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1
INTRODUCTION

The field of machine learning (ML) is witnessing a fast-paced improvement in terms of
both available models, and their application to real-world problems. This continuous
improvement creates the need for standardized metadata format and tools to describe
and access the expanding repositories of ML models and associated artifacts - for in-
stance, datasets, model architectures, training configurations, and evaluations. We ex-
plore how repositories of ML models can be described through structured metadata, and
we show how the availability of rich metadata can be used to enhance ML workflows,
with specific focuses on model inference and fine-tuning.

1.1. BACKGROUND AND MOTIVATION
The past two decades witnessed an explosion in the machine learning field, primarily
due to the ever-growing data size and massive computing capabilities. ML in general,
and deep learning (DL) specifically, has shown its excellent performance in multiple
areas, including but not limited to healthcare, mobility, life sciences, energy systems,
and more. Thanks to extensive computation power and open-source libraries (e.g., ML
frameworks such as TensorFlow1 and Pytorch2), ML approaches have never been more
accessible and efficient to apply.

The success of ML techniques led to a proliferation of models and related artifacts
(e.g., datasets). The absence of standardized representations and tools to access these ar-
tifacts presents a significant impediment to practitioners. ML/DL scripts are often man-
aged through traditional software repositories like GitHub3 or Kaggle4. While suitable for
software engineering workflows, these systems hinder the ability of practitioners to ef-
fectively reuse (through selection or composition of models) and compare (via retrieval,
evaluation, or benchmarking) ML models and associated artifacts. The current land-

1https://www.tensorflow.org/
2https://pytorch.org/
3https://github.com/
4https://kaggle.com/
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scape lacks cohesive practices and support tools, highlighting a critical gap that needs to
be addressed.

Model zoos have recently emerged as solutions to address the challenges above. A
model zoo serves as a platform for sharing diverse information about a model and its as-
sociated artifacts, including the task and the training dataset used. One notable example
is PaperWithCode5, which presents and compares results documented in research pa-
pers. While this helps rank models based on metrics, it still necessitates external explo-
ration, either through code or the papers themselves, to access critical information like
hyperparameters and model architecture. Other model zoos may go further by main-
taining the implementation scripts of (pre-)trained models and storing their weight files.
Prominent public model zoos in this category include HuggingFace6, Tensorflow Hub7,
and PyTorch Hub8. These platforms enable users to search for models based on prop-
erties such as the intended task (e.g., image classification), modality (e.g., text, image),
model name, or development framework (e.g., PyTorch). These model zoos allow practi-
tioners to store ML models in dedicated spaces where a minimum amount of metadata is
stored, and serve as collaborative hubs for sharing ML models, allowing users to explore
and employ these models with accessible APIs.

1.2. LACK OF METADATA MANAGEMENT IN CURRENT MODEL

ZOOS AND ML SYSTEMS
Developers of ML frameworks indeed acknowledge the pivotal role of metadata in sup-
porting the work of practitioners, enhancing the understanding of existing models’ char-
acteristics, and, ultimately, increasing transparency and accountability. Initiatives such
as model cards [131] or data sheets [24, 59, 126] are examples of efforts to enable devel-
opers to describe their models and datasets comprehensively.

Although model zoos offer valuable repositories for locating and reusing specific
models, they often fall short of providing comprehensive information encompassing all
the artifacts associated with the ML lifecycle.

In the following, we will describe a general ML lifecycle [11, 31, 146, 161, 180], and
discuss how current model zoos and ML systems fall short in managing metadata.

It is possible to identify four main stages: i) data preparation and data management;
ii) model learning; iii) model evaluation and model verification; and iv) model deploy-
ment. Figure 1.1 depicts the four stages, and highlights which artifacts (and their prop-
erties) require consideration (and representation through metadata) in the context of
managing model repositories.

1. Data preparation and data management. The first stage of the ML lifecycle relates
to the acquisition and transformation of data used by the ML models. This stage can be
split into the following steps.

i) Gather data samples through observations or measurements.

5https://paperswithcode.com/
6https://huggingface.co
7https://www.tensorflow.org/hub
8https://pytorch.org/hub/
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Figure 1.1: ML lifecycle with four main stages. The blue texts indicate the types of metadata associated with
each stage.

ii) Data analysis: need for additional data, augmentation, and preprocessing.

iii) Data cleaning: replace or remove incomplete data from the dataset.

iv) Preprocessing: convert raw data such that ML models can use it.

v) Feature engineering: extract relevant features from raw data such that it can be
used for model building.

vi) Splitting data: separate data into training, validation, and test sets.

The metadata shall be able to capture information about data preparation and pro-
cessing (e.g., data source, data curation method, data statistics), as such data-related
operations influence the performance of a ML model [15].

2. Model learning. The model learning stage concerns the design and training of the ML
model. This stage can be divided into the following steps.

i) Model selection depends on the type of data (structured or unstructured).

ii) Select the loss function to measure training error.

iii) Select and tune hyperparameters to control overfitting, underfitting, and other
characteristics.

iv) Model training or fine-tuning on datasets to minimize error.

v) Repeat steps 3 and 4 until good precision numbers and low training error.

Capturing metadata about the configurations, such as model architecture, hyperparam-
eters, etc., is important to understand and interpret the performance of a model. In
addition, at this stage, the metadata regarding the dataset and execution environment,
e.g., hardware, also plays a role in impacting the model training. Thus, the trained model
is associated with the dataset, hyperparameter, as well as the training environment.
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3. Model evaluation and model verification. After the model training, the model needs
to be verified on unseen (validation or testing) data. The main goal of this stage is to
ensure that the model, after training, performs as expected on new inputs. Usually, this
is done by assessing the performance of the trained model against a test dataset that was
generated in the data management stage. The relevant metadata regarding the dataset
and model shall be captured. In addition, the relevant configurations, such as hardware
settings, should also be recorded.

4. Model inference and deployment. The outcome of this stage is a properly function-
ing, fully-fledged, and deployed ML system. At this stage, all the information from pre-
vious stages shall be revealed, such as dataset information, model training details, and,
most importantly, the performance under different environment specifications. The en-
vironment specifications include hardware specifications and any specific software con-
figurations or constraints. Fine-grained metadata helps ensure compatibility and opti-
mal performance of the deployed model. Practitioners can thus choose the appropriate
models for their needs and requirements.

1.2.1. LIMITATIONS OF CURRENT PUBLIC MODEL ZOOS AND ML SYSTEMS

Recent efforts within the ML community have been centered on democratizing ML prac-
tices, emphasizing both the utilization and sharing of ML artifacts. Platforms, commonly
referred to as model zoos, exemplified by Tensorflow Hub, PyTorch Hub, and Hugging-
Face, have taken significant strides in exposing metadata associated with ML artifacts.
It is noteworthy that some of these platforms have been developed during the duration
of this thesis. These platforms are grounded in the principles of open-source sharing,
making model parameters, scripts, and APIs readily accessible to users. With this thesis,
we advocate for an extension in their functionalities, to capture and make full use of rich
metadata throughout the ML lifecycle.

Notably, HuggingFace has introduced an abstraction layer with the Transformers li-
brary, simplifying the consumption and inference of these models [83]. This thesis pro-
ceeds to delineate the capabilities and limitations inherent in presently available model
zoos. As a prominent public model zoo, HuggingFace currently hosts model cards for
an extensive collection of over 803k models. The number of model cards is substantial,
but the quality is less satisfactory. Only a few model cards are thoroughly validated by
officials with details describing the models; others are customized content generated by
users. There are also missing model cards for some models, making it challenging for
users to understand and effectively utilize the models. Even in cases where model card
content is adequate, critical information, such as training details, dataset information,
and performance metrics, is often buried within lengthy textual descriptions.

Similar issues are evident in other model repositories, including ONNX9, TensorFlow
Hub, and PyTorch Hub. While these platforms offer convenient APIs for accessing mod-
els, along with associated scripts and weights, their primary focus remains on facilitating
efficient model access. Comprehensive metadata coverage for related artifacts is typi-
cally lacking. Description content is frequently sourced from Markdown files hosted in
external GitHub repositories. In some instances, essential performance metrics are con-

9https://github.com/onnx/models

https://github.com/onnx/models
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spicuously absent, as observed in TensorFlow Hub and PyTorch Hub.

Other ML experimentation platforms like MLflow [196] and Kubeflow [21] often focus
on tracking metrics and code versions but may not emphasize the systematic capture of
metadata related to data preprocessing, feature engineering, or execution environments.
This can hinder the reproducibility of complex ML workflows. A similar case applies to
AutoML tools, where they automate the training process while may not adequately cap-
ture the data preprocessing and feature selection decisions. These limitations hinder the
comprehensive understanding and effective utilization of models and related artifacts.

1.3. METADATA USAGE: DATABASE SYSTEMS VS. MODEL ZOOS
In the database (DB) community, on the other hand, metadata management assumes
paramount importance and constitutes a well-established practice. It is common for
database systems to maintain a catalog [108], also known as a data dictionary or data
repository, used to systematically organize, store, and maintain metadata relevant to the
management of the systems and its operations. The metadata within the DB catalog is
not merely an abstract concept but an invaluable resource. It plays multifaceted roles
by catering to the informational needs of various stakeholders, including end-users, ap-
plication developers, and the Database Management System (DBMS) itself. These roles
encompass a wide array of functionalities integral to the DBMS ecosystem.

Despite the availability of rich metadata, the extent to which these valuable resources
are leveraged for various ML tasks and applications remains limited. ML frameworks
and model repositories often do not seamlessly integrate metadata management into
their workflows, and fail to exploit the metadata, which hinders the potential of these
metadata exploited within the current ML ecosystems. This lack of integration can make
metadata an afterthought rather than a fundamental part of the ML lifecycle. This under-
utilization signifies a missed opportunity to enhance ML models’ transparency, inter-
pretability, and utility and their associated artifacts within the broader ML landscape.
Thus, there is a compelling need to bridge this gap and unlock the full potential of meta-
data to advance the field of ML.

In the following sections, we introduce examples of the application of metadata in
the field of databases to provide intuitions as to how model zoo metadata could prove
beneficial in ML practice. A comparison is presented in Table 1.1. We look at three as-
pects, namely: catalog and profiling, provenance, query optimization and execution.

Table 1.1: Comparison of metadata applications in database and ML research

Database practices ML practices
Data catalog

Model card/Data sheet
Data Profiling

Schema evolution
Model provenance

Data lineage and Provenance

Query optimization/execution
Query optimization/execution

(Model inference/training/deployment)



1

6 1. INTRODUCTION

1.3.1. DATABASE PRACTICES USING METADATA

Catalog and Profiling. The first category delves into the applications of metadata in
terms of building a catalog and profiling the data. These elements are essential in har-
nessing the full potential of an organization’s data assets and ensuring their efficient and
effective use.

• Data Catalogs. Metadata is used to create data catalogs that provide a comprehen-
sive inventory of available data assets within an organization. Data catalogs offer a
structured view of the database schema, table definitions, column attributes, and
data types, and usually include the meaning and attributes of the contained vari-
ables as well as information about the creation, format, and usage of the data [26].
They help users discover relevant datasets, understand their characteristics, and
promote data sharing and reuse [185]. With robust metadata as the core of the data
catalog, many other features and functions are supported, e.g., dataset searching
and dataset evaluation.

• Data Profiling and Quality Assessment Metadata can be used to profile data qual-
ity by recording statistics on data completeness, accuracy, and consistency. This
information assists data quality assessments and data cleansing processes and
helps identify data anomalies [93].

Provenance. In the dynamic world of data management, understanding the origins and
transformations of data is essential for maintaining data integrity and quality. This ne-
cessity brings to the forefront the concept of provenance, a critical aspect of data man-
agement underpinned by the effective use of metadata. We explore the role of meta-
data in facilitating provenance, focusing on schema evolution and data lineage, and how
these aspects are integral to modern database management practices.

• Schema evolution In evolving database schemas, metadata can help manage schema
changes smoothly. Database administrators can track and document alterations
over time by recording metadata about schema versions and changes, aiding in
database version control and migration [2].

• Data Lineage and Provenance. Metadata can be used to track the lineage and
provenance of data, ensuring that users can trace data back to its source. This is
essential for data quality assurance, auditing, and understanding data origins [27].

Query optimization and execution. Metadata plays a crucial role in query processing
and execution in database research, serving as a foundational element that enhances
efficiency and accuracy. Its application spans various aspects of DBMS, from optimizing
query execution plans to ensuring efficient data retrieval and processing.

• Query processing. Metadata is a valuable aid during query processing, guiding
the DBMS in several ways. Metadata can be leveraged to acquire and share data,
support data integration [57], reduce query processing overhead [145], and boost
interactivity [88].
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• Query optimization. Query optimization is a fundamental research topic in database
research [13, 34, 82, 105, 121]. Metadata is instrumental in optimizing the execu-
tion plans of queries within a database management system. By providing essen-
tial insights into the data distribution, indexing structures, and access patterns,
metadata enables the query optimizer to make informed decisions about query
execution strategies. For instance, knowing the cardinality of tables, the distri-
bution of values in columns, and the presence of relevant indexes allows the op-
timizer to select the most efficient join algorithms and access methods, thereby
enhancing query performance.

• Performance tuning Database administrators (DBAs) and system operators uti-
lize metadata to monitor and finetune the DBMS’s performance [155]. Metadata
can reveal valuable insights into resource utilization, query execution times, and
bottlenecks. Armed with this information, administrators can proactively address
performance issues, allocate resources optimally, and ensure the smooth opera-
tion of the DBMS.

1.3.2. PRACTICES AND INSIGHTS FOR ML RESEARCH USING METADATA
The significance of metadata can extend to ML practices, albeit with different focuses.
Leveraging the practices of using metadata in database research provides valuable in-
sights for enhancing the ML workflow. The principles of metadata management in databases
can be adapted and applied to various stages of the ML lifecycle, from model profiling to
model deployment.

Below, we focus on a few practices that exploit metadata for ML, i.e., model profil-
ing, model inference, and model fine-tuning. These focal points align with the thematic
areas addressed in this thesis.

• ML lifecycle profiling. Similar to data catalogs in databases, metadata in ML can
be used to create comprehensive catalogs of models and datasets. These catalogs
can provide detailed information about model architectures, training configura-
tions, dataset characteristics, and performance metrics. This aids in discovering
and selecting appropriate models and datasets for specific ML tasks.

• Optimizing model selection for complex inference tasks. Addressing complex
inference tasks often necessitates the utilization of multiple ML models to fulfill
intricate queries [86, 120, 192]. Identifying the most suitable models for specific
tasks can pose a formidable challenge in scenarios where a substantial collection
of models is available within a model zoo. To navigate such complexities, practi-
tioners require a deep understanding of the capabilities of available models. De-
tailed metadata can empower practitioners to make informed decisions regard-
ing model selection, ensuring that the chosen models align with the desired out-
comes.

• Facilitating model selection with a model zoo for fine-tuning. Model fine-tuning
in ML is a process that retrain a pre-trained ML model to make it perform better
for a specific task or dataset. This is particularly common in deep learning, where
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large pre-trained models on vast datasets are adapted to work on smaller, task-
specific datasets. The process of fine-tuning ML models from a model zoo can
be resource-intensive and time-consuming. Without adequate information about
the models’ characteristics and performance, practitioners may be compelled to
finetune numerous models, consuming extensive computational resources. The
availability of comprehensive metadata can alleviate this burden by enabling prac-
titioners to identify the most promising candidates for fine-tuning. This targeted
approach, utilizing metadata, not only enhances efficiency but also increases the
likelihood of achieving superior fine-tuning results while conserving computa-
tional resources [110].

In essence, the DB community’s meticulous approach to metadata usage underscores
its significance and the tangible benefits it brings to the efficient operation of DBMSs.
By drawing parallels with this established practice, the ML domain can gain valuable
insights into the potential advantages of adopting a similarly robust metadata manage-
ment framework to enhance ML workflows’ transparency, reproducibility, efficiency, and
effectiveness.

The utilization of metadata within ML artifacts holds significant promise for address-
ing prevailing challenges and enhancing the transparency of the ML workflow. By pro-
viding detailed information on the properties and dependencies of ML artifacts through-
out the entire ML lifecycle, we can open up a wealth of opportunities for improvement,
besides the ones mentioned earlier. These opportunities span a spectrum of applica-
tions, offering benefits such as increased workflow efficiency, more effective model se-
lection for complex inference tasks, and overall productivity enhancements for ML prac-
titioners.

1.4. RESEARCH QUESTIONS
In this thesis, we address the following research question:

How to represent and utilize metadata within ML model zoos with the aim of en-
hancing the processes of model training, inference, and fine-tuning?

It is apparent that this single doctoral thesis alone cannot address this broad research
question. Yet, it highlights the focus on this thesis, i.e., how to use metadata to support
ML workflows. Before we exploit the usage of the metadata, we first require structured
representations to capture the comprehensive metadata. Thus, we start by describing
work on ML metadata representation. With the representation, we further utilize the
metadata to enhance various ML workflows, i.e., model inference and fine-tuning by
selecting the ‘right’ models. We aim to improve the efficiency and effectiveness of these
workflows.

We formulate the following four high-level questions to address the main research
question:
Q1: How to represent metadata in a model zoo in a structured and queryable fashion?

By answering this question, we identify the metadata of different artifacts captured
throughout the ML lifecycle. We design a metadata model that represent metadata of dif-
ferent artifacts (e.g., model, dataset, configuration). We implement the metadata model
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with a actively-used database, and present a tool that can extract, store and query the
metadata. The structured and queryable metadata representations enables the manage-
ment and access to the diverse metadata, allowing practitioners to explore and monitor
the metadata, and providing opportunities to be applied in downstream tasks for differ-
ent purposes.

With the metadata being captured and stored, we continue to identify the metadata
that can help speed up the model training and inference process. Arun’s work [36] was
identified to be effective in improving the speed of model training either in a factor-
ized way or materialized way depending on the attributes of the data. In this research
question, we identify the necessary metadata that can be applied to make decision on
whether to factorize or to materialize. To train a model in a factorized or materialized
way may affect the training and inference time, which is the efficiency of the ML work-
flows. The answer to this question shows the fine-grained metadata can assist ML tasks
by improving the efficiency.

This work is presented in Chapter 2, and it is based on the following publications:

• Li, Z., Kant, H., Hai, R., Katsifodimos, A., Brambilla, M., & Bozzon, A. (2023). Meta-
data Representations for Queryable Repositories of Machine Learning Models. IEEE
Access.

• Li, Z., Kant, H., Hai, R., Katsifodimos, A., & Bozzon, A. (2023, June). Macaroni:
Crawling and Enriching Metadata from Public Model Zoos. In International Con-
ference on Web Engineering (pp. 376-380). Cham: Springer Nature Switzerland.

• Li, Z., Sun, W., Zhan, D., Kang, Yan., Chen, L., Bozzon, A., & Hai, R. (2024, Febru-
ary). Amalur: the Convergence of Data Integration and Machine Learning. IEEE
Transactions on knowledge and data engineering 39, no. 1.

Q2: How can the metadata be leveraged to enhance the efficiency and effectiveness of
ML inference queries?

We move on to the scenarios of serving ML models. In this stage, practitioners would
use ML models to perform certain task, e.g., complex analytic tasks with several mod-
els involved. In this context, we only focus on ML inference. We referred to this type
of queries with ML models as operators as ML inference queries. Given different con-
straints, e.g., accuracy requirement or latency constraint, it would be time-consuming
and expensive to use human labor to select models to answer the queries, or it might
yield poor performance if the model selection only based on a single objective, e.g., ac-
curacy, ignoring the effect on other objectives.

This work focuses on optimizing ML inference queries in the context of large model
zoos, where selecting the right ML models and determining their execution order is chal-
lenging. To address this, we propose a method that formulates the problem as a Mixed
Integer Programming (MIP) problem and develops an optimizer. This optimizer maxi-
mizes accuracy while considering constraints, offering a solution to the constraint-based
ML inference query optimization problem, even in complex scenarios.

This work is presented in Chapter 3, and it is based on the following publications:
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• Li, Z., Schönfeld, M., Sun, W., Fragkoulis, M., Hai, R., Bozzon, A., & Katsifodimos,
A. (2023, June). Optimizing ML Inference Queries Under Constraints. In Interna-
tional Conference on Web Engineering (pp. 51-66). Cham: Springer Nature Switzer-
land.

• Li, Z., Schönfeld, M., Hai, R., Bozzon, A., & Katsifodimos, A. (2023, April). Opti-
mizing machine learning inference queries for multiple objectives. In 2023 IEEE
39th International Conference on Data Engineering Workshops (ICDEW) (pp. 74-
78). IEEE.

Q3: How can metadata, along with other representations be employed to predict the
performance (i.e., accuracy) of models without undergoing the fine-tuning process?

In the previous scenarios, we assume that the data distribution remains the same,
such that the trained models can be used for inference directly. In this research question,
we investigate in the situation when there is a shift in data domain. The pre-trained
models are no longer available. We aim to select a good (effective) set of models which
would perform well after fine-tuning. In such a way, we reduce the computation cost and
time (efficiency) by fine-tuning only the good-performing models. Otherwise, we may
need to fine-tune a large set of models, which is costly and also time-consuming. The
answer to this question shows that we can utilize the metadata (e.g., of models, and of
datasets) to select models for fine-tuning with the purpose of improving the effectiveness
and the efficiency.

This work is presented in Chapter 4, and it is based on the following publications:

• Li, Z., Van der Wilk, H., Zhan, D., Khosla, M., Katsifodimos, A., Bozzon, A., & Hai,
R., (2024, May). Model Selection with Model Zoo via Graph Learning, In 2024 IEEE
40th International Conference on Data Engineering (ICDE). IEEE.

1.5. THESIS OUTLINE
This thesis is organized in 5 chapters, as depicted in Figure 1.2. In Chapter 2, we propose
a metamodel that represents the metadata within the ML context. Continue in Chap-
ter 3, we explores the exploitation of metadata for various ML applications. In specific,
Chapter 4 utilizes metadata for ML inference query optimization, where constraints are
specified. We aim to select models from a model zoo for fine-tuning. We investigate how
to utilize the metadata to understand and predict the model performance.
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Applications of using metadata
Objective: Improving ML workflows on effectiveness and/or efficiency

Chapter 3: Optimizing ML Inference Queries (Q2)

Chapter 4: Selecting ML Models for Fine-tuning (Q3)

Chapter 1: Introduction

Chapter 5: Conclusion

Chapter 2: Metadata Representations (Q1)

Figure 1.2: Structure of the thesis
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METADATA REPRESENTATIONS

Machine learning (ML) practitioners and organizations are building model reposito-
ries of pre-trained models termed model zoos. These model zoos contain metadata de-
scribing properties of the ML models and datasets that are useful for reporting, audit-
ing, reproducibility, and interpretability purposes. Despite the growing adoption of de-
scription formats like datasheets and model cards, metadata present in current model
zoos is very limited. Moreover, existing formats have limited expressiveness, thus ul-
timately limiting the potential use of model repositories beyond the simple storage of
pre-trained models. In this chapter, we introduce a unified metadata representation for-
mat for model zoos. We show how such rich metadata enables a broad set of use cases,
which include the search, reuse, comparison and composition of ML models, and the ac-
celeration of ML model training, and inference. We also describe the design, and show-
case the implementation of an advanced model zoo system built on top of our metadata
representation.

This chapter is based on the following publications:

• Li, Z., Kant, H., Hai, R., Katsifodimos, A., Brambilla, M., & Bozzon, A. (2023). Meta-
data Representations for Queryable Repositories of Machine Learning Models. IEEE
Access.

• Li, Z., Kant, H., Hai, R., Katsifodimos, A., & Bozzon, A. (2023, June). Macaroni:
Crawling and Enriching Metadata from Public Model Zoos. In International Con-
ference on Web Engineering (pp. 376-380). Cham: Springer Nature Switzerland.

• Li, Z., Sun, W., Zhan, D., Kang, Yan., Chen, L., Bozzon, A., & Hai, R. (2024, Febru-
ary). Amalur: the Convergence of Data Integration and Machine Learning. IEEE
Transactions on knowledge and data engineering 39, no. 1.

13
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2.1. INTRODUCTION
Machine learning (ML) is increasingly used across application domains such as video
analytics [156, 192], autonomous driving [76], content moderation [62], traffic monitor-
ing [133] and crowd detection [157]. While ML models can be (and often are) trained for
specific purposes, there is a growing interest in reusing and re-purposing of pre-trained
ML models [78]. This shift, motivated mainly by computational, economic, and envi-
ronmental reasons, is evident from the proliferation of public, pre-trained ML model
zoos, such as HuggingFace, Tensorflow Hub, and PyTorch Hub1. These model zoos con-
tain thousands of pre-trained models for diverse ML inference needs (e.g., recognition
of classes/objects/concepts). Thanks to model zoos, complex predictive and analytics
tasks can benefit from reusing existing ML models.

The potential of model zoos is currently hindered by the lack of structured, compre-
hensive, and queryable metadata representations. Current repositories include a wide
range of information, e.g., using model cards [131]. However, such information is mostly
for human consumption, and the level of detail remains coarse-grained, thus preventing
advanced repository automation and management functionalities. Table 2.1 presents
the information provided by different public model zoos. The categories of the infor-
mation cover different aspects of ML artifacts (e.g., model, dataset, performance). We
observe that current model zoos only provide limited information; for instance, PyTorch
Hub provides only the ReadMe files from the source (e.g., a GitHub repository). In-
sufficient information forces practitioners to search for additional metadata in external
repositories and descriptive documents or repeatedly go through the ML lifecycle. These
processes impede the reuse of models and hamper their evaluation and assessment.

Table 2.1: The existing public model zoos encompass various categories of metadata. The presence of meta-
data in each category can be denoted by symbols: ✓ indicates that the metadata is available, ∼ indicates that
the metadata is available only in certain cases or provides limited information. Additionally, queryability is
used to describe the type of queries that can be supported by the model zoo.

Dataset Metadata Evaluation Metadata

Model Zoos Source Statistics
Configuration

Metadata
Prediction
Metadata

Metrics
Hardware

specifications
Queryability

HuggingFace [83] ✓ ∼ ✓ ∼ Faceted search

PyTorch Hub [147] ∼ ∼ Faceted search

TensorFlow Hub [173] ✓ ∼ ∼ ∼ Faceted search

Papers with Code [144] ✓ ✓ Faceted search

OpenVino [142] ∼ ∼ ✓

DawnBench [43] ✓ ∼ ✓ ✓ Faceted search

Macaroni’s Metamodel ✓ ✓ ✓ ✓ ✓ ✓ Structured queries

The software market provides several tools and platforms designed to help manage
the ML lifecycle and experiment tracking with the support of metadata (e.g., MLflow [35],
Weights & Biases [184], ClearML [41], comet [44]). However, the metadata is not stan-
dardized and requires custom formats from its users through API calls. While this ap-
proach may be convenient for users who wish to manage their private repositories, it falls
short of facilitating broader knowledge sharing, integration, and reuse. This limitation

1https://huggingface.co/, https://www.tensorflow.org/, https://pytorch.org/hub/

https://huggingface.co/
https://www.tensorflow.org/
https://pytorch.org/hub/
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Figure 2.1: ML lifecycle along with metadata of different artifacts. We highlight the model zoo in model de-
ployment phase with detailed components.

ultimately hampers the full potential of leveraging metadata to enhance and optimize
the ML lifecycle. Unlike these works focusing on managing the ML lifecycle, our work
is specifically dedicated to addressing the metadata needs required to support model
repositories and enable advanced functionalities, such as model retrieval and composi-
tion.

While data profiling techniques can determine metadata for datasets [1], the grow-
ing scope of ML applications (including their undesired effects on individuals and soci-
ety [195]) requires metadata able to describe all the ML artifacts included in model zoos.
The metadata should include information such as a model’s inference capabilities (e.g.,
identified object classes), architecture, inference time, datasets (for training/validation/test),
configurations (e.g., hyper-parameters values), and evaluation performance (refer to Ta-
ble 2.3 for a complete list of metadata).

Such metadata can be helpful in different phases across the entire ML lifecycle [160,
161], as shown in Figure 2.1. A few examples include: i) Data cleaning and preprocess-
ing: The metadata of the training dataset can assist practitioners in identifying erro-
neous instances such that they can exclude the problematic data points during training
[81]. ii) Model selection: Metadata accelerates the learning process by setting warm-start-
ing of hyper-parameter searches instead of random search [191]. iii) Model evaluation:
Metadata can facilitate keeping track of the performance of different objectives [78], as
well as the predictions of each instance for further analysis (e.g., model explainability).
iv) Model explainability and reproducibility: Metadata management can be used in the
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context of Trustworthy and Responsible AI2. Metadata can facilitate model explanation
with model predictions and annotations [95]. v) Model serving: Metadata about model
inference can perform model comparison and help practitioners decide which to use in
production [66].

In addition, the availability of model metadata can also facilitate machine learning
operations, commonly referred to as MLOps [101], and opens up new opportunities for
advanced use cases such as i) retrieving models from large repositories with complex fil-
tering conditions; ii) continuous integration of models in production (e.g., using transfer
learning [171, 205]); iii) (semi-)automatic model composition; and iv) advanced model
management system. We will further discuss the use cases in Section 2.2.3.

