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The real problem is
not whether machines think but whether men do.





CONTENTS

Summary xi

Summary in Chinese xiii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Assessing perceived risk and trust in AVs . . . . . . . . . . . . . . . 2
1.1.2 Modelling perceived risk . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Reducing perceived risk and enhancing trust . . . . . . . . . . . . 3

1.2 Research gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Scientific Contributions . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.2 Practical Contributions . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Modelling perceived risk and trust in driving automation reacting to merg-
ing and braking vehicles 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Theories of perceived risk and trust . . . . . . . . . . . . . . . . . 10
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Experimental design and scenarios . . . . . . . . . . . . . . . . . 16
2.2.4 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Perceived risk and trust as functions of scenario and personal char-

acteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Correlation between perceived risk and trust . . . . . . . . . . . . 25
2.3.3 Effective indicators of perceived risk and trust . . . . . . . . . . . . 25

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 Factors influencing perceived risk and trust . . . . . . . . . . . . . 29
2.4.2 The relation between perceived risk and trust . . . . . . . . . . . . 30
2.4.3 Measures of perceived risk and trust . . . . . . . . . . . . . . . . . 30
2.4.4 Limitations and future work . . . . . . . . . . . . . . . . . . . . . 31

2.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vii



viii CONTENTS

3 A new computational perceived risk model for automated vehicles based on
potential collision avoidance difficulty (PCAD) 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Related perceived risk models. . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Coordinate system, reference points definition and vehicle model. . 36
3.2.2 Existing perceived risk models . . . . . . . . . . . . . . . . . . . . 37

3.3 Potential collision avoidance difficulty model (PCAD) . . . . . . . . . . . 37
3.3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 General structure of PCAD . . . . . . . . . . . . . . . . . . . . . . 39
3.3.3 Collision avoidance difficulty function A in deterministic condi-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.4 Perceived velocity function Vi of a neighbouring vehicle and the

subject vehicle considering known acceleration and manoeuvre un-
certainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.5 Weighting function W . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.6 PCAD Model parameters . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Analytical model properties . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5 Model evaluation method. . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.1 Dataset introduction . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5.2 Model calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5.3 Performance indicators . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Model evaluation results . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.6.1 Model calibration results. . . . . . . . . . . . . . . . . . . . . . . 56
3.6.2 Performance evaluation results . . . . . . . . . . . . . . . . . . . 56

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.8 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Decoding perceived risk in automated vehicles through 140K ratings 65
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Design of driving scenarios . . . . . . . . . . . . . . . . . . . . . 69
4.2.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.3 Validation of the controlled variables of driving scenarios . . . . . . 71
4.2.4 Generation of continuous perceived risk ratings . . . . . . . . . . . 73

4.3 Mathematical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.1 Potential collision avoidance difficulty (PCAD) model . . . . . . . . 74
4.3.2 Driving risk field (DRF) model . . . . . . . . . . . . . . . . . . . . 74
4.3.3 State-of-the-art model calibration . . . . . . . . . . . . . . . . . . 75
4.3.4 Deep neural networks (DNNs) . . . . . . . . . . . . . . . . . . . . 76
4.3.5 Analysing the dynamic nature of perceived risk with SHapley Addi-

tive exPlanations (SHAP) . . . . . . . . . . . . . . . . . . . . . . 80
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.1 Self-reported perceived risk data collection . . . . . . . . . . . . . 82
4.4.2 Continuous perceived risk ratings . . . . . . . . . . . . . . . . . . 85
4.4.3 Model performance in predicting perceived risk . . . . . . . . . . . 86
4.4.4 Decoding perceived risk . . . . . . . . . . . . . . . . . . . . . . . 89



CONTENTS ix

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Designing user interfaces for partially automated vehicles: effects of infor-
mation and modality on trust and acceptance 99
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1.1 Trust in automated vehicles . . . . . . . . . . . . . . . . . . . . . 101
5.1.2 Surrounding and manoeuvre information . . . . . . . . . . . . . . 102
5.1.3 The current study . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2.2 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2.3 Experimental conditions . . . . . . . . . . . . . . . . . . . . . . . 104
5.2.4 Scenario design . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2.5 UI Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2.6 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2.7 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2.8 Data analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.1 Trust and perceived risk . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.2 Braking behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3.3 Eye gaze behaviour. . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3.4 Communication with automation, perceived ease of use and per-

ceived usefulness . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3.5 Information type and modality preference . . . . . . . . . . . . . . 114

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.4.1 Effects of UIs on trust, perceived risk and acceptance . . . . . . . . 115
5.4.2 Effects of criticality of event types and individual differences . . . . 117
5.4.3 Limitations and perspective . . . . . . . . . . . . . . . . . . . . . 117

5.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6 Conclusion 119
6.1 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3 Recommendations For Practice . . . . . . . . . . . . . . . . . . . . . . . 123
6.4 Recommendations For Future Research . . . . . . . . . . . . . . . . . . 123

A Appendix for Chapter 2 125
A.1 Questionnaire for personal characteristics collection . . . . . . . . . . . . 125
A.2 Extra figures and tables for the regression analysis . . . . . . . . . . . . . 129
A.3 Individual calibration of the regression model . . . . . . . . . . . . . . . 134
A.4 Braking behaviour, pupil dilation and ECG versus perceived risk and trust . 136

A.4.1 Braking behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.4.2 Pupil dilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.4.3 ECG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138



x CONTENTS

B Appendix for Chapter 3 141
B.1 Related perceived risk models. . . . . . . . . . . . . . . . . . . . . . . . 141

B.1.1 Regression Perceived Risk Model (RPR) . . . . . . . . . . . . . . . 141
B.1.2 Perceived Probabilistic Driving Risk Field Model (PPDRF) . . . . . . 142
B.1.3 Driving risk field model (DRF) . . . . . . . . . . . . . . . . . . . . 144

B.2 PCAD time history output. . . . . . . . . . . . . . . . . . . . . . . . . . 145
B.3 Cross validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
B.4 Explanation of the uncertain velocity direction . . . . . . . . . . . . . . . 150

C Appendix for Chapter 4 153
C.1 Extended Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
C.2 The selection of the interpolation method . . . . . . . . . . . . . . . . . 172
C.3 DNN overfitting evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 173
C.4 Supplementary materials . . . . . . . . . . . . . . . . . . . . . . . . . . 174

C.4.1 Online questionnaire . . . . . . . . . . . . . . . . . . . . . . . . 174
C.4.2 Local feature contributions to perceived risk over time . . . . . . . 174

D Appendix for Chapter 5 175
D.1 Preliminary experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

D.1.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
D.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

D.2 Supplementary audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Acknowledgements 201

Curriculum Vitæ 205

List of Publications 207

Propositions 209



SUMMARY

Automated vehicles (AVs) represent a significant leap forward in transportation, aim-
ing to enhance road safety, increase comfort, and improve traffic efficiency. As tech-
nology progresses to SAE Level 3 and higher, drivers are increasingly able to engage in
non-driving-related activities. However, this (r)evolution raises challenges concerning
driver’s perceived risk and trust in AVs, which are crucial factors influencing the accep-
tance of AVs. This dissertation aims to enhance perceived safety and trust in AVs through
experimental studies, computational modelling and user interfaces (UIs) design.

The initial phase of this dissertation focused on how drivers’ perceived risk and trust
when using AVs evolve in close encounters with other road users. We developed regression-
based perceived risk and trust models based on a simulator study with 25 participants
involving merging and hard braking scenarios on motorways. The proposed models re-
veal that perceived risk is dynamically influenced by driving conditions and sensitive
to individual factors such as driving experience and gender with experienced and male
drivers generally perceiving lower risk. Notably, a decrease in trust after high-risk en-
counters was observed, indicating a close relationship between perceived risk and trust
in AVs. Additionally, physiological responses were observed as potential indicators of
perceived risk in critical driving scenarios.

To develop a tool for gaining insights on perceived risk, we put forward a novel com-
putational model called potential collision avoidance difficulty (PCAD) model. Drawing
inspiration from Fuller’s Risk Allostasis Theory and the looming phenomenon, PCAD
evaluates the difficulty of avoiding potential collisions by calculating minimal control
effort through braking or/and steering needed to navigate safely. By integrating visual
looming, factors in the uncertain behaviour of surrounding vehicles, control inaccura-
cies of the subject vehicle, and potential collision severity, PCAD provided an accurate
population-level fitting of perceived risk in our own dataset on highway merging and
a published dataset on obstacle avoidance. The findings highlight the need to account
for both the longitudinal and lateral dimensions of driving condition, and uncertain be-
haviours of surrounding vehicles when interpreting perceived risk.

Further exploration of perceived risk was achieved through the creation of a large-
scale dataset of perceived risk using an online survey. This new dataset provided time-
continuous perceived risk in dynamic driving conditions. A total of 105 events was cre-
ated including merging, hard braking and lane changes on motorways, while system-
atically varying multiple control parameters (such as relative speed and distance) to
achieve different levels of event criticalities. Deep neural networks (DNNs) were then
trained on this dataset to fit perceived risk, and SHapley Additive exPlanations (SHAP)
was used to identify the key contributors to perceived risk in the continuous time do-
main. Aligned with the PCAD model developed previously, the results highlighted the
importance of the relative motion information, particularly the distance to other road
users and the uncertainty of surrounding vehicle behaviour in shaping perceived risk.

xi



xii SUMMARY

This approach not only discerns the dynamics of perceived risk by systematically analysing
interactions with other road users but also provides a guide for future modelling of per-
ceived risk. The development of this extensive dataset fills the gap by providing the lack-
ing continuous perceived risk data, thereby supporting further research on perceived
risk.

The last contribution of this dissertation was on enhancing perceived safety and
trust through optimised design of UIs. A simulator experiment demonstrated that multi-
modal UIs incorporating both visual and auditory modalities enhanced perceived safety
and trust the most. Manoeuvre information delivered through the auditory modality
was particularly effective in enhancing trust and acceptance. The findings indicate the
benefits of the UIs in enhancing perceived safety and trust but also showed the limita-
tions of using UIs alone during highly critical events. This part of the work suggests that
the design of UIs for partially automated vehicles shall include automation information
via visual and auditory modalities to enhance perceived safety and trust.

This dissertation makes several contributions to the field of perceived risk research in
AVs. First, it provides foundational insights into perceived risk, demonstrating the signif-
icant influences of driving conditions, manoeuvre uncertainties and individual personal
characteristics. The computational perceived risk models demonstrate strong predictive
power in perceived risk and offer a deep understanding of how perceived risk is shaped in
dynamic driving conditions. Additionally, the rich dataset obtained in this dissertation,
which includes event-based discrete data and time-continuous data on perceived risk,
serves as a new and open resource for future perceived risk research. Lastly, the practi-
cal evaluation of the design of UI provided actionable recommendations in enhancing
trust and perceived safety, particularly through manoeuvre information delivered us-
ing auditory modality. These contributions advance the understanding, modelling, and
practical application of perceived risk in automated driving environments, supporting
the broader acceptance and integration of AVs.

The dissertation presents various opportunities for the advancement of AV technol-
ogy and its integration with human factors. Building on the comprehensive datasets,
computational models and insights gained in this dissertation, future studies should fo-
cus on further refining computational models to capture perceived risk in general sce-
narios. Expanding data collection efforts to include on-road tests, and more diverse par-
ticipants will also enhance the generalisability of the findings. Additionally, the design
of adaptive UIs that fit individual preferences remains a promising direction for future
research.



SUMMARY IN CHINESE

概述 

    自动驾驶车辆（AVs）的问世代表了交通领域的一次重要进步，其目标是改善道路安

全、增加舒适性和提升交通效率。随着技术逐步发展至 SAE 3 级及以上，驾驶员能够越来

越多地参与非驾驶相关任务，这改变了驾驶员的传统角色。然而，这种变化也引发了有关

驾驶员在自动驾驶车辆的感知风险和信任度方面的挑战，而这两个因素对自动驾驶车辆的

接受度具有重要影响。本文旨在通过实验研究、计算建模以及用户界面（UIs）设计来提

升对自动驾驶车辆的感知安全性和信任度。 

    本文在初始阶段探究了当使用自动驾驶车辆时，驾驶员在不同驾驶场景中对自动驾驶

车辆行为的感知风险和信任度的变化。基于一个25名被试者参与的高速公路并线和急刹场

景的驾驶模拟器实验，我们建立了感知风险和信任的回归模型。此模型表明感知风险会受

到驾驶环境条件的动态影响，并对驾驶经验和性别等个体因素高度敏感，其中更有经验的

驾驶员和男性驾驶员感知到的风险普遍较低。值得注意的是，驾驶员的信任水平在遭遇高

风险事件之后发生了显著的下降，表明感知风险与对自动驾驶车辆的信任之间存在密切关

系。此外，一些生理信号能够潜在地反映感知风险，但是仅限在高危险场景中。 

    本文构建了一种新的计算模型——潜在碰撞规避难度（PCAD）模型，以深入理解感知

风险。该模型从 Fuller 的风险稳态理论和视觉扩张出发，通过计算使用制动和/或转向来

安全地规避潜在碰撞所需的最小控制投入，从而评估规避潜在碰撞的难度。通过整合视觉

扩张，模型考虑了周围车辆的不确定行为、主车的控制误差以及潜在碰撞的严重程度。在

我们创建的高速公路并线和制动感知风险数据集以及公开的避障感知风险数据集中，PCAD

能够在群体水平上准确拟合感知风险。研究结果强调了在解释感知风险时，纵向和横向驾

驶条件以及周围车辆的不确定行为是非常重要的。 

    本文继而通过一个线上研究创建的大规模感知风险数据集进一步探究了感知风险。该

全新感知风险数据集提供了动态驾驶条件下的连续感知风险数据。在此线上研究中，我们

一共创建了在高速公路场景下包括并线，强制动和变道情况在内的 105 个事件，同时系统

地改变多个控制参数（如相对速度和距离），以实现不同的危险程度。随后，在该数据集

上训练了深度神经网络（DNNs）来拟合感知风险，并采用SHapley Additive exPlanations

（SHAP）来识别在连续时间域内感知风险的关键影响因素。与之前开发的 PCAD模型一致，

分析结果强调了相对运动信息，尤其是自车与其他道路使用者的距离以及周围车辆行为的

不确定性对于感知风险拟合的重要性。这一方法不仅通过系统分析与其他道路使用者的互

动来揭示感知风险的动态变化，还为未来感知风险的建模提供了指导。本文构建的这一大

型数据集填补了时间连续感知风险数据的空白，支持了对感知风险的进一步研究。 
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本文的最后一个重要贡献是通过优化用户界面的设计来提升驾驶员的感知安全和信任

度。另一个驾驶模拟器实验表明，结合视觉和听觉的多模态用户界面在增强感知安全和信

任度方面效果最佳。通过听觉模态传递的自车短期操控信息在提升信任度和接受度方面尤

为有效。研究结果显示，用户界面在提升驾驶员感知安全性和信任度方面具有显著优势，

但是在高风险事件中，仅依赖用户界面也存在一定的局限性。本文这一部分表明，有条件

自动驾驶车辆的用户界面设计应包含通过视觉和听觉模态传递的自动化信息，以增强驾驶

员的感知安全和信任度。 

本文对自动驾驶车辆中感知风险的研究领域作出了多项贡献。首先，本文提供了感知

风险的基础性见解，证明了驾驶条件、操控不确定性和个体因素对感知风险的显著影响。

感知风险的计算模型展现了强大的拟合能力，并深入揭示了感知风险在动态驾驶条件下的

形成机制。此外，本文获得的大量感知风险数据，包括基于事件的离散数据和基于动态驾

驶环境的时间连续数据，为未来的感知风险研究提供了数据支持。最后，用户界面设计的

研究为如何提升驾驶员的感知安全和信任度提供了可行的建议，特别是在通过听觉模态传

递自车短期操控信息方面。这些贡献推动了对自动驾驶环境中感知风险的理解、建模和实

际应用，进而支持了自动驾驶车辆被更广泛地接受。 

    本文为自动驾驶技术的发展及其与人因工程的融合提供了多种可能性。基于本文中获

得的感知风险数据集、计算模型和分析结果，未来的研究应着重进一步优化计算模型，以

在更广泛的场景中预测感知风险。此外，扩展数据收集工作，包括增加实际道路测试和涉

及更加多样化的参与者，将有助于提升研究结果的普适性。最后，设计适应个体偏好的自

适应用户界面也是未来研究中的一个重要方向。 

 

 



1
INTRODUCTION

1.1. BACKGROUND

T HE advent of automated vehicles (AVs) marks a significant shift in transportation,
where the principles of road safety, efficiency, and passenger comfort are being re-

defined [1], [2]. For the general public, the concept of AVs brings up images of cars that
possess the ability to drive themselves, not only promising to deliver passengers safely
to their destination, but also affording them the opportunity to engage in other activities
during the journey. This optimistic vision is frequently reinforced by the media cele-
brating the successes of AV technology [3]–[5]. However, this enthusiasm is tempered by
safety concerns arising from reports of accidents involving automated vehicles, creating
a division in public perception [6]–[8]. Such incidents not only highlight the techno-
logical obstacles that AVs face, but also emphasise the critical human factors involved
– particularly the reactions of drivers and passengers to AV’s presence on the road [9],
[10]. This subjective assessment, known as perceived risk, affects individual choices and
reflects a major challenge in the advancement of AVs [11]–[14]. While ISO 26262 de-
fines risk as a combination of the likelihood and severity of harm [15], perceived risk is a
subjective measure influenced by individual encounters, system performance, and the
surrounding environmental context, capturing how users personally perceive risk in au-
tomated vehicle scenarios, beyond just the objective metrics of severity and likelihood.
This subjective feeling of risk is critical to shaping the willingness of users to engage with
AVs, consequently influencing whether AVs can fulfil their promise of significantly re-
ducing traffic accidents and congestion [9], [12], [13], [16]–[20].

In discussions around perceived risk of AVs, trust emerges as a critical concept to
public acceptance of automated vehicles as evidenced by many studies [9], [13], [21]–
[24]. Among various definitions [25]–[29], the most widely referenced in AV trust research
frames trust as ‘the willingness of a party to be vulnerable to the actions of another party
based on the expectation that the other party will perform a particular action important
to the trustor, regardless of the ability to monitor or control that other party’ [30]. This
perspective emphasises that trust is largely constructed from perceptions, thoughts, and
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emotions [28]. Understanding the complexities of trust is essential for the development
and broader acceptance of automated vehicles, which can guide strategies to enhance
user confidence and facilitate a smoother integration of AV technology into society.

Studies typically explore perceived risk and trust through various dimensions, in-
cluding their assessment, modelling, and strategies to reduce perceived risk and improve
trust. In the ensuring, we first review the three aspects to position the thesis in the state
of the art.

1.1.1. ASSESSING PERCEIVED RISK AND TRUST IN AVS
Numerous studies aimed to evaluate perceived risk and trust in AVs primarily using
questionnaires to assess the general public opinion, leading to research that focuses on
how general personal characteristics such as age, gender, and driving experience influ-
ence perceived risk and trust [16], [20], [21], [31]–[33]. However, this approach does not
capture the variability of perceived risk and trust in dynamic driving scenarios. Some
studies surveyed participants regarding perceived risk and trust after actual rides in spe-
cific driving scenarios [9], [14], [34], [35]. While they can indicate the changes after ex-
periencing the AV, their analyses of perceived risk generally do not connect changes in
perceived risk directly to dynamic driving situations.

To address these limitations, there have been attempts to capture real-time responses
during driving or by referencing specific video frames [36]–[38]. However, these efforts
tend to focus on isolated incidents rather than providing a continuous and dynamic un-
derstanding of perceived risk.

1.1.2. MODELLING PERCEIVED RISK
Modelling perceived risk in AVs involves exploring models that illustrate the connection
between human feelings and AVs, in particular regarding their interaction with other
road users. Modelling efforts have greatly improved our understanding of how people
evaluate and respond to the risks linked to AVs. The application of Surrogate Measures
of Safety (SMoS), such as Minimum Time to Collision (TTC), illustrates the complex in-
terplay between operational and perceived risk [39], [40]. These measures can, to some
extent, reflect perceived risk during driving, although the relationship between SMoS
and perceived risk is not yet well established.

Advancements in data-driven approaches have further enriched computational per-
ceived risk modelling. The driving risk field (DRF) model [41] is an example of data-
driven models based on the foundational concept of the “field of safe travel” [42]. This
model has made progress in capturing perceived risk continuously across spatial and
temporal dimensions. Similarly, the study by Tzouras et al. [43] takes a focused approach
by developing a regression model of perceived risk for tram drivers. This model includes
factors such as the presence and type of pedestrian crossings, the existence of tram stops,
and the density of vulnerable road users in the environment. Extending beyond these
specific models, there has been a significant increase in the use of data-driven methods
in this field, including probabilistic methods, regression analyses, and advanced ma-
chine learning strategies, particularly using computer vision. These methods are applied
to predict perceived risk in specific driving contexts [37], [38], [44], [45].

Although data-driven models provide quantification of perceived risk in certain sce-
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narios, their validity across diverse situations is uncertain and often lacks complete ex-
plainability. In contrast, physics-based models, which rely on the fundamental laws of
physics, are more explainable in computing perceived risk, as they derive from physical
principles. Such models are based on physical variables that make the model predic-
tions transferable and interpretable. Additionally, such models can obtain new insights
of perceived risk because of their transferability. Despite these strengths, physics-based
models for perceived risk specifically remain largely unexplored. This gap highlights the
need for developing physics-based computational perceived risk models to better un-
derstand perceived risk in automated driving.

1.1.3. REDUCING PERCEIVED RISK AND ENHANCING TRUST
Reducing perceived risk and enhancing trust in AVs have emerged as new focuses of re-
search. Design strategies for AV motion planning and control have been developed to
align AVs operations closely with human expectations and comfort levels. For instance,
Tusseyeva et al. [46] investigated how different motion planning algorithms affect per-
ceived safety in human-robot interaction, offering insights into how AV behaviours can
be optimised for human safety perceptions. Kolekar et al. [41] demonstrated that a driver
model based on perceived risk shows human-like behaviours when driving. Similarly,
Sheng et al. [47] introduced a novel approach to route planning in AVs for long trips by
integrating human trust as a critical factor.

Parallel to AV behavioural adjustments, human machine interface (HMI) design is
crucial to improve perceived safety, trust, and acceptance of AVs. Basantis et al. [48] com-
pared four different interfaces in the rear seat of AVs and found that interfaces featur-
ing auditory notifications of manoeuvres significantly enhanced perceived safety com-
pared to those providing only visual information about vehicle paths. Despite these find-
ings, there remains a gap in research concerning the systematic evaluation of combined
modalities and information types. Additionally, augmented reality displays and auditory
notifications about vehicle manoeuvres have been used to comfort users about the AV’s
capabilities and intentions [49], [50]. Although these studies stress the importance of
HMI in improving perceived safety and trust, they simply examined the impact of these
information types in isolation or did not systematically evaluate the combined effects of
different modalities (visual and auditory) on perceived safety and trust.

1.2. RESEARCH GAPS
The aforementioned literature overview identified several research gaps that underline
the challenges in fully understanding and addressing perceived risk in AVs:

(1) Specificity and dynamics in perceived risk and trust evaluation: Existing re-
search often relies on generalised opinions through static methodologies, such as sur-
veys, to evaluate perceived risk and trust, which does not adequately link these assess-
ments to specific AV behaviours. Particularly in the case of perceived risk, this method
fails to consider the dynamic aspect of how perceived risk changes in reaction to real-
time AV behaviours. There is a crucial need for methodologies that not only connect
perceived risk directly with specific AV actions but also capture the dynamic factors in-
fluencing perceived risk in real-time, providing a more accurate understanding of user
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perceptions.
(2) Comprehensive Models for Perceived Risk: The field lacks precise and explain-

able models that are applicable across diverse AV scenarios. Exploring the potential
of merging the predictive power of data-driven approaches with the clarity of physics-
based models remains an open question and an important area for further research.
Such a model would serve as a vital tool for both predicting perceived risk and enhancing
the transparency necessary for wider acceptance and understanding of AV technologies.

(3) HMI designs for enhancing perceived safety and trust: Research on HMI de-
sign typically examines the impact of individual modalities independently. There exists
a significant gap in exploring how different modalities can be systematically combined
to improve perceived safety and trust. Systematic studies are required to assess the inte-
grated effects of visual and auditory information delivered through HMIs.

1.3. OBJECTIVES
To address the research gaps, this dissertation is dedicated to investigating perceived risk
in relation to the behaviours of AVs. The main objective of this dissertation is to develop
quantitative methods to measure and understand perceived risk in automated vehicles,
with an emphasis on the influence of AV behaviours and dynamic driving conditions.

To achieve this main objective, the following sub-objectives have been identified:

• Objective 1: To collect data and gain insights on perceived risk and trust based
on specific AV behaviours (Chapter 2, Chapter 4)
Quantitative data and comprehensive insights on perceived risk and trust, as well
as the continuous dynamics of perceived risk over time, in various driving sce-
narios. This objective establishes the foundational data necessary for subsequent
analytical and modelling efforts, focusing on how perceived risk and trust are in-
fluenced by specific AV behaviours.

• Objective 2: To develop computational models for interpreting perceived risk
and trust (Chapter 2, 3, and 4)
Development and refinement of computational models of perceived risk and trust.
To achieve this, regression models, physics-based models, and neural networks for
perceived risk and trust will be developed. This objective focuses on enhancing the
accuracy and explainability of perceived risk and trust predictions across diverse
AV scenarios.

• Objective 3: To assess the impact of HMI modalities and information types on
perceived risk and trust (Chapter 5)
Systematic assessment of different HMI modalities and the information types they
convey, evaluating their effects on perceived safety and trust in AVs. This research
aims to identify optimal combinations of HMI modalities that enhance user com-
fort and confidence.

While the primary focus is on perceived risk, the examination of trust is also included
as it naturally intersects with perceived risk during initial evaluations and in studies in-
volving HMI. This inclusion acknowledges the interconnection of trust and perceived
risk, essential for understanding user acceptance and perceived risk of AVs.
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1.4. CONTRIBUTIONS
The research described in this dissertation contributes to multiple aspects in the field of
perceived risk and trust in AVs, which are categorised into scientific and practical con-
tributions.

1.4.1. SCIENTIFIC CONTRIBUTIONS
The scientific contributions of the thesis include:

• Large-scale datasets of perceived risk and trust: We created two significant datasets:
one dataset containing 500 perceived risk ratings and 500 trust ratings from 25
participants in merging and hard braking on motorway during automated driv-
ing through a simulator study; One comprehensive dataset with over 140,000 per-
ceived risk ratings from more than 2,100 participants, recording various driving
scenarios on motorways. These datasets form the foundation for the analysis in
this dissertation and are essential for future empirical studies on perceived risk
and trust in AVs.

• New insights on perceived risk and trust in relation to AV behaviours: We quan-
tified the influence of factors such as neighbouring road users’ behaviours (rel-
ative motion), driving experience, and gender on perceived risk and trust. Such
quantitative analysis reveals the dynamic nature of perceived risk in AVs, high-
lighting varying contributions of different factors to perceived risk over time and
emphasising the importance of manoeuvre uncertainties. These insights provide
a deeper understanding of perceived risk and trust, which are crucial for future
computational modelling efforts.

• Three computational models of perceived risk and trust: We developed two
computational models for perceived risk and trust. The first one is a one-dimensional
regression model to predict perceived risk and trust in merging and hard brak-
ing events. The second one is a novel two-dimensional computational perceived
risk model based on potential collision avoidance difficulty (PCAD), which outper-
forms three well-established models across two different datasets (Dataset Merg-
ing and Dataset Obstacle Avoidance). We further designed and trained a deep
neural network-based model capable of predicting perceived risk in various mo-
torway driving scenarios, advancing theoretical understanding of perceived risk
modelling.

• Impact of UI modalities and information type on perceived safety, trust and ac-
ceptance: We systematically assessed the effects of different UI modalities and the
types of information they convey on perceived safety, trust and acceptance of AVs.
We identified optimal combinations of UI modalities that enhance user comfort
and confidence, providing guidelines for future UI and interaction design in AVs.

1.4.2. PRACTICAL CONTRIBUTIONS
• Application of regression models in AV design: The insight from the regression

models provides practical guidance for automotive designers and engineers, help-
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ing to design AV system behaviour that aligns with user expectations and enhances
safety and trust.

• Application of PCAD model in AV design: The PCAD model offers a practical tool
for controller, path planner or decision-making module design to align with user
expectations and enhance perceived safety.

• User interface design for enhanced perceived safety, trust and acceptance: The
study on different UI modalities and information types has practical implications
for designing user interfaces in AVs. The findings help optimise UI designs to en-
hance drivers’ perceived safety, trust and acceptance of partially automated vehi-
cles, informing industry best practices.

1.5. THESIS STRUCTURE
This thesis journeys through the evolving understanding and modelling of perceived risk
and trust in automated vehicles (AVs), crucial for their acceptance and successful inte-
gration as shown in Figure 1.1.

The exploration begins with an assessment of how occupants’ perceived risk and
trust change in response to the behaviour of AVs in Chapter 2. A simulator study with
25 participants was conducted to experience simulation scenarios of merging and hard
braking on motorways, observing changes in perceived risk and trust through both ver-
bal assessments and physiological measures. Chapter 2 develops a one-dimensional
perceived risk model, conceptualised as a regression model, which reveals that perceived
risk dynamically varies with the criticality of driving situations in the longitudinal direc-
tion. The study also identifies that personal characteristics, such as driving experience
and gender, influence perceived risk and trust. Notably, a decrease in trust after high-
risk encounters was observed, indicating a close relationship between perceived risk and
trust in AVs. Furthermore, Chapter 2 highlights physiological responses as potential ef-
fective indicators of perceived risk in critical driving scenarios.

Chapter 3 presents a novel computational model for assessing perceived risk in AVs,
named the Potential Collision Avoidance Difficulty (PCAD) model. Drawing inspiration
from Fuller’s Risk Allostasis Theory and the looming phenomenon, PCAD quantifies the
minimal control effort needed through braking or/and steering needed to avoid poten-
tial collisions, factoring in the visual looming, the unpredictable behaviour of surround-
ing vehicles, control inaccuracies of the subject vehicle, and potential collision sever-
ity. The process of developing the model is clearly explained, including its theoretical
foundations and the rigorous validation method used. PCAD’s validation uses two dis-
tinct datasets: Dataset Merging (collected in Chapter 2) and Dataset Obstacle Avoidance
sourced from existing literature. The comparative analysis reveals PCAD’s performance
over three state-of-the-art models, indicating its enhanced precision in predicting hu-
man drivers’ perceived risk in merging and obstacle avoidance scenarios.
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Figure 1.1: Structure of the thesis

A novel computational model of perceived risk was built in Chapter 3. However, the
lack of comprehensive data for validation across various driving scenarios and in a con-
tinuous time domain leads to the motivation behind Chapter 4, which aims to construct
an extensive perceived risk dataset that is continuous in the time domain and illustrates
the dynamic nature of perceived risk in diverse automated driving conditions using ex-
plainable AI technologies. Through an extensive online survey, over 180,000 perceived
risk ratings were collected from 2,164 participants across four common motorway sce-
narios. This effort involved adjusting behaviours of neighbouring and subject vehicles,
with each scenario documented via video recordings and kinematic data to track per-
ceived risk over time. This chapter expanded upon this dataset by calibrating two mod-
els, the PCAD from Chapter 3 and the DRF from existing literature, and training deep
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neural networks for accurate perceived risk prediction, employing SHapley Additive ex-
Planations (SHAP) for input analysis. The findings reveal the dynamic aspects of per-
ceived risk, particularly the impact of vehicle proximity and manoeuvre uncertainties,
setting a foundation for future risk modelling and enhancing automated vehicle integra-
tion by understanding human perceived risk dynamics.

Building on previous work on perceived risk and trust in automated vehicles, Chap-
ter 5 explores the use of user interfaces (UIs) to enhance perceived safety and trust in par-
tially automated vehicles (PAVs). This chapter details a simulator study building upon
Chapter 2 that tests various UI complexities to determine their effect on drivers’ trust
and perceived risk. By varying the type of automation information (surrounding ver-
sus manoeuvre) and the modality of that information (visual versus visual-auditory), the
study aims to identify UI configurations that enhance perceived safety and trust among
drivers. The results highlight the importance of multimodal information delivery in in-
creasing trust and acceptance of PAVs, particularly through UIs that combine visual and
auditory feedback with comprehensive automation details. While pointing out the effec-
tiveness of such UIs in improving driver-automation interaction, the chapter also notes
the challenges in completely reassuring drivers in critical scenarios, emphasising the
need for continuous UI optimisation.



2
MODELLING PERCEIVED RISK AND

TRUST IN DRIVING AUTOMATION

REACTING TO MERGING AND

BRAKING VEHICLES

This chapter investigates predictors of perceived risk and trust in driving automation, us-
ing a driving simulator experiment with 25 participants. These participants monitored
SAE Level 2 driving automation (ACC+LC) and experienced various merging and hard
braking events on a motorway. Their perceived risk and trust were measured verbally and
through physiological indicators like pupil diameter and ECG signals. The findings re-
veal that relative motion with other road users is a primary factor influencing perceived
risk and trust. Interestingly, the type of event (hard braking with or without merging)
did not significantly alter perceptions. Repeated exposure to events increased trust in au-
tomation. Additionally, experienced drivers showed less sensitivity to risk, and females
perceived more risk than males. There is a strong correlation between perceived risk and
trust, with both sharing similar influencing factors. The study also finds that continuous
perceived risk aligns with verbal risk assessments post-event, and braking behaviour is a
key indicator of high perceived risk and low trust. Pupil diameter was particularly corre-
lated with perceived risk in the most critical events, whereas heart rate increased during
events but did not correlate with their criticality. These insights into the dynamics of per-
ceived risk and trust can inform the design of human-centred automated driving systems,
aiming to reduce perceived risk and enhance trust.

The content of this chapter has been published in
He, X., Stapel, J., Wang, M., & Happee, R. (2022).“Modelling perceived risk and trust in driving automation
reacting to merging and braking vehicle,” Transportation Research Part F: Traffic Psychology and Behaviour, 86,
178–195.
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2.1. INTRODUCTION

A UTOMATED vehicles (AV) have the potential to improve safety and comfort and re-
duce congestion [1]. Current production vehicles support SAE Level 1 or Level 2

driving automation systems with Adaptive Cruise Control (ACC) and Lane Centring (LC).
Such systems still require continuous supervision by drivers to guarantee safety. Higher
automation levels (SAE Level 3+) gradually allow drivers to shift attention away from dy-
namic driving tasks but requires them to be fallback-ready in case of automation failure
[51]. Driving automation changes the driver’s perceived risk and trust, influencing ac-
ceptance of driving automation [11], [20]. If the public does not widely accept driving
automation, road safety and traffic benefits will not accrue [16], [52]. Therefore, under-
standing perceived risk and trust in driving automation is of great importance. Below,
we review existing perceived risk and trust studies to synthesise definitions, influencing
factors, and measurement methods for the current paper.

