

Delft University of Technology

An Energy-Efficient Bayesian Neural Network Implementation Using Stochastic
Computing Method

Jia, Xiaotao; Gu, Huiyi ; Liu, Yuhao ; Yang, Jianlei; Wang, Xueyan; Pan, Weitao ; Zhang, Youguang ;
Cotofana, Sorin; Zhao, Weisheng
DOI
10.1109/TNNLS.2023.3265533
Publication date
2024
Document Version
Final published version
Published in
IEEE Transactions on Neural Networks and Learning Systems

Citation (APA)
Jia, X., Gu, H., Liu, Y., Yang, J., Wang, X., Pan, W., Zhang, Y., Cotofana, S., & Zhao, W. (2024). An
Energy-Efficient Bayesian Neural Network Implementation Using Stochastic Computing Method. IEEE
Transactions on Neural Networks and Learning Systems, 35(9), 12913-12923.
https://doi.org/10.1109/TNNLS.2023.3265533
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TNNLS.2023.3265533
https://doi.org/10.1109/TNNLS.2023.3265533

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024 12913

An Energy-Efficient Bayesian Neural Network
Implementation Using Stochastic

Computing Method
Xiaotao Jia , Member, IEEE, Huiyi Gu , Yuhao Liu , Jianlei Yang , Member, IEEE,

Xueyan Wang , Member, IEEE, Weitao Pan , Member, IEEE, Youguang Zhang, Member, IEEE,
Sorin Cotofana , Fellow, IEEE, and Weisheng Zhao , Fellow, IEEE

Abstract— The robustness of Bayesian neural networks (BNNs)
to real-world uncertainties and incompleteness has led to their
application in some safety-critical fields. However, evaluating
uncertainty during BNN inference requires repeated sampling
and feed-forward computing, making them challenging to deploy
in low-power or embedded devices. This article proposes the
use of stochastic computing (SC) to optimize the hardware
performance of BNN inference in terms of energy consumption
and hardware utilization. The proposed approach adopts
bitstream to represent Gaussian random number and applies
it in the inference phase. This allows for the omission of complex
transformation computations in the central limit theorem-
based Gaussian random number generating (CLT-based GRNG)
method and the simplification of multipliers as AND operations.
Furthermore, an asynchronous parallel pipeline calculation
technique is proposed in computing block to enhance operation
speed. Compared with conventional binary radix-based BNN,
SC-based BNN (StocBNN) realized by FPGA with 128-bit
bitstream consumes much less energy consumption and hardware
resources with less than 0.1% accuracy decrease when dealing
with MNIST/Fashion-MNIST datasets.

Index Terms— Bayesian neural network (BNN), energy
efficiency, Gaussian random number generator, stochastic
computing (SC).

Manuscript received 30 November 2022; revised 19 February 2023;
accepted 27 March 2023. Date of publication 3 May 2023; date of
current version 4 September 2024. This work was supported in part by
the National Natural Science Foundation of China under Grant 62006011,
Grant U20A20204, Grant 62072019, and Grant 62004011; and in part by
the 111 Talent Program under Grant B16001. (Xiaotao Jia and Huiyi Gu
contributed equally to this work.) (Corresponding authors: Jianlei Yang;
Weisheng Zhao.)

Xiaotao Jia is with the School of Integrated Circuit Science and Engineering,
Beihang University, Beijing 100191, China, and also with the Beihang
Hangzhou Innovation Institute Yuhang, Hangzhou 310023, China.

Huiyi Gu, Yuhao Liu, and Youguang Zhang are with the School of
Electronic and Information Engineering, Beihang University, Beijing 100191,
China.

Xueyan Wang and Weisheng Zhao are with the School of Integrated Circuit
Science and Engineering, Beihang University, Beijing 100191, China (e-mail:
weisheng.zhao@buaa.edu.cn).

Jianlei Yang is with the BDBC, School of Computer Science and Engineer-
ing, Beihang University, Beijing 100191, China (e-mail: jianlei@buaa.edu.cn).

Weitao Pan is with the State Key Laboratory of Integrated Service Networks,
Xidian University, Xi’an 710071, China.

Sorin Cotofana is with the Computer Engineering Laboratory, Delft
University of Technology, 2628 CD Delft, The Netherlands.

Digital Object Identifier 10.1109/TNNLS.2023.3265533

I. INTRODUCTION

DEEP neural networks (DNNs) show extensive application
prospect in artificial intelligence (AI). With several

promising neural network models and techniques [1], DNNs
have been promoted to many fields to enhance intelligence,
including object classification [2], natural language process-
ing [3], medical analysis [4], and autonomous driving [5].
DNNs are making significant impact on the world’s social
activity and economy and becoming the top candidate for real-
world applications. It can even exceed human performance in
some of these fields [6], [7]. Despite the tremendous success
of DNNs, there are still some disadvantages in some aspects.
In the training phase, DNNs normally use maximum likelihood
estimation (MLE) to construct the loss function and use
optimization algorithms, such as stochastic gradient descent,
to obtain the optimal parameter value. This training method
is effective, but it is susceptible to overfitting, which makes
researchers spending much effort [8]. One of the important
reasons is that the use of MLE ignores any uncertainty in the
proper weight values. Moreover, other disadvantages of DNNs
also affect their performance, such as the lack of theoretical
backbone [9], data hungry, gradient vanish [10], and easy to
be fooled [11].

Bayesian neural networks (BNNs) or Bayesian deep
learning (BDL) (Fig. 1) combines the Bayesian method
with neural network and demonstrates promising prospects
in addressing these shortcomings. Training and inference
phase in BNNs are formulated with neural network models
based on the probability theory. The Bayesian method
takes prior knowledge into consideration to deal with real-
world uncertainty and incomplete information. It is an
effective supplement to the existing learning methods of
DNNs. With the support of Bayesian mathematical theory
and DNN nonlinear fitting models, BNNs are inherently
robust to address the overfitting issue [12]. In general, the
prior and posterior distributions of parameters are modeled
by Gaussian distribution. Several probability programming
languages (PPLs) have been developed based on widely
used frameworks, such as Tensorflow-based Edward [13],
Tensorflow Probability [14], ZhuSuan [15], and Pytorch-
based Pyro [16]. These PPLs make learning BNNs’ posterior

2162-237X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 28,2024 at 13:00:52 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2207-6092
https://orcid.org/0009-0001-4778-7256
https://orcid.org/0000-0001-7400-8900
https://orcid.org/0000-0001-8424-7040
https://orcid.org/0000-0003-0080-4730
https://orcid.org/0000-0002-6388-5008
https://orcid.org/0000-0001-7132-2291
https://orcid.org/0000-0001-8088-0404

12914 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

Fig. 1. Relationship among standard neural network, Bayesian method, and
BNN.

distribution easier with different training datasets. BNNs
are becoming increasingly prevalent in some safety-critical
applications [17], [18].

Different from DNNs, BNNs need to sample synaptic
weights based on well-trained posterior distributions, and each
weight needs to be sampled several times. In fact, high
computation complexity and high-power consumption have
become two main factors that restrict the development of
BNNs. We observe that random number sampling process
is the crucial step in both training and inference phase
and accounts for a large proportion in terms of infer-
ence latency, energy consumption, and hardware utilization.
Usually, in inference phase, T neural network instances
are sampled based on BNNs’ posterior distribution so
as to model the inputs’ uncertainty. Generally speaking,
T is larger than 10, or even 100 in some cases. The
massive sampling and feed-forwarding operations make BNNs
computationally intractable. Even though BNNs incur higher
energy consumption and latency when compared with standard
neural networks, the outperforming of BNNs in terms of small-
data training, uncertainty estimation, and other aspects makes
it worthy to be studied.