In this chapter, we advocate for expressive metadata representation for model zoos.
Beyond the current state-of-the-art (and practices) [5, 159], we propose a metadata for-
mat that can capture information about relevant artifacts (e.g., models, datasets, data
instances, training configurations, evaluation) and their relationships. We also describe
the design and current implementation of an advanced ML models management plat-
form called Macaroni [111]3 that can be used to query and make use of such metadata.
As seen in Table 2.1, our proposed metadata representations cover various categories of
metadata and can support the querying of it, as in the example in Table 2.2.

The contributions of this chapter are the following:

• We introduce a structured and queryable metadata model designed to provide
comprehensive representations within model zoos, as detailed in Section 2.3.

• To validate our metadata model, we present Macaroni, a reference tool offering
retrieval and analytical functionalities, operating across several model zoos. These
functionalities are explained in Section 2.4.1.

• Our work demonstrates how the metadata model facilitates automatic model reuse
and composition. This is achieved through Boolean expressions over inference
predicates and performance constraints, as outlined in Section 2.6.

2.2. ML MODEL ZOOS
The purpose of a model zoo is to store and provide access to different artifacts – and their
descriptions – created throughout the lifecycle of ML. In this section, we first briefly de-
scribe the ML lifecycle, highlighting relevant artifacts. We then describe the organization
and functionalities of model zoos.

2.2.1. MACHINE LEARNING ARTIFACTS

In the proposed metadata model, we tackle relationships among the artifacts in the en-
tire ML lifecycle, including data collection, model training, model inference, serving, and
reporting. We include the following artifacts that we believe should form the pillars of a
rich model zoo: i) Model, ii) Dataset, iii) Configuration, iv) Prediction - semantic capabil-
ities, v) and Performance.

2https://partnershiponai.org/paper/responsible-publication-recommendations/
3Prototype available at https://sites.google.com/view/macaroni-model-zoo/home

https://partnershiponai.org/paper/responsible-publication-recommendations/
https://sites.google.com/view/macaroni-model-zoo/home
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ML Model. Throughout the years, we have witnessed the advances of ML, and new mod-
els are developed with performance even surpassing human-level capabilities in many
real-world tasks. Compared to the traditional ML models, such as regression models
and decision trees, deep neural networks are far more complicated due to their complex
architecture and their large number of parameters (some model sizes going beyond bil-
lions or trillions of parameters). To differentiate one model from others, simply knowing
its name is insufficient. Additional information needs to be provided, not only for model
reporting and reproducibility purposes but also for explainable AI.

Dataset. In recent years, there has been a notable emergence of the Data-centric dis-
course within the ML community, as elucidated in the study by Miranda et al. [129]. This
emphasizes the crucial role of datasets in the training and testing of ML models. Datasets
are crucial in ML for training models, evaluating performance, addressing biases, guid-
ing feature selection, supporting transfer learning, assessing generalization and robust-
ness, and promoting reproducibility and transparency. They serve as the foundation
for developing effective and trustworthy ML models. Especially, understanding the data
source and the collection methods becomes essential when diagnosing or debugging a
model; yet, unfortunately, it is a frequently overlooked aspect in dataset reporting [24].

Configuration. A set of important configurations for model training are hyperparame-
ters. By carefully selecting and tuning the hyperparameters, practitioners aim to opti-
mize the model’s ability to learn patterns from the data, reduce overfitting, and achieve
better generalization to unseen samples. Besides hyperparameters, the configuration
settings for ML model training or inference also include hardware configurations, such
as CPUs, GPUs, or specialized accelerators. The hardware configurations not only affect
the performance on latency measurement [154] but also on accuracy [170].

Prediction. Training a ML model is to fulfill a specific task for a real-world problem, e.g.,
image classification or named-entity recognition. Usually, the predictions are associated
with the labels of the tasks. Researchers nowadays are investigating the semantic mean-
ing of the predictions as concepts [16] to debug or explain the capability of a model. We
highlight that the prediction outputs of a model with associated semantics play a signif-
icant role in explainable AI [16].

Evaluation. The most straightforward way to observe the capability of a model is to eval-
uate it on a particular task. The majority of current deep learning performance bench-
marks only measure the aggregated performance of the model, such as overall accuracy
or processing time for a single minibatch of data. ML model performance is much more
complicated in practice. Recent works, such as DAWNBench [42], propose measuring
ML models’ performance from diverse perspectives, including training time, inference
latency, accuracy, etc. Besides these measurements, our proposed metadata system for
model zoos also presents the per-class performance and supports a broader range of
models.

2.2.2. EXISTING MODEL ZOOS

Recently, communities have been focusing on democratizing ML, for both using and
sharing. Platforms, often referred to as model zoos, such as Tensorflow Hub, PyTorch
Hub, and HuggingFace, are now exposing metadata related to ML artifacts. These plat-
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forms/hubs are building on the principles of using open-source model parameters, scripts,
and APIs. HuggingFace also offers an abstraction with the Transformers library, which
makes it easy to consume and infer these models [83]. In the following, we describe the
capabilities and limitations of currently available model zoos.

Metadata. Existing model zoos offer users model cards [131] that describe the models in
different levels of detail. Model cards contain metadata regarding different artifacts: For
example, in TensorFlow Hub, they include metadata such as model publisher, architec-
ture, data that train the model, inputs and outputs. Pytorch Hub includes model descrip-
tion, usage, and results. Besides the mentioned metadata, HuggingFace also includes
discussions on the bias and limitations of the model. The metadata in these model zoos
provides practitioners with different aspects of the artifacts.

Functionalities. Given the metadata, model zoos provide access to retrieving the mod-
els by means of filtering by name, task, or trained data. Some of the model zoos also
support data retrieval given provided metadata of the related dataset. On top of all func-
tionalities, model inference and sharing is the most important feature of these model
zoos. They provide corresponding APIs for model execution. Practitioners can consume
these public ML models for downstream tasks, e.g., building applications on top of the
models, and finetuning the models on the specified dataset. For example, the APIs of
HuggingFace are built on top of transformers [186], and users can easily infer models in
NLP domains.

Limitations. Model zoos differ in the type and level of detail for the metadata associated
with the different ML artifacts. Therefore, practitioners will need to manually retrieve
and integrate information from various platforms if the same artifact (e.g., a dataset) is
hosted in multiple zoos. Metadata quality and consistency are also an issue: often, mod-
els are described with little or no metadata; for example, it is very common for users of
the HuggingFace platform to upload only the trained models without additional descrip-
tions. Finally, metadata are often not offered in a computer-readable format: most of
the descriptions of the artifacts are presented in plain texts, created only for human con-
sumption. Obviously, this greatly hinders the retrieval capabilities of the model search
engines and the ability of practitioners to compare different models.

2.2.3. REQUIREMENTS FOR FUTURE MODEL ZOOS

With the existing public model zoos, we observe some limitations that hinder the reuse,
sharing and management of ML models. We foresee that the future model zoo should
contain one of the following attributes: i) rich metadata representations that enable
querying the repository; ii) rich analytic capabilities to facilitate advanced performance
evaluation and comparison; iii) offering different functionalities, including serving the
models through APIs or endpoints, and integrating the downstream systems that (e.g.,)
accelerate model inference.

Rich metadata representations. The model zoo should contain information regarding
different artifacts, e.g., data, ML model details, model performance, etc. This informa-
tion allows practitioners to be aware of how the model is defined, on what dataset it is
trained, and the corresponding evaluation performance. With rich metadata represen-
tation, practitioners may not only have access to comprehensive information but also
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Table 2.2: Example queries

Property ID Query

Dataset information

1
Retrieve text classification models trained on dataset
crowdsourced by at least a group of 50 people

2
Find a dataset collected from COCO and OpenImage
with all the images containing “dog”

Model performance

3
Retrieve models trained on ImageNet with an accu-
racy higher than 90%

4
Which model performs the best on COCO for person
detection?

Interpretability

5
Retrieve a person detection model with no gender
bias

6
Retrieve text generation models that do not generate
hate speech

Hardware-related 7
Retrieve image classification models that are suitable
to deploy on edge devices

search/query on top of it, which enables data/model search, data/model discovery, and
comparison. Table 2.2 lists some example queries that could be valuable for ML devel-
opers and users. These queries require more fine-grained model metadata that current
model repositories, such as HuggingFace, do not support. This highlights the need for
detailed metadata of trained ML models and datasets in a structured and queryable rep-
resentation.

Operations that facilitate advanced performance evaluation. A model zoo is not a
mere information presentation platform, but it shall also serve as a tool for practition-
ers to facilitate advanced performance evaluation. When a new/updated dataset is pro-
vided (provided by the practitioners or added by the system), the model zoo shall allow
automated evaluation/finetuning or provides operations for the practitioners to evalu-
ate/finetune models on top of it. For example, a practitioner would like to test the ro-
bustness of a model by evaluating the model performance on a perturbed dataset. To
facilitate this, the model zoo shall first allow operations on a dataset for perturbations
(e.g., adding noise, adversarial attacks) or users uploading their own data. In addition,
the model zoo shall also provide APIs to perform the evaluation of the dedicated models
on the perturbed dataset.

Other functionalities. The purpose of having a model zoo includes sharing and serving a
model. The model zoo shall also provide easily-access APIs or endpoints to serve/deploy
a model. With models of various characteristics (e.g., tasks to answer, evaluation perfor-
mance), the model zoo makes it feasible to solve complex analytic tasks by constructing
workflows through the composition of models. Optimizations can focus on how to de-
fine the workflow under requirement constraints (e.g., accuracy or latency) [113], or how
to assign workload on heterogeneous hardware (e.g., edge or server) [187].
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Metamodel of ML Model Repository

ML Model Package Dataset Package Configuration 
Package

Prediction Package Evaluation Package

Figure 2.2: The packages in the metamodel

2.3. PROPOSED METAMODEL
Based on the analysis of the current capabilities and limitations of current model zoos,
we now describe the metadata format (i.e., the metamodel) that can be used to represent
different ML artifacts and their relations. With our proposed structured representation
along with comprehensive metadata, users can retrieve metadata in fine-grained details.

Figure 2.2 depicts the main sub-models that compose our metamodel in a bird’s eye
view and Figure 2.3 presents the details.The metamodel comprises five packages:

i) the ML Model package, which defines the ML models, their architecture, input,
and output formats;

ii) the Dataset package, which contains the information on the datasets;

iii) the Configuration package, which summarizes the configuration settings when
training and using a model for inference;

iv) the Prediction package, which describes the inference output of the model, pos-
sibly enriched with description from a knowledge graph;

v) the Evaluation package, which presents the different evaluation metrics, includ-
ing the ones related to output accuracy and to time performance.

Table 2.3 shows the summary of the metadata included in our metamodel, and the
associated artifacts.

2.3.1. ML MODEL PACKAGE
The taxonomy for the ML Model package, depicted in Figure 2.4, encompasses classes
with a white background, delineating various components such as ML Model basic in-
formation and the algorithm. The metadata associated with the ML Model encompasses
essential details such as name, version, tasks, input and output specifications (I/O), as
well as a URL linking to the script files. The algorithm specify the ML algorithms in dif-
ferent categories: traditional ML algorithms, such as SVM, decision tree, and Deep Neu-
ral Network (DNN). DNN can be further divided into different types of networks, e.g.,
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Figure 2.3: Modeling the metadata throughout ML lifecycle
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Table 2.3: Metadata summary

Artifacts Metadata type

ML Model
ID, name, version, task, architecture, input & output format/size,

source URL, algorithm (e.g., SVM, decision tree, DNN

Dataset
ID, name, version, source, label schema, data instance ID,

data instance attribute, data instance URI

Configuration
ID, configuration type (training/inference/testing),

hyperparameter name and value, hardware attribute version

Prediction
ID, task, classes (classification task), values (regression task),

bounding box (object detection task), semantic concepts

Evaluation evaluation type, evaluation metric name, evaluation value

CNN and RNN. One of the trends of advancement in DNNs is characterized by contin-
uous innovation and the development of increasingly sophisticated architectures, e.g.,
transformers [186], GPT [150], BERT [50]. Recording the framework and architecture of
these advanced models is thus fundamental. The availability of such metadata is of im-
portance in facilitating model management, model understanding, and interoperability
within the ML ecosystem, and it promotes trust and confidence in the models.

YOLOv3: MLModel

+ ID: M0001
+ Name: YOLOv3
+ Version: v3
+ Task: Object Detection
+ Input: 224x224
+ Output: ObjectDetection
+ Algorithm: DNN
+ URL: http://xxxx.com

YOLOv4: MLModel

+ ID: M0002
+ Name: YOLOv4
+ Version: v3
+ Task: Object Detection
+ Input: 224x224
+ Output: ObjectDetection
+ Algorithm: DNN
+ URL: http://yyyy.com

DNN

+ Framework: PyTorch
+ Architecture: YOLO
+ NetworkType: CNN

YOLO-OD: ObjectDetection

+ ID: P00041
+ Task: Object Detection
+ BoundingBox: [x, y, height, width]

Wheel:
Semantic Concept

+ ID: S0001
+ Name: Wheel

Car: Class

+ ID: C0001
+ Name: Car

Person: Class

+ ID: C0010
+ Name: Person

Face:
Semantic Concept

+ ID: S0010
+ Name: Face

Figure 2.4: ML Model and Prediction model extract for a running example

2.3.2. DATASET PACKAGE
The behavior of a ML model heavily relies on the data that has been used for training
it. Thus the metamodel includes a Dataset package, representing both Datasets and
their DataObjects. With the Dataset element, we present the metadata of the datasets
that is significant for data management and reporting. Examples of the metadata are
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i) ID, to uniquely refer to a dataset; ii) Name, name of the dataset; iii) Version, version of
the dataset, e.g., COCO has multiple versions constructed in different years; iv) Source,
reference to other dataset(s) which (partially) construct the current dataset; v) Attributes,
the attributes contained in the dataset, specifically for structured datasets, specifying
different columns.

A dataset consists of multiple data objects. With DataObject, we denote the i) ID, to
uniquely refer to a piece of content; and ii) URI, a string that unambiguously identifies
the location of the content.

Figure 2.5 shows the datasets applied in the example. COCO is a popular image
dataset that is usually used to train object detection and image segmentation models.
In this case, we split COCO into a training set and a testing set. Both datasets have the
same source, which is the complete COCO dataset. The COCO training set and test set
contain a different subset from the complete dataset.

COCO2017:
Dataset

+ ID: D0010
+ Name: COCO
+ Version: 2017

COCO2017train:
Dataset

+ ID: D0020
+ Name: COCO
+ Version: 2017train

COCO2017test:
Dataset

+ ID: D0021
+ Name: COCO
+ Version: 2017test

DI00100:
DataInstance

+ ID: DI00100
+ URI: http://xxx.png

DI2100: DataInstance

+ ID: DI02100
+ URI: http://xxy.png

Figure 2.5: Dataset model extract for a running example

2.3.3. CONFIGURATION PACKAGE
The Configuration package encompasses essential concepts that establish connec-
tions to various packages. These packages define the associated model, dataset, hard-
ware specifications, predictions, etc. The Configuration model is related to multiple
entities, ML Model, Hardware, Predication, and Dataset. It associates the model with
dataset and hardware, indicating where the model is trained on with which dataset.
A different associated training dataset will result in a different model, with different
learned parameters/weights. Within the Configuration package, Hyperparameter
model, Hardware model, and Configuration are three main components. These com-
ponents collectively define the essential settings for both training and inference pro-
cesses. They play a crucial role in determining the behavior and performance of the
model throughout its lifecycle.

The Hardware model contains the concepts that denote the hardware that a model is
trained on or executed on. The Hardware model comprises metadata that describes the
hardware setting, associated with different HardwareAttributes. We list three types of
hardware, i.e., Cloud resources, Edge devices, and Clusters. The Cloud resources associ-
ated with the public cloud services, such as AWS, Google Cloud, and Azure. An example
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YOLOv3: MLModel

+ ID: M0001
+ Name: YOLOv3
+ Version: v3
+ Task: Object Detection
+ Input: 224x224
+ Output: ObjectDetection
+ Algorithm: DNN
+ URL: http://xxxx.com

Inference:
Configuration

+ ID: IC0001

COCO2017test:
Dataset

+ ID: D0021
+ Name: COCO
+ Version: 2017test

COCO2017train:
Dataset

+ ID: D0020
+ Name: COCO
+ Version: 2017train

Training:
Configuration

+ ID: TC0001

Cluster: Hardware

+ ID: HD0005
+ Provider: SurfSara

Threshold:
Hyperparameter

+ ID: H0008
+ Name: Threshold

ThresholdVal:
HyperparameterV​alue

+ Value: 0.3

ClusterCPU:
HardwareAttribute

+ Name: CPU
+ Value: 8

ClusterGPU:
HardwareAttribute

+ Name: GPU
+ Version: String
+ Value: 1

LR:
Hyperparameter

+ ID: H0001
+ Name: Learning_rate

LRVal:
HyperparameterV​alue

+ Value: 0.0001

Optimizer:
Hyperparameter

+ ID: H00020
+ Name: Optimizer

OptimizerVal:​
HyperparameterV​alue

+ Value: SGD

Cloud: HardwareAttribute

+ Name: Configuration
+ Version: p3.16xlarge
+ Number: 16

Cloud: Hardware

+ ID: HD0010
+ Provider: AWS

Figure 2.6: ML Model and Configuration model extract for a running example

of the hardware attributes for the Cloud, is the cloud configuration, e.g., 16 p3.16xlarge
supported by AWS. For Edge, the hardware attributes include the type of the device (e.g.,
mobile phone, camera), storage capacity, memory, CPU, or GPU settings. Similar to
Edge, a Cluster comprises metadata such as storage capacity, types, and the number of
GPUs and CPUs.

The Configuration model is categorized into TrainingConfiguration and Infe-
renceConfiguration. They have various sets of hyperparameters associated with dif-
ferent HyperparameterValue. For example, the former model specifies the hyperpa-
rameters related to optimization, e.g., type of optimizer, and learning rate, while these
are not necessary for inference.
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2.3.4. PREDICTION PACKAGE

The Prediction package contains the concepts that denote the model prediction/output,
associated with the semantic concepts of the outputs (e.g., wheel to a car). The model
elements of Prediction are presented with blue background.

The Prediction class allows the description of different types of tasks, i.e., regres-
sion and classification. Each Prediction is defined by ID and Type of the prediction.
The prediction of a regression model is associated with a value. While the prediction of
classification model can be further divided into multiple subclasses, e.g., binary classi-
fication, multiclass classification, and object detection. Classification model prediction
is associated with a different number of classes. Specifically, ObjectDetection is asso-
ciated with additional output, BoundingBox, which is defined by an array indicating the
coordinate of the detected object in a picture. The classification prediction can be ex-
panded and implemented for different kinds of models, e.g., image segmentation, with
an additional attribute of an array.

Optionally a Class can be linked with a Semantic Concept from a knowledge base,
thus allowing complex reasoning. Consider the example that an ML practitioner is build-
ing an ML model for image classification of cars, and she tries to conduct a model diag-
nosis. She may have several questions: what makes the model identify a car as a car?
What are the semantic concepts that the model is capable of identifying? Are the wheels
that make it believe that it is a car? To support such use-cases, the metamodel allows
storing information about inference performance on specific data instances, which can
be used to describe the behavior of a model, i.e., in what circumstances a model can
perform well and why. Such information and awareness of the model prediction may
significantly improve ML model interpretability in various applications such as health
care, law enforcement, and finance.

Figure 2.4 presents an extract of the ML Model and Prediction Model as an exam-
ple. YOLOv3 and YOLOv4 are two example models. Both models tackle object detection
tasks, and the algorithm is DNN. Their output follows ObjectDetection types of predic-
tion, with different classes (e.g., car and person in this case) and associated bounding
boxes that locate the detected object. The object classes are related to different semantic
concepts, for example, the wheel as part of the car, and the face as part of a person.

2.3.5. EVALUATION PACKAGE

The performance evaluation of an ML model is critical during both the training and de-
ployment phases. The practitioners need to deploy a suitable ML model for the task
given a specified environment, e.g., Hardware parameters. A mismatch of the deploy-
ment will lead to latency issues or reliability concerns, which results in user dissatis-
faction. Hence, we present the Metric model to denote the model performance as-
sociated with the Configuration model. Thus the model performance is related to
the model, hyperparameter settings, hardware, and applied dataset. Specifically, we as-
sociate Metric model with TrainingConfiguration and InferenceConfiguration,
since a model may train on a dataset while inference on another dataset. A Configuration
is related to zero or more Metric, each associated with a unique MetricValue.

The Metric is categorized into multiple types of metrics, e.g., ExecutionMetric
such as MemoryFootprint and Executiontime; and Prediction Metric denoting the cor-
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Inference:
Configuration

+ ID: IC0001

Person: Class

+ID: C0010
+ Name: Person

AP-Car:
ExecutionMetric

+ ID: MT002
+ Name: AP

Car:Class

+ID: C0001
+ Name: Car

AP-CarVal:
InferenceMetricValue

+ Value: 0.78

Inference Speed:
ExecutionMetric

+ ID: MT004
+ Name: Latency
+ Type: Latency

Inference Speed:
InferenceMetricValue

+ Value: 25 ms/frame

mAP:
ExecutionMetric

+ ID: MT004
+ Name: mAP
+ Type: mAP

mAPVal:
InferenceMetricValue

+ ID: MT004
+ Name: mAP
+ Type: mAP

AP-PersonVal:
InferenceMetricValue

+ Value: 0.82

AP-Person:
ExecutionMetric

+ ID: MT002
+ Name: AP-Person
+ Type: AP

Figure 2.7: Evaluation model extract for a running example

rectness of the performance.

Evaluation Metric contains metric-related metadata. Different models will need
different evaluation metrics, for instance, a regression model would have a Mean Square
Error - MSE, while a multi-class classification model would have an accuracy value for
each class.

Figure 2.7 presents the example of Evaluation package. The model inference con-
figuration with ID IC0001 is illustrated in Figure 2.6, associated with execution hardware,
ML model, and dataset. To present the performance of a model under specified config-
uration settings, we include various types of metrics. In general, two kinds of metrics
are introduced, i) correctness performance, verifying the prediction performance of the
model, ii) and execution performance, including the runtime and memory footprint of
the model. In the example, the latency and memory of the model are recorded, with
a latency of 25ms and 90MB for the model size. In terms of correctness performance,
we apply the common metrics to evaluate the object detection model. The metrics in-
cluded in the example are average precision (AP) and mean average precision (mAP). In
particular, we provide the AP metric for each class, allowing practitioners to assess the
model’s performance at a granular class level. Compared to the existing benchmarks or
platforms that only report aggregate results, the performance metric that we include is
more fine-grained.
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Dataset Storage

Model Storage
Web-based

User Interface

Metadata 
Crawler

Metadata Storage

Query API

External 
Model Zoos

Search Results

Performance 
Evaluation

Evaluation 
Pipeline

Data 
Perturbation

Figure 2.8: The system architecture of Macaroni

2.4. MACARONI: A REFERENCE IMPLEMENTATION OF AN AD-
VANCED MODEL ZOO

This section describes the architecture and functionality of Macaroni [111], a tool de-
signed and implemented to demonstrate how our metamodel can be used in ML model
zoos. The implementation4 is based on the metadata model described in the previous
section. The architecture of Macaroni is shown in Figure 2.8. The tool is currently de-
signed to retrieve metadata from different sources, integrate and enrich them, and allow
for complex retrieval queries. The available APIs also allow for model execution and
model composition.

2.4.1. SYSTEM DESIGN
The system aims to query and enrich the metadata for model zoos. We present the sys-
tem architecture in Figure 2.8. The system includes a web-based interface as front-end
and back-end with storage and computation. We collect metadata in two ways: crawling
ML-related metadata from external model zoos; and enriching metadata, e.g., obtaining
model performance by evaluating the model on raw or perturbed dataset. The metadata
obtained is later stored in metadata storage supported by a metadata model. Macaroni
allows users to i) interactively search/discover models, ii) compare multiple models on
various objectives (e.g., accuracy, runtime, size), iii) and, specially, measure the robust-
ness of models on perturbed dataset. These functionalities are novel compared to public
model zoos and other metadata management tools, which can be adopted seamlessly to
support research studies such as explainable AI and AutoML.

The system includes a web-based interface as a front-end to present the metadata
and a back-end with storage and computation. The system comprises three main com-
ponents: i) user interface; ii) acquiring and storing metadata; iii) storing and serving

4https://sites.google.com/view/macaroni-model-zoo/home

https://sites.google.com/view/macaroni-model-zoo/home
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models and datasets. The second component is the core of the system. The system is
built not only to present and query metadata but also to support ML model serving.

User interface. Users can explore and query the metadata of the model zoo. We pro-
vide query API for users to filter and retrieve information. The ingestion API allows users
to ingest information regarding different artifacts. The metadata being retrieved is pre-
sented in an interactive visualization.

Metadata crawler. The tool can automatically extract information from external model
zoos, including HuggingFace and FiftyOne5. Metadata can be extracted from their APIs
or information on the web pages and is recorded along with the source in the metadata
storage. In particular, the model name, hyperparameters and task are obtained from the
model cards from both model zoos through their APIs, and stored alongside the origin
of the model. Information not available through their API (e.g., datasets and other tags)
is parsed from the model’s original readme files shown as the model cards. Other meta-
data could also be retrieved depending on the content provided by the external model
zoos. Future work can investigate on extracting knowledge as metadata from the textual
descriptions. Since more models will be added/updated , the crawling and extraction of
the metadata shall be updated from time to time.

Model Evaluation Pipeline. The execution of models from different model zoos can be
varied, differing by framework, algorithm, tasks, training dataset(s), and input format. To
obtain the model performance and compare the evaluation results, we provide a unified
evaluation pipeline, which facilitates evaluating models from different external model
zoos on various datasets conveniently. Our pipeline is extensible, i.e., add support for
new types of models or data after the initial pipeline deployment. We achieve extensibil-
ity in two ways. i) We apply a modular design, in which each evaluation module defines
how to evaluate for a subset of models. ii) From each evaluation module, one or more
evaluations are conducted, based on configuration of the module, such as which metrics
to calculate or datasets to use.

2.4.2. METADATA RETRIEVAL AND STORAGE
Recent works developed tools/systems to record metadata for the purpose of monitor-
ing the experiments, especially during model training. Works such as Cerebro [104],
MLflow [196], and ModelDB [180] provide APIs/logging libraries for users to track and
log interested metadata in different levels of details. While others, such as ModelKB [61],
automate the extraction process by identifying metadata from the source code of differ-
ent deep learning frameworks.

In this work, we obtain the metadata in multiple ways and process and store it in
the back-end. We collect metadata in the following three ways. i) A user can add the
metadata of a model or a dataset by filling in specified fields (with Ingestion API), e.g.,
the content presented in a model card. Then such information is processed by the In-
gestion API and converted into structured representation according to the above-men-
tioned metadata model, and stored in the Metadata Storage. ii) The tool can also auto-
matically extract information from external model zoos, e.g., HuggingFace and PyTorch
Hub. We can extract metadata from their API or information from the web pages and

5https://docs.voxel51.com/

https://docs.voxel51.com/
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record the source of the external metadata in our metadata field. iii) To gather the infor-
mation regarding the model performance, we apply a third way to obtain the metadata.
We obtain the performance by evaluating the model on a dataset offline with specified
hardware settings. This process utilizes cloud resources and is performed offline.

The metadata is stored in the structure described by the data model (Section 2.3). We
implemented the data model and stored the metadata in MongoDB.

Model/Data Storage and Serving. To support performance evaluation, we store related
models and data scripts/files. The models and data are further applied with an auto-
mated evaluation pipeline (in the following subsection 2.4.3). The models are perceived
in docker images, and they also support model serving. Users can apply the model to
their data and obtain prediction results.

2.4.3. PERFORMANCE EVALUATION AND AUTOMATED PIPELINE
The tool supports the integration of models described and hosted in external model
zoos. By the time we were writing the paper, we had imported more than 171k models
hosted on the HuggingFace and FiftyOne model zoos, among which 986 of them were
evaluated on 14 different datasets in texts or images. We develop an automated pipeline
to execute/evaluate models from various platforms adapted from external APIs.

The performance metadata is gathered in three steps: i) The model is evaluated using
the API from the model zoo the model was extracted from. ii) The output from the in-
ference is then processed and transformed to a standardized format, and finally iii) The
performance of the model is evaluated based on the predictions, and the values will be
stored in the proposed structure.

It is important to note that external APIs may have their own methods for perfor-
mance calculation that deviate from the norm, or may not have some capability at all
(performance of a class). To ensure the comparability of model performance, we imple-
ment unified evaluation methods.

2.4.4. RETRIEVAL AND EXPLORATION OF MODEL REPOSITORY
Throughout the ML lifecycle, ML practitioners will require different metadata for track-
ing the ML model status, editing, comparing, or reporting. An ML practitioner often
needs to query models in large repositories with complex filtering conditions, e.g., data
instance, performance, and inherit mechanism. In Table 2.2, we list a few example
queries revealing different properties of the metadata. For example, Queries 1 and 2
require the metadata regarding the dataset, i.e., its attribute and source. This type of
metadata helps practitioners understand the dataset, which allows them to gain insights
into the characteristics and properties of the data and thus determine the relevant fea-
tures in the feature selection and engineering stage. Queries such as Queries 3 to 6 re-
quire other metadata properties, such as the model performance and its interpretability.
These properties are crucial for model discovery and comparison, and in addition, assist
in decision-making processes and solving complex analytic problems. Query 7, on the
other hand, requires more complex information regarding the inference performance
with specified hardware settings. For example, an edge device may have constraints such
as limited computation power and storage. To answer this query, practitioners will need
to obtain the model performance of different objectives, e.g., inference speed and mem-
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Figure 2.9: Macaroni interfaces: Dataset page with data instance examples

ory footprint.
The interface of the tool aims to let users find a model that is relevant to them, shown

in Figure 2.9, Figure 2.10, Figure 2.11, and Figure 2.12. To do this, users can filter all
available models by relevant properties, e.g., the name, task, or training dataset of the
model. Once a model is selected, the user is presented with an overview of all available
metadata, alongside the average evaluation results of the model (such as inference time
and accuracy, if available) and a brief description of the associated dataset (if available).

