation strategy. In addition, this learning process produces
spatio-temporal features that are more representative of what the following Region
Attention module expects as input. When fine-tuning the backbone only with the
Actor-Focus crop, the accuracy is 86.62%, with a drop of 3.22% compared to the
Multi-Regional setup, as shown in Table 4.4.

Figure 4.5 provides a visualization of the variable importance scores attributed
to different video regions through the attention mechanism. According to the prior
assumption that the regions of interest for activity recognition revolve around the
actor performing the action, RA assigns the highest scores to the person-centered
and central grid crops. On the contrary, background regions such as lower and
”corner” crops score weights that are close to zero.

Finally, we measure the benefit brought by the Actor-Focus mechanism. The
model is trained with and without the Actor-Focus crop. The inclusion of the latter
region appears to have a huge impact in the action recognition performance, that
increases from 86.62% (MR I3D setting in Table 4.4) to the final result of 89.84%.
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Backbone R Acc. RA setting Acc.

I3D not f.t. 1 58.88 RA 72.02
I3D 1 80.05 RA 83.45
MR I3D 10 81.02 RA 86.62
AF I3D 1 81.75 RA 86.62

Region mean 88.08
AF MR I3D 11 82.97

RA 89.84
ActionVlad 82.67
Nonlocal 83.79
Timeception 86.93

I3D full f.t. 1 80.64

PIC 89.84

Table 4.4: Ablation results considering the spatial axis. Table sections from the top: i. dif-
ferent I3D fine-tuning settings and Region Attention (RA); ii. best I3D model with
Region Mean or RA; iii. former state-of-the-art results on Breakfast. Note: ”MR
I3D” indicates Multi-Regional fine-tuning on 10 regions (no person-centered re-
gion), while ”AF I3D” indicates fine-tuning only on person-centered region. R
specifies the number of regions. The RA setting is intended to be placed on top of
the respective I3D setting.

I3D FINE-TUNING

The extensive experimental comparison between current state-of-the-art meth-
ods, is partially limited by the lack of hardware resources. In all the above exper-
iments, I3D is fine-tuned only in the last three convolutional layers and only one
region at a time is fed for each video. We leave the end-to-end training of the full
Multi-Regional I3D + RA for future work. However, the classification accuracies
achieved when fine-tuning the last three layers of I3D or the full model are nearly
equal. Respectively, these correspond to 80.05% and 80.64% [5]. As the difference is
not significant, we do not expect substantial improvements with a full fine-tuning.

4.5 CONCLUSION

We introduce Multi-Regional I3D fine-tuning with Actor-Focused Region Atten-
tion, a neural framework dedicated to the spatio-temporal modelling of long-term
activities in videos. We show that the model can learn long-term dependencies
across timesteps, resulting in robust representations, and that it is not possible to
accurately classify long activities from a few timesteps only. We give insights on
the amount of timesteps, their order and the importance of the frame frequency.
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Next, a Region Attention module supports spatio-temporal data to adaptively learn
the importance of the spatial cues in different video regions, which also allow the
backbone to learn rich feature representations. Lastly, an Actor-Focus mechanism
drives the attention on the truly discriminative video regions where the actor is
performing the activity, neglecting background and irrelevant regions. We demon-
strate the effectiveness of the architecture, benchmarking our model on the Break-
fast Actions Dataset, with a SOTA-matching accuracy of 89.84%. Because of the
modularity of our architecture and of related work [3–5], our framework could
complement other approaches. Due to the fact that the strength of our model re-
lies on the way the backbone is fine-tuned and on the use of attention to account
for the spatial dimension, further modelling of the time dimension could improve
the results. Both PIC [5] and Timeception [3] successfully exploit the time axis and
can be juxtaposed on existing backbones, integrated with our RA module. Experi-
ments are left for future work. Finally, future work may include studies on the full
I3D fine-tuning and on a I3D + Region Attention end-to-end training.
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5
ARE CURRENT LONG-TERM VIDEO

UNDERSTANDING DATASETS LONG-TERM?

Many real-world applications, from sport analysis to surveillance, benefit from au-
tomatic long-term action recognition. In the current deep learning paradigm for
automatic action recognition, it is imperative that models are trained and tested
on datasets and tasks that evaluate if such models actually learn and reason over
long-term information. In this work, we propose a method to evaluate how suit-
able a video dataset is to evaluate models for long-term action recognition. To this
end, we define a long-term action as excluding all the videos that can be correctly
recognized using solely short-term information. We test this definition on existing
long-term classification tasks on three popular real-world datasets, namely Break-
fast, CrossTask and LVU, to determine if these datasets are truly evaluating long-
term recognition. Our study reveals that these datasets can be effectively solved us-
ing shortcuts based on short-term information. Following this finding, we encour-
age long-term action recognition researchers to make use of datasets that need long-
term information to be solved.

This chapter has been published as:
O. Strafforello, K. Schutte and J. C. van Gemert. “Are current long-term video understanding datasets
long-term?”. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)
Workshops. 2023, pp. 2967-2976

Code available at:
https://github.com/ombretta/longterm_datasets
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5.1 INTRODUCTION

Many interesting actions happening in the real world are long-term. That is, they
are composed of several short sub-actions, that we refer to as short-term actions.
For an action to be long-term, we deem that recognizing a single-short term action
is not enough, and reasoning about the order and the relationship of short-term
actions is required. Two examples of long-term actions, shown in Figure 5.1, are
winning a soccer game and shoplifting in the supermarket. To understand which
team is winning a soccer game, it is necessary to recognize and count the goals
scored since the beginning of the game. For the other example, recognizing if a
person is shoplifting, it is necessary to observe a person storing a product in their
pocket and leaving the supermarket without paying. In both examples, it is not
possible to recognize the actions without reasoning on multiple ordered short-
term actions.

Leaving without payingPutting product in pocketLooking at products Walking

Is this person shoplifting in the supermarket?

Who is winning this soccer game?

time

Ball entering goalBall entering goalKick Kick

Figure 5.1: Example of truly long-term actions. Top: Who is winning this soccer game?1,
Bottom: Is this person shoplifting in the supermarket?2. In both cases, it is not
possible to answer correctly without considering multiple short-term actions to-
gether, their order and relations over time. To understand who is winning the
soccer game, it is necessary to recognize and count the goals scored since the
beginning of the game. To recognize shoplifting, it is not enough to see a per-
son putting a product in their pocket: also the short-term action leaving without
paying needs to occur.
1Source: YouTube; 2Source: YouTube from movie Un povero ricco, by Pasquale
Festa Campanile (1983).

Achieving automatic long-term action recognition is important because it can
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be used to solve real-world problems, from analyzing sports videos, to understand-
ing movies and recognizing threats in surveillance footage. To make it possible,
we need purpose-built computer vision models, that are trained and evaluated on
datasets that need long-term reasoning to be solved. While working on long-term
action recognition, we notice that every video in the Breakfast dataset [1], a go-to
choice in long-term video understanding research [2–5], contains short-term ac-
tions that map to a single long-term action. This implies that accurately recogniz-
ing a short-term action in a Breakfast video should be sufficient to infer the corre-
sponding long-term action. We analyze the short-term actions of another popular
instructional video dataset, CrossTask [6], and find the same occurrence in 97.72%
of its primary tasks videos. We illustrate our statistics on the short-term action oc-
currences in Figure 5.2. Since deep learning models are known to use shortcuts to
solve classification tasks [7], the models trained and tested on these datasets might
learn to exploit short-term information, without encoding any long-term relations.
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Figure 5.2: We analyze two popular long-term datasets with long-term and short-term ac-
tion annotations, Breakfast (coarse annotations) [1] and CrossTask [6] (primary
tasks). We count in how many long-term actions the short-term action appears.
Recurrent short-term actions, like pour milk and pour egg appear in four differ-
ent long-term action classes. More specific short-term actions, like fry pancake
and add kimchi, only occur in one long-term action class. We find that a large
percentage of short-term actions (70.8% for Breakfast and 89.5% for CrossTask)
appears only in one long-term action class. This implies that recognizing a single
short-term action might be sufficient to correctly infer the long-term actions in
these datasets.