Several novel strategies have been proposed to accelerator
BNN inference from different perspectives, such as sampling
optimization [19], [20], [21], [22], [23], dataflow optimiza-
tion [24], [25], [26], FPGA implementation innovate [19],
[22], [23], [26], [27], [28], and computing-in-memory
architecture [20], [25], [29]. Cai et al. [19] explore the design
space for massive amount of Gaussian variable sampling tasks
in BNNs and propose an FPGA-based hardware accelerator
design. An efficient BNN inference approach is proposed
in [24] to reduce redundant computations based on feature
decomposition and memory strategy. Wu et al. [25] propose
to exploit the intrinsic stochastic behaviors of analog resistive
random access memory (RRAM) to generate the required
distribution of BNN. Yang et al. [20] use spintronic devices
to design spin-based GRNG to improve the overall hardware

performance. A resource-efficient weight sampling method
is proposed by [21] using inversion transform sampling
and a lookup table (LUT)-based function approximation
for hardware implementation. In [22], quadratic nonlinear
activation functions are employed to free the sampling process.

Wan et al. [26] propose an accelerating design that intelli-
gently skips the redundant computations of dropout masks and
zero-corresponding computations. Dorrance et al. [29] from
Intel Lab leverage a C-2C SRAM-based analog compute-in
memory (CiM) macro for the multiply accumulation (MAC)
operations to accelerate BNN. An FPGA-based design in [27]
and [28] accelerates BNNs inferred through Monte Carlo
dropout (MCD) and supports both 2-D and 3-D Bayes CNNs.
Awano et al. [23] replace costly Gaussian random number
generators (RNG) with Bernoulli RNG.

While these works propose efficient optimization
approaches that significantly improve the efficiency of
BNN, certain issues remain that cannot be ignored. First, the
optimization of BNN sampling and feedforward propagation
are often treated as independent of each other, and most
works only focus on one of them. This approach can result
in suboptimal performance, as these two processes are
closely related. Second, the existing optimization of GRNG
is based on the CLT, which involves complex transformation
computing that consumes a significant amount of computing
resources. The CLT method requires division and square
root operations, while probability multiplications are floating
computations that have high computing resource requirements.
Addressing these issues will be critical for further improving
the acceleration of BNNs. In this article, we introduce the
stochastic computing (SC) method to BNN inference phase
named StocBNN. In StocBNN, both inputs and weights
are represented in bitstream format to directly participate
in the inference phase. Multiplication could be simplified
as AND operation. In this manner, complex transformation
in CLT-based GRNG can be omitted, and feed-forwarding
propagation becomes simpler than traditional one. This work
is proposed for Gaussian distribution characterized BNNs and
mainly focuses on the inference phase of vision classification
problem. The main contributions of this work are listed as
follows.

1) An energy-efficient FPGA implementation is proposed
for BNN inference phase using the SC method. Both
GRNG and feed-forward stage are performed in SC
domain.

2) A simplified SC domain GRNG is proposed using linear
feedback shift register (LFSR) with theoretical proof.
In LFSR-based GRNG, the transformation computing
in the CLT method is omitted, and Gaussian random
numbers are represented in bitstream format. FPGA
implementation of LFSR-based GRNG shows that it
can generate high-quality random numbers with less
hardware cost.

3) An asynchronous parallel pipeline calculation technique
is proposed to speed up the feed-forward calculation
and reduce the hardware cost. It effectively increases
the computing speed by about 3× with less fan-out.

4) The hardware efficiency of StocBNN is evaluated
by an FPGA with 128-bit bitstream. Compared with

Authorized licensed use limited to: TU Delft Library. Downloaded on October 28,2024 at 13:00:52 UTC from IEEE Xplore. Restrictions apply.

JIA et al.: ENERGY-EFFICIENT BNN IMPLEMENTATION USING SC METHOD 12915

conventional binary radix-based BNN, StocBNN con-
sumes much less energy consumption and hardware
resources with less than 0.1% accuracy decrease when
dealing with MNIST/Fashion-MNIST datasets.

The remainder of this article is organized as follows.
Section II discusses some preliminaries. Section III describes
in detail why and how the SC method can be introduced
into BNNs. The architecture of StocBNN is introduced in
Section IV. Experimental results are illustrated in Section V.
Section VI gives the conclusion.

II. PRELIMINARIES

This work focuses on performing BNN inference in SC
domain to achieve better performance. SC provides a new
form of data expression, which can be naturally combined
with BNNs. Before the description of technical details, some
preliminaries and related works are discussed in this section.

A. Bayesian Neural Networks
BNNs refer to the augmentation of standard neural networks

with posterior inference to create a deep learning framework,
which is able to cope with parameter uncertainty. It is a kind
of neural network whose parameters are trained based on
the Bayesian method. The Bayesian method is a statistical
approach used to estimate certain properties of statistics. Its
mathematical foundation is Bayesian theory, which can be
written as follows:

P(W |D) =
P(D|W)P(W)

P(D)
. (1)

Here, W means neural network parameters and D means
training data of neural network. We define P(W) as the
prior probability distribution, which is the artificially estimated
data. P(D|W)/P(D) is the likelihood, and it can be regarded
as an adjustment factor to make the estimated probability
distribution closer to the true one. P(W |D) is posterior
probability distribution. By assuming prior probability of
parameters and continuously learning posterior probability
distribution, network parameters can be trained.

As described in [19], BNNs provide a different training
method and weight/bias representation format rather than
a novel neural network structure. There are three main
differences between standard neural networks and BNNs.
The first one is the training method. A gradient descend-
based method is widely used in standard neural networks
training phase, such as batch gradient descent and stochastic
gradient descent, while variational inference and Markov
chain Monte Carlo method tend to be faster and easier to
implement in BNN training stage. The second one is parameter
representation. Standard neural networks have numerical
parameter values, but BNNs parameter values are defined
by a probability distribution, such as Gaussian distribution
and Laplace distribution. Parameters mostly are characterized
by mean and variance. Variance represents a measure of
uncertainty. Therefore, BNNs show outstanding performance
in handling uncertain and incomplete information. Inference
manner is the last difference. Standard neural networks
perform the feed-forward procedure only once, while BNNs
perform multiple times.

Fig. 2. Standard single-layer BNN inference dataflow [24].

B. Gaussian Random Number Generator
As the first and key step in BNN inference process,

Gaussian random variables sampling requires a properly
optimized GRNG. Previous works on such issue consist
of both software and hardware implementations [30]. The
generation method of random numbers and the quality of
obtained data affect not only the difficulty of subsequent
calculation but also the accuracy of final result. Here, a brief
introduction of Gaussian random variable sampling is given.
Suppose that ω fits Gaussian distribution whose mean value
is µ and standard deviation is σ , i.e., ω ∼ N (µ, σ 2).
Before sampling one weight w from the given distribution
N (µ, σ 2), another random number u should be sampled first
from standard Gaussian distribution [i.e., u ∼ N (0, 1)].
Then, based on the scale-location transformation, the expected
random number could be calculated as w = uσ + µ.
By randomly generating massive u, different ω values can be
obtained. The standard GRNG algorithms can be classified into
four distinctive categories: inversion methods, transformation
methods, rejection methods, and recursion methods [30].
Among them, the CLT-based transformation method is the
most widely used one, especially in hardware implementation.