2.1.1. THEORIES OF PERCEIVED RISK AND TRUST
Perceived risk, or perceived safety, captures the level of risk experienced by users of driv-
ing automation. It can differ from operational (or actual) risk [36], [53], which is defined
as the combination of accident probability and severity [15]. A low perceived risk leads
to feeling relaxed, safe, and comfortable [9], [31], while a high risk perception results in
cautious behaviour [53]. Perceived risk is highly individualised and is influenced by per-
sonal experience, personality, and attitudes [33], [38]. The driving environment, such as
urban or rural roads, influences both operational and perceived risk [54].

Trust has been studied in psychology, sociology, and human factors. A survey by Ka-
plan et al. [55] listed 18 commonly-cited but distinct definitions of trust. Although defi-
nitions vary, there are three essential factors in trust: risk of losing or not gaining; uncer-
tain outcomes and interdependence between trustor and trustee. The most cited trust
definition is ‘the willingness of a party to be vulnerable to the actions of another party
based on the expectation that the other party will perform a particular action important
to the trustor, irrespective of the ability to monitor or control that other party’ [30], which
is also applicable to driving automation. Subjective thinking, feeling, and emotions ac-
count for most trusting behaviour [28]. The process of trust calibration is dynamic with a
high degree of volatility [28]. Kraus et al. [56] proposed a dynamic trust calibration model
based on the theory of Lee and See [28], and Hoff and Bashir [29], where initial learned
trust is formed before the actual interaction with a system and is related to personality,
provided information and driving experience. Dynamic learned trust evolves through
interacting with the system and is influenced by experienced performance in similar sit-
uations and can be moderated by expectations and presentation (e.g. interface design).
Trust factors can be divided into three broad categories: human-related, system-related
and environment-related factors [29], [57]–[59]. Surveys and interviews demonstrated
that trust is affected by personal characteristics (e.g., culture, age, and gender), exter-
nal situations (e.g., task difficulty, traffic), internal situations (e.g., perceived risk, mood),
driver’s experience and system’s performance. Kraus et al. [60] developed a personality
model for trust in automation, indicating that a priori acceptability of automated driving
is positively related to trust. Increased trust with experience is reported by Gold et al. [61]
for driving automation and Kaplan et al. [59] for artificial intelligence system operators.
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Exploring the influencers of perceived risk and trust in driving automation is chal-
lenging since most people do not have experience in driving automation, making it dif-
ficult to reveal user preferences based on empirics. Recent field experiments showed that
real driving automation experience led to improvements in trust Xu et al. [9] and Walker
et al. [62]. However, further work is needed to study the influence of driving scenarios
and personal characteristics on perceived risk and trust.

Several studies reported highly negative correlations between perceived risk and trust
in driving automation. Some studies regard perceived risk as the antecedent of trust [11],
[35]: where perceived risk is firstly influenced by traffic condition, age, gender, etc., upon
which trust is then built. In another school of thought, perceived risk is treated as the de-
scendant of trust [9], [20], [21] where trust is firstly formed and then influences perceived
risk. The relation between perceived risk and trust is also considered a mutual interac-
tion [63], [64]. Existing studies include conceptual models, surveys and post-experiment
questionnaires. However, the relation between perceived risk and trust still needs further
investigation using actual driving automation.

MEASUREMENTS OF PERCEIVED RISK AND TRUST

Questionnaires are widely used to measure perceived risk, trust and other psychologi-
cal constructs [9], [58], [65], [66]. Post-test questionnaires mainly reflect recent experi-
ence, and responses may be biased towards social norms. Besides, questionnaires in-
crease participants’ mental workload and are not suitable for real-time measurement.
To overcome these drawbacks, continuous measurement devices are considered. Re-
searchers have used handset controls [67], [68], sliders [69], rotary bars [70] and angle
sensors within the steering wheel [36] for the continuous rating of perceived risk, trust
and other subjective items.

Behaviour indicators (e.g., braking) have the potential to reflect automation reliance
and compliance. Tenhundfeld et al. [34] used intervention by braking as an indicator of
distrust in automated parking in a Tesla Model X. Naturalistic braking profiles have also
been used to cluster near-miss events to different risk levels [71]. Physiological indica-
tors (heart activity, skin response, etc.) are widely studied for non-intrusive continuous
state assessment. Taylor [72] measured skin conductance (galvanic skin response; GSR)
as an index of perceived risk in various traffic situations. GSR rates were 50 times higher
during driving than during quiet sitting but were not correlated with actual traffic con-
ditions (e.g. day-time off-peak, night off-peak). Morris et al. [73] compared driver’s trust
to GSR in different automation driving modes, finding lower skin conductance in safe
driving modes. Ajenaghughrure et al. [74] identify brain activity (EEG) and gaze as the
most robust indicators of trust in driving automation.

Pupil diameter is a practical tool to investigate perceived risk and trust in AV. For per-
ceived risk, Tang et al. [75] showed that the change rate of pupil diameter is significantly
higher in severe crashes than in minor crashes. For trust, Perello-March et al. [76] pro-
posed to use increased and decreased pupil size as potential indicators to classify users’
distrust and appropriate trust in driving automation. Therefore, we expect pupil diame-
ter to reflect perceived risk and trust in driving automation.
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MODELLING PERCEIVED RISK AND TRUST

Following the principle of human-centred design, modelling perceived risk in AV has
gained attention. Varotto et al. [77] investigated perceived risk in full range ACC. They
proposed a decision model where the driver would choose to deactivate ACC if the per-
ceived risk becomes unacceptable based on the risk allostasis theory [78]. Kolekar et al.
[36] presented the driving risk field capturing perceived risk continuously in the spa-
tial and time domain based on driver’s verbal ratings and steer response to obstacles
in manual simulator driving. Surrogate Measures of Safety (SMoS) evaluate operational
risk in terms of event criticality and can provide a basis to estimate perceived risk. Mini-
mum time to collision (TTC) can show the driver’s acceptance threshold of perceived risk
when they take actions (e.g. braking) [39]. The inverse of TTC represents the relative vi-
sual expansion of the obstacle, which is referred to as looming [79]. Hence, SMoS reflect
event criticality and the related perceived risk, but this relationship needs experimental
support.

Trust in AV has been captured with conceptual models with various structures [21],
[28], [30]. Marsh and Dibben [80] identified three layers of trust in information science:
dispositional, situational and learned trust. Hoff and Bashir [29] extended this to trust
in AV and considered different personal characteristics (e.g. culture, personality traits
and mood) in the three layers. Empirical models have also been developed. Kraus et al.
[56] investigated the dynamic process of trust calibration in partial driving automation
and high driving automation, demonstrating that trust increased along with knowledge
accumulation. [34] reported that drivers trust automation more and intervene less fre-
quently when using driving automation more. Hu and Wang [81] proposed a prescribed-
performance control barrier function with a dynamic model of trust in ACC, where the
human will hand over the control to ACC if the system’s performance reaches a certain
threshold.

OBJECTIVES

Based on the discussions above, we identified the following research gaps. Firstly, a
quantitative model between event criticality and perceived risk and trust is still lack-
ing. Secondly, personal characteristics (e.g. age, driving experience) influence perceived
risk and trust, but their impact has not been fully quantified in dynamic driving. Thirdly,
the relations between perceived risk and trust are primarily derived from surveys and
post-experiment questionnaires but hardly investigated in dynamic driving. Lastly, trust
in automation has been studied mainly through surveys regarding higher automation
levels (Level 3 and higher), whereas perceived risk has been mainly studied for manual
driving. Hence it is unclear whether perceived risk and trust operate differently in Level
2 driving automation.

This chapter contributes to two main objectives: Objective 1: to model perceived
risk and trust in SAE Level 2 automation. Objective 2: to quantify the impact of personal
characteristics by verifying their contributions in the perceived risk and trust models.

We conduct a simulator study with partial automation (SAE Level 2) motorway driv-
ing with drivers continuously monitoring the automation. This allows continuous mea-
surement of perceived risk during dynamic interactions with other road users. We fo-
cus on aggressive merging (cut in) and hard braking as safety-critical events [82]. Ques-
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tionnaires, continuous measures of perceived risk (e.g. sensors for hands), physiolog-
ical measures (e.g. GSR, ECG), behaviour indicators (e.g. braking behaviour) and eye
behaviour (e.g. pupil diameter) are jointly evaluated to assess their ability to quantify
perceived risk and trust in automation. We develop perceived risk and trust models that
include the factors mentioned above to explain and predict perceived risk and trust.

2.2. METHODS

2.2.1. PARTICIPANTS
Twenty-five participants with at least 3 years of driving experience were recruited. A
recruitment advertisement was distributed via email to university employees and stu-
dents, and advertised on the neighbourhood app NEXTDOOR to citizens living in Delft.
25 participants (6 females and 19 males) joined the experiment. The age ranged from 24
to 76 years, with a mean of 40.6 years (SD = 16.3). Years with a driving license varied from
3 to 55 years (Mean = 19.2, SD = 15.0). 16 of the 25 participants reported no experience
in adaptive cruise control (ACC) or lane centring systems (LC).

2.2.2. APPARATUS

DRIVING SIMULATOR

The experiment was conducted at Delft University of Technology on a driving simulator
named DAVSi with Yaris cockpit (Figure 2.1). In this experiment, the motion platform
was not actuated. The environment was shown on the cylindrical 180-degree screen
using three high-quality projectors [83]. CarMaker 8.0.1 was used to create the motor-
way traffic environment. A model of an Auris 4 was used to simulate the subject vehi-
cle dynamics. Subject vehicle dynamics and traffic were controlled using Simulink on
a real-time simulation system (dSPACE SCALEXIO). Motion data of the subject vehicle
and other vehicles were logged at 10 Hz.

Automated lateral control of the subject vehicle was performed by the IPG driver
model provided by CarMaker. A non-linear full-range ACC algorithm was used with the
following key parameters: td = 1.2s (desired time gap to the vehicle in front); s0 = 6m
(minimum space gap at a standstill); v0 = 27.78m/s (100km/h, desired velocity when
there is no vehicle detected in front) [84].

An indicator on the dashboard was used as a basic HMI displaying the automation’s
working status with two colours. Green indicated that the system was activated and
worked well. Yellow indicated that the driver had to take over control, but this never
happened during this experiment.

QUESTIONNAIRES

A pre-questionnaire collected personal characteristics such as gender, age, years licensed,
and prior automation experience (see Appendix A.1). Initial learned trust and dynamic
learned trust were assessed before and after the simulator drive using the questionnaire
in Table 2.1, including related questions on the willingness to hand over control, the need
to monitor automation and the willingness to do other activities.
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Table 2.1: Trust related questionnaire used before and after the simulator drive (scaled between 1-10)

Item
Results before the
drive (Mean+Std)

Results after the
drive (Mean+Std)

t p

To what extent do you
trust the described driv-
ing automation system?
(adapted from Meyer-
Waarden and Cloarec
[85])

6.84 (1.57) 7.92 (1.50) -2.49 0.016

To what extent are you
willing to hand over con-
trol to the described au-
tomation system?
(Self-developed)

6.60 (1.98) 6.56 (2.48) 0.06 0.950

To what extent do you
think it is necessary to
monitor the described
automation system?
(adapted from Nordhoff
et al. [11])

2.96 (2.62) 4.56 (2.41) -2.24 0.029

To what extent are you
willing to do other activ-
ities (e.g., eating, drink-
ing, checking the phone)
while using the described
automation system?
(adapted from Xu et al. [9]
and Gold et al. [61])

4.40 (2.67) 4.60 (2.57) -0.27 0.789
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Figure 2.1: Experimental setup. Left side: Driving simulator (DAVSi) at Delft University of Technology. Middle:
Participant with all measurement devices. Right side: (A) Pressure sensor for reporting continuous perceived
risk. (B) LED bar- visual feedback of reported continuous perceived risk. (C) ECG device TMSi to measure
cardiovascular activity. (D) Eye tracker Tobii pro 2 to measure pupil dilation

PHYSIOLOGICAL MEASURES

Three physiological signals were measured to assess their predictive value in monitoring
trust and perceived risk: Cardiovascular activity (ECG), galvanic skin response (GSR) and
pupil dilation.

ECG was measured on Lead II (between the left inner ankle and right inner wrist,
with the ground on the right inner ankle) and recorded using a TMSi amplifier at 1024
Hz (Figure 2.1C). Heartbeats were identified using BioSigKit [86]. The MTEO_QRST al-
gorithm was found to produce the most reliable detection [87]. Peak detections were
inspected manually for mislabelling and ectopic beats. The resulting detections were
then converted to the rate and variability metrics Heart rate (Beats per minute, BPM),
Inter-beat interval (IBI), Root mean square of successive inter-beat interval differences
(RMSSD), and power in the High-frequency band (HF; 0.15 – 0.40 Hz) using the heart rate
analysis toolkit heartpy 1.2.6. For calculating HF, IBI was re-sampled using 3rd order uni-
variate spline interpolation. Metrics were calculated for “ultra-short-term” windows of
30 s, in which RMSSD and HF variability metrics are acceptable surrogates for 5-minute
recordings, according to Baek et al. [88]. Samples were deemed too short to inspect the
Low-frequency band (LF; 0.04 – 0.15 Hz). An increase in RMSSD and HF may indicate in-
creased activity of the parasympathetic nervous system (and hence a state of ease), while
a reduction could indicate increased anxiety, but HF is also influenced by breathing [89].

GSR was measured on the right palm with a Groove GSR sensor at 60 Hz and de-
convolved into phasic and tonic components using Ledalab-349 (Benedek and Kaern-
bach, 2010).

Pupil dilation (diameter) was measured at 50 Hz using a Tobii head-mounted eye
tracker (Figure 2.1D) measuring the left eye and post-processed with a 4 Hz low-pass
filter [90].

VERBAL RATINGS OF PERCEIVED RISK AND TRUST AND CONTINUOUS RATINGS OF PERCEIVED

RISK

The experimenter asked two questions during the simulator drive after each event (see
the detailed experiment design below). The two questions were “How dangerous do you
think was the previous event?” and “To what extent do you trust the driving automation
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according to the previous performance of the system?” Meanwhile, participants continu-
ously rated their perceived risk with a pressure sensor fixed on the steering wheel (Figure
2.1A), obtaining visual feedback through a LED bar (Figure 2.1A). The participants were
tasked to press the sensor harder whenever they felt unsafe, where no force (zero active
LED) indicated no risk and the maximum (ten active LEDs) meant very high risk. The
sensor’s scope and sensitivity were calibrated based on the data from Astin [91] to have
a better experience on the ratings and visual feedback of the LED bar. The continuous
rating was recorded at 60 Hz.

2.2.3. EXPERIMENTAL DESIGN AND SCENARIOS
Level 2 automation is mainly developed for motorway driving [92]. Car following (brak-
ing) and lane change (merging) account for most driving scenarios on motorways [93]
and are used as safety-critical events in a simulator study [94]. Therefore, merging by an
adjacent vehicle and hard braking by a lead vehicle were selected for our research. The
driving automation maintained longitudinal velocity or kept the predesigned distance
to the lead vehicle. The reference velocity of the subject vehicle and the traffic vehicles
was set to 100 km/h [95].

The participants monitored the automation driving at the right lane (see Figure 2.2
and Figure 2.3). A merging vehicle entered the motorway from an on-ramp, passed the
subject vehicle, and merged between the subject and lead vehicles. Detection of this
merging manoeuvre was implemented as the moment when the centre of the merging
vehicle crossed the line. This somewhat late detection was seen as representative of cur-
rent systems. After this detection, the subject vehicle automation followed the merging
vehicle instead of the original lead vehicle. At this exact moment, the original leading
vehicle braked strongly to 60 km/h, followed by acceleration to 100 km/h. The merging
vehicle braked and accelerated accordingly keeping a safe distance. The initial merg-
ing distance and braking intensity were both varied threefold, creating 9 merging with
hard braking (MB) events with different criticalities (see Table 2.2). In addition, a hard
braking (HB) event without merging was designed to investigate whether perceived risk
and trust differ between hard braking after merging and normal hard braking (Table 2.2).
All 10 events in Table 2.2 were repeated twice, resulting in 20 events. Hereafter, the event
names with ‘a’ or ‘b’ mean the first and second exposure to the event. All events occurred
in a single drive through a series of ramps (20 out of 23 ramps) along the road, as shown
in Figure 2.3. The order of events was randomized with intervals around 1-min between
merging locations.

Participants could overrule automation using brake or gas pedals whenever they felt
that this was necessary. However, manual steering was not allowed during the simulator
drive. No accidents or automation failures were designed.

2.2.4. PROCEDURE
The participants were asked to read an information letter about the experiment and sign
an informed consent form. The experimenter introduced the driving automation system
and the procedure. Then the participants were asked to fill the trust questionnaire (Table
2.1). Electrodes were attached to measure GSR and ECG and the eye tracker was installed
and calibrated. Participants were seated in the simulator, and sensors were connected to
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Figure 2.2: Video stills of merging with hard braking events. The first row shows the sequence of merging
manoeuvre in the most critical MB3 (initial gap 5 m, braking intensity −8 m/s2), and the second row shows the
sequence of the least critical MB7 (initial gap 25 m, braking intensity −2 m/s2)

Table 2.2: Events with different criticalities

Scenario Merging gap
(initial gap)

(m)

Braking
intensity

(m/s2)

Event
name

Minimum THW (s)
averaged for the two

exposures
(measured value)

Merging with hard
braking

5
-2 MB1 0.22
-5 MB2 0.22
-8 MB3 0.14

15
-2 MB4 0.48
-5 MB5 0.48
-8 MB6 0.48

25
-2 MB7 0.84
-5 MB8 0.83
-8 MB9 0.80

Only hard braking 25 -8 HB1 0.85

their recording devices. The experimenter introduced the scenarios and the operation
of the simulator.

The experimenter trained the participants to use the pressure button to rate per-
ceived risk. Participants used the pressure button by giving a number from 0 to 10 and
hold each number for at least 3 seconds. Subsequently, they had to follow a random
number between 1 to 10 provided by the experimenter. In the ensuing practice drive, the
participants experienced several merging events. They were asked to continuously indi-
cate perceived risk using the pressure button and answer the experimenter’s questions
mentioned in section 2.2.2 Verbal ratings of perceived risk and trust and continuous rat-
ings of perceived risk verbally after each event. The training lasted until the participants
could handle all tasks well.

The formal drive (after practice) followed the same procedure, now including 20
events presented in a randomised order per participant. Another questionnaire with
the items in Table 2.1 was filled after the simulator drive to measure changes in trust.

2.3. RESULTS
All 25 participants completed the simulator drive, and no motion sickness was reported.
7 out of 25 participants intervened by braking in at least one event. The variations in-
duced by participants’ braking and simulated control noise inside the subject vehicle
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Figure 2.3: Merging scenario. The Subject vehicle (S) was driving behind the Lead vehicle (L) when the Merging
vehicle (M) merged. L then braked while M and S still had a reduced headway. The scenario’s objective risk
was varied through merging distance (S-M) and braking intensity of L.

led to 3 events with a close-to-zero distance in the most critical event MB3, one of which
was regarded as a collision by the participant. Therefore, these 3 participants were not
considered during regression modelling. Besides the three collision participants, 12 out-
lier ratings (see Figure 2.4 for criterion) were removed, leaving 428 out of 500 events for
the regression analysis. Pupil diameter and ECG signal were successfully recorded for 22
participants. The recorded GSR signal was not of good quality since skin conductance
was outside the device’s sensitive range for all but two participants and was excluded
from the analysis. We also repeated the experiment without the verbal rating task with
5 extra participants (2 of them were new) to evaluate the influence of speaking on pupil
dilation and ECG signals.

2.3.1. PERCEIVED RISK AND TRUST AS FUNCTIONS OF SCENARIO AND PER-
SONAL CHARACTERISTICS

The verbal risk and trust ratings for the events of different criticalities are presented in
Figure 2.4. Perceived risk varied highly between conditions for all participants. Trust
was lowest after the first occurrence of the most critical event (MB3a) and varied less
than perceived risk. 12 participants consistently rated trust as 7 or higher in all events
except in MB3.

CORRELATION ANALYSIS OF POTENTIAL INFLUENCERS FOR PERCEIVED RISK AND TRUST

Perceived risk and trust are influenced by many factors. Before the regression analysis,
we selected four clusters of potential factors (see Table 2.3). Cluster 1 includes the partic-
ipant’s responses to the events, including verbal ratings of perceived risk (PR) and trust
(TRU) themselves and the maximum braking by participants (Max_B) because they can
reflect driver’s perceived risk and trust [9], [34], [70], [96]. Cluster 2 captures the criti-
cality of the event with factors related to relative motion, including the initial merging
gap (IMG), minimum gap (min_gap), minimum time to collision (min_TTC), minimum
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Figure 2.4: Upper: Verbal perceived risk ratings for different events. Lower: Verbal trust ratings for different
events. Bars present verbal ratings (5, 25, 50, 75, 95 percentile). The dashed blue lines represent the model
output in Equation (2.1) and Equation (2.2). . The red ‘+’ represent outliers beyond 75 percentile+1.5IQR or
below 25 percentile-1.5IQR (IQR is the first quartile subtracted from the third quartile).



2

20 2. MODELLING PERCEIVED RISK AND TRUST THROUGH A DRIVING SIMULATOR STUDY

time headway (min_THW) and braking intensity (BI) of the merging vehicle during the
events. Here min_gap, min_TTC and min_THW express the smallest gap in different
manners and are established SMoS to assess the criticality of vehicle interactions [97].
These factors (e.g., minimum gap, minimum TTC, minimum THW, etc.) have been used
to reflect perceived risk in prior studies [39], [98]. We will also verify their substitu-
tion in the regression. Additionally, we will investigate the overlap among influencers
of perceived risk and trust. Cluster 3 includes personal characteristics, age (AGE), gen-
der (GEN), years with a driving license (YDL), and automation experience (AE). These
factors play essential roles in individual modelling of perceived risk and trust [33], [38],
[59], [61], [99], [100]. Cluster 4 includes repetition (REP) of the event and event type (ET)
being merging or hard braking because trust may change with automation experience
according to the trust formation from Lee and See [28], Hoff and Bashir [29], and Kraus
et al. [56]. Also, participants perceived less risk in the second exposure to the same event
in our experiment (Figure 2.4).

Before the stepwise regression, we checked for multicollinearity among potential in-
fluencers.

In Cluster 2, non-linear transformations on the original metrics were explored (Ap-
pendix A.2). We found that the logarithm of min_gap, min_TTC and min_THW have
strong linear relationships with the participant-averaged perceived risk and the recipro-
cal of the min_gap, min_TTC and min_THW have strong linear relationships with trust
(see Figure A.1 in Appendix A.2). Therefore, the logarithm and the reciprocal of min_gap,
min_TTC and min_THW were used as potential predictors for perceived risk and trust in
the regression.

We only found strong (|r | > 0.7, shaded in Orange in Table 2.3) correlations within
Cluster 2 and Cluster 3. In Cluster 2, strong correlations exist between min_gap, min_TTC,
min THW and IMG (correlation group 1). In Cluster 3, AGE highly correlates with YDL
(correlation group 2). Therefore, in the following regression procedure, we will use at
most one variable of each of the two correlation groups as potential predictors to resolve
multicollinearity.
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Table 2.3: Correlation analysis (high correlations in orange and insignificant correlations in grey)

∗p < 0.05;∗∗p < 0.01;∗∗∗p < 0.001

STEPWISE REGRESSION ANALYSIS OF PERCEIVED RISK AND TRUST

Stepwise regression is an efficient way to select suitable predictors after the elimina-
tion of multicollinearity. We used stepwise multiple regression to model the influence
of event criticality and personal characteristics on perceived risk and trust. The consec-
utive steps of both regression models are shown as the first 4 models in Table 2.4 and
Table 2.5 for perceived risk and trust respectively. Hence, the two models 4 represent
the final models of perceived risk (PR) and trust (TRU) as shown in Equation (2.1) and
Equation (2.2).

PR = 9.384−2.473 · lnmi n_g ap −0.038 ·Y DL−0.201 ·B I +0.470 ·GE N (2.1)

T RU = 8.787−6.265 · (1/mi n_T TC )+0.125 ·B I +0.016 ·Y DL+0.372 ·REP (2.2)

According to the results, perceived risk and trust mainly vary with min_gap, min_TTC
and BI. A smaller minimum gap and more intense braking lead to higher perceived risk;
a larger minimum TTC and more gentle braking cause higher trust. Participants with
more driving experience trust the automation more and are less sensitive to risk. Female
participants are more susceptible to risk. Participants trust the automation more in the
second exposure to the events.

The participant-averaged results were used to validate the two models expressed by
Equation (2.1) and Equation (2.2). A very good fit was obtained (Figure 2.4) with R2 =
0.9379,F (2,17) = 88.2940(p = 0.000) for perceived risk and adjusted R2 = 0.8643,F (3,16) =
27.6157(p = 0.000) for trust. The root mean squared error (RMSE) is 0.4044 for per-
ceived risk and 0.3164 for trust while the Pearson correlation is 0.9812 (p = 0.000) for
perceived risk and 0.9554 (p = 0.000) for trust, indicating that the models well predict the
participant-averaged perceived risk and trust ratings within events. The group based re-
gression models also describe individual events within individual participants quite well,
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as shown in Figure A.2 and Figure A.3 in Appendix A.2, resulting in RMSE = 1.7810, Pear-
son coefficient = 0.7252 (p = 0.000) for perceived risk and RMSE = 1.4835, Pearson coef-
ficient = 0.5824 (p = 0.000). Note that the output of these two models can be out of the
feasible range [0, 10] because the linear regression models do not constrain the output,
but individual data were all within the feasible range. The perceived risk model also well
predicted the extra 5 participants’ data with R2 = 0.3641,F (3,86) = 17.0563(p = 0.000) in
RMSE = 2.3727, Pearson coefficient = 0.6562 (p = 0.000) (see Figure A.4 in Appendix A.2).

INDIVIDUAL CALIBRATION

We calibrated the two models in Equation (2.1) and (2.2) for each participant (in Ap-
pendix A.3), where both models were statistically significant for all participants except
the trust model for participant 18. Female participants were only sensitive to minimum
gap but not braking intensity (the models without BI for the female participants have
an average RMSE = 1.4794); participants with more driving automation experience per-
ceived the risk to depend only on the minimum gap.

SUBSTITUTION OF POTENTIAL PREDICTORS

As motivated in Section 2.3.1 Correlation analysis of potential influencers for perceived
risk and trust and Stepwise regression analysis of perceived risk, only the best predictor
in each of the two correlation groups was adopted in the regression. Below we verify the
substitution of alternative predictors.

In correlation group 1, we replaced min_gap and min_TTC in Equation (2.1) and
(2.2) with the other three relevant factors. For example, in Equation (2.1), we replaced
ln(min_gap) with ln(min_TTC). This generated models 5-7 (see Table A.1 and Table A.2 in
Appendix A.2). The new models remain significant and the R-square decreases slightly.
Hence, these common safety metrics have a similar capability to predict perceived risk
and trust, indicating that they can be replaced. However, some predictors become in-
significant, such as GEN in perceived risk (see model 9 in Table A.1) and REP in trust (see
model 9 in Table A.2).

In correlation group 2, we replaced YDL with AGE (see model 8 in Table A.1 and Ta-
ble A.2 in Appendix A.2). The new model 8 is still significant with only a slight decrease
in R-square, but GEN is no longer significant. Hence, AGE and YDL have a similar per-
formance in predicting perceived risk and trust and are thereby replaceable.

For other predictors outside the two correlation groups, REP only appears in the trust
model (Equation (2.2)), meaning that participants trust the automation more after the
first exposure of the events, which implies that trust will accumulate over time provided
that no crash or automation failure occurs. To further validate the effects of automation
exposure, we compared the trust levels of the questionnaires before and after the simu-
lator drive for all 25 participants (Table 2.1). We found only participants 4 and 6 trusted
the automation less after the simulator drive, and especially participant 6 reported a
‘crash’ during the experiment, where the minimum distance between the automated ve-
hicle and the lead vehicle was close to zero. The average trust level increased from 6.84
(SD = 1.54) before the simulator drive to 7.92 (SD = 1.47) (p = 0.016) after the drive.
Hence, both the inclusion of REP in the trust model and the questionnaire indicate that
trust generally increased over time.
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2.3.2. CORRELATION BETWEEN PERCEIVED RISK AND TRUST
Our regression models for perceived risk and trust show a substantial similarity in agree-
ment with the literature [9], [20], [101]. This similarity is also supported by Figure 2.5. A
strong linear relationship was found with a Pearson correlation r =−0.919(p < 0.01) be-
tween participant-averaged perceived risk and trust levels for different events. Regarding
all 500 events, the repeated measures Pearson correlation coefficient is−0.649(p = 0.000)
[102]. This means that people trust the system more after events where they perceive a
lower risk. The individual correlations between perceived risk and trust are significant
for 13 out of 25 participants but are not significant for participants with a low standard
deviation of trust (Table A.6 in Appendix A.2).

To evaluate how well the predictors discriminate between trust and perceived risk,
we cross-validated the models of perceived risk and trust. Specifically, we used the pre-
dictors of perceived risk to model trust and the predictors of trust to model perceived
risk (models 9 in Table A.1 and Table A.2). The two models are still significant with a
slightly lower R-Square but REP and GEN are no longer significant in the new models.

We conclude that perceived risk and trust negatively correlate and can be modelled
using the same predictors of min_gap, min_TTC, YDL, and BI. However, REP only signif-
icantly affects trust, and GEN only significantly affects perceived risk.

Figure 2.5: Relation between perceived risk and trust for individual events (filled dots) and averaged over par-
ticipants (circles). Darker dots indicate more overlapping data points.

2.3.3. EFFECTIVE INDICATORS OF PERCEIVED RISK AND TRUST
Participants’ braking signal, pupil diameter, and ECG were recorded during the experi-
ment, along with the continuous rating of perceived risk (Figure 2.7). This section inves-
tigated whether these signals reflect perceived risk and trust effectively.
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Figure 2.6: Participant-averaged perceived risk ratings within events for the two rating methods.

CONTINUOUS RATINGS OF PERCEIVED RISK

To examine the consistency between continuous and verbal ratings, we compared the
participant-averaged peak continuous risk to the corresponding verbal ratings (Figure
2.6). The two measures have a strong linear relationship, as indicated by their correlation
(r = 0.983, p < 0.001). Hence, we conclude that the continuous ratings accurately reflect
participants’ perceived risk.

BRAKING BEHAVIOUR AND PERCEIVED RISK AND TRUST

Braking is a signal potentially reflecting higher perceived risk and lower trust levels. This
was confirmed by adding the maximum braking pedal position (Max_B) to the models in
Equation (2.1) and (2.2), resulting in model 10 (see Table A.1 and Table A.2) for perceived
risk and trust. Maximum braking was a significant predictor of perceived risk (p = 0.012),
but the relation with trust was not significant (p = 0.070) within single events. 7 of 25 par-
ticipants braked in at least one event. Therefore, the participants were divided into non-
braking and braking groups (see Appendix A.4 Braking behaviour). The braking group
reported a higher perceived risk (p = 0.021) and lower trust (p = 0.000) in most of the
event types supported by t-test.

PUPIL DILATION AND PERCEIVED RISK

We evaluated if pupil dilation can indicate perceived risk. Pupil dilation was expressed
as the difference of the maximum and minimum pupil diameter from 20 s before till
10 s after reaching a minimum gap to the lead vehicle, which spans the first moment
when the on-ramp became visible until the time the participant was asked to provide
subjective ratings (see Figure 2.7).
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Firstly, we explore whether the pupil significantly dilated in different event condi-
tions. Kruskal-Wallis tests showed significant variations of participants’ pupil diameter
within most of the event conditions (p = 0.000), indicating pupil dilation significantly
changed within an event (see Appendix A.4 Pupil dilation).

To evaluate whether event criticality had a within-subjects effect on pupil dilation,
we performed repeated measures ANOVA among all 20 event types. The difference be-
tween pupil dilation in different event types is statistically significant in the second ex-
posure of the events (F (5.881,123.502) = 2.783, p = 0.015), but insignificant in the first
encounters (F (4.470,93.865) = 1.014, p = 0.409). Repeated measures correlation analy-
sis in 397 events shows no significant correlation between within-subject pupil dilation
and the maximum continuous risk (Correlation r = 0.03, p = 0.530). A strong correlation
is found between the participant-averaged pupil diameter signal and the participant-
averaged continuous perceived risk signal across all participants (22 participants avail-
able in 18 out of the 20 event types, especially in the most critical event MB3 (see Ta-
ble A.8 in Appendix A.4 Pupil dilation).

Therefore, we conclude based on the participant-averaged signals that pupil dilation
highly correlates with perceived risk if the events are sufficiently risky. The merging and
braking events affected pupil dilation, but the correlation between the maximum contin-
uous perceived risk and pupil dilation across all events was not statistically significant.

ECG AND PERCEIVED RISK

To evaluate whether event criticality had a within-subjects effect on heart measures, we
performed repeated measures ANOVA as well as a repeated measures correlation among
all event types. Heart rate and variability metrics were calculated over the same time
period as the pupil dilation in Section 2.3.3 Pupil dilation and perceived risk. The ANOVA
results show that a difference between event types was only statistically observed for IBI
with a marginal significance of p = 0.053 among first events and p = 0.002 among second
events. In the most critical event MB3, IBI tended to be smaller compared to less critical
events (see Table A.9 in Appendix A.4 ECG).

Repeated measures correlations were performed between the three heart metrics
and two safety metrics: the minimum time headway and maximum continuous risk.
A strong correlation between the safety metrics was observed but they do not correlate
with the within-subject heart metrics (see Table A.10 in Appendix A.4 ECG).

In terms of the participant-averaged BPM, RMSSD and HF, heart rate increases in
the period following an event, and this pattern is consistent across events and within
repetitions of the same event. No such pattern was observed for RMSSD and HF in the
participant-averaged signals. The participant-Averaged BPM increase did not correlate
significantly with participant-averaged perceived risk (r = 0.174,n = 20, p = 0.464) or
minimum time headway (r = −0.378,n = 20, p = 0.100), which indicates no consistent
relation with event criticality (see Figure A.7 in Appendix A.4).