Motivated by this finding, we propose a method to diagnose whether a long-
term dataset is suitable to study long-term action recognition, or can be solved
using solely short-term information. To this end, we define two requirements for
an action to be long-term: (1) The action is recognizable only from multiple short-
term actions and not from a single short-term action. (2) The action maps to a
single label. The first requirement makes long-term action recognition impossi-
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ble without reasoning over an extended time span. Models that lack this capabil-
ity, for example based on straightforward pooling operations over time [8], cannot
recognize long-term actions. The second requirement leads to discarding multi-
label action recognition datasets, like Charades [9], MultiTHUMOS [10] and EPIC-
Kitchens [11], as long-term action datasets. In these datasets, the task is to recog-
nize each short-term action contained in the videos. This task could be solved by
classifying each short-term action one at a time, while here we are interested in
the case where the classification can be made only after reasoning over multiple
short-term actions together.

We design a user study to assess whether a video dataset contains long-term ac-
tion videos that are not recognizable from a single short-term action. Our study
is based on two surveys where users have to watch a video and predict the long-
term action being performed in the video. In the Full Videos Survey, the users can
watch the full video, while in the Video Segments Survey a separate group of users
can watch only a single short clip extracted from the full video. We measure the
average action recognition accuracy of the users per video for each survey. The
Full Videos Survey gives an upper bound to the user long-term action recognition
performance. Comparing the accuracy obtained from the Video Segments Survey
to the upper bound gives an estimate of how many videos in the dataset require
long-term information to be correctly recognized. If the action recognition perfor-
mance of the two groups of users is close, we can conclude that most of the videos
in the dataset are not suitable to train and evaluate models for long-term action
recognition, because they can be recognized solely by exploiting short-term infor-
mation.

We apply our proposed method to the aforementioned Breakfast and CrossTask
datasets and to the Long-form Video Understanding benchmark (LVU) [12], re-
cently proposed for long-term video recognition tasks in movies. We implement
the user studies on Amazon Mechanical Turk [13] and collect responses from more
than 150 users. Our results show that looking at a single short video segment is
sufficient to recognize 90% and 97.2% of the analyzed videos from Breakfast and
CrossTask. Similarly, we find that most of the content understanding tasks in LVU
can be classified without long-term information, and that some video segments
in this dataset are misclassified by users due to annotation noise. We conclude
that the aforementioned datasets might not be suitable to develop new methods
for long-term action recognition in videos, because they can be solved by ignor-
ing long-term information. We recommend long-term video understanding re-
searchers to be careful when using these datasets and encourage the community
to collect more representative video datasets.

In summary, the contributions of our study can be outlined as follows: (1) We
provide a definition of long-term action datasets that should prevent long-term
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action recognition models to use traditional short-term action recognition as a
shortcut to solve the task. (2) We introduce a method to investigate whether a
video dataset meets this definition of long-term action. (3) We find that short-term
information is, in most cases, sufficient to solve long-term video understanding
tasks in three commonly used datasets. Thus, we recommend against using these
datasets in further research on long term action recognition models. The code and
responses from our user study are publicly available1.

5.2 RELATED WORK

5.2.1 ACTION RECOGNITION WITH DEEP LEARNING

The progress of deep learning (DL) has brought significant advancements in auto-
matic action recognition. DL-based models learn to extract discriminative spatial
and temporal features directly from the RGB frames of the training videos. Current
action recognition models are composed of 3D convolutional networks [14], like
I3D [15], C3D [16], Slow-Fast [17]. More recently, attention-based architectures
have also shown competitive performance on action recognition tasks. Examples
include ViViT [18], TimeSformer [19] and Video Swin Transformer [20]. When pre-
trained on sufficiently large datasets, like Kinetics [15] or ActivityNet [21], these
models can achieve state-of-the art action recognition on short videos datasets,
like UCF101 [22], HMDB51 [23] and Something-Something [24]. However, they are
not suitable to learn long-term dynamics in long videos, either due to their limited
temporal receptive field or the high computational requirements.

5.2.2 LONG-TERM ACTION RECOGNITION

Long-term action recognition refers to the task of recognizing and understanding
human actions composed of several short-term actions, possibly involving multi-
ple objects and movements [5]. Examples include cooking a recipe [1], performing
a medical surgery [25] or playing a sport game [10]. Usually, long-term actions
require an extended period of time to be executed, e.g. above one minute [3]. Sev-
eral works that tackled the problem of long-term action recognition use different
names and definitions for the same concepts. In fact, long-term actions can also
be referred to in the literature as long-range activities [26] or complex activities [2,
3]. Being composed of multiple steps, the activities in instructional videos share
the same properties of long-term actions [4, 27, 28] and can be comprised into

1https://github.com/ombretta/longterm_datasets
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this category. Finally, also long-form video understanding involves reasoning over
human-object interactions in long videos [12, 29] and can be considered as an in-
stance of long-term action recognition.

Traditional DL-based action recognition models [8, 15–17] are deemed insuffi-
cient to capture discriminative spatio-temporal features that encode long-term in-
formation and the semantic relations between the sub-actions. A variety of mod-
els have been proposed to overcome this limitation. Hussein et al. [3] proposed
to capture long-term information with multi-scale temporal convolution. Yu et
al. [30] used Recurrent Neural Networks to model long video sequences capturing
temporal information at different rhythms. Ballan et al. [31] showed that explic-
itly focusing on the actor performing the long-term action improves the recogni-
tion performance. Different approaches showed that long-term action recognition
can be tackled using graph-based representations, where the nodes correspond to
short-term entities and the edges to their interaction over space and time [5, 32,
33]. Finally, Transformer architectures have been designed to model long-term in-
formation in a compute- [34, 35] and data-efficient [2] fashion.

Despite their success, DL-based action recognition models can find shortcuts in
the data that let them solve action recognition without learning semantic features,
for example classifying the action based on the background scene [7, 36, 37]. In
this work, we try to address this problems by analyzing whether commonly used
video datasets for long-term action recognition are representative for training DL
models, or can be solved using short-term shortcuts.

5.2.3 LONG-TERM VIDEO DATASETS

Several datasets have been proposed in the literature to study long-term video un-
derstanding tasks. CATER [38] is an ideal example of a dataset that requires long-
term information. It involves tracking geometrical shapes that move in a 3D space
over time. Sometimes bigger shapes incorporate smaller shapes, rendering their
localization impossible without continuous reasoning about past information. As
a consequence, models that are not truly long-term fail on this dataset. Unfortu-
nately, the CATER dataset is highly synthetic and cannot be used to train models
for real-world applications.

Real-world datasets mostly include cooking [1, 11, 28, 39], home activities [9, 40],
sports [10] and instructional videos [6, 28, 41, 42]. A comprehensive overview of
long-term video understanding datasets is provided in Table 5.1. Many of these
datasets, for example Charades [9], Epic Kitchens [11] and MultiTHUMOS [10],
contain long videos annotated with fine-grained, short-term actions. They can
be used for multi-label action recognition, where the task is to predict every short-
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term action occurring in the video, or for fine-grained action localization. Differ-
ently, here we are interested in the single-label classification case, where a global
label describes the long-term activity happening in the video. The single label
should be recognizable only by reasoning over multiple short-term actions.

Previous work showed that video datasets are sometimes biased towards appear-
ance [43] and better recognizable by short-term over long-term information [44].
Similarly, in this work we explore whether the global labels of datasets proposed
for long-term video understanding tasks can be predicted without long-term infor-
mation. We choose for our study three popular datasets that include single, video-
level labels and cover different long-term dataset categories: Breakfast, CrossTask
and LVU. Breakfast [1] is a complex action recognition dataset used in several works
on long-term video understanding [2–5]. CrossTask [6] is a dataset of instructional
videos, which are composed of several short-term steps that contribute to the com-
pletion of a long-term task. Finally, the Long-form Video Understanding (LVU)
dataset [12] was proposed to learn complex long-term relationships, in contrast
to short-term patterns, in video clips extracted from movies.