C. Dataflow in BNN Inference Phase
With a well-trained BNN, the inference operation could be

divided into two stages: weight sampling and feed-forward
propagation. Fig. 2 shows the standard inference dataflow of
a single-layer BNN. In this example, µ and σ are the well-
trained distribution parameter matrices of BNN. x is the input
vector.

In weight sampling stage, T concrete neural networks
are instantiated through large amount of sampling operations
based on weights’ posterior distribution. Specifically, T
uncertain matrices H1, H2, . . . , HT are sampled from N (0, 1),
and then, according to the parameter matrices, T weight
matrices W1, W2, . . . , WT are transformed from T uncertain
matrices using scale-location transformation. Every element
in the T weight matrices fits Gaussian distribution N (µ, σ 2).
In feed-forward propagation stage, input vector x is fed into all
these T weight matrices to finish the feed-forward procedure
and achieve a convincing result. T outputs y1, y2, . . . , yT
are averaged to get the final output ȳ. Jia et al. point out
that there are large amount of redundant computation in
the standard dataflow, as shown in Fig. 2, and propose a

Authorized licensed use limited to: TU Delft Library. Downloaded on October 28,2024 at 13:00:52 UTC from IEEE Xplore. Restrictions apply.

12916 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

feature decomposition and memorization strategy to reform
the BNN inference dataflow in a reduced manner [24]. With
the proposed dataflow, the computation of a single-layer BNN
could be reduced by half without any influence on inference
accuracy but at the expense of 14% area overhead. In this
article, the efficient inference dataflow proposed in [24] is
adopted and improved.

D. Stochastic Computing

SC is a nonconventional computing paradigm, which is first
proposed by von Neumann in the 1950s [31]. In SC, data
are presented in the format of 0-1 sequence, which is named
stochastic number (SN). The value of SN is evaluated based
on the count of 1’s in bitstream, and all bits are independent
of each other in bitstream. With different encoding format,
the value is different. In unipolar format, the value of one
SN is calculated by the ratio of 1’s [i.e., P(x = 1)] and
ranges from 0 to 1. In bipolar format, the value is calculated
by 2P(x = 1) − 1 and ranges from −1 to 1. For instance,
both 01001001 and 11000001 contain three ones in an 8-
bit bitstream. In unipolar format, the value is (3/8), while in
bipolar format, it is 2 × (3/8)−1 = −(1/4). It is obvious that
SN could not represent a digital number exactly. The longer
the bitstream, the higher the accuracy. Even though there exists
a slight loss in computation accuracy, the advantage of SC is
the significant lower hardware cost for arithmetic calculation
when compared with conventional methods [32]. In unipolar
format, multiplication can be performed by a single AND gate,
which greatly reduces the complexity of circuit design. SNs
could be generated using SN generators (SNGs).

Due to the small hardware cost, low-power consumption,
and high fault tolerance, SC has been applied to many
applications to make a trade-off between hardware efficiency
and computing performance, such as probability circuit design,
network quantization, and ECC decoding [33], [34], [35],
[36], [37]. In order to bring neural network computing into
SC domain, a large number of SNGs are required to convert
digital weights and inputs into bitstreams. It is a challenge for
an SC-based neural network to achieve a lower computational
latency and energy consumption compared with conventional
designs [38].

III. SC-BASED BNN

The implementation process and noteworthy details of
StocBNN are introduced in this section. Gaussian random
numbers are represented with the format of 0-1 bitstream, and
a simplified but efficient GRNG is put forward. We prove the
feasibility of the representation and demonstrate the dataflow
in feed-forward propagation procedure. These construct the
underlying theory for the successful application of StocBNN.
It is surprising that when implementing BNN in SC domain,
no additional SNGs are required, and the sampling operation
could be also simplified.

A. Gaussian Random Number in Bitstream Format

In probability theory, the CLT establishes that in some
situations, when independent random variables are added, their

Fig. 3. Central limit theorem-based GRNG.

properly normalized sum tends toward a normal distribution
even if the original variables themselves are not normally
distributed. As a special case, the De Moivre–Laplace theorem
states that the normal distribution may be used as an
approximation to the binomial distribution under certain
conditions [39]. Based on the De Moivre–Laplace theorem
and CLT, we can draw the following corollary.

Corollary 1: Let {X1, X2, . . . , X L} be a sequence of
independent random variables that obey Bernoulli distribution
and E(Xk) = p(k = 1, 2, . . . , L). If L is large enough,
((
∑L

k=1 Xk − Lp)/(Lp(1 − p))1/2) fits standard Gaussian
distribution N (0, 1).

Fig. 3 demonstrates the computation procedure of CLT-
based GRNG. The GRNG contains a series of binary random
number generators (BRNGs) that could randomly generate 1
(or 0) with probability p (or 1 − p). That is to say,
bk

∈ {0, 1}(k = 1, 2, . . . , L). After the CLT transformation,
a Gaussian random number u is sampled corresponding to
standard Gaussian distribution. In general, a 128-bit linear
feedback shift register (LFSR) can be used for implementing
BRNGs. By using a parallel counter, the number of 1’s in the
output of LFSR can be converted to a digital Gaussian random
number based on CLT [40]. Usually, the parallel counter is
implemented by adder tree. However, it requires 120 full
adders for a 128-input parallel counter approximately, which
consumes huge hardware cost. Motivated by this, the bitstream
format Gaussian random numbers are proposed to address the
challenge.

Based on CLT, a sequence of binary random numbers
{b1, b2, . . . , bL

} and Gaussian random number u have the
following relation:

u = f (b1, b2, . . . , bL) =

∑L
k=1 bk

− Lp
√

Lp(1 − p)
. (2)

It can be found from Fig. 3 and (2) that there exists
an equivalent relation between the initial 0-1 bitstream
b1b2, . . . , bL and the final Gaussian random number u.
As aforementioned in Section II-D, the 0-1 bitstream in SC
domain could be converted into a digital number. In unipolar
format, 0-1 bitstream b1b2, . . . , bL in SC domain is equal to
the number ((

∑L
k=1 bk)/L) in binary radix-based computing

domain. Next, we try to prove that ((
∑L

k=1 bk)/L) is a
Gaussian random number.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 28,2024 at 13:00:52 UTC from IEEE Xplore. Restrictions apply.

JIA et al.: ENERGY-EFFICIENT BNN IMPLEMENTATION USING SC METHOD 12917

Based on probability theory, Gaussian distribution has a
linear characteristic, which could be expressed as the following
lemma.

Lemma 1: If U ∼ N (0, 1), then X = U ∗ σ +

µ ∼ N (µ, σ 2).
Based on Lemma 1 and (2), we can get the following

corollary.
Corollary 2: ((

∑L
k=1 bk)/L) is also a Gaussian random

number, which is sampled from Gaussian distribution
N (p, (((p(1 − p))/L)).

Proof: Equation (2) could be equivalently transformed
into the following equation:

u ·

√
p(1 − p)

L
+ p =

∑L
k=1 bk

L
. (3)

Since u is a Gaussian random number sampled from
N (0, 1), based on Lemma 1, it could be proved that
((
∑L

k=1 bk)/L) is also a Gaussian random number.
On the basis of the SC method, ((

∑L
k=1 bk)/L) represents

the value of 0-1 bitstream b1b2, . . . , bL . Thus, b1b2, . . . , bL is
also a Gaussian random number not in digital format but in
0-1 bitstream format.