Therefore, we conclude that the merging and brake events can increase heart rate,
but no significant relation was found between these heart measures and perceived or
objective risk. Heart rate variability metrics were not significantly affected.
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Figure 2.7: Participant-averaged signals in the most critical merge MB3 (left), the least critical merge MB7
(mid), and in hard braking (right). The time scale is t = −55s to t = 55s, where t = 0 means the smallest gap
to the lead vehicle. Pupil diameter is relative to the participant’s overall pupil average (all events combined).
BPM indicates heat rate; RMSSD represents Root mean square of successive inter-beat interval differences; HF
indicates the power in the High-frequency band (HF; 0.15 – 0.40 Hz); The solid curve and the dashed curve
represent the first and second exposure. Time is zero for the timing of minimum gap to the merging or leading
vehicle. Black solid line: timing when the on-ramp became visible. Green dashed line: timing when the merg-
ing vehicles became visible. Blue dashed line: timing when the merging vehicle started to brake. Black dashed
line: timing when the participants gave verbal ratings. Results before t = 0 include recovery from preceding
events with some variation due to randomization.
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2.4. DISCUSSION
This study was conducted to model perceived risk and trust in SAE Level 2 driving au-
tomation (ACC+LC) reacting to merging and hard braking vehicles based on a driving
simulator experiment.

2.4.1. FACTORS INFLUENCING PERCEIVED RISK AND TRUST
The regression models of perceived risk and trust (Equation (2.1) and (2.2)) demonstrate
that smaller minimum gap, minimum TTC, and stronger braking intensity lead to higher
perceived risk and lower trust. Other classic surrogate metrics of safety (SMoS), includ-
ing the initial merging gap and THW have similar performance predicting perceived risk
and trust (Table A.1 and Table A.2 in Appendix A.2).

Our study shows that these well-known SMoS are good predictors for perceived risk.
The results are in line with Ma et al. [98], who used TTC and THW in a regression model
of driver’s subjective risk in critical cut-in scenarios in manual naturalistic driving. Kon-
doh et al. [103] captured human risk perception during car-following as the summation
of the time headway inverse and the time to collision. Lu et al. [104] also found a strong
relationship between TTC, THW and perceived risk in car-following. It should be noted
that non-linear transformation of the SMoS was required to obtain accurate models pre-
dicting perceived risk and trust. These transformations may express human risk per-
ception related to the visual perception of relative motion [79]. Braking intensity of the
leading vehicle affects both perceived risk and trust as an independent factor which is
only mildly correlated to other factors related to vehicle motion (|r | < 0.275 for Cluster
2 in Table 2.3). We are not aware of other studies indicating the relevance of braking in-
tensity in perceived risk and trust, and recommend further exploration of this factor in
future studies.

For trust, our study shows that the well-known SMoS are also predictive. Specifically,
participants have a lower post-event trust if the minimum TTC is smaller and the brak-
ing is stronger in the previous event. This aligns with existing studies on trust modelling
and trust calibration. According to Hoff and Bashir [29] and Lee and See [28], trust is
established in a dynamic process using new information (e.g., event criticality, system
performance, etc.). Kraus et al. [56] demonstrate that drivers perceive and interpret the
system behaviour and then update the dynamic learned trust based on the initial dy-
namic trust. Kaplan et al. [105] established a trust model where the environmental or
contextual factors are directly used to calculate trust. In our models, the safety metrics
and kinematic vehicle state represent the criticality of the previous event, which updates
trust based on the initial trust.

The impacts of personal characteristics on perceived risk and trust were quantified
by the regression models in Table 2.4 and Table 2.5. We found increased trust in au-
tomation with more driving experience similar to Jin et al. [33], Gold et al. [61], and Ka-
plan et al. [105]. For perceived risk, we found that driving-experienced participants per-
ceived lower risk when using automation compared to inexperienced drivers. Apart from
a higher trust in the system, this may also be a consequence of trust in their own ability
to intervene, as illustrated by He and Donmez [106], where experienced drivers showed
less attention relaxation with SAE Level 2 automation while performing a secondary-
task. Similarly, Ping et al. [38] and Borowsky and Oron-Gilad [107] show that experienced
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drivers have stronger hazard awareness when watching movies of real-world driving sit-
uations.

Gender effects were found in several studies, where males tend to trust the automa-
tion system more than females [59], [108], and females perceive more risk [109]. We
found females to experience a higher risk but found no significant effect on trust, possi-
bly due to a limited sample size and imperfect gender balance.

2.4.2. THE RELATION BETWEEN PERCEIVED RISK AND TRUST
Our results support that when people perceive lower risk, they trust automation more.
Models 4 in Table 2.4 and Table 2.5 show considerable overlap between trust and per-
ceived risk determinants, confirmed through cross-validation with models 9 in Table A.1
and Table A.2 in Appendix A.2. The two constructs shared a strong negative correlation,
which agrees with internet surveys (e.g. Zoellick et al. [20] and Choi and Ji [21]). Con-
sequently, we observed that predicting variables of either construct are interchangeable
between regression models. However, there are grounds to believe that the two con-
structs are partially independent (see the discussion in Section 2.4.4).

2.4.3. MEASURES OF PERCEIVED RISK AND TRUST
The regression models are based on post-event verbal ratings of perceived risk and trust.
Continuous perceived risk was highly correlated to the post-event verbal rating, indi-
cating the effectiveness of the continuous measurement of perceived risk. However, the
continuous measurement increases the drivers’ workload, and participants occasionally
forget to press the sensor. Taking into account these limitations we do consider our con-
tinuous risk measure to be a valuable reference to study and model perceived risk as a
function of time. However, in a recent on-road experiment such a measurement was less
effective with many missed events [110].

Significant effects were obtained for physiological measurements of pupil diameter
and ECG metrics. Effects of events on pupil dilation were significant at the group level.
Pupil dilation varied with perceived risk, in particular for the most critical events. ECG
metrics showed significant effects of events on IBI, but showed no significant correla-
tions with event criticality. Hence, pupil dilation may indicate the amount of perceived
risk while IBI is at best indicative of the presence of perceived risk. However, they lack
accuracy in quantifying perceived risk which will be an even larger drawback in on-road
studies.

We found that driver intervention (braking) relates to perceived risk and trust at the
event level, where the 7 participants braking in at least one event reported higher risk
and lower trust averaged over all events. Such interventions demonstrate active moni-
toring by drivers and the somewhat lower trust levels in braking drivers can reflect well-
calibrated trust levels. Our findings regarding braking behaviour are in line with Ten-
hundfeld et al. [34] and Lee et al. [111], who found that if participants brake more fre-
quently, they perceive more risk and trust the system less in a Tesla automated parking
test and an intersection crossing experiment on a driving simulator. Hence, braking be-
haviour is a relevant indicator of the presence of perceived risk and distrust but only 7
out of 25 participants braked. Braking can be easily used for research since it will not
influence behaviour and requires no additional instrumentation.



2.4. DISCUSSION

2

31

2.4.4. LIMITATIONS AND FUTURE WORK
Our regression models of perceived risk and trust are based on Level 2 driving automa-
tion (ACC+LC) in limited samples (428 events). The models use surrogate metrics of
safety related to longitudinal interaction (1-D) to predict perceived risk and trust for
both merging with hard braking (MB) and hard braking without merging (HB). However,
in the real world, perceived risk comes not only from longitudinal but also from lateral
conflicts. More advanced surrogate metrics of safety already consider lateral motion and
multiple risk sources [36], [40], [112]. Further experiments should consider lateral inter-
action to extend the current models to 2-D. The models predict perceived risk and trust
per event, and need a transformation for prediction as continuous function of time suit-
able for real time control.

The regression models of perceived risk and trust combine existing knowledge with
human response data. The selection of potential influencers of perceived risk and trust,
and the clusters in Table 2.3 are knowledge-based, while multicollinearity checks and
regression are data-driven. Full data-driven methods, like machine learning, can dig out
more valuable information from data beyond human experience, and may be promising
in future modelling of perceived risk and trust in particular when large datasets become
available from multiple experiments and on-road observations.

A close correlation was observed between perceived risk and trust. However, we still
cannot answer the causality question ‘which one is the determinant of the other’. The
interaction between perceived risk and trust can be studied further using longitudinal
data monitoring the process of trust calibration in relation to event criticality and per-
formance of the driving automation. We found that participants trust the automation
more in the second exposure to events, which is shown as REP in trust regression model
(Equation (2.2)). This is related to trust calibration and is also supported by Kraus et
al. [56], who found that trust increases over the course of system interaction if an auto-
mated system works without malfunctions. During our experiment, no malfunctions or
accidents were simulated. Therefore, we can only conclude that participants trust the
system more with more automated system interaction, but our results cannot support
accident-related trust calibration. The current results only support short-term learned
trust calibration. Self-reported trust can still change in several weeks, even in several
months, according to Walker et al. [62], where driver’s trust toward SAE level 2 cars still
changed two weeks after the automation experience. Note that the trust here usually
refers to dynamic learned trust calibration, which is steadily updated in a dynamic cali-
bration feedback loop according to Lee and See [28], Hoff and Bashir [29], and Kraus et
al. [56].

It shall also be pointed out that the applied verbal rating procedure captured per-
ceived risk and trust with only two questions for each event. This simplification was
needed to capture ratings after each event but can be complemented by more complex
ratings in future studies.

The models of perceived risk and trust can be used to calibrate SMoS so that human
factors can be included in risk prediction and assessment. These subjectively calibrated
SMoS can be subsequently used as cost function, constraint or reference in AV path plan-
ning, decision making and controller design [81]. This has the potential to make users
feel safe and trust AV, enhancing user acceptance of driving automation.
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2.5. CONCLUSIONS
This chapter investigated perceived risk and trust in Level 2 driving automation (ACC+LC)
in motorway driving with a simulator experiment. We developed regression models that
accurately predict perceived risk and trust in specific events and the models reveal that
neighbouring road users’ behaviours (relative motion) significantly influence occupants’
perceived risk and trust. No difference was found in perceived risk and trust between
merging with hard braking and hard braking without merging. Our models show that
experienced drivers are less sensitive to risk and trust the automation more, while fe-
male participants perceive more risk than males. The findings confirm that perceived
risk and trust are highly correlated. The proposed models indicate that trust and per-
ceived risk shared the predictors of minimum gap, minimum TTC, years of driving, and
braking indicator but differ in using event repetition in the trust model and gender in the
perceived risk model. Additionally, the results show that people who perceive lower risk
trust the automation more. Regarding the indicators of perceived risk and trust, contin-
uous ratings of perceived risk and braking behaviour can effectively indicate perceived
risk or trust. Pupil dilation can reflect perceived risk if the event is sufficiently risky. The
merging and braking events increased heart rate, but there was no quantified relation
between heart rate increase (variability) and perceived risk.

Future research will focus on extending the perceived risk and trust models towards
more complex interactions and applying the models in designing control strategies and
human-machine interfaces leading to desirable levels of perceived risk and trust.
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A NEW COMPUTATIONAL

PERCEIVED RISK MODEL FOR

AUTOMATED VEHICLES BASED ON

POTENTIAL COLLISION AVOIDANCE

DIFFICULTY (PCAD)

Perceived risk is crucial in designing trustworthy and acceptable vehicle automation sys-
tems. However, our understanding of perceived risk dynamics remains limited, and cor-
responding computational models are scarce. This chapter formulates a new computa-
tional perceived risk model based on potential collision avoidance difficulty (PCAD) for
drivers of SAE Level 2 automated vehicles. PCAD quantifies task difficulty using the gap
between the current velocity and the safe velocity region in 2D, and accounts for the min-
imal control effort (braking and/or steering) needed to avoid a potential collision, based
on visual looming, behavioural uncertainties of neighbouring vehicles, imprecise control
of the subject vehicle, and collision severity. The PCAD model predicts both continuous-
time perceived risk and peak perceived risk per event. We analyse model properties both
theoretically and empirically with two unique datasets: Datasets Merging and Obstacle
Avoidance. The PCAD model generally outperforms three state-of-the-art models in terms
of model error, detection rate, and the ability to accurately capture the tendencies of hu-
man drivers’ perceived risk, albeit at the cost of longer computation time. Our findings
reveal that perceived risk varies with the position, velocity, and acceleration of the subject
and neighbouring vehicles, and is influenced by uncertainties in their velocities.

The content of this chapter has been published in
He, X., Happee, R., & Wang, M. (2024). “A new computational perceived risk model for automated vehicles
based on potential collision avoidance difficulty (PCAD),” Transportation Research Part C: Emerging Technolo-
gies, 166, 104751.
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LIST OF NOTATIONS
Categories Variable∗ Description

Kinematic
and
Geometric
Variables

ai Acceleration of vehicle i
ds,n Distance between the subject (s) and neighbouring (n) vehicles
ḋs,n Distance changing rate between the subject (s) and neighbouring (n) ve-

hicles
p i Position of vehicle i
p i l , p i r Left and right reference points on vehicle i (in this chapter at the front for

the subject and at the rear for the neighbouring vehicle)
v i Velocity of vehicle i
∆v i ,a Acceleration-based velocity of vehicle i based on the known acceleration
∆v i ,u Uncertain velocity of vehicle i based on manoeuvre uncertainties
v ′

i Perceived velocity of vehicle i taking into account v i , ∆v i ,u and ∆v i ,a
θs j1 ,n j2

∗∗ Bearing between reference points on subject (s) and neighbouring (n) ve-
hicles

θ̇s j1 ,n j2 Bearing rate between reference points on subject (s) and neighbouring
(n) vehicles

ϕ Heading angle
Xi State vector of vehicle i
X ,Y Longitudinal and lateral directions of the coordinate system
L,W Length and width of a vehicle

Avoidance
Difficulty
Computation

V Safe velocity set

V
′

Safe velocity set considering uncertainties and known acceleration
v g Velocity gap for collision avoidance difficulty derived as distance between

v ′
s and V

′

v s,V v s,V ′ Subject velocity in the safe velocity set V and V ′
ri Direction of the uncertain velocity of vehicle i
D Probability density function of a truncated Gaussian distribution
f b,bb, lb,r b Forward, backward, left and right bounds of the uncertainty velocity in

the probability density function of a truncated Gaussian distribution
N Probability density function of a normal Gaussian distribution
N Cumulative distribution function of a normal Gaussian distribution
l Length of an uncertain velocity vector
P Conditional probability of an uncertain velocity vector

PCAD Model
Components

RPC AD (t ) Perceived risk function in PCAD model
Vi Perceived velocity function for vehicle i
A Avoidance difficulty function
W Weighting function

PCAD Model
Parameters

σi ,X ,σi ,Y Standard deviations for uncertain velocity distributions of vehicle i
ti ,a Anticipated time for acceleration-based velocity of vehicle i
α The exponent of the Weighting function.

β The mass ratio β= Mn
Ms+Mn

. Ms and Mn represent the mass of the subject

(s) and neighbouring (n) vehicles.
vref A reference velocity in the weighting function W , which can be a velocity

limit under specific conditions.

* i ∈ {s,n} with s representing the subject vehicle and n representing the neighbouring vehicle.
** j1, j2 represent the numbering of different reference points, which can be 1, 2, 3, ...
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3.1. INTRODUCTION
Road crashes are a leading cause of injury and death worldwide, resulting in approxi-
mately 1.35 million deaths and 20-50 million non-fatal injuries each year [113]. Most
traffic accidents arise from human misjudgements [114]. Specifically, distorted percep-
tion of driving risk by human drivers is one of the important causes of road accidents
[115].

Perceived risk captures the level of risk experienced by drivers, which can differ from
operational (or actual) risk [41], [53]. A low perceived risk leads to feeling safe, relaxed,
and comfortable, while a high-risk perception results in cautious behaviour [53]. The
advent of active safety and driving automation systems has reduced actual risk, but
changes in drivers’ risk perception have been observed. Human drivers will inversely
perceive a high level of risk if the driving automation shows inappropriate driving be-
haviours, causing decreased trust, low acceptance, and even refusal of vehicle automa-
tion [9]. In manual driving, maintaining perceived risk below a specific threshold moti-
vates drivers’ actions, such as steering and braking [116]. Consequently, misperception
of risk during automated driving may cause drivers’ to distrust and intervene unneces-
sarily while in other cases drivers may fail to recognise dangerous situations that require
drivers’ intervention. Therefore, it is essential to comprehend and quantify drivers’ per-
ceived risk in driving automation and in turn, use it to design driving automation which
is not only technically safe, but is also perceived as safe.

Computational models for estimating perceived risk have been developed, falling
into two categories: empirical models reliant on data, and mechanistic models grounded
in first principles. In the first category, Kolekar et al. [41] established a driving risk field
(DRF) model considering the probability of an event occurring and the event conse-
quence based on drivers’ subjective risk ratings and steering responses. Ping et al. [38]
used deep learning methods to model perceived risk in urban scenarios with factors re-
lated to the subject vehicle and the driving environment. Chapter 2 [117] built a regression-
based perceived risk model to explain and compute event-based perceived risk in high-
way merging and braking scenarios. Among other factors, the model captures the influ-
ence of relative motion with respect to other road users on drivers’ subjective perceived
risk ratings.

Mechanistic perceived risk models typically rely on surrogate measures of safety (SMoS).
The minimum time to collision (TTC) can show the drivers’ threshold of perceived risk
when they take last-moment braking actions [39]. The inverse TTC represents drivers’
relative visual expansion of an obstacle, which can indicate drivers’ risk perception [79].
Additionally, Kondoh et al. [103] and Kondoh et al. [118] further analysed the relationship
between drivers’ risk perception regarding the leading vehicle and inverse TTC and time
headway (THW) in car-following situations. Models using TTC and THW only capture
one-dimensional (1D) interaction and are mainly validated for car following. Attempts
have been made to model risk for two-dimensional (2D) motion based on the driving
risk field theory [119] and develop collision warning algorithms [120]. This research line
is advanced by the probabilistic driving risk field model (PDRF) [40] by considering mo-
tion probability distributions of other road users and the collision severity to estimate
the collision risk. Although the above-mentioned models estimate the actual collision
risk rather than the perceived risk, they are promising to predict human drivers’ risk per-
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ception thanks to the strong connection between the actual risk and the perceived risk.
The empirical models reviewed above accurately quantify perceived risk in certain

scenarios, but lack validation across diverse situations and are not fully explainable.
Mechanistic models, while explainable, can compute the actual risk. However, the map-
ping between the actual collision risk and perceived risk remains ambiguous and the
thresholds of the SMoSs lack empirical support. Hence, an explainable and validated
computational perceived risk model is still lacking.

This chapter has two primary objectives: Objective 1 is to formulate an explainable
computational perceived risk model grounded in the human drivers’ risk perception
mechanism applicable to general 2D movements. Objective 2 is to analyse and compare
our new model against existing models both theoretically and empirically. The model
uses the velocity gap to the safe velocity region as the potential collision avoidance diffi-
culty to quantify perceived risk. The safe velocity region accounts for vehicles’ kinemat-
ics with uncertainty, as well as collision severity. The model describes perceived risk in
continuous time and per event, and is validated using event-based reported perceived
risk. The model is developed towards the general driver population instead of person-
alised modelling but can capture individual differences by tuning model parameters.

The remainder of this paper is structured as follows. We first revisit three computa-
tional perceived risk models from literature in Section 3.2, and then present the formu-
lation of the new model in Section 3.3. Perceived risk data, model calibration approach
and model performance indices are introduced in Section 3.5. The model evaluation
results are represented in Section 3.6 followed by a discussion in Section 3.7, and con-
clusions in Section 3.8.

3.2. RELATED PERCEIVED RISK MODELS
This section introduces the preliminaries for perceived risk modelling and three baseline
models for comparison and performance evaluation, while referring to Appendix B.1 for
details.

3.2.1. COORDINATE SYSTEM, REFERENCE POINTS DEFINITION AND VEHI-
CLE MODEL

All models in this chapter employ the same coordinate system. The road space is mod-
elled as a flat Euclidian plane. The X -axis aligns with the direction of the road, while
the Y -axis is perpendicular to it, oriented counter-clockwise, as illustrated in Figure 3.1.
Given our focus on perceived risk based on relative motion, rather than vehicle dynam-
ics, we employ a simple point mass model incorporating vehicle dimension. According
to the point mass model, the positions, velocities and accelerations of the geometric
centre for both the subject vehicle s and a neighbouring vehicle or an obstacle n are
p s = [xs , ys ]T , pn = [xn , yn]T , v s = [vs,X , vs,Y ]T , v n = [vn,X , vn,Y ]T , as = [as,X , as,Y ]T ,
an = [an,X , an,Y ]T respectively. The heading angle ψ follows from the vehicle velocity
direction for the point mass model.

Vehicle dimensions are incorporated into the perceived risk models. Figure 3.1 illus-
trates that the leftmost and the rightmost points in the front side of the subject vehicle
and the rear side of the neighbouring vehicle that is closest to the subject vehicle are the
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Figure 3.1: The coordinate system in the definition

reference points in this case. Given the vehicle’s length L and width W in straight drive,
the positions of the reference points are p sl = p s + [L/2 W /2]T and p sr = p s + [L/2 −
W /2]T for the subject vehicle, pnl = p s + [−L/2 W /2]T and pnr = p s + [−L/2 −W /2]T

for the neighbouring vehicle.

3.2.2. EXISTING PERCEIVED RISK MODELS
In this section, we briefly revisit three perceived risk models that are fundamental to un-
derstanding driver’s perceived risk in different driving scenarios. These models, includ-
ing the Regression Perceived Risk Model (RPR) [117], the Perceived Probabilistic Driving
Risk Field Model (PPDRF) [40], and the Driving Risk Field Model (DRF)[41], offer diverse
approaches to quantifying and analysing perceived risk. For a comprehensive overview
of these models, including their key assumptions and mathematical definitions, please
refer to Table 3.1 with more details in Appendix B.1 and corresponding literature.

Table 3.2, summarises model features and factors used in risk calculation. RPR and
DRF are validated but do not take into account all factors known to be relevant in risk
perception. PPDRF takes into account all listed factors, but its parameters are not based
on empirical data and it has not been validated. Hence, this paper presents the new
Potential Collision Avoidance Difficulty (PCAD) model which is inspired by the three ex-
isting models and validates the resulting four models with the two available perceived
risk datasets used to develop and validate the RPR and the DRF model.

3.3. POTENTIAL COLLISION AVOIDANCE DIFFICULTY MODEL (PCAD)
Our proposed model is grounded in Fuller’s Risk Allostasis Theory which proposes that
a feeling of risk can be indicated by the driving task difficulty [78] and drivers’ primary
driving task is to perform avoidance actions to moderate the perceived risk to a preferred
range [121]. Consequently, we develop a dynamic perceived risk model by quantifying
the driving task difficulty, which computes real-time perceived risk and explain its un-
derlying mechanism. We quantify the task difficulty considering the 2D velocity change
to avoid a potential collision. Additionally, the model accounts for the behaviour uncer-
tainties of other road users reflected in their velocities and imprecision in longitudinal
and lateral control as motion uncertainties of the subject vehicle. In this section, we
introduce the primary assumptions and the general structure of the model followed by
a detailed explanation of each component, including the potential collision judgement
method and the perceived velocity of a neighbouring vehicle and the subject vehicle,
and a weighting function that considers the collision severity.
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Table 3.1: Introduction of existing perceived risk models

Model Regression Perceived Risk
Model (RPR)[117]

Perceived Probabilistic
Driving Risk Field Model
(PPDRF)[40]

Driving Risk Field Model
(DRF)[41]

Introduction

Event-based model de-
rived from a simulator
experiment involving
18 merging and braking
event types on a 2-lane
highway.

Perceived Probabilistic
Driving Risk Field Model
accounting for behaviour
uncertainties of surround-
ing vehicles in 2D based
on predicted collision
probability and collision
severity.

Represents human drivers’
risk perception as a 2-
dimensional field combin-
ing probability and conse-
quence of an event.

Assumptions

• Perceived risk stems
from vehicles directly in
front after entering the
lane.
• Drivers can accurately
estimate motion informa-
tion.

• Uncertainties of neigh-
bouring vehicles are rep-
resented by independent
Gaussian distributions of
2D accelerations.
• The subject vehicle
maintains the current
acceleration over the pre-
diction horizon.

• Perceived risk is the
product of the probability
of a hazardous event and
its severity.
• The risk field widens
with distance and decays
with lateral and longitudi-
nal distance.
• The height of the per-
ceived risk field decays
as the lateral and longi-
tudinal distance from the
vehicle increases.

Definitions

The perceived risk is
calculated using the lon-
gitudinal position of the
neighbouring vehicle and
the subject vehicle, along
with the current acceler-
ation of the neighbouring
vehicle. The perceived risk
is given as Equation (B.2).

• Total perceived risk is
calculated as a sum of ki-
netic risk and potential
risk as Equation (B.3).
• Kinetic risk is given by
Equation (B.4), involving
the subject mass, mass ra-
tio, relative velocity, and
estimated collision proba-
bility.
• Potential risk is modelled
as Equation (B.6), involv-
ing the subject mass, rel-
ative velocity and the dis-
tance to the obstacle.

• The overall perceived
risk is quantified as the
product of the probability
and the severity of events
at different positions rel-
ative to the vehicle as
shown in Equation (B.7).
• The probability field is
modelled as a Gaussian
distribution in the lateral
direction in Equation (B.8)
• The height of the proba-
bility field is a function of
the longitudinal distance
as shown in Equation
(B.9), and the width of the
probability field increases
linearly with the distance
to the obstacle, reflecting
widening of the risk field
as shown in Equation
(B.10).

Risk diagram
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Table 3.2: Model features and factors used in risk calculation

RPR PPDRF DRF PCAD
Dimension 1-D 2-D 2-D 2-D

Distance     
Using relative velocity -  -  

Using acceleration   -  
Using subject velocity -    

Considering crash consequence -    
Considering manoeuvre

uncertainties
-  -  

Usable on curved lanes -    

 indicate “yes” and − indicate “no”.

3.3.1. ASSUMPTIONS
To operationalise the model, we adopt several simplifying assumptions:

• Assumption 1: Human drivers perceive risk based on an estimation of the diffi-
culty in avoiding a potential collision according to their visual perception of the
relative motion of the subject vehicle and neighbouring vehicles [78], [121], [122].
They judge whether a vehicle is on a collision course based on looming [123].

• Assumption 2: The known acceleration and manoeuvre uncertainties of neigh-
bouring and subject vehicles cause extra perceived risk. The latter is presented
as an uncertain acceleration following a specific probability distribution. In this
chapter, we assume a Gaussian distribution with zero means. This is grounded in
existing literature. In stable highway driving, the longitudinal and lateral accel-
erations of a neighbour follow a Gaussian distribution [124]. Specifically, Ko et al.
[125] observed that in a vehicle field test with GPS, the modelling results of acceler-
ation as a response variable indicated that it followed a Gaussian distribution. Ad-
ditionally, Jansson [126] argued that a constant acceleration model is sufficiently
accurate for tracking vehicle motion. Both the known acceleration and this uncer-
tain acceleration will remain constant in a short period of time.

– 2a: The known accelerations of the subject and neighbouring vehicles influ-
ence perceived risk [117], [127], [128].

– 2b: The uncertain acceleration of neighbouring vehicles comes from a po-
tential manoeuvre change (e.g., a sudden brake or steer) [129], [130].

– 2c: The uncertain acceleration of the subject vehicle is caused by imprecise
control in steering and throttle/braking, which is relevant to human drivers’
control ability or driving automation’s performance [131].

• Assumption 3: Human drivers perceive higher perceived risk with higher subject
vehicle velocity [132].

3.3.2. GENERAL STRUCTURE OF PCAD
Let Xs = (p s , v s , as )T and Xn = (pn , v n , an)T denote the state of the subject vehicle s and
the neighbouring vehicle n respectively, with p s and pn , v s and v n , as and an being the
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position, velocity and acceleration vectors, and T the transpose of a vector. The PCAD is
formulated as Equation (3.1)

RPC AD (t ) =A (p s , pn ,Vs (x s , xn),Vn(x s , xn)) ·W (v s ) (3.1)

Here, A represents the avoidance difficulty function. This function quantifies the re-
quired 2D velocity change to bring the subject vehicle to the safe velocity region in the
velocity domain to avoid a potential collision with the neighbouring vehicle, consider-
ing factors such as their relative positions, velocities and accelerations. Vi denotes the 2D
perceived velocity for vehicle i ∈ {s,n}, thereby capturing absolute and relative motion
of the interacting vehicles. Finally, W is the weighting function, being a Power function
with vs , which accounts for the influence of the subject vehicle’s speed on perceived risk.
Higher speeds generally increase the perceived risk, as the consequence of a potential
collision is more severe.

The perceived velocity function V can be represented as

v ′
i = Vi (Xs ,Xn) = v i +∆v i ,a +∆v i ,u (3.2)

where Vi is the functional operator to compute the perceived velocity v ′
i of the vehicle i ∈

{s,n} by human drivers for perceived risk computation. The perceived velocity combines
three components: the velocity v i (i ∈ {s,n}), an acceleration-based velocity ∆v i ,a(i ∈
{s,n}) that accounts for the influence of the known acceleration (Assumption 2a) and an
uncertain velocity ∆v i ,u that accounts for uncertainties in vehicle motion (Assumption
2b and Assumption 2c). For example, consider a driver who notices that a car ahead is
braking rapidly. The driver might perceive the car’s velocity to be lower than it actually is
because the driver anticipates its future motion based on the acceleration. The uncertain
velocity component captures uncertainties in vehicle motion, such as a neighbouring
vehicle suddenly swerving or the subject vehicle’s imprecise control.

3.3.3. COLLISION AVOIDANCE DIFFICULTY FUNCTION A IN DETERMINIS-
TIC CONDITIONS

In this section, the collision avoidance difficulty is formulated to capture part of human
drivers’ perceived risk under constant speed and deterministic motion conditions. The
perceived velocity (Equation (3.2)) relaxes to the actual velocity v under such conditions.
Uncertainties and acceleration are incorporated in the next section.

POTENTIAL COLLISION JUDGEMENT OF HUMAN DRIVERS —LOOMING DETECTION

A precedent step for collision avoidance is to detect a potential collision based on the
current environment information. One observation from aircraft pilots is that two air-
craft are on a crossing course if they remain in the same position in their field of view.
Similarly, in road traffic, one vehicle lies on a crossing course at a specific moment, if
its relative bearing to you does not change [123]. Additionally, if the vehicle is simul-
taneously approaching, a phenomenon known as looming is occurring. This situation
indicates a risk of collision (see two vehicles in interaction in Figure 3.2). To identify this
phenomenon and anticipate a potential collision is referred to as looming detection.

Our method of looming detection combines the two criteria introduced above, re-
quiring that: (i) the bearing θ of a neighbouring vehicle remains constant (see Figure
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3.2b), and (ii) the distance between the two vehicles is decreasing. Figure 3.2b illustrates
the bearing θ considering each vehicle as a single point, but to detect looming we must
also consider vehicle size. Here we approximate vehicle shape by rectangles and use cor-
ners as reference points. In the side impact example in Figure 3.2c the relevant reference
points are the front left and front right of the subject vehicle and the front left and rear
left of the neighbouring vehicle. We consider four interactions for looming detection.
Figure 3.2c illustrates the four relevant interactions between corners p sl /pnl , p sl /pnr ,
p sr /pnl , and p sr /pnr respectively. From the perspective of the subject vehicle, the left
reference point on the neighbouring vehicle moves to the left (anticlockwise), but the
right one moves to the right (clockwise). At an intermediate point the heading rate will
be zero, representing a collision. Meanwhile, the distance between the two vehicles is
decreasing and hence this is a looming case. Alternatively if both points would move to
the left the subject vehicle would pass at the right, and if both points would move to the
right the subject vehicle would pass at the left.

In this chapter, the reference points are chosen at the front left and right on the sub-
ject vehicle and the rear left and right on the neighbouring vehicle (Figure 3.3). This
simplification is justified since the datasets used contain only obstacle avoidance events
and merging events in the front of the subject vehicle.

In our method, the relative bearing rate θ̇s j1,n j2 of four pairs of reference points on
the subject vehicle and the neighbouring vehicle is calculated using Equation (3.3)1 (See
Figure 3.2c for more details).

θ̇s j1,n j2 =
(

p s j1
−pn j2

)
× (v s j1 −v n j2 )∥∥∥p s j1
−pn j2

∥∥∥2 , j1, j2 ∈ {l ,r } (3.3)

Looming is indicated when the product of the minimum and maximum values of
θ̇s j1,n j2 is negative (one is positive and one is negative), as shown in Equation (3.4) and
Figure 3.2c.

min θ̇s j1,n j2 ·max θ̇s j1,n j2 < 0, j1, j2 ∈ {l ,r }, (3.4)

The second criterion for looming is that the neighbouring vehicle is approaching the
subject vehicle. That is, a neighbouring vehicle may only collide with the subject vehicle
if it is getting closer. This is assessed by examining the distance changing rate between
the two vehicles (centre), defined by Equation (3.5) and its derivative in Equation (3.6).
A negative rate indicates that the neighbouring vehicle is approaching.

ds,n =
√

(p s −pn)T (p s −pn) (3.5)

ḋs,n = 1

ds,n
(p s −pn)T (v s −v n) < 0 (3.6)

Considering the two criteria, if Equations (3.4) and (3.6) are satisfied at the same time,
the neighbouring vehicle is looming (Figure 3.2). Conversely, if Equations (3.4) and (3.6)

1In straight driving, the velocity of reference points v i , j (i ∈ {s,n}, j ∈ {l ,r }) can be simplified as the vehicle’s
linear velocity v i (i ∈ {s,n}) without considering vehicle’s yaw rate.
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are not met simultaneously, the neighbouring vehicle is classified as non-looming (Fig-
ure 3.3), namely

min θ̇s j1,n j2 ·max θ̇s j1,n j2 Ê 0, j1, j2 ∈ {l ,r }, (3.7)

or

ḋs,n = 1

ds,n
(p s −pn)T (v s −v n) Ê 0, (3.8)

(a) Video stream for a potential collision. The neighbouring vehicle (white) stays at the same bearing (the red circle) and
becomes larger when on a crossing course with the subject vehicle [133]. Here the bearing is the orientation in the field of view
in which another object is observed.

(b) Bird eye view for the potential collision above. The bearings θ and θ′ of subject vehicle (red) and neighbouring vehicle
(white) remain the same when they are on a crossing course.

(c) Details for the potential collision above. From the perspective of the subject vehicle, the left reference point on the neigh-
bouring vehicle moves to the left (anticlockwise), but the right one moves to the right (clockwise). Meanwhile, the distance
between the two vehicles is decreasing. This case meets Equation (3.4) and Equation (3.6) simultaneously, indicating that it is
a looming case.