Dataset #Videos Length #L.T. #S.T.
COFFEE [41] 150 2 5 51

Epic-Kitchens [11] 432 7.5 -
149,
323

Breakfast [1] 2k 2.3 10 48
Composite [45] 212 1-23 41 218
Charades [9] 10k 0.5 - 157
50-Salads [39] 54 6.4 - 17
COIN [42] 11.8k 2.4 180 778
IKEA FA [46] 101 2-4 - 12
DAHLIA [40] 51 39 7 -

LVU - Content
understanding [12]

226 1-3 4 -
1.3k 1-3 5 -
723 1-3 6 -

Multi-THUMOS [10] 413 3 - 65
YouCookII [28] 2k 5.3 89 -
CrossTask [6] 4.7k 3-6 83 517

Table 5.1: Overview of current real-world datasets proposed for long-term video under-
standing tasks. We report the (approximate) number of videos, the average video
length in minutes, the number of global long-term (L.T.) and short-term (S.T.) ac-
tion recognition classes, if it applies.
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5.3 ASSESSING LONG-TERM ACTION RECOGNITION

DATASETS

5.3.1 USER STUDY

According to our definition, an action is long-term if it cannot be classified from a
single short video segment. We design a user study to test whether current long-
term video understanding datasets respect this property. Our user study consists of
two surveys. In the Full Videos Survey, the users are presented with the full-length
videos from the datasets. In the Video Segments Survey, the users are presented
with a short video segment extracted from a full-length video. In both surveys,
the users are instructed to watch the video clip and express what action is being
performed in the full video, in their opinion. The users are provided with a list
of possible actions, which correspond to the classes from the analyzed long-term
action datasets, and have to select exactly one action class from the list. We include
the additional option ”I am not sure”, to let the users express uncertainty when they
are in doubt about which action to select.

From the collected user votes in the Full Videos Survey and the Video Segments
Survey, we calculate and compare the action recognition accuracy. If the users
from the two groups perform similarly, we can conclude that the videos do not
contain long-term actions, as they can be recognized from single short-term ac-
tions comparably well than looking at the full videos. We also calculate the user
agreement per survey, measured with Krippendorff’s α [47], which gives an indi-
cation of how subjective the prediction task is. We expect that the more a video
is difficult to classify, the more subjective the choice will be, thus resulting in low
agreement.

5.3.2 MEASURING RECOGNITION ACCURACY

From the Full Videos Survey, we collect user votes per class for each full-length
video. In each full video, we express the votes in percentages (%user _votesv (c)),
which we obtain by dividing the votes per class by the amount of votes collected
for the full video. As formalized in Equation 5.1, given C classes from the evaluated
dataset, excluding the I am not sure option, we assign to the full video prediction
(pr ed(v)) the class voted by the majority of the users. The long-term action recog-
nition accuracy is given by the number of full videos assigned with the correct class
over the number of full videos considered in the study for the dataset.



5.4. RESULTS

5

81

pr ed(v) = argmax
c∈C

%user _votesv (c) (5.1)

In the Video Segments Survey, we collect user votes for every segment sv in a
full video. Again, for each segment we calculate the percentage of votes per class
%user _votes(c). Then, we extract the full video prediction from the votes of a sin-
gle segment. To do this, we select the segment s∗v with highest percentage of votes
for a single class, excluding the I am not sure option. This approach is formalized
in Equation 5.2. In the example in Figure 5.3, the full video is assigned the class
Making scrambled eggs, which is voted by 86% of users in Segment 5, which is the
maximum ratio of votes for one class across the video segments. According to our
definition, if the full-length video is long-term, there should be no video segments
that lead to the right predicted class. The accuracy is given by the number of full
videos assigned with the correct label over the number of full videos considered in
the study.

pr ed(v) = pr ed(s∗v ), (5.2)

where s∗v = argmax
sv∈v

{max
c∈C

%user _votessv (c)},

pr ed(s∗v ) = argmax
c∈C

%user _votess∗v (c).

5.4 RESULTS

We include in our study a representative dataset from complex action recognition,
Breakfast [1], one instructional video dataset, CrossTask [6], and the Long-Form
Video Understanding (LVU) dataset [12]. We implement the user study on Amazon
Mechanical Turk [13] and collect responses from 167 users. We collect, on average,
12.09±1.62 votes for each video and video segment, which is proved to be a proper
amount [48]. Table 5.2 provides an overview of the results from the Full Videos
Survey and the Video Segments Survey, discussed in the following sections.

5.4.1 BREAKFAST

Breakfast [1] is a collection of third-person videos of actors cooking a breakfast
recipe, like scrambled eggs, coffee, cereals and milk. Each video has a global label,
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What action is being performed in this video? (GT: “Making scrambled eggs”)

Segment 1 Segment 2 Segment 5 Segment 6

Coffee
Tea 
Juice                     
Milk
Cereals
Salad
Scrambled eggs        
Fried eggs                  
Pancakes                
Sandwich               
I am not sure          

0%
0%
0%
0% 
0%
0%
20%   
25%     
5%
5%
45%

Coffee
Tea 
Juice                     
Milk
Cereals
Salad
Scrambled eggs        
Fried eggs                  
Pancakes                
Sandwich               
I am not sure          

0%
0%
0%
0% 
0%
0%
33%   
67%     
0%
0%
0%

Coffee
Tea 
Juice                     
Milk
Cereals
Salad
Scrambled eggs        
Fried eggs                  
Pancakes                
Sandwich               
I am not sure          

0%
0%
0%
0% 
0%
0%
86%   
14%     
0%
0%
0%

Coffee
Tea 
Juice                     
Milk
Cereals
Salad
Scrambled eggs        
Fried eggs                  
Pancakes                
Sandwich               
I am not sure          

0%
0%
0%
0% 
5%
0%
71%   
24%     
0%
0%
0%

…

Max (% votes): Scrambled eggs

Figure 5.3: In the Video Segments Survey, users have to understand what is happening in a
long video by looking only at one short segment. We ask the users to vote for a
video class and obtain predictions per segment. We assign to the full video the
segment prediction with the highest percentage of votes for one class. In the
example, taken from the Breakfast dataset [1], Segment 5 determines the video
prediction Scrambled eggs.

Dataset
Classification accuracy (%)

Full Videos Video Segments

Breakfast 93.33 90.0
CrossTask 100.0 97.2
LVU – Relationship 88.89 88.89
LVU – Scene 100.0 100.0
LVU – Speaking 80.0 60.0

Table 5.2: Average video recognition accuracy obtained from the Full Videos Survey and
Video Segments Survey on the Breakfast [1], CrossTask [6] and LVU [12] datasets.
The results suggest that long-term information is helpful but not necessary in the
majority of the evaluated datasets.

which corresponds to the recipe being made, for a total of 10 classes. The classifi-
cation task consists in correctly recognizing the recipe.

For our study, we select a representative subset of 30 videos, corresponding to 3
randomly selected videos per class. The full videos have average duration of 2.44
± 2.18 minutes. For the Video Segments Survey, we segment the video according
to the short-term action timesteps (coarse segmentation) provided in the dataset.
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Dataset
User agreement

Full
Videos

Video
Segments

Selected
Segments

Breakfast 0.717 0.386 0.593
CrossTask 0.671 0.462 0.767
LVU – relationship 0.499 0.340 0.523
LVU – scene 0.755 0.481 0.686
LVU – speaking 0.159 0.191 0.265

Table 5.3: Overview of the user agreement in our user studies, measured terms of Krippen-
dorff’s α [47]. We find that the users tend to agree in the Full Videos Surveys and
when selecting the segments with highest amount of votes for a class. Recogniz-
ing the actions in the Video Segments Survey is generally harder then when looking
at the full video, resulting in more variability in the users predictions and, conse-
quently, in lower agreement.

0 25 50 75 100
User votes (%)

Full
Videos

Selected
Segments

Video
Segments

(a) Breakfast

0 25 50 75 100
User votes (%)

(b) CrossTask

0 25 50 75 100
User votes (%)

(c) LVU - Relationship

0 25 50 75 100
User votes (%)

(d) LVU - Scene

0 25 50 75 100
User votes (%)

(e) LVU - Speaking

Correct Wrong I am not sure

Figure 5.4: Overview of the user votes (correct, wrong and I am not sure) collected in our
study. We compare the results from the Full Videos, all the Video Segments,
and the Selected Segments with highest percentage of votes for one class. The
amount of correct votes in the Selected Segments is significantly higher than for
all the Video Segments, and comparable, or even higher, to the amount of correct
votes obtained watching the full videos. N.b., the user votes reported in this fig-
ure do not have to match the accuracies in Table 5.2. While the accuracy shows
the percentage of videos correctly classified, the user votes are aggregated with-
out considering the votes distributions within the specific videos.