If 0-1 bitstream could participate in the subsequent feed-
forward propagation, the complex transformation computation
in CLT could be omitted. By this way, the parallel counter is
not required, and large amount of hardware resources could
be saved. As a result, the computing complexity, energy
consumption, and hardware utilization can be significantly
optimized.

B. SC-Based Feed-Forward Propagation

Representing Gaussian random numbers in 0-1 bitstream
format could simplify the realization of GRNG. In order
to enable bitstream format Gaussian random numbers flow
through the BNN feed-forward propagation, the SC method
should be employed in this procedure.

As introduced before, once a concrete neural network
has been instantiated, BNN can perform inference using the
same methods as a standard neural network. Based on neural
network theory, the output of a neural network is calculated
by (4). As for BNN, (4) would be performed several times

y = W x + b. (4)

Here, we suppose that the input neural count is N , and the
output neural count is M . Thus, the dimensions of x, y, W ,
and b are N , M , M × N , and M .

The computation cost of vector addition could be neglected
when compared with that of matrix-vector multiplication. So,
we only consider W x and ignore the bias terms (i.e., addition
between W x and b).

Each element of y, yi (i = 1, 2, . . . , M), is calculated as
follows:

yi =

N∑
j=1

wi j x j =

N∑
j=1

(
ui jσi j + µi j

)
x j . (5)

Here, ui j indicates a random number sampled from standard
Gaussian distribution.

Associated with CLT-based GRNG, (5) can be reformulated
as follows:

yi =

N∑
j=1

(
ui jσi j + µi j

)
x j

=

N∑
j=1

(∑L
k=1 bk

i j − Lp
√

Lp(1 − p)
σi j + µi j

)
x j . (6)

In Section III-A, it is pointed out that in unipolar format,
0-1 bitstream b1b2, . . . , bL is equivalent to ((

∑L
k=1 bk)/L).

Considering that ((
∑L

k=1 bk)/L) does not appear in (6)
explicitly, if b1b2, . . . , bL wants to participate in the feed-
forward propagation, transformation should be performed as
follows:

yi =

N∑
j=1

(∑L
k=1 bk

i j − Lp
√

Lp(1 − p)
σi j + µi j

)
x j

=

N∑
j=1

[(∑L
k=1 bk

i j

L

√
L

p(1 − p)
−

√
Lp

1 − p

)
σi j + µi j

]
x j

=

N∑
j=1

[∑L
k=1 bk

i j

L

√
L

p(1 − p)
σi j +

(
µi j −

√
Lp

1 − p
σi j

)]
× x j . (7)

Here, let hi j = ((
∑L

k=1 bk
i j)/L), σ ′

i j = (L/(p(1 − p)))1/2σi j ,
and µ′

i j = µi j − (Lp/(1 − p))1/2σi j . Equation (7) could be
simplified as follows:

yi =

N∑
j=1

(
hi jσ

′

i j + µ′

i j

)
x j . (8)

In (8), with the updated mean µ′

i j and variance σ ′

i j
2,

((
∑L

k=1 bk
i j)/L) could participate in the computing as a whole.

To realize the feed-forward propagation in SC domain, some
minor transformations are made on (8). We divide the left-hand
side and the right-hand side by two, as shown in (9). With this
equation, the addition could be realized by a MUX. Thus, both
the multiplication and the addition in BNN could be realized
using the SC method

yi

2
=

∑N
j=1 hi jσ

′

i j x j +
∑N

j=1 µ′

i j x j

2
. (9)

In the proposed StocBNN, hi j is represented by 0-1
bitstream b1b2, . . . , bL . µ′

i j and σ ′

i j would also be converted
into 0-1 bitstream format. With a well-trained BNN, the
conversion of µ′

i j and σ ′

i j only performs once. The dataflow
of StocBNN is illustrated in Fig. 4 with a bitstream format
input x.

In Fig. 4, all the variables are stored in bitstream format
except for y1, y2, . . . , yT , and ȳ. The whole dataflow could
be divided into four steps.

1) β = σ ′ & xT . In this step, xT performs the element-
wise multiplication with each row of σ ′. The dimension
of the output, β, is the same as that of σ ′.

2) γ = β & H . This step performs element-wise
multiplication between β and H .

3) η = µ′ & xT . The operations in this step are similar to
those in the first step.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 28,2024 at 13:00:52 UTC from IEEE Xplore. Restrictions apply.

12918 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

Fig. 4. Dataflow of StocBNN. Except for y1, y2, . . . , yT and ȳ, other
variables are in bitstream format.

Fig. 5. Overview architecture of StocBNN.

4) α = ((η + γ)/2). The addition operation is always
realized by MUX gates in the SC method. The select
signal is a bitstream that contains half zeros and half
ones. This is why we transform (8) to (9).

A line-wise count operation is used to accumulate the “1”
in each row of α as the output of each concrete neural network
[i.e., yk(k = 1, 2, . . . , T)]. Subsequently, the BNN output ȳ
is achieved with an average operation.

IV. ARCHITECTURE OF STOCBNN

A. Overview

In this section, the overview architecture of the proposed
StocBNN is introduced. As shown in Fig. 5, the whole archi-
tecture contains three steps: BNN training, data preprocessing,
and SC-based BNN inference. In training phase, network
parameters are obtained using the neural network structure
and Edward framework mentioned earlier. Then, a shifter and
converter are used to translate these well-trained parameters

from digital domain to SC domain. In inference phase, LFSR-
based GRNG, block memories (BRAMs), register, amount of
process elements (PEs), counters, and controller are included.
LFSR is used to randomly generate a series of zero or one,
which are treated as the Gaussian random numbers. BRAMs
are used to store the well-trained BNN parameters, including
mean µ and standard deviation σ . The input will be stored
and transferred in a shift register. PEs are utilized to perform
feed-forward propagation. The feature output result is obtained
by counters. Controller is used to make sure the correctness
of timing.

B. LFSR-Based GRNG
In SC domain, the complex transformation in CLT is

omitted. GRNG only needs to generate independent random
number 0 or 1 based on Bernoulli distribution. In order
to obtain adequate and high-quality SNs efficiently, linear
feedback shift register (LFSR) is applied. An LFSR is usually
implemented by a set of interconnected single-bit storage
registers and a feedback network [41]. The outputs of n single-
bit registers at time t are given by {q(t)

n−1, . . . , q(t)
1 , q(t)

0 }, and
the next state of the registers is determined by a set of binary
equations as (10) and (11)

q(t+1)
n−1 = an−1 ⊙ q(t)

n−1 ⊕ · · · ⊕ a1 ⊙ q(t)
1 ⊕ a0 ⊙ q(t)

0
q(t+1)

n−2 = q(t)
n−1

...

q(t+1)
0 = q(t)

1

 (10)

q(t+1)
= A ⊙ q(t). (11)

Here, ai (i = 1, 2, . . . , n) is binary coefficient, multiplication
(⊙) is binary AND function, and addition (⊕) is binary XOR
function; q is the register state vector, and A is the transition
matrix for one cycle.