Figure 3.2: An example of looming. The subject vehicle and a neighbouring vehicle are on a crossing course.
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(a) The subject vehicle (Red) is overtaking a neighbour-
ing vehicle (white). Although the neighbour vehicle
(White) approaches the subject vehicle (red), the orien-
tation of it in the subject vehicle’s view field is not stay-
ing constant (all bearing rate regarding all pairs of refer-
ence points θ̇ is negative, meaning that the neighbour-
ing vehicle is rotating around the subject vehicle (clock-
wise)). The situation meets Equation (3.6) but does not
meet Equation (3.4), indicating that it is a non-looming
case.

(b) The subject vehicle (red) is following a leading vehi-
cle (white) with a lower speed. Although the orientation
of the neighbouring vehicle stays the same in the subject
vehicle’s view field (θ̇sl ,nr is positive but θ̇sr,nl is nega-
tive), it is not approaching the subject vehicle. The situ-
ation meets Equation (3.4) but does not meet Equation
(3.6), indicating that it is a non-looming case.

Figure 3.3: Two examples of non-looming.

Note that we examine four pairs of reference points in Equation (3.3) and Equation
(3.4) for a simpler computation. In general circumstances, reference points for collision
detection are ideally positioned at the four corner points of each vehicle. If the compu-
tation capability permits, we can examine all 16 pairs of reference points for Equation
(3.3) and Equation (3.4). Additionally, Looming detection is directly valid when the sub-
ject vehicle only has translational motion with constant acceleration and thereby follows
a straight path. When the subject vehicle has a yaw rate (ϕ̇), and follows a curved path
the theory still stands based on a conformal mapping.

COLLISION AVOIDANCE DIFFICULTY

We define a safe velocity set V , which comprises all non-looming subject velocity vectors
that meet Equation (3.7) and/or (3.8) based on the position of the two vehicles p s , p s and
the velocity of the neighbouring vehicle v n at the current moment. The safe velocity set
V is defined in Equation (3.9).

∀v s ∈V ⇒ min θ̇s j1,n j2 ·max θ̇s j1,n j2 Ê 0 ( j1, j2 ∈ {l ,r }, ) or ḋs,n Ê 0, (3.9)

where the equality holds when v s is at the boundary of velocity set V .
The collision avoidance difficulty ||v g || is defined as the 2D distance from the current

subject velocity v s to the nearest point on the boundary of the safe velocity set V , which
is the end point of the vector denoted as v s,V (Equation (3.10)) (See Figure 3.4 for an
illustration). Hence, the collision avoidance function A is defined as

||v g || =A = ||v s,V −v s || (3.10)
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where v s,V is the vector in the safe velocity set V , the end point of which is closest to the
subject velocity vector v s , satisfying

v s,V = argmin
v∈V

||v −v s || (3.11)

v g represents the vector pointing from the current subject velocity vs towards v s,V , indi-
cating the direction and magnitude of the adjustment needed to reach the safe velocity
set V from the current velocity vs . If the current subject velocity v s already lies within
the safe velocity set V , then the velocity gap ||v g || is zero, implying no collision avoidance
difficulty.

In this chapter, the technique of grid search is employed to identify v g , ensuring
compliance with both Equation (3.10) and Equation (3.11).

Figure 3.4: An example to show the collision avoidance difficulty. In this case, the subject vehicle (red) is
following a leading vehicle (white, 50m ahead, v n = 8.33m/s) with a higher velocity (v s = 16.67m/s). Equation
(3.7) and (3.8) define the safe velocity set V as the blue area, e.g., if the current subject velocity is any one of the
elements in V (e.g., v 1 and v 2), the neighbouring vehicle (white) is not looming, and the collision avoidance
difficulty is zero. In this example, since the subject vehicle is driving faster than the leading vehicle, the current
subject velocity v s ∉V , indicating that the neighbouring is looming regarding the subject vehicle. The distance
from the subject velocity vs to the safe velocity set V (the safety boundary) is v g (the red arrow), the length of
which is the defined collision avoidance difficulty.

3.3.4. PERCEIVED VELOCITY FUNCTION Vi OF A NEIGHBOURING VEHICLE

AND THE SUBJECT VEHICLE CONSIDERING KNOWN ACCELERATION

AND MANOEUVRE UNCERTAINTIES
The collision avoidance difficulty calculated using the actual (deterministic) motion in-
formation (i.e., p i and v i ) (Equation 3.10) presented in the previous section can already
account for most of the perceived risk, which is shown in Section 3.6 (Figure 3.10(e)
and Figure 3.11(e)). However, these calculations overlook how human drivers process
environmental information considering known accelerations and uncertainties. In this
section, we define a perceived velocity function denoted as V shown in Equation (3.2)
for both the subject and the neighbouring vehicles. This function is based on a more
comprehensive understanding, which outputs a perceived velocity v ′

i consisting of three
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components: the actual velocity v i , the velocity derived from the known acceleration
v i ,a and the velocity derived from manoeuvre uncertainties v i ,u . The perceived velocity
yields an adjusted safe velocity set V ′ and thereby a new velocity gap v g .

THE PERCEIVED VELOCITY

The perceived velocity v ′
i is the final output of perceived velocity function V based on

the state of the subject vehicle Xs = (p s , v s , as )T and the state of the neighbouring vehi-
cle Xn = (pn , v n , an)T , which consists of the actual velocity v i , the known acceleration-
based velocity ∆v i ,a and the uncertain velocity ∆v i ,u as shown in Equation (3.2). This
integrated perceived velocity function considers the acceleration and uncertainties, thus
contributing to extra perceived risk. Figure 3.5 illustrates the relationship between the
actual velocity v i , the uncertain velocity ∆v i ,u , the acceleration-based velocity ∆v i ,a

and the final perceived velocity v ′
i . The perceived velocity v ′

i is utilised for computing
perceived risk. The known acceleration-based velocity ∆v i ,a and the uncertain velocity
∆v i ,u will be detailed in Section 3.3.4 and 3.3.4 below.

Figure 3.5: The relationship between the actual velocity v i the uncertain velocity ∆v i ,u , the acceleration
caused velocity change and the perceived velocity v ′

i (i ∈ {s,n}) of the subject vehicle s and the neighbour-
ing vehicle n. In this case, the subject vehicle (red) is passing by a neighbouring vehicle (white). Both vehicles
are decelerating causing acceleration-based velocities ∆v s,a and ∆v n,a (the purple arrows). The uncertain
velocities ∆v s,u and ∆v n,u are pointing to each other. The final perceived velocity v ′

s and v ′
n contain the con-

tribution of the acceleration-based velocity and the uncertain velocity.

THE VELOCITY COMPONENT DERIVED FROM KNOWN ACCELERATION — THE ACCELERATION-
BASED VELOCITY

Previous studies have shown that human drivers consider the acceleration of the sub-
ject and other vehicles during driving [127]. A collision avoidance behaviour model for
drivers achieves 20% more accuracy when the acceleration of other vehicles is consid-
ered [128]. For example, the action of braking by a leading vehicle can initially cause
perceived risk to the following subject vehicle, even if the distance between the vehi-
cles does not close rapidly at the initial stage. The perceived risk may decrease once the
subject vehicle also brakes, even as the gap between the vehicles continues to decrease.

To account for the influence of known acceleration (Assumption 2a), we introduce a
component to the perceived velocity (Equation (3.2), which reflects human drivers’ an-
ticipation of velocity based on the current known acceleration. We name this component
as acceleration-based velocity represented by Equation (3.12).
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∆v i ,a = ai · ti ,a , i ∈ {s,n} (3.12)

where ∆v i ,a represents the component of perceived velocity caused by known accelera-
tion; ai is the current acceleration, and ti ,a is an anticipated time for computation that
varies for the subject vehicle and the neighbouring vehicle. ti ,a is determined by cal-
ibration. The impact of ti ,a duration on the model behaviour depends on the known
acceleration direction. If the known acceleration tends to decrease the gap between two
vehicles, a longer anticipated time results in a higher perceived risk output by the model,
and vice versa.

THE VELOCITY COMPONENT DERIVED FROM MANOEUVRE UNCERTAINTIES — THE UNCER-
TAIN VELOCITY

Assumption 2b and Assumption 2c specify that manoeuvre uncertainties cause addi-
tional perceived risk. For instance, when we pass by a car in the adjacent lane, we un-
consciously shift to the other side of the lane to keep away from the car for safety because
the velocity of the other car can suddenly change [130]. Accordingly, we define an un-
certain velocity perceived by human drivers based on the manoeuvre uncertainties as a
component of the perceived velocity (Equation (3.2).

The uncertain velocity in human driver’s mind caused by the uncertainties of each
vehicle in interaction makes the situation being perceived as more dangerous. Figure
3.6 shows an example of the uncertain velocity and its influence on the velocity set V .

The uncertain velocity exists in all directions on both subject and neighbouring ve-
hicles, but its impact for different directions on perceived risk varies. We assume that
acceleration with a direction reducing the distance between vehicles most strongly in-
creases perceived risk. Hence we only consider this direction in the perceived risk model,
which also reduces computational complexity. This direction is illustrated in Figure 3.5,
with a detailed explanation in B.4.

(a) The uncertain velocity ∆v n,u , the final perceived velocity of the neighbouring vehicle v ′
n and their influence

on safe velocity set V . Note that ∆v s,a , ∆v s,u and ∆v n,a are not taken into account to show only the influence
of the uncertain velocity ∆v n,u on the safe velocity set V and finally the velocity gap v g for collision avoidance
difficulty. v s ∈ V indicates collision avoidance difficulty is originally zero. However, the human driver inside
the subject vehicle perceives an uncertain velocity ∆v n,u (the blue arrow on the neighbouring vehicle) of the
leading vehicle considering the uncertainties, changing the neighbouring vehicle’s velocity from v n to v ′

n (the
yellow dashed arrow on the neighbouring vehicle, which is the perceived velocity of the neighbouring vehicle).
Correspondingly, the velocity set V becomes V ′ that is smaller than V based on the perceived velocity v ′

n , which
leads to v s ∉V ′ causing extra perceived risk.
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(b) The uncertain velocity ∆v s,u and the final perceived velocity ∆v n,u of the subject vehicle. Note that ∆v s,a ,
∆v n,u and ∆v n,a are not taken into account to show only the influence of the uncertain velocity ∆v s,u on the
velocity gap v g for collision avoidance difficulty. v s ∈ V indicates collision avoidance difficulty is originally zero.
However, the human driver inside the subject vehicle perceives an uncertain velocity ∆v s,u (the blue arrow on
the subject vehicle) due to human drivers’ inaccurate control or imperfect control of driving automation, making
the subject velocity change from v s to v ′

s (the yellow dashed arrow on the subject vehicle, which is the perceived
velocity of the subject vehicle). The perceived velocity v ′

s ∉V , causing extra perceived risk.

(c) The perceived velocity set V ′ based on the perceived velocity. Note that ∆v s,a and ∆v n,a are not taken into
account to show only the combined influence of uncertain velocities ∆v s,u and ∆v n,u on the safe velocity V and
the velocity gap v g for collision avoidance difficulty. With the larger perceived subject velocity v ′

s and the smaller
perceived velocity set V ′ simultaneously, v ′

s ∉ V ′. v g is the distance from the perceived subject velocity to the
boundary of the perceived safe velocity set V ′, which is the perceived risk in this chapter.

(d) The legend of subfigures (a), (b) and (c)

Figure 3.6: An example of the uncertain velocity and its influence on the perceived velocity and the velocity set
V . The subject vehicle is following a leading vehicle (50 m ahead) with the same velocity v s = v n = 16.67m/s
and we have the velocity set V according to Equation (3.9). In all cases, v s ∈ V indicating that the collision
avoidance difficulty is originally zero. The velocity ∆v i ,a is not considered due to zero acceleration. This
scenario illustrates that uncertainties can cause drivers to perceive vehicle velocities differently from their
actual values, which can increase the perceived difficulty of collision avoidance, and thus, perceived risk.

Based on the discussion above, we have

∆v i ,u = l · p s −pn

||p s −pn ||
· ri , i ∈ {s,n}, rn = 1 and rs =−1. (3.13)
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where ∆v i ,u ( i ∈ {s,n}) is the uncertain velocity; l is the length of the uncertain velocity
vector which is derived below;

p s−pn
||p s−pn || is a unit vector pointing from the neighbouring

vehicle to the subject vehicle; r determines the direction of the uncertain velocity where
rn = 1 is for the neighbouring vehicle representing the direction from the neighbour-
ing vehicle to the subject vehicle, and rs =−1 is for the subject vehicle representing the
opposite direction.

According to Assumption 2b and 2c, the manoeuvre uncertainties are presented as
an uncertain acceleration, which is assumed to follow Gaussian distributions as moti-
vated under Assumption 2, and this acceleration will remain constant over a short pe-
riod of time. Hence, given a specific duration, the uncertain velocity ∆v i ,u ( i ∈ {s,n})
also follows Gaussian distributions. With the consideration of physical restrictions of
the vehicle velocity, the Gaussian is

vi ,u,X ∼ D(vi ,u,X |0,σi ,X , f b,bb)

vi ,u,Y ∼ D(vi ,u,Y |0,σi ,Y , lb,r b)
(3.14)

where vi ,u,X and vi ,u,Y are the uncertain velocity in X and Y directions; D is the proba-
bility density function of the uncertain velocity in each direction. f b, bb, l b, r b are the
forward, backward, left and right bounds for the uncertain velocity in the density func-
tion , which are set to 50 m/s, −14 m/s, 8.5 m/s and −8.5 m/s respectively in this chapter
[134]. The truncated distribution D becomes

D(vi ,u,X |0,σi ,X , f b,bb) =
{ 1

σi ,X
N (

vi ,u,X
σi ,X

)

N (
f b−vi ,X
σi ,X

)−N (
bb−vi ,X
σi ,X

)
, bb É vi ,u,X É f b, i ∈ {s,n}

0, otherwise

D(vi ,u,Y |0,σY , lb,r b) =
{ 1

σi ,Y
N (

vi ,u,Y
σi ,Y

)

N (
lb−vi ,Y
σi ,Y

)−N (
r b−vi ,Y
σi ,Y

)
, r b É vi ,u,Y É lb, i ∈ {s,n}

0, otherwise

(3.15)

where N is the probability density function of the Gaussian distribution and N is its
cumulative distribution function.

To obtain the final uncertain velocity, its length and direction should be considered
simultaneously. Hence, we use the mathematical expectation of Equation (3.13) as the
length of the uncertain velocity, which can be calculated as follows

E(||∆v i ,u ||) =
+∞∫
0

P

(
∆v i ,u

∣∣∣∣ p s −pn

||p s −pn ||
, l

)
· l dl

=
+∞∫
0

D(vi ,u,X |0,σi ,X , f b,bb) ·D(vi ,u,Y |0,σi ,Y , l b,r b) · 1

P
(

p s−pn
||p s−pn ||

) · l dl

(3.16)

This conditional probability is denoted by P

(
∆v i ,u

∣∣∣∣ p s−pn
||p s−pn || , l

)
, representing that an

uncertain velocity v i ,u with length l is on the line connecting the subject vehicle and the
neighbouring vehicle. To ensure that this direction-specific probability is considered,
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we divide the product of the two probability density functions, D(vi ,u,X |0,σi ,X , f b,bb)

and D(vi ,u,Y |0,σi ,Y , lb,r b), by the aforementioned conditional probability P
(

p s−pn
||p s−pn ||

)
.

This division normalises the probability densities and allows for the proper calculation
of the mathematical expectation of the length of the uncertain velocity E(||∆v i ,u ||).

Accordingly, the uncertain velocity is

∆v i ,u = E(||∆v i ,u ||) ·
p s −pn

||p s −pn ||
· ri , i ∈ {s,n}, rn = 1 and rs =−1. (3.17)

Note that this uncertain velocity is not the most probable one but it is the probabilistic
average in the most dangerous direction. Although the integral is expressed in an ana-
lytical format, integral function is used in MATLAB for numerical evaluation.

3.3.5. WEIGHTING FUNCTION W
The subject velocity influences perceived risk, as it affects the accident rate and the con-
sequence of a crash. The relationship between velocity and crash outcome is related to
the kinetic energy (Ek = 1

2 mv2) released during a collision but the relationship is not a
simple linear mapping. A scaling function ranging on [0,1] is needed to show the rela-
tionship between the subject velocity and perceived risk. Previous studies tried to ex-
amine the relationship between the subject velocity and the crash outcome based on
real-world crash data and found that a power function best fits the relationship [135].
We employ a power function proposed by Finch et al. [136] to describe such a relation-
ship:

W =β
( ||v s ||

vref

)α
(3.18)

where ||v s || is the subject velocity; vref is a reference velocity and it can be set as the
velocity limit in specific conditions; α is the power coefficient. This equation also takes
into account the mass ratio between neighbouring and subject vehicle. A heavier and
larger vehicle will induce a higher perceived risk as it will yield higher subject vehicle ac-
celerations in case of impact. Building upon the PPDRF [40] we introduce the additional
scaling β= Mn

Ms+Mn
where; Ms and Mn are the mass of the subject vehicle and the neigh-

bouring vehicle. Given a speed limit in a specific scenario and a specific vehicle type, the
W ∝ vαs ranging on [0,1] if ||v s || stays below vref, which can be used as a weight for the
final perceived risk based on functions A and V as shown in Equation (3.1).

3.3.6. PCAD MODEL PARAMETERS
Table 3.3 summarises the parameters of the PCAD model to be calibrated. Details re-
garding the avoidance difficulty function A , the perceived velocity function V , and the
weighting function W can be found in sections 3.3.3, 3.3.4, and 3.3.5, respectively.
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Table 3.3: The key parameters of PCAD model

Parameters Explanations
σi ,X , σi ,Y Standard deviations for uncertain velocity distributions of the subject (i = s) and

neighbouring (i = n) vehicles
ti ,a An anticipated time for acceleration-based velocity of the subject (i = s) and

neighbouring (i = n) vehicles
α The exponent of the velocity weighting function

3.4. ANALYTICAL MODEL PROPERTIES
This section offers an analysis of the PCAD model and the three baseline models. Table
3.2 in Section 3.2.2 summarises model properties, covering aspects such as dimension,
the usage of distance, relative motion, acceleration, subject speed, manoeuvre uncer-
tainties, crash consequences, and usability on curved lanes. In summary, PCAD is a
comprehensive model based on Risk Allostasis Theory which considers all aspects listed
in Table 3.2. It is a 2-D model capturing both longitudinal and lateral perceived risk, and
can also be used on curved lanes.

For an intuitive understanding, we visualise the perceived risk variations of the four
models in a 2-D coordinate system describing the relative position of a neighbouring
vehicle. As demonstrated in Figure 3.7, perceived risk varies with different relative veloc-
ities (Figure 3.7b), different decelerations (Figure 3.7c), and different subject velocities
(Figure 3.7d). Figure 3.7a provides the legend for these diagrams.

The PCAD model indicates that perceived risk amplifies as an object or neighbouring
vehicle nears the subject vehicle, demonstrating a sharp rise both longitudinally and
laterally. The non-linear relationship caused by non-linear looming detection in PCAD
prevails in the other three typical models but is described by different functions such as
Gaussian (i.g., the lateral risk in PPDRF and DRF), Exponential (i.g., the potential risk in
PPDRF), logarithmic (i.g., the risk in RPR) and Quadratic functions (i.g., the longitudinal
risk in DRF). Note that RPR cannot capture perceived risk in the lateral direction since it
is only defined in the same traffic lane.

PCAD shows that human drivers perceive more risk when approaching an object
faster. Compared to the other three models, PCAD and PPDRF can output different per-
ceived risk values facing different relative velocities (Figure 3.7b). RPR and DRF do not
include velocity information of the neighbouring vehicles or objects.

Reacting to neighbouring vehicles’ velocity changes (e.g., braking) is a common task
in daily driving. PCAD can clearly describe effects on perceived risk (Figure 3.7c) where
an =−8m/s2 leads to the highest perceived risk and an = 0 causes the lowest perceived
risk. RPR and PPDRF also capture effects of acceleration but DRF cannot indicate the
change of perceived risk caused by a neighbouring vehicle’s deceleration due to a lack of
acceleration information in the model.

The subject velocity significantly influences perceived risk. In Figure 3.7d, PCAD
demonstrates that, given the same following gap, human drivers perceive more risk with
a higher subject velocity, which is similar to PPDRF and DRF. However, RPR does not
contain subject speed information in the model and cannot capture the perceived risk
variance in this condition.
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(a) Legend and explanation of figures (b), (c), (d). Surfaces represent the computed perceived risk value of different models as
function of the relative 2D position of the subject vehicle (red) and neighbouring vehicle (white). The subject vehicle is at the
origin (0,0), moving with velocity v s,X = 100km/h along the X-axis. The neighbouring vehicle’s velocity is v n,X = 50km/h,
also along the X-axis. In the left figure, the neighbouring vehicle at (40,−10) implies a front-right position relative to the
subject vehicle, indicating low perceived risk. In the right figure, the neighbouring vehicle at (10,0) shows the subject vehicle
approaching the leader with a relative velocity ∆v = v s,X − v n,X = 50km/h and a longitudinal gap of 10m, resulting in high
perceived risk.

(b) The effect of relative velocity on human driver’s perceived risk. The constant subject vehicle velocity is vs,X = 100 km/h
but the neighbouring vehicle has different velocities vn,X ; no acceleration of the subject vehicle and the neighbouring vehicle
as,X = an,X = 0. Note that PPDRF’s kinetic risk instead of potential risk is used here for a more understandable visualisation.
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(c) The effect of neighbouring vehicle’s known acceleration (braking) on human driver’s perceived risk. The velocity of the
subject vehicle and the neighbouring vehicle are equal vs,X = vn,X = 100 km/h; the subject vehicle has no acceleration as,X = 0
but the neighbouring vehicle’s known acceleration (an,X ) varies.
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(d) The effect of subject velocity. Human driver’s perceived risk. The subject vehicle and the neighbouring vehicle have equal
velocity (vs,X = vn,X ) varying from 20 km/h-100 km/h; no acceleration of the subject vehicle and the neighbouring vehicle
as,X = an,X = 0.

Figure 3.7: The effect of relative velocity (b), the acceleration of the neighbouring vehicle (c) and the subject
velocity (d) with legend in (a)

3.5. MODEL EVALUATION METHOD
To conduct a comparative evaluation of the proposed model and the baseline models,
model calibration with empirical data is indispensable. This section details the experi-
mental datasets, calibration method, and performance indices for the models.

3.5.1. DATASET INTRODUCTION
We employ two datasets for model calibration and evaluation. The first dataset (Dataset
Merging) was collected in our previous simulator experiment where the subject auto-
mated vehicle reacts to merging and hard-braking vehicles. The experiment simulated
18 merging event types with different merging distances and braking intensities on a 2-
lane highway [117]. Figure 3.8 shows an example of the simulated events during the ex-
periment. The participants were asked to monitor the scenario as fall-back ready drivers
for an SAE Level 2 automated vehicle. They used a pressure sensor on the steering wheel
to provide perceived risk ratings from 0-10 continuously in the time domain (see the
lower row in Figure 3.8), which are the continuous perceived risk data. After each event,
the participants were also asked to give a verbal perceived risk rating from 0-10 regard-
ing the previous event, which is the discrete event-based perceived risk data. The cor-
responding kinematic data (e.g. position, speed and acceleration of the subject vehicle
and neighbouring vehicles) were collected simultaneously.

The second dataset (Dataset Obstacle Avoidance) includes drivers’ verbal perceived
risk ratings (i.e., unlimited numbers) and steering angle signals when the participants
face static obstacles suddenly appearing in front the subject vehicle driving at 25m/s
in manual driving mode [36]. Figure 3.9 shows the distribution of the obstacles. The
corresponding vehicle kinematic data and the positions of the obstacles were recorded
at the same time.

The following reference data is utilised for model calibration:

• Dataset Merging: the event-based perceived risk rating and the peak of the con-
tinuous perceived risk in specific events
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• Dataset Obstacle Avoidance: the event-based perceived risk, and the peak of steer-
ing wheel angle in specific events

Figures B.2 and B.3 in Appendix B.2 illustrate the kinematic data from the two datasets,
along with the continuous risk predicted by PCAD.

Figure 3.8: The experiment where Dataset Merging was collected. Upper row: Video stream of a merging with
hard braking event simulated in the experiment. Lower row: Corresponding perceived risk values indicated by
a participant with the pressure sensor.

Figure 3.9: Dataset Obstacle Avoidance, with stationary obstacle positions from Kolekar et al. [36]

3.5.2. MODEL CALIBRATION
While our aim is to develop general models considering the average characteristics of all
participants, we cannot ignore the influence of group features and scenarios. To opti-
mise performance, we perform a dataset-level calibration of parameters for all models.
We have RMSEi defined as

RMSEq =
√∑K

k=1

(
ŷk − yk

)2

K
(3.19)

Here, RMSEq denotes the root mean square error between the collected perceived risk
data and the model output. For Dataset Merging, q = event and q = peak represent the
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RMSE for event-based perceived risk and the peak of continuous perceived risk respec-
tively; for Dataset Obstacle Avoidance, q = event and q = peak denote the RMSE for
event-based perceived risk and the maximum steering wheel angle separately. In Equa-
tion (3.19), ŷk represents the model output, while yk refers to the perceived risk rating.
The variable k, which falls within the set of 1,2,3, ...,K , represents the event number in
the specific dataset. K signifies the number of available events in different datasets, with
K = 414 for Dataset Merging and K = 2496 for Dataset Obstacle Avoidance. Note that the
first sample point of the kinematic data when the obstacle suddenly appears in Dataset
Obstacle Avoidance is used for the calibration since the participants were asked to give a
verbal perceived risk rating as soon as the obstacle appeared.

The calibration aims to minimise
∑

RMSEq for all models by tuning the key model
parameters based on perceived risk and corresponding kinematic data. Given the vari-
ability in perceived risk data ranges across the two datasets and the differing output
ranges of the four models, min-max feature scaling is employed to normalise both per-
ceived risk data and model outputs to a uniform range of [0,10]. This normalisation
facilitates direct comparison and calibration, as encapsulated in Equation (3.20).

ẑk = zk − zmin

zmax − zmin
×10 (3.20)

where ẑk represents the scaled value, either model output or perceived risk data. For
model outputs, zmax and zmin are the global maximum and minimum values across all
outputs for a specific model per dataset. In contrast, for perceived risk ratings within the
Dataset Obstacle Avoidance, the scaling is conducted individually for each participant,
reflecting the participant-specific range of ratings. This distinction is crucial, as it allows
for the individual scaling of perceived risk ratings in the Dataset Obstacle Avoidance due
to its unrestricted numerical range and participant-specific variation, while maintaining
a universal scaling framework for model outputs and the already bounded ratings with
the range [0, 10] in Dataset Merging.

This scaling approach ensures that both participant-specific variations in perceived
risk assessment and the diverse output ranges of different models are appropriately nor-
malised for accurate calibration and comparison.

3.5.3. PERFORMANCE INDICATORS
We use five indicators to evaluate the model performance: Correlation, Model error, De-
tection rate, Computation cost, and Linear Time Scaling Factor.

• Correlation The predicted perceived risk has to be correlated with the event-based
perceived risk. We use R-Square to quantify how well model outputs fit the real
perceived risk. Since the perceived risk output by the models is linearly rescaled
to 0-10 (Equation (3.20)), different ranges of perceived risk data or model outputs
have no influence on R-Square in our case.

• Model error We use Root Mean Squared Error (RMSE) to quantify a model’s overall
Model error, which is the same as the model calibration criterion (Equation (3.19)).
This indicator reflects the model’s ability to compute the overall perceived risk in
a certain dataset. A model with a smaller RMSE can more accurately predict the
overall perceived risk for a given scenario.
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• Detection rate The Detection rate represents the model’s ability to detect an event’s
risk that is also perceived by human drivers. We defined Detection rate as in Equa-
tion (3.21)

Rdet =
Kdetected

Kevent
×100% (3.21)

where Kdetected represents the number of events where the model manages to de-
tect the risk with non-zero output; Kevent is the total number of the events where
human drivers gave perceived risk ratings in a certain dataset with Kevent = 414
for Dataset Merging and Kevent = 2496 for Dataset Obstacle Avoidance. In this
chapter, every event carries a ’risk’ due to experimental settings, which simulate
scenarios where some level of risk is always present. Consequently, the detection
of an event, reflected by a non-zero output, implies the recognition of this risk.
Therefore, a higher detection rate correlates with better model performance, as it
indicates the model’s consistent ability to recognise the presence of risk in every
event.

• Computation cost It is essential that all models possess real-time risk computa-
tion capability, so the computation cost is critical. More complex models may offer
a better performance in other aspects such as model errors but tend to take longer
to compute. We define the computation cost as the model’s computation time
per computation step. If the time consumption per computation step exceeds the
on-board computation capability, it means that the computation of perceived risk
cannot be completed in real-time.

The above metrics validate the event-based perceived risk. We also compared the
continuous perceived risk measured for Dataset Merging. However, we observed that
participants pressed the button following a fixed pattern regardless of the actual real-
time risk level. This suggests that the timing of their responses was more likely influ-
enced by the given instructions and their interpretation, rather than reflecting a valid
measure of continuous perceived risk over time. Consequently, these responses, al-
though appearing as a ’continuous perceived risk’, do not offer reliable time-domain in-
formation. Due to this lack of time-domain validation, we have chosen not to report on
the validation of continuous perceived risk.

3.6. MODEL EVALUATION RESULTS
In this section, we illustrate the applicability of the four models and evaluate their perfor-
mance with the performance indicators introduced previously regarding the two datasets.

3.6.1. MODEL CALIBRATION RESULTS
The calibration is performed separately for the two datasets. According to the model
structure and dataset features, the calibrated parameters are listed in Table 3.4.

3.6.2. PERFORMANCE EVALUATION RESULTS
We test the four models using both datasets including the perceived risk data and the
corresponding kinematic data with the calibrated parameters shown in Table 3.4. The
following sections present different aspects of performance.
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CORRELATION

The correlation between predicted and measured event-based perceived risk data plays
a crucial role in assessing the performance of risk assessment models. This is particularly
important given the uncertainty in defining the unit of perceived risk. Figure 3.10 and
Figure 3.11 display the correlation between the predicted perceived risk and event-based
perceived risk for Dataset Merging and Dataset Obstacle Avoidance respectively. The
adjusted R-Square is calculated based on the averaged event-based perceived risk across
the same event type ( in Figure 3.10 and Figure 3.11 ).

In both datasets, the PCAD model demonstrates a stronger correlation with event-
based perceived risk data compared to other models. Furthermore, the regression mod-
els RPR and DRF exhibit strong performance in Dataset Merging and Dataset Obstacle
Avoidance, respectively, for which they were originally developed.

MODEL ERROR

As discussed in Section 3.5.3, the Root Mean Square Error (RMSE) is an indicator of the
overall Model error. Table 3.5 presents the RMSE values for all four models across the
two datasets.

The RMSE values (both event and peak) reveal that the PCAD model achieves a com-
parable performance level to the regression models (e.g., RPR in Dataset Merging and
DRF in Dataset Obstacle Avoidance), albeit with a slightly larger model error. In Dataset
Merging, the lower RMSE values for PCAD and RPR suggest better performance, as these
models directly incorporate the neighbouring vehicle’s acceleration. In Dataset Obstacle
Avoidance, the lower RMSE values for PCAD and DRF indicate better performance, as
these models also consider lateral perceived risk, resulting in reduced model error when
applied to a 2-D dataset (Table 3.5). The PPDRF model was originally designed to evalu-
ate actual collision risk in traffic, and was not previously calibrated or validated. We now
performed such a calibration and demonstrate moderate performance in both datasets.

DETECTION RATE

As per Equation (3.21), the detection rates for the four models across both datasets are
presented in Table 3.5. In Dataset Merging, the merging vehicle primarily poses longitu-
dinal risk in the same lane. Consequently, all models are capable of detecting dangerous
events, regardless of whether they are 1-D or 2-D models. However, in Dataset Obstacle
Avoidance, the obstacles are dispersed across a 2-D plane. As a result, only models that
account for lateral risk can effectively identify dangerous vehicles outside the forward
path. This leads to a lower detection rate for the RPR model, while the other three mod-
els are able to recognise all dangerous events that human drivers also perceive as risky.
Note that Figure 3.11(e) displays outputs with marginal values that appear to be zero but
are, in fact, detected by PPDRF.

COMPUTATION COST

Table 3.5 presents the computation cost for different models, tested on a workstation
with an Intel Core i7-8665U 1.9Ghz processor and 8GB RAM. Generally, models that take
more factors into account require longer computation times. In both datasets, RPR is
the fastest model, as it only involves logarithmic calculations.
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In Dataset Merging, PCAD is the most time-consuming model since it relies on a
grid search to identify the optimal velocity gap vector to the safe velocity region. PPDRF
requires spatial overlap computations and multiple integrals over variations of accelera-
tion probability density function in the overlap area, making it a time-intensive process.
Although DRF involves discretising a 2D area of an object or a vehicle with a grid and
summing the risk values over each grid cell to obtain the final perceived risk, its over-
lap computations are simpler than those of PPDRF, as the risk field and severity field are
static and no motion prediction of neighbouring vehicles is needed.

In Dataset Obstacle Avoidance, PPDRF takes less time than DRF and PCAD, as it only
computes potential risk, which is a simpler process compared to the kinetic risk compu-
tation in Dataset Merging.

SUMMARY OF MODEL PERFORMANCE EVALUATION

Based on the results discussed above, we utilise radar charts to illustrate the performance
of each model across various aspects, as shown in Figure 3.12. Generally, PCAD demon-
strates strong performance in terms of overall model error, R-square, and detection rate.
However, the primary drawback of PCAD is its high computation cost, which results from
its complexity. The regression models (i.e., RPR in Dataset Merging and DRF in Obsta-
cle Avoidance) exhibit the best performance in their respective datasets. We remark that
the advantage of PPDRF in capturing the manoeuvre uncertainties of the surrounding
vehicles vanishes in the second dataset due to the specific experimental setting. As a
result, the PPDRF models used in the two datasets are two different models. This largely
explains the poor performance of PPDRF, albeit it clearly showed advantages in the ana-
lytical model properties.