If evaluation results are available, the user can opt to view more detailed information.
We present the model performance with the following visualization types.

• Table. The tables present the (aggregated/disaggregated) performance results of a
model with numbers, such that users can identify the best score of model perfor-
mance on each task or on average.

• Bar chart. Bar charts and tables are interchangeable when presenting the perfor-
mance of a model. For a clearer presentation, we only apply bar charts when com-
paring models. Users can also select the interested evaluation metrics and tasks
for presentation.

• Confusion matrix. A confusion matrix is useful for model explanation, as users
can observe when the model performs poorly. We also record the predictions of
the model on data instances. Users can further explore the performance of the
model by investigating the wrong predictions given the data examples.

• Scatter plot. As earlier stated, accuracy shall not be the only evaluation criterion of
model performance, especially given complex requirements in the production en-
vironment. Specially, we also support comparing models on multiple objectives,
e.g., accuracy against inference speed. For instance, one may observe that no sin-
gle model can dominate in all objectives, e.g., having the highest accuracy score
while being the most efficient to run.
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Figure 2.10: Macaroni interfaces: Model page with aggregated performance

Figure 2.11: Macaroni interfaces: Model page with fine-grained performance
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Figure 2.12: Macaroni interfaces: Model comparison page

2.4.5. USAGE AND FUNCTIONALITY

The querying of the metadata is performed in an online manner, while obtaining and
updating the metadata can be processed offline. For instance, the metadata can be ex-
tended by evaluating the model and crawling the external model zoos regularly, e.g.,
once a week. Users can also trigger to evaluate the model and push the results to the
metadata storage.

Model discovery. The tool supports different evaluation metrics, accuracy, inference
speed, memory footprint, etc. Specifically, the accuracy of a model is not only presented
in aggregated results of a task but also at a class level. Besides ingesting, extracting, and
storing the metadata, our proposed tool allows a user to (i) retrieve the models that help
them identify a model, (ii) compare multiple models, (iii) or explore the properties of
models/data by composing queries on the metadata.

Data Perturbation to Measure Model Capabilities. In addition to model performance
on dedicated dataset, we also allow practitioners to investigate the model robustness
on various types of data changes. Identifying the model performance on different data
shifts is fundamental in understanding the model capabilities. We define a few types
of perturbations on input dataset, e.g., converting to greyscale, flipping or mirroring the
images, and observe the difference in performance. In such a way, we manage to identify
how the model is generalized to data with different properties/changes. Future work
can incorporate different perturbation methods, e.g., adversarial attacks, adding noise,
on various modalities. We view the establishment of such a way to observe the model
capabilities as the starting step, and further techniques and methods from explainable
AI can enrich the description for model capabilities.
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2.5. APPLICATION 1: AMALUR, AN DI-AWARE ML SYSTEM
In this section, we first explain the challenges of two common ML scenarios, i.e., fea-
ture augmentation and federated learning, and propose a novel system Amalur to tackle
these challenges. Amalur is a unified ML system designed to enhance ML pipelines’ effi-
ciency, effectiveness, and privacy in data integration contexts. It facilitates model train-
ing and inference over data silos by leveraging DI metadata.

2.5.1. AMALUR OVERVIEW

We are currently developing Amalur, a machine learning system that is based on our
work on data lakes [67] and model zoos [111]. With DI metadata, Amalur solves the
challenges of efficient training and inference of ML models over data silos and reducing
the manual work of integrating the data. Figure 2.13 provides a high-level overview of
Amalur with key components relevant to this paper.

User inputs. Amalur empowers users, including domain experts like physicians or data
scientists, to run predictive or ML model training tasks on data silos. Through the meta-
data provided by the catalog, users can choose the desired features and relevant data
silos. They can also initiate model training using either custom models or Amalur’s built-
in ML models with metadata from the catalog. Furthermore, specific constraints, such
as data privacy regulations like the GDPR [182], can be specified by individual users or
particular silos.

Hybrid metadata catalog. One of the fundamental components of Amalur is the meta-
data catalog. It stores the metadata of data, ML models, and hardware settings. Data-
related metadata includes the basic metadata and DI metadata. Collected from the si-
los, the basic metadata describes each data source, e.g., source table schema, data types,
and silo location. The DI metadata includes column relationships from schema match-
ing and row matching from entity resolution. Model-related metadata includes informa-
tion describing models and the evaluation performance (e.g., model accuracy). We have
addressed the representations of basic metadata of source tables [148] and ML models
[111]. Amalur utilizes a mixture of heterogeneous metadata, including DI metadata, in
Sec. 2.5.3.

Estimator and planner. The cost estimator and task planner play a critical role in the

system. The cost estimator leverages the metadata from the catalog (e.g., data charac-
teristics, hardware specifics) and constraints to determine the approach to execute the
input task over silos: materialization and factorization. The initial cost estimator utiliz-
ing basic hardware information and the computational complexity of the target model.
The planner identifies the appropriate physical operators and generates an execution
plan for task orchestration.

Task orchestrator and dispatcher. The execution plan from the planner is translated
into specific programs tailored to the training approach, i.e., factorization, material-
ization, or FL, and the execution environment, such as TensorFlow, PyTorch, Spark, or
ONNX. For materialization, Dataloader pulls data from the silos for processing. Model
training or inference will be performed in the centralized server. Alternatively, if factor-
ization is preferred, programs are sent to remote silos as the metadata dictates, i.e., silo
location, ensuring they reach the appropriate data location. The main computations are
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Figure 2.13: An overview of Amalur.

performed over each silo.

Aggregator. For factorized learning and federated learning, a crucial component is the

aggregator. Some computations are pushed to the silos while a central server aggregates
the results. The computations are performed locally, and the parameters are learned
globally. The role of the aggregator is to collect the result of local computations and then
distribute the loss to the silos and aggregate the gradient of the parameters.

2.5.2. AMALUR WORKFLOWS FOR ML TRAINING AND INFERENCE

With the core components in Amalur being introduced, we will explain the main work-
flow among the components in Figure 2.14. Given the user inputs in Amalur, different
workflows are performed: either performing inference or training, either factorizing or
materializing the data, etc.

Amalur allows users to determine the data sources and models. If there is available DI
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Figure 2.14: Example workflows of factorized learning in Amalur

metadata, Amalur will provide data sources that can be connected. To increase the effec-
tiveness of ML training, a user can select feature columns from the available schemata.
Model-related metadata is also retrieved from the metadata catalog and provided to
users, which enables them to decide what algorithm and hyper-parameters to use. Users
may use their customized model and hyper-parameter sets. In the input phase, the user
selects data sources (e.g., name of the table, name of the schema), chooses the model,
and determines the task (classification or regression) and constraints (e.g., privacy).

With the inputs, model training or inference will be performed. In the end, all re-
sults, which include predictive outcomes and trained models, are gathered in a central-
ized cluster. Concurrently, the system logs the training or inference method (material-
ization/factorization), the hyper-parameters, and performance (e.g., F1-score, runtime)
in the metadata catalog, making them accessible for future reference and used by other
users. Below, we will introduce the training and inference in more detail.

Model training. After Amalur receives the inputs from a user, the cost estimator will

determine the computation strategy for training, i.e., to materialize or factorize, with
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metadata from the inputs and metadata catalog. For materialization, Amalur will in-
tegrate the source datasets and generate the target table in the centralized server, and
training will be performed on the server. For factorization, the model is decomposed and
pushed down to silos. When privacy constraints are present, Amalur executes privacy-
aware model training processes over the silos [158], i.e., federated learning.

Figure 2.14 depicts a workflow for ML model training in a factorized manner. The
planner will split the model into the parameters θ1,θ2 along with the DI metadata M1, M2,
which are pushed to Silo1 and Silo2 for computations respectively. Subsequently, the
central server will collect the computations and aggregate the result, i.e., Y1 from Silo1,
computes the loss calculated from Loss(Ȳ ,Y1+Y2) which is sent back to the silos for gra-
dient updates. Once the loss meets a predefined criterion, a central orchestrator records
performance metrics in the metadata catalog. In addition to illustrated workflow, due to
privacy considerations in FL, the partial parameters are stored locally within the silos.
Model inference. A user can select a specific model and perform model inference if

models are available for the prepared dataset. Like model training, the cost estimator
determines whether the computation is performed in a factorized or materialized man-
ner. Model inference in a materialized manner is similar to model training. Inference in
a factorized manner is slightly different, with only the local predictive results being sent
to the centralized aggregator to generate the predictive results, while nothing is returned
from the server.

2.5.3. METADATA IN AMALUR
Metadata is crucial for DI systems [19, 51, 96]. At the core of this vision, we reveal the
importance of metadata, particularly DI metadata, for ML training and inference. In
the following, we divide the relevant metadata into three categories, i.e., data-related,
ML-related, and hardware-related metadata. As shown in Table 2.4, in each category, we
showcase the representative types of metadata and their roles in improving the effective-
ness, efficiency, and privacy of ML model training and inference. The metadata is stored
and managed by the metadata catalog described in Sec. 2.5.1.

Data-related metadata Metadata in databases and data lakes refers to the informa-
tion that describes the structure, and characteristics of databases or data lakes and their
objects [72, 164, 166]. The metadata includes, e.g., information regarding schemata, sta-
tistical and descriptive data about relations and attributes, integrity constraints, and silo
location.
Data integration metadata. By DI metadata, we refer to the information that describes

the relevance and overlap between data sources, e.g., schema-level correspondences be-
tween source tables and the target table (schema mapping), and row matching between
source tables (entity resolution).6 To address the research question in Sec. 4.1 , we em-
ploy DI metadata in a two-fold manner.
1. Efficiency. By representing schema mapping and row matching as matrices, Amalur
facilitates a unified execution of data transformation operations and linear algebra op-

6How to obtain DI metadata is not the focus of this work, as schema matching and mapping, and entity res-
olution are intensively studied topics with open-source tools [97, 98] and commercial products. We assume
that the DI metadata is part of Amalur’s input. We are interested in how to utilize DI metadata for machine
learning.
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Table 2.4: Example metadata types used in Amalur

Category Function Metadata Type

Data-related Metadata

Dataset

Source location

Schema (attribute, data
type)

Cardinality

Data
Integration

Schema mapping

Row matching

Model-related Metadata

Model

Name

Algorithm

Hyper-parameters

Trained Results

Training method (fac-
torized/materialized)

Parameters

Performance (e.g.,
accuracy)

Hardware-related
Metadata

Hardware and
Environment

#GPU cores

#CPU cores, cache sizes

Memory bandwidth

Memory latency

erations, which improves the efficiency of training tasks.
2. Effectiveness. DI metadata brings new opportunities for improving the effectiveness of
federated learning frameworks, e.g., through discovering the redundancy among source
datasets.

Challenges. Another type of DI metadata is the similarity among source datasets. In

recent studies on data lakes, it is a crucial step to first capture the similarity between
source datasets, i.e., joinable or unionable dataset discovery [20, 70, 92], before data
integration. The similarity between datasets is also valuable for improving the effective-
ness of ML training, e.g., resolving the inconsistency across datasets and recommending
models to train if the model was trained on a similar dataset [193]. In recent data integra-
tion works [20, 30, 80], the embeddings are applied to capture the similarities between
features or tuples in source tables. Taking one step further, representations of the entire
table [109, 127] allow for many more applications, e.g., transfer learning and multimodal
machine learning. Many research questions remain open, regarding more types of DI
metadata, their representations, and their roles in improving ML tasks.

ML-related metadata. Amalur not only supports efficient ML training but also man-
ages the trained models, which makes it necessary to design a metadata catalog that in-
cludes heterogeneous metadata for ML, i.e., ML-related metadata. ML-related metadata
captures the metadata from various ML lifecycle stages [111], such as model definition
and model training. The metadata describing the model includes architecture, frame-
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work, configurations (e.g., hyper-parameters), input/output (e.g., prediction classes),
etc. These types of metadata are utilized in different components in Amalur. For ex-
ample, the cost estimator requires information regarding the complexity of the model
(e.g., algorithm, parameters) to predict workload and model training requires hyper-
parameters. The metadata catalog also keeps track of the connections between the model
and its training datasets. Thus, given a generated dataset, if a model was previously
trained on this dataset, the model will be recommended to the user for inference or re-
training.

Besides the information describing a model, we also record the performance of ML
models (e.g., model accuracy, runtime, memory footprint) under different execution en-
vironments. This information helps recommend models to users in the model prepara-
tion stage. Recommending a good model to train based on different strategies [153] can
improve the effectiveness and efficiency of ML training.

Metadata regarding hardware. Hardware and environment settings are important to
measure the performance of databases [177], the interested information including, e.g.,
number of CPU cores, memory. This information is also essential for measuring ML per-
formance during training and inference [43]. For ML, the hardware devices may also
include GPU or TPU. In general, the hardware-related metadata is regarding the execu-
tion environment in the central cluster and distributed silos.

In this paper, the hardware-related metadata also supports an essential component
for improving the efficiency of ML training. This type of metadata, along with the data-
related and ML-related metadata, supports the cost estimator to decide whether to train
a model on materialized or factorized data. The result of the cost estimation results in a
more efficient plan for model training or inference.

2.6. APPLICATION 2: MODEL COMPOSITION UNDER CONSTRAINTS
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Figure 2.15: ML inference query optimization

Now we introduce a more advanced yet common use case. With metadata being cap-
tured and well-represented, ML practitioners can make good use of the models trained
offline and apply them to answer complex, ad-hoc inference queries. We will further
illustrate this application in more details in Chapter 3.
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Recent research has focused on ML applications for different modalities. For exam-
ple, systems have been built to serve ML models for specific tasks [86]. Others aim to
accelerate ML inference on domain tasks, such as NoScope [86], and PP [120]. These
applications have shown a trend of applying model composition (usually with multiple
models in cascades or in sequence) for complex tasks. The key idea of these works is to
filter out insignificant data as early as possible, which is extremely useful when process-
ing large-scale data, e.g., video, or streaming data, e.g., tweets.

The trend of applying and optimizing the usage of ML models in complex tasks has
provided insights on how to manage ML models to better serve the tasks. A solution is
to identify the capability of the models as fine-grained as possible. One of our previous
works [113] has proposed to optimize for ML inference query by utilizing the metadata
of ML models, especially the performance of models in multiple objectives.

As shown in Figure 2.15, the ad-hoc query can consist of multiple ML inference tasks
with different dependencies and relations. Moreover, the query can be composed of
specified constraints/requirements (e.g., latency and accuracy restrictions). Practition-
ers can select a composition of models from the model zoo to answer the ad-hoc queries.
Optimization can be applied to further increase the efficiency of answering the query by
carefully scheduling the tasks in a different order and applying early filtering, as the By-
pass Plan in Figure 2.15. With the same example in Figure 2.15, an ML practitioner would
like to design an application for video analysis that can capture a pedestrian crossing
the road or the rear light of the car in front getting red. Since the data volume is sig-
nificant and latency is also an essential factor to consider, the practitioner should select
image classification or object detection models with fast inference speed. And the in-
ference speed is greatly affected by the hardware being applied. If the application is
deployed on a mobile phone, then the memory footprint is also a fundamental objective
to be concerned with. To identify which set of models could best address the query and
constraints, they may require information regarding the model performance with differ-
ent objectives (e.g., accuracy, inference speed, memory footprint). The metadata of the
dataset can also provide information to detect concept drift, for instance.

2.7. RELATED WORK
Recent studies focus on different aspects of management during the ML lifecycle, from
model versioning, and model reporting to model evaluation. Each is important for prac-
titioners to manage and understand the models. We observe a gap among the profound
works [161], a comprehensive and queryable metadata representation. With the meta-
data representation, we can thus better manage the ML models and data, including the
interactions between them.

2.7.1. ML MODEL MANAGEMENT SYSTEMS AND TOOLS

Due to the complexity of the ML models and ML lifecycle, managing the ML models
in different phases are challenging. And yet, multiple systems have been developed to
tackle the challenge of managing the ML models during training in experiments.

Modeldb [180] is one of the first systems that allow tracking, storing, and exploring
ML models. Modeldb keeps track of the ML pipelines defined by the users and allows
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them to visualize and explore the models and pipelines. Other systems, such as Model-
Hub [125], ModelKB [61], and Runway [178] also allow managing ML experiments and
their associated models. These systems allow model storage, versioning, and querying,
with metadata being extracted from scripts or manually logged. None of them, unfor-
tunately, made it explicit what metadata should be included/tracked during the experi-
ments or when serving the models. Enterprises platforms, such as MLFlow [35], Amazon
SageMaker, Google TFX [132], comet [44], Airbnb Bighead [25] and etc., provide rich APIs
and tools to support ML experiment management. Users can customize what metadata
to log by calling APIs. The metadata can be visualized or used to specify new experi-
ments. In this work, we do not cover the aspect of managing ML model training experi-
ments. Related works, e.g., [35, 132, 184], can be served as support and complement to
our scope. We report models with rich and comprehensive metadata covering different
artifacts and their relationships. We strive to support practitioners with the necessary
information to know about a model and its necessary components.

2.7.2. ML INFERENCE/SERVING SYSTEMS

Instead of managing the end-to-end process of the ML lifecycle, multiple ML systems
aim at a particular phase in the lifecycle, e.g., ML inference or ML serving.

Accelerating ML inference. Systems, such as Clipper [45], Willump [99], and GATI [14],
optimize and accelerate ML inference when serving. The goal of these systems is to serve
and infer ML models for downstream tasks. Clipper is a general-purpose low-latency
prediction serving system that sits between end-user applications and a wide range of
machine learning frameworks. It introduces a modular architecture to simplify model
deployment across frameworks and applications. Clipper reduces prediction latency
and improves prediction throughput, accuracy, and robustness without modifying the
underlying ML frameworks.

ML benchmark in specific domains. Researchers have been building ML benchmarks
for different domains, for example, PMLB [141], PennAI [140](biomedical and health),
Moleculenet [188] (molecule), facies classification [7], DLHub [33] (science), Kipoi [12]
(genomics).

2.7.3. AI-CENTRIC DATA MANAGEMENT SYSTEMS

Systems have been developed and built to manage data for AI. DescribeML [63] and
Amalur [68] propose dataset models to describe ML datasets in detail and preserve rele-
vant metadata. The preservation of dataset information greatly facilitates, for example,
the search for suitable datasets for ML projects. For ML dataset management and ver-
sioning, research work such as Mldp [5], Chimera [56] , and DataLab [202] are comple-
ments to the above-mentioned model management systems that served as support for
managing data versions.

Another type of data platform is to move the DBMS engine from a relational to a ten-
sor abstraction, which unseemly integrates databases with external ML tools. TDP [58]
provides access to multi-model data and leverages PyTorch to run queries over data on a
wide range of hardware devices. TDP integrates the flexibility of PyTorch’s programming
model with the declarative power of SQL.
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2.7.4. MODEL CARDS AND DATA SHEETS
Recent research also focuses on the reporting of models and datasets, covering aspects
not only limited to basic informative components but also including ethical, inclusive,
and fair considerations. Model cards [131], for example, proposed to include informa-
tion regarding model intended use cases, potential pitfalls, and other contexts that can
improve model understanding. A similar idea also lies in data cards/sheets. Examples
include [24, 59, 126]. Though model cards and data cards contain rich information, the
Q&A format is nonetheless unfriendly to machines to process and thus cannot be easily
managed and retrieved.

2.7.5. MODEL PERFORMANCE BENCHMARKING
A growing body of published work also focuses on the benchmarking of ML model per-
formance, such as MLperf [123, 151], fathom [4], and DAWNBench [43]. These platforms
covered a set of metadata, including metrics, and training and inference configurations
with specified hardware/software settings. Their focus is the report of the model perfor-
mance at different ML lifecycle stages (training or inference). They paid little attention
to the dataset the model used, whose path is provided as an argument filled by the user.
The model process pipeline is also not covered besides the model scripts.

2.8. CONCLUSION AND OUTLOOK
In this chapter, we advocate for the need for a structured, queryable, and comprehen-
sive metadata representation for model zoos. We propose a metadata model for such
metadata representation to tackle different use cases. We also develop a tool that helps
practitioners to manage and query the metadata.

We urge practitioners to prioritize the collection and organization of metadata, uti-
lizing it for future applications. In order to enhance the applications of metadata, we
present several aspects that can be explored in future research endeavors.

Integration of ML model metadata to current platforms. Existing work has developed
tools to record (log/extract automatically) metadata during the ML lifecycle. Recent
works only identify the public pre-trained model. Future work can integrate the sys-
tems seamlessly such that practitioners can have access to self-trained models as well as
public pre-trained models.

NLP-based Extraction of metadata from text. With the support of large language mod-
els, future research can develop tools to extract useful information from the textual de-
scriptions in the model and data cards by applying natural language processing tech-
niques and mapping it to the predefined metadata representation.

Personalized AI and Finetuning. Many applications, such as behavior detection and vir-
tual assistants, are user-specific and take into account user beh aviors and preferences.
Companies adapt the models to their own datasets and context by re-training and fine-
tuning the models. Instead of randomly searching the hyper-parameter values to train
a model from scratch, practitioners can utilize the metadata to accelerate the learning
process by setting a warm-start for hyper-parameter search [160]. These AI applications
can utilize the capabilities of the pre-trained models that already have a good perfor-
mance on a certain task. We support these use cases by providing rich and comprehen-
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sive metadata, either the configuration settings or performance evaluation.

Provenance, Lineage, and Versioning. Researchers also propose to utilize metadata for
other purposes, such as workflow data provenance [124, 203] and ML pipeline lineage
[64, 159, 179]. ModelHub [125] and Modeldb [180], on the other hand, track metadata
about models throughout the lifecycle and provide version management. However, they
focus on the abstractions of the model, while they lack information on the model per-
formance under different hardware settings (e.g., inference speed, accuracy, memory
footprint), and they pay little attention to the datasets that the models consume.



3
OPTIMIZING ML INFERENCE

QUERIES WITH METADATA

The previous chapter introduced a metamodel to encapsulate metadata associated with
diverse artifacts. With this foundation, this chapter delves into the practical utilization
of metadata for model selection in ML inference.

Nowadays, the proliferation of pre-trained ML models in public Web-based model
zoos facilitates the engineering of ML pipelines to address complex inference queries
over datasets and streams of unstructured content. Constructing an optimal plan for
a query is hard, especially when constraints (e.g., accuracy or execution time) must be
taken into consideration, and the complexity of the inference query increases.

To address this issue, we propose a method for optimizing ML inference queries
through the strategic use of metadata, encompassing elements like model performance,
accuracy, and operator selectivity The optimizer selects the most suitable ML models to
use and the order in which those models are executed. We formally define the constraint-
based ML inference query optimization problem, formulate it as a Mixed Integer Pro-
gramming problem, and develop an optimizer that maximizes accuracy given constraints.
This optimizer can navigate a large search space to identify optimal query plans on var-
ious model zoos.

This chapter is based on the following publications:

• Li, Z., Schönfeld, M., Sun, W., Fragkoulis, M., Hai, R., Bozzon, A., & Katsifodimos,
A. (2023, June). Optimizing ML Inference Queries Under Constraints. In Interna-
tional Conference on Web Engineering (pp. 51-66). Cham: Springer Nature Switzer-
land.

• Li, Z., Schönfeld, M., Hai, R., Bozzon, A., & Katsifodimos, A. (2023, April). Opti-
mizing machine learning inference queries for multiple objectives. In 2023 IEEE
39th International Conference on Data Engineering Workshops (ICDEW) (pp. 74-
78). IEEE.
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3.1. INTRODUCTION
Machine learning (ML) is increasingly used to process unstructured documents (i.e. text,
images, videos), or data streams [39, 84, 163, 199]. Take, for instance, the scenario of a
self-driving car: when it detects (at certain proximity) that a person is crossing the road,
or that another car has turned its emergency lights on, the car has to trigger an emer-
gency action (e.g., breaking hard). This can be modeled as a complex ML inference query,
and represented as a Boolean expression [32, 89]: (road∧ person) ∨ (car∧ light). The
literals in the expression are combined using operations such as and (conjunction) and
or (disjunction).

While ML models can be (and often are) tailored to specific inference tasks, there is a
growing interest in the reuse and re-purposing of pre-trained ML models [78]. This shift,
mostly motivated by computational, economic, and environmental considerations, is
evident from the proliferation of public, pre-trained ML model zoos on the Web, such
as HuggingFace and PyTorch Hub. These hubs contain thousands of pre-trained models
for diverse ML inference needs such as object recognition, sentiment analysis or audio
classification. These models are described by metadata detailing their inference capa-
bilities (e.g. identified object classes), and performance (e.g. accuracy and execution
time). With the help of the model zoos, ML inference query plans – i.e. complex work-
flows of ML models as the one shown in Fig 3.1 – can be executed by leveraging existing
ML models through easily accessible APIs, providing greater flexibility in defining ad-hoc
queries.

ML inference queries are often subject to specific performance constraints (e.g. in-
ference execution time, accuracy)[87, 120]. In such cases, the selection of a set of models
becomes quite complicated: an analyst may manually define a query plan that is ex-
cessively expensive and/or inaccurate if they lack considerable systems skills or time.
Instead, an optimizer could automate the selection of (a set of) ML model(s) from the
model zoo, so that the query could be answered under specific execution constraints.
That way, data analysts/engineers can focus on the analytical task at hand, while ML
researchers and engineers can independently focus on ML model development and en-
hancement.

Contributions. We propose a method (depicted in Figure 4.5) to select the best ML
models as well as their execution order, given a complex ML inference query and execu-
tion constraints. The contributions of this chapter can be summarized as follows:

• We formulate the problem of ML inference query optimization as a mixed integer
progarm (MIP) and propose a MIP-based optimizer that exploits model zoos.

• Our approach is the first that jointly optimizes model assignment and predicate
ordering, leveraging the selectivity (i.e., the probability of a predicate to evaluate
true) of model-based predicates to decide their order of execution.

• We evaluate our Bypass: Model- & Order-optimal optimizer against base-
lines (Section 3.8), showing that our proposed optimizer can generate plans that
significantly outperform the baselines in diverse model zoos on different constraint
settings.
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Figure 3.1: Alternative ML query plans for the running example query.

• We extend the model assignment problem by considering three objectives, i.e.,
accuracy, speed and memory consumption. We formulate the problem as multi-
objective mixed integer program (MOMIP). We contribute an analysis of applying
different multiple-objective optimization methods.

3.2. RELATED WORK
ML Inference Query Optimization. The development of specialized models for fast in-
ference of object detection queries has received considerable attention [77, 78, 117, 152].
More recently, related research is targeting the processing efficiency of larger ML infer-
ence query [9, 28, 29, 86, 120]. NoScope [86] and PP [120] filtered irrelevant frames
by training and deploying special lightweight binary classifiers, and Tahoma [9] trained
model cascades to process video frames. The cheaper models are trained to achieve very
low false negative rates, so that they did not filter out valid tuples/images/frames, since
these can be validated by more accurate and expensive models downstream.

The most related work to ours is PP [120]. Our work is complementary to PPs, as it
aims at reusing the plethora of existing models available in public and enterprise model
zoos without retraining, and at optimally navigating the performance to accuracy trade-
off of existing models. PP generates query plans for ML inference queries by first pre-
selecting the predicates with a heuristic solution before optimizing the query plan, thus
the query plan is suboptimal.

Multiple-Objective Query Optimization. We model the ML inference query optimiza-
tion problem presented in this paper as a multiple-objective query optimization prob-
lem with a bounded objective method. Notably, the problem at hand can also be mod-
eled with other methods for multiple-objective optimization [113, 143, 176, 177], which
seek to find the set of query plans that dominate all others in terms of the trade-off be-
tween two conflicting objectives. However, the problem we tackle in this paper is differ-
ent from the classic single- and multi-objective query optimization problems in existing
literature due to the special treatment that accuracy requires as well as the consideration
of predicate ordering in our specific problem setting.
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Table 3.1: Execution time C of models in a model zoo.

pr oad pper son pl i g ht pcar

model 0 ∞ 25 ∞ ∞
model 1 ∞ 35 ∞ ∞
model 2 ∞ ∞ ∞ 20

model 3 ∞ ∞ ∞ 40

model 4 5 ∞ 5 ∞
model 5 10 ∞ 10 ∞

Table 3.2: Accuracy A of models in a model zoo.

pr oad pper son pl i g ht pcar

model 0 0 0.90 0 0

model 1 0 0.95 0 0

model 2 0 0 0 0.91

model 3 0 0 0 0.93

model 4 0.94 0 0.91 0

model 5 0.96 0 0.95 0

3.3. PROBLEM DEFINITION
In this section, we define the notions of a model zoo and its metadata, and ML inference
query. We also formalize the ML inference query optimization problem. Note that in this
work, we consider the case of ML models that perform classification tasks.