We employ the multiple-bit skip-ahead method [42] to
implement LFSR-based GRNG. When q is advanced k cycles,
(11) can be expressed as follows:

q(t+k)
= A ⊙ q(t+k−1)

= Ak
⊙ q(t). (12)

Taking Ak as the transition matrix for one cycle, then LFSR
can be advanced k steps in only one cycle. The outputs turn
to be the following:

q(t+1)
= Ak

⊙ q(t). (13)

In traditional LFSR, only the highest bit would be altered,
and the left bits just shift by one position. In (13), the highest
k bits are altered to reduce the correlation between generated
data. For example, considering a 4-bit LFSR with coefficients
ai = {a3, a2, a1, a0} = {0, 1, 1, 0}, (13) is converted to (14)
at k = 3 

q(t+1)
3 = q(t)

3 ⊕ q(t)
2 ⊕ q(t)

1
q(t+1)

2 = q(t)
3 ⊕ q(t)

2
q(t+1)

1 = q(t)
2 ⊕ q(t)

1
q(t+1)

0 = q(t)
3

. (14)

It is clearly that q3, q2, and q1 are altered. Compared
with other methods, LFSR-based GRNG with skip ahead
could achieve almost the same randomness with higher
computational efficiency.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 28,2024 at 13:00:52 UTC from IEEE Xplore. Restrictions apply.

JIA et al.: ENERGY-EFFICIENT BNN IMPLEMENTATION USING SC METHOD 12919

Fig. 6. Asynchronous parallel pipeline calculation technique: an example.

C. Asynchronous Parallel Pipeline Calculation Technique

As illustrated in Fig. 4, the input x performs multiplication
with every row of σ and µ, and a row-wise count operation
will be done next. It is easy to find that row is the basic
unit in BNN inference phase. If T concrete neural networks
are required, the input x will perform row-wise multiplication
M ∗ T times (here, M is the count of output neural). Usually,
M ∗ T > 1000. If x performs all multiplication in parallel,
there will be M fan-outs, which may increase the delay and
power of logic circuit. Furthermore, the routing of this circuit
is also a great challenge.

On the other hand, running time is an important indicator
for neural networks when measuring network performance
under the same conditions. Assuming that data loading and
computing take one clock cycle each, if BNN is calculated row
by row, it theoretically needs 2N clock cycles. A lot of time
will be spent in waiting, which also causes a waste of hardware
resources. In this work, a systolic array-aware asynchronous
parallel pipeline technique is proposed to resolve these issues.

Systolic array is a homogeneous network of tightly coupled
data processing units called nodes. Each node independently
computes a partial result as a function of the data received
from its upstream neighbors, stores the result within itself, and
passes it downstream. Googles TPU is also designed around
a systolic array [43].

Inspired by the characteristic of systolic array, an asyn-
chronous parallel pipeline calculation technique is applied in
our implementation. In order to make it easy to be understood,
the proposed technique is described with the help of an
example. Here, we suppose that the dimensions of x and σ

are 4 × 1 and 3 × 4 (M = 3 and N = 4). The computing
procedure based on asynchronous parallel pipeline calculation
technique is shown in Fig. 6. In clock 1, x1 would be loaded.
In clock 2, x2 is loaded, and x1 performs multiplication with
σ11. The fan-out of x1 is 2. In clock 3, x3 is loaded, and x1 and
x2 perform multiplication, respectively, with σ21 and σ12. The
fan-out of x1 and x2 is 2. Also, the multiplication between x
and σ is finished after seven (N + M) clock cycles, which is
shorter than eight (2N) clock cycles. When N is much larger
than M , the advantage is obvious. In each clock, the fan-out
of xi (i = 1, . . . , 4) is 2, which is less than M .

It is worth to point out two advantages of this technique.
First, it could reduce the routing difficulties and the hardware
resource utilized by routing, because the fan-out of each
input element is reduced from M to 2. Second, it could
improve the process speed of system because of the pipeline
technique. Based on the experimental results, the system with
this technique could work at 275 MHz. Otherwise, the system
could only work around 100 MHz.

TABLE I
ACCURACY COMPARISON BETWEEN DIGITAL DOMAIN BNN (DIGTBNN)

AND SC DOMAIN BNN (STOCBNN)

V. EXPERIMENTS

Several experiments are performed to verify the efficiency
of StocBNN in different dimensions. The experimental results
are presented in this section.

A. Experiments Setup
This work focuses on improving BNN inference per-

formance using the SC method. Several experiments have
been done as the following three aspects: 1) learning
accuracy comparison between conventional binary radix-
based computing domain BNN (i.e., digital BNN) (DigtBNN)
and StocBNN with software simulation; 2) the evaluation
of hardware performance and generated Gaussian random
number quality of LFSR-based SC domain GRNG; and
3) FPGA implementation and comparison between DigtBNN
and StocBNN in terms of hardware performance.

B. Learning Accuracy

We use famous datasets of MNIST [44] and Fashion-
MNIST [45] to evaluate learning accuracy in classification
task. The concrete neural network count T is set as
100. Experiments are simulated with Python, and DigtBNN
is implemented for comparison. Considering the issue of
compounding errors over multiple layers [46], we implement
the first layer with the SC method in inference process, and the
remaining layers are implemented in digital domain. DigtBNN
is performed with number format of 32-bit floating point.

StocBNN is first evaluated with a 784-200-200-10 config-
uration structure, and all layers are fully connected (named
4-FC). The BNN is pretrained using Edward, and ReLU is
taken as the activation function. Experimental results of the
4-FC structure are demonstrated in the second and third rows
of Table I, with a total of 10 000 test data. In addition,
test accuracy of DigtBNN is shown in the third column.
Columns 4–6 state the accuracy of StocBNN with a bitstream
length of 32, 64, and 128, respectively. It could be found
that as the increase of bitstream length, the testing accuracy
increases. When the bitstream length is 128, there is only a
slight decrease in an accuracy of about 0.78% compared with
DigtBNN in MNIST and 1.89% in Fashion-MNIST.

The famous network structure of LeNet-5 [47] is also
adopted to evaluate the efficiency of StocBNN when involving
CNN architectures. The experimental results are demonstrated
in the last two rows of Table I. The SC method is
also implemented in the first convolution layer to avoid
compounding errors. It can be seen that StocBNN achieves

Authorized licensed use limited to: TU Delft Library. Downloaded on October 28,2024 at 13:00:52 UTC from IEEE Xplore. Restrictions apply.

12920 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

Fig. 7. Simulation results of LFSR-based SC domain GRNG. (a) Bitstream length = 16. (b) Bitstream length = 32. (c) Bitstream length = 64. (d) Bitstream
length = 128.

TABLE II
NORMALITY TEST OF LFSR-BASED SC DOMAIN GRNG

great performance in the LeNet-5 structure. When the
bitstream length is 128, there is only a slight decrease in
accuracy with about 0.1% and 0.02% in MNIST and Fashion-
MNIST, respectively.

C. Evaluation of LFSR-Based GRNG

In Section IV-B, we have introduced LFSR-based GRNG
with skip ahead. In this section, an LFSR-based SC domain
GRNG is simulated with this technique in Vivado using Xilinx
ZYNQ-7000 FPGA. Each GRNG could generate 128 bits
(0 or 1) each cycle. As mentioned above, Gaussian random
numbers play a very important role in BNN inference. In our
experiments, 10 000 Gaussian random numbers are sampled
with a bitstream length of 16, 32, 64, and 128 to evaluate the
quality of GRNG. The histograms of these random numbers
are drawn as in Fig. 7. The horizontal axis is the count of “1,”
and the vertical axis is the frequency. It could be seen that four
group random numbers with different bitstream length could
fit Gaussian distribution well.