It is worth mentioning that PCAD demonstrates consistent performance across both
datasets. We also conducted cross-validation between the two datasets, in which the
four models and their parameters were calibrated using one dataset and then used to
predict perceived risk in the other dataset. PCAD performs quite well even without re-
calibration where as seen in Figure B.4, Figure B.5, and Figure B.6 in Appendix B.3, PCAD
maintains its strong performance in cross-validation. Additionally, this suggests that the
calibration process has a low risk of overfitting, further highlighting the robustness of the
PCAD model.
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Table 3.4: Calibrated parameters for all models

Model Parameters Explanation
Values for

Dataset
Merging

Values for
Dataset

Obstacle
Avoidance

PCAD[1]

σn,X
The standard deviation in X of the velocity
Gaussian of a neighbouring vehicle (m/s)

4.28 /

σn,Y
The standard deviation in Y of the velocity
Gaussian of a neighbouring vehicle (m/s)

3.86 /

σs,X
The standard deviation in X of the velocity

Gaussian of the subject vehicle (m/s)
0.80 6.58

σs,Y
The standard deviation in Y of the velocity

Gaussian of the subject vehicle (m/s)
1.70 1.20

ts,a
The anticipated time for the acceleration-based

velocity of the subject vehicle (s)
0.13 /

tn,a
The anticipated time for the acceleration-based

velocity of a neighbouring vehicle (s)
0.01 /

α
The exponent of the power function in velocity

weighting function
0.52[2] /

RPR

C0 The intercept in the regression model 12.10 20.70
C1 The coefficient of gap to the leading vehicle -3.70 -3.68

C2
The coefficient of leading vehicle’s braking

intensity
-0.36 /

PPDRF

σ̃x

The standard deviation of longitudinal
acceleration distribution of neighbouring

vehicle (m/s2)
2.01 /

σ̃y
The standard deviation of lateral acceleration

distribution of neighbouring vehicle (m/s2)
0.02 /

D The steepness of descent of the potential field / 0.14

DRF[3]

s
The steepness of the height parabola of the risk

field
0.15 0.005

tl a Human driver’s preview time (s) 1.20 8.12
m The rate of the risk field width expanding 3.98×10−8 3.66×10−4

c The initial width of the DRF (m) 0.45 1.10
1 The experimental design of two datasets, featuring only one category of obstacle or other road users, means that the mass
ratio β remains constant. Consequently, in the calibration phase, this ratio is set to 1.
2 This is the calibrated value regarding the specific dataset. Due to the lack of subject velocity change,α has limited influence
on Dataset Merging. α ranging on [0, 2.5] leads to an R-square ranging on [0.80, 0.90]. For Dataset Obstacle Avoidance, αwas
set to 0 since it almost has no influence. Additionally, the vref in the weighting function W was set to 27.78 m/s for Dataset
Merging and 25 m/s for Dataset Obstacle Avoidance.
3 The best performance for DRF was obtained when the subject velocity v s,X in Equation (B.9) was fixed to its initial value
27.78m/s when the vehicle decelerated for Dataset Merging. For Dataset Obstacle Avoidance, the subject velocity v s,X was a
constant 25m/s.
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(a) PCAD (Adjusted R-Square = 0.90) (b) RPR (Adjusted R-Square = 0.90)

(c) PPDRF (Adjusted R-Square = 0.90) (d) DRF (Adjusted R-Square = 0.67)

(e) PCAD with only deterministic motion information
(Adjusted R-Square = 0.58)

Figure 3.10: Predicted and measured event-based perceived risk in Dataset Merging. “#” indicates individual
event-based perceived risk and “ ” indicates the averaged event-based perceived risk across the same event
type, for which the Adjusted R-Square is also given.
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(a) PCAD (Adjusted R-Square = 0.90) (b) RPR (Adjusted R-Square = 0.38)

(c) PPDRF (Adjusted R-Square = 0.50) (d) DRF (Adjusted R-Square = 0.90)

(e) PCAD with only deterministic motion information
(Adjusted R-Square = 0.81)

Figure 3.11: Predicted and measured event-based perceived risk in Dataset Obstacle Avoidance. “#” indicates
individual event-based perceived risk and “ ” indicates the averaged event-based perceived risk across the
same event type. Note that in (c), there are many dots with small values but non-zero, indicating that they are
actually detected by PPDRF.
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Table 3.5: Model performance represented by the performance indicators

Dataset Performance indicators PCAD RPR PPDRF DRF

Dataset Merging

RMSEevent 2.25 2.18 2.76 2.58
RMSEpeak 3.41 3.39 3.73 3.35

Adjusted R-Square 0.90 0.90 0.90 0.67
Detection rate 1.00 1.00 1.00 1.00

Computation cost (ms)[1] 2.79 1.77×10−4 6.14[5] 1.30

Dataset Obstacle Avoidance

RMSEevent 2.27 3.20 3.34 2.17
RMSEpeak 2.71 3.84 4.02 2.61

Adjusted R-Square 0.90 0.38 0.50 0.90
Detection rate 1.00 0.09[4] 1.00 1.00

Computation cost (ms) [2] 6.70[3] 2.01×10−4 1.08×10−2 1.22
1 The average value of computing 124614 steps.
2 The average value of computing 349440 steps.
3 PCAD consumed more time in Dataset Obstacle Avoidance because the searching algorithm worked in a larger
searching area to find the velocity gap v g .
4 Only the vehicles directly in front of the subject vehicle can be detected by RPR, which leads to a low detection
rate. See [36] for more experiment details.
5 PPDRF consumed much more time in Dataset Merging because the model contains numerical integration when
facing moving vehicles.

(a) Performances in Dataset Merging (b) Performances in Dataset Obstacle Avoidance

Figure 3.12: Radar charts of model performance indicators in two datasets

3.7. DISCUSSION
In this paper, we present a computational perceived risk model based on the Risk Allosta-
sis Theory [78], [121], [137], capturing task difficulty using the gap between the current
velocity and the safe velocity region in 2D. Our model quantifies event-based perceived
risk and the peak of continuous perceived risk in both longitudinal and lateral directions.
We validated the model on two datasets of human drivers’ perceived risk and compared
its performance with three baseline perceived risk models. Our work contributes to ad-
dressing the challenge of perceived risk computation for SAE Level 2 driving automation,
while also illustrating the mechanisms underlying human drivers’ risk perception.

Traditional perceived risk models consider collision probability and the collision con-
sequence [138], such as DRF and PPDRF, while our PCAD model is developed based
on the concept of potential collision judgement using looming, which originates from
aerospace and maritime experience [123]. PCAD demonstrates improved performance
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in estimating perceived risk in various driving conditions, aligning with the argument of
McKenna [139] and Rundmo and Nordfjærn [140] that drivers are incapable of monitor-
ing infrequent event probabilities, thus supporting the underlying theory of PCAD.

The demonstrated better performance of our PCAD model unveils new insights into
perceived risk. Firstly, PCAD considers all motion information in Table 3.2, highlighting
the importance of position, velocity, and acceleration for risk perception. Secondly, the
models that can capture lateral risk lead to a higher detection rate in Dataset Obstacle
Avoidance, indicating that perceived risk is 2-D and human drivers perceive the risk from
all directions in a 2-D plane. Thirdly, manoeuvre uncertainties of the subject vehicle and
other road users cause extra perceived risk, which is supported by Kolekar et al. [36]
and Ding et al. [130]. Lastly, perceived risk is a dynamic concept and varies with the
changing traffic conditions as illustrated in Figure 3.7, which presents the perceived risk
variations in three distinct driving conditions (i.g., different relative velocities, subject
velocities and accelerations). This observation motivates the need for models, such as
the proposed PCAD model, which can adjust to varying driving scenarios even without
recalibration.

It is plausible that drivers associate trucks with higher threats compared to cars, and
tend to maintain greater distances accordingly. Our model incorporates this by adjust-
ing perceived risk levels to the mass ratio. Furthermore, the distance between reference
points on neighbouring vehicles also affects the model’s output. A larger vehicle like a
heavy truck will have reference points that are farther apart, resulting in a smaller safe
velocity set and consequently, a higher perceived risk. Our model can thus explain the
cautious behaviour when driving around trucks, which can lead to more realistic assess-
ment of perceived risk.

We note that our model has limitations. There is only one traffic object considered
in this chapter. If multi-road users or even infrastructure is added, PCAD still has the
potential to estimate perceived risk. In that case, we need to compute the potential col-
lision avoidance difficulty for multiple neighbouring vehicles considering them simul-
taneously. Based on this we calculate the comprehensive safe velocity set and derive the
total perceived risk.

The PCAD model’s identification of the minimal velocity change v g does not ac-
count for drivers’ tendency to assign different weights to braking and steering based on
the driving experience and situational complexity. This anisotropic weighting in driver’s
decision-making is not captured by the current model. Exploring this difference presents
a potential opportunity to improve the PCAD model to more accurately simulate real-
world driver behaviour and improve its applicability in safety-critical scenarios.

It is important to acknowledge that integrating advanced motion prediction tech-
niques into models assessing collision avoidance and perceived risk enhances their pre-
dictive accuracy. Our model, within its current scope, incorporates aspects of motion
prediction through the inclusion of acceleration-based velocity and uncertain velocity,
offering a simplified but effective approach to understanding driving dynamics. The
primary objective of this research has been to establish a foundational model capable
of predicting perceived risk via collision avoidance difficulty. This aim has shaped our
methodological choices, balancing model complexity with practical applicability. While
there are limitations associated with the simplified approach to motion prediction, these
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do not diminish the contributions of our work. Instead, they highlight areas for future
research and development, suggesting paths for incorporating more advanced motion
prediction methodologies to further enhance the model’s precision and usefulness in
studies on perceived risk.

Regarding perceived risk data, Dataset Merging covers human driver’s perceived risk
with SAE Level 2 driving automation where drivers need to monitor the system and en-
vironment and be ready to intervene. This makes this data suitable to assess perceived
safety when using automation, but the lateral risk is not systematically explored. Dataset
Obstacle Avoidance explores human drivers perceived risk data in 2-D, including lateral
perceived risk. However, this dataset is collected from human-automation transitions
(i.g., human drivers’ taking-over process in this case), which may cause bias in auto-
mated driving conditions. Additionally, the objects in the experiment are fixed and sud-
denly displayed during driving. The additional perceived risk caused by surprise cannot
be ignored.

Dataset Merging measured perceived risk on a scale from 0 to 10 for no to very high
risk, while Dataset Obstacle Avoidance captured perceived risk as a non-negative real
number without predetermined upper limit. To facilitate comparison, all results from
Dataset Obstacle Avoidance and all models were scaled to 0-10 to match the scale used in
Dataset Merging. More specific scales of perceived risk can be developed for experimen-
tal studies, including factors such as accident risk and severity, and the driver’s tendency
or need to intervene and overrule the driving automation.

To further advance perceived risk modelling, we recommend collecting more per-
ceived risk data in various scenarios through online surveys with videos, simulator ex-
periments and on-road observations. Such additional data can help to assess the validity
of the PCAD model also in multi-vehicle interactions, and infrastructure interactions in-
cluding curve negotiation. Additional data can also serve to examine perceived risk at
different driving automation levels should be examined in the future. Moreover, inter-
nal HMIs have positive effects in reducing human drivers’ perceived risk and the per-
ceived risk modelling will be further improved to capture different internal HMI condi-
tions [141], [142]. Our PCAD model can also be used as a cost function, a constraint, or a
reference of perceived risk in driving automation decision making, trajectory planning,
or controller design, enhancing trust [81] and acceptance.

3.8. CONCLUSIONS
In this chapter, we have formulated, calibrated, and validated a novel computational
perceived risk model, and compared its performance with three well-established mod-
els across two different datasets. Our findings reveal valuable insights into the under-
standing and quantification of perceived risk in various driving situations. The key con-
clusions drawn from our analysis are as follows: (1) Driving task difficulty serves as an
effective indicator of perceived risk; (2) Perceived risk is two-dimensional, originating
from both longitudinal and lateral directions, and exhibits a non-linear increase as the
distance to surrounding vehicles decreases; (3) Incorporating uncertainties in the model
is crucial for an accurate representation of perceived risk; (4) Perceived risk is dynamic
and changes with driving conditions.
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AUTOMATED VEHICLES THROUGH

140K RATINGS

Automated vehicles offer a potential solution to improve road safety, but the insufficient
understanding of driver’s perceived risk hinders the acceptance of automated driving. This
chapter reveals factors determining the perceived risk dynamics during vehicle interac-
tions using a novel and large-scale online survey. We obtained time-continuous perceived
risk data from more than 140k ratings by 2,164 participants. A total of 105 events was cre-
ated, including merging, hard braking, and lane changes on motorways, while systemati-
cally varying multiple control parameters (such as relative speed and distance) to achieve
different levels of event criticality. Our analysis, using deep neural networks, demonstrates
that manoeuvre uncertainties of surrounding road users are crucial in shaping perceived
risk, in addition to proximity and relative velocity. Our results also show that the influ-
ence of these factors of perceived risk is non-stationary and this non-stationarity is well
captured by deep neural networks but not by existing (physics-based) models. This com-
prehensive analysis provides insights into the temporal dynamics of perceived risk, guid-
ing the future development of automated vehicles to improve user subjective safety.

The content of this chapter is prepared for submission as
He, X., Li, Z., Wang, X., Happee, R., & Wang, M. “Reading minds on the road: Decoding perceived risk in
automated vehicles through 140K ratings,” in revision.
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4.1. INTRODUCTION
Road accidents cause around 1.19 million deaths and up to 50 million injuries globally
every year [113]. Automated vehicles have attracted substantial attention due to their
potential to improve road safety with advanced sensing and control systems [2], [143].
Despite their promise, AVs have yet to prove themselves as a definitive solution to road
safety. One key hurdle stems from user interaction with AVs - how we, as drivers and
passengers, perceive risks when using the system on the road [9], [20], [21], [144]. Such
a subjective assessment of a possible negative outcome, known as perceived risk, affects
individual choices and reflects a major challenge in the advancement of AVs [11]–[14].
This highlights the importance of addressing perceived risk of AV users when interacting
with this technology on the road [35], [117].

Substantial efforts have been made to investigate perceived risk in AVs, particularly
exploring how factors such as visibility [145], [146], weather conditions [69], [147], driv-
ing experience [33], personality [148] and driving environment [54], [149] shape per-
ceived risk. While these studies have shed light on contributing factors and their effect
on perceived risk, they typically analyse perceived risk after one or more events with
(critical) vehicle interactions. The event-based perceived risk does not capture the risk
evolution prior to the event and hence only impart partial understanding of risk percep-
tion [36], [110], [117], [150]. To effectively manage perceived risk, it is essential to dy-
namically analyse it in real time, aligning with the driving behaviours of AVs. This leads
to our primary goal of this chapter: to reveal how different factors dynamically affect
perceived risk during driving.

Current technology does not yield robust direct analysis of the brain to measure per-
ceived risk [151]. Therefore, we first need subjective perceived risk evaluations in dif-
ferent driving conditions, specifically, time-continuous perceived risk data, to study the
dynamic nature of perceived risk. Unfortunately, there is no continuous observation
of perceived risk at present. As a psychological concept, perceived risk in AVs is com-
monly measured by questionnaires after rides or based on public knowledge [9], [11],
[20], [21]. These methods offer but a static snapshot of perceived risk, falling short of
capturing perceived risk’s dynamic nature. A few studies have measured perceived risk
in real time during driving or by referencing a specific video frame [36]–[38], [45], but
these remain limited to singular moments. Innovative approaches such as sliders [69]
and pressure buttons [110], [117] have been introduced for continuous measurement
of perceived risk, but validation mainly refers to peak signals reflecting the highest per-
ceived risk within an event. To bridge this continuous measurement gap, researchers
have explored physiological signals such as the galvanic skin response (GSR) and heart
rate changes through electrocardiogram (ECG) to indicate perceived risk in various traf-
fic situations [110], [117], [152]–[155]. Pupil dilation, reactive behaviours such as braking
and hand position on the steering wheel have also been examined as potential perceived
risk indicators [34], [75], [117], [141], [156]–[160]. Although these methods suggest the
possibility of continuous measurement of perceived risk, their precision remains ques-
tionable.
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(a). Design of driving scenarios, events and the online questionnaire. Four driving scenarios were designed: The subject
vehicle reacts to a merging and hard-braking vehicle (MB); the subject AV reacts to a hard-braking vehicle (HB); the subject
vehicle reacts to merging vehicles with different lateral behaviour (LC); the subject AV merges onto the main road (SVM). A
series of events were generated by controlling the behaviour of neighbouring vehicles and the subject AV (See Experimental
methods and Table 4.1). Each video was fragmented into 5 or 6 clips of 6 s.
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(b). Data collection and process. 2,164 participants were kept in this chapter. Continuous perceived risk ratings were
generated based on the kinematic data and interpolation.
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(c). Two state-of-the-art perceived risk model were calibrated and evaluated and compared with deep neural networks
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(d). Decoding the dynamic nature of perceived risk using explainable AI in various driving conditions.

Figure 4.1: Overview of the method.

Our methodological framework is shown in Figure 4.1. We used a novel method that
balanced accuracy, efficiency, difficulty, and cost associated with collecting large-scale
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perceived risk data. We defined four common traffic event scenarios in motorway driv-
ing [93]. In each scenario, we systematically varied the behaviours of neighbouring vehi-
cles and the subject AV to generate a wide range of events with different criticality levels.
These events were captured in simulated videos using a high-fidelity simulator. Subse-
quently, each video was fragmented into five or six shorter clips that were arranged to
be viewed one after another in their original sequential order to collect continuous per-
ceived risk ratings within each event from participants. All videos were integrated into
an online questionnaire for data collection (Figure 4.1a). We collected more than 180,000
perceived risk ratings from 2,164 participants primarily from Europe, resulting in more
than 140,000 ratings used for further analysis. Based on the relationship between simu-
lated kinematic data and the peaks of perceived risk levels identified in previous studies
[110], [117], we synchronised the perceived risk ratings per video clips with participants’
actual rating moments. By connecting these perceived risk ratings per video clip in one
event, the continuous perceived risk ratings were derived (Figure 4.1b).

Continuing from the collected perceived risk data, the next step is to analyse these
data to find out the dynamic nature of perceived risk. Unlike many studies, we did not
collect and analyse human physiological responses in this chapter, such as EEG [161],
[162], ECG [117], GSR [110], [117], and pupil size signals [34], [75], [117], [141], [156]–
[160], although indicative of perceived risk, remain questionable in terms of their pre-
cision. Therefore, a more viable approach involves the use of an accurate model that
serves as an ideal observer [163]–[166]. These models, if fed with data perceptible to
humans and capable of accurately predicting current perceived risk, offer a distinct ad-
vantage over human participants in that they can be directly analysed by us. To further
our understanding of the dynamic nature perceived risk, we proceeded to select suit-
able candidates for the role of the ideal observer. Among the candidates were several
pioneer computational models based on first principles, notably the potential collision
avoidance difficulty (PCAD) model [167] and the driving risk field (DRF) model [41]. We
calibrated the two existing models using the perceived risk data we had collected. Simul-
taneously, we developed and trained deep neural networks (DNNs) to predict perceived
risk. After evaluation, we discovered that DNNs outperformed PCAD and DRF in terms
of accuracy. The superior performance of DNNs suggested that it was a more suitable
candidate to serve as the ideal observer in this chapter (Figure 4.1c).

Following the training and validation of our DNNs as ideal observers, we used SHap-
ley Additive exPlanations (SHAP) [168]–[170] to analyse the trained models (Figure 4.1d).
Unlike many studies using neural networks to study human perception, our primary fo-
cus is not on the correspondence between the network structure and the internal struc-
ture of the human brain. Our goal is to use neural networks as an ideal observer that can
substitute humans but allows for more in-depth analysis, to then compare and analyse
its characteristics with those of humans. This analysis provided a ranking of contribu-
tions of influencing factors across specific scenarios. Moreover, their contributions in
the time domain in every driving event were derived. The findings aligned with existing
knowledge, confirming that factors such as a smaller distance to other road users [36],
[117], [129], [150], a higher speed [167], and a higher relative speed [98], [167] increase
perceived risk non-linearly. Notably, we uncovered dynamic insights: the contributions
of influence factors to perceived risk varied over time, and manoeuvre uncertainty of
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other road users played a substantial role in perceived risk, especially when the subject
vehicle maintains a stable but close distance from neighbouring vehicles. This analysis
helps refine our understanding of the dynamic nature perceived risk, emphasising the
fluctuating importance of different risk factors.

In summary, our work reveals the dynamic nature of perceived risk based on interac-
tions with other road users in common driving scenarios. This creates guidelines for the
future modelling of perceived risk. Concurrently, a huge dataset is created on perceived
risk, which is beneficial for perceived risk investigation and development facilitating ac-
ceptance and successful deployment of automated vehicles. This chapter successfully
pioneers a path in the dynamic analysis of perceived risk, providing valuable guidance
for future continuous data collection and analysis.

4.2. EXPERIMENTAL METHODS

4.2.1. DESIGN OF DRIVING SCENARIOS
To capture the dynamic nature of perceived risk in various automated driving condi-
tions, we designed four driving scenarios (Figure 4.2): The subject AV reacting to merg-
ing and hard-braking vehicles (MB); The subject AV reacting to hard-braking vehicles
in front (HB); The subject AV reacting to lane-changing vehicles with various lateral be-
haviours (LC); The subject AV merging onto the main road with dense traffic (SVM).

In MB scenario (Figure 4.2a), a merging vehicle entered the motorway from an on-
ramp, passed the subject AV, and merged between the subject and lead vehicle. De-
tection of this merging manoeuvre by the AV was implemented as the moment when
the centre of the merging vehicle crossed the line. After this, the subject AV followed
the merging vehicle instead of the original lead vehicle. Meanwhile, the merging vehi-
cle braked to keep a safe distance from the original lead vehicle until the velocity of the
merging vehicle decreased to 60 km/h. Then the merging vehicle accelerated again to
the desired cruising speed. The initial merging distance to subject AV, desired cruising
speed, and braking intensity were all varied with three levels, leading to 27 events with
different levels of criticality (Table 4.1 row MB).

In HB scenario (Figure 4.2b), a lead vehicle initially drove at the desired cruising
speed in front of the subject AV. Then the leading vehicle braked to a lower speed of
60 km/h due to certain safety considerations (e.g. its leading vehicle brakes) and then
accelerated again to the desired cruising speed. Correspondingly, the subject AV braked
to keep a safe distance and accelerated again. The initial car-following distance, the
desired cruising speed, and the braking intensity were varied threefold, generating 27
events with different levels of criticality (Table 4.1 row HB).

The LC scenario (Figure 4.2c) was based on the MB scenario. The desired cruising
speed, braking intensity, and the ending braking velocity were fixed to be 100 km/h,
−2 m/s2 and 60 km/h respectively. The initial merging distance was set to 5 and 15 m.
Then four different kinds of lateral behaviours were designed: lane change with a low
lateral speed (1 m/s) , lane change with a high lateral speed (3 m/s), a fragmented lane
change with a low lateral speed (1 m/s)1 and an aborted lane change with a low lateral

1The neighbouring vehicle attempts to merge into the ego lane from the adjacent lane, but pauses midway for
6 seconds before completing the lane change.
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speed (1 m/s)1. The subject AV’s behaviour was also controlled to generate cautious,
mild and aggressive longitudinal behaviour. Consequently, 24 events were generated
with different levels of criticality (Table 4.1 row LC).

In SVM scenario (Figure 4.2d), the subject AV was arranged to merge onto a highway
with dense traffic. At the exact moment when AV entered the highway, the AV started to
brake in order to ensure a safe distance from the lead vehicle on the main road. The ini-
tial distance between the subject AV and the leading vehicle, the desired cruising speed,
and braking intensity were varied threefold, generating 27 events with different levels of
criticality (Table 4.1 row SVM).

We created videos of the predefined events using CarMaker 8.0.1. The video of each
event was further fragmented into 5 or 6 clips, with each clip lasting 6 seconds (Figure
C.1 in Appendix C.1 provides examples of video streams of all scenarios). There were no
overlapping clips and no specific rule was applied for cutting the clips. Finally, from the
105 different events, a total of 549 clips were generated. Kinematic data from all vehicles,
including the subject AV and neighbouring vehicles, were recorded at 10 Hz.

All videos were uploaded to the video sharing platform Vimeo [171] and embedded
in an online questionnaire on Qualtrics [172] (See Appendix C.4.1 for the online ques-
tionnaire).

(a). The subject AV reacting to merging and
hard-braking vehicles (MB)

(b). The subject AV reacting to hard-braking vehicles
(HB)

(c). The subject AV reacting to lane-changing vehicles
with various lateral behaviours (LC)

(d). The subject AV merging onto the main road with
dense traffic (SVM)

Figure 4.2: Driving scenarios in this study.

4.2.2. PROCEDURE
The study in this chapter was approved by the Human Research Ethics Committee of
Delft University of Technology under application number 1245 and the digital consent

1The neighbouring vehicle initiates a lane change into the ego lane from the adjacent lane, pauses midway for
6 seconds, and then returns to the original adjacent lane without completing the lane change.
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Table 4.1: Designed scenarios for the perceived risk experiments.

Scenarios Varied parameters Number of events

Merging with hard brak-
ing (MB)

Initial merging distance (m): 5, 15, 25 27

Desired cruising speed (km/h): 80, 100, 120

Braking intensity (m/s2): -2, -5, -8

Hard braking (HB) Initial distance (m): 5, 15, 25 27

Desired cruising speed (km/h): 80, 100, 120

Braking intensity (m/s2): -2, -5, -8

Reacting to lane-
changing vehicle with
lateral control (LC)

Initial merging distance (m): 5, 15 24

Lateral categories: normal (1m/s), normal (3m/s),
fragmented (1m/s), aborted (1m/s)

ACC categories: cautious, mild, aggressive

Subject AV merging with
hard braking (SVM)

Initial distance (m): 5, 15, 25 27

Desired cruising speed (km/h): 80, 100, 120

Braking intensity (m/s2): -2, -5, -8

form was provided at the beginning of the online questionnaire to all participants. Par-
ticipants were recruited and rewarded through the Prolific crowd-sourcing platform [173].

The participants began the study reading an introduction that explains the experi-
mental procedures and objectives. This was followed by the acquisition of informed con-
sent. Subsequently, the individuals provided demographic information. Before viewing
and rating the videos, participants underwent a training module designed to rate per-
ceived risk in a standardised manner. In this module, they learned how to answer the
question, “How risky do you perceive the clip above?” by adjusting a digital slider along a
scale from 0 to 10. This included the presentation of a video clip that shows high-risk and
low-risk scenarios to establish a baseline for risk assessment. After training, the formal
experimental phase was initiated. Participants encountered a series of events, each seg-
mented into 5 to 6 video clips that are arranged to be viewed one after another in their
original sequential order in the time domain. After viewing each video clip, the partici-
pants rated their perceived risk using the slider on a scale from 0 to 10. In general, each
participant was asked to view 16 out of 105 events individually, with 4 events in each
scenario. The order of events for each participant was randomly selected.

4.2.3. VALIDATION OF THE CONTROLLED VARIABLES OF DRIVING SCENAR-
IOS

LINEAR MIXED MODEL (LMM) APPROACH

We used a mixed-effects analysis to examine the influence of controlled parameters on
the perceived risk ratings. In each driving scenario, each video clip was characterised by
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different levels of controlled variables (e.g., desired cruising speed, initial merging dis-
tance, braking intensity, etc.). The perceived risk ratings were organised in a long-format
structure, where each row represented a participant’s perceived risk rating for a specific
video clip. Each row contained columns for the participant ID, the clip number, the
controlled parameters and the perceived risk rating. The participant ID was treated as a
random effect to account for individual biases in the ratings, while the event-specific pa-
rameters were considered fixed effects to evaluate their influence on the perceived risk
ratings (see Table 4.1 for more details of the parameters). This analytical approach pro-
vided a nuanced understanding of the responses within subjects, while also accommo-
dating the between-subjects variability introduced by the random assignment of events.
The analysis was conducted in IBM SPSS Statistics 29 [174].

JENSEN-SHANNON ( J-S) DIVERGENCE APPROACH

Although the perceived risk ratings are discrete, they are continuous in the time domain
within the same event. Therefore, when analysing whether different events within the
same scenario have resulted in variations in perceived risk ratings, we need to consider
the continuity of time. To this end, we used the Jensen-Shannon (J-S) divergence, a
method that quantitatively assesses the similarity between two probability distributions
[175]. This approach is particularly suited for comparing the distribution of perceived
risk ratings between different events within the same driving scenario (i.g., MB, HB, LC
and SVM), revealing the difference in various events over time.

Rating transfer matrix computation The foundational step in our analysis involves
the construction of Rating Transfer Matrices for each event in one scenario. These ma-
trices represent the transition probabilities of moving from one perceived risk rating to
another between successive video clips. The process is as follows:

1. For every pair of successive video clips, we collect the transitions of perceived risk
ratings made by all participants. This collection captures how frequently partici-
pants transition from one risk rating to another across clips.

2. These transitions are then normalised to probabilities, forming the matrix M , where
each element mi j indicates the probability of transitioning from rating i at time t
to rating j at time t +1.

Defining probability distributions P and Q For our analysis, we define the probability
distributions P and Q as follows:

• P : The probability distribution of perceived risk ratings for a given video clip, rep-
resented by a row in the Rating Transfer Matrix corresponding to time t .

• Q: The probability distribution of perceived risk ratings for the subsequent video
clip, represented by the next row in the matrix corresponding to time t +1.

These distributions are essential for computing the Kullback-Leibler (K-L) divergence,
which in turn is used to calculate the Jensen-Shannon (J-S) divergence.
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Computing the Jensen-Shannon (J-S) divergence The J-S divergence is calculated by
first determining the midpoint distribution M = 1

2 (P +Q), and then computing the aver-
age of the K-L divergence from P to M and from Q to M :

JS(P ||Q) = 1

2
DK L(P ||M)+ 1

2
DK L(Q||M) (4.1)

where the K-L divergence DK L(P ||Q) is defined as:

DK L(P ||Q) =∑
i

P (i ) log
P (i )

Q(i )
(4.2)

This symmetrical and bounded measure allows us to comprehensively compare the
evolution of perceived risk perceptions across video clips within a scenario. Our MAT-
LAB implementation systematically applies this method to all pairs of consecutive video
clips, enabling a detailed investigation into the changing landscape of risk perception as
participants engage with different driving scenarios.

4.2.4. GENERATION OF CONTINUOUS PERCEIVED RISK RATINGS
To convert discrete perceived risk ratings into a continuous timeline, we use a novel sys-
tematic approach rooted in empirical observations. The process involves pinpointing
the moment of rating within the video clips and then applying interpolation methods to
create a seamless perceived risk profile over time.

RATING MOMENT ALIGNMENT

According to our instructions, participants were asked to provide their perceived risk
ratings based on what they considered the most dangerous moment in each video clip.
The alignment of rating moments with these dynamic events is guided by the following
assumptions based on empirical findings [110], [117]:

1. Perceived risk changes in response to stimuli, which in this chapter include var-
ious actions of neighbouring vehicles, such as merging, hard braking, and lane
changing [176], [177].

2. The perceived risk remains constant when the relative position of neighbouring
vehicles remains stable.

The alignment of rating moments is based on the statistics of perceived risk signals in
motorway driving scenarios. According to statistics in our previous studies [110], [117],
for instance, in merging scenarios, the peak perceived risk appears 2.95 s after the onset
of a neighbouring vehicle’s merging manoeuvre, whereas in braking scenarios, the peak
is observed at about 1.15 s after the minimum gap between vehicles is reached. Fol-
lowing the peak, perceived risk returns to baseline levels within 3.93 s. Algorithm 1 in
Appendix C.1 details the steps taken to align these moments.

Based on the algorithm above, we obtained the rating moment for all ratings as shown
in Table C.1-C.4 in Appendix C.1. Based on the assumption that perceived risk remains
constant when the relative position of neighbouring vehicles is stable, some ratings were
duplicated to facilitate subsequent perceived risk interpolation. Therefore, in these ta-
bles, some ratings have two rating moments.
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FROM DISCRETE PERCEIVED RISK RATINGS TO CONTINUOUS PERCEIVED RISK THROUGH IN-
TERPOLATION

Upon identifying the moments corresponding to each discrete perceived risk rating, the
subsequent phase involved interpolating these data points to generate continuous per-
ceived risk ratings. By using Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)
(see Algorithms 4 in Appendix C.1), discrete perceived risk ratings were interpolated into
time-continuous perceived risk. See Appendix C.2 for more details of the selection of the
interpolation method.

4.3. MATHEMATICAL METHODS
This section introduces three kinds of computational perceived risk models: potential
collision avoidance difficulty (PCAD) model [167], driving risk field (DRF) model [150]
and deep neural networks (DNNs).

4.3.1. POTENTIAL COLLISION AVOIDANCE DIFFICULTY (PCAD) MODEL
The PCAD model represents a computational framework designed to estimate perceived
risk in driving scenarios, with a particular focus on automated vehicles. Rooted in Fuller’s
risk allostasis theory, the PCAD model assesses driving task difficulty by quantifying the
minimal two-dimensional (2D) velocity change necessary to avoid potential collisions.
This quantification takes into account the manoeuvre uncertainties of other road users
as well as the control imprecision of the subject vehicle.

Let Xs = (p s , v s , as )T and Xn = (pn , v n , an)T denote the state of the subject vehicle
s and the neighbouring vehicle n respectively, with p s and pn , v s and v n , as and an

being the position, velocity and acceleration vectors, and T the transpose of a vector.
The PCAD is formulated as Equation (4.3)

RPC AD (t ) =A (p s , pn ,Vs (Xs ,Xn),Vn(Xs ,Xn)) ·W (v s ) (4.3)

Here, A represents the avoidance difficulty function. This function quantifies the re-
quired 2D velocity change to bring the subject vehicle to the safe velocity region in the
velocity domain to avoid a potential collision with the neighbouring vehicle, considering
factors such as their positions, velocities and accelerations. Vi denotes the 2D perceived
velocity for vehicle i ∈ {s,n}, thereby capturing absolute and relative motion of the in-
teracting vehicles. Finally, W is the weighting function, being a power function with vs ,
which accounts for the influence of the subject vehicle’s speed on perceived risk. Higher
speeds generally increase the perceived risk, as the consequence of a potential collision
is more severe.

4.3.2. DRIVING RISK FIELD (DRF) MODEL
The DRF model represents human drivers’ risk perception as a 2D field, combining the
probability (probability field) and consequence (severity field) of an event, the product
of which provides an estimation of driver’s perceived risk. The DRF model was derived
from a simulator experiment involving obstacle avoidance with 77 obstacles distributed
on a 2D plane in front of the subject vehicle. During each drive, one obstacle was ran-
domly chosen and suddenly appeared, after which participants needed to steer to avoid
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the obstacle and gave a non-negative number indicating required steering effort. Based
on the position information of the obstacles, the maximum steering angle, and the sub-
jective ratings, the DRF model was fitted to the data, and thereby it is essentially an em-
pirical model.