We remove segments that are shorter than 5 seconds, as we deem those segments
highly uninformative, and we obtain 154 segments in total, of average duration 29
± 39 seconds, where ∼56% of the segments last less than 15 seconds. The large
standard deviation is due to some repetitive short-term actions that can last above
a minute, e.g. stir dough or fry egg.

The results in Table 5.2 show that the recognition accuracy from the Full Videos
Survey (93.33%) and the Video Segments Survey (90.0%) are close. This suggests
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that, although having access to the full long-term information in the video helps,
looking at single short segments is sufficient to infer the right recipe class for the
majority of the videos. From this result we conclude that the Breakfast dataset is
not a proper long-term action dataset, according to our definition.

We analyze the amount of correct user votes, wrong votes and I am not sure votes
obtained in the user study and illustrated in Figure 5.4 (a). We obtained 86.78% of
correct votes in the Full Videos Survey and 54.47% in the Videos Segments Survey.
However, if we consider only the segments with the highest percentage of votes for
one class, the amount of correct votes reaches 76.36%. A similar trend occurs in
the user agreement in Table 5.3. By further inspecting the results from the Video
Segments Survey, we notice that users are generally more uncertain classifying the
video segments early in the video, with a higher portion of I am not sure votes
compare to the later segments. In particular, 63.57% of I am not sure votes are
obtained in from the first two video segments in chronological order. We argue
that breakfast dishes are usually better recognizable towards the end of the video,
when the recipe is complete.

5.4.2 CROSSTASK

CrossTask [6] is an instructional video dataset of ∼4.7k videos, covering themes
like auto repair, cooking and DIY. The instructional videos show how to perform a
tasks (e.g., Make a Latte) through a list of steps (e.g., add coffee, press coffee, pour
water, pour espresso, steam milk, pour milk). It contains 18 primary tasks with
steps annotations and 65 related tasks with unlabeled steps. The dataset is meant
to be used to learn steps in a weakly supervised learning setup. Here, we evaluate
whether predicting the task illustrated in an instructional video also fits our defini-
tion of long-term action recognition. We collect results from 36 video clips (2 ran-
dom videos per primary task) of average duration 4.50 ± 2.14 minutes. Similarly to
Breakfast, we extract 260 segments from the videos according to the timesteps pro-
vided with the dataset. In CrossTask, the segments are significantly shorter than
Breakfast, with average duration of 10 ± 11 seconds and ∼81% of the segments
being shorter than 15 seconds.

In Table 5.2, we compare the task recognition accuracy from the Full Videos Sur-
vey, 100%, and the Video Segments Survey, 97.2%. In both cases, users can rec-
ognize the task with high accuracy. Only one video (YouTube id kReUYklvjnc) is
misclassified in the Video Segments Survey, despite 5/8 of its video segments being
correctly classified. Considering the user agreement (Table 5.3) and correct votes
by the users (Figure 5.4, b), we find that both quantities are marginally higher in
the Selected Segments over the Full Videos. This result shows that users tend to
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make the same mistakes (as for video kReUYklvjnc) while confirming that most
of the tasks are generally recognizable both from short video segments and full
videos. It is worth noting that the results reported in Table 5.2 and Figure 5.4 are
not necessarily the same. The accuracy corresponds to the percentage of videos
correctly classified, while the user votes are aggregated without considering the
votes distributions within the specific videos. Because of the high task recognition
accuracy obtained from the Video Segments Survey, we conclude that the videos
in CrossTask do not contain long-term actions. We recommend to use this dataset
for the other video understanding tasks that is supports, like captioning and action
localization.

5.4.3 LVU

The Long-Form Video Dataset (LVU) [12] has been recently proposed to study com-
plex relationships in video clips extracted from movies. It provides three tasks, re-
lated to content understanding, user engagement prediction and movie metadata
prediction and contains over 11k videos. Similarly to previous work [49], we se-
lect the task of Content Understanding, which involves classifying the relationship
among the characters, where the scene is taking place and the characters speak-
ing style, from video clips of ∼2.5 minutes. The respective annotations consist
in a global label per video. We assess whether predicting Relationship, Scene and
Speaking is a form of long-term action recognition, according to our definition. We
select videos from the test set and manually extract segments for each of the three
classification tasks. We obtain 9 videos (3 per class) for Relationship, 12 videos
(2 per class) for Scene and 10 videos (2 per class) for Speaking, and a total of 140
segments of ∼30 seconds.

Table 5.2 shows the classification accuracies obtained from the Full Videos Sur-
vey and Video Segments Survey. Comparing the results, we find no difference for
Relationship and Scene. In particular, Scene classification is performed with 100%
accuracy, indicating that this prediction task is easy for humans. We identify a
problem associated with LVU - Relationship. The labels husband-wife, friends,
boyfriend-girlfriend are associated with specific characters in the movie, but other
characters might appear within the same video clip. For example, in Figure 5.5 (a),
the ground-truth label for the movie in the first row is Husband-Wife. However,
a third male character appears in the scene in addition to the husband and wife.
Therefore, the labels only correctly apply to a specific subset of the characters in
the scene, or to a precise time window when only the target characters appear. As
a result, the full videos are classified with a high percentage of wrong votes, while
some of the video segments that do not include the characters corresponding to
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the label are completely misclassified. This justifies the large portion of wrong
votes in Figure 5.4 (c) and relatively low agreement in Table 5.3.

(a) LVU – What is the relationship between these characters?

YouTube id: PpbNn6gMTUE, GT: Husband-Wife

Friends: 66.67% Husband-Wife: 58.33% Friends: 58.33% Friends: 50.0%

Friends: 60.0%

V.S.

F.V.

YouTube id: 5dxhOkrjfuA, GT: Friends

Boyfriend-Girlfriend: 66.67% Friends: 58.33% Friends: 50.0% Boyfriend-Girlfriend: 50.0%

Friends: 60.0%

V.S.

F.V.

(b) LVU – Where is this scene located?

YouTube id: -YV8tJhGojY, GT: School

School: 72.73% Hotel: 27.27% Office: 9.09% Airport: 8.33%

School: 100.0%

V.S.

F.V.

(c) LVU – What is the way of speaking of the characters?

YouTube id: KGKqdRDo-N8, GT: Threatens

Threatens: 54.55% Threatens: 66.67% Threatens: 45.45% Explains: 27.27%

Threatens: 70.0%

V.S.

F.V.

time

Figure 5.5: Examples of correct (green) and wrong (red) classification results collected from
the Video Segments (V.S.) and Full Videos (F.V.) surveys on the Long-form Video
Understanding (LVU) - Relationship (a), Scene (b) and Speaking (c) dataset [12].
Users correctly classify a large portion of video segments. Other segments result
misclassified due to annotation noise.

We find a similar annotation problem in LVU - Speaking. Also in this case, the
global label only applies to a subset of the characters in the scene. In the example
in Figure 5.5 (c), the label Threatens only applies to the man with the gun. This ex-



5.5. CONCLUSION

5

87

plains the difference in performance when comparing the accuracies from the Full
Videos Survey and Video Segments Survey in Table 5.2, the large amount of wrong
votes in Figure 5.4 (e) and low agreement in Table 5.3. Because of the problem with
the annotations and the equal recognition performance of 88.89% obtained from
the Full Videos Survey and Video Segments Survey (reported in Table 5.2), we con-
clude that LVU - Relationship is not a long-term video understanding task. Similar
conclusions apply for LVU - Scene, with perfect classification scores resulting from
both surveys. Finally, the labels in LVU - Speaking are not truly long-term, as they
apply to a subset of characters speaking only during some relatively short time-
windows.