3.3.1. METADATA OF A MODEL ZOO

We formalize the metadata representation of a model zoo [112] as R{M , I ,P, A,C }, where
M denotes the set of pre-trained ML models; I denotes the set of classes that M can infer;
P denotes the corresponding set of a Boolean predicates over the inference classes I ; A
and C represent the matrices with the dimensions of |M | × |P |, which store the values
of model accuracy and execution time, respectively. C is depicted in Table 3.1 while A
is depicted in Table 3.2. In the following, we explain how we utilize the metadata of a
model zoo as prior information in ML inference query optimization in Section 3.4.

3.3.2. ML INFERENCE QUERIES

Given a model zoo R{M , I ,P, A,C }, we write an ML inference query in the form of (p1 ∧
...∧pi )∨...∨(p j ∧...∧pk ) , where each pl is a Boolean predicate representing the inference
class inferred by the ML model ml (1 ≤ l ≤ k). According to the closed-world assumption,
we assume that an input ML inference query Q can be answered by a given model zoo
R. Note that it is possible that one model is selected for multiple predicates.

CNF and DNF queries. In above definition, Q is in the disjunctive normal form (DNF),
where the clauses Q1 ∨·· ·∨Ql are connected by disjunctions. An ML inference query Q
and its subqueries Qi are Boolean queries. In the rest of the paper, for brevity, we will
refer to ML inference queries in CNF simply as CNF queries (similarly for the DNF ones).

3.3.3. ML INFERENCE QUERY PLAN

We define a ML inference query plan as the orchestration of ML models supporting the
execution of a ML inference query. Note that each predicate can be associated with sev-
eral models before optimization (Figure 3.1(a)). Figure 3.1(b) presents the query plan
with an optimized model assignment, where each predicate is covered by a model. All
the models process all the data and results are generated with union. We call this type of
query plan a sequential plan. Figure 3.1(c) depicts a plan with optimized model assign-
ment and execution order as a bypass plan [91], where we refer to this type of query plan
as bypass plan.
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3.3.4. OPTIMIZATION OF ML INFERENCE QUERIES
Given an ML inference query Q, we aim for two optimization targets. The first target is
the execution time: the goal is to select the models that minimize the execution time of
the query. However, since accuracy and execution time may conflict, the query with the
lowest execution time may also suffer from low accuracy. There are multiple ways to deal
with conflicting objectives, such as multi-objective optimization [143]. In this work, we
deal with this conflict by establishing bounds: an upper bound on execution time, when
optimizing for accuracy; and a lower bound for accuracy, when optimizing for execution
time. In the following, we formalize the definitions of these two problem variants.

Definition 3.3.1 (Accuracy-maximizing Model Assignment (AMA) Problem). Given a model
zoo R, an ML inference query Q, and an upper bound Cbound on execution time, the goal
is to assign a model m ∈ M for each predicate p ∈ P , which maximizes the accuracy aQ

with the constraint of execution time cQ . The form of the objective function is:

Maximize: aQ = faccu(Q)

Subject to: cQ ÉCbound

In the above definition, we denote the function to compute aQ as faccu(Q), which will
be elaborated in Section 3.5.2. The cost of the query plan cQ is measured by the average
inference time on one data instance. Cbound represents the given execution time bound
that the computation cost of the query should respect.

Use case. The problem in Definition 3.3.1 specifies the bounding of the execution time.
It is a typical requirement in use cases where execution speed is of importance.

Definition 3.3.2 (Execution time-minimizing Model Assignment (EMA) Problem). Given
a model zoo R(M , I ,P, A,C ), an ML inference query Q, and a lower bound on accuracy
Abound , the goal is to assign a model m ∈ M for each predicate p ∈ P , which minimizes
the average execution time on each tuple, i.e., cQ , with the constraint that the minimum
accuracy of the query aQ stays above a lower bound Abound . The form of the objective
function is:

Minimize: cQ = ft i me (Q)

Subject to: aQ Ê Abound

In the above definition, we denote the function to compute cQ as ft i me (Q), which will be
elaborated in Section 3.5.3.

3.4. OPTIMIZING ML INFERENCE QUERIES
Given an ML inference query, the goal is to generate query plan which maximizes the
accuracy and satisfies the constraint on execution time. In this section, we outline our
optimization and execution workflow for ML inference query in Section 3.4.1. We then
present a mixed-integer programming formulation (Section 3.5.2-3.6.3) for the ML in-
ference query optimization problem as defined previously, including accuracy model,
execution time model, objective function, and other relevant components.
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Figure 3.2: Approach overview.

3.4.1. APPROACH OVERVIEW
As depicted in Figure 3.2, users can define an ML inference query with ML model-based
predicates. To optimize the query, our MIP-based optimizer leverages the metadata of a
model zoo containing information about the available models and their performance in
terms of accuracy and execution time. The input of our query optimizer also includes the
metadata about selectivity, i.e., statistics regarding the portion of data that a predicate
returns as true. Both types of metadata are retrieved from a metadata management tool
(e.g. [112]). The query optimizer then parses and optimizes the query. Given different
input information, the MIP-based optimizer applies different optimization approaches
to generate plans that satisfy the constraints.

Modeling as Mixed Integer Programming. The first step in the optimization phase is
mathematical modeling, where the optimizer takes in different types of metadata and
formulate their relationships. To tackle the Accuracy-maximizing Model Assignment (AMA)
problem in Section 3.3.4, we resolve model assignment, i.e., mapping between ML mod-
els and predicates, and predicate ordering, i.e., deciding the execution order of predi-
cates.

• Model assignment. With the model zoo metadata alone (yellow dashed arrows),
the optimization only assign models to predicates adhering to an execution time
constraint.

• Predicate ordering. To exploit the execution time budget and aim for higher ef-
fectiveness, we adopt bypass [90] plans and predicate ordering. The bypass plan
consists of branches that execute only a defined subset of data, filtered based on
prior outcomes. Bypass plans can greatly reduce execution cost by preventing the
execution of models on unnecessary data. Together with predicate ordering, we
manage to further increase efficiency and take full advantage of the budget by as-
signing better models for higher effectiveness with the available resource. The op-
timizer makes use of the selectivity metadata (red dashed arrows). We assume that
selectivity is a property of an existing labeled dataset, and is known in advance.
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Algorithm 1: BypassPlanGen
Input : query quer y , model-predicate mapping mappi ng ,

execution order of predicates (random or optimized) or der ,
indication of the current branch f l ag

Output: bypass plan pl an
1 pl an = NULL predicate p ← the first predicate in the or der if p is not empty then
2 current node m = mappi ng [p]
3 subor der ← the remaining order after removing p

// Positive branch
4 subquer y ← subquery of quer y where p is substituted with true
5 pos_br anch = BypassPlanGen(subquer y , mappi ng , subor der , true)

// Negative branch
6 subquer y ← subquery of quer y where p is substituted with false
7 neg _br anch = BypassPlanGen(subquer y , mappi ng , subor der , false)

// Generate the plan as a binary tree ([root node, left child, right
child])

8 pl an = [m, pos_br anch, neg _br anch]

9 end
10 return pl an

In this work, we jointly optimize model assignment and predicate ordering given time
constraints, and have shown significant performance for the objective goal (see Section
3.8 for details).

MIP Solver and Plan Generation. After modeling, we take the constraints and variables,
and feed them to a MIP solver. We use Gurobi as the optimization solver. The outcomes
of the solver is optimized model assignment, i.e., mapping between models and predi-
cates, as well as the execution order of the predicates.

Given the model assignment and predicate execution order, the plan generator pro-
duces plans in different mechanisms, e.g., sequential plan with Model-
optimal plan and bypass plan with Model- & Order-optimal plan. Sequential plan
is a set of ML models executing on all the data. The execution order does not have an
impact on the results. Conversely, in bypass plans, models process the data with filter-
ing conditions, allowing the data flow to be divided based on the true or false results
of the predicates. algorithm 1 presents the pseudo code for generating the bypass plan.
The algorithm generates a binary tree as a bypass plan, with the ML models represented
as nodes and the predicate filtering conditions indicated by the edges. The root node
processes full set of data while the child nodes processes data filtered with different con-
ditions.

3.5. MODEL ASSIGNMENT AS MIXED INTEGER PROGRAMMING
In this section, we present a mixed-integer programming formulation for the ML infer-
ence query optimization problems as defined in Definition 3.3.1 and Definition 3.3.2.

3.5.1. MODEL ASSIGNMENT CONSTRAINTS

Model assignment is the mapping between models and predicates. It determines the
models used to answer predicates. To perform model assignment, we set a few con-
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straints: i ) we need to allocate exactly one model to each predicate; i i ) only models with
non-zero accuracy on a predicate can be assigned. Note that a model can be assigned to
answer multiple predicates. Figure 3.1(b) presents the plan that only takes into account
of model assignment that maximizes the accuracy given the time constraint.

Model-assignment variables. To perform model assignment we need to allocate exactly
one model to each predicate. Given a model zoo R(M , I ,P, A,C ) we define the decision
variables, denoted as Xm,p , where m ∈ M and p ∈ P . We represent the set of all possi-
ble decision variables of R as X . The decision variable Xm,p is a binary variable that
indicates whether a model is selected:

Xm,p =
{

1, if model m is assigned to predicate p

0, otherwise

Based on decision variables Xm,p , we now define the constraints.

Choosing exactly one model per predicate. The constraints guarantee that exactly one
model is selected and assigned for each predicate in the query. Since Xm,p is set to 1
when a model m is assigned for predicate p, among all the decision variables for the
same predicate p, only one decision variable has the value of 1. That is, the sum of
decision variable Xm,p for different models but for the same predicate is 1. We express
this constraint as: ∑

m∈M
Xm,p = 1 (3.1)

This equation alone is not sufficient since it is possible for the optimizer to assign the
cheapest model to every predicate and may result in 0% accuracy. This issue is somewhat
mitigated by setting an upper bound on Xm,p using Abound :

Xm,p É ⌈Am,p⌉ (3.2)

which ensures that only models with non-zero accuracy on a predicate can be assigned.
By setting this upper bound, the size of the search space also becomes smaller as the
optimizer discards these non-valid solutions.

3.5.2. MODELING ACCURACY

Query Accuracy Calculation . In what follows, we explain the procedure of calculating
query accuracy aQ , i.e., faccu(Q) in Definition 3.3.1.

For example, given the query q in Section 3.3.2, the accuracy is computed as follows:

faccu(q) =(ar oad ·aper son)+ (al i g ht ·acar )− (ar oad ·aper son) · (al i g ht ·acar )

In this work, we assume that the predicates are independent and we did not consider the
effect of correlation between predicates. Similar assumption has been made in [120]. If
two predicates are independent, we can regard the accuracy as the probability of getting
true predictions. Thus we can compute the accuracy model following probability theory.

With decision variable Xm,p and accuracy value Am,p , we now turn to calculate the
accuracy of a query, i.e., faccu(Q). Recall that an ML inference query can come in as DNF
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or CNF. The first step of calculating aQ for a DNF query is to calculate the accuracy of the
individual conjunctive subexpressions by using the following formula:

faccu(Q) = ∏
p∈P

(
∑

m∈M
Am,p Xm,p ) (3.3)

The disjunction of the accuracy values of the conjunctive subexpressions is computed
with the following formula:

faccu(Q) = ∑
p∈P

∑
m∈M

Am,p Xm,p − ∏
i∈{p0,p1}

∑
m∈M

Am,i Xm,i

+ ∏
j∈{p0,p1,p2}

∑
m∈M

Am, j Xm, j − ...+ (−1)|P |−1
∏

p∈P
(

∑
m∈M

Am,p Xm,p )
(3.4)

The calculation of faccu(Q) for a CNF query is conducted similarly: first we calculate
all the individual disjunctive subexpressions with Eq(3.4), and then calculate the final
conjunction of those disjunctions with the formula of Eq(3.3). To summarize, for a CNF
query or DNF query, we will parse different operators and compute the accuracy accord-
ing to the query.

We now explain the procedure of estimating query accuracy aQ , i.e., faccu(Q) in the
problem definition. The intuition is that the query performance is dependent on the per-
formance of models assigned to the predicates. In this paper, we follow the assumption
below.

Assumption 1. The predicates are independent to each other.

The same assumption is also made in [120], i.e., the outcome of one predicate does
not impact the performance of others. The accuracy of a conjunctive query, e.g., road
∧ person, can be estimated by multiplying the accuracy of each model, ar oad ∗aper son .
The accuracy of a disjunctive query, e.g., car ∨ bus, can be computed using the inclu-
sion–exclusion principle, as acar +abus −acar ∗abus . In the same way, we can calculate
the accuracy of more complex Boolean expressions. It is worth noting that the accuracy
model is contingent upon the independence assumption, and serves as an indicator of
query performance. The actual, real-world query results may be impacted by predicate
correlation: when two predicates have high correlation, the performance of one model
can influence the output of another. In future work we can leverage the correlated per-
formance of a model (given the output of another) to align the estimation of query accu-
racy with its actual value.

3.5.3. MODELING THE EXECUTION TIME
The measurement of execution time is determined by the form of the outcome plan, i.e.,
sequential (a set of models processing all the data) and bypass (models processing dif-
ferent subset of data based on the outcomes of the previous executed ones). Execution
time is denoted by ft i me (Q).

In this subsection, we will introduce how to represent the problem if we only consider
model assignment, and how to compute ft i me in Definition 3.3.2. Suppose that a user
sets a constraint on execution time. There are situations where a given model will be
assigned to multiple predicates. In this case, however, the model’s execution time should
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Table 3.3: Variables in formalization.

Symbol Domain Semantic

Xm,p {0,1} If model m is assigned to predicate p

Bm {0,1} If model m is selected

Op, j {0,1} If predicate p is answered in the j th execution step

Gg , j {0,1} If the predicates within the same group (conjunction / disjunction) have all been
answered

Hg , j R The percentage of data being computed at step j when predicates in group g have
all been answered

Wg , j R The percentage of data being computed at step j considering the predicates in the
same group have been answered

Qg ,p, j R The product of Hg , j−1 and Op, j−1

S J
j R The percentage of data being selected in step j

Ym,p, j R The product of S J
j , Xm,p , and Op, j

Rm, j R The execution time of running model m at step j

be measured only once: the model can be executed once on the input and can output
predictions for multiple classes. Therefore we define a binary variable Bm to indicate
the assignment of the model m, where m ∈ M . We use B to denote the set of variables
Bm for different models in M . If the model m is selected, possibly more than once, the
corresponding variable Bm is set to 1, otherwise it is set to 0.

Bm =
{

1 if
∑

p∈P Xm,p Ê 1

0 otherwise
(3.5)

Bm is constrained as follows:

Bm ≥ Xm,p

Bm ≤ ∑
p∈P Xm,p ,∀m ∈ M

(3.6)

Sequential Plan. In this case, the optimization does not take into account selectivity.
The execution plan is a set of selected models executing on complete data. When com-
puting the execution time, we only need to consider whether a model is selected, and we
sum the cost of all the selected models. The models’ execution time should be measured
only once: the model can be executed once on the input and can output predictions for
multiple classes. The execution time for the query plan is :

ft i me (Q) = ∑
m∈M

CmBm (3.7)

Objective functions. To conclude, with Eq(3.4) and Eq(3.7) we have transformed the two
problem variants in Section 3.3.4, to a matter of MIP by defining two objective functions
as below.
Given an execution time constraint (solving problem described in Definition 3.3.1):

Maximize: faccu(Q)

Subject to: E q(3.1),E q(3.6),

ft i me (Q) ÉCbound
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Given an accuracy constraint (solving problem described in Definition 3.3.2):

Minimize: ft i me (Q)

Subject to: E q(3.1),E q(3.6),

faccu(Q) Ê Abound

3.6. PREDICATE ORDERING AS MIP
Predicate ordering has a significant impact when we generate a bypass plan. If the plan
is a sequential execution of models without filtering any data, the results are the union
of the predictions of all the models and the execution order will not make an effect on
the results. On the other hand, a predicate in a bypass plan can filter insignificant data,
which results in different execution cost when adopting a different execution order of
the predicates.

Bypass Plan. In this case, not every model needs to process all the data: models in the
subsequent steps only have to process a subset of the origin data filtered on the outputs
of the previously executed models. The plan’s execution time for this mechanism is mea-
sured with the sum of all the selected model cost proportioned to the data it need to pro-
cess. For example in Figure 3.1(c), pcar processes images from two different data flows:
images with light but without person (light ∧¬person), and images with light and
person but without road (light ∧ person ∧ ¬road). The execution cost of answer-
ing pcar is the execution cost of running the model proportioned to the amount of data
it need to process, which is determined by the input data flows. The key challenge is
to determine the portion of data processed by each predicate, which we will tackle in
Section 3.6.1.

The emphasis of predicate ordering is to measure the selectivity of predicates, clauses
and subqueries, given a certain order, i.e., the portion of data that retained by the previ-
ous answered predicates. For example, consider a query pr oad ∧pper son . If the execution
order is pr oad → pper son , the portion of data processed by pr oad is 100%, while pper son

the portion of data where pr oad returns true. If pr oad returns false, the whole query re-
turns false, which ends the evaluation. The portion of data processed by pper son is thus
the selectivity of pr oad . When the execution order changes and pr oad is answered before
pper son , the amount of data being processed in general is different from the previous
plan. Thus, when considering bypass plan, predicate ordering matters, and selectivity of
predicates are taken into account.

Take the previous query as example. In Figure 3.3, we present two bypass plans based
on different predicate execution order. Though the model assignment is the same, the
execution cost of these plans are different. Figure 3.3(b) shows the plan when we jointly
optimize model assignment and predicate ordering. The predicate execution order fol-
lows pl i g ht → pcar → pr oad → pper son , which achieves lower cost than random predi-
cate order in Figure 3.3(a).

Algorithm 2 outlines the main steps of our proposed order-optimal query optimizer.
To distinguish the known and unknown variables in an objective function, we use K to
present the list of input variables. It includes the given ML inference query Q and model
repository R (defined in Section 3.3), objective type T (execution time or accuracy) and
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Figure 3.3: Bypass plans with different predicate execution order (numbers near by the arrows indicating the
selectivity of the predicates in that path)

bound β (Cbound or Abound ). We write the objective functions introduced in Section 3.5
as f (K , X ), where K is known and we try to decide the value of X . Our main contribu-
tion lies in line 2 in Algorithm 2. We design variables (e.g., O, G) that represent predicate
ordering and predicate selectivity. They allow us to transform f (K , X ) to new objective
functions f ′(K , X ,O,G) with embedded information of predicate order, cost, and accu-
racy. We elaborate the variable definitions, their computation rules in Section 3.6.1, and
Section 3.6.2, and the transformed objective functions in Section 3.6.

3.6.1. PREDICATE-ORDER VARIABLES
To order the predicates we consider steps of an ML inference query. We assume sequen-
tial model execution and use a step to represent the execution of one predicate in the
query.

To allocate exactly one predicate at one step we introduce the binary variables Op, j ∈
O, where p ∈ P . j represents the step and its value is the index of the order with the
range of [0, |P |−1]. The variable Op, j indicates whether predicate p is evaluated during
the step j .

Op, j =
{

1, if predicate p is answered at step j

0, otherwise

Continuing with the running example, Table 3.4 shows an example of a possible order
of the four predicates. The order is plight → pperson → proad → pcar.

Algorithm 2: Order-optimal Optimizer
Input : ML inference query Q, model repository R, objective type T , bound β

Output: Query plan optPl an for query Q
1 K ← [Q,R,T,β] // input variables
2 f ′(X ,O,G ,K ) ←Or der Opt ( f (X ,K ))// transform obj func
3 X ,O,G ← M I LP_Sol ver ( f ′(X ,O,G ,K ))
4 optPl an ←Quer yPl anGen(X ,O,G)
5 return optPl an



3.6. PREDICATE ORDERING AS MIP

3

55

Table 3.4: Op, j with different predicates and steps

p
j

0 1 2 3

proad 0 0 1 0
pperson 0 1 0 0
plight 1 0 0 0
pcar 0 0 0 1

Answering exactly one predicate at each step. Similar to Eq(3.1), we design the follow-
ing constraint to restrict the number of predicates executed at each step j :∑

p∈P
Op, j = 1, (3.8)

A similar constraint is set on the execution of the predicates, i.e., each predicate p must
be executed once:

|P |−1∑
j=0

Op, j = 1 (3.9)

3.6.2. CONSIDERING SELECTIVITY AND ORDER
Before establishing a cheap order of execution we need to measure the cost of the plan.
The cost of a query plan depends highly on the order of predicate evaluation if we con-
sider selectivity. The lower the selectivity of a model, the more data tuples/items can be
filtered out, which reduces the computation time. However, the amount of saved com-
putation can be easily offset with high model execution time. For instance, a very ex-
pensive predicate/model that is very selective may not save costs if it is run for all input
tuples/images of a dataset. This is a cost-based decision that we model in the following.

PREDICATE ORDERING ON TWO SIMPLE TYPES OF QUERIES

Before introducing predicate ordering on an ML inference query, we first consider two
simpler cases: conjunction-only queries and disjunction-only queries.

Conjunction-only queries. Consider an ML inference query with only conjunctions of
predicates, i.e., in the form of Q : p1 ∧ ·· · ∧ pr . Predicate ordering for such queries is
straightforward: the selectivity of the query would be the product of the selectivity of all
the predicates in the query. We define the selectivity of the predicates as SP

p
1, where p ∈Q.

The selectivity of the conjunctive query is
∏

p∈Q SP
p . Taking into account the selectivity

and cost of a predicate, as well as their execution order for a query Q, the cost CQ can be
calculated as follows (simplified version):

CQ =C0 +C1SP
0 +C2SP

0 SP
1 + ...+C|r |−1

∏
i∈[0,|r |−2]

SP
i (3.10)

1Due to the need to distinguish between selectivity of predicates SP (dataset-defined constants) versus groups
SG ( query-dependent constants) versus timesteps S J (MIP variables), the superscript denotes which type of
selectivity is meant, and the subscript the set indexation.
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Disjunction-only queries. Next, we consider an ML inference query with only disjunc-
tions of predicates, i.e., in the form of Q : p1 ∨·· ·∨pr . For such a query Q, the selectivity
of the query is the multiplication of 1−SP

p for each predicate p ∈Q. The cost of this query
is (simplified version):

CQ =C0 +C1(1−SP
0 )+C2(1−SP

0 )(1−SP
1 )

+ ...+Cr−1
∏

i∈[0,r−2]
(1−SP

i ) (3.11)

PREDICATE ORDERING ON CNF OR DNF QUERIES

Now we explain predicate ordering on an ML inference query in CNF or DNF. In all the
following examples we will continue with the running example query q .

Example 3.6.1. In this query q , proad and pperson are the literals in the first conjunc-
tion, while plight and pcar are in the second conjunction. We refer to the predicates in
the same conjunction subformula of DNF queries (or in the same disjunction subfor-
mula in CNF queries) as a group. q is of DNF, and it has two groups (proad, pperson) and
(plight, pcar).

In the following, we aim to model predicate execution order based on groups and
optimize it with MIP. To this end, we define three kinds of variables for presenting groups
(G), selectivity among groups (W ), and selectivity within groups (H).

Representing groups. G are binary variables representing whether all predicates in the
same group have been fully evaluated at a given step j . If yes, the value of Gg , j ∈ G is
1, otherwise it will be 0. g (∈ {0,1, ...,#g r oups}) refers to the index of different conjunc-
tion groups, and j refers to the step number. We add constraints of the form Gg , j É∑

0ÉkÉ j−1 Op,k , where p ∈ Pg . To make sure that the value of Gg , j is set to 1 if all predi-
cates in the same group g have been evaluated, we define the following constraints:

Gg , j Ê 1−|Pg |+
∑

p∈Pg

∑
0ÉkÉ j−1

Op,k . (3.12)

Gg , j É
∑

0ÉkÉ j−1
Op,k (3.13)

Representing selectivity among groups. We introduce the variable Wg , j to represent
the percentage of data being processed at every step when one group of predicates has
all been answered. W is the set of all possible variables Wg , j , and it models the ef-
fect of the predicates from different groups. Thus, we can see that the selectivity of
the predicate can affect other predicates in other groups. We use G to compute, since
G indicates whether the predicates in the same group have been answered. Moreover,
there is a selectivity for each group of conjunctions, SG

0 = SP
roadSP

person for group 0 and

SG
1 = SP

lightSP
car for group 1. For CNF queries the selectivity for each group is the prob-

ability that each disjunction returns true. For DNF queries however, the selectivity for
each group is the probability that each conjunction returns false. We model the reduc-
tion rate of the current step as follows:

Wgi , j = 1−Ggi , j SG
g (3.14)
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Since the variables G are binary, when Gg , j equals 1, Wg , j equals 1−SG
g , indicating

that the proportion of data being selected for further processing is 1− SG
g . When Gg , j

equals 0, Wg , j equals 1, which means that all the data should be processed. To continue
with the previous example, if G0,3 equals 1, then W0,3 equals 1−SP

0 , where S0 is the se-
lectivity of (proad ∧pperson), i.e., SG

0 = SP
roadSP

person as mentioned above.

Representing selectivity within groups. H are continuous variables representing the
selectivity within the group at each step. For each Hg , j ∈ H , g is the group index and j
the step number. H models the effect of predicates in the same group.

We compute H as follows:

Hg , j = Hg , j−1 · (1− ∑
p∈Pg

Op, j−1(1−SP
p )) (3.15)

As mentioned before unnecessary product variables should be avoided in MIP. Prod-
ucts of binary and continuous variables can oftentimes be linearized [10] without any
error. We introduce a new variable Qg ,p, j that takes the value of Hg , j−1 ·Op, j−1:

Qg ,p, j É M ·Op, j−1, 1 É j É |P | (3.16)

Qg ,p, j Ê Hg , j−1 − (1−Op, j−1)M , 1 É j É |P | (3.17)

0 ÉQg ,p, j É Hg , j−1, 1 É j É |P | (3.18)

with M an upper bound on Qg ,p, j that holds in every case, but in our case M = 1 suffices
as Hg , j is a number between 0 and 1.

The percentage of the data being processed at each step is affected by the answered
predicates within the same group and across groups (W and H ′). The percentage is rep-
resented as the selectivity in each step, S J

j ∈ S, and can be computed as:

S J
j =

|g r oup|∏
g=0

Wg , j Hg , j (3.19)

So far, we have obtained the measured image processing rate at each step. At each
step we have S J

j to indicate the current proportion of images to process. With this vari-

able we can further measure the cost model of the plan.

Calculating the execution cost of a query. We combine the model assignment variables
Xm,p ∈ X to compute the cost model. Considering the selectivity and model perfor-
mance, we define the variables Rm, j to represent the execution cost of a model m for
each step j . The set of of all possible variables Rm, j is R. The cost of a query plan can be
computed as follows:

Rm, j = S J
j

∑
p∈P

Xm,pOp, j Cm,p (3.20)

Note that S J is an MIP variable that depends on decision variables Xm,p and Op, j .
Linearizing products containing S J is therefore desirable. Eq.(3.20) can be linearized by
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introducing another variable Ym,p, j that takes the value of S J
j Xm,pOp, j :

Ym,p, j É M ·Xm,p (3.21)

Ym,p, j É M ·Op, j (3.22)

Ym,p, j Ê S J
j − (2−Xm,p −Op, j )M (3.23)

0 ÉYm,p, j É S J
j (3.24)

and thus the products can be replaced in Eq(3.20):

Rm, j =
∑

p∈P
Ym,p, j Cm,p (3.25)

The execution time of each model should be computed only once, even though it can
answer multiple predicates. Thus, the cost model is:∑

m∈M
max

0É jÉ|P |−1
Rm, j

For example, In Figure 3.1(d) model 6 is assigned to answer both plight and proad. If
plight is answered prior to proad, we need to only consider the execution time of the
model when it is firstly executed for plight.