Furthermore, normality test is also made for the generated
random numbers using Kolmogorov–Smirnov test (K–S test),
Shapiro–Wilk test (S–W test), and Lilliefors test to guarantee
that those numbers fit Gaussian distribution [48]. We randomly
construct 10 000 random number groups, and each group
consists of 10–80 random numbers. The normality test
is performed using Python, and the pass rate results are
demonstrated in Table II. The second column shows the pass
rate of random numbers that are sampled using the built-in
GRNG of Python. It could be treated as the baseline. The
following four columns are the results that random numbers
are sampled using LFSR-based GRNG with the bitstream
length of 16, 32, 64, and 128, respectively. The experimental
results show that as the bitstream length increases, so does the
pass rate. When the bitstream length reaches 128, the pass rate
is only reduced by 2.26%.

We also make a comparison of hardware perfor-
mance between LFSR-based GRNG and CLT-based GRNG.
As shown in Table III, LFSR-based GRNG could almost
reduce the power by 81.8% and save the hardware resources

TABLE III
HARDWARE PERFORMANCE OF GRNG

by 78.8%, 7.5%, and 40.9% in terms of LUT, register,
and slice, respectively. The improvement of the energy and
hardware efficiency is benefited from the omitting of complex
transformation computation in CLT.

D. FPGA Implementation and Its Performance

In this section, StocBNN is implemented using Xilinx
ZYNQ-7000 FPGA with Verilog language based on the
architecture shown in Fig. 5. To facilitate StocBNN inference,
inputs (i.e., images) are loaded from OFF-chip memory to
ON-chip registers. In preprocessing phase, well-trained BNN
parameters are converted from digital format to bitstream
format and are stored in BRAM for the purpose of inference.
LFSR-based GRNG with skip ahead is realized based on (13).
In our experiment, the bit width of LFSR is set to be 128, and
k in (13) is set to be 16. This allows for the generation of
128 0-1 numbers in a single inference per neuron to ensure
sufficient randomness. Furthermore, traditional MAC units
are replaced by PEs in SC domain, as illustrated in Fig. 5.
Each PE consists of three AND gates and one MUX, and
all the inputs of PE are in bitstream format. The inputs are
then converted into digital domain using counters. Except for
asynchronous parallel pipeline calculation technique, no other
optimization techniques are applied in this work. Therefore,
the hardware performance improvements demonstrated in this
section are attributed to the proposed SC domain computing.
Some effective FPGA acceleration strategies mentioned in
Section I can also be used on StocBNN, such as the two-
tier pipeline structure in [19] and neuron skipping strategy
at hardware level in [26], for further improvement of the
computing performance.

In order to demonstrate the efficiency of StocBNN, other
three related cutting-edge works [19], [22], [24] with the same
network structure are selected for comparison, collectively
called DigtBNN. Table IV shows the hardware performance

Authorized licensed use limited to: TU Delft Library. Downloaded on October 28,2024 at 13:00:52 UTC from IEEE Xplore. Restrictions apply.

JIA et al.: ENERGY-EFFICIENT BNN IMPLEMENTATION USING SC METHOD 12921

TABLE IV
HARDWARE PERFORMANCE COMPARISON BETWEEN DIGTBNN AND STOCBNN

comparison of DigtBNN and StocBNN with the MNIST
dataset in 4-FC. As shown in Table IV, StocBNN shows great
performance in terms of hardware indicators. Both the methods
in [19] and [24] are reimplemented by Verilog in order to
make a fair comparison. Owing to the nonavailability of the
project or well-trained model as open source, an assessment
of the performance of [22] is reliant on the information
provided in the original article. The performance of [19], [24],
and StocBNN is reported based on Vivado synthesis results.
Notably, the parameters of the BNN are represented differently
across these studies. Parameters are employed an 8-bit fixed-
point (FixP) representation in [19] and [24] and a 7-bit fixed-
point representation in [22] and are transformed into 32-, 64-,
and 128-bit SN in StocBNN (the second row in Table IV).

Benefited from the asynchronous parallel pipeline technique
and simplified multiplication operation, the max frequency of
StocBNN could achieve 275 MHz, while that of DigtBNN is
only 200 Hz (the fourth row in Table IV). Power consumption
reported by Vivado is shown in the fifth row. StocBNN
achieves a 14.7× power consumption improvement in 32 bit,
8.6× in 64 bit, and 3.9× in 128 bit over DigtBNN [24].

In contrast to [19] and [24] that likewise conducted
100 times inference, StocBNN achieves a 1.78× increase in
throughput and a 54.8% reduction in energy consumption
with 128-bit bitlength. Compared with [22] who performs one
time inference, StocBNN shows 15× increase in throughput,
and the energy consumption of 128-bit StocBNN is increased
by 12.9%.

Hardware resource utilization in terms of LUT, register,
slice, DSP, and BRAM is shown in the last five rows. Since
the parameters of BNN in SC domain are stored in bitstream
format, more BRAMs are allocated in StocBNN. Despite
BRAMs, the synthesized results show that StocBNN consumes
much less hardware resources. Compared with DigtBNN,
the LUT, register, slice, and DSP in StocBNN with 128-bit
bitstream are reduced by 45.26%, 28.95%, 47.24%, and 100%,
respectively.

It could be found from Table IV that operations in
StocBNN are performed by LUTs. Due to that LUTs
are generally six-input architecture but SC operations are

two-input, FPGA is not the best implementation method for
StocBNN. ASIC is another possible implementation approach.
ASIC implementation can have more optimization strategies
for SC operation than FPGA, while with the expense of
flexibility and cost. For example, multiplications can be
synthesized as AND gates that are more efficient than LUTs.
For AI academic research, such as StocBNN, the model can be
updated over time, and at this point, the FPGA implementation
is more promising.

VI. CONCLUSION

In this article, BNN inference phase is performed in
SC domain, which could reduce the power consumption
with the cost of negligible learning accuracy decrease.
Inspired by the CLT-based GRNG algorithm, the 0-1 sequence
sampled from Bernoulli distribution can directly participate
in the inference procedure using SC theory. With this
strategy, the complex transformation in CLT-based GRNG
is omitted. Furthermore, the asynchronous parallel pipeline
calculation technique is proposed in computing block to
enhance operation speed. Finally, both software simulation and
hardware implementation are realized to evaluate the system
performance. Software experiments show great potential of
StocBNN in dealing with vision task. FPGA experimental
results demonstrate that StocBNN consumes much less energy
consumption and hardware resources. But, the high latency
of StocBNN restricts its application in real-time tasks. In the
future, we will explore the SC-based BNN with improved
speed in more complicated network structures and nonvision
tasks.

REFERENCES

[1] S. Pouyanfar et al., “A survey on deep learning: Algorithms, techniques,
and applications,” ACM Comput. Surv., vol. 51, no. 5, pp. 1–36,
Sep. 2019.

[2] Z.-Q. Zhao, P. Zheng, S.-T. Xu, and X. Wu, “Object detection with deep
learning: A review,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30,
no. 11, pp. 3212–3232, Nov. 2019.

[3] D. W. Otter, J. R. Medina, and J. K. Kalita, “A survey of the usages
of deep learning for natural language processing,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 32, no. 2, pp. 604–624, Apr. 2020.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 28,2024 at 13:00:52 UTC from IEEE Xplore. Restrictions apply.

12922 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

[4] F. Xing, Y. Xie, H. Su, F. Liu, and L. Yang, “Deep learning in
microscopy image analysis: A survey,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 29, no. 10, pp. 4550–4568, Oct. 2018.