5.5 CONCLUSION

We propose a method to assess whether an action is long-term. We apply our
method to three current long-term video understanding datasets, Breakfast, CrossTask
and LVU. Our results show that long-term information might help but is not nec-
essary in the majority of videos from the analyzed datasets. In fact, the long-term
actions in these videos can be correctly classified by humans by looking solely at a
single short video segment. This result suggests that deep learning models trained
and tested on these datasets might pick short-term shortcuts and still show cor-
rect recognition performance, without actually learning any long-term informa-
tion. Following our findings, we urge researchers who are investigating automatic
long-term action recognition to use datasets that need long-term information to
be solved.
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6
VIDEO BAGNET: SHORT TEMPORAL RECEPTIVE

FIELDS INCREASE ROBUSTNESS IN LONG-TERM

ACTION RECOGNITION

Previous work on long-term video action recognition relies on deep 3D-convolutional
models that have a large temporal receptive field (RF). We argue that these models
are not always the best choice for temporal modeling in videos. A large temporal re-
ceptive field allows the model to encode the exact sub-action order of a video, which
causes a performance decrease when testing videos have a different sub-action or-
der. In this work, we investigate whether we can improve the model robustness to
the sub-action order by shrinking the temporal receptive field of action recognition
models. For this, we design Video BagNet, a variant of the 3D ResNet-50 model
with the temporal receptive field size limited to 1, 9, 17 or 33 frames. We ana-
lyze Video BagNet on synthetic and real-world video datasets and experimentally
compare models with varying temporal receptive fields. We find that short receptive
fields are robust to sub-action order changes, while larger temporal receptive fields
are sensitive to the sub-action order.

This chapter has been published as:
O.Strafforello, X. Liu, K. Schutte, and J. C. van Gemert. “Video BagNet: short temporal receptive fields
increase robustness in long-term action recognition”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV) Workshops. 2023, pp. 159-166

Code available at:
https://github.com/ombretta/videobagnet
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Figure 6.1: Large (a) versus small (b) temporal RF compared to the sub-action duration. The
temporal RF size in the last convolutional layer is represented by the size of the
convolutional shifting windows. Models with large temporal RF see sub-actions
in ordered co-occurrences, while models with small temporal RF are more likely
to see single sub-action occurrences. Because of this, models with small tempo-
ral RFs encode sub-action occurrences but not strict sub-action orders.

6.1 INTRODUCTION

Long-term action videos naturally have different sub-action combinations and or-
ders. For instance, the action of ’making coffee’ may contain either order of ’add
sugar, add milk’, or ’add milk, add sugar’, or people can drink their coffee black.
With such diversity in sub-action orders it is nearly impossible to sample repre-
sentative data containing all possible permutations for training a long-term ac-
tion recognition classifier. Thus, the training set in current long-term classification
datasets like MultiTHUMOS [1] and Charades [2] may contain different sub-action
orders than the test set. The specific sub-action order and duration is exploited by
current video action recognition models due to their large temporal receptive field
size. Consequently, if the models encode the specific sub-action order at training
time, it might cause misclassification of a video action when the sub-action order
differs at test time.

In this paper, we focus on encoding sub-action order. We refer to the temporal
receptive field (RF) as the number of input frames within a shifting kernel that a
network can make use of in its last convolutional layer. Usually, the last convolu-
tional layer is followed by global temporal pooling, which collapses the temporal
dimension into one unit, and a final fully connected layer. These operations do
not affect the temporal RF size and the sensitivity to order, as they cannot model
temporal dependencies. For this reason, we do not consider the final pooling and
classification layers in our calculation of the temporal RF size. Networks with tem-
poral RF size larger than the sub-action duration (as shown in Figure 6.1 (a)) might
overfit on the exact sub-action order seen at training time. In cases where the avail-
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able training samples are not sufficiently representative of all possible sub-action
orders, misclassifications occur at test time.

We introduce Video BagNet, a model with a small temporal RF size that is less
sensitive to the exact sub-action order. Our model is inspired by BagNet [3], which
reduces the spatial receptive field size for easier network interpretation. We use
Video BagNet to investigate the role of the temporal RF in encoding the sub-action
order. Our proposed Video BagNet is modified from 3D ResNet-50 [4]. We reduce
the temporal RF size by shrinking the kernels in the temporal dimension and us-
ing less down-sampling. As shown in Figure 6.1 (b), our Video BagNet with small
temporal RF sizes is less sensitive to the exact sub-action order by seeing occur-
rences of single sub-actions rather than the combinations of ordered sub-actions.
This results in better sub-action detection performance than 3D ResNet-50 on our
synthetic Directional Moving MNIST dataset and MultiTHUMOS. We also provide
a measurement of model sensitivity to the sub-action order. Our code will be made
publicly available1.

6.2 RELATED WORK

6.2.1 TEMPORAL EXTENT OF RECENT MODELS FOR ACTION

RECOGNITION

Recent action recognition architectures can model long temporal extents [5–11].
This is achieved through two main approaches. The first one is by extending the
temporal receptive field of convolutional models, either by stacking strided convo-
lutional layers, thus making the model deeper [12, 13], or by harnessing auxiliary
temporal modules [5, 9, 14]. The second approach is by means of transformer ar-
chitectures, whose design entails a temporal receptive field which spans over the
whole input duration [15–17]. Large temporal extents make it possible to learn
dependencies in videos over time. This allows for modeling the order of the sub-
actions that are seen at training time, which is considered useful to capture the
inner structure of complex, long-term activities [18].

However, models with large temporal RF have a drawback: they are prone to
overfitting on the order when the available training data is limited [19]. This is the
case for most of the current long-term action recognition datasets, which only con-
sist of a few hundred or thousand videos [1, 2, 20]. In addition, recent work showed
that some of the current long-term action recognition datasets can be solved with-
out using long-term information [21]. In this work, we investigate whether mod-

1https://github.com/ombretta/videobagnet
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eling large temporal extents is always beneficial to solve long-term action recogni-
tion. In particular, we investigate whether models with large temporal RF overfit
on the order of the sub-actions seen at training time, causing misclassifications at
test time.

6.2.2 ORDER INVARIANT NETWORKS

In [14], it is empirically shown that the classification performance of order-aware
methods drops significantly when new sub-action orders are presented at test time.
On the other hand, order invariant methods, like ActionVLAD [22], are robust to
sub-actions permutations. Hussein et al. [18] propose a permutation invariant
convolutional module, PIC, to model temporal dynamics in long-range activities.
The PIC module performs self-attention across pre-extracted visual features and
can be stacked on top of convolutional backbones. PIC is robust to sub-action
permutation compared to ordered-aware convolutional baselines [5], while main-
taining a large temporal RF.

Our approach deviates from ActionVLAD and PIC. While ActionVLAD is com-
pletely order unaware, we maintain order information within short receptive fields.
This allows modeling fine-grained motions, which is proven beneficial for action
recognition [23, 24]. Differently than PIC, we investigate sensitivity to sub-action
order by looking at the temporal RF size of spatio-temporal convolutional net-
works, commonly used as backbones in long-term action recognition models [5,
9, 14]. Our method only requires simple modification to the spatio-temporal con-
volutional networks.

6.2.3 REDUCING THE RECEPTIVE FIELD SIZE: BAGNET

Our idea of reducing the temporal receptive field size is inspired by Brendel et al.
[3], who investigated how bag-of-local-features can be used for image classifica-
tion. Bag-of-local-features can be obtained by restricting the spatial receptive field
of the image classifier to a small number of pixels. In Brendel et al.’s model, the
BagNet, this is achieved by replacing a set of 3×3 convolutions with 1×1 convolu-
tions and removing the first downsampling layer. The property of this architecture
is that the image feature representation is given by a collection of local features,
corresponding to small image patches, that do not take into account the global
spatial structure. Surprisingly, ignoring global structures does not hurt substan-
tially the classification accuracy of BagNet. Using bag-of-local-features has been
taken on for other visual classification tasks. Some examples are exploring local
features for face anti-spoofing [25], and predicting the histogram of visual words
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of a discretized image as part of a self-supervision task [26]. To the best of our
knowledge, our method is the first work that relies on bag-of-temporal-features
models to learn video representations.