3.6.3. OBJECTIVE FUNCTION AND CONSTRAINTS

Our proposed Model-&Order-optimal approach has transformed the objective func-
tions into the following forms. Given an execution time constraint (solving the AMS
problem):

Maximize: faccu(Q)

Subject to: Exactly one model is assigned to a predicate;

Only models with non-zero accuracy can be assigned to a predicate;

Execution time of the query plan ft i me (Q) is calculated depending

on the type of output plan and execution order of the predicates;

ft i me (Q) ÉCbound

Objective functions. To conclude, with Eq(3.4) and Eq(3.7), we have transformed the
two problem variants in Section 3.3.4 to a matter of MIP by defining two objective func-
tions as below. With the above transformed objective functions ready, we obtain the
values of all defined variables, such as X , O, G . We use Gurobi 9.0 to solve the optimiza-
tion problem. The solver generates the MIP solutions, and we obtain the values of all the
defined variables, then with Algorithm 1 we generate the bypass plans.
Given an execution time constraint (solving problem described in Definition 3.3.1):

Maximize: faccu(Q)

Subject to: E q(3.1),E q(3.2), ft i me (Q) ÉCbound
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Table 3.5: Constraints for formalizing model assignment for query plans

Eq index Constraint
Eq(3.1) ∀p :

∑
m∈M Xm,p = 1

Semantics: Only select one model for each predicate
Eq(3.2) ∀p,m: Xm,p É ⌈Am,p⌉

Semantics: Only assign a model to a predicate it can success-
fully inference on

Eq(3.6) ∀m, p : Xm,p É Bm ; Bm É∑
i∈P Xm,i

Semantics: Identify whether model m is selected
Eq(3.8,3.9) ∀ j :

∑
p∈P Op, j = 1; ∀p :

∑
jÉ|P |−1 Op, j = 1

Semantics: At each step, only one predicate is answered
Eq(3.13) ∀g ∀ j ∀p ∈ Pg : Gg , j É∑

0ÉkÉ j−1 Op,k

Semantics: Variables are applicable if all the predicates
are answered within the same group

Eq(3.14) ∀g∀ j : Wg , j = 1−Gg , j Sg

Semantics: Determines the selectivity produced by group g in
step j

Eq(3.15, 3.16, 3.17,
3.18)

∀g∀ j Ê 1 : Hg , j = Hg , j−1 −∑
p∈Pg Qg ,p, j−1(1−SP

p ));

Qg ,p, j É M ·Op, j ; Qg ,p, j Ê Hg , j−1 − (1−Op, j−1)M ;
0 ÉQg ,p, j É Hg , j−1; ∀g : Hg ,0 = 1
Semantics: Determines the selectivity produced by the predi-
cate in the same group

Eq(3.19) ∀ j : S j =∏
gÉ|g r oup|Wg , j Hg , j

Semantics: Selectivity at step j
Eq(3.21, 3.22, 3.23,
3.24,3.25)

∀m∀ j : Rm, j =∑
p∈P Ym,p, j Cm,p ; ∀m∀p∀ j Ym,p, j É M ·Xm,p ;

Ym,p, j É M ·Op, j ; Ym,p, j Ê S J
j −(2−Xm,p−Op, j )M ; 0 É Ym,p, j É S J

j ;

Semantics: Determines the cost of executing model m at step j

Given an accuracy constraint (solving the problem in Definition 3.3.2):

Minimize: ft i me (Q)

Subject to: E q(3.1),E q(3.2), faccu(Q) Ê Abound

3.7. MULTI-OBJECTIVE MIXED INTEGER PROGRAMMING
We extend the problem further by considering multiple objectives, including accuracy,
speed and memory consumption. We formulate the model selection problem as Multi-
Objective Mixed Integer Program (MOMIP). In this scenario, we only consider sequential
plan, thus predicate ordering is not included.
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Example 1. Consider the query from the Section 4.1 with the following simplified model
zoo example:

Model name C S Acar Ahuman

model1 10 3000 80% 0%
model2 30 8000 95% 0%
model3 20 5500 0% 85%
model4 40 9000 0% 95%

Table 3.6: A model zoo example

Example 2. Following the above definition, we reformulate the query from the introduc-
tion as follows:

q := model2car ∧model4human (3.26)

In short, this means that model2 will be used to evaluate the predicate car and model4
will be used to evaluate the predicate human.
Example 3. Continuing with Example 2, this model selection achieves 90.25% accuracy,
execution cost of 70ms, and 17000B memory footprint, according to the model zoo in
table 3.6, calculated with the objective functions in section 3.7.

OBJECTIVE FUNCTIONS

In this work we consider three objectives, accuracy faccu(Q), execution cost fcost (Q), and
memory footprint fmem(Q). Below we will introduce the fomular to compute different
objectives. Other constraints on, e.g., X and B , is the same as above.

Calculating accuracy. Consider an example DNF query, (car ∧ outdoor) ∨ (chair
∧ indoor). The clauses in the query is connected by disjunction. We first estimate the
accuracy of the clauses, referred as c1,c2. We assume the predicates are independent to
each other. Similar assumption has been made in [120]. The accuracy of a conjunctive
query, e.g., car ∧ outdoor, can be estimated by multiplying the accuracy of each mod-
els, acar ∗aoutdoor . The accuracy of a disjunctive query, e.g., car∨ bus, can be computed
using inclusion–exclusion principle, as acar +abus−acar ∗abus . Following the same man-
ner, we can calculate the accuracy, faccu , of more complex Boolean expressions.

In the canonical form of MOO problems all objectives either have to be minimized
or maximized however. Therefore we introduce “accuracy loss”:

faccu_loss (Q) = 1− faccu(Q) (3.27)

Minimizing faccu_loss(Q) is equivalent to maximizing faccu(Q).
Calculating execution cost. The second objective, execution cost fcost (Q), is ob-

tained by summing the execution cost of all used models:

fcost (Q) = ∑
m∈M

CmBm (3.28)

Calculating memory. The third objective, memory footprint fmem is obtained simi-
larly. We assume all the models are loaded in advance before executing them.

fmem(Q) = ∑
m∈M

SmBm (3.29)
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We derive the following MOMIP:

miny∈Y
[

faccu_loss (Q), fcost (Q), fmem(Q)
]

such that E q.(3.1),E q.(3.2),E q.(3.6) hold.
(3.30)

Where Y denotes the set of valid query plans.

FUNCTION NORMALIZATION

Many MOO methods will prioritize optimizing the objectives that naturally take larger
values (such as memory that ranges in the thousands, versus accuracy that ranges from
0 to 1). To avoid this ‘preferential treatment‘ we use a normalization method [122]:

f nor m
i (y) = fi (y)− f min

i

f max
i − f min

i

(3.31)

Which normalizes the objective functions fi between the minimum and maximum ob-
tainable value.

3.7.1. MULTI-OBJECTIVE MIXED INTEGER OPTIMIZATION METHODS
Before we introduce the MOO methods, some important definitions need to be intro-
duced [122]:

Definition 3.7.1. A point y ∈ Y is Pareto optimal iff there does not exist a point y∗ ∈ Y
such that fi (y∗) ≤ fi (y) ∀ 0 ≤ i ≤ k and f j (y∗) < f j (y) for some j . y is weakly Pareto
optimal iff there does not exist a solution y∗ ∈ Y such that f(y∗) < f(y).

Example 4. The query plan in Example 3 is Pareto optimal: with the models in Example 1
we can only achieve lower cost or memory footprint by decreasing accuracy.

Preference methods. We name the relative importance of objectives preferences. Prefer-
ences can be indicated in may ways (e.g. weights or hierarchies), which we name.

MOO methods. We consider three methods commonly used in MOMIPs [8] and a naive
greedy method of our own contribution.

THE WEIGHTED SUM METHOD

The weighted sum method minimizes the weighted sum of all objectives. It guarantees
a Pareto optimal solution. The weighted sum model selection MOMIP is formulated as
follows:

miny∈Y wacc_loss f nor m
accu_loss +wcost f nor m

cost +wmem f nor m
mem

such that E q.(3.1),E q.(3.2),E q.(3.6) hold.
(3.32)

THE WEIGHTED MIN-MAX METHOD

In the weighted min-max method, also known as the weighted Tchebycheff method, an
ancillary variableλ is introduced as an upper bound to every (weighted) objective, which
is then minimized. It generates weakly Pareto optimal solution. The weighted min-max
MOMIP model selection is formulated as follows:

miny∈Y λ

such that E q.(3.1),E q.(3.2),E q.(3.6),
wi f nor m

i ≤ λ,
i ∈ {acc_l oss,cost ,mem} hold.

(3.33)
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Figure 3.4: MOO solutions in an example search space

THE LEXICOGRAPHIC METHOD

In the lexicographic method a hierarchy of objectives is used to convey their importance.
First the program is solved for the most importance objective. The objective value is
then added as an upper bound to that objective, and next the second most important
objective is used as the objective function. This means that the MOMIP needs to be
solved several times, and the method is inefficient for finding compromise solutions.
The lexicographic method guarantees Pareto optimal solutions.

GREEDY-MOO (BASELINE)
Our greedy baseline pairs predicates to models using a basic weighted sum utility func-
tion:

U (m, p) = wacc_loss
1−Am,p

1−min{An,p |n∈M }

+ wcost
Cm

maxC +wmem
Dm

maxD

(3.34)

which is then used to calculate the following model selection:

Xm,p =
{

1 if U (m, p) = min{U (n, p)|n ∈ M , An,p > 0}

0 elsewhere
(3.35)

Greedy-MOO does not guarantee Pareto optimal solutions, which can be shown us-
ing simple counterexamples.

Example 5. We visualize a sample search space with solutions found by the different
MOO methods in Figure 3.4. Note how the solutions vary in their objective values, even
when they use similar preference profiles.

3.8. EXPERIMENTAL EVALUATION
In this section, we empirically evaluate our optimizer on both real and synthetic datasets,
covering different modalities, i.e., texts and images. We first evaluate the efficacy of the
optimizer with other competing methods on different datasets, and observe significant
performance of our advanced optimizer. We then evaluate the optimizers’ optimization
time on a synthetic setting with different query sizes, which verifies the complexity of
the problem.
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Table 3.7: Summary of model zoos

Repo. Name Modality Class Coverage
Performance

Variation
Number of

Models
Model Zoo ❶ Text All None 48
Model Zoo ❷ Image All None 33
Model Zoo ❸ Image 1 Accuracy, Cost 165
Model Zoo ❹ Image 13 (avg) Accuracy, Cost 165

3.8.1. EXPERIMENTAL SETTINGS

DATASETS AND EVALUATION METRICS.
We used public datasets covering object detection in images with COCO [115] as well as
sentiment analysis in text with TweetEval [18]. COCO contains 123K images and 80 dis-
tinct classes of objects, lending themselves to complex queries with multiple predicates.
TweetEval is a corpus of tweets collected from Twitter. We focus on 18 inference classes,
belonging to different categories, such as text sentiments, entity types, etc. We finetune
some NLP models to fit Tweeteval to perform the tasks. We use F1-score to measure the
quality of the models, and milliseconds per instance for execution time. Each dataset
is divided into a validation set (60%) and a test set (40%). We use the validation set to
measure selectivity on each dataset, as well as execution time. The query execution time
shown in the following is obtained by executing the queries on the test set.

Model Zoos. We collected all of our pre-trained from HuggingFace (NLP tasks) and Py-
torchHub (object detection). To navigate the space of different model zoos that may
be encountered in the real world, we manually curated different types of model zoos
– each with different characteristics in terms of included models, the inference classes
they support, as well as accuracy and performance characteristics. Those are summa-
rized in Table 3.7:
– Real-world: Model Zoo ❶ contains 48 real-world models that can tackle NLP tasks.
Each model in this model zoo, covers all inference classes of the NLP tasks. Model Zoo
❷ includes 33 models that can be used in object detection tasks in images; each model
in this model zoo covers all object classes in COCO.
– Synthetic: Model Zoo ❸ , Model Zoo ❹ are derived from Model Zoo ❷ . Each of the
33 models has 5 variants; to that end, we have introduced a 0-30% accuracy penalty to
all models uniformly, while we have also added an execution time penalty of 0-50%. By
applying these variations we obtain 165 models in total. These three model zoos differ
in terms of the inference classes that the models can answer (see Table 3.7).

Optimization Methods. We compare four strategies for optimizing ML inference query
given a certain constraint. Note that there are two ways to execute the query plans: in
sequential, i.e., not applying bypass and executing the plans in sequence; and in bypass,
i.e., executing the plan using the bypass mechanism, given a predicate execution order.

Baseline 1 - Sequential: Greedy. This optimizer applies greedy heuristic and
loops over predicates and selects the model with the highest rank greedily, i.e., accur ac y

cost
(similar to predicate ordering based on rank). The optimizer stops when every predicate
is assigned to a model and the constraint is met.

Baseline 2 - Sequential: Model-optimal. The model selection optimizer relies
on MIP to optimize the model assignment under constraints, as compared to the greedy
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Table 3.8: Examples of different ML inference queries (accuracy measured by F1-score, and cost measured by
average inference time per instance).

Modality Example Query Constraint

text
e.g., ner=person ∧ sentiment=negative
∧ (topic=news ∨ topic=sport)

e.g., accuracy > 80%

image
e.g., person ∧ (car ∨ bike) ∧
emergency_light

e.g., cost < 100 ms

optimizer that approximates model assignment.
Baseline 3 - Bypass: Model-optimal. This baseline extends Baseline 2. Given the

model assignment optimized with model-optimal approach, this baseline generates
bypass plan.

Proposed method - Bypass: Model- & Order-optimal (In the plots, it is short for
Bypass: Order-optimal). This approach jointly optimizes for both model assign-
ment and predicate ordering and create a bypass plan. It takes into account of the selec-
tivity of predicates in a dataset and creates bypass plans.

Queries. Since there are no benchmark queries that we could use from other works for
our datasets, we adopted a similar approach as [120] to curate queries. We generate
queries for two scenarios: comparing optimizer quality (Section 3.8.2, 3.8.3) and mea-
suring optimization time (Section 3.8.4).

Optimizer performance. We manually curated 10 queries (exemplified in Table 3.8)
for image analysis (classes adopted from COCO), and 6 queries for text processing (tasks
including name entity recognition, topic classification and sentiment analysis), in CNF
and DNF forms. The queries range from 2 to 6 predicates with varying constraints on
execution cost.

Query optimization time. We generate a set of queries in different complexity levels
(the number of predicates ranging from 2 to 64), in total, 60 queries in CNF and DNF.
The classes are adopted from COCO. For each predicate, we sample the classes with a
uniform distribution.

Exec. Time Constraints. We create a number of experiment settings by enumerating
different execution time bounds to verify optimizers’ performance on different levels of
constraints. We regard Baseline 1 as the reference and record the minimum time con-
straint on which it can generate a query plan. The time constraints are set to be propor-
tional to the minimum time constraint with scales of {80%, 90%, 100%, 110%, 120%} (we
have observed that the performance converges from 120% onwards).

Hardware. We perform our experiments on a Ubuntu server with a single GPU (Nvidia
A40, 8GB RAM).

3.8.2. USING UNIFORM MODEL ZOOS
We analyse the behavior of our optimizer using the model zoos Model Zoo ❶ and Model
Zoo ❷ . In this experiment we consider the constraint of 100% to be the execution time
that allowed the Sequential:Greedy optimizer to find a solution to all the queries. We
constrain the execution time to gradually increase from 90% - 120% to observe how the
optimizers behave with different constraints. We present those results in bar plots (Fig-



3.8. EXPERIMENTAL EVALUATION

3

65

90 100 110 120
Time constraint level (%)

20

50

80
A

cc
ur

ac
y 

(%
)

(a) Model Zoo ❶ (Text)

90 100 110 120
Time constraint level (%)

20

50

80

A
cc

ur
ac

y 
(%

)

Sequential: Greedy
Sequential: Model-optimal
Bypass: Greedy

Bypass: Model-optimal
Bypass: Order-optimal

(b) Model Zoo ❷ (Image)

Figure 3.5: Average accuracy performance on the query workload with different execution time constraints.
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Figure 3.6: Average speedups of query execution time compared to the Greedy approach on the query workload
with different accuracy constraints.

ure 3.5, Figure 3.6). The first observation is that when we put a low constraint on the exe-
cution time, our solution, Bypass: Model-&Order-optimal, succeeds to find proper
solutions. Since the models used in both model zoos, Model Zoo ❶ and Model Zoo ❷
have very similar accuracy, we do not observe large differences. It is worth noting that
generating a bypass plan for the Model-optimal query plan can lead to a reduction in
accuracy. This is because the random ordering of predicates can sometimes result in
poor performance when a low-performing model is executed early in the process. Ap-
plying bypass plan can increase efficiency when executing the plan, however, with early
filtering, this approach may wrongly filter data in an early stage, leading to decrease in
accuracy.

3.8.3. USING MODEL ZOOS WITH DIVERSE MODEL DISTRIBUTIONS

We study the effect of diverse accuracy and execution time distributions, and class cov-
erage in model zoos. More specifically, we run experiments using Model Zoo ❸ where
each model answers exactly one inference class and Model Zoo ❹ average of 13 infer-
ence classes per model. We want to see if in such constrained environment the order
optimizer can bring benefits.

Constraining Cost. Figure 3.7 shows the accuracy of all queries, for different values of
execution time constraint. We observe that Bypass: Model-&Order-optimal consis-
tently obtains higher query accuracy than the baselines. As in earlier experiment, by-
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Figure 3.7: The average accuracy on the query workload with different time (objective) constraint levels.

pass plans do not gain benefits when execution time is constrained. While Bypass:
Model-&Order-optimal jointly optimizes for both model selection and predicate or-
dering can make use of predicate ordering and perform early filtering, making better use
of execution time budget.

Results show that using bypass plans can lead to higher efficiency, while not neces-
sarily increasing accuracy. The Bypass: Model-&Order-optimal optimizer outper-
forms the other baselines and can achieve higher query accuracy, especially given very
diverse model zoos with different execution time and accuracy tradeoffs.

Constraining Accuracy. Figure 3.8 shows the average speedups (more efficient com-
pared to Sequential: Greedy) of all queries under different accuracy constraints.
We observe speedups when applying bypass plan to execute the models, compared to
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Figure 3.8: The average speedups of query execution time compared to the Greedy approach on the query
workload with different accuracy (objective) bounds.
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Figure 3.9: Optimization time on queries with varying number of predicates.

Greedy and Model-optimal. In most cases, Bypass: Order-optimal outperforms the
baselines across all model zoos. Specifically, Bypass: Order-optimal achieved up to
7x speedup in some cases, compared to Sequential: Greedy. Compared to the previ-
ous experiments, we notice that when the Bypass:Order-optimal optimizer is presented
with more opportunities, namely more models of different accuracy and execution time
tradeoffs, it can navigate the search space efficiently and optimize queries, resulting in
great speedups. While in Model Zoo ❺ most of the time one model is feasible to answer
the query, leading to limited speedups.

3.8.4. QUERY OPTIMIZATION TIME
We now evaluate the scalability of different approaches. We are interested in finding the
limit of the Bypass: Model-&Order-optimal optimizer, with respect to the number
of predicates that can be included in a query. Note that for brevity we exclude Baseline
3 (Bypass: Model-optimal): converting a given plan to its bypass version requires
a very small fraction of the optimization time. Thus, Bypass: Model-optimal in this
case does not differ from Bypass: Model- & Order-optimal. We evaluate the effi-
ciency of our optimizers in generating a query plan by varying the number of predicates
in a query as shown in Figure 3.9. The experiments were performed on Model Zoo ❹ .

All the optimizers show exponential increase in execution time with the increase of
predicate number in a query (Figure 3.9 is plotted in log scale) , except the Sequential:
Greedy approach. The exponential increase also hints that the problem we are tackling
has a very high complexity (Section 3.3). We observe that the advanced optimizers re-
quire much longer time to generate a plan as the number of predicates increases. In fact,
when accuracy is constrained, the optimization time for 64 predicates did not finish (X).
Future work can focus on applying approximation schemes to increase efficiency.

3.8.5. RESULTS OF MOMIP
Setup. We adopt the same setting as previous. In this subsection, we only tackle the
Real-world setting, with Model Zoo ❶ containing 48 real-world models that can tackle
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Figure 3.10: Optimization time over different MOO methods

(a) f1-score (b) Execution cost

Figure 3.11: Query plan performance for the NLP scenario

NLP tasks and Model Zoo ❷ including 33 models that can be used in object detection
tasks in images

Queries. To run our experiments we formulated 10 queries for Model Zoo ❷ and 6
for Model Zoo ❶ , half in CNF and half in DNF. The queries vary from 2 to 6 predi-
cates, with 1 to 2 predicates per group. Queries are similar to (person ∧ (car ∨ bike) ∧
emergency_light).

OPTIMIZATION

We generate query plans for every query over two preference profiles (see Section 3.8.5),
execute them over the test set, and record the resulting f1-score, and execution cost. A
preference profile consists of a hierarchy of the three objectives, where the most impor-
tant objective gets a weight of 1

2 , the second 1
3 , and the last 1

6 . We also compare the
methods on the time it takes to generate a query plan, for which we use a larger number
of randomly generated queries.

OPTIMIZATION TIME

For optimization time, visualized in Figure. 3.10 with aggregated results from different
queries, we see that the greedy-MOO and the lexicographic method perform significantly
better than the weighted sum and weighted min-max method, that perform compara-
tively.

QUERY EXECUTION

To compare query execution performance, we spotlight two use case scenarios and com-
pare query plans calculated with our 4 MOO methods on their two most important ob-
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(a) Execution cost (b) Memory footprint

Figure 3.12: Query plan performance for the OD scenario

jectives.

• NLP: accuracy > execution cost > memory;

• OD: execution cost > memory > accuracy.

We see that for both scenarios in Figure 3.11 and 3.12 that the greedy method performs
poorly. Even for the most important objective (accuracy in the NLP scenario, execu-
tion cost in the OD scenario) it has bad scores. The lexicographic method manages
to score well for its most important objective, but underperforms for the others. The
weighted sum and weighted min-max method perform very comparably, finding highly
similar query plans in most cases and balancing objectives adequately. Due to its slightly
lower computation time and guarantee for Pareto-optimal query plans, the weighted
sum method would be the better choice for our optimizer.

3.9. CONCLUSIONS AND FUTURE WORK
In this chapter we address the problem of ML inference query optimization, which aims
for high accuracy given constraints on execution time. We formulate the problem as an
MIP to perform optimal model selection and predicate ordering. Our optimizer that con-
siders both model selection and predicate ordering achieves high performance, espe-
cially when the constraints are tight. The optimizer utilizes the metadata of both models
and datasets, which indicates the significance of metadata in this application. In addi-
tion, we investigated the multi-objective ML inference query optimization problem and
formulated as MOMIP that optimizes for accuracy, execution cost, and memory foot-
print. We tested several commonly used MOO methods and compared them on their
theoretical suitability and tested their performance in different experimental settings.
We note that the weighted-sum based optimizer can process user preferences and bal-
ance objectives accordingly, outperforming naive methods. Future work can investigate
effect of the assumptions.

Further research can focus on i ) applying approximation schemes in the MIP for-
mulation of the problem and i i ) lifting the assumptions made in this work, considering
especially the correlation of inference predicates and concept drift.





4
MODEL SELECTION WITH MODEL

ZOO FOR FINE-TUNING

In this chapter, we continue to explore another application of using metadata for en-
hancing ML task, i.e., model selection for fine-tuning. Given a large number of pre-
trained models, it presents a computational challenge when fine-tuning them for a new
dataset, often proving costly and even infeasible. Selecting the right pre-trained mod-
els is crucial, yet complicated by the diversity of models from various model families
(like ResNet, Vit, Swin) and the hidden relationships between models and datasets. Ex-
isting methods, which utilize basic information from models and datasets to compute
scores indicating model performance on target datasets, overlook the intrinsic relation-
ships, limiting their effectiveness in model selection. In this study, we introduce Trans-
ferGraph, a novel framework that reformulates model selection as a graph learning prob-
lem. TransferGraph constructs a graph using extensive metadata extracted from models
and datasets, while capturing their intrinsic relationships. Through comprehensive ex-
periments across 12 real datasets, we demonstrate TransferGraph’s effectiveness in cap-
turing essential model-dataset relationships, yielding up to a 21.8% improvement in cor-
relation between predicted performance and the actual fine-tuning results compared to
the state-of-the-art methods.

This chapter is based on the following publication:

• Li, Z., Van der Wilk, H., Khosla, M., Katsifodimos, A., Bozzon, A., & Hai, R., (2024,
May). Model selection with model zoo for fine-tuning, In 2024 IEEE 40th Interna-
tional Conference on Data Engineering (ICDE). IEEE.
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Upstream models
and datasets

User's
dataset

Best fine-tuning
candidate(s)

1st

2nd

nth

Model selection
strategy

Figure 4.1: Illustration of the model selection problem setting.

4.1. INTRODUCTION
Deep learning has been widely used in handling image data, such as image classification,
and object detection. The paradigm of first pre-training, then fine-tuning has become
the de facto of applying deep learning in practice. Pre-training is the phase of training a
neural network on a large, diverse dataset, typically drawn from a general domain, e.g.,
ImageNet [47]. Subsequently, the fine-tuning step refines the model for a specific task,
often a smaller target dataset. This two-step process leverages the general knowledge
acquired during pre-training, facilitating effective adaptation to a narrower and more
specialized context. The general representations learned during pre-training, speed up
model convergence during fine-tuning and help reduce the risk of over-fitting.

Today, many pre-trained models are available in public online platforms, e.g., Hug-
gingFace 1, TensorFlow Hub2, and PyTorch Hub3. Such repositories of pre-trained mod-
els are referred to as model zoos. Model zoos have been widely adopted in recent years,
as they offer convenient access to a collection of pre-trained models, including cutting-
edge deep learning architectures. This lowers the expertise barrier, enabling non-expert
individuals to apply complex deep learning models in their applications. Moreover, uti-
lizing a model zoo for fine-tuning facilitates the adaptation across a wide range of target
datasets, which have varying quantities of training data [49]. In addition, by fine-tuning
pre-trained models from the model zoo, machine learning practitioners can bypass the
need for training from scratch—a resource-intensive process, resulting in significant sav-
ings in both development time and computational resources. However, it is a non-trivial
task to pick the right pre-trained models as the starting point of fine-tuning, which has
a substantial impact on the effectiveness of the fine-tuning results [49]. A straightfor-
ward solution is to fine-tune all pre-trained models relevant, which is computationally
expensive, and sometimes infeasible in practice. For instance, there are 7,411 models for
image classification tasks in the HuggingFace repository and 900 variations on Tensor-
Flow Hub. It took 1178 hours of GPU time to fine-tune all the 185 models in our model
zoo on a single dataset.

The practical choice is to identify pre-trained models that exhibit promising perfor-

1https://huggingface.co/
2https://www.tensorflow.org/
3https://pytorch.org/hub/

https://huggingface.co/
https://www.tensorflow.org/
https://pytorch.org/hub/
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Figure 4.2: Average fine-tuned accuracy of the top 5 selected models compared between random selection
strategy and our proposed solution learning from a graph along with metadata (example dataset: stanford-
cars).

mance even without fine-tuning, i.e., model selection. As in Figure 4.1, given a target
dataset and several pre-trained models over existing datasets, model selection aims to
rank and select optimal candidates from the model zoo to perform fine-tuning. Differ-
ent strategies may yield disparate rankings of the candidates.

A naive approach is to randomly select models for fine-tuning. When pre-trained
models all have similar fine-tuning accuracy, this random selection strategy may suffice.
Yet, in the more general case where the performance of models varies, the random strat-
egy is ineffective. In Figure 4.2, we report the results of the average accuracy of the top
five models selected through diverse strategies (full results in Section 4.7). Random de-
notes a random selection strategy, which only achieved an unsatisfying accuracy value
of 0.52.

Existing studies [23, 79, 110, 138, 175, 194] mainly focus on extracting information
about the pre-trained models and datasets, and mapping model features to the target
dataset labels. The effectiveness of feature is expected to decline as the source dataset
(training dataset of the pre-trained model) and target dataset become less similar [193].
However, such information does not provide insight into whether a model would exhibit
similar performance when the source and target datasets are similar. That is, existing
methods consider only basic characteristics of datasets and models, while neglecting
their inherent relationships.

Therefore, in this chapter, we are interested in exploring such intrinsic relationships,
and investigating whether they help the model selection problem, and improve the fine-
tuning accuracy given the target dataset. We borrow the inspiration from data manage-
ment systems for data repositories, such as data lakes [71, 134, 174]. For managing a
collection of datasets, a common approach is to structure these datasets as graphs [54,
135, 201]. This involves representing tables as nodes and their relationships as edges.
For instance, an edge can indicate two tables are semantically similar [54]. For model se-
lection problem, rich relationships exist not only between models and datasets but also
among datasets themselves.

Borrowing this concept, we reformulate the challenge of model selection for image
datasets as a graph link prediction problem. We propose TransferGraph, which explores
how the relationships among dataset-dataset and dataset-model can facilitate more ef-
fective model selection, offering a structured and intuitive method to navigate and un-
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derstand these complex relationships. To represent and analyze these intricate relation-
ships, we represent these relationships using graph structures. We prove that with graph
features learned from the graph structure and along with only metadata information
(e.g., model architecture, data size), TransferGraph is able to identify suitable pre-trained
models for the target dataset. As shown in Figure 4.2, TransferGraph outperforms the
state-of-the-art method [110] with a notable improvement in fine-tuning accuracy.

Contributions. We summarize our contributions as follows.

• We reformulate the model selection problem as a graph learning problem.

• Different from the existing works only taking into account the dataset labels or
solely information about models or datasets, we exploit the metadata of both mod-
els and datasets and further learn the intrinsic relationships between the artifacts
by learning a graph.

• We propose a framework that tackles the model selection problem via graph learn-
ing. The framework consists of end-to-end processes, from feature collection,
graph learning, to model performance prediction.

• Extensive experiments are conducted to evaluate the validity of our graph-based
model selection strategy. We show that with a simple graph learning method, we
can predict model performance with a high correlation to the actual fine-tuning
accuracy.

4.2. BACKGROUND AND PROBLEM DEFINITIONS
It is a challenging task to select the right models for fine-tuning, especially given the
abundant pre-trained models in the model zoo. In this section, we explain existing
model selection strategies and identify their limitations.

4.2.1. MODEL SELECTION STRATEGIES
Previous model selection strategies consider features of models and datasets from dif-
ferent perspectives. They mainly differ in the information of datasets and pre-trained
models they use. Some works like SHiFt [153] have developed systems which combine
these approaches, while also taking user inputs such as budget constraints into account.
We categorizes these model selection strategies based on the features they employ to
rank the models for model selection.

Task similarity model selection. Early model selection methods use the similarity of the
source and target tasks to measure the transferability of a model. When the target task
is similar to source task, a model with good performance on the source task is likely to
have good fine-tuning performance [183]. Methods in this group include EMD [46] and
NCE [175], Task2Vec [3]. To obtain the similarity of the source and target tasks, EMD [46]
and NCE [175] compare source and target task features and labels. Task2Vec [3] embeds
tasks as vectors using a single probe model and computes their pairwise distances as
transferability scores.