The DRF model quantifies overall perceived risk as

RDRF (t ) =∑
p(x(t ), y(t )) · sev(t ) (4.4)

where p(x(t ), y(t )) is the probability of an event happening at position (x(t ), y(t )); sev(t )
is the severity field of events. Specifically, in straight drive, the probability field can be
simplified as

p(x(t ), y(t )) = h ·exp

(−y(t )2

2σ2

)
(4.5)

h = s · (x(t )− vs,X (t ) · tl a
)2 (4.6)

σ= m · x(t )+ c (4.7)

where the subject vehicle is at the origin (0,0) with h and σ representing the height and
the width of the Gaussian at longitudinal position x(t ); s defines the steepness of the
height parabola; tl a is the human driver’s preview time (s); m defines the widening rate
of the 2D probability field; c is the quarter width of the subject vehicle (m). vs,X (t ) is the
subject vehicle’s velocity (m/s). The lateral cross-section of the 2D probability field is a
Gaussian. Note that the height of the Gaussian h and the widthσ are separately modelled
as a parabola and linear function of longitudinal distance x in front of the subject vehicle.

The severity field of the events in this chapter can be defined as

sev(t ) =
{

Csev , (x(t ), y(t )) ∈ AO ,

0, (x(t ), y(t )) ∉ AO .
(4.8)

where Csev is the severity value that is set empirically and AO represents a neighbouring
vehicle’s spatial area.

4.3.3. STATE-OF-THE-ART MODEL CALIBRATION
Model input PCAD and DRF models use a range of observed kinematic variables, specif-
ically, the position, velocity, and acceleration of both the subject AV and neighbouring
vehicles. The detailed inputs used by PCAD and DRF, which are essential for their oper-
ation, are listed in Table 4.4 in Chapter 4.4.3.

Model calibration Calibrating the computational models used to assess perceived risk,
such as PCAD and DRF, is critical for enhancing their accuracy and reliability. The cali-
bration process specifically focuses on minimising the Root Mean Square Error (RMSE),
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a widely used measure of the difference between values predicted by a model and the
values actually observed. The RMSE is calculated using the following equation:

RMSE =
√

1

n

n∑
i=1

(yi − ŷi )2 (4.9)

where n is the number of observations. In this chapter, n = 8,127 for MB, HB and SVM
scenarios while n = 8,664 for LC scenario, since the time-continuous perceived risk
lasted for either 36 s for 24 events in the LC scenario or 30 s for 27 events respectively in
the other three scenarios, and the sampling rate was 10 Hz; yi are the observed values,
which are the average perceived risk for each sampling moment across all participants;
ŷi are the predicted values that are the rescaled model output of PCAD and DRF. By min-
imising RMSE, we ensure that the model’s predictions closely align with perceived risk
data, thereby improving the model’s precision.

The calibration involves using kinematic data as input and producing a continuous
perceived risk signal as output. Given the diverse ranges of computational model out-
puts, we employ min-max feature scaling to standardise these outputs to a uniform scale
of [0, 10], which simplifies comparisons and integration between different models and
scenarios. The scaling is described by:

ŷk = yk − ymin

ymax − ymin
×10 (4.10)

where ŷk is the scaled model output; ymax and ymin are the maximum and minimum
model output values, respectively.

For the optimisation process, we used the fmincon function from MATLAB [178].
This method is particularly effective for dealing with the nonlinear optimisation prob-
lems often encountered during model calibration, enabling precise adjustments of model
parameters under various constraints. Figure 4.5a and Figure 4.5b show examples of pre-
diction performance of PCAD and DRF in all four scenarios. The full results are shown
in Figure C.7 in Appendix C.1.

4.3.4. DEEP NEURAL NETWORKS (DNNS)
DNNs were designed to predict perceived risk. This chapter uses the superiority of DNNs
in learning complex, nonlinear patterns in large datasets to establish the relationship
between observed kinematic variables such as position, velocity, acceleration, etc., and
perceived risk [179].

DNNs structure We trained six DNNs for four scenarios. Specifically, three DNNs were
trained for MB, HB and SVM scenarios separately. For LC scenario, events were cat-
egorised into normal lane change, fragmented lane change, and aborted lane change
so that three DNNs were trained for these three categories respectively. Each of the six
neural networks is composed of three fully connected layers: the first layer matches the
dimension of the input, the hidden layer contains 500 neurons, and the final layer is
designed to output two values — mean and variance [180]. The mean provides the net-
work’s best prediction of perceived risk, while the variance quantifies the uncertainty of
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this prediction, helping assess how reliable or confident the prediction is based on the
input data, which will be detailed later. Table 4.3 in Chapter 4.4.3 outlines the DNNs’
structure for different scenarios.

DNNs input features In this chapter, DNNs used a comprehensive set of kinematic
variables as inputs, including the position, velocity, and acceleration of both the subject
AV and neighbouring vehicles. To address the uncertainties in vehicular manoeuvres,
we also incorporated processed variables such as “uncertainty velocity” and “decelera-
tion rate to avoid a crash” into DNNs. These additional variables are important as they
enhance the model’s ability to predict perceived risk by accounting for the dynamic and
potentially unpredictable behaviours of the subject AV and other vehicles on the road. A
detailed list of all input variables, including these advanced metrics, is provided in Table
4.4 in Chapter 4.4.3. Further explanation of “uncertainty velocity” and “deceleration rate
to avoid a crash” will be introduced below.

Uncertain velocity DNNs use a concept named “uncertainty velocity” to include
the manoeuvre uncertainties of the subject vehicle and neighbouring vehicles into per-
ceived risk computation, which is the same concept as that in Chapter 3.3.4 and Ref.
[167].

The uncertain velocity of each vehicle, as perceived by the human driver, contributes
to the driving situation being perceived as more dangerous. The uncertain velocity exists
in all directions on both subject and neighbouring vehicles, but its impact for different
directions on perceived risk varies. We assume that the uncertain velocity with a direc-
tion that reduces the distance between vehicles most strongly increase perceived risk as
shown in Figure C.6 in Appendix C.1. The uncertain velocity is represented as ∆vi ,u, j in
Table 4.4 in Chapter 4.4.3, where i can be s, n, nb representing the subject vehicle, the
neighbouring vehicle and the following vehicle in SVM scenario; j can be X or Y repre-
senting the longitudinal or lateral direction. The calculation of the uncertain velocity in
this chapter was based on the parameter values of PCAD for Dataset Merging in Table
3.4 in Chapter 3.

Deceleration rate to avoid a crash (DRAC) DRAC was originally defined in car-
following as the squared differential speed between a following vehicle and its corre-
sponding leading vehicle, divided by their closing gap [181]–[183]. We extend this defini-
tion to two-dimensional motion as the squared differential speed between two vehicles
in one direction divided by the their gap in this direction as shown in Equation (4.11).

DR AC =
{

(vs−vn )2

g ap , if ˙g ap < 0;

0, if ˙g ap Ê 0.
(4.11)

where vs and vn represent the velocity of the subject vehicle and the neighbouring ve-
hicle in one specific direction (i.g., longitudinal or lateral direction); g ap is the distance
between the subject vehicle and the neighbouring vehicle in the same direction. In Ta-
ble 4.4 in Chapter 4.4.3, DR ACR represents the DRAC caused by the real velocity and
DR ACu represents the DRAC caused by the uncertain velocity.
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DNNs training In our approach to training neural networks, we begin by standardising
input variables using Z-score normalisation to ensure uniformity across different feature
scales [184]. This normalisation is important for our model, as it aligns all input variables
to have zero mean and unit variance, thus facilitating more stable and effective learning.
The normalisation process is defined mathematically as

Xnorm = X −Xmean

Xσ
(4.12)

where Xmean and Xσ denote the mean and standard deviation of the input variable X ,
respectively.

To optimise DNNs’ performance, the training is conducted over 200 epochs with a
learning rate of 0.001 [185]. This particular learning rate assists in the gradual and precise
adjustment of the network’s weights, helping to minimise RMSE between the average
perceived risk across all participants and the DNNs’ output. Additionally, a dropout rate
of 0.1 is implemented in the final layer of the network for uncertainty quantification and
avoiding overfitting [185]. The dataset allocation for this training consists of 80% for
training and 20% for validation randomly [186]. Without leaving out some entire events
from the training set, the division is applied across individual data points from all events
in one scenario, ensuring that each event is represented in both training and validation
sets. Methods to create more independent validation datasets are being proposed in the
discussion. The whole dataset contains 8,127 samples for MB, HB and SVM scenarios
and 8,664 samples for LC scenario.

UNCERTAINTY OF PERCEIVED RISK PREDICTION

It is critical to acknowledge the variability in human judgements. Our dataset, collecting
ratings from hundreds of participants on the same events, shows a certain variability in
the ratings, highlighting the complexity and subjective nature of perceived risk assess-
ment. This variability indicates the necessity of quantifying the uncertainty in predic-
tions made by models regardless PCAD, DRF or DNNs. In this regard, two fundamen-
tal types of uncertainty are recognised: aleatoric uncertainty and epistemic uncertainty
[187], [188] . Aleatoric uncertainty arises from the inherent variability in the data itself,
reflecting the stochastic nature of the observations, which remains irreducible regard-
less of the amount of data collected. On the other hand, epistemic uncertainty refers
to the uncertainty in the model parameters, often caused by the lack of knowledge or
insufficient data, and can be reduced with the accumulation of more data.

Aleatoric uncertainty With contributions from hundreds of participants in the same
events, the dataset shows a broad range of perceived risk ratings. This variability, known
as aleatoric uncertainty, is fundamental to the data itself and remains unaffected by per-
ceived risk models.

Aleatoric uncertainty, therefore, reflects the stochastic nature of the data, attributed
to the variability in participant ratings for the same event. We employ a robust statistical
technique, bootstrapping, to directly quantify aleatoric uncertainty from our dataset.
This non-parametric approach enables the estimation of uncertainty without assum-
ing a specific underlying distribution, making it particularly suited for our diverse and
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subjective dataset. In our analysis, multiple resampled datasets were generated. Each
dataset is created by randomly selecting ratings with replacement from the original dataset,
thereby simulating the natural variability present in the collected ratings. For each re-
sampled dataset, we calculate the standard deviation of the ratings. By averaging these
standard deviations across all bootstrap samples, we derive a robust estimate of aleatoric
uncertainty for each event as follows [187]:

Ualeatoric =
1

B

B∑
b=1

σb , (4.13)

where B represents the number of bootstrap samples, and σb denotes the standard de-
viation of participant ratings in the bth bootstrap sample. This equation is the way of
measuring aleatoric uncertainty, giving a clear method to understand how much par-
ticipants’ perceived risk varies. Bootstrapping is a common technique for estimating
uncertainty but note that if the dataset is large enough, the average of the bootstrap
standard deviations could be very similar to the standard deviation of the whole dataset.

Epistemic uncertainty Epistemic uncertainty arises from perceived risk model’s lim-
ited knowledge. Epistemic uncertainty, unlike aleatoric uncertainty, can be reduced as
we improve our models or collect more data.

For DNNs, epistemic uncertainty quantification can be effectively achieved through
a technique known as Monte Carlo (MC) Dropout [189]. This method leverages the ran-
domness introduced by applying dropout during each forward pass, simulating training
on different subsets of the data. Given a dataset D = {(Xi ,Yi )}N

i=1 with N samples, where
Xi and Yi represent the input features and corresponding labels of perceived risk, the
prediction process for a new input X∗ can be expressed as:

Ŷ , σ̂2 = fθ(X∗), (4.14)

where Ŷ and σ̂2 denote the mean and variance of the predicted output, respectively, and
fθ is the neural network function parameterised by weights θ. To estimate epistemic un-
certainty, MC Dropout utilises the variance of predictions obtained from multiple for-
ward passes with dropout enabled:

Uepistemic = VarMC(Ŷ ) = 1

M

M∑
i=1

(Ŷi − Ŷ )2, (4.15)

where Ŷi is the prediction from the i -th forward pass, Ŷ is the average prediction over all
M forward passes, and VarMC(Ŷ ) represents the variance of these predictions, indicative
of the model’s epistemic uncertainty.

For PCAD and DRF, we use a different approach to quantify epistemic uncertainty.
Recognising that these models do not support dropout-based methods, we employ boot-
strapping to simulate the process of training multiple versions of each model [190]. By
calibrating 200 models through bootstrapping, we can capture the variability in the mod-
els’ predictions, which reflects their epistemic uncertainty. The epistemic uncertainty for
the two models is calculated as follows:

Uepistemic = 1

iter

∑
(value−mean(value))2, (4.16)
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where “value” represents the predictions from each bootstrapped model, “iter” denotes
the number of bootstrap iterations, and the operation captures the variance among these
predictions. This method allows us to estimate the epistemic uncertainty by measuring
how much our predictions vary as we slightly alter the data or model configuration, pro-
viding insights into the confidence we should have in the models’ predictions.

Through these methodologies, we are able to quantify epistemic uncertainty for each
model type. This quantification not only enhances our understanding of where our
models stand in terms of predictive reliability, but also guides future improvements in
model development and data collection strategies.

4.3.5. ANALYSING THE DYNAMIC NATURE OF PERCEIVED RISK WITH SHAP-
LEY ADDITIVE EXPLANATIONS (SHAP)

SHapley Additive exPlanations (SHAP) is a method to explain the output of machine
learning models by computing the contribution of each feature to the prediction for
each instance. It uses Shapley values, a concept from game theory, to assign an impor-
tance value to each feature, showing how much each feature contributes to the predic-
tion [168], [169].

In applications, based on neural network models that have been well-trained and
demonstrate good performance, we further aim to analyse the contribution of various
features to the prediction. Specifically, some features may have a higher impact on per-
ceived risk (e.g., longitudinal relative distance), while others may have a lower impact

(e.g., acceleration). For a sample X = {xi }Dfeature
i=1 fed into model fD , resulting in prediction

Ŷ = f (X), where xi represents the i th features collected from the scenario, this process
of analysing the feature impact can be formulated as follows:

φi : (xi , fD , Ŷ ) →R. (4.17)

The Shapley value is often used to analyse the contribution of each input feature in
predictive models, which employs Game Theory and is theoretically justified. To illus-
trate using the computation of the i th feature as an example, the fundamental principle
of the Shapley value involves traversing all permutations of feature subset coalitions S
without considering the feature xi :

φ
Shapley
i = ∑

S⊆F \{i }

|S|! · (|F |− |S|−1)!

|F |!
[

f (xS∪{i })− f (xS )
]

(4.18)

where |F | = Dfeature. xS∪{i } and xS are the features with and without in the set S ∪ {i } and
S. f (xS∪{i }) and f (xS ) are neural network models trained in corresponding feature set.

The SHAP method is an unified approach that offers both global and local inter-
pretability for inputs, which is the Shapley value of a conditional expectation function
of the original model. It attributes to each feature the change in the expected model
prediction when conditioning on that feature. A surprising characteristic of SHAP is the
presence of a single unique solution in this class with three desirable properties: local
accuracy, missingness, and consistency [170].

• Local accuracy. Local accuracy in the context of SHAP refers to the property that
ensures the explanation model’s output matches exactly with the original model’s
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f (x) output for individual predictions. This means that for any specific instance,
the sum of SHAP values assigned to each feature, along with the base value, will ac-
curately equal the prediction of the original model. This characteristic ensures that
SHAP provides precise and faithful explanations at the individual sample level.
Local accuracy ensures that the sum of SHAP values and the base value exactly
matches the model’s output for any given input.

f (x) = g (x ′) =φ0 +
Dfeature∑

i=1
φi x ′

i

= bias+∑
contribution of each feature

(4.19)

where x is related to its original feature by x = hx (x ′) by mapping function hx (·).
And φ0 = hx (0) means all simplified features are toggled off (i.e. missing).

• Missingness. The concept of missingness in SHAP relates to how the method han-
dles features that are absent or missing in a given data instance. SHAP accounts for
missing features by allocating a Shapley value of zero to them, reflecting their non-
contribution to the model’s prediction for that specific instance. This approach
acknowledges the absence of data and ensures that only the present features con-
tribute to the explanation of a model’s output. The property of missingness can be
formulated as:

If
fx (S ∪ i ) = fx (S) (4.20)

for all subsets of features S ⊆ F , then φi ( f , x) = 0.

• Consistency. It refers to the principle that if a model changes so that the contri-
bution of a feature increases or stays the same, regardless of other features, the
SHAP value for that feature should not decrease. This ensures that the explanation
model remains consistent with changes in the feature’s impact on the prediction.
In other words, SHAP values faithfully represent the proportional impact of each
feature on the model’s output, adhering to changes in feature importance. The
property of consistency can be formulated as:

For any two models f and f ′, if

f ′
x (S)− f ′

x (S \ i ) ≥ fx (S)− fx (S \ i ) (4.21)

for all S ⊆ F \ {i }, where F is the set of Dfeature input features, thenφi ( f ′, x) ≥φi ( f , x).

According to [168], only one possible explanation satisfies all three properties:

φi ( f , x) = ∑
z ′⊆x′

|z ′|!(Dfeature −|z ′|−1)!

Dfeature!
[ fx (z ′)− fx (z ′ \ i )] (4.22)
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where |z ′| is the number of non-zero entries in z ′, and z ′ ⊆ x ′ represents all z ′ vectors
where the non-zero entries are a subset of the non-zero entries in x ′.

f (hx (z ′)) = E[ f (z)|zS ] SHAP explanation model simplified input mapping

= EzS |zS [ f (z)] expectation overzS |zS

≈ EzS
[ f (z)] assume feature independence (as in [191]–[194])

≈ f ((zS ,E[zS ])). assume model linearity

(4.23)

note that zS is the set of features not in S.

4.4. RESULTS

4.4.1. SELF-REPORTED PERCEIVED RISK DATA COLLECTION
The self-reported perceived risk data were collected through the large-scale online ex-
periment from July 11 to September 19, 2023. A diverse group of 2,341 participants from
countries with right-hand traffic participated through the Prolific crowd-sourcing plat-
form [173] (see Figure 4.3a).

In the experiment, participants evaluated a series of motorway traffic event videos,
displaying various driving conditions, created using high-fidelity simulation software.
Events are categorised in four typical scenarios in motorway driving: the subject vehicle
reacting to hard braking vehicles (HB), merging and braking vehicles (MB), lane chang-
ing vehicles with different lateral behaviours (LC) and the subject vehicle merging onto
the main road with intense traffic (SVM). Each video, capturing a distinct traffic event,
was divided into 5 or 6 shorter, consecutive clips. These clips are continuous and follow
sequentially in the time domain, ensuring a coherent representation of the event from
start to finish. The participants were presented with videos composed of these clips, ar-
ranged to be viewed one after another in their original sequential order. After viewing
each clip, participants were asked to rate the perceived risk on a scale from 0 to 10. Each
participant viewed a total of 16 events, chosen randomly from a set of 105, with four
events from each of four scenarios (Chapter 4.2.1; Figure 4.1a, Figure C.1 in Appendix
C.1 and Appendix C.4.1).

We excluded 177 participants due to incomplete responses or unusually rapid com-
pletion (under 504 seconds, less than the total duration of all videos), resulting in a final
sample of 2,164 participants from Austria (n = 16), Belgium (n = 23), Czech Republic
(n = 28), Denmark (n = 4), Estonia (n = 19), Finland (n = 11), France (n = 50), Gambia
(n = 1), Germany (n = 114), Greece (n = 129), Grenada (n = 1), Hungary (n = 65), Iceland
(n = 2), Italy (n = 353), Latvia (n = 15), Netherlands (n = 80), Norway (n = 6), Poland
(n = 439), Portugal (n = 583), Qatar (n = 2), Slovenia (n = 25), South Korea (n = 4), Spain
(n = 154), Sweden (n = 24), Switzerland (n = 12), and others (position information un-
available, n = 3). Within this chapter, participant ratings for each event were selected for
consistency with the broader participant group. Specifically, if the correlation between
a participant’s series of ratings (five ratings for the MB, HB, and SVM scenarios, and six
for the LC scenario) and the average ratings for the same event across all participants
was below a threshold of r < 0.3 that participant’s ratings were excluded. This exclusion
criterion was applied to ensure data reliability and consistency across our sample. After
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(a). Distribution of participants in Europe.

Male


49.7%

Unknown


1.1%

Female


49.2%

(b). Gender distribution

(c). Participants’ age distribution in years (d). Participants driving experience in years

(e). The influence of controlled parameters in MB scenario: initial merging gap (left), braking intensity (middle) and desired
cruising speed (right) on perceived risk ratings per clip. Each bar chart shows perceived risk ratings categorised based on a
specific controlled parameters with different clip numbers. For example, in the left bar chart, the dark blue bars represents all
perceived risk ratings where the initial merging is 5 m, while other controlled parameters such as braking intensity and
desired cruising speed are different. Similarly, the light blue and yellow bars represent the initial merging gap 15 m and 25 m
respectively. This same pattern applies to the middle and right bar charts, which illustrate the impact of different levels of
braking intensity and desired cruising speed on perceived risk ratings respectively.

(f). The J-S divergence of perceived risk ratings with respect to controlled parameters in MB scenario: initial merging gap
(left), braking intensity (middle) and desired cruising speed (right). Each block within the matrix represents the J-S
divergence between two groups categorised by the respective controlled parameter. For example, in the left heatmap (initial
merging gap), the value in the third block of the first row represents the J-S divergence between perceived risk ratings for the 5
m and 25 m initial merging gap groups. Diagonal blocks (e.g., the first block in the first row) represent the J-S divergence of
perceived risk within the same group, such as the 5 m group compared to itself. The colour intensity indicates the magnitude
of divergence, with higher values representing greater differences between perceived risk ratings
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Figure 4.3: Demographic statistics and variety of perceived risk ratings.

applying these criteria, a total of 141,628 perceived risk ratings remained valid for analy-
sis. The breakdown of these ratings across the four scenarios is detailed in Table 4.2. The

Table 4.2: All controlled parameters significantly affect perceived risk.

Scenarios Sample
size

Controlled parameters F p-value η2

MB reacting to
merging and hard
braking

36,525

clip number 11475.048 < 0.001 0.571
Initial merging distance (m) 3686.385 < 0.001 0.169
Desired cruising speed (km/h) 68.125 < 0.001 0.004
Braking Intensity of
the merging vehicle (m/s2)

29.243 < 0.001 0.002

HB reacting hard
braking vehicles

33,355

clip number 6141.696 < 0.001 0.439
Car following distance (m) 7753.686 < 0.001 0.321
Desired cruising speed (km/h) 388.387 < 0.001 0.023
Braking intensity of
the leading vehicle (m/s2)

93.563 < 0.001 0.006

LC reacting to merg-
ing vehicles
with lateral control

39,018

clip number 3011.400 < 0.001 0.289
Initial merging distance (m) 2083.866 < 0.001 0.052
Lateral categories 63.492 < 0.001 0.005
Driving style 133.461 0.007

SVM the subject AV
merges onto
the main road

32,720

clip number 6237.328 < 0.001 0.448
Initial merging distance (m) 2539.261 < 0.001 0.136
Desired cruising speed (km/h) 300.175 < 0.001 0.018
Braking intensity of
the leading vehicle (m/s2)

87.656 < 0.001 0.005

participant demographics were diverse. In terms of gender distribution (as shown in Fig-
ure 4.3b), 49.7% of the participants identified as male, 49.2% as female, and 1.1% chose
not to specify their gender. The age range of participants was broad, spanning from 18
to 73 years, with an average age of 31.2 years and a standard deviation of 9.5 years (refer
to Figure 4.3c). All participants held valid driving licences for duration ranging from 1 to
55 years, with an average of 11 years and a standard deviation of 9.0 years (Figure 4.3d).

We analysed the effects of the controlled parameters (e.g., initial merging distance,
desired driving speed, etc.) of all events with linear mixed models and the results show
that all controlled parameters (e.g., initial merging distance, desired cruising speed, etc.)
significantly affected perceived risk in the four scenarios (p < 0.001). Statistical results
can be found in Table 4.2. Additionally, within individual clips, these controlled param-
eters, such as initial merging gap, braking intensity and desired cruising speed as illus-
trated in Figure 4.3e, lead to significantly different perceived risk levels. The evolution
of perceived risk in time as measured after each video clip is shown in Figure 4.3e for
Scenario MB and Figure C.2-C.4 in Appendix C.1 for HB, LC and SVM scenarios. These
results confirmed that our designed scenarios effectively produce varying perceived risk
levels among participants, validating their use for further analysis.

Considering the continuous nature of the video clips in each event, we used a rating
transfer matrix created using the Jensen-Shannon (J-S) method to account for changes
over time, which quantifies the similarity of perceived risk ratings among different events
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(Chapter 4.2.3). Figure 4.3f shows the J-S divergence regarding different conditions in
MB scenario (see Figure C.2-C.4 for HB, LC and SVM scenarios in Appendix C.1), where
darker colour indicates a greater divergence and a smaller similarity, indicating a more
significant influence of the controlled parameters. In Figure 4.3f, the left subfigure rep-
resents the J-S divergence between three groups controlled by different initial merging
gaps 5 m, 15 m and 25 m; the middle subfigure shows the J-S divergence between three
groups controlled by different braking intensity −2 m/s2, −5 m/s2 and −8 m/s2; the right
subfigure represents the J-S divergence between three groups controlled by different
cruising velocity 80 km/h, 100 km/h and 120 km/h.

In the left subfigure that represents the influence of initial merging gap, the J-S di-
vergence is smaller within each group (i.e.,the diagonal), but is larger between different
groups, for example, the first row shows different J-S divergence levels between three
groups. This indicates that the initial merging gap affects perceived risk over time signif-
icantly. In the middle subfigure that represents the influence of braking intensity, the J-S
divergence is small with the highest braking intensity (−8 m/s2). With lower braking in-
tensity, the J-S divergence is large, which means that perceived risk is strongly influenced
by other factors. However, the third row shows a significant J-S divergence difference be-
tween different groups, indicating that braking of the merging vehicle can significantly
influence perceived risk over time. In the right subfigure that shows the influence of
desired cruising speed, the J-S divergence is smaller only within group with the desired
cruising speed 120 km/h. Within other two groups, the J-S divergence is large, indicat-
ing that when the desired cruising speed is not high enough, other factors influence per-
ceived risk more rather than the desired cruising speed. In the third row, J-S divergence is
significantly different between different groups, meaning that the desired cruising speed
significantly influences perceived risk over time.

The results revealed that the controlled parameters influenced participants’ perceived
risk ratings significantly. These findings are consistent with results in Table 4.2 and pre-
vious studies [36], [117], [167].

4.4.2. CONTINUOUS PERCEIVED RISK RATINGS
Through rating moment alignment and interpolation, all rating moments are provided
in Table C.1-Table C.4 in Appendix C.1. This transformation is critical to understanding
the dynamic nature of perceived risk over time in various driving scenarios.

CONTINUOUS PERCEIVED RISK RATINGS IN VARIOUS DRIVING SCENARIOS

Examples of these continuous ratings from each of the four scenarios are shown in Figure
4.4. All for four scenarios can be found in Figure C.5 in Appendix C.1, illustrating the
detailed variation in perceived risk in real time.

Figure 4.4a MB1 presents an example of all 27 MB events, where the subject AV reacts
to a vehicle merging onto the current lane. At first, the merging vehicle is far from the
subject vehicle, so the perceived risk is at a relatively low baseline. At t = 6s, the merging
vehicle becomes visible on the on-ramp and approaches the subject AV and accordingly,
perceived risk becomes higher. At t = 12s, the merging vehicle is in the merging area,
waiting for merging onto the main road. At t = 15s, the merging vehicle starts to merge
onto the current lane, increasing the perceived risk dramatically. After the merge (t >
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18s), the merging vehicle accelerates, and perceived risk decreases.
Figure 4.4b HB1 shows an example of all 27 HB events, where the subject AV reacts

to a hard braking vehicle in front in the same lane. At the beginning, the subject AV is
following a leading vehicle with a gap of only 5 m, leading to a considerable perceived
risk. At t = 13s, the leading vehicle abruptly brakes, causing a sharp increase in perceived
risk which quickly peaks. Once the vehicle resumes speed, perceived risk decreases.

Figure 4.4c LC1 illustrates an example of all 24 LC events, where the subject AV reacts
to a vehicle trying to change lane. The perceived risk is initially low, with the neighbour-
ing vehicle behind the subject AV. As the neighbouring vehicle aligns beside the subject
AV at around t = 7s, perceived risk increases moderately and remains relatively stable.
Perceived risk slightly fluctuates as the neighbouring vehicle begins to cut into the cur-
rent lane in front at t = 13s, peaking once the merging is completed at t = 22s. Following
the completion of the lane change, perceived risk returns to lower levels after t = 24s as
the vehicles stabilise in the current lane.

Figure 4.4d SVM1 displays an example of all 27 SVM events, where the subject AV
merges to the main road. Initially, the subject AV is on an acceleration lane after an on-
ramp with low perceived risk. The subject vehicle stays on the acceleration lane stably
for a while, causing a relatively stable perceived risk. As the AV begins merging onto
the main road at t = 15s, perceived risk increases sharply, peaking when the merge is
completed. The subject AV is stably following the leading vehicle on the main road after
t = 21s, and the perceived risk drops back to a low level.
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Figure 4.4: Examples of continuous perceived risk ratings in four driving scenarios. The solid blue curve illus-
trates the median perceived risk over time, providing a central tendency of participant responses. The light
blue shading indicates the perceived risk range, spanning from the 25th to the 75th percentile, which cap-
tures the variability and dispersion of perceived risk ratings among participants. This visual representation
emphasises the dynamic nature of perceived risk and its sensitivity to specific driving events and manoeuvres,
showcasing the effective interpolation method and analysis of risk fluctuations in real-time driving scenarios.

4.4.3. MODEL PERFORMANCE IN PREDICTING PERCEIVED RISK
We used three computational perceived risk models as ideal observer candidates — the
PCAD model, the DRF model, and DNNs — to predict continuous perceived risk ratings
across the four driving scenarios. Each model offers a unique perspective on assessing
and predicting perceived risk in driving scenarios, especially in automated vehicles. We
presented the PCAD model and benchmarked it against other models including DRF in
Ref. [167] where we found that PCAD matched the human perceived risk best followed by
DRF in merging and hard braking and in obstacle avoidance scenarios. PCAD and DRF
are grounded in first principles with clear and structured methodologies. If they could
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accurately predict continuous perceived risk ratings, it would significantly simplify the
analysis process due to their transparent and straightforward frameworks, making them
particularly valuable for understanding the dynamics of perceived risk. Additionally, we
used the superiority of DNNs in learning complex, nonlinear patterns in large datasets
to predict continuous perceived risk ratings [179]. Each of the three models PCAD, DRF
and DNNs were captured in depth in Chapter 4.3. Table 4.3 shows the structure of DNNs.
All three models predict perceived risk based on the corresponding kinematic data of all
events, such as the position, velocity, and acceleration of the subject AV and neighbour-
ing vehicles (see Table 4.4 for more details).

We conducted a calibration for PCAD and DRF and a training process for DNNs using
the dataset obtained previously. Our calibration aimed to minimise the models’ predic-
tion error, thereby aligning the model outputs closely with the continuous perceived risk
ratings in these scenarios (Chapter 4.3.3 and 4.3.4).

Figure 4.5 illustrates the prediction performance of the three models throughout the
event timelines (examples for four scenarios of the three models; See Figure C.7 in Ap-
pendix C.1 for full results).

PCAD (Figure 4.5a) shows a close alignment with peak risk periods, particularly in
periods with abrupt changes. However, it is less accurate when the relative position of
the subject AV and the neighbouring vehicles are relatively constant, such as the begin-
ning stage in MB1, HB1 and LC1. Additionally, it overestimates perceived risk in SVM1.

DRF (Figure 4.5b) also closely captures the peak risk periods across all scenarios. Like
PCAD, DRF’s predictive performance diminishes in scenarios where the positions of the
subject AV and neighbouring vehicles are relatively constant.

DNNs (Figure 4.5c) demonstrate superior adaptability across all scenarios, accurately
mirroring the observed risk profiles with high fidelity. The DNN models especially out-
perform in complex scenarios like SVM1, when people are facing multiple other road
users.