3D ResNet-50 (RN) Video BagNet-1/9/17/33 (BN)
# parameters
for 3 classes

46.2 M 45.9/46.7/45.6/46.5 M Output sizes T ×S2

conv1 7×72,64, stride (1, 2, 2) 1/3/3/3×72,64×k, stride (1, 2, 2)
RN : 64×322

BN : 64×322

downsampling Max pool (3, 3, 3), stride 2 Max pool (1, 3, 3), stride (1, 2, 2)
RN : 32×162

BN : 62×162

conv2_x

1×12,64
3×32,64
1×12,64

,

1×12,256
3×32,64
1×12,64

×2

 1×12,64×k
1/3/3/3×32,64×k

1×12,64×k

,

 1×12,256×k
1/1/1/1×32,64×k

1×12,64×k

×2

RN : 32×162

BN : 60×162

conv3_x

1×12,256
3×32,128
1×12,128

,

1×12,512
3×32,128
1×12,128

×3

 1×12,256×k
1/3/3/3×32,128×k

1×12,128×k

,

 1×12,512×k
1/1/1/1×32,128×k

1×12,128×k

×3,

RN : 16×82

BN : 29×82

conv4_x

1×12,512
3×32,256
1×12,256

,

1×12,1024
3×32,256
1×12,256

×5

 1×12,512×k
1/1/3/3×32,256×k

1×12,256×k

,

 1×12,1024×k
1/1/1/1×32,256×k

1×12,256×k

×5

RN : 8×42

BN : 14×42

conv5_x

1×12,1024
3×32,512
1×12,512

,

1×12,2048
3×32,512
1×12,512

×2

 1×12,1024×k
1/1/1/3×32,512×k

1×12,512×k

,

 1×12,2048×k
1/1/1/1×32,512×k

1×12,512×k

×2

RN : 4×22

BN : 6×22

Average pool, n_classes-d fc, softmax

Table 6.1: Network architectures: 3D ResNet-50 (RN) vs Video BagNet-1, 9, 17 and 33 (BN).
In the first row, we report the number of parameters. The next rows correspond
to the network layers, which contain convolutions and downsampling. For the
convolutional layers, we report the kernel size T × S2, in the temporal (T ) and
spatial (S2) dimensions, and the number of channels. The rightmost column of
the table reports the output sizes at each layer, given an input clip of size 64×642.
The convolutional blocks follow the structure of ResNet Bottleneck blocks [27].
We widen the channels of Video BagNet with factor k, equal to 1.40, 1.40, 1.35 and
1.25, to keep the number of parameters comparable among the different models.
In both architectures, each layer is followed by Batch Norm [28] and a ReLU [29].
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6.3 METHOD

We study how the size of the temporal RF effects model sensitivity to sub-action
order. To this end, we compare long-term action recognition performance of 3D
convolutional networks with variable temporal RF size.

6.3.1 VIDEO BAGNET

Inspired by the 2D BagNet for image classification [3], we design Video BagNet, a
3D convolutional network that reasons over short temporal extents. The key idea
behind Video BagNet is to harness bag-of-feature representations for video clas-
sification. Specifically, the word vocabulary is composed of short video segments.
Although this representation does not allow to model long-term temporal depen-
dencies, it prevents learning strict temporal orders that can lead to the misclassifi-
cation of a video if unseen permutations between sub-actions occur at test time.

Our Video BagNet is based on the 3D ResNet-50 described in Hara et al. [4]. We
apply a set of modifications to 3D ResNet-50 to restrict the size of its temporal re-
ceptive field, while leaving the computation in the spatial dimensions unchanged.
In particular, we propose four variants of Video BagNet, with temporal RF sizes of
1, 9, 17, and 33 input frames. We choose these temporal extents following the de-
sign choice of Brendel et al. [3] in the image domain. Video BagNet is sensitive to
order within its small temporal RF, allowing for fine-grained motion modeling.

The set of modifications that we apply to 3D ResNet-50 can be summarized as
follows.

First, we restrict the size of some of the convolutional kernels in the temporal di-
mensions. This is done to adaptively control the expansion of the RF in the tempo-
ral dimension through the convolutional layers, without changing the depth of the
network. We express the size of the convolutional kernels in the temporal (T ) and
spatial (S2) dimensions as T ×S2. The 7×72 convolutional kernel in the first layer
is replaced with a convolutional kernel of size 3× 72 (1× 72 for Video BagNet-1).
In the following layers, we modify a set of 3D ResNet-50 bottleneck blocks. Bottle-

neck blocks consist of three consecutive convolutional layers of size

1×12,
3×32,
1×12

. We

replace them with

1×12,
1×32,
1×12

.

In addition, to prevent the temporal RF size from growing in the first layer, we
alter the MaxPool operator that follows layer conv1 to perform pooling only in the
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Class 1
Vertical translation Horizontal translation

Class 2
Vertical translation Diagonal translation

Class 3
Horizontal translation Diagonal translation

Figure 6.2: Example of videos of digit 2 from the Directional Moving MNIST dataset. The
videos are composed of two sub-actions, i.e. vertical, horizontal or diagonal
translation. Sub-action co-occurrences determine the video class. We explic-
itly superimposed multiple frames with shading to show the movement.
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spatial dimensions. To maintain a comparable amount of parameters between
3D ResNet-50 and the different Video BagNet models, we widen the number of
channels. Finally, to keep the input size equal to the video length, we remove the
padding. Table 6.1 provides an overview of the architecture design of Video BagNet
vs. 3D ResNet-50.

6.4 EXPERIMENTS

6.4.1 DATASETS

We study the effect of the temporal RF size on two long-term datasets, namely
the Directional Moving MNIST, that we propose, and MultiTHUMOS [1]. These
datasets contain multiple sub-actions and can last up to several minutes. For these
datasets, the classification task consists of recognizing the sub-actions that com-
pose the videos.

Directional Moving MNIST is a dataset composed of videos of one single moving
digit, randomly sampled from the original MNIST dataset [30]. It contains 3 classes
and 1000 videos per class. In this dataset, the digit translations correspond to
sub-actions and the co-occurrence of two sub-actions determines the video class.
More specifically, vertical and horizontal translation form class 1, vertical and di-
agonal translation form class 2 and horizontal and diagonal translation form class
3. Within each class, digit appearance and starting position have been random-
ized. In addition, the translations occur at two possible speeds. All sub-actions
have equal duration and there are no pauses between consecutive sub-actions.

One fixed sub-action order appears in the training set. At test time we use two
sets: in the test set without permutations, the sub-action order is the same as train-
ing time; while in the test set with permutations the sub-action order is permuted
with 50% probability. An example of the Directional Moving MNIST dataset is pro-
vided in Figure 6.2.

MultiTHUMOS [1] is a multi-label video dataset for long-term action recogni-
tion. It is a collection of 400 complex, unconstrained, sports videos that have
been densely annotated with sub-action time steps. The dataset contains a total of
65 possible sub-actions and each video contains, on average, 84.03±113.56 sub-
actions. The small size of the dataset prevents from training classification mod-
els using all the possible sub-action combinations and orders that usually occur
in sports videos. For example, the dataset contains 20 basketball videos of which
15 videos contain the sub-actions BasketballDribble, Run, BasketballPass. Only 4
videos contain the order BasketballDribble - Run - BasketballPass.
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Figure 6.3: Sensitivity to sub-action order on the Directional Moving MNIST dataset. Mod-
els with different temporal RF are tested on two test sets with the same order (a)
and different order (b) w.r.t. training time. The models with small temporal RF
compared to the sub-action duration, namely Video BagNet 9, 17 and 33, per-
form well on the two sets. Differently, 3D ResNet, with temporal RF larger than
100 frames, overfits the temporal order at training time and fails to classify the
test set with permutations.

6.4.2 THE SIZE OF THE TEMPORAL RF AFFECTS MODEL SENSITIVITY

TO SUB-ACTION ORDER

We design a simple controlled experiment to investigate whether spatio-temporal
models encode the sub-action order through their temporal RF. For this, we deploy
the Directional Moving MNIST dataset. We vary the size of sub-actions to relate it
with different temporal RF sizes. Specifically, we use sub-action duration of 16, 32
or 64 frames and temporal RF size equal to 217 frames for 3D ResNet-50 and 9, 17
and 33 frames for our Video BagNet.