Feature-based model selection. More recent approaches leverage the target task spe-
cific features, which are extracted by executing a forward pass of the target task on each
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pre-trained model (model inference on the target dataset). Methods in this group in-
clude LEEP [138], LogME [194], PARC [23] and TransRate [79]. These approaches circum-
vent the need for fine-tuning. However, as the number of pre-trained models in a model
zoo grows, it becomes inefficient to perform a forward pass over all pre-trained models,
even infeasible. Moreover, methods in this group overlook basic features of both the tar-
get dataset (like the number of samples and labels) and the pre-trained model (such as
input size and architecture), which are crucial for fine-tuning efficiency. For instance,
a mismatch in input size or the number of classes, leads to significant deterioration in
fine-tuning performance [110].

Learning-based model selection. The third group of approaches [23, 110] trains a sim-
ple linear model, e.g., a linear regression model, to predict model performance and rec-
ommend pre-trained models given a new target task. The used features extracted from
models or metadata of the target dataset and pre-trained models. The state-of-the-art
approach, Amazon LR [110], employs only basic metadata of the target dataset and pre-
trained models. It achieved competitive results when learning a linear regression model.
The authors suggest that incorporating additional features could potentially enhance
this method even further.

4.2.2. LIMITATIONS AND CHALLENGES
We summarize the limitations of existing model selection strategies, and outline the
challenges to tackle these limitations.

OVERLOOKING THE HETEROGENEITY OF MODEL ZOO

A model zoo may encompass a variety of heterogeneous models and datasets. Mod-
els within this context can exhibit differences in pre-trained domain, architecture, and
hyper-parameter settings. At the same time, datasets vary in terms of the tasks they
address and the distribution of their data. Predicting the performance and capability
of models is challenging, given that the models are trained differently, and the induc-
tive biases of models are different. Featured-based model selection strategy usually use
the model as feature extractors or assumes the fine-tuning process does not change the
backbone weights much [23, 48]. However, such an assumption does not hold in prac-
tice.

Prior studies [48, 79] have often restricted model architectures to certain categories,
e.g., ResNet, MobileNet or DenseNet. In LogMe [194], only models pre-training on the
same source dataset (e.g., ImageNet) are included. However, the optimal architecture
or Pareto-optimal models are usually task-dependent, relying on the inductive bias of
the model and the dataset properties [110]. Fine-tuning with a model zoo helps transfer
to a diverse set of target tasks with different downstream datasets. Due to the diversity
of the model characteristics, e.g., architecture family, pre-trained domain, and hyper-
parameter settings, it is even more challenging to identify suitable candidate models for
the downstream task.

INSUFFICIENT FEATURES COVERAGE

Feature-based model selection strategies [23, 48] often rely on the model features and
the target dataset labels. They assume that models can generalize better if the features
extracted by the model are similar and labels are similar. However, such approaches
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struggle to accurately predict top-performing models for target datasets significantly dif-
ferent from source datasets used for pre-training [110]. Conversely, incorporating simple
prior knowledge, such as dataset characteristics, is proven to help predict the model per-
formance on downstream datasets [110]. Learning from the basic metadata of models
and datasets are beneficial yet limited due to its coarse-grained nature. It often overlooks
the intricate relationships between models and datasets. Therefore, a central challenge
lies in identifying and utilizing such intrinsic relationships for more effective model se-
lection.

4.3. MODEL SELECTION AS A GRAPH LEARNING PROBLEM
In this section, we first explain the problem setting of model selection. To tackle the
challenges in Sec. 4.2.2, we propose transforming the model selection problem to a graph
learning problem.

4.3.1. PROBLEM DEFINITION
Consider a set of models, denoted as M = {m1, ...mN }, and a collection of datasets, repre-
sented as χ= {d1, ...dK }. We denote the actual fine-tuning accuracy as Ti , j , with respect
to the model mi and the target dataset d j , where mi ∈ M , and d j ∈χ. Given a pre-trained
model mi , we are interested in predicting a score Si j which approximates its fine-tuning
accuracy on the target dataset d j .

Example 4.3.1. Consider two models m1 and m2, and two target datasets d1 and d2.
The predicted scores of the models on each dataset can be presented by a matrix S =(
0.6 0.8
0.7 0.3

)
. For dataset d1, the predicted score S11 of m1 on d1 is 0.6, and S21 (m2 on d1)

is 0.8. It indicates that m2 is predicted to have better fine-tuning performance than m1.
Whereas it is a different case on the dataset d2, with S12=0.7 higher than S22=0.3.

The predicted score should be a good approximation of the actual fine-tuning results
and exhibit a strong correlation with the target dataset. Such an alignment would enable
the predicted score to be a reliable indicator of fine-tuning performance on the target
dataset, allowing for the effective ranking of pre-trained models.

To measure the effectiveness of the model selection score, we use Pearson’s correla-
tion coefficient, following the common practice [110]. We use τ ∈ [−1,1] to represent the
Pearson’s correlation. Given N paired data {(m1,dt ), (m2,dt ), ...(mN ,dt )}, τ is defined as:

τ=
∑N

i=1(Ti − T̄ )(Si − S̄)√∑N
i=1(Ti − T̄ )2 ∑N

i=1(Si − S̄)2
(4.1)

The goal is to maximize the correlation between the predicted scores and the model
performance. An absolute value of 1 implies that a S perfectly aligns with the trend of T
with all data points lying on a line.

4.3.2. CONVERT MODEL SELECTION TO GRAPH LEARNING
We formulate the model selection problem as a graph learning process, which maxi-
mizes the Pearson correlation τ, between the predicted score Si j and the actual fine-
tuning accuracy Ti j .
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Notation Definition

Si , j Predicted transferability score of mi on d j

Ti , j Fine-tuning performance of mi on d j

χ,d j Set of datasets collection and dataset j
M , mi Model collection and model i
φ Dataset similarity
G Graph
E Edge of Graph
V Vertex / Node
L Edge labels
τ Pearson’s Correlation

fG () Function over the graph
W (k) Weights of the graph
Q(k) Operation that allows aggregation afterwards

X̄ Mean of the variable X
X̂ Prediction for the variable X

F () Learned function to predict the model performance

Table 4.1: Notation definitions

Definition 4.3.1 (Graph). We denote a graph as G = (V ,E) where V is the set of vertices
and E ⊆V ×V denotes the set of edges that connect the vertices in V .

In our setting, a vertex either represents a dataset or a model. Given a set of datasets
χ = {d1, d2, ..., dK }, and a set of pre-trained deep learning models M = {m1,m2, ...,mN },
we build our vertex set as V =χ∪M . Here K = |χ| is the number of datasets, and N = |M |
is the number of models.

In our graph, we construct three types of edges, depending on the nodes connected
by the edges. The first edge type connects two dataset nodes based on our computed
similarity measure. The second edge type connects a model and a dataset and are the
existing model selection scores, e.g., LogME [194], PARC [23]. The third edge type also
connects a model and a dataset, and comes from the training history of each model on
each dataset, such as the pre-trained performance and fine-tuning performance. So, in
the graph instead of having the binary adjacency matrix, the respective scores will be
used as the weights of the adjacency matrix. Instead of having a fully connected graph,
a pruning threshold will be used to decide the existence of the edges.

Example 4.3.2. If we have two datasets d1,d2 and two models m1,m2 then we can form
the graph with edge sets EG = {(d1,d2), (d1,m2), (d2,m2), (d2,m1)}. Each of these edges
will have a value, as per a weighted adjacency matrix, the value for (d1,d2) will be the
similarity score φ1,2 between the datasets. The value between edges {(d1,m1), (d1,m2),
(d2,m2), (d2,m1)} will be the training performance of the model on the corresponding
dataset. These values can be taken from Example 4.3.1 and drawing the graph using
those values.
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Figure 4.3: Link prediction in the context of model selection

In this work, we are interested in exploiting the intrinsic relationships between mod-
els and datasets for model selection problem in a model zoo. Borrowing the concept
from data lake management, we represent the model and dataset relationships in a graph
and learn the graph structure by performing a link prediction task.

Link prediction. We extend Definition 4.3.1 to G = (V ,E ,L), by adding the set of labels
or representations of each edge, denoted as L. The goal of link prediction is to learn a
predictive model that assigns a score to pairs of vertices (u, v) indicating the likelihood
of the existence of an edge between them.

In our problem setting, we aim to identify the models that have high performance on
the datasets. We can specify the positive edges with models receiving high performance
in the training history. Thus edges of models performing well on a dataset have the label
of 1 and 0 if the model has poor performance on a dataset, which forms the labels in L.

We formulate the model selection problem through a learned function over the graph,
represented by the following formula.

T̂i , j = F ( fG (mi ), fG (d j ))), (4.2)

In Equation 4.2, we use the graph learners fG to learn the set of labels L for the link
prediction task on our constructed graph. fG (mi ) obtains the vertex embeddings of mi ,
and fG (d j ) obtaining the vertex embeddings of d j . F denotes the prediction model that
maps from the model and data representations to the fine-tuning results. The prediction
model is trained on the training history.

We reformulate the problem of model selection with a model zoo as a graph link
prediction problem. In what follows, we will introduce the information needed to tackle
the problem in our proposed graph-learning-based strategy.

4.4. DATA COLLECTION: METADATA AND FEATURES

Extensive research [23, 138, 194] has been conducted to investigate the relationship be-
tween the model features and the target dataset labels. Yet, the metadata of models and
datasets are often neglected. Though simple and coarse-grained, such metadata are of
great value to specify the characteristics of the models and datasets in some sense, and
prove to be useful for predicting the fine-tuning performance [110]. Below, we will intro-
duce the main metadata and features considered.
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4.4.1. METADATA AS NEW FEATURES
In the following subsections, we present the considered metadata of both models and
datasets. All the metadata information is easy to obtain and without any computation
requirement.

METADATA OF DATASETS

The metadata of datasets can be indicators of the fine-tuning difficulty. The properties
of a dataset can affect a model’s performance. For example, a dataset with many classes
is more difficult to learn than a dataset with binary classes. We do not exclude the infor-
mation from the pre-trained model, as in most feature-based model selection strategies.
We consider the metadata of both source and target datasets for model selection.

Number of data samples. A small dataset contains less information and is likely easier to
learn. In contrast, a large dataset with more diverse features may require a more complex
model to learn to obtain good performance.

Number of label classes. A multi-label classification problem is more challenging than
binary classification and may require more data samples to learn.

METADATA OF MODELS

The metadata of models reveals their learning capability from a certain perspective. A
model with more parameters may capture more generalized features. Models with dif-
ferent architectures may have varying inductive biases for different datasets.

Input shape. More information can be captured with a larger input shape. A higher-
resolution image contains more information.

Architecture. The architecture of a model plays an important role in determining how
well a model can capture complex patterns in a dataset. A more complex architecture,
e.g., ResNet [74], Inception [52], might be more suitable to learn more complex and larger
inputs than e.g., LeNet [107].

Pre-trained dataset. The source data quality significantly impacts the learned features
and knowledge that a model can capture. A model trained on a large dataset with diverse
data may have more generalized ability than one trained on a small and biased dataset.

Model performance. The performance identifies the capability of a model. For example,
when two models are trained on the same dataset, the model with higher accuracy indi-
cates that it has better knowledge of the dataset and may be adaptable to new datasets.

Number of parameters. A bigger model with more parameters can capture more gener-
alized features from a large dataset. Compared to an SVM model, a more complex model,
e.g., ResNet, can perform better in image classification on ImageNet.

Memory consumption. The memory consumption of a model is correlated to the num-
ber of parameters. It is another indicator of the complexity of a model.

This work does not include all the metadata mentioned in Amazon LR [110]. Some
metadata included in Amazon LR needs further computation to obtain, e.g., dataset dif-
ficulty. The metadata mentioned above are more accessible to obtain. In addition, we
include some other features, e.g., models’ pre-trained performance compared to Ama-
zon LR. We find that even with the simple metadata, the model selection strategies can
make good predictions on the model performance.



4

80 4. MODEL SELECTION WITH MODEL ZOO FOR FINE-TUNING

4.4.2. DATASET FEATURES
Together with the metadata, we capture the dataset features in the feature collection
stage. Similar to feature-based model selection strategies, which acquire features by ex-
ecuting a forward pass over all candidate models on the target dataset, we can capture
dataset representations through a comparable approach. By utilizing a reference ML
model, referred to as a probe network, for inference on datasets as the initial step. We
acknowledge that the probe network exhibits varied performance on different datasets,
resulting in distinct embeddings within a vector space. We expect these embeddings to
unveil the distinctive characteristics of the datasets, and the distance between embed-
dings captures the semantic similarities between the datasets.

DATASET REPRESENTATIONS

Prior studies, including Task2Vec [3] and Taskonomy [197], focus on learning dataset
representations within the realm of transfer learning. We adopt two kinds of methods to
extract the embeddings for dataset representations; Domain Similarity and Task2Vec.

Domain Similarity embeddings. We adopt a similar mechanism to extract features of
an image from large pre-trained model as in Domain Similarity [46]. We aggregate all the
image representations of the dataset inferred by a probe network as the dataset features.
The probe network is usually a large network, such as VGG [165], ResNet [74]. These
networks are pre-trained on ImageNet [47] and are considered to be able to capture good
generic features from the images and thus serve as reference models to retrieve features.
The embedding of a dataset dk is defined as:

Ẽk =
|dk |∑
j=1

g (x j ), x j ∈ dk , (4.3)

g (·) represents the features obtained by extracting the feature layers of the reference
model. We adopt ResNet34 pretrained on ImageNet as the reference model.

Task2Vec embeddings. Task2Vec [3] is another method that we implement to obtain
node features. Unlike domain similarity, Task2Vec also takes into account the labels of
the dataset and learns embeddings for different tasks with pre-trained networks. The
main formula to retrieve the Task2Vec embeddings involves computing the diagonal
Fisher Information Matrix of the network filter parameters for a given task:

Ẽk = F, F = Ex,y p̃(x)pw (y |x)[∇w log pw (y |x)∇w log pw (y |x)T ] (4.4)

, where F is the diagonal Fisher Information Matrix (FIM). The Task2Vec embedding
can then be obtained by averaging the FIM for all weights in each filter of the probe net-
work. This results in a fixed-size vector representation for each task that captures its
complexity and semantic similarity to other tasks. The norm of this embedding corre-
lates with the complexity of the task, while the distance between embeddings captures
semantic similarities between tasks.

DATASET SIMILARITY

A model with good performance on the source task is likely to have good fine-tuning per-
formance when the target task is similar [183]. We use φ to represent the dataset similar-
ity. The similarity between datasets is measured by the similarity between dataset repre-
sentations with Euclidean distance. We expect a higher similarity between semantically
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Figure 4.4: Graph properties

similar datasets. For example, a dataset of flowers shall be more similar to a dataset of
plants than airplanes.

4.4.3. OTHER FEATURES
Existing works such as Model2Vec [3] and attribution map [168] have investigated to ob-
tain model features for transfer learning. Future work can investigate using model fea-
tures as an additional type of feature for predicting the model performance.

4.5. GRAPH CONSTRUCTION AND LEARNING
The metadata and dataset features mentioned in Section 4.4 characterize the datasets
and models from a high-level perspective. When the metadata information and dataset
features are similar, distinguishing between them becomes challenging, leading to dif-
ficulties in predicting model performance. In order to obtain more subtle features of
models and datasets, we aim to explore the intrinsic relationships between models and
datasets. For example, whether a model’s proficiency on one dataset implies good per-
formance on a similar dataset, or whether models pre-trained on diverse datasets exhibit
distinct performance on a given target dataset.

We introduce a graph-based approach to capture and leverage the relationships be-
tween models and datasets. Utilizing graph learners, we seek to exploit the rich relational
information embedded in the graph structure. The subsequent section will detail how
we construct this graph, tailored for the purpose of model selection with a model zoo.
In addition, we introduce the representative graph learning algorithms that capture the
information of the constructed graph.

4.5.1. GRAPH CONSTRUCTION
To assign attributes to nodes and edges, it is crucial to identify entities and relationships.
In Figure 4.4, we present an overview of the graph structure, where vertices and edges
may carry distinct semantic meanings.

VERTICES

A vertex in the constructed graph can be either a model or a dataset. The vertices are
connected to each other, embedded with model-dataset relationships or dataset-dataset
relationships. Usually, model zoos contain models trained on overlapping publicly avail-
able (benchmark) datasets, making the number of models exceed the number of datasets
in a model zoo.
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VERTEX FEATURES

A vertex can be embedded with features. Some graph learners, e.g., GraphSAGE [73],
GAT [181], can capture the vertex features and use them to initiate the learning process.
We introduce dataset features earlier in Section 4.4.1. We can embed the dataset features
as the features of the dataset vertices.

EDGES AND EDGE ATTRIBUTES

The edges are constructed in three ways: i) edges between datasets indicating the sim-
ilarity between datasets, ii) model performance on datasets as edges between models
and datasets, iii) predicted scores obtained from other feature-based model selection
strategies as another type of edges between models and datasets.

Dataset-Dataset (D-D) edge attributes. The construction of D-D edges is achieved by
evaluating the similarity of dataset representations. The dataset similarity is denoted as
φ. The computation encompasses all possible dataset pairs, with the resulting similarity
scores employed as edge attributes.

Model-Dataset (M-D) edge attributes. The edges between datasets and models are as-
sociated with different meanings. A model can connect to a dataset with training per-
formance or predicted score. For example, if we can obtain the pre-trained performance
of mResnet50 on the dataset cifar100 with an accuracy of, e.g., 95%, the vertices between
mResnet50 and cifar100 has an edge with an attribute of 0.95. We can also embed the fine-
tuning results if they are available. In addition, the predicted scores obtained from other
model selection strategies can also embed meaningful information between models and
datasets.

4.5.2. GRAPH LEARNING

In the context of model selection, we formulate the graph structure to address a link
prediction task, evaluating the likelihood of a model exhibiting high performance on the
target dataset. The connectivity between the model and dataset vertices is established if
the model is anticipated to yield favorable outcomes.

For effective resolution of the link prediction problem, it is imperative to distinguish
positive edges from negative ones. In our pursuit of identifying high-performing models,
we designate relationships where a model demonstrates good performance (e.g., with
accuracy higher than 60%) on the dataset as positive edges, while those with lower accu-
racy are categorized as negative edges (e.g., lower than 50%).

We employ diverse graph learning algorithms for the acquisition of knowledge from
the constructed graph. These algorithms consider a variety of information, e.g., link
structure and edge attributes. In essence, graph learning algorithms demonstrate the
capability to capture intrinsic knowledge within a graph by assimilating neighborhood
information.

RANDOM-WALK-BASED GRAPH LEARNING ALGORITHMS

Graph learning algorithms based on random walks do not incorporate the features of
vertices; instead, they focus on learning the graph’s link structure. This paper specifically
explores Node2Vec [65] and its variant, Node2Vec+ [116].
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Node2Vec. Node2Vec [65] introduces a probability model where the random walk has
a certain probability, 1/p, to revisit nodes being traversed. Additionally, it employs an
in-out parameter, q , to control the exploration of the global structure. When the return
parameter, p, is small, the random walk may become trapped in a loop, focusing on the
local structure. Conversely, when the in-out parameter, q , is small, the random walk
resembles a depth-first-sampling strategy more closely, capable of preserving the global
structure in the embedding space.

Node2Vec+. Node2Vec+ [116] is a variant of Node2Vec. Different from Node2Vec travers-
ing the graph with parameters, p and q , Node2Vec+ takes into account the edge weights.
When it constructs walks in the graph, the probability of visiting the next neighbor is
associated with the edge weights.

NEURAL-NETWORK-BASED LEARNING METHODS

Different graph neural networks can learn different kinds of information from the graph.
All of them capture the edges in the graph. Some also learn from the edge attributes, or
node features.

GraphSAGE. GraphSAGE [73] employs a sampling and aggregation method to perform
inductive node embedding, utilizing node features such as text attributes, node profiles,
and more. The model trains a set of aggregation functions that integrate features from
the local neighbors and pass them to the target node, denoted as vi . Subsequently, the
hidden state of the node vi is updated by:

h(k+1)
i = ReLU

(
W (k)h(k)

i ,
∑

n∈N (i )
(ReLU (Q(k)h(k)

n ))

)
(4.5)

4.5.3. ATTENTION GRAPH EMBEDDING

We also consider another type of graph learning method, using attention mechanisms in
the learning process. The attention mechanisms enable graph learning to concentrate
on specific parts of a graph that are more relevant to a given task. One advantage of
applying attention to graphs is the ability to filter out the noisy components, thereby
increasing the signal-to-noise ratio in information processing. In this line of work, we
adopt Graph attention networks (GAT) in this paper.

GAT. GAT [181] employs masked self-attentional layers to address the limitations of prior
graph convolutional-based methods. The layers aim to compute attention coefficients.

αi j =
exp(Leak yReLU (−→a T [W

−→
hi ||W

−→
h j ]))∑

k∈Ni
exp(Leak yReLU (−→a T [W

−→
hi ||W

−→
h j ]))

, (4.6)

W is the weight matrix of the initial linear transformation. The transformed information
for each neighbor’s feature is then concatenated to derive the new hidden state. This
new hidden state undergoes a LeakyReLU activation function, a widely utilized rectifier.
The attention mechanism described above constitutes a single-layer feed-forward neu-
ral network, parameterized by the weight vector mentioned earlier.
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Figure 4.5: An overview of TransferGraph on model selection for fine-tuning, including model zoo construction
(stage 1), training (stage 2-3) and model selection (stage 4).
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4.6. THE FRAMEWORK OF TRANSFERGRAPH
We propose TransferGraph, a framework that performs model selection via a graph learn-
ing process. To achieve this, there are a few steps for the graph-based model selection
process, as shown in Figure 4.5. The processes are divided into four main steps:

4.6.1. METADATA AND FEATURE COLLECTION
We first collect all the information needed, as described in Section 4.4. Step {①-④} in-
dicate the collection process of different features and metadata used for the subsequent
steps. Step ① obtains the dataset representations which can be further applied to com-
pute the similarity between datasets. Step ② encapsulates the training performance of
models across different datasets, while step ③ represents the predicted scores of model
performance, which can be obtained from existing works, e.g., LogME [194]. Step ④ col-
lects the metadata of models and datasets. All the collected information will be returned
to the model zoo and stored as preparatory data for further processes.

4.6.2. GRAPH CONSTRUCTION AND LEARNING
With the collected information, we continue to construct a graph in step ⑤, embedding
relationships between models and datasets, and other attributes. The graph construc-
tion details can refer to Section 4.5.

We expect that graph learning can help capture the intrinsic structure of the graph.
If we consume all the information and construct a graph, the graph would be fully con-
nected, hence no significance information can be learned. The mechanism of graph
learning is to map the “connected” nodes close in the vector space, while keep the “dis-
connected” nodes further away. By saying “connected”, the nodes can be reached out
within the same path by traversing the graph.

For this problem, our goal is to identify the models that can achieve good perfor-
mance on the downstream tasks, i.e., target dataset. We set a fine-tune accuracy thresh-
old as {0.6} and {0.5} for transferability score. For model-dataset pair with accuracy lower
than 0.6 and transferability score lower than 0.5, we will prune the edges from the graph.
We use the remaining graph for representation learning. With the edges being pruned,
we obtain a graph for training the graph learners. The properties are shown in Table 4.2.4

We further use one of the graph learners, e.g., Node2Vec, presented in Section 4.5 to
capture the information in the graph, e.g., link structure or vertex features, as in step ⑥.
The graph learner is trained for a link prediction task. With the trained graph learner, we
can extract the embeddings for each node.

4.6.3. TRAINING PREDICTION MODEL FOR PERFORMANCE PREDICTION
As a learning-based strategy, we learn from the training history to predict the model per-
formance on an unseen dataset as a regression task. In step ⑦, we construct a training
set for the supervised learning as a regression task. The training features are constructed
by metadata of models and datasets, as well as graph features. The label is the training
performance of a model on a dataset, which we learn to predict. For each model and
dataset pair, if there exists training history, we identify the metadata of the model and

4* indicates that the number would change if the target dataset is different.
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Graph property Value
graph type homogenous

Threshold on transferability score for edge pruning 0.5
Threshold on accuracy for edge pruning 0.6

Threshold of negative edge identification on accuracy 0.5
number of nodes 265

average node degree* 20.1
number of dataset-dataset edge* 5256

number of model-dataset edge with accuracy weight* 1753
number of model-datset edge with transferability weight* 916

Table 4.2: Statistics of the graph properties

dataset. Through graph learning, we obtain the learned representations of the corre-
sponding models and datasets. The training set can be represented as tabular data, and
we can learn a prediction model, e.g., linear regression, random forest, as shown in step
⑧.

4.6.4. MODEL RECOMMENDATION FOR FINE-TUNING
We construct a prediction set ⑨ similarly to the training set construction. Specifically, the
dataset embeddings only belong to the target dataset dt where we will fine-tune mod-
els. The metadata of the dataset also adjust with the target dataset. We include all the
models, since we would like to predict performance of the models in the model zoo.

Given the trained prediction model, we obtain a score for each model and target
dataset pair. We apply these predicted scores as an indicator to rank and select mod-
els for fine-tuning.

Linear regression. One of the prediction model we use is linear regression. We use the
linear regression model to learn various features, e.g., meta features and graph features.
Linear regression fits a straight line or surface that minimizes the discrepancies between
predicted and actual output values.

Random forest. Random forest is also a highly adopted model due to its simplicity and
explainability. We set the number of trees as 100, max depth as 5.

XGBoost. XGBoost (eXtreme Gradient Boosting) is one of the ensemble learning meth-
ods and is particularly effective in structured and tabular data scenarios [37]. XGBoost
is an ensemble of decision trees and minimizes the objective function with gradient de-
scent. We set the number of trees as 500, and maximum depth as 5.

4.7. EVALUATION

4.7.1. EXPERIMENT SETUPS

Datasets. We collected 12 public image datasets, which are often used for image classi-
fication tasks and are listed in Table 4.3. Among them, 11 datasets are from the VTAB-
1k benchmark suite [198]. Additionally, we use another common public image dataset,
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Dataset caltech101 [53] cifar100 [103] diabetic_ret [85] dtd [40] eurosat [75] flowers [139]

Samples 3060 50000 35126 1880 27000 1020
Classes 101 100 5 47 10 10

Dataset kitti [60] pets[200] smallnorb_elevation[106] stanfordcars [100] svhn [136]

Samples 6347 3680 24300 8144 73257
Classes 4 37 18 196 10

Table 4.3: The target tasks used for evaluation
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Figure 4.6: Fine-tuning performance of models over different datasets sorted by standard deviation

Stanford Cars [100].

Models. We include 185 heterogeneous models, with different architectures, such as
ViT [52], Swin-Transformer [118] and ConvNeXT[119], and pre-trained on diverse datasets.
We use public image classification models from HuggingFace5. Different from the setup
in the previous works [110, 194], we do not constrain the model to be trained on a certain
dataset, e.g., ImageNet, which is the case in [110].

Ground truth. A pre-trained deep learning model consists of two components: a feature
extractor and a classifier. During fine-tuning, the model is initiated with the pre-trained
weights, coupled with a classifier layer that is randomly initialized. Subsequently, this
new model is retrained on the target dataset. To determine the actual fine-tuning ac-
curacy, we fine-tune all models on our target datasets. For optimization, we employ
stochastic gradient descent. We use a cyclical learning rate scheduler, which avoids the
need for a redundancy test or expensive hyperparameter tuning [167]. Using this strat-
egy in transfer learning has been validated as effective in [114]. We optimize for 30
epochs, using a momentum of 0.9. We present the fine-tuning performance of models
across different datasets, as in Figure 4.6. Notably, in certain datasets, the performance
variance is small. For example, in the case of eurosat, where the standard deviation is
only 0.005, model selection is not necessary. In the following experiments, we only re-
port results on datasets where model performance exhibit variation. The datasets are

5https://huggingface.co/models
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ordered by the standard deviation of the performance.

Baselines. We compare our work with the two baselines below:
- LR (Amazon LR [110]) is the state-of-the-art approach for model selection for model

zoos. It exploits the meta-features of models and datasets, and uses these features to
train a linear regression model to predict the fine-tuned accuracy. The metadata of
datasets includes data size, number of classes, etc. The metadata of models consists
of the model architecture, input size, pre-trained domain, etc.

- LogME [194] is one of the most representative works that measure the transferability
of a model to a target dataset. Transferability is a score that assesses a model’s transfer
learning performance to a new task (see Section 4.8 for explanations). The mechanism
of LogME is to estimate the maximum value of label evidence p(y |R) (R is the represen-
tations extracted by a model) given features extracted by pre-trained models.

Evaluation. To validate the effectiveness of our approach, we adopt a “leave-one-out”
(LOO) mechanism for evaluation. This is a standard setting in related works of model
selection, such as [110]. At each time, we learn from the training history of models
trained on the existing datasets while excluding the target dataset. When construct-
ing the graph in our proposed method, we remove all the edges of models connected
to the target dataset node, i.e., the target dataset while maintaining the edges between
datasets. Then, with the learned GNN, we identify the node representations of models
and the target dataset, and use them as the graph features.

For baseline comparison, we apply a evaluation metric: Pearson correlation. Exist-

ing methods for model selection mostly predict a score, i.e., model selection score, for
each pair of a model and target dataset. The Pearson correlation measures the correla-
tion between the predicted scores and the ground-truth results, i.e., accuracy. A model
selection method is considered better, with a higher correlation between its predicted
score and the ground truth.