[5] Y. Li et al., “Deep learning for LiDAR point clouds in autonomous
driving: A review,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32,
no. 8, pp. 3412–3432, Aug. 2021.

[6] S. Dodge and L. Karam, “A study and comparison of human and deep
learning recognition performance under visual distortions,” in Proc. 26th
Int. Conf. Comput. Commun. Netw. (ICCCN), Jul. 2017, pp. 1–7.

[7] F. Cui, Q. Cui, and Y. Song, “A survey on learning-based approaches
for modeling and classification of human–machine dialog systems,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 4, pp. 1418–1432,
Apr. 2021.

[8] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
Jan. 2014.

[9] H. W. Lin, M. Tegmark, and D. Rolnick, “Why does deep and cheap
learning work so well?” J. Stat. Phys., vol. 168, pp. 1223–1247,
Sep. 2017.

[10] H. Zheng, Z. Yang, W. Liu, J. Liang, and Y. Li, “Improving deep neural
networks using softplus units,” in Proc. Int. Joint Conf. Neural Netw.
(IJCNN), Jul. 2015, pp. 1–4.

[11] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are
easily fooled: High confidence predictions for unrecognizable images,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 427–436.

[12] Y. Gal and Z. Ghahramani, “Bayesian convolutional neural net-
works with Bernoulli approximate variational inference,” 2015,
arXiv:1506.02158.

[13] D. Tran, M. D. Hoffman, R. A. Saurous, E. Brevdo, K. Murphy, and D.
M. Blei, “Deep probabilistic programming,” in Proc. Int. Conf. Learn.
Represent. (ICLR), 2017, pp. 1–18.

[14] B. Pang, E. Nijkamp, and Y. N. Wu, “Deep learning with TensorFlow:
A review,” J. Educ. Behav. Statist., vol. 45, no. 2, pp. 227–248, 2020.

[15] J. Shi et al., “ZhuSuan: A library for Bayesian deep learning,” 2017,
arXiv:1709.05870.

[16] E. Bingham et al., “Pyro: Deep universal probabilistic programming,”
J. Mach. Learn. Res., vol. 20, no. 1, pp. 973–978, 2018.

[17] J. L. Ticknor, “A Bayesian regularized artificial neural network for stock
market forecasting,” Exp. Syst. Appl., vol. 40, no. 14, pp. 5501–5506,
2013.

[18] J.-T. Chien and Y.-C. Ku, “Bayesian recurrent neural network for
language modeling,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27,
no. 2, pp. 361–374, Feb. 2016.

[19] R. Cai et al., “VIBNN: Hardware acceleration of Bayesian neural
networks,” ACM Architectural Support Program. Lang. Operating Syst.
(ASPLOS), vol. 53, no. 2, pp. 476–488, 2018.

[20] K. Yang, A. Malhotra, S. Lu, and A. Sengupta, “All-spin Bayesian neural
networks,” IEEE Trans. Electron Devices, vol. 67, no. 3, pp. 1340–1347,
Mar. 2020.

[21] Y. Hirayama, T. Asai, M. Motomura, and S. Takamaeda-Yamazaki,
“A resource-efficient weight sampling method for Bayesian neural
network accelerators,” in Proc. 7th Int. Symp. Comput. Netw. (CANDAR),
Nov. 2019, pp. 137–142.

[22] H. Awano and M. Hashimoto, “BYNQNet: Bayesian neural network
with quadratic activations for sampling-free uncertainty estimation on
FPGA,” in Proc. IEEE/ACM Proc. Design, Autom. Test Eurpoe (DATE),
Mar. 2020, pp. 1402–1407.

[23] H. Awano and M. Hashimoto, “B2N2: Resource efficient Bayesian
neural network accelerator using Bernoulli sampler on FPGA,”
Integration, vol. 89, pp. 1–8, Mar. 2023.

[24] X. Jia, J. Yang, R. Liu, X. Wang, S. D. Cotofana, and W. Zhao,
“Efficient computation reduction in Bayesian neural networks through
feature decomposition and memorization,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 32, no. 4, pp. 1703–1712, May 2020.

[25] Y. Lin et al., “Bayesian neural network realization by exploiting inherent
stochastic characteristics of analog RRAM,” in IEDM Tech. Dig.,
Dec. 2019, pp. 6–14.

[26] Q. Wan and X. Fu, “Fast-BCNN: Massive neuron skipping in Bayesian
convolutional neural networks,” in Proc. 53rd Annu. IEEE/ACM Int.
Symp. Microarchitecture (MICRO), Oct. 2020, pp. 229–240.

[27] H. Fan, M. Ferianc, M. Rodrigues, H. Zhou, X. Niu, and W. Luk, “High-
performance FPGA-based accelerator for Bayesian neural networks,”
in Proc. 58th ACM/IEEE Design Autom. Conf. (DAC), Dec. 2021,
pp. 1063–1068.

[28] H. Fan et al., “FPGA-based acceleration for Bayesian
convolutional neural networks,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 41, no. 12, pp. 5343–5356,
Mar. 2022.

[29] R. Dorrance, D. Dasalukunte, H. Wang, R. Liu, and B. Carlton, “Energy
efficient BNN accelerator using CiM and a time-interleaved Hadamard
digital GRNG in 22 nm CMOS,” in Proc. IEEE Asian Solid-State
Circuits Conf. (A-SSCC), Nov. 2022, pp. 2–4.

[30] J. S. Malik and A. Hemani, “Gaussian random number generation: A
survey on hardware architectures,” ACM Comput. Surveys, vol. 49, no. 3,
p. 53, 2016.

[31] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,”
ACM Trans. Embed. Comput. Syst., vol. 12, no. 2s, p. 92,
May 2013.

[32] A. Mondal and A. Srivastava, “Power optimizations in MTJ-based
neural networks through stochastic computing,” in Proc. IEEE/ACM
Int. Symp. Low Power Electron. Design (ISLPED), Jul. 2017,
pp. 1–6.

[33] V. Canals, A. Morro, A. Oliver, M. L. Alomar, and J. L. Rossellè,
“A new stochastic computing methodology for efficient neural network
implementation,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 3,
pp. 551–564, Mar. 2016.

[34] Y. Liu, S. Liu, Y. Wang, F. Lombardi, and J. Han, “A
stochastic computational multi-layer perceptron with backward prop-
agation,” IEEE Trans. Comput., vol. 67, no. 9, pp. 1273–1286,
Sep. 2018.

[35] X. Jia, J. Yang, Z. Wang, Y. Chen, H. H. Li, and W. Zhao, “Spintronics
based stochastic computing for efficient Bayesian inference system,”
in Proc. 23rd Asia South Pacific Design Autom. Conf. (ASP-DAC),
Jan. 2018, pp. 580–585.

[36] R. Cai et al., “A stochastic-computing based deep learning frame-
work using adiabatic quantum-flux-parametron superconducting tech-
nology,” in Proc. 46th Int. Symp. Comput. Archit., Jun. 2019,
pp. 567–578.

[37] X. Jia, J. Yang, P. Dai, R. Liu, Y. Chen, and W. Zhao, “SPINBIS:
spintronics-based Bayesian inference system with stochastic computing,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 4,
pp. 789–802, Apr. 2020.

[38] Y. Liu, S. Liu, Y. Wang, F. Lombardi, and J. Han, “A survey of stochastic
computing neural networks for machine learning applications,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 32, no. 7, pp. 2809–2824,
Jul. 2021.