The results of this experiment are summarized in Figure 6.3. Irrespectively of the
temporal RF size and the sub-action duration, all the models perform well when
the order of sub-actions of the training and test sets match, that is in the test set
without permutations. However, on the test set with permutations, the models with
large temporal RF size compared to the sub-action duration, e.g. 3D ResNet-50,
and, in some instances, Video BagNet-17 and Video BagNet-33, perform poorly. In
particular, 3D ResNet-50 always achieves an accuracy of ∼ 66%, which is equiva-
lent to classifying correctly the videos with no permutations (∼ 50% of the test set
with permutations) and randomly the videos with sub-action permutations. Our
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Video BagNet-9, which has the shortest temporal RF among the analyzed models,
performs above 98.5% on all the different test videos.

These results show that sensitivity to sub-action order depends on the sub-action
duration and temporal RF size. We quantify the sensitivity to order by relating the
sub-action size to the temporal RF size. For this, we analyze the convolutional
shifting windows in the last convolutional layer of the 3D ResNet-50 and Video
BagNet models, represented in Figure 6.1. In particular, we measure the sensitivity
by a ratio of the amount of shifting windows that contain single sub-actions (# sin-
gle sub-action windows) over the total amount of convolutional windows (# total
windows). When the ratio is high, the sensitivity to the sub-action order is low. As
shown in Figure 6.1, models with very large temporal RF size, like 3D ResNet-50,
always see sub-action co-occurrences rather than single sub-actions. Therefore, in
Figure 6.4, their ratio # single sub-action windows / # total windows is always low,
which leads to low performance on the test sets with permutations. On the other
hand, models with small temporal RF size, e.g. Video BagNet-9, have a large ratio of
# single sub-action windows / # total windows and low sensitivity to the sub-action
order, achieving good performance on the test set with permutations.

6.4.3 SMALL VS. LARGE TEMPORAL RF FOR LONG-TERM VIDEO

ACTION RECOGNITION

Model Temporal RF mAP
Single-frame CNN [31] 1 25.4
MultiLSTM [1] 15 29.7

3D ResNet-50 [4] >100 22.45
Video BagNet-33 33 26.37
Video BagNet-17 17 28.97
Video BagNet-9 9 30.21
Video BagNet-1 1 12.60

Table 6.2: Classification accuracies of models with small and large temporal RF on the Mul-
tiTHUMOS dataset. We compared our evaluated models (bottom rows) to the
baselines proposed in [1] (top rows). Despite being trained from scratch, our
Video BagNet models with temporal RF 9, 17 and 33 perform comparably to the
ImageNet [32] pre-trained baselines. Models with smaller temporal RF, e.g. Video
BagNet-9, recognize sub-action occurrences and ignore temporal order, achiev-
ing the best performance. Video BagNet-1 cannot model motion by seeing just
single frames, which has the lowest mean average precision.
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Figure 6.4: Accuracy on the Directional Moving MNIST test set with permutations in terms
of models sensitivity to sub-action order. Sensitivity to sub-action order depends
on the sub-action duration and temporal RF size, as shown in Figure 6.1. It can be
expressed by counting the amount of convolutional shifting windows that con-
tain single sub-actions (# single sub-action windows) over the total convolutional
windows (# total windows). Models with large ratio # single sub-action windows
/ # total windows, like Video BagNet-9, are less sensitive to order and achieve
good performance. Models with very large temporal RF sizes, like 3D ResNet-50,
always see sub-action co-occurrences rather than single sub-actions. Therefore,
their ratio # single sub-action windows / # total windows is low and their order
sensitivity is high, thus performing poorly on the test set with permutations.

In our controlled experiment, we show that models with large temporal RF en-
code the sub-action order at training time. We argue that this causes misclassifi-
cation when the distributions of sub-actions order are different in the training and
test sets. This is the case for the commonly used MultiTHUMOS dataset, which
only consists of 400 videos with high variability in sub-actions composition and
order.

We evaluate the effect of the temporal RF size on MultiTHUMOS. Again, we de-
ploy 3D ResNet-50 and Video BagNet with temporal RF 1, 9, 17 and 33. We train
the models from scratch, without using either pre-training or data augmentation.
We train with 512 input frames, with batch size 4. We do this to limit the com-
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putational effort of our experiments. Since we train the models from scratch and
without data augmentation, our results are not comparable to current state-of-the-
art [33]. Nevertheless, employing this fixed experimental setup for all the analyzed
models allows us to fairly compare different temporal RF sizes.

The results in Table 6.2 show that models with small temporal RF size outper-
form models with large temporal RF size on this dataset. The highest accuracy is
obtained with Video BagNet-9. These results suggest that encoding long-term in-
formation, including sub-action order, is hurting the classification of MultiTHU-
MOS. This long-term information could correspond to the precise order of sub-
actions or to the varying durations of different sub-actions. This is sensible: the
multi-label classification problem of MultiTHUMOS consists in recognizing all the
single sub-actions occurring in a video. Sub-action classification can be achieved
by looking at short temporal extents that contain the sub-action. Because of the
high variation in the temporal composition of sports videos, overemphasizing long-
term information is not necessary or even decreases the sub-action recognition ac-
curacy. On the other hand, for Video BagNet-1 it shows that if the model encodes
neither long-term nor short-term information, the accuracy decreases. The results
indicate that the short-term information captured by small temporal RF seems es-
sential for good classification performance.

We find that our results are comparable to the baseline models proposed in [1],
as illustrated in Table 6.2. It is worth noting that the single-frame CNN [31], which
cannot model temporal information by design, has the advantage of being pre-
trained on ImageNet [32], thus explaining the superior performance compared to
Video BagNet-1. Similarly, the MultiLSTM model [31] uses pre-trained image fea-
tures. Despite the lack of pre-training, Video BagNet-9 and 17 achieve 28.97% and
30.21% mAP, which is similar to mAP of 29.7% mAP obtained by Video MultiLSTM.

6.5 CONCLUSIONS

In this paper, we investigate whether spatio-temporal models for long-term action
recognition encode sub-action order through their temporal RF. Our experiments
reveal that when the temporal RF size is larger than the sub-action duration, the
models are sensitive to the sub-action order. We provide a measure for the sensi-
tivity to the sub-action order by a ratio of the number of convolutional windows
that contain single sub-actions over the total number of convolutional windows. A
higher ratio makes the models less sensitive to the sub-action order.

Sensitivity to sub-action order causes misclassification when the order of sub-
actions are different during training and test time. This might occur in long-term
action recognition, since it is difficult to collect training samples containing all the
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sub-action permutations that exist in natural videos. We show that small temporal
RFs are robust to permutations of sub-actions, which is beneficial when limited
sub-action orders are available at training time. Our study is conducted on 3D
convolutional networks. Nevertheless, the conclusions could be generalizable to
other spatio-temporal models that use the RF to encode temporal dependencies.
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7
DISCUSSION

Goodhart’s Law: “When a measure becomes a target, it ceases to be a good measure.”

In this thesis, we investigate whether the development of computer vision solu-
tions is always in line with the intended objectives set by humans. We do this with a
focus on two particular applications, namely object detectors meant as user assis-
tive tools and long-term action recognition in videos. This research reveals cases
when standardized training and evaluation methods are sub-optimal with respect
to the end use of the computer vision algorithms. In addition, we uncover shortcut
learning potential in current video datasets. Here we outline our main conclusions
and their implications.

7.1 OBJECT DETECTORS FOR USER ASSISTANCE

IoU and AP are insufficient to evaluate object detectors In many applications,
including industrial visual inspection, anomaly detection, or medical imaging, hu-
man tasks are facilitated with automatic object detections. For this utilization of
object detectors, the quality of the object detectors output should be perceived as
high by human users. In Chapters 2 and 3, we evaluate if the predicted object loca-
tion by object detectors aligns with what humans consider a well detected object.
In Chapter 2, we performed a fully controlled experiment, where we asked hu-
mans to evaluate pairs of object detections with the same localization error, mea-
sured with the IoU metric, but different in size or location. Our results showed that
humans prefer larger over smaller object detections with the same location error.
In addition, for asymmetric objects the position of the detection matters, since it
helps humans better identify the object. However, the human preference that we
discovered is not captured by the IoU metric, which is to some degree insensitive
to spatial translations and size differences of the detections. The same conclusion
applies to the AP metric, which relies on the IoU as a measure for the localization
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accuracy. In Chapter 3, we confirmed that also real, commonly used, object de-
tectors predict large and small detections equally often, therefore they are also not
aligned with human preference. We find that training with our proposed asymmet-
ric loss, or upscaling the detections in a post-processing step, results in higher user
preference [1]. Finally, humans consistently prefer larger object detections, even
when the AP approximately goes to zero. This suggests that, in our confined exper-
imental setup, the AP does not correlate with human quality judgments of object
detectors. Although we lack sufficient evidence to generalize this conclusion, there
may be other scenarios where AP and user preferences do not align. We urge the
future development of object detectors to assist humans to consider incorporat-
ing qualitative assessments, to ensure a more comprehensive understanding of the
model performance, and explore alternative training and evaluation metrics. The
results obtained in Chapter 2 and 3 suggest that standard object detector devel-
opment methods do not serve well the objective of developing valid user assistive
tools. In fact, training and evaluating based on the common IoU and AP metrics
might result in sub-optimal detections with respect to human perception of detec-
tion quality.