The epistemic uncertainties, represented by the light-coloured areas around the model
outputs, are notably narrower for DNNs compared to PCAD and DRF (Figure 4.5). This
indicates a higher confidence level in the predictions made by DNNs, showcasing their
robustness in dealing with complex driving scenarios. The comparative analysis of pre-
diction error across all models (Figure 4.5d) highlights the overall superior performance
of DNNs, which consistently exhibit lower prediction errors and less variability in their
predictions, confirming their robustness and reliability in perceived risk prediction. The
box plots reveal that while PCAD and DRF are effective in certain conditions, their limi-
tations are evident in the broader range of driving scenarios where DNNs provide more
consistently accurate predictions.
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Table 4.3: Overview of DNNs configurations for different scenarios

Scenarios
Input

dimensions
Input

normalisation
Activation

Network
size

MB 21 Z-Score ReLU 21 × 500 × 2
HB 11 Z-Score ReLU 11 × 500 × 2

LC
Normal 20 Z-Score ReLU 20 × 500 × 2

Fragmented 20 Z-Score ReLU 20 × 500 × 2
Aborted 20 Z-Score ReLU 20 × 500 × 2

SVM 32 Z-Score ReLU 32 × 500 × 2

Table 4.4: Features that models use

Variables Explanations Inputs of models
vs,x Longitudinal velocity subject vehicle PCAD, DRF, and DNNs
vs,y Lateral velocity subject vehicle PCAD and DNNs
as,x Longitudinal acceleration subject vehicle PCAD and DNNs
as,y Lateral acceleration subject vehicle PCAD and DNNs
vn,x Longitudinal velocity neighbouring vehicle PCAD and DNNs
vn,y Lateral velocity neighbouring vehicle PCAD and DNNs
an,x Longitudinal acceleration neighbouring vehicle PCAD and DNNs
an,y Lateral acceleration neighbouring vehicle PCAD and DNNs
an,y Lateral acceleration neighbouring vehicle PCAD and DNNs
vnb,x Longitudinal velocity neighbouring vehicle (behind) DNNs in SVM
vnb,y Lateral velocity neighbouring vehicle (behind) DNNs in SVM
anb,x Longitudinal acceleration neighbouring vehicle (behind) DNNs in SVM
anb,y Lateral acceleration neighbouring vehicle (behind) DNNs in SVM
∆x Longitudinal distance to the neighbouring vehicle PCAD, DRF and DNNs
∆y Lateral distance to the neighbouring vehicle PCAD, DRF and DNNs
∆vx Longitudinal relative velocity to the neighbouring vehicle DNNs
∆vy Lateral relative velocity to the neighbouring vehicle DNNs
∆ax Longitudinal relative acceleration to the neighbouring vehicle DNNs
∆ay Lateral relative acceleration to the neighbouring vehicle DNNs
∆xb Longitudinal distance to the neighbouring vehicle (behind) DNNs in SVM
∆yb Lateral distance to the neighbouring vehicle (behind) DNNs in SVM
∆vx,b Longitudinal relative velocity to the neighbouring vehicle (behind) DNNs in SVM
∆vy,b Lateral relative velocity to the neighbouring vehicle (behind) DNNs in SVM
∆ax,b Longitudinal relative acceleration to the neighbouring vehicle (be-

hind)
DNNs in SVM

∆ay,b Lateral relative acceleration to the neighbouring vehicle (behind) DNNs in SVM
∆vs,u,x Subject vehicle’s longitudinal uncertain velocity to the neighbouring

vehicle
PCAD and DNNs

∆vs,u,y Subject vehicle’s lateral uncertain velocity to the neighbouring vehi-
cle

PCAD and DNNs

∆vn,u,x Neighbouring vehicle’s longitudinal uncertain velocity to the subject
vehicle

PCAD and DNNs

∆vn,u,y Neighbouring vehicle’s lateral uncertain velocity to the subject vehi-
cle

PCAD and DNNs

∆vnb,u,x Neighbouring vehicle’s longitudinal uncertain velocity to the subject
vehicle (behind)

DNNs in SVM

∆vnb,u,y Neighbouring vehicle’s lateral uncertain velocity to the subject vehi-
cle (behind)

DNNs in SVM

DR ACu,x Longitudinal acceleration to avoid a crash caused by uncertain veloc-
ity

DNNs

DR ACu,y Lateral acceleration to avoid a crash caused by uncertain velocity DNNs
DR ACu,b,x Longitudinal acceleration to avoid a crash caused by uncertain veloc-

ity (behind)
DNNs in SVM

DR ACu,b,y Lateral acceleration to avoid a crash caused by uncertain velocity (be-
hind)

DNNs in SVM

DR ACR,x Longitudinal acceleration to avoid a crash caused by real velocity DNNs
DR ACR,y Lateral acceleration to avoid a crash caused by real velocity DNNs
DR ACR,b,x Longitudinal acceleration to avoid a crash caused by real velocity (be-

hind)
DNNs in SVM

DR ACR,b,y Lateral acceleration to avoid a crash caused by real velocity (behind) DNNs in SVM
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Figure 4.5: Prediction results (red, purple, and orange) versus measured perceived risk (blue) of the three com-
putational perceived risk models (a) PCAD , (b) DRF and (c) DNNs for the specific events MB1, HB1, LC1,
SVM1 as a function of time where solid curves represent model output and the light coloured areas represents
the epistemic uncertainty of the corresponding model, with the solid blue curve being the averaged perceived
risk data and light blue area being the aleatoric uncertainty. (d) shows the prediction error with box plots in
for all events within the four scenarios. Boxes represent 25 (Q1) and 75 (Q3) percentile. The middle dash and
the circle represent the median (Q2) and mean. The lower and upper whiskers represent Q1− 1.5IQR and
Q3+1.5IQR (IQR is the Q3−Q1 )

4.4.4. DECODING PERCEIVED RISK
SHAP was employed to analyse the contributions of various kinematic factors to per-
ceived risk based on DNNs as they performed the best in predicting continuous per-
ceived risk ratings [168]. This analysis provides insights into the global feature impor-
tance of different factors in four driving scenarios. The SHAP values illustrate how cer-
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tain key factors impact perceived risk overall, indicating a core similarity in the dynamic
nature of perceived risk across diverse driving scenarios. Additionally, a local feature
importance analysis was conducted, which examined how the importance of these fac-
tors varies over time within each event in various scenarios, providing a dynamic view of
perceived risk.

To ensure that the SHAP analysis based on the trained DNNs provides meaningful
results and that the models are not overfitted, we compared the original DNNs with a
simplified version with much fewer neurons. Both models were trained and validated
under the same conditions to assess the overfitting risk and robustness against variations
during training, such as neuron dropout. The results, detailed in Appendix C.3, confirm
that the trained DNNs do not suffer from significant overfitting and provide a reliable
basis for SHAP analysis.

The SHAP analysis reveals a notable consistency in the main contributing factors
across different scenarios (Figure 4.6, Figure 4.7a-4.7f). Key factors such as the relative
longitudinal distance, subject vehicle’s longitudinal velocity, and longitudinal manoeu-
vre uncertainty recurrently emerge as significant across all scenarios. This consistency
suggests that despite the different nature of the driving events, certain fundamental dy-
namics — like the spatial and speed relationships between vehicles — uniformly influ-
ence perceived risk.

Longitudinal distance exhibits a critical influence on perceived risk in all scenarios
except LC (aborted) (Figure 4.7e); a lower value, indicating closer proximity to the neigh-
bouring vehicle, sharply increases perceived risk. Conversely, a higher value, where the
neighbouring vehicle is farther away, generally leads to a decrease in perceived risk,
maintaining a stable but low influence on the model’s output as the immediate threat
potential decreases. However, lateral distance did not appear as a contributing factor
across all scenarios but was only observed in the SVM scenario. The pattern, however,
remains consistent with that of relative longitudinal distance: the smaller the distance,
the higher the perceived risk, and vice versa.

The contributions of velocity (both longitudinal and lateral) of the subject vehicle
and neighbouring vehicles notably rank among the top factors influencing perceived risk
across all scenarios (Figure 4.7b-4.7f). We observed notable patterns of how longitudinal
and lateral velocity impacts perceived risk in MB and LC scenarios. For instance, in LC
(normal)(Figure 4.7c), higher longitudinal velocities of both the subject AV and neigh-
bouring vehicles are associated with increased perceived risk. Similarly patterns were
also observed in LC (fragmented) (Figure 4.7d) and LC (aborted) (Figure 4.7e). However,
in MB (Figure 4.7a), the impact of the subject vehicle’s velocity on perceived risk exhibits
a different trend: an increased velocity correlates with a reduction in perceived risk. To
explore this inconsistency, it is essential to examine the local feature importance over
time (Figure 4.7g). We found that a lower longitudinal velocity exactly appears when
the merging vehicle is entering the lane and undergoing intense braking. At these mo-
ments, although the subject vehicle’s velocity sharply decreases, other factors like the
relative distance dominate perceived risk. This does not contradict our driving experi-
ence. Overall, a higher velocity still generally correlates with an increased perceived risk.

The relative velocities between the subject AV and neighbouring vehicles also signif-
icantly influence perceived risk. As observed in MB (Figure 4.7a) and LC (fragmented)



4.4. RESULTS

4

91

(Figure 4.7d) scenarios, a trend emerges where increased relative longitudinal velocities
seem to increase perceived risk. However, in LC (aborted) scenario (Figure 4.7e), it is
observed that increased relative longitudinal velocities decrease perceived risk. Upon
examination of Figure 4.7j and Figure 4.7k, it becomes apparent that the primary dif-
ference between LC (fragmented) and LC (aborted) arises from the initial phase where
the neighbouring vehicle was approaching the subject AV from the rear. In later stages,
the impact of relative longitudinal velocity displays a similar trend. Despite identical
settings for these two scenarios, variability exists in perceived risk ratings as illustrated
in Figure C.5c, which may be a plausible reason for the differences observed in SHAP
value. In summary, the overall pattern suggests that, generally, larger relative velocities
are associated with higher perceived risk.

The analysis of acceleration effects on perceived risk reveals different patterns in var-
ious driving scenarios. In MB, HB and SVM scenarios (Figure 4.7a, Figure 4.7b and Figure
4.7f) a notable increase in perceived risk correlates with larger values of subject longi-
tudinal acceleration, which means that the subject AV is primarily accelerating. This
alignment with common driving experiences, where rapid deceleration often signals an
immediate hazard, while a start of acceleration indicates a lower risk.

However, the influence of lateral acceleration is less consistent across the scenar-
ios. Relative lateral acceleration shows a significant impact on perceived risk only in
HB scenario where there is no intentional lateral motion (Figure 4.7b). Interestingly, the
local feature importance analysis (Figure 4.7h) highlights that this impact becomes pro-
nounced during the transition from braking to acceleration, coinciding with a lateral
movement observed at the end of a hard braking phase due to vehicle dynamic con-
straints (see videos in Appendix C.4.1. This movement occurs as the vehicle ends its
braking and begins to accelerate, a phase typically associated with lower perceived risk.
It is evident that this lateral movement, captured by the DNNs, might be a contributory
factor to the observed perceived risk pattern. Despite these specifics, the general trend
suggests that when the subject acceleration is closer to forward (e.g., when the lead vehi-
cle stops braking and starts to accelerate), indicating reduced necessity for braking, per-
ceived risk tends to decrease. In contrast, no clear pattern emerges for lateral accelera-
tion across the scenarios, suggesting that its impact on perceived risk is less pronounced
or context-dependent.

Longitudinal manoeuvre uncertainty indicated as the longitudinal acceleration needed
by the subject vehicle (represented as Longitudinal collision-avoidance acceleration (un-
certainty) in Figure 4.7 with forward as positive and backward as negative; Chapter 4.3.4)
and the concept of “uncertain velocity” (represented as subject or neighbour’s longitudi-
nal manoeuvre uncertainty in Figure 4.7 with forward and left as positive; Chapter 4.3.4)
are associated with the potential manoeuvre of the neighbouring vehicle and the im-
precise control of the subject AV. In general, as uncertainty increases, so does perceived
risk, reflecting concerns about the effectiveness of possible evasive manoeuvres under
limited conditions. Specifically, in MB, HB and LC scenarios (Figure 4.7a-4.7e), when
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longitudinal uncertainty is shown in red, it indicates higher values, suggesting that the
subject AV may need to accelerate to avoid a collision, although computationally indi-
cated, maintaining speed would be adequate. Conversely, when values are shown in
blue, indicating lower values, it suggests that the subject AV needs to decelerate to avoid
a collision, thereby indicating a higher perceived risk. An interesting exception occurs
in Figure 4.7e, representing an aborted lane change scenario, where the opposite trend
is observed: perceived risk increases when acceleration is necessary. This observation
does not contradict the general trend, but highlights the unique circumstances of this
scenario. In LC (aborted), the neighbouring vehicle does not enter the current lane
as designed, leading to different risk dynamics. Typically, as the neighbouring vehicle
approaches from behind and aligns parallel to the subject AV, perceived risk peaks. In
this scenario, in particular, acceleration is required to maintain a safe distance from the
neighbouring vehicle, thus aligning with the increased perceived risk. This detailed dy-
namic indicates the complex interaction of manoeuvre uncertainty and perceived risk
in dynamic driving scenarios.

In terms of lateral manoeuvre uncertainty, regardless of whether it is indicated by un-
certain velocity or collision avoidance acceleration in the lateral direction, a clear pat-
tern emerges: greater lateral uncertainty generally correlates with increased perceived
risk, particularly when the neighbouring vehicle is in close proximity and maintaining a
constant relative position, such as during side-by-side driving stages (Figure 4.7i). This
trend is consistently observed across most scenarios; however, exceptions are noted in
MB (Figure 4.7a) and LC (aborted) (Figure 4.7e) scenarios. In these cases, the computa-
tion of lateral uncertain velocity yields lower values during stages after merging or when
the neighbouring vehicle paused a lane change but stayed in front of the subject AV. Dur-
ing these stages, despite the lower calculated uncertainty, perceived risk remains high
due to the potential longitudinal hazard, which was captured by DNNs demonstrating
the model’s sensitivity to driving contexts.

Comparative analysis reveals distinct patterns in how kinematic factors contribute to
perceived risk. In MB and HB scenarios, longitudinal collision-avoidance acceleration,
particularly caused by manoeuvre uncertainty, and the subject’s longitudinal velocity
prominently influence perceived risk, highlighting the critical role of speed and response
urgency in these high-stakes situations. The SVM scenario shows a strong impact from
both longitudinal and lateral distances and both leading and following vehicles, indi-
cating that spatial relationships are pivotal when merging into traffic. Conversely, the
LC scenarios depict a nuanced contribution landscape where lateral manoeuvre uncer-
tainty becomes more pronounced, reflecting the complex dynamics of lane-changing
manoeuvres. These variations emphasise how different driving contexts prioritise vari-
ous aspects of vehicular movement and proximity in perceived risk.



4.4. RESULTS

4

93

Figure 4.6: Factor SHAP value ranking in four scenarios. This ranking is based on the mean SHAP value in
corresponding scenarios.

(a). Global feature contributions and ranking to
perceived risk in MB

(b). Global feature contributions and ranking to
perceived risk in HB

(c). Global feature contributions and ranking to
perceived risk in LC (normal)

(d). Global feature contributions and ranking to
perceived risk in LC (fragmented)

(e). Global feature contributions and ranking to
perceived risk in LC (aborted)

(f). Global feature contributions and ranking to perceived
risk in SVM
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(g) Feature contributions to perceived risk over time in
MB1 event

(h) Feature contributions to perceived risk over time in
HB1 event

(i) Feature contributions to perceived risk over time in LC1
(normal) event

(j) Feature contributions to perceived risk over time in
LC13 (fragmented) event

(k) Feature contributions to perceived risk over time in
LC19 (aborted) event

(l) Feature contributions to perceived risk over time in
SVM1 event

Figure 4.7: Global feature contributions and ranking to perceived risk in (a) MB scenario, (b) HB scenario, (c)
LC (normal), in (d) LC (fragmented), (e) LC (aborted), (f ) SVM scenario; Local feature contributions to per-
ceived risk over time in (g) MB1, (h) HB1, (i) LC1 (normal), (j) LC13 (fragmented), (k) LC19 (aborted), (l) SVM1.
See Appendix C.4.2 for the local feature contributions in all 105 events. For the global feature contributions,
red indicates higher feature values while blue indicates lower feature values. Take the longitudinal relative dis-
tance as an example, red indicates a larger distance corresponding to a lower perceived risk with a negative
SHAP value on model output. However, for local feature contributions, red and blue indicate the feature con-
tribution to model output not the feature values themselves.

4.5. DISCUSSION
This chapter undertook a comprehensive examination of perceived risk within auto-
mated vehicle environments, with a focus on dynamically assessing how different fac-
tors influence perceived risk during driving. Using sequential video clips, we developed
a novel method to continuously collect perceived risk data, resulting in 141,628 ratings
after selection from participants mainly in Europe. Our approach surpasses traditional
methods by providing a real-time, continuous assessment rather than static snapshots
often limited to post-experience surveys. The core of our research involved altering var-
ious driving behaviours and conditions to understand their impact on perceived risk,
revealing critical insights into both global and local feature importance in the time do-
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main. These insights not only align with existing theories on perceived risk but also high-
light new dynamics in how people perceive risk in automated driving. The findings pave
the way for refining automated vehicle technology and improving safety protocols by
focusing on human-centred design principles in automated vehicle interactions.

A significant advancement was represented by our method for collecting perceived
risk data, which moved beyond traditional approaches that typically depend on static
post-experience surveys [13], [14], [109]. By employing high-fidelity simulation software
to generate dynamic driving scenarios, we were able to collect real-time, continuous per-
ceived risk ratings from participants. This continuous data collection mirrors the fluid
dynamics of actual driving more closely than traditional methods at population level
[11], [20], [21], [31]–[33] or event level [9], [14], [35], [37], [45], [141], capturing tran-
sient continuous time changes in driver perception that would otherwise be overlooked.
Additionally, this approach offers a cost-effective alternative to real-world driving tests,
which are logistically complex and financially demanding [195], [196]. Simulations not
only reduce these burdens but also enhance the safety and repeatability of the experi-
ments, making this method an efficient and effective tool for large-scale research with-
out compromising the depth and quality of data [197].

Our findings demonstrate a clear alignment with existing studies in terms of how per-
ceived risk is influenced by specific driving conditions. Particularly, our data reaffirmed
the well-established notion that closer relative distances and higher (relative) speeds
correlate strongly with increased perceived risk [36], [69], [110], [117]. These results are
consistent with the broader literature on driving safety and risk perception, which has
long recognised that reduced following distances and elevated speeds elevate drivers’
sense of danger due to decreased reaction times and increased potential for severe out-
comes in the event of a collision [127], [128].

Insights into how specific driving conditions and manoeuvre uncertainties dynam-
ically impact perceived risk were unveiled through our analysis of local feature impor-
tance (Figure 4.7h-Figure 4.7l). We discovered that manoeuvre uncertainties, variations
in the actions of both the subject vehicle and nearby traffic, significantly impact per-
ceived risk, particularly during complex manoeuvres such as merging or lane chang-
ing. These findings highlight the importance of advanced predictive algorithms in au-
tomated driving systems that can anticipate and mitigate perceived risk associated with
unpredictable driving behaviours [129], [187]. In Chapter 3, a model of “uncertain veloc-
ity” within the PCAD model was derived with the calibrated parameters fitting perceived
risk data from a simulator study. Now we use the same “uncertain velocity” model and
parameters as inputs of DNNs where they strongly contributed to perceived risk. Here,
it should be noted that this uncertain velocity is a construct explaining perceived risk,
but is not based on actual uncertainty or direct subjective evaluation of uncertainty.
However, it is also important to note that more detailed factors representing the motion
prediction of all road users could be integrated into future analyses to provide a richer
understanding of uncertainty in these dynamic driving conditions. Such an approach
could gain deeper insights into manoeuvre uncertainties, enhancing predictive models
for automated driving systems.

Moreover, this chapter emphasises the temporal variability of perceived risk, show-
ing that the influence of certain conditions can intensify as drivers approach critical
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points within a driving scenario. This underscores the necessity for automated systems
to not only react to immediate risks but also adapt to potential future risks [198], [199],
enhancing their predictive capabilities to improve safety and driver trust in automated
technologies.

The PCAD and DRF models have been selected as candidates of ideal observers to
predict continuous perceived risk ratings in dynamic driving scenarios. However, their
predictive capabilities are less effective than DNNs in stable conditions, such as when ve-
hicles maintain close yet constant distances either in car following or side-by-side driv-
ing situations (Figure 4.7h, Figure 4.7c-Figure 4.7e). This limitation may stem from the
foundational principles upon which these models are built. Both PCAD and DRF are
grounded in collision avoidance theory and using datasets focusing on scenarios where
a change in the traffic environment might lead to a collision [150], [167]. These models
are able to predict perceived risk well in situations where rapid responses to avoid im-
mediate threats are necessary, such as sudden stops or evasive manoeuvres. In stable
driving conditions, where the relative positions of vehicles do not change significantly,
these models struggle because they are designed to react to changing traffic conditions.
This issue highlights an important aspect of automated driving systems and computa-
tional perceived risk models: the need for an expanded framework that can effectively
interpret risk even when driving conditions are stable but potentially risky. Although
stable conditions may not trigger immediate alerts from collision avoidance algorithms,
they can still present considerable risks, especially when vehicles are travelling at high
speeds while being close to each other [200], [201]. Enhancing these models to better
understand and predict perceived risk in these scenarios would improve their utility and
reliability, ensuring that automated systems can maintain safety across a broader range
of driving conditions.

We chose DNNs for their superior ability to model complex, non-linear interactions
within large datasets, which traditional models like PCAD and DRF struggle with, es-
pecially in scenarios requiring time-continuous prediction of perceived risk [37], [38].
Unlike these traditional models, which predict event-based discrete perceived risk well,
DNNs excel in handling dynamic and unpredictable scenarios, making them ideal for
studying perceived risk continuously and in depth. Our primary goal with DNNs is not
just to predict perceived risk accurately but to use these predictions to understand un-
derlying patterns, essentially treating the model as an ideal observer [164]–[166]. By us-
ing the advanced learning capabilities of DNNs, we bridged the gap between human
perceptions and AVs behaviours, enhancing both the safety and the acceptance of auto-
mated vehicle technologies.

In this chapter, we intentionally excluded direct positional and velocity variables of
the subject AV and neighbouring vehicles as inputs for DNNs due to the nature of our
experimental design. These variables exhibit specific, predictable patterns over time
within the controlled driving scenarios we used. If included, the DNNs might learn to
associate these time-dependent patterns with perceived risk, rather than learning from
more substantive risk factors that generalise across different driving contexts [202], [203].
This decision aims to prevent the DNNs from overfitting to scenario-specific conditions
that do not necessarily translate to real-world situations. By focusing on broader, more
general factors of perceived risk, our DNNs aim to capture essential elements of risk that
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apply across various driving environments. This approach enhances the model’s robust-
ness and guarantees that its predictive abilities are based on truly significant driving dy-
namics, instead of being influenced by the specific characteristics of our experimental
arrangement.

An unexpected finding was the absence of lateral relative distance to neighbouring
vehicles as a significant contributing factor, particularly during the side-by-side driv-
ing stages where this variable would apparently play an important role in perceived risk
[204], [205]. Interestingly, what did emerge as significant was lateral uncertainty — the
variability in the lateral movements of neighbouring vehicles represented by the con-
cept “uncertain velocity”, suggesting that the unpredictability of these movements con-
tributes more to perceived risk than mere distance. This indicates that drivers may be
more sensitive to the potential for sudden changes in the positions of adjacent vehicles
than to their steady state lateral distance. Perceived risk, in this case, seems to stem more
from the uncertainty or the possibility of sudden lateral movements (such as an unex-
pected lane change). This finding can significantly inform the development of safety
mechanisms in automated driving systems and computational perceived risk modelling,
where detecting and responding quickly to potential lateral movements could reduce
perceived risks more effectively than simply maintaining a constant lateral distance.

The uncertain velocity that indicates longitudinal manoeuvre uncertainty was a sig-
nificant factor to perceived risk only in scenario LC and did not emerge at all in the other
three scenarios. This suggests that while uncertain velocity does reflect some aspects
of perceived risk, it does not comprehensively capture the risk perception mechanism
on its own. This may be because the complexity of perceived risk usually involves sev-
eral different factors working together. Important factors such as the relative distance
between vehicles, their relative speeds, and environmental conditions often come to-
gether to shape a driver’s perceived risk [206], [207]. Uncertain velocity alone may not
sufficiently account for how drivers assess the safety and risk of their immediate driving
environment.

While this chapter provides significant insights into perceived risk in AVs, there are
several limitations that indicate directions for further investigation. In this study, we
trained six different DNNs for specific scenarios, which makes the models quite scenario-
specific and raises the question of transferability despite our additional evaluations con-
firming no significant overfitting. To overcome this, training a more general neural net-
work capable of fitting all scenarios could offer deeper and more universal insights, in-
creasing both the generalisability and robustness of the model’s predictions. However,
this approach would require addressing several challenging issues, such as the variabil-
ity in input parameters across different driving scenarios. Developing a unified model
would need careful consideration to generalise these inputs. Additionally, the DNN pre-
dicts perceived risk based on the variables in Table 4.4 while the SHAP analysis identi-
fies the factors that contribute the most to the variance within the current datasets, see
Figure 4.6. A well-founded reduction of variables used may enhance model robustness
against overfitting. Furthermore, a more independent validation of the model is required
to further assess its generalisability. This can involve training the model on data from
three different scenarios and then evaluating its prediction performance on the fourth
scenario, or even testing it on entirely new data collected from different experimental
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settings. Such validation would mitigate the risks of overfitting to specific scenarios.
The simulated scenarios and rating method used in this chapter, although valuable

for controlled analysis, do not fully capture the variability and complexity of real traffic.
Future studies might consider incorporating on-road testing, or collection of on-road
videos to validate and enrich the findings obtained from simulated environments. Addi-
tionally, our research primarily focused on kinematic factors such as speed and relative
distance, which represent only a part of the broader range of factors influencing per-
ceived risk. We did not investigate how demographic characteristics such as age and
driving experience influence perceived risk. These factors are known to affect perceived
risk, and can be systematically and efficiently explored in future online studies. Future
research can focus more on personalised approaches to predict perceived risk in AVs.
Moreover, the driving scenarios used were limited to motorway driving and car to car in-
teractions. To advance our understanding of perceived risk across diverse driving envi-
ronments, future research should also explore interactions with various road users such
as trucks, motorcycles, pedestrians, and cyclists across different road types. This ap-
proach will allow us to develop models that reflect the complexities of real-world traffic
dynamics, enhancing the predictive accuracy and reliability of computational perceived
risk models in varied scenarios.
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DESIGNING USER INTERFACES FOR

PARTIALLY AUTOMATED VEHICLES:
EFFECTS OF INFORMATION AND

MODALITY ON TRUST AND

ACCEPTANCE

Trust and perceived safety are pivotal in the acceptance of automated vehicles and can be
enhanced by providing users with automation information on the (safe) operation of the
vehicle. This chapter aims to identify how user interfaces (UI) can enhance drivers’ trust
and acceptance and reduce perceived risk in partially automated vehicles. Four interfaces
were designed with different levels of complexity. These levels were achieved by combin-
ing automation information (surrounding information vs surrounding and manoeuvre
information) and modality (visual vs visual and auditory). These interfaces were eval-
uated in a driving simulator in which a partially automated vehicle reacted to an event
of a merging and braking vehicle in its front. The criticality of the events was manipu-
lated by the factors merging gap (in meters) and deceleration (m/s2) of the vehicle in front.
The reaction of the automation was either to brake or to change lanes. The results show
that an optimal combination of automation information and modality enhances drivers’
trust, communication with automation, perceived ease of use, and perceived usefulness.
More specifically, the most complex UI, which provided surrounding and manoeuvre in-
formation via the visual and auditory modalities, was associated with the highest trust
and acceptance ranking and the lowest perceived risk. Manoeuvre information delivered

The content of this chapter has been published in
Kim, S.∗, He, X.∗, van Egmond, R., & Happee, R. Designing user interfaces for partially automated vehicles:
effects of information and modality on trust and acceptance Transportation Research Part F: Traffic Psychology
and Behaviour, 103, 404-419. ∗ Co-first author
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through the auditory modality was particularly effective in enhancing trust and accep-
tance. The benefits of the UIs were consistent over events. However, in the most critical
events, drivers did not feel entirely safe and did not trust the automation completely. This
chapter suggests that the design of UIs for partially automated vehicles shall include au-
tomation information via visual and auditory modalities.
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5.1. INTRODUCTION
Automated vehicle technology is rapidly developing, promising increased safety and
comfort to drivers [208]. As technology continues to progress, it is expected to bring
disruptive changes to transportation systems and people’s lifestyles [209]. Automated
vehicles may enable drivers to engage in non-driving activities, such as working, read-
ing, or resting [210]. However, the successful diffusion of automated vehicles depends
on the acceptance of the new technology [211]. Trust is an essential prerequisite for us-
ing automation, as it is a key predictor of acceptance and a positive user experience [21],
[29], [212]–[215]. Trust in automation refers to the attitude that the system will help users
achieve their goals in a situation characterised by uncertainty and vulnerability [28]. Per-
ceived risk captures the level of risk experienced in driving [53]. Li et al. [35] considered
perceived safety as an antecedent of trust, while Nordhoff et al. [11] found that perceived
safety emerges from trust. We consider trust and perceived safety (or risk) to be interact-
ing perceptions which are essential in the interaction between drivers and automated
vehicles. Trust and perceived safety primarily derive from the automation performance
as perceived by the user and the driving conditions, including the (dangerous) behaviour
of other road users. User interfaces can thereby help to calibrate trust and perceived risk
as they can inform users of the (safe) operation of the automated vehicle and its capa-
bility to deal with other road users [35]. The potential of user interfaces to enhance trust
and perceived safety and to foster acceptance of automated driving was demonstrated
in our recent survey [216]. However, previous research primarily focused on the overall
effect of user interfaces and provided limited insights into the effects of different infor-
mation types and modalities on driver’s trust, perceived risk, and acceptance. In this
chapter, therefore, we design and evaluate user interfaces conveying different types of
information in various modalities to investigate their effects on trust, perceived risk, and
acceptance in partially automated vehicles.

5.1.1. TRUST IN AUTOMATED VEHICLES
Trust is crucial for the acceptance of vehicle automation [21], [29], [212], [213], [215],
[217]. It is important to adjust users’ trust to an appropriate level depending on the sys-
tems’ performance [218]. To leverage advanced technologies, driver’s trust needs to be
maintained at an appropriate level [219] to avoid both under-trust (or distrust) and over-
trust [28]. Over-trust can lead to misuse and unintended use, which can result in various,
even fatal accidents [220]. Conversely, many (potential) users distrust vehicle automa-
tion, which may lead to disuse [221]. Transparency is crucial to evoke trust [222]. Trust
issues may result from a lack of information on the behaviour of a complex system, e.g.,
a car [223]. Transparency, as defined by Endsley et al. [224], encompasses the clarity
and predictability of systems. It enables users to grasp the system’s operations, ratio-
nale, and anticipated actions [225]. In automated vehicles, a deficiency in transparency,
such as the absence of information regarding future actions, may cause inherent distrust
[48]. Well-designed user interfaces can reduce unnecessary interventions by enhancing
the driver’s understanding of the vehicle’s intentions and capabilities [226]. Automation
system transparency has been shown to enhance trust calibration [28], [29], [227]–[230].
Nevertheless, the existing studies examine the importance of transparency, with less em-
phasis on how transparency in user interfaces influences driver’s trust. Therefore, we
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design user interfaces to enhance system transparency and investigate their effects on
trust in this chapter.

5.1.2. SURROUNDING AND MANOEUVRE INFORMATION
To foster trust in and acceptance of automated vehicles, it is important to design trans-
parent automated vehicle behaviour supported by a user interface explaining the opera-
tion of the automated vehicle. Previous studies have emphasised the necessity of system
transparency by providing automation information, which consists of surrounding and
manoeuvre information [49], [50], [231]–[234]. Surrounding information includes other
road users detected by the vehicle, and manoeuvre information relates to the decisions
made by the automated vehicle. Both information types enable users to anticipate and
understand upcoming vehicle behaviour.

Wilson et al. [215] observed on-road driver behaviour in partially automated vehicles.
They confirmed that one obstacle to trusting automated vehicles is a lack of information
provided to the driver regarding what the automation “perceives” of the driving envi-
ronment and how the automation will behave afterwards. When the vehicle detected
other vehicles and presented this on the visual interface, drivers were reassured that the
vehicle would respond adequately and continued to use the automation. Providing sur-
rounding and manoeuvre information increases trust and convinces drivers to use au-
tomation [232]. Oliveira et al. [49] and Sawitzky et al. [50] have shown that augmented
reality displays can increase trust by providing different visual aids for displaying driving
routes as manoeuvre information. Koo et al. [233] and Ma et al. [234] confirmed that in-
formation provided using a single modality, auditory and visual, respectively, increased
trust, but the impact of different levels of automation information on drivers varied be-
tween studies. Koo et al. [233] compared four different transparency levels of informa-
tion, with and without surrounding information (the reasons for action) and manoeuvre
information (how the car will act), via auditory modality and found that surrounding in-
formation increased trust, but the effect of manoeuvre information was not significant.
Ma et al. [234] investigated three transparency levels of information (1. none; 2. sur-
rounding information; 3. surrounding and manoeuvre information) via visual modality
and showed that a combination of surrounding and manoeuvre information increased
trust more than surrounding-only information. Basantis et al. [48] compared four dif-
ferent interfaces (1. No feedback; 2. Vehicle path on the visual display; 3. Manoeuvre
notification sound 4. Mix of 2 and 3) in the rear seat. The results show enhanced trust
and perceived safety with the auditory manoeuvre notification compared to only visual
automation information. Although these studies highlight the benefits of providing sur-
rounding and manoeuvre information, they typically examined the impact of these in-
formation types in isolation or did not systematically evaluate the combined effects of
different modalities (visual and auditory) on trust and perceived safety.

While Mackay et al. [235] and Chang et al. [231] suggested that more information
does not always lead to increased trust, the nuances of how different levels of informa-
tion interact with modality to influence trust and acceptance in partially automated ve-
hicles have not been fully explored. Examination of how auditory information, when
synchronised with visual cues, can maintain driver attention without causing distrac-
tion or irritation is still needed, as highlighted by Liu [236] and Edworthy [237].
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Thus, further research is essential to address the current gap in understanding the
interaction of modality and information and how the combination of information types
and modality affects trust, perceived safety and acceptance in the specific context of
partially automated vehicles. Existing studies have not fully explored the systematic ef-
fects of auditory and visual information, indicating a pressing need for further research
to systematically examine the impact, guiding the design of effective user interfaces that
provide the necessary information to establish an appropriate trust level in partially au-
tomated vehicles.

5.1.3. THE CURRENT STUDY
The study in this chapter systematically investigates how different information types and
modalities of user interfaces in driving automation information affect drivers’ trust, per-
ceived safety, and acceptance during partially automated driving. We hypothesised that
user interfaces providing surrounding information, manoeuvre information, or both en-
hance drivers’ trust, perceived safety and acceptance in driving automation. We ex-
pected that user interfaces that provide more information enhance trust and perceived
safety. As a result we also expected a reduced frequency of drivers’ interventions (e.g.,
braking) during driving automation. We evaluated visual and auditory UI to compare
their effectiveness and user acceptance. For the challenge of maintaining the driver’s at-
tention, we expect that visual displays impact the driver’s eye gaze distribution, which is
significantly correlated with the driver’s trust and perceived risk levels.

To validate our hypothesis, we designed four user interfaces using four combinations
of information (surrounding information vs surrounding and manoeuvre information)
and modalities (visual modality vs visual and auditory modality). The interfaces were in-
tended to support drivers in understanding the reactions of automated vehicles to other
vehicles merging in front, where the automated vehicles could react by either braking or
changing lanes.

5.2. METHODS
We designed four user interfaces (UI) providing automation information via visual and
auditory modalities and evaluated the interfaces in a driving simulator, adding No UI
as a baseline condition in a partially automated vehicle (Table 5.1). Effects of UI were
assessed objectively through brake behaviour and eye-gaze behaviour, as well as sub-
jectively through perceived risk, trust and acceptance. In a preliminary experiment (see
Appendix D.1), participants evaluated one type of UI among these five UI conditions
(between-subject experiment design). The results showed significant benefits for all four
UIs compared to the No UI condition, but differences between the four UIs were not
significant, presumably due to large individual differences. To further investigate the ef-
fects of UI information type and modality, the main experiment was performed using a
within-subject design, which is less sensitive to individual differences.

5.2.1. PARTICIPANTS
Twenty-two drivers participated in the experiment. All had driving licenses for more
than a year. The average age of the participants was 28.3 years (SD = 13.1). Thirteen were
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male, and nine were female. Eleven had experience with adaptive cruise control (ACC),
seven with lane-keeping assist (LKA), and four with both ACC and LKA. Eight drove a few
times per year, ten drove a few times per month, and four drove a few times per week.