4.7.2. EVALUATION ON HETEROGENEOUS MODEL ZOO

We construct a model zoo with 185 heterogeneous pre-trained models. These models
vary in terms of various aspects, e.g., pre-trained dataset, architectures, and various
other metadata features. The downstream tasks are from the VTAB benchmark, where
the domains include animals, 3D objects, plants, remote sensing, etc.

SUMMARY OF OUR PROPOSED GRAPH-LEARNING-BASED STRATEGY

There are a few design choices with our proposed methods.

Prediction model. We include three prediction models: linear regression (LR), random
forest (RF), XGBoost (XGB).

Graph learners. The graph learning algorithms include GraphSAGE [73], GAT [181],
Node2Vec [65] and Node2Vec+ [116]. In particular, N2V(+) is short for Node2Vec(+) in
the plots.

Additional features for supervised learning. Along with the graph features, we also in-
clude additional features as inputs for supervised learning when predicting the training
results. We take into account features including all the metadata of models and datasets,
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Figure 4.7: Comparison of different model selection strategies, i.e., feature-based, learning-based, and our
proposed graph-learning-based.

as in Section 4.4.1. In addition, we include the distance between the source dataset and
target as another type of features for supervised learning.

The variants of our proposed strategies begin with TG. For example, TG:LR,N2V,all
indicates that we use a linear regression model to learn from all supervised features
along with the graph features obtained by Node2Vec.

RESULTS

In Figure 4.7, we report the average Pearson correlation between the predicted score and
the fine-tuning results over 8 downstream datasets. We compare our graph-learning-
based strategy with other strategies mentioned in Section 4.7.1, i.e., LogME, and LR. LogME
is feature-based and does not take into account of meta features nor the source dataset
representations. The rest are all learning-based model selection strategies. They learn
from the training history and predict the model performance on a target dataset. We
present graph-featured-based strategies, the names beginning with TG. Each strategy
differs in terms of the prediction model being used.

Figure 4.7 shows that our proposed graph-feature-based strategies significantly im-
prove the model selection performance compared to baselines LogME and LR. We use
three kinds of prediction models, i.e., linear regression model LR, random forest model
RF, and XGBoost XGB model. Compared only using (meta) features (LR), the graph fea-
tures can improve the capability of the prediction model and achieve a higher correlation
between the predicted scores and the fine-tuning accuracy. It shows that the intrinsic
relationships between models and datasets revealed via graph learning are important to
predict the performance of models on a new dataset. In addition, we notice that LogME,
without any information on the training history, can outperform a learning-based strat-
egy, i.e., LR. This, on the hand, proves the significance of the graph-based features.

4.7.3. ABLATION STUDY

In this experiment, we conduct an ablation study where we investigate the effect of dif-
ferent features, i.e., i) with only (meta) features, ii) with only graph-based features, and
iii) with (meta) features, dataset distance and graph-features. We use the same predic-
tion model, LR to train on the features.
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Figure 4.8: Ablation study when including various features.
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Figure 4.9: Performance of model selection strategies using different graph learners

As seen from Figure 4.8, in most cases except cifar100, including more features re-
sults in better performance. When only using graph features, learned from Node2Vec,
we can already achieve a higher correlation than the baseline LR, which only includes
the basic metadata. We also note that when LR fails to learn, e.g., smallnorb_evaluation,
the strategies using the graph features can successfully predict the model performance.
Among all, the most effective strategy is to include all the features, (meta) features, dataset
distance and graph features.

4.7.4. EFFECT OF GRAPH LEARNING METHODS
In the previous study, we investigate the effect of different features. We move forward
to verify the effectiveness of different graph learning methods. In the following, we
compare the average performance using different graph learning algorithms to extract
the graph features. All the strategies included in this experiment use a LR model to
learn the graph features, as well as other (meta) features and dataset distance. The
graph features are extracted by four graph learners: i) GraphSAGE [73], ii) GAT [181],
iii) Node2Vec+ [116], and iv) Node2Vec [65].

Figure 4.9 presents the correlation results when using different graph features ob-
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Figure 4.10: Ablation study when including various features.

tained by various graph learners. The strategies learning features from the Node2Vec se-
ries, i.e., Node2Vec and Node2Vec+ outperform the ones using GraphSAGE and GAT. Each
graph learners consume different graph properties. Node2Vec only learns the link struc-
ture. Besides the link structure, Node2Vec+ also takes into account the edge attributes in
the graph. While GraphSAGE and GAT obtain not only the link structure, edge attributes,
but also the node features, each updating the node representations in different mecha-
nisms.

The graph neural networks usually work well on large graph, e.g., Citation data con-
taining 302,424 nodes, and Reddit with 232,965 edges [73]. GraphSAGE and GAT do not
perform well in our context because the constructed graph is relatively small compared
to those graph datasets. The graph used in this paper has only 265 nodes and thou-
sands of edges. The computation overhead of obtaining such large-scale graph dataset
is extremely expensive. While the Node2Vec series of graph learners can perform well
on various size of graph dataset. It is noted that we do not explore the hyperparameter
space of these graph learners, e.g., walk length, number of neighbors sampled by each
node, window size, etc. Complementary work can identify the best hyperparameter can-
didate for each graph learners, and also investigate which graph learner to apply given
different setting scenarios, e.g., graph size, link structure and node/edge features.

4.7.5. EFFECT AND CAPABILITY OF PREDICTION MODEL
The prediction models are used to learn features and predict the fine-tuning scores. In
this experiment, we investigate the effect when applying different prediction models. In
Figure 4.10, we present the correlation performance when applying different prediction
models. We observe that there is no dominant prediction model that can obtain the
best results among all the datasets, and the performance of the prediction models on a
dataset is similar, except cifar100, which indicates that the feature selection is more im-
portant than prediction model selection. Yet we do not fully tune the prediction models
on each dataset. Further study can be done to identify the most appropriate prediction
model based on varying dataset characteristics.
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Figure 4.11: Correlation results affected by different dataset representations.

4.7.6. EFFECT OF DATASET REPRESENTATIONS

We extract dataset representations using proposed methods from [3]. The representa-
tions are used in two ways: i) to compute the distance between datasets, and ii) used as
initial node features for datasets. In this experiment, we aim to investigate the effect of
different dataset representations. The dimension of a Task2vec embedding is 13842, and
the one of a domain-similarity embedding is 1024, depending on the extraction layer of
the reference model.

In Figure 4.11, we present the results of two of our proposed strategies, i.e., TG:XGB,
GraphSAGE,all and TG:XGB,N2V+,all, using GraphSAGE and Node2Vec+ as graph
learner respectively. We observe only slight differences in the performance on most of
the datasets between using Task2Vec representations and the ones of Domain Similar-
ity. For Nove2Vec+, the embeddings are only used to compute the dataset distance. The
small differences in the dataset distance do not affect the final results. However, in the
case of using GraphSAGE, where the representations are used for both similarity com-
putation and the vertex features. We observe that in most cases, Task2Vec representa-
tions do not show advantages when using GraphSAGE. One reason is that the Task2Vec
embeddings have really high dimension, while the graph in general is not big. We sug-
gest that future work can delve into this and identify better representations for a graph
learner to learn for the model selection problem.
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Figure 4.12: Effect of inputs ratio

4.7.7. EFFECT OF INPUT RATIO

We investigate the effect of the input size of the training history on the performance.
The entire training history (r ati o = 1.0) include the training results of all the model and
dataset pairs, excluding the target dataset and model pairs. We experiment on train-
ing with different ratios of the training history: {0.3, 0.5, 0.7, 1.0}. The strategy training
would be much more efficient with lower input ratio, because the feature collection can
be expensive though it can be performed offline. This experiment aims to answer the
question: how the amount of information affects the prediction performance.

We compare two main categories, i.e., a strategy training without graph features (LR,all)
and another strategy training with graph features (TG:LR,N2V+,all). As in Figure 4.12,
the performance of both strategy can be affected by the input ratio. LR,all is more
robust even when limited training history is used to train the strategy. While graph-
feature-based strategy is more sensitive to the input ratio, especially with low input ratio.
When we set training history as r ati o=0.3, TG:LR,N2V+,all fails to predict the perfor-
mance. The reason is that with a small input ratio, the constructed graph may have a
large number of disconnected components. The graph learner fails to capture the global
information by traversing the graph.

4.7.8. DISCUSSION

Through comprehensive experiments, we have shown the efficacy of graph-based fea-
tures in addressing the model selection problem with a model zoo. Our most competitive
model selection strategy incorporates both graph-based features and additional meta-
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data of models and datasets. It is noted that, in this chapter, we use image classification
task and visual models as illustrative scenarios. However, our proposed model selection
strategy can be applied to diverse cases on various modalities. For example, it can seam-
lessly extend to managing a model zoo with large language models for textual datasets.
Below we discuss the limitations and directions that can be investigated in future re-
search.

Graph construction. We incorporate different information in a graph, e.g., dataset dis-
tance, model performance, dataset representations, etc. Yet, we do not discuss the con-
tribution and importance of each type of features embedded in a graph. We apply a
simple threshold-based edge pruning process to maintain the graph structure. Future
work can investigate a more advanced graph construction method and make it adapt to
the capability of different graph learning models.

Efficiency. The collection of the relevant features for the prerequisite works are not triv-
ial, though this process can be achieved off-line. Future work can investigate the most
impactful features and make the preparation process more efficient.

Graph learner selection. We investigate four types of graph learner to obtain graph fea-
tures. In the graph community, the performance of the graph learner may depend on the
graph properties. Further work can pursue to identify good candidate of graph learner
(with tuned hyper-parameters) for the graph generated from each specific model zoo.

4.8. RELATED WORK

4.8.1. TRANSFER LEARNING
Traditional machine learning techniques have seen significant progress in various knowl-
edge engineering areas such as classification, regression, clustering and data mining.
Despite these advancements, real-world applications frequently encounter limitations.
Unfortunately, in many scenarios, obtaining sufficient and representative training data
can be a costly and time-consuming effort. Transfer learning has been very successful in
combatting these problems, especially in the domain of deep learning, where the data
dependence is even greater [172].

The process of transfer learning typically begins with selecting an upstream or pre-
trained model from a repository containing models trained on different source datasets
and architectures. Subsequently, one or multiple selected models are then fine-tuned
using the users’ target dataset, and the user can select the fine-tuned model with the
best characteristics for their downstream task. There are various available fine-tuning
strategies identified by [172]. We adopt the most popular network-based deep transfer
learning in this work. Network-based deep transfer learning refers to reusing the partial
network that pre-trained in the source domain and retraining the deep neural network
which used in target domain.

4.8.2. GRAPH LEARNING
Graph learning broadly refers to machine learning on data structured as a graph. It is
gaining more and more attention, as many complex real-world data can be expressed
as graphs. Graph learning can be separated into four different methods [189]: 1) graph
signal processing, 2) matrix factorization, 3) random walk and 4) neural network. We
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focus on the latter two methods, as those are mainly used in graph learning-based rec-
ommender systems [183].

RANDOM-WALK-BASED GRAPH LEARNING ALGORITHMS

These types of algorithms sample random walks by traversing the graph. Given a walk
length, i.e., number of steps, a random vertex is selected as the starting point and a
neighbor vertex would be selected with probability as the next step in the walk. These
walks indicate the context of connected vertices. The randomness of walks gives the abil-
ity to explore the graph and capture both the global and the local structural information
by walking through neighboring vertices. After the walks are built, probability models,
such as skip-gram [128], can be applied to learn the representations. The mechanism
of the random-walk-based graph learning is aiming to make the representations of con-
nected nodes in the vector space closer to each other while disconnected ones further
away. In such a way, the representations capture the intrinsic structure of the graph.

NEURAL-NETWORK-BASED LEARNING METHODS

This line of works were inspired by the success of neural network models, RNNs and
CNNs. Graph learning methods using RNNs resemble walks sampled from a graph as
words, and use natural language processing models to learn representation of vectors.
Another family of neural-network-based methods adopt CNN models. The input can be
walks sampled from a graph or the entire graph itself. In this work, we only discuss CNN-
based learning methods in this category. Representative works include GraphSAGE [73],
GCN [94].

4.9. CONCLUSION
We pioneer the exploration of a graph-learning-based model selection strategy within
the model zoo framework and introduce a comprehensive framework to address the in-
tricate model selection problem. Predicting model performance proves to be challeng-
ing, given no dominant model excels across all datasets. Extensive experiments have
shown that effectiveness of leveraging the intrinsic relationships between models and
datasets along with metadata of models and datasets for predicting the model perfor-
mance. The most competitive variant of our model selection strategy gains 21.8% in-
crease in measuring the correlation of the predicted model performance and the fine-
tuning results. Furthermore, the graph-learning-based model selection strategy can con-
tinuously be improved with more metadata and training history in the model zoo.
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CONCLUSION

This dissertation discusses the significant roles that metadata could play in the realm
of machine learning (ML). Through an in-depth examination of metadata management
and its critical influence on enhancing ML workflows, this work shows the benefits that
structured and comprehensive metadata imparts in optimizing the processes of model
training, inference, and fine-tuning. Our analysis of the literature and of existing solu-
tions for models management reveals a notable deficiency in the provision of exhaustive
metadata within the existing public model zoos and ML systems. This shortfall limits
the utility and effectiveness of the platforms for practitioners, particularly in the realms
of model selection and the various ML applications aiming for efficiency and effective-
ness.

This thesis addresses questions concerning the identification, organisation, and ex-
ploitation of metadata in ML workflows. We show that a meticulously organized and
queryable metadata repository not only augments the manageability and accessibility
of ML models but also equips practitioners with the necessary tools to make informed,
data-driven decisions for model selection and model reuse. In this conclusion chapter,
we revisit the research questions addressed in this thesis and will further discuss the im-
plications for future work.

5.1. ANSWERS TO RESEARCH QUESTIONS
The thesis tackled the following main research question: How to represent and utilize
metadata within ML model zoos with the aim of enhancing the processes of model
training, inference, and fine-tuning?

We approached the question by exploring two main directions: the design of a meta-
data representation for ML models (and related resources), and the use of such metadata.
We tackled, in particular, the case of model selection, for both model inference and fine-
tuning. Given the context of a model zoo, where thousands of models are available, se-
lecting models for model inference and fine-tuning is challenging given that models are
diverse and with heterogeneous properties. Yet, good model selection can lead to higher
effectiveness and efficiency.
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The work in this thesis is organised around the following three research questions.

Q1: How to represent metadata in a model zoo in a structured and queryable fashion?
In the first research question, we identify a significant gap in the domain of ma-

chine learning (ML) model repositories (model zoos), namely the lack of rich, structured,
machine-readable, and therefore queryable metadata describing ML models and related
artifacts. We therefore proposed a novel approach to metadata representation. Our rep-
resentation has been used as a representation backbone for Macaroni, an example of a
model zoo offering advanced functionalities enabled by our metadata model. In essence,
the metamodel paves the way for a more dynamic, accessible, and efficient use of model
zoos. By enhancing the interpretability, reproducibility, and overall utility of these repos-
itories, we contribute to the broader goal of democratizing ML practices and fostering
innovation in this rapidly evolving field.

With the metadata being represented, our research pivoted to the application of this
metadata in enhancing various ML workflows. The first applications is to exploit the
metadata for accelerating a ML inference/training pipeline in the context of data dis-
tributed in different data silos. Additionally, we explored the use of metadata in optimiz-
ing ML inference queries. Regarding these two distinct applications, our findings reveal
that the judicious use of metadata can significantly improve both the effectiveness and
efficiency of these processes. This enhancement is contingent upon the proper utiliza-
tion of metadata, underscoring its potential as a critical resource in the advancement of
ML workflows.

Q2: How can the metadata be leveraged to enhance the efficiency and effectiveness of
ML inference queries?

We continue to exploit metadata for ML inference queries, where predicates in the
queries are ML models. In this scenario, we consider user-imposed constraints on mul-
tiple aspects, such as execution cost and accuracy performance. We formulate the ML
inference query optimization problem as a Mixed Integer Programming (MIP) and the
subsequent development of a MIP-based optimizer. This optimizer jointly optimizes
model assignment and predicate ordering, and leverages the selectivity of ML-model-
based predicates to determine their execution order. In addition, we explore the scenario
where multiple objectives are considered and constrained. Similarly, we formulate the
multi-objective ML inference query optimization problem as Multiple-objective Mixed
Integer Programming (MOMIP) that optimizes for accuracy, execution cost, and mem-
ory footprint.

The efficacy of our proposed optimizer is demonstrated through extensive experi-
ments. Our proposed optimizer outperforms the other baselines and can achieve higher
query accuracy or shorter execution time, especially given very diverse model zoos with
different execution time and accuracy trade-offs. Additionally, our research sheds light
on the complexity of this optimization problem. We observe that the time required
for optimization escalates exponentially with the increase in the number of predicates
within queries.

These findings contribute to the advancement of ML pipeline engineering, espe-
cially in scenarios involving the processing of complex ML inference queries over varied
datasets and unstructured content streams, all while adhering to specific constraints.
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Our approach not only tackles the intricate task of constructing optimal query plans
within these parameters but also introduces a novel problem setting in the realm of op-
timizing ML inference queries. The insights and solutions presented herein have the
potential to reshape approaches to query optimization in machine learning contexts.

Q3: How can metadata, along with other representations be employed to predict the
performance (i.e., accuracy) of models without undergoing the fine-tuning process?

Finally, we investigate the problem of model selection for fine-tuning with a model
zoo. Predicting model performance proves to be challenging, given no dominant model
excels across all datasets. We explore the use of a graph-learning-based model selection
strategy within the model zoo framework and introduce a comprehensive framework to
address the model selection problem. We propose a novel framework, TransferGraph,
that transforms the model selection problem into a graph learning challenge, represent-
ing a departure from traditional methods that rely solely on basic model and dataset
information, or similarity between model features and target data features.

With our experimental analysis, we find the efficacy of exploiting the intrinsic rela-
tionships between models and datasets in predicting model performance. The most ef-
fective strategy identified through our research is when including both graph-based fea-
tures and supplementary metadata of models and datasets. This variant of our model se-
lection strategy achieves a 21.8% improvement in correlating the predicted performance
of models with their actual fine-tuning outcomes. Moreover, this graph-learning-based
approach to model selection offers the potential for continuous enhancement through
the integration of additional metadata and training history available within the model
zoo.

5.2. LIMITATIONS AND RESEARCH OPPORTUNITIES
After the summary of our works above and the analysis of our findings, we conclude this
thesis by discussing the limitations of our research for future research efforts. We di-
vide the discussion into three sessions, corresponding to the three research questions,
regarding metadata representation, ML inference query optimization, and model selec-
tion for fine-tuning respectively.

5.2.1. METAMODEL AND THE MAINTENANCE OF METADATA

Our work makes a significant contribution by proposing a metamodel that encapsulates
metadata of various artifacts in a more structured and systematic way. Below, we outline
several limitations of our current work and offer insights into potential enhancements.

Refinement of the Metamodel. In the context of evolving data management paradigms,
particularly with the increasing prominence of array databases and various data embed-
dings or representations, it becomes imperative to contemplate the inclusion of multi-
variate metadata types. These types would not only encompass the characteristics of
models or datasets but also extend to their respective representations. A critical area
for future enhancement involves broadening the scope to identify a more diverse range
of interrelationships. This expansion should consider relationships not only between
datasets but also among models themselves, and crucially, the interplay between datasets
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and models. Moreover, an overlooked aspect in the current framework is the provenance
of datasets and models. Future iterations of the metamodel should integrate mecha-
nisms that consider this provenance, potentially leveraging existing tools to support an
array of functionalities.

Acquisition and crawling the metadata from the Web utilizing LLMs. Our current method-
ology for acquiring metadata, as implemented in Macaroni, predominantly relies on the
extraction of publicly accessible and straightforward information from the web, such as
Markdown files and APIs. Nevertheless, this approach often results in a scarcity of meta-
data, primarily due to the frequent omission of information by model providers. The
scarcity of metadata complicates its application across various platforms. Hence, there is
a pressing call for practitioners to meticulously document extensive metadata related to
their developed models, configurations, and dataset specifics, and develop tools to man-
age the metadata. This situation underscores the need for more sophisticated metadata
acquisition techniques. Recent advancements in large language models (LLMs) present
a viable path for gleaning refined and essential information from descriptive texts.

5.2.2. OPTIMIZING ML INFERENCE QUERIES

In this study, we tackle the challenge of optimizing ML inference queries, focusing on
achieving high accuracy within specified execution time constraints, and vice versa. Over-
all, our research contributes to the advancement of query optimization techniques in ML
by proposing and evaluating several optimization strategies. Below, we highlight a few
limitations and propose potential solution for future investigations.

Problem Complexity and Computational Challenges. Through our empirical analysis,
we could appreciate the intrinsic computational complexity of the problem. Particu-
larly, it was noted that as the number of predicates in an inference query increases to
thresholds such as 32 or 64, the time required to generate an optimized plan increases
substantially. As a future avenue of research, there lies an opportunity to explore and de-
velop approximate mechanisms. Such mechanisms could potentially offer more com-
putationally feasible solutions while maintaining an acceptable level of accuracy and
efficiency, especially in scenarios involving a high number of predicates.

Adaptation to Dynamic Environments. In the current scope of our work, the genera-
tion of an optimized plan leverages the dataset distribution and predicate statistics. This
approach, while effective, assumes a relatively static environment in terms of data dis-
tribution and predicate characteristics. However, real-world applications often involve
dynamic environments where data distributions and predicate statistics can change over
time. Future research should, therefore, focus on enhancing the adaptability of the op-
timization process to dynamically evolving environments. This could involve the devel-
opment of mechanisms that can update or modify the optimization plan in response to
changes in data distribution or predicate statistics, ensuring continued relevance and
efficacy of the plan.

Correlation between predicates. Another aspect that warrants further investigation is
the correlation between query predicates. In our current methodology, predicates are
considered independently, without an in-depth analysis of potential correlations be-
tween them. While existing research [192] has shed light on the impacts of correlated



5.3. IMPLICATION AND FUTURE WORK

5

101

predicates, these studies primarily pertain to simple query types, such as conjunctive
queries, and do not take various constraints into account. Understanding and integrat-
ing these correlations into the optimization process could lead to more sophisticated
and effective optimization strategies. Future studies could focus on developing models
or algorithms that identify and utilize these correlations, potentially improving the opti-
mization outcomes. This would not only enhance the accuracy of the optimization plan
but also could uncover deeper insights into the underlying structure of the problem.

5.2.3. MODEL SELECTION FOR FINE-TUNING

Our work addresses the problem of model selection for fine-tuning, an area previously
fraught with challenges due to the fact that no model dominant across diverse datasets.
The effectiveness of leveraging intrinsic relationships between models and datasets in
predicting model performance marks a significance stride in ML practices. There are a
few aspects could benefit from further improvement.

Computation overhead in preparation step. Introducing a new dataset into the system
requires certain computational resource. It needs gathering relevant information about
the dataset, including dataset representations and its transferability scores to other mod-
els. Although our findings indicate that partial information (such as transferability scores
for 50% of the models) can also achieve good performance, this process still incurs no-
table computational overhead. Future research should aim to streamline this prepara-
tory step, making it more efficient, and identify the most critical set of information re-
quired for effective model performance prediction.

Graph Construction Methodology. In our approach, we integrate various types of in-
formation into a graph, such as dataset distance, model performance, and dataset rep-
resentations. However, the specific contribution and significance of each feature type
within the graph have not been thoroughly examined. Our current method employs a
basic threshold-based edge pruning process to maintain the graph’s structure. Future
investigations could explore more sophisticated graph construction methods, tailoring
them to the unique capabilities of different graph learning models.

Optimization of Graph Learner Selection. In our study, we explored four different types
of graph learners to extract graph features. However, within the graph learning commu-
nity, it is recognized that the performance of a graph learner might vary depending on
the specific properties of the graph. Therefore, subsequent research should aim to deter-
mine the most suitable graph learner, complete with optimally tuned hyper-parameters,
for the unique graphs generated from each specific model zoo. This pursuit will not only
refine the model selection process but also contribute to a deeper understanding of the
interplay between graph properties and learner performance.

5.3. IMPLICATION AND FUTURE WORK
After discussing the limitations and direct research opportunities, we continue by dis-
cussing the implication of the thesis and needs for research extending beyond the scope
of this thesis.

More metadata in ML. In our research, we have delineated a structured approach to
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representing metadata. The advancements in metadata representation that we propose
facilitate a more nuanced analysis and exploitation of the data inherent within model
zoos.

Metadata can also improve model interpretability, reproducibility, and governance
(ensuring ML practices compliant with laws like GDPR [182]). Metadata offers a deeper
understanding and increased interpretability of ML models by providing detailed in-
sights into model architectures, training algorithms, and hyper-parameters. Such trans-
parency is especially critical in highly regulated industries where interpretability is as
important as performance.

Furthermore, metadata serves as a critical informant to automated systems, convey-
ing the performance attributes of various models. Metadata allows for the autonomous
selection of the most fitting models for particular tasks, thereby reducing the need for
manual selection processes. This thesis presents two distinct applications of metadata
usage in the realm of model selection, pertinent to both ML inference and fine-tuning
tasks. Beyond that, metadata can also play a pivotal role in directing the data prepro-
cessing steps and automating the training process, thereby enhancing the quality and
specificity of data for particular ML tasks. Our investigation predominantly focuses on
unstructured data, primarily images. However, in practical scenarios, data is heteroge-
nous, encompassing both unstructured forms, such as texts, images, and videos, and
structured types like tabular data and traditional databases. It is noteworthy that struc-
tured data still predominates in corporate usage. We acknowledge that data prepro-
cessing profoundly influences model performance [6, 38, 130]. An astute application of
metadata has the potential to automate the training process and augment the efficiency
of ML workflows significantly.

The scope of opportunities that metadata presents to improve ML practices is vast.
Beyond the above-mentioned benefits, it also ranges from enhancing the discoverability
of data and models to bolstering collaborative efforts within the ML community. Given
the broad spectrum of opportunities that metadata presents, there is a pressing need for
further investigation and research in this domain. Further research could unlock new
paradigms in ML practices, leading to more automated, transparent, and collaborative
processes.

The use of ML models in a broader sense. Training of new ML models is increasingly
easier, mostly thanks to advanced tools and systems. However, the practical usage of
these extremely large amount of models remains an underexplored area. While the capa-
bility exists to train and learn new models as required, practical constraints such as the
scarcity of training data and the time-intensive nature of retraining models frequently
arise. Therefore, it could be advised to leverage the existing collections of pre-trained or
fine-tuned models.

The advent of Bert-series language models has spurred the popularity of Large Lan-
guage Models (LLMs) and foundation models (FMs), with the field experiencing a surge
following the launch of ChatGPT in November 2022. Despite the capability of FMs and
LLMs to perform a multitude of tasks, practitioners are faced with the task of meticu-
lously selecting models that align with their specific goals or constraints (e.g. a consul-
tancy may necessitate a model ingrained with Dutch legal domain knowledge). For ex-
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ample, Amazon Bedrock1 provides dozens of foundation models from industry providers.
Users need to choose the model that is best suited to achieving their unique goals. Cur-
rently, we find ourselves in an era where no single model outperform across all dimen-
sions—efficiency, effectiveness, and domain expertise. It is anticipated that this scenario
will persist into the foreseeable future, necessitating the careful selection of models tai-
lored to specific requirements.

Research on multi-modality has been advancing [17, 137, 190], yet the integration
of these modalities often remains confined to pairs, such as visual with text, audio with
text, or audio with visual. Our understanding of the world is multifaceted, encompass-
ing sight, sound, movement, touch, and even smell. To date, we have not succeeded in
developing a foundational model that encapsulates all these modalities. In constructing
applications that necessitate a synthesis of multiple modalities, such as robotics, a cal-
culated optimization of several multimodal FMs may be required. On the other hand,
from an efficiency standpoint, both cost and time are critical considerations. Efforts are
underway to condense or distill large models to enhance efficiency. In parallel, optimiz-
ing the use of these more compact yet efficient models remains a priority for the field.

The current landscape of ML model utilization emphasizes the need for strategic de-
ployment rather than just model training. With the abundance of diverse, pre-trained
models at our disposal, the challenge shifts to effectively selecting and employing these
resources to meet specific objectives and constraints.

DB4ML and ML4DB. The convergence of databases and ML research presents an ongo-
ing and dynamic area of study. In general, there are two distinct yet interconnected di-
rections [204]: DB4ML (Database for Machine Learning) and ML4DB (Machine Learning
for Database). DB4ML focuses on the application of database techniques to optimize
ML processes, and building systems or tools for ML applications, e.g., SystemDS [22],
DuckDB [149]. While ML4DB harnesses learned-based methodologies address tradi-
tional database challenges, such as query optimization and cardinality estimation. This
thesis mainly investigate within the realm of DB4ML, showcasing two applications, i.e.,
model selection for model inference and model fine-tuning. Beyond that, there is a mul-
titude of research directions aimed at enhancing the efficiency, scalability, and function-
ality of ML tasks when applied data management techniques, e.g., training and inference
acceleration using database techniques [169], data cleaning/discovery/labeling for ML
tasks [55, 102, 162]. Unlike traditional query optimization, optimizing ML operators de-
mands the consideration of multiple objectives, such as accuracy, efficiency, cost, and
hardware compatibility (CPUs, TPUs, or GPUs).