Beyond controlled environments and assistive object detectors The work de-
scribed in Chapters 2 and 3 is done in a confined experimental environment, re-
stricted to the assessment of single objects in MS COCO images [2]. Future work
should explore how object detectors are perceived when they are employed to as-
sist users in a real-world application, for example in the medical and industrial do-
mains. Similarly to the discrepancies that we observed with IoU and AP [1, 3], we
wonder if other mismatches between human assessments and quantitative eval-
uations exist in other applications of computer vision, such as video editing tools
[4], object tracking and human activities recognition algorithms in socially assis-
tive robots [5], and behavioral imaging, a technique used to monitor and diagnose
behavioral disorders [6, 7]. We encourage future research to investigate this direc-
tion further.

The impact on user trust Especially in medical applications, it is paramount that
the outcomes of the algorithm match high user quality perception to promote trust
in the assistive system. Our findings in Chapter 2 and 3 indicate that standardized
computer vision practices might be sub-optimal for this purpose. Recent work
shows that different type of assistive object detectors errors have different effects
on user trust [8]. For example, precision and recall errors in object detections have
a larger impact on trust compared to localization errors. In addition, Barbosa et
al. [9] point out that both the evaluation metrics and the way they are presented
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to users affect the trust in computer vision models. Future research is essential to
explore whether aligning the object detections with human quality judgments, by
training with our asymmetric loss function or simply by upscaling the predicted
boxes, also increases the trust of users in the assistive object detection systems.

7.2 LONG-TERM ACTION RECOGNITION

Spatial information is more important than temporal information in long-term
behavior recognition In Chapter 4, we investigated whether including spatial
and temporal attention mechanisms enhances the results of long-term human be-
havior recognition in videos. We found that adding a spatial attention module on
top of a 3D convolutional backbone improves the recognition performance. Fur-
thermore, we observe that the spatial region centered around the human subject
contains the most discriminative information. Indeed, allowing the model to ex-
plicitly focus on this ’actor-focused’ region further enhances the results. On the
other hand, the addition of temporal attention does not significantly impact the
model performance. We find this counter-intuitive, as enhancing the temporal
modeling capabilities should help encoding the complex temporal patterns ongo-
ing in long-term videos.

Encoding long-term information is not necessary to solve current video datasets
In a soccer game, following the players actions over time and counting the goals is
required to track which team is winning. Similarly, long-term temporal informa-
tion is essential to understand long-term human activities, like the progress of a
medical surgery or the assessment of behaviors recorded by surveillance cameras.
However, the results from Chapter 4 seem to indicate that temporal information
is superfluous in long-term action recognition models. To further investigate this
phenomenon, in Chapter 5, we proposed a method to evaluate whether long-term
temporal information is needed to classify long-term action videos. We apply this
method to three commonly used datasets, namely Breakfast [10], CrossTask [11]
and LVU [12]. Surprisingly, we found that long-term information is not necessary
for the majority of the analyzed videos. In fact, looking solely at a single short
video segment is sufficient to correctly classify the long-term actions. This con-
clusion suggests that modeling long-term information, including, for example, the
order and duration of the short-term actions in the videos, is not necessary. In
Chapter 6, we showed that 3D convolutional neural networks with large temporal
receptive fields can encode temporal order information and overfit to specific or-
ders when small datasets are available at training time. These models performed
worse than 3D convolutional neural networks with a small temporal receptive on
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the MultiTHUMOS dataset [13]. Also in this case, encoding long-term temporal
information does not enhance, and even deteriorates, the long-term action recog-
nition performance.

Long-term action datasets should require long-term reasoning Our results from
Chapter 5 and 6 showed that current long-term action video datasets do not re-
quire long-term temporal information to be solved. Thus, computer vision models
trained and evaluated on these datasets are not exploiting long-term temporal dy-
namics, but pick short-term shortcuts while showing promising accuracy scores.
On the other hand, long-term information is fundamental to understanding dif-
ferent human behaviors, like in the aforementioned examples related to sports,
health and surveillance. Models that are not capable of encoding long-term tem-
poral dynamics are unlikely to perform successfully on the recognition of these
types of long-term actions. We urge computer vision researchers to collect and
use more representative video datasets to investigate the challenging problem of
long-term action recognition. A good example of long-term action videos could
be amateur sport videos, where the class to predict is the team that is winning.
A different approach to encourage long-term reasoning and refrain from shortcut
learning could involve transitioning from video classification to tasks that demand
a more nuanced understanding of temporal dynamics. Examples of these tasks are
video captioning [14], where models are trained to generate a textual summary of
the video content, or video question answering [15], where models are trained to
answer questions pertaining to the video content. By asking questions related to
different moments in the videos, the models would be forced to encode temporal
information over a long time span.

7.3 TRAINING AND EVALUATING COMPUTER VISION

MODELS

Solving a datasets is not equal to solving a computer vision task The last years
have witnessed an explosion of models that compete to achieve the best accu-
racy scores on common computer vision benchmarks, like ImageNet [16]. As dis-
cussed in Chapter 1, solving ImageNet does not necessarily correspond to solv-
ing the broader task of automatic image classification. Similarly, the optimiza-
tion of object detection algorithms through conventional training and evaluation
metrics, on datasets like MS COCO [2], does not guarantee obtaining effective
general-purpose object detectors. For example, the IoU and AP metrics do not
accurately capture human preferences (Chapters 2 and 3). Along the same vein,
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currently used datasets in long-term action recognition research do not promote
long-term reasoning in computer vision models, but rather the use of unintended
short-term shortcuts (Chapters 5 and 6). While the developed models show high
accuracy scores when tested on standard benchmarks, they fail to generalize in
real-world scenarios, where long-term reasoning is crucial. We saw that the com-
mon training and evaluation metrics or datasets might not provide an extensive
assessment of the performance of computer vision algorithms. A more in-depth
analysis of a model performance should consider additional criteria, especially
an interpretability analysis to understand why an algorithm is making a certain
prediction, even when the prediction seems accurate. This step is crucial to un-
derstand if a computer vision model is looking at the intended features to make
a prediction, or exploiting unexpected shortcuts. Visual explanation tools, like
Grad-CAM [17], highlight the input regions that lead a model to a specific predic-
tion. These methods could reveal whether a seemingly accurate long-term action
recognition model is exploiting temporal information or not. Similar interpretabil-
ity tools should become a standard practice in the evaluation of computer vision
models. Furthermore, evaluating a computer vision algorithm with respect to its
intended application is essential. For tasks that involve humans as the end-users,
conventional quantitative evaluation metrics might be insufficient. In these cases,
a qualitative evaluation of the results of computer vision should be included.

7.4 FINAL WORDS

Progress in computer vision has shown revolutionizing applications in fields such
as healthcare [18–20], autonomous driving [21, 22] and environmental monitoring
[23–25]. Not only can computer vision techniques streamline laborious human
tasks, but they can also have significant social and environmental impacts, such
as facilitating early medical diagnoses, improving traffic safety, and safeguarding
marine ecosystems. However, for the successful integration of computer vision
into human workflows, and even in daily lives, establishing user trust in computer
vision systems is paramount. For this, we need to be sure that the models are de-
veloped securely and effectively. In this dissertation, we demonstrated that the
current paradigm for developing computer vision solutions, and for the task that
they are being deployed for, may not always yield the intended results. We ad-
vocate future research towards an approach that goes beyond merely striving for
common accuracy metrics on standard benchmark datasets.
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