[39] H. M. Walker and M. Helen, “De Moivre on the law of normal
probability,” in A Source Book Mathematics, S. D Eugene Ed. New
York, NY, USA: Dover, 1985.

[40] R. Andraka and R. Phelps, “An FPGA based processor yields a real
time high fidelity radar environment simulator,” in Proc. MAPLT, 1998,
pp. 220–224.

[41] G. Marsaglia, “Random numbers fall mainly in the planes,” Proc. Nat.
Acad. Sci. USA, vol. 61, no. 1, pp. 25–28, Sep. 1968.

[42] L. Colavito and D. Silage, “Efficient FPGA LFSR implementation
whitens pseudorandom numbers,” in Proc. ACM Symp. Field Program.
Gate Arrays (FPGA), 2009, pp. 308–313.

[43] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proc. IEEE/ACM Int. Symp. Comput. Archit. (ISCA),
Nov. 2017, pp. 1–12.

[44] C. C. Y. LeCun and C. J. Burges. (2010). MNIST Handwritten Digit
Database. [Online]. Available: http://yann.lecun.com/exdb/mnist

[45] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel
image dataset for benchmarking machine learning algorithms,” 2017,
arXiv:1708.07747.

[46] S. R. Faraji, M. H. Najafi, B. Li, D. J. Lilja, and K. Bazargan, “Energy-
efficient convolutional neural networks with deterministic bit-stream
processing,” in Proc. IEEE/ACM Proc. Design, Autom. Test Eurpoe
(DATE), Mar. 2019, pp. 1757–1762.

[47] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[48] N. M. Razali and Y. B. Wah, “Power comparisons of Shapiro–Wilk,
Kolmogorov–Smirnov, Lilliefors and Anderson–Darling tests,” J. Stat.
Model. Analyt., vol. 2, no. 1, pp. 21–33, 2011.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 28,2024 at 13:00:52 UTC from IEEE Xplore. Restrictions apply.

JIA et al.: ENERGY-EFFICIENT BNN IMPLEMENTATION USING SC METHOD 12923

Xiaotao Jia (Member, IEEE) received the B.S.
degree in mathematics from Beijing Jiao Tong
University, Beijing, China, in 2011, and the Ph.D.
degree in computer science and technology from
Tsinghua University, Beijing, in 2016.

From 2016 to 2019, he was a Post-Doctoral
Researcher with the School of Integrated Circuit
Science and Engineering, Beihang University, Bei-
jing, where he is currently an Associate Professor
with the School of Integrated Circuit Science and
Engineering. His current research interests include

spintronic circuits, stochastic computing, Bayesian deep learning, and EDA.

Huiyi Gu received the B.S. degree in electronic
information engineering from Beihang University,
Beijing, China, in 2017, where she is currently
pursuing the Ph.D. degree with the School of
Electronic and Information Engineering.

Her research interests include Bayesian deep
learning and computing-in-memory architecture.

Yuhao Liu received the B.S. degree in electronic
information engineering from Beihang University,
Beijing, China, in 2020, where he is currently
pursuing the master’ degree with the School of
Electronic and Information Engineer.

His research interests include analog circuit design
and neuron computing.

Jianlei Yang (Member, IEEE) received the B.S.
degree in microelectronics from Xidian University,
Xi’an, China, in 2009, and the Ph.D. degree in
computer science and technology from Tsinghua
University, Beijing, China, in 2014.

He is currently an Associate with the School
of Computer Science and Engineering, Beihang
University, Beijing. From 2014 to 2016, he was a
Post-Doctoral Researcher with the Department of
ECE, University of Pittsburgh, Pittsburgh, PA, USA.
His current research interests include computer

architectures and neuromorphic computing systems.
Dr. Yang was the recipient of the First/Second place on ACM TAU Power

Grid Simulation Contest in 2011/2012. He was a recipient of the IEEE ICCD
Best Paper Award in 2013, the ACM GLSVLSI Best Paper Nomination in
2015, the IEEE ICESS Best Paper Award in 2017, and the ACM SIGKDD
Best Student Paper Award in 2020.

Xueyan Wang (Member, IEEE) received the B.S.
degree in computer science and technology from
Shandong University, Jinan, China, in 2013, and the
Ph.D. degree in computer science and technology
from Tsinghua University, Beijing, China, in 2018.

From 2015 to 2016, she was a Visiting Scholar
with the University of Maryland, College Park,
MD, USA. She is currently an Assistant Professor
with the School of Integrated Circuit Science
and Engineering, Beihang University, Beijing. Her
current research interests include processing-in-

memory architectures, AI chip, and hardware security.

Weitao Pan (Member, IEEE) received the B.S.
degree from the School of Technical Physics, Xidian
University, Xi’an, China, in 2004, and the Ph.D.
degree from the School of Microelectronics, Xidian
University, in 2010.

He is currently an Associate Professor with
the State Key Laboratory of Integrated Service
Networks, Xidian University. His current research
interests include VLSI design methods and post-
silicon verification.

Youguang Zhang (Member, IEEE) received the
M.S. degree in mathematics from Peking University,
Beijing, China, in 1987, and the Ph.D. degree
in communication and electronic systems from
Beihang University, Beijing, in 1990.

He is currently a Professor with the School of
Electronic and Information Engineering, Beihang
University. His research interests include microelec-
tronics and wireless communication. In particular,
he recently focuses on the circuit and system
codesign for the emerging memory and computing
systems.

Sorin Cotofana (Fellow, IEEE) received the M.Sc.
degree in computer science from Politehnica Uni-
versity of Bucharest, Bucharest, Romania, in 1984,
and the Ph.D. degree in electrical engineering
from the Delft University of Technology, Delft,
The Netherlands.

He is currently with the Faculty of Electrical
Engineering, Mathematics and Computer Science,
Computer Engineering Laboratory, Delft University
of Technology, Delft. He has coauthored more than
250 papers in peer-reviewed international journal

and conferences, and received 12 best paper awards in international confer-
ences. His current research interests include the following: 1) the design and
implementation of dependable/reliable systems out of unpredictable/unreliable
components; 2) aging assessment/prediction and lifetime reliability-aware
resource management; and 3) unconventional computation paradigms and
computation with emerging nanodevices.

Dr. Cotofana is currently the Editor in Chief of the IEEE TRANSACTIONS
ON NANOTECHNOLOGY, an Associate Editor of the IEEE TRANSACTIONS
ON COMPUTERS and the IEEE Circuits and Systems Society (CASS), the
Distinguished Lecturer, and a Board of Governors Member.

Weisheng Zhao (Fellow, IEEE) received the Ph.D.
degree in physics from the University of Paris Sud,
Paris, France, in 2007.

In 2009, he joined the French National Research
Center (CNRS) as a Tenured Research Scientist.
Since 2014, he has been a Distinguished Professor
with Beihang University, Beijing, China. He is
currently a Professor with the School of Micro-
electronics, Beihang University. He has published
more than 200 scientific articles in leading journals
and conferences, such as Nature Electronics, Nature

Communications, Advanced Materials, IEEE TRANSACTIONS, ISCA, and
DAC. His current research interests include the hybrid integration of
nanodevices with CMOS circuit and new nonvolatile memory (40-nm
technology node and below), such as MRAM circuit and architecture design.

Dr. Zhao is currently the Editor-In-Chief for the IEEE TRANSACTIONS ON
CIRCUITS AND SYSTEMS I: REGULAR PAPER.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 28,2024 at 13:00:52 UTC from IEEE Xplore. Restrictions apply.