Despite advancements, there remains a notable divide between ML tools and data
management systems like databases. Practitioners often find themselves transferring
data between platforms for model training and application, a process that can be in-
efficient and cumbersome. While improvements have been made in in-database ML,
challenges persist in supporting ML training within databases, particularly concerning
security, privacy, model storage and updating, parallel training, adapting to dynamic en-
vironments, and etc. Innovative projects like Amalur [69] have begun to explore the con-
vergence of data integration systems with model zoos, pointing towards a future where
data integration systems and ML seamlessly integrate.

1https://aws.amazon.com/bedrock

https://aws.amazon.com/bedrock
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[88] Yağız Kargın. “Turning scientists into data explorers”. In: Proceedings of the 2013
SIGMOD/PODS Ph. D. symposium. 2013, pp. 25–30.

[89] Fisnik Kastrati and Guido Moerkotte. “Generating optimal plans for boolean ex-
pressions”. In: 2018 IEEE 34th International Conference on Data Engineering (ICDE).
IEEE. 2018, pp. 1013–1024.

[90] A. Kemper et al. “Optimizing Disjunctive Queries with Expensive Predicates”. In:
ACM SIMGOD. SIGMOD ’94. Minneapolis, Minnesota, USA, 1994, pp. 336–347.

[91] Alfons andothers Kemper. “Optimizing disjunctive queries with expensive pred-
icates”. In: ACM SIGMOD Record 23.2 (1994), pp. 336–347.

[92] Aamod Khatiwada, Roee Shraga, and Renée J Miller. “DIALITE: Discover, Align
and Integrate Open Data Tables”. In: Companion of the 2023 International Con-
ference on Management of Data. 2023, pp. 187–190.

[93] Ralph Kimball and Margy Ross. The data warehouse toolkit: the complete guide to
dimensional modeling. John Wiley & Sons, 2011.

[94] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Con-
volutional Networks. Feb. 22, 2017. DOI: 10.48550/arXiv.1609.02907. arXiv:
1609.02907[cs,stat]. URL: http://arxiv.org/abs/1609.02907 (visited
on 11/21/2023).

[95] Janis Klaise et al. “Alibi explain: Algorithms for explaining machine learning mod-
els”. In: The Journal of Machine Learning Research 22.1 (2021), pp. 8194–8200.

[96] Phokion G Kolaitis. “Schema mappings, data exchange, and metadata manage-
ment”. In: PODS. Baltimore, MD,USA: ACM, 2005, pp. 61–75. ISBN: 1-59593-062-
0.

[97] Hanna Köpcke, Andreas Thor, and Erhard Rahm. “Evaluation of entity resolution
approaches on real-world match problems”. In: VLDB 3.1-2 (2010), pp. 484–493.

[98] Christos Koutras, George Siachamis, Asterios Katsifodimos, et al. “Valentine: Eval-
uating matching techniques for dataset discovery”. In: ICDE. IEEE. 2021, pp. 468–
479.

[99] Peter Kraft et al. “Willump: A statistically-aware end-to-end optimizer for ma-
chine learning inference”. In: Proceedings of Machine Learning and Systems 2
(2020), pp. 147–159.

[100] Jonathan Krause et al. “3D Object Representations for Fine-Grained Categoriza-
tion”. In: 2013 IEEE International Conference on Computer Vision Workshops.
Dec. 2013, pp. 554–561. DOI: 10.1109/ICCVW.2013.77. URL: https://ieeexplore.
ieee.org/document/6755945 (visited on 11/28/2023).

[101] Dominik Kreuzberger, Niklas Kühl, and Sebastian Hirschl. “Machine learning op-
erations (mlops): Overview, definition, and architecture”. In: IEEE Access (2023).

[102] Sanjay Krishnan, Jiannan Wang, Ken Goldberg, et al. “Activeclean: Interactive
data cleaning for statistical modeling”. In: VLDB 9.12 (2016), pp. 948–959.

https://doi.org/10.48550/arXiv.1609.02907
https://arxiv.org/abs/1609.02907 [cs, stat]
http://arxiv.org/abs/1609.02907
https://doi.org/10.1109/ICCVW.2013.77
https://ieeexplore.ieee.org/document/6755945
https://ieeexplore.ieee.org/document/6755945


5

112 BIBLIOGRAPHY

[103] A. Krizhevsky. “Learning Multiple Layers of Features from Tiny Images”. In: 2009.
URL: https://www.semanticscholar.org/paper/Learning- Multiple-
Layers-of-Features-from-Tiny-Krizhevsky/5d90f06bb70a0a3dced62413346235c02b1aa086
(visited on 12/04/2023).

[104] Arun Kumar et al. “Cerebro: A Layered Data Platform for Scalable Deep Learn-
ing”. In: 11th Annual Conference on Innovative Data Systems Research (CIDR’21).
2021.

[105] Hai Lan, Zhifeng Bao, and Yuwei Peng. “A survey on advancing the dbms query
optimizer: Cardinality estimation, cost model, and plan enumeration”. In: Data
Science and Engineering 6 (2021), pp. 86–101.

[106] Y. LeCun, Fu Jie Huang, and L. Bottou. “Learning methods for generic object
recognition with invariance to pose and lighting”. In: Proceedings of the 2004
IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, 2004. Vol. 2. Washington, DC, USA: IEEE, pp. 97–104. ISBN: 978-0-7695-2158-
9. DOI: 10.1109/CVPR.2004.1315150. URL: http://ieeexplore.ieee.org/
document/1315150/ (visited on 12/04/2023).

[107] Y. Lecun et al. “Gradient-based learning applied to document recognition”. In:
Proceedings of the IEEE 86.11 (Nov. 1998). Conference Name: Proceedings of the
IEEE, pp. 2278–2324. ISSN: 1558-2256. DOI: 10.1109/5.726791. URL: https:
//ieeexplore.ieee.org/document/726791 (visited on 12/03/2023).

[108] Wilfried Lemahieu, Seppe vanden Broucke, and Bart Baesens. Principles of database
management: the practical guide to storing, managing and Analyzing big and
small Data. Cambridge University Press, 2018.

[109] Roman Levin et al. “Transfer Learning with Deep Tabular Models”. In: ICLR. 2022.

[110] Hao Li et al. “Guided Recommendation for Model Fine-Tuning”. In: 2023 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, BC,
Canada: IEEE, June 2023, pp. 3633–3642. ISBN: 9798350301298. DOI: 10.1109/
CVPR52729.2023.00354. URL: https://ieeexplore.ieee.org/document/
10204061/ (visited on 12/04/2023).

[111] Ziyu Li et al. “Macaroni: Crawling and Enriching Metadata from Public Model
Zoos”. In: International Conference on Web Engineering. Springer. 2023, pp. 376–
380.

[112] Ziyu Li et al. “Metadata Representations for Queryable ML Model Zoos”. In: arXiv
preprint arXiv:2207.09315 (2022).

[113] Ziyu Li et al. “Optimizing machine learning inference queries for multiple objec-
tives”. In: ICDEW. IEEE. 2023, pp. 74–78.

[114] Kunsen Lin et al. “Deep convolutional neural networks for construction and de-
molition waste classification: VGGNet structures, cyclical learning rate, and knowl-
edge transfer”. In: Journal of Environmental Management 318 (Sept. 15, 2022),
p. 115501. ISSN: 0301-4797. DOI: 10 . 1016 / j . jenvman . 2022 . 115501. URL:
https://www.sciencedirect.com/science/article/pii/S030147972201074X
(visited on 11/29/2023).

https://www.semanticscholar.org/paper/Learning-Multiple-Layers-of-Features-from-Tiny-Krizhevsky/5d90f06bb70a0a3dced62413346235c02b1aa086
https://www.semanticscholar.org/paper/Learning-Multiple-Layers-of-Features-from-Tiny-Krizhevsky/5d90f06bb70a0a3dced62413346235c02b1aa086
https://doi.org/10.1109/CVPR.2004.1315150
http://ieeexplore.ieee.org/document/1315150/
http://ieeexplore.ieee.org/document/1315150/
https://doi.org/10.1109/5.726791
https://ieeexplore.ieee.org/document/726791
https://ieeexplore.ieee.org/document/726791
https://doi.org/10.1109/CVPR52729.2023.00354
https://doi.org/10.1109/CVPR52729.2023.00354
https://ieeexplore.ieee.org/document/10204061/
https://ieeexplore.ieee.org/document/10204061/
https://doi.org/10.1016/j.jenvman.2022.115501
https://www.sciencedirect.com/science/article/pii/S030147972201074X


BIBLIOGRAPHY

5

113

[115] Tsung-Yi Lin et al. “Microsoft coco: Common objects in context”. In: European
conference on computer vision. Springer. 2014, pp. 740–755.

[116] Renming Liu, Matthew Hirn, and Arjun Krishnan. “Accurately modeling biased
random walks on weighted networks using node2vec+”. In: Bioinformatics 39.1
(2023). Publisher: Oxford University Press, btad047.

[117] Wei Liu et al. “Ssd: Single shot multibox detector”. In: European conference on
computer vision. Springer. 2016, pp. 21–37.

[118] Ze Liu et al. “Swin Transformer: Hierarchical Vision Transformer using Shifted
Windows”. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV).
2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal,
QC, Canada: IEEE, Oct. 2021, pp. 9992–10002. ISBN: 978-1-66542-812-5. DOI: 10.
1109 / ICCV48922 . 2021 . 00986. URL: https : / / ieeexplore . ieee . org /
document/9710580/ (visited on 12/03/2023).

[119] Zhuang Liu et al. “A ConvNet for the 2020s”. In: 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). New Orleans, LA, USA: IEEE,
June 2022, pp. 11966–11976. ISBN: 978-1-66546-946-3. DOI: 10.1109/CVPR52688.
2022.01167. URL: https://ieeexplore.ieee.org/document/9879745/
(visited on 12/03/2023).

[120] Yao Lu et al. “Accelerating machine learning inference with probabilistic pred-
icates”. In: Proceedings of the 2018 International Conference on Management of
Data. 2018, pp. 1493–1508.

[121] Volker Markl, Guy M Lohman, and Vijayshankar Raman. “LEO: An autonomic
query optimizer for DB2”. In: IBM Systems Journal 42.1 (2003), pp. 98–106.

[122] R Timothy Marler and Jasbir S Arora. “Survey of multi-objective optimization
methods for engineering”. In: Structural and multidisciplinary optimization 26.6
(2004), pp. 369–395.

[123] Peter Mattson et al. “Mlperf training benchmark”. In: Proceedings of Machine
Learning and Systems 2 (2020), pp. 336–349.

[124] Hui Miao, Amit Chavan, and Amol Deshpande. “Provdb: Lifecycle management
of collaborative analysis workflows”. In: Proceedings of the 2nd Workshop on Human-
in-the-Loop Data Analytics. 2017, pp. 1–6.

[125] Hui Miao et al. “Towards unified data and lifecycle management for deep learn-
ing”. In: 2017 IEEE 33rd International Conference on Data Engineering (ICDE).
IEEE. 2017, pp. 571–582.

[126] Milagros Miceli et al. “Documenting computer vision datasets: an invitation to
reflexive data practices”. In: Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency. 2021, pp. 161–172.

[127] Pietruszka Michał, Michał Turski, Garncarek Łukasz, et al. “STable: Table Gener-
ation Framework for Encoder-Decoder Models”. In: NeurIPS TRL. 2022.

https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1109/ICCV48922.2021.00986
https://ieeexplore.ieee.org/document/9710580/
https://ieeexplore.ieee.org/document/9710580/
https://doi.org/10.1109/CVPR52688.2022.01167
https://doi.org/10.1109/CVPR52688.2022.01167
https://ieeexplore.ieee.org/document/9879745/


5

114 BIBLIOGRAPHY

[128] Tomás Mikolov et al. “Efficient Estimation of Word Representations in Vector
Space”. In: 1st International Conference on Learning Representations, ICLR 2013,
Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings. Ed. by Yoshua
Bengio and Yann LeCun. 2013. URL: http://arxiv.org/abs/1301.3781.

[129] Lester James Miranda. “Towards data-centric machine learning: a short review”.
In: ljvmiranda921. github. io (2021).

[130] Puneet Misra and Arun Singh Yadav. “Impact of preprocessing methods on health-
care predictions”. In: Proceedings of 2nd International Conference on Advanced
Computing and Software Engineering (ICACSE). 2019.

[131] Margaret Mitchell et al. “Model cards for model reporting”. In: Proceedings of the
conference on fairness, accountability, and transparency. 2019, pp. 220–229.

[132] ML Metadata - TFX - TensorFlow. https://www.tensorflow.org/tfx/guide/
mlmd. Accessed: 2023-09-10.

[133] Dinithi Nallaperuma et al. “Online incremental machine learning platform for
big data-driven smart traffic management”. In: IEEE Transactions on Intelligent
Transportation Systems 20.12 (2019), pp. 4679–4690.

[134] Fatemeh Nargesian et al. “Data lake management: challenges and opportuni-
ties”. In: Proceedings of the VLDB Endowment 12.12 (2019), pp. 1986–1989.

[135] Fatemeh Nargesian et al. “Organizing Data Lakes for Navigation”. In: SIGMOD.
2020, pp. 1939–1950.

[136] Yuval Netzer et al. “Reading Digits in Natural Images with Unsupervised Fea-
ture Learning”. In: 2011. URL: https://www.semanticscholar.org/paper/
Reading - Digits - in - Natural - Images - with - Unsupervised - Netzer -
Wang/02227c94dd41fe0b439e050d377b0beb5d427cda (visited on 12/04/2023).

[137] Jiquan Ngiam et al. “Multimodal deep learning”. In: Proceedings of the 28th inter-
national conference on machine learning (ICML-11). 2011, pp. 689–696.

[138] Cuong Nguyen et al. “LEEP: A New Measure to Evaluate Transferability of Learned
Representations”. In: Proceedings of the 37th International Conference on Ma-
chine Learning. International Conference on Machine Learning. ISSN: 2640-3498.
PMLR, Nov. 21, 2020, pp. 7294–7305. URL: https://proceedings.mlr.press/
v119/nguyen20b.html (visited on 11/15/2023).

[139] Maria-Elena Nilsback and Andrew Zisserman. “Automated Flower Classification
over a Large Number of Classes”. In: 2008 Sixth Indian Conference on Computer
Vision, Graphics & Image Processing. Image Processing (ICVGIP). Bhubaneswar,
India: IEEE, Dec. 2008, pp. 722–729. DOI: 10.1109/ICVGIP.2008.47. URL: http:
//ieeexplore.ieee.org/document/4756141/ (visited on 12/04/2023).

[140] Randal S Olson et al. “A system for accessible artificial intelligence”. In: Genetic
programming theory and practice XV. Springer, 2018, pp. 121–134.

[141] Randal S Olson et al. “PMLB: a large benchmark suite for machine learning eval-
uation and comparison”. In: BioData mining 10.1 (2017), pp. 1–13.

http://arxiv.org/abs/1301.3781
https://www.tensorflow.org/tfx/guide/mlmd
https://www.tensorflow.org/tfx/guide/mlmd
https://www.semanticscholar.org/paper/Reading-Digits-in-Natural-Images-with-Unsupervised-Netzer-Wang/02227c94dd41fe0b439e050d377b0beb5d427cda
https://www.semanticscholar.org/paper/Reading-Digits-in-Natural-Images-with-Unsupervised-Netzer-Wang/02227c94dd41fe0b439e050d377b0beb5d427cda
https://www.semanticscholar.org/paper/Reading-Digits-in-Natural-Images-with-Unsupervised-Netzer-Wang/02227c94dd41fe0b439e050d377b0beb5d427cda
https://proceedings.mlr.press/v119/nguyen20b.html
https://proceedings.mlr.press/v119/nguyen20b.html
https://doi.org/10.1109/ICVGIP.2008.47
http://ieeexplore.ieee.org/document/4756141/
http://ieeexplore.ieee.org/document/4756141/


BIBLIOGRAPHY

5

115

[142] OpenVino - Open Model Zoo. https://github.com/openvinotoolkit/open_
model_zoo/tree/master. Accessed: 2023-06-10.

[143] Christos H. Papadimitriou and Mihalis Yannakakis. “Multiobjective Query Opti-
mization”. In: Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems. PODS ’01. Santa Barbara, California,
USA: Association for Computing Machinery, 2001, pp. 52–59. ISBN: 1581133618.
DOI: 10.1145/375551.375560. URL: https://doi.org/10.1145/375551.
375560.

[144] Papers with Code. https://paperswithcode.com/sota. Accessed: 2023-06-10.

[145] Pietro Pinoli et al. “Metadata management for scientific databases”. In: Informa-
tion Systems 81 (2019), pp. 1–20.

[146] Neoklis Polyzotis et al. “Data lifecycle challenges in production machine learn-
ing: a survey”. In: ACM SIGMOD Record 47.2 (2018), pp. 17–28.

[147] PyTorch Hub. https://pytorch.org/hub/. Accessed: 2023-06-10.

[148] C. Quix, R. Hai, and I. Vatov. “Metadata Extraction and Management in Data
Lakes With GEMMS”. In: CSIMQ 9 (2016), pp. 67–83.

[149] Mark Raasveldt and Hannes Mühleisen. “Duckdb: an embeddable analytical database”.
In: Proceedings of the 2019 International Conference on Management of Data.
2019, pp. 1981–1984.

[150] Alec Radford et al. “Improving language understanding by generative pre-training”.
In: (2018).

[151] Vijay Janapa Reddi et al. “Mlperf inference benchmark”. In: 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA). IEEE. 2020,
pp. 446–459.

[152] Joseph Redmon and Ali Farhadi. “YOLO9000: better, faster, stronger”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. 2017,
pp. 7263–7271.

[153] Cedric Renggli et al. “SHiFT: an efficient, flexible search engine for transfer learn-
ing”. In: Proceedings of the VLDB Endowment 16.2 (2022), pp. 304–316. ISSN: 2150-
8097. DOI: 10.14778/3565816.3565831. URL: https://dl.acm.org/doi/10.
14778/3565816.3565831 (visited on 11/15/2023).

[154] Albert Reuther et al. “Survey and benchmarking of machine learning acceler-
ators”. In: 2019 IEEE high performance extreme computing conference (HPEC).
IEEE. 2019, pp. 1–9.

[155] Jenn Riley. “Understanding metadata”. In: Washington DC, United States: Na-
tional Information Standards Organization 23 (2017), pp. 7–10.

[156] Francisco Romero et al. “Optimizing video analytics with declarative model rela-
tionships”. In: Proceedings of the VLDB Endowment 16.3 (2022), pp. 447–460.

[157] Francisco Luque Sánchez et al. “Revisiting crowd behaviour analysis through deep
learning: Taxonomy, anomaly detection, crowd emotions, datasets, opportuni-
ties and prospects”. In: Information Fusion 64 (2020), pp. 318–335.

https://github.com/openvinotoolkit/open_model_zoo/tree/master
https://github.com/openvinotoolkit/open_model_zoo/tree/master
https://doi.org/10.1145/375551.375560
https://doi.org/10.1145/375551.375560
https://doi.org/10.1145/375551.375560
https://paperswithcode.com/sota
https://pytorch.org/hub/
https://doi.org/10.14778/3565816.3565831
https://dl.acm.org/doi/10.14778/3565816.3565831
https://dl.acm.org/doi/10.14778/3565816.3565831


5

116 BIBLIOGRAPHY

[158] Monica Scannapieco, Ahmed K Elmagarmid, et al. “Privacy preserving schema
and data matching”. In: SIGMOD. ACM, 2007, pp. 653–664.

[159] Sebastian Schelter et al. “Automatically tracking metadata and provenance of
machine learning experiments”. In: Machine Learning Systems Workshop at NIPS.
2017, pp. 27–29.

[160] Sebastian Schelter et al. “On Challenges in Machine Learning Model Manage-
ment”. In: (2018).

[161] Marius Schlegel and Kai-Uwe Sattler. “Management of machine learning lifecycle
artifacts: A survey”. In: ACM SIGMOD Record 51.4 (2023), pp. 18–35.

[162] Burr Settles. “Active learning literature survey”. In: (2009).

[163] Haichen Shen et al. “Fast video classification via adaptive cascading of deep mod-
els”. In: Proceedings of the IEEE CVPR. 2017, pp. 3646–3654.

[164] Abraham Silberschatz, Henry F Korth, and Shashank Sudarshan. “Database sys-
tem concepts”. In: (2011).

[165] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks for
Large-Scale Image Recognition”. In: International Conference on Learning Repre-
sentations. 2015.

[166] Gurmeet Singh, Shishir Bharathi, Laura Pearlman, et al. “A metadata catalog ser-
vice for data intensive applications”. In: ICS. 2003, p. 33.

[167] Leslie N. Smith. “Cyclical Learning Rates for Training Neural Networks”. In: 2017
IEEE Winter Conference on Applications of Computer Vision (WACV). Santa Rosa,
CA, USA: IEEE, Mar. 2017, pp. 464–472. ISBN: 978-1-5090-4822-9. DOI: 10.1109/
WACV.2017.58. URL: http://ieeexplore.ieee.org/document/7926641/
(visited on 11/29/2023).

[168] Jie Song et al. “Deep Model Transferability from Attribution Maps”. In: Advances
in Neural Information Processing Systems. Vol. 32. Curran Associates, Inc., 2019.
URL: https://proceedings.neurips.cc/paper_files/paper/2019/hash/
e94fe9ac8dc10dd8b9a239e6abee2848-Abstract.html (visited on 11/15/2023).

[169] Wenbo Sun, Asterios Katsifodimos, and Rihan Hai. “Accelerating Machine Learn-
ing Queries with Linear Algebra Query Processing”. In: Proceedings of the 35th
International Conference on Scientific and Statistical Database Management. SS-
DBM ’23. New York, NY, USA: Association for Computing Machinery, 2023. ISBN:
9798400707469. DOI: 10.1145/3603719.3603726. URL: https://doi.org/
10.1145/3603719.3603726.

[170] Alexey Svyatkovskiy, Julian Kates-Harbeck, and William Tang. “Training distributed
deep recurrent neural networks with mixed precision on GPU clusters”. In: Pro-
ceedings of the Machine Learning on HPC Environments. 2017, pp. 1–8.

[171] Jonti Talukdar et al. “Transfer learning for object detection using state-of-the-art
deep neural networks”. In: 2018 5th International Conference on Signal Process-
ing and Integrated Networks (SPIN). IEEE. 2018, pp. 78–83.

https://doi.org/10.1109/WACV.2017.58
https://doi.org/10.1109/WACV.2017.58
http://ieeexplore.ieee.org/document/7926641/
https://proceedings.neurips.cc/paper_files/paper/2019/hash/e94fe9ac8dc10dd8b9a239e6abee2848-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/e94fe9ac8dc10dd8b9a239e6abee2848-Abstract.html
https://doi.org/10.1145/3603719.3603726
https://doi.org/10.1145/3603719.3603726
https://doi.org/10.1145/3603719.3603726


BIBLIOGRAPHY

5

117

[172] Chuanqi Tan et al. “A Survey on Deep Transfer Learning”. In: Artificial Neural
Networks and Machine Learning – ICANN 2018. Ed. by Věra Kůrková et al. Lec-
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SUMMARY

Over the last two decades, the machine learning (ML) field has witnessed a dramatic ex-
pansion, propelled by burgeoning data volumes and the advancement of computational
technologies. Deep learning (DL) in particular has demonstrated remarkable success
across a wide range of domains, including healthcare, mobility, life sciences, and energy
systems. This success has been further accelerated by the availability and efficiency of
open-source ML frameworks like TensorFlow and PyTorch, making ML methodologies
more accessible than ever.

However, this rapid growth has brought its own set of challenges. The proliferation of
ML models and related artifacts, such as datasets, have brought abundant information
during the ML lifecycle. The descriptive and property information of these artifacts is re-
ferred as metadata. Yet current practices, such as model cards used in public model zoos
and tools to track metadata within scripts, cannot fully captured the metadata of these
artifacts, let alone a standardized approach for their management, and access. In addi-
tion, the prevailing practice of managing ML/DL scripts via traditional software reposito-
ries, while adequate for software engineering, falls short in addressing the unique needs
of ML workflows, such as model reuse and comparative analysis. These practices hin-
der the effective use of structured and comprehensive metadata representation. This
disconnect points to a pressing need for improved methodologies and tools in the ML
field.

In response to these challenges, this thesis delves into the development and exploita-
tion of structured metadata representations within ML model zoos. In Chapter 2, we
first propose a metamodel that represent different types of metadata, thus transforming
the metadata from being merely descriptive to being queryable and machine-readable.
The structured nature of our metamodel allows for more efficient querying and retrieval
of information, which is a substantial improvement over the traditional, text-based de-
scriptions.

Additionally, the thesis explores the use of metadata to optimize various ML pro-
cesses, particularly in the selection of appropriate models for specific tasks, i.e., model
inference and fine-tuning. In Chapter 3, we investigate the optimization of ML infer-
ence queries in heterogeneous model zoos using a Mixed-Integer-Programming-based
optimizer. This optimizer, which considers multiple objectives such as accuracy and in-
ference speed, provides a robust framework for model selection and execution planning.
In Chapter 4, the research extends to model selection for fine-tuning. We investigate on
predicting model performance, particularly accuracy, in scenarios where data domains
shift, thus negating the need for constant model fine-tuning. By selectively choosing
only the most promising candidates, this method substantially lowers the computational
burden and associated costs of extensive model fine-tuning.

Overall, this thesis investigates the representation and application of metadata. The
insights and methodologies presented not only improve the efficiency and effectiveness
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of ML workflows but also pave the way for further exploration in the integration of meta-
data within ML practices, highlighting the continual development and potential for ad-
vancements in ML.



SAMENVATTING

In de afgelopen twee decennia heeft het vakgebied van machine learning (ML) een dra-
matische uitbreiding meegemaakt, aangedreven door de groeiende hoeveelheid gege-
vens en de vooruitgang van computationele technologieën. Deep Learning (DL) in het
bijzonder heeft opmerkelijke successen getoond in een breed scala aan domeinen, waar-
onder gezondheidszorg, mobiliteit, levenswetenschappen en energiesystemen. Dit suc-
ces is verder versneld door de beschikbaarheid en efficiëntie van open-source ML frame-
works zoals TensorFlow en PyTorch, waardoor ML-methodologieën toegankelijker zijn
dan ooit tevoren.

Deze snelle groei heeft echter ook zijn eigen uitdagingen met zich meegebracht. De
woekering van ML-modellen en gerelateerde artefacten, zoals datasets, heeft tijdens de
ML-levenscyclus een overvloed aan informatie gebracht. De beschrijvende en eigen-
schapinformatie van deze artefacten wordt aangeduid als metadata. Huidige praktijken,
zoals modelkaarten die in openbare model verzamelingen worden gebruikt en tools om
metadata binnen scripts bij te houden, kunnen de metadata van deze artefacten echter
niet volledig vastleggen, laat staan een gestandaardiseerde aanpak voor hun beheer en
toegang. Bovendien schiet de gangbare praktijk van het beheren van ML/DL-scripts via
traditionele softwareopslagplaatsen tekort bij het aanpakken van de unieke behoeften
van ML-workflows, zoals modelhergebruik en vergelijkende analyse. Deze praktijken
kunnen niet volledig het potentieel van gestructureerde en uitgebreide metadatarepre-
sentatie benutten. Dit wijst op een dringende behoefte aan verbeterde methodologieën
en hulpmiddelen op het gebied van ML.

Als reactie op deze uitdagingen verdiept deze scriptie zich in de ontwikkeling en ex-
ploitatie van gestructureerde metadatavoorstellingen binnen ML model verzamelingen.
In Hoofdstuk 2 stellen we eerst een metamodel voor dat verschillende soorten metadata
vertegenwoordigt. Deze vooruitgang transformeert de metadata van slechts beschrij-
vend naar opvraagbaar en machine-leesbaar. De gestructureerde aard van ons meta-
model maakt efficiëntere opvraging en terugwinning van informatie mogelijk, wat een
aanzienlijke verbetering is ten opzichte van de traditionele, op tekst gebaseerde beschrij-
vingen.

Daarnaast verdiept de scriptie zich in het verbeteren van het nut en de toegankelijk-
heid van metadata om diverse ML-processen te optimaliseren, met name bij de selec-
tie van geschikte modellen voor specifieke taken, zoals modelinferentie en fine-tuning.
In Hoofdstuk 3 onderzoeken we de optimalisatie van ML-inferentievragen in hetero-
gene model verzamelingen met behulp van een op Mixed-Integer-Programming geba-
seerde optimizer. Deze optimizer, die meerdere doelstellingen in overweging neemt
zoals nauwkeurigheid en inferentiesnelheid, biedt een robuust raamwerk voor model-
selectie en uitvoeringsplanning. Verder, in Hoofdstuk 4, breidt het onderzoek zich uit tot
modelselectie voor fine-tuning. We onderzoeken de voorspelling van modelprestaties,
met name nauwkeurigheid, in scenario’s waarbij datadomeinen verschuiven, waardoor
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de noodzaak voor constante model fine-tuning wordt tenietgedaan. Door selectief al-
leen de meest veelbelovende kandidaten te kiezen, vermindert deze methode aanzienlijk
de computationele eisen en kosten die gepaard gaan met uitgebreide model fine-tuning.

Over het algemeen onderzoekt deze scriptie de representatie en toepassing van met-
adata. De inzichten en methodologieën die worden gepresenteerd, verbeteren niet al-
leen de efficiëntie en effectiviteit van ML-workflows, maar banen ook de weg voor ver-
dere verkenning in de integratie van metadata binnen ML-praktijken. Hiermee wordt de
voortdurende ontwikkeling en het potentieel voor vooruitgang in ML benadrukt.
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