5.2.2. APPARATUS
Participants experienced the scenarios in the DAVSi driving simulator with a Toyota Yaris
cockpit (Figure 5.1) at Delft University of Technology. It used three high-quality projec-
tors to display the environment on a cylindrical 180-degree screen. Two 7-inch tablets
were used as side mirrors. The automation UI presented visual information on a 10.1-
inch tablet at the centre console, while an in-vehicle embedded speaker presented the
auditory information. A 5.8-inch tablet was placed on the left side of the steering for a
questionnaire. The instrument panel showed vehicle speed and engine revolutions per
minute. A fixed four-camera Smart Eye Pro tracked the participant’s eye gaze and was
used to classify the region of interest.

Figure 5.1: Exterior and interior of the DAVSi simulator, with visual automation UI right of the steering wheel
and tablet for the questionnaire left of the steering wheel

5.2.3. EXPERIMENTAL CONDITIONS
The experiment evaluated the effects of two information types (i.e., surrounding and
manoeuvre) and two modalities (i.e., visual and auditory). The visual modality was used
to provide continuous information, and event-based information was presented using
visual or auditory cues. We always included surrounding information in four UIs which
was shown beneficial in a range of studies as outlined above and explored the benefits
of adding manoeuvre information. Table 5.1 shows the five UI conditions: 1) Baseline
(No UI), with no additional (automation) information provided, 2) Surrounding infor-
mation via the visual modality (S-V UI), 3) Surrounding and manoeuvre information via
the visual modality (SM-V UI), 4) Surrounding information via the visual and auditory
modality (S-VA UI), 5) Surrounding and manoeuvre information via the visual and audi-
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tory modality (SM-VA UI). Each participant executed all five UI conditions in randomised
order.

Table 5.1: User Interface Conditions (Note. baseline is No UI)

Modality Information

Surrounding Surrounding & Manoeuvre

Visual S-V UI SM-V UI
Visual & Auditory S-VA UI SM-VA UI

5.2.4. SCENARIO DESIGN
This experiment selected highway driving scenarios with other vehicles merging into the
driving lane of the ego-vehicle. Participants drove partially automated vehicles where
they monitored the driving environment and kept their hands on the steering wheel. An
adjacent vehicle (the yellow car in Figure 5.2) entered the highway and approached to
merge into the right lane where the ego-vehicle (the blue car in Figure 2) was driving.
Participants could see the adjacent vehicle approaching their lane. After detecting the
merging vehicle, the ego-vehicle braked (Figure 5.2 left) or steered to the left lane (Figure
5.2 right). The velocity of the ego-vehicle and the traffic vehicles was set to 100 km/h. In
the braking manoeuvres, the braking lasted until the merging vehicle velocity decreased
to 60 km/h, followed by acceleration back to 100 km/h. In the lane change manoeuvres,
the ego-vehicle steered into the left lane, overtook the merging vehicle and returned to
the original lane. No accidents or automation failures were designed.

Figure 5.2: Merging scenario (Blue: ego-vehicle, Black: leading vehicle, Yellow: merging vehicle), slowing down
manoeuvre (Left) and lane change manoeuvre (Right)

Six merging events were studied (Table 5.3), varying in terms of merging gap (5m and
25m) and automation action (−2m/s2 or −8m/s2 deceleration, or lane change). The
slowing-down manoeuvre and lane change manoeuvre contained four and two merg-
ing events with different criticalities (automation action) respectively. To integrate these
into a single drive, a series of onramps were designed along the road with one-minute
intervals between merging locations. In total, merging events occurred in eight of the
ten ramps. The order of events was randomised for every drive.
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Table 5.3: Event types

Manoeuvre Merging gap (m) Automation action

Slowing down 5 −2m/s2 deceleration
25 −8m/s2 deceleration

Lane change 5* Lane change
25* Lane change

5.2.5. UI DESIGN

VISUAL INTERFACE

A bird-eye view with pop-up messages provided visual surrounding information (Figure
5.3 left). The bird-eye view was visible the entire time while driving. It showed the driv-
ing environment 60m forward and 10m backwards, including two adjacent lanes. The
colour of the ego-vehicle was red to ensure that participants easily recognised their car,
while the colour of other vehicles was grey. A pop-up message displayed safety-related
surrounding information (i.e., merging vehicle detected). In SM-V UI and SM-VA UI con-
ditions, manoeuvre information was also provided as a pop-up message with text and an
icon after the surrounding information pop-up message in the same location (Figure 5.3
right) and was presented just before the ego-vehicle performed a manoeuvre (i.e., when
the ego-vehicle is slowing down or changing lane).

Figure 5.3: Visual UI with surrounding and manoeuvre information. Bird-eye view with pop-up message of
surrounding information (Left) and pop-up messages for manoeuvre information (Right)
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AUDITORY INTERFACE

A combination of abstract sounds and language-based explanations was used. An ab-
stract sound of a low alarm level was provided to draw attention to prevent participants
from being surprised by the language-based explanations. A wood and xylophone sound
with a fundamental frequency of 625Hz was two times repeated and lasted a total of
1.24s. It was chosen because it can provide a feeling of simplicity [238]. Comprehension-
level perception information was provided [239] as surrounding information. Explana-
tions were generated using a female voice to be more likeable and comfortable [240] on
the Google text-to-speech engine. The surrounding information was provided as: ‘merg-
ing vehicle detected’ of 1.40s. Manoeuvre information used a first-person pronoun (i.e.,
‘we’) as an anthropomorphism to increase trust [241]. Manoeuvre information was pro-
vided as: ‘we are slowing down’ of of 1.00s seconds or ‘we are changing lane’ of of 1.10s
seconds. These sounds can be found in Appendix D.2.

TIMING

The provision of automation information prior to the action of the automated vehicle
has been found to improve trust, as demonstrated in previous studies [219], [242]. There-
fore, the information was provided before the vehicle took action in the experiment. To
determine the optimal timing for information provision, we conducted a pilot test using
an online survey to compare on-time and early-timing conditions. The on-time condi-
tion provided surrounding and manoeuvre information as soon as the merging vehicle
changed direction to the ego-vehicle lane. The early-timing condition provided the in-
formation four seconds before the on-time condition. Twenty-four participants watched
videos with different information provision timing and answered the trust comparison
question. The manoeuvre was when a merging vehicle approached with a 5m merg-
ing gap with −5m/s2 deceleration. As a result, fifteen participants answered that they
trusted automation more with early timing. One participant trusted more on time, and
eight had no preference. Therefore, we decided to provide the information four seconds
before the merging started. Hereby, we assumed the AV to timely detect the merging
intention from the directional indicator or V2V communication.

5.2.6. MEASUREMENT
During the simulation, brake pedal signals, eye gaze behaviours, trust, and perceived risk
were collected. The brake pedal signal was recorded by the driving simulator automati-
cally as braking is an effective indicator of distrust and perceived risk during automated
driving [34], [117], [243]. We deactivated the option for participants to take over control
by steering to ensure a controlled study environment because different traffic conditions
in the left lane influence the driver’s steering behaviour, which would introduce addi-
tional factors into the analysis. Eye gaze behaviour, an indicator of the driver’s attention
and situation awareness, is impacted by user interfaces as they can change the driver’s
eye gaze distributions [244]. The redistribution of eye gaze is particularly important as
it is indicative of the driver’s engagement with the driving environment and the auto-
mated system. Eye gaze behaviour was recorded at 60Hz using a smart-eye system with
four infrared cameras mounted in the vehicle cockpit. It was measured to evaluate the
eye gaze fixation time ratio on the display and the road and the eye gaze transition num-
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bers between the display and the road. Participants were requested to report the level
of trust and perceived risk after each merging event on the tablet on the left side of the
steering wheel [117]. After each merging event, the experimenter verbally asked two 10-
point Likert scale questions: “how much do you trust the driving automation according
to the previous performance of the system?” and “how risky do you perceive the previous
event”. After each UI condition, participants answered three questions related to com-
munication and acceptance on a 7-point Likert scale. Communication with automation
measured whether drivers understood the system operation through the interface. We
measured perceived usefulness and perceived ease of use to evaluate acceptance based
on the Technology Acceptance Model (TAM) [245]. Perceived usefulness measures the
degree to which the technology is useful and enhances driving performance. Perceived
ease of use measures the degree to which the technology is easy to use and understand-
able. After participants experienced five UI conditions, they were asked to rank the five
UIs on communication with automation, perceived usefulness, and perceived ease of
use. In addition, the preferred modality (visual vs auditory vs both) of given the type of
information was evaluated using a 7-point Likert scale.

5.2.7. PROCEDURE
Participants were welcomed and introduced to the experiment. They were asked to read
the experiment information and sign an informed consent form before they filled out a
demographic questionnaire, including age, gender, and vehicle automation experience.
After finishing the questionnaire, they moved into the driving simulator. Participants ad-
justed the sitting position according to their individual preferences, and an experimenter
calibrated the eye-tracking system. Participants were informed that they would be driv-
ing a partially automated vehicle, with the vehicle performing lateral and longitudinal
motion control while they monitored the driving automation and kept their hands on
the steering wheel. They were instructed that they could intervene in the automation by
braking whenever they felt it was necessary, and partially automated driving would au-
tomatically reactivate right after their intervention. In the training session, participants
drove partially automated driving on the highway to familiarise themselves with the sim-
ulator and learn how to answer the trust and perceived risk questions in the tablet when
they were asked. This training lasted until participants could handle all tasks well. Then,
the simulator experiment started. For each UI condition, participants experienced eight
merging events in randomised order. Participants were informed they could stop if they
felt uncomfortable or experienced motion sickness. During driving, participants rated
their level of trust and perceived risk using a 10-point Likert scale questionnaire on the
tablet located on the left side of the steering wheel after each event. Each UI condi-
tion took around ten minutes. After each UI condition, participants answered the ques-
tionnaire about communication with automation and acceptance. This was repeated
five times to experience five UI conditions. The order of five UI conditions was ran-
domised. Participants had a break between the third and the fourth UI conditions. After
five UI conditions, they answered the ranking questionnaire on preferred information
and modalities. The entire procedure took around two hours.
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5.2.8. DATA ANALYSIS
Statistical analysis was conducted using IBM SPSS ver.27. A two-way repeated-measure
ANOVA was used to analyse the effects of UI and Event type on trust, perceived risk and
eye gaze behaviour. The data were analysed using a separate repeated-measures anal-
ysis for each dependent variable (trust, perceived risk and eye gaze behaviour) with in-
dependent factors UI (5 levels) and Event type (6 levels) as within-subject variables. To
analyse the effects of UI on communication with automation, perceived ease of use, and
perceived usefulness, a one-way ANOVA was used. Effects were declared statistically sig-
nificant if p < 0.05. Post-hoc analysis was conducted with a Bonferroni test where the α
value was adjusted by dividing it by the number of comparisons. Therefore, 0.005 and
0.003 were used as the adjusted α levels for post-hoc analysis on the effects of UI and
event type, respectively.

5.3. RESULTS
All twenty-two participants completed the experiment, and no motion sickness was re-
ported. Eye gaze signals were successfully collected in 106 simulations (22 participants
× 5 UIs with four UI conditions missing eye gaze data). 880 answers (22 participants ×
5 UIs × 8 events) about trust and perceived risk and 110 answers (22 participants × 5
UIs) about communication with automation and acceptance, and 22 answers (22 partic-
ipants) about information and modality preference were collected from questionnaires
and analysed.

5.3.1. TRUST AND PERCEIVED RISK
Figure 5.4 shows the mean score for trust (Left) and perceived risk (Right) over all events
for each user interface. The SM-VA UI received the highest trust. The effect of user inter-
face on trust was significant (F (4,84) = 5.30, p < 0.001,η2 = 0.20). The SM-VA UI received
significantly higher trust compared to the S-V UI (p = 0.029) and the S-VA UI (p = 0.025)
(Figure 5.4 left). As expected, perceived risk showed an opposite trend as trust, where
the lowest risk was perceived with the SM-VA UI (Figure 5.4 right). However, the effect
of UI conditions on perceived risk was marginally non-significant (F (4,84) = 2.48, p =
0.050,η2 = 0.11).
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standard error over 22 participants (* p < 0.05)
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Figure 5.5 shows the mean score for trust (Left) and perceived risk (Right) over all user
interfaces for each event type. Here, no significant effects of the order were found be-
tween these events so lane change results were averaged over the two equivalent events
tested. The most critical event (Slowing down with a 5m merging gap and −8m/s2

deceleration) received the lowest trust and the highest perceived risk. The least criti-
cal event (Slowing down with a 25m merging gap and −2m/s2 deceleration) received
the highest trust and the lowest perceived risk. As shown in Table 5.3, the effect of
each event element (merging gap and automation action) on trust and perceived risk
was analysed. The merging gap included 5m and 25m, and the automation action in-
cluded −2m/s2 and −8m/s2deceleration and lane change. The merging gap signifi-
cantly affected trust (F (1,21) = 89.48, p < 0.001,η2 = 0.81) and perceived risk (F (1,21) =
179.09, p < 0.001,η2 = 0.90). The post-hoc analysis indicated that 25m merging gap
events received higher trust and lower perceived risk than 5m merging gap events (p <
0.001). The automation action also significantly affected trust (F (1.28,26.88) = 55.03, p <
0.001,η2 = 0.72) and perceived risk (F (1.64,34.52) = 76.97, p < 0.001,η2 = 0.79) with a
Greenhouse-Geisser adjustment. The post-hoc analysis indicated that −2m/s2 decel-
eration events received the highest trust and the lowest perceived risk (p < 0.001), and
−28m/s2 deceleration events received the lowest trust and the highest perceived risk
(p < 0.001). There was an interaction effect between the merging gap and automation
action on trust (F (1.44,30.28) = 45.88, p < 0.001,η2 = 0.69) and perceived risk (F (1.40,29.34) =
58.84, p < .001,η2 = 0.74) with a Greenhouse-Geisser adjustment. The trust and per-
ceived risk difference between −2m/s2 deceleration or lane change and −8m/s2 decel-
eration were much greater when the merging gap was 5m than 25m. There was no in-
teraction effect between UIs and elements of events on trust and perceived risk.

Figure 5.5: Drivers’ trust (Left) and perceived risk (Right) as a function of automation action and merging gap
(* p < 0.05, *** p<0.001)

5.3.2. BRAKING BEHAVIOUR
he use of the brake pedal was detected in 58 out of 110 UI conditions (22 participants ×
5 UIs). All instances of braking occurred in the most critical events (slowing down with
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a 5m merging gap and −8m/s2 deceleration). Eight participants braked in all five UI
conditions in at least one event, two participants used the brake pedal in four UI condi-
tions, three participants in three, and one participant in one UI condition, whereas eight
participants did not use the brake pedal at all. As shown in Figure 5.6, there is almost
no brake pedal behaviour difference between the five UI conditions. The eight partic-
ipants who braked in all UI conditions had lower trust levels (F (1,14) = 4.96, p = 0.04)
and higher perceived risk levels (F (1,14) = 4.56, p = 0.05) than the eight participants who
never braked. There was no effect of experiment order on braking behaviour.
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Figure 5.6: Number of participants who used the brake pedal in at least one event with each user interface. The
yellow dashed line represents the eight participants who braked in all five UI conditions.

5.3.3. EYE GAZE BEHAVIOUR
As shown in Figure 5.7, eye gaze behaviour (i.e., the eye gaze fixation time on the dis-
play and the road and the eye gaze transition number between the road and the display)
differs over all four UIs (S-V, SM-V, S-VA, and SM-VA UI), compared to No UI, primarily
due to the visual display on the centre console. No significant difference was found be-
tween the four UIs. UI presence significantly impacted the eye gaze fixation time ratio
on the display (F (4,72) = 8.56, p < 0.001,η2 = 0.32), the eye gaze fixation time ratio on
the road (F (4,72) = 7.69, p < 0.001,η2 = 0.30), and the transition number between the
road and the display (F (4,72) = 10.38, p < 0.001,η2 = 0.37). The Bonferroni test reveals
that the eye gaze fixation time ratio on display and the eye gaze transition number be-
tween the road and the display are significantly higher with the four UIs than with No UI.
Significant differences were also found with the four UIs and with No UI except SM-V UI
regarding the eye gaze fixation time ratio on the road. No significant effect of different
events on eye gaze behaviour (i.e., the fixation duration ratio on the road and the display
and the transition number between the road and the display) was found, as shown in
Figure 5.8 and Table 5.4. A marginally significant (p = 0.045) interaction was observed
between the merging gap and automation action on eye gaze fixation time ratio on the
display.

The results showed insignificant effects of user interface on the eye gaze distribution
(except UI versus No UI). However, there was a notable individual difference in the aver-
age eye gaze distribution on the display. Cronbach’s analysis showed the high reliability
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Figure 5.7: Eye gaze fixation time ratio on the display per UI (Left); Eye gaze fixation time ratio on the road per
UI (Middle); Transition numbers between the road and the display per UI (Right) (* p < 0.05, **p < 0.01)
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Table 5.4: Statistics of the event’s effect of merging gap and automation action on eye gaze behaviours

Event elements F Sig. Effect size (η2)

Eye gaze fixation time ratio
on the display

Merging gap F (1.00,15.00) = 2.04 0.112 0.15

Automation action F (1.05,15.73) = 0.08 0.860 0.01

Eye gaze fixation time ratio
on the road

Merging gap F (1.00,16.00) = 3.33 0.087 0.17

Automation action F (1.26,20.20) = 0.62 0.478 0.04

Eye gaze transition numbers
between the road and the dis-
play

Merging gap F (1.00,16.00) = 1.52 0.236 0.09

Automation action F (2.00,32.00) = 0.10 0.908 0.01
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between each participant’s fixation duration ratio on the display of four interfaces, ex-
cluding the No UI (Cronbach’s α= 0.86). There was no correlation between the fixation
duration ratio on the display of each participant and their trust and perceived risk. The
eye gaze behaviour results indicate that participants indeed checked the visual display
during driving but kept the same eye gaze behaviour regardless of different event types
and UI.

5.3.4. COMMUNICATION WITH AUTOMATION, PERCEIVED EASE OF USE AND

PERCEIVED USEFULNESS
As shown in Figure 5.9, the SM-VA UI received the highest score on all attributes. The
main effects of UI were significant for communication with automation (F (4,84) = 5.08, p <
0.001,η2 = 0.26), perceived ease of use (F (4,84) = 4.54, p < 0.001,η2 = 0.62) and per-
ceived usefulness (F (4,84) = 3.99, p < 0.001,η2 = 0.42). The post-hoc analysis indicated
that participants preferred the SM-VA UI to the No UI, and S-V UI on all attributes (p <
0.001).

1

2

3

4

5

6

7

No UI S-V SM-V S-VA SM-VA
1

2

3

4

5

6

7

No UI S-V SM-V S-VA SM-VA
1

2

3

4

5

6

7

No UI S-V SM-V S-VA SM-VA

Communication with automaton Perceived ease of use Perceived usefulness

*
***

**
***

*
*

p=0.025

p=0.017

p=0.009

p<0.001p<0.001

p=0.010

Figure 5.9: Drivers’ communication with automation (Left), perceived ease of use (Middle) and perceived use-
fulness (Right) scores on each User interface (*p < 0.05, **p < 0.01, ***p < 0.001)

Concerning the UI ranking, (ordinal) data were analysed using categorical principal
component analysis (CATPCA). Answers from two participants were shown to contain
outliers, according to CATPCA, and therefore, we excluded all answers from these two
participants.

The Friedman test examined the differences in the ranking among UI conditions.
Participants ranked the five UI conditions significantly different on communication with
automation (χ2(4,20) = 69.8, p < 0.001), perceived ease of use (χ2(4,20) = 70.77, p <
0.001), and perceived usefulness (χ2(4,20) = 69.92, p < 0.001). As the results of CAT-
PCA, biplots of all attributes (communication with automation, perceived ease of use
and perceived usefulness) on the five UIs are shown in Figure 5.10. The eigenvalues
and percentage of total variance are presented in Table 5.5. The results of the analysis
explained 100% of the total variance. Dimension 1 accounted for around 90% of the
variance in the ranking of communication with automation, perceived ease of use and
perceived usefulness. SM-VA UI is ranked highest over the three attributes (communica-
tion with automation, perceived ease of use and perceived usefulness), followed by S-VA
UI, SM-V UI, S-V UI, and No UI. The No UI and S-V UI were least preferred in perceived
ease of use. When examining the x-coordinate pertaining to Dimension 1 across all three
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attributes in Figure 5.10, participants are consistently positioned on the right side of the
graph. This is because participants tended to evaluate the UI with the ranking SM-VA
UI, S-VA UI, SM-V UI, S-V UI, and No UI, which were displayed from left to right in the
graph. Dimension 2 accounted for around 10% of the total variance. It corresponds
to the difference in the preferred interface between S-VA UI and SM-V UI. The results
showed differences in preference for S-VA UI and SM-V UI as the second highest-rank
interface, depending on the individual. Considering the y-coordinate reflecting Dimen-
sion 2 in Figure 5.10, the S-VA UI and SM-V UI are positioned on opposite sides, while
the remaining UIs congregate around zero. This discrepancy arises from varying par-
ticipant preferences, particularly regarding the SM-V UI ranking. Participants clustered
around zero expressed a preference for SM-V UI as their third choice. Conversely, partic-
ipants positioned near the SM-V UI reported a lower preference for it compared to other
participants. Notably, participants in proximity to the S-VA UI indicated a heightened
preference for SM-V UI compared to their counterparts, resulting in a relatively lower
ranking for S-VA UI.

Communication with automation Perceived ease of use Perceived usefulness

No UI

SM-VA

S-VA

S-V

SA-V

No UI
SM-VA

S-VA

S-V

SA-V

SM-VA

S-VA

S-V

SA-V

No UI

2

1

0

-1

-2
-2 -1 0 1 2

Dimension 1

2

1

0

-1

-2
-2 -1 0 1 2

Dimension 1

-2 -1 0 1 2

Dimension 1

Di
m

en
sio

n 
2

2

1

0

-1

-2

Di
m

en
sio

n 
2

Di
m

en
sio

n 
2

S-VA

S-VA
S-VA

SM-VSM-V

SM-V

SM-VA SM-VA
SM-VA

No UI

No UI

S-V

S-V

S-V

Figure 5.10: UI ranking, CATPCA results of communication with automation (Left), perceived ease of use (Mid-
dle) and perceived usefulness (Right)

Table 5.5: UI ranking, CATPCA eigenvalues and the percentage total variance explained

Communication
with automation

Perceived ease of use Perceived usefulness

Total (Eigenvalue) Percentage of
variance

Cronbach’s Alpha

Dimension 1 17.80 89.00 0.99
Dimension 2 2.20 11.00 0.57

Total 20.00 100.00* 1.00*

5.3.5. INFORMATION TYPE AND MODALITY PREFERENCE
Participants highly appreciated both UI information types, where surrounding informa-
tion received 6.18 (SD = 1.2) points and manoeuvre information received 6.50 (SD =
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0.96) points on a 7-point Likert scale. Figure 5.11 shows the preferred modality for sur-
rounding and manoeuvre information. Participants preferred receiving the surrounding
information via both visual and audio modalities. Among twenty-two participants, four-
teen participants (64%) preferred surrounding information in both visual and audio, four
participants (18%) chose only audio, and four chose only visual (18%). The right figure
indicates the modality preference for manoeuvre information. Compared to the sur-
rounding information modality preference, more participants preferred to receive the
manoeuvre information through audio only. Ten participants (45%) preferred both vi-
sual and audio manoeuvre information. Nine participants (41%) preferred only audio,
and three participants (14%) preferred only visual.
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Figure 5.11: Ratio of drivers’ modality preference on surrounding information (Left) and manoeuvre informa-
tion (Right)

5.4. DISCUSSION
This chapter investigated the effects of user interface (UI) on trust, perceived risk, and
acceptance in partially automated highway driving with a simulator experiment. Four
interfaces were designed, combining surrounding and manoeuvre information and vi-
sual and auditory modalities.

5.4.1. EFFECTS OF UIS ON TRUST, PERCEIVED RISK AND ACCEPTANCE
We systematically added information types (surrounding and manoeuvre) and modal-
ities (visual and auditory). The most advanced UI, SM-VA UI, providing surrounding
and manoeuvre information via both visual and auditory modality, received the highest
trust and lowest perceived risk scores and the highest communication with automation
and acceptance scores. In addition, ranking showed that participants chose SM-VA UI
as the best and No UI or S-V UI as the worst ranking communication with automation,
perceived ease of use and perceived usefulness. Effects are highly significant comparing
the most advanced SM-VA to No UI and thereby support our hypothesis that “user in-
terfaces providing surrounding information, manoeuvre information, or both enhance
drivers’ trust, perceived safety and acceptance in driving automation”. We did not find
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the expected “reduced frequency of drivers’ interventions (e.g., braking) during driving
automation” in the main study but found some reduction in the preliminary experiment.
Adding only manoeuvre information has more effect than only adding surrounding in-
formation, but this trend is not significant. Regarding modality, with manoeuvre infor-
mation displayed through both visual and auditory modalities, trust and acceptance in-
creased compared to when manoeuvre information is displayed through only the visual
modality, and this effect is significant for trust. Eye gaze behaviour showed that drivers
check the UI at the centre console when present. However, at the same time, there was
no significant difference in UI gaze time between the four UIs. Presumably, drivers check
the driving situation on the road after receiving surrounding information instead of per-
ceiving visual manoeuvre information.

Interestingly, the effects of UIs show more significance in acceptance compared to
driving behaviour, trust and perceived risk. Acceptance increases when receiving more
information with more modalities. Drivers want to monitor the safe operation of par-
tially automated vehicles [246]. Therefore, regardless of the actual use of the interface,
the presence of the interface can support the acceptance of automation [247].

Drivers evaluated both the surrounding and manoeuvre information positively. How-
ever, the preference for modality differed between participants and between surround-
ing and manoeuvre information. More than half of the participants preferred that sur-
rounding information be delivered in both visual and audio modalities. When the sur-
rounding information was provided in both visual and auditory modalities, there was no
significant difference in the gaze time on the display compared to when it was provided
only in the visual modality. Hence, surrounding information via auditory modality can
be interpreted as supplementing the visual modality, not replacing it. On the other hand,
the participants preferred manoeuvre information to be delivered in only an auditory
modality or a combination of visual and auditory modalities. Drivers checked the centre
console display when it showed the detected vehicle. After the participants perceived
the merging car, their view moved to the road, with no difference in gaze time across
the four UIs. Hence, the visual manoeuvre information was presumably not attended to,
explaining the lack of benefits of SM-V vs. S-V and SM-VA vs. S-VA.

The preliminary between-subject design experiment presented in the Appendix D.1
already indicated that UI could increase trust, compared to no UI, but disclosed no sig-
nificant differences between the four UIs. The main experiment, using a within-participant
design, disclosed significant differences between the four UIs, with the best overall re-
sults for the most advanced SM-VA UI. A possible explanation is that individual differ-
ences obscured the effects of UI in the preliminary between-subject experiment. An
alternative explanation is that, being exposed to multiple UIs, participants develop ex-
pectations regarding automation behaviour and UI affecting their behaviour and sub-
jective evaluation. This could include learning and trust calibration with exposure to
specific UIs affecting responses with following UIs. However, we found no significant
effects of order in the main results, which indicates that such learning has no strong ef-
fects. Anyhow, we see benefits in both the within and between-participant experimental
design. The within-participant design discloses significant effects with a limited cost-
effective sample, whereas the between-participant design better represents real-life ex-
posure where users will presumably use one UI only.
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5.4.2. EFFECTS OF CRITICALITY OF EVENT TYPES AND INDIVIDUAL DIFFER-
ENCES

Event criticality (Figure 5.5) had a much larger effect on trust and perceived safety as
compared to UIs (Figure 5.4). We additionally compared the effects of UI on trust and
perceived risk in the most critical event (slowing down with 5m gap and −8m/s2 decel-
eration) and least critical event (slowing down with 25m gap and −2m/s2 deceleration).
In both events, the effect of UIs on perceived risk was not significant. The effect of UIs on
trust was marginally non-significant in the most critical event (F (4,84) = 2.43, p = 0.054),
but the effect was significant in the less critical event (F (4,84) = 3.06, p = 0.021). Appar-
ently, the effects of UI on trust and perceived risk are insufficient to make participants
feel entirely safe and trust automation in the most critical events. This may be explained
by Hoff and Bashir [29], who described three layers of variability in human-automation
trust: dispositional trust, situational trust, and learned trust. Situational trust depends
on the context of interaction, while learned trust represents users’ evaluations of sys-
tems drawn from previous experience or the current interaction. The surrounding and
manoeuvre information through the interface affects the learned trust, at the same time,
situational trust is affected by the driving situation, such as different events. This chap-
ter evaluated three automation manoeuvres: strong braking (−8m/s2), mild braking
(−2m/s2) and lane changing. The latter two manoeuvres were tested with identical be-
haviours of the merging vehicle and resulted in similar trust and perceived safety, where
the UIs provided similar benefits with positive effects of manoeuvre information.

The relationship between UI and braking behaviour appears to be moderated by
individual driver characteristics. Eight out of twenty-two participants did not brake in
any of the five UI conditions, while another eight used pedals in all five UI conditions.
Those who used the brake pedal less tended to have higher trust and lower perceived
risk, which is consistent with findings by He et al. [117], where trust of the braking group
is lower than that of the non-braking group. It will be interesting to investigate trust cal-
ibration and its expected effect on braking in prolonged experiments or observations.
The braking behaviour was quite different in the preliminary experiment, where partic-
ipants braked the most in the No UI and the least in the SM-VA UI. However, the indi-
vidual differences in braking behaviour may mask UIs’ effect on the braking behaviour
in the preliminary experiment [248]. Regarding the eye gaze behaviour, each participant
looked at the display similarly regardless of the interface condition, which supports the
notion that it is challenging to evaluate drivers’ understanding of information in vehicles
as eye gaze behaviours, as noted by Cohen-Lazry et al. [249]. The result is aligned with
the preliminary experiment (see Figure D.3 in Appendix D.1) and confirmed the trend
with significant effects between the No UI and other UI conditions on drivers’ eye gaze
behaviour.

5.4.3. LIMITATIONS AND PERSPECTIVE
Several limitations must be considered when interpreting our findings. The sample size,
while sufficient to identify trends, is relatively small, which could potentially lead to bi-
ased effects. The artificial nature of the experimental setting, despite its high control
level, may not fully capture the complexity of real-world driving dynamics. In addi-
tion, the results of user interface experiments under controlled conditions may vary de-
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pending on changes in the user interface [250] (i.e., aesthetics and layout) or changes
in the environment (i.e., the urgency of the scenario) [216]. These factors could limit
the ecological validity of our findings. For example, the lack of significant variation
in eye-tracking measures across UI conditions prompts further investigation into how
different designs may influence drivers’ visual attention and performance to detect the
driving environment. Nevertheless, our results show significant benefits of UIs, enhanc-
ing trust and acceptance and reducing perceived risk. We provided a visual interface
in the centre console display, which is common in commercial cars. However, a head-
up display (HUD) could yield even better results, allowing drivers to keep their eyes on
the road. HUD cannot easily present spatial surrounding information but can present
event-based information such as pop-up messages. We should also consider that drivers
may not perceive the auditory UI correctly when engaged in secondary tasks or may
find it annoying if presented too often [251]. For auditory UI recognition, the volume
of other audio systems shall be controlled. It is also necessary to consider irritation or
stress when exposed to auditory information for a longer time. Future research will focus
on interfaces providing a broader range of manoeuvre information, considering various
human factors such as annoyance, workload, as well as trust and acceptance. Addition-
ally, future studies should be extended towards UI enhancing trust and perceived safety
in higher automation levels, allowing users to take their eyes off the road.

5.5. CONCLUSIONS
This chapter confirms that automation UI can enhance drivers’ trust and acceptance
of partially automated vehicles. Significant benefits were found for both surrounding
(perception) and manoeuvre (action) information. Specifically, the most advanced UI
(SM-VA UI), which displayed surrounding and manoeuvre information via the visual and
auditory modalities, received the highest trust and acceptance ranking and the lowest
perceived risk among drivers. Manoeuvre information displayed through the auditory
modality was particularly effective in enhancing drivers’ trust and acceptance. Current
partially automated vehicles show the image received by sensors on the display, sim-
ilar to the UI in this chapter that displays surrounding information visually (S-V UI).
Our study in this chapter shows that the surrounding information displayed via the vi-
sual modality draws the driver’s attention to the display, but it needs additional auditory
communication by the UI to enhance driver’s trust and acceptance. Therefore, includ-
ing manoeuvre information via the auditory modality should be considered for partially
automated vehicles. This may make the UI more complex but also more understandable
and acceptable. To paraphrase Donald Norman, people hate things to be complicated
but like complexity, which this chapter supports. Furthermore, this chapter has shown
the impact of the user interface in relation to the risk level of the driving situation. When
the driving situation poses a high risk, even with UI, drivers do not feel entirely safe and
do not trust the automation completely. At the same time, drivers accept driving au-
tomation more with UI, regardless of perceiving the information, which was also shown
by Kim et al. [247]. This demonstrates both the impact and limitations of UI.



6
CONCLUSION

This chapter includes a summary of the findings and conclusions from Chapters 2-5,
and recommendations for practice and future research.

6.1. FINDINGS
In Chapter 1, we established three research objectives. In this section, we reflect on the
extent to which these objectives were addressed by the findings of this dissertation.

Objective 1: To collect data and gain insights on perceived risk and trust based on
specific AV behaviours

To meet this objective, in Chapter 2, we conducted a driving simulator experiment
with 25 participants using SAE Level 2 automation in merging and hard braking events.
This experiment collected event-based ratings of perceived risk and trust, along with
time-continuous perceived risk data, pupil diameter, and ECG signals. The study val-
idated various methods for measuring perceived risk and trust. The validation shows
the reliability of using the peak of the time-continuous perceived risk ratings collected
through the pressure sensor to represent event-based perceived risk. Additionally, re-
sults indicate that physiological indicators such as pupil dilation and ECG have the po-
tential to represent perceived risk. Pupil dilation captures high perceived risk only in suf-
ficiently risky events, and merging and hard braking events increase heart rate. However,
no quantified relationship is found between pupil dilation, heart rate, and perceived
risk. Braking is noted as a strong behavioural indicator of perceived risk and distrust: the
more frequent and intense active braking, the higher the perceived risk and the lower the
trust levels. Surrogate metrics of minimum gap, minimum time to collision (TTC), and
maximum braking intensity are significant in predicting event-based perceived risk and
trust. The data highlighted how driving experience and gender influence perceived risk
and trust, with experienced drivers typically displaying lower perceived risk and higher
trust, and females generally perceiving higher risk. The correlation analysis confirms
that reduced perceived risk often correlates with increased trust in automated driving.

Chapter 4 extended the experimental investigation of perceived risk through a large-
scale online study involving 2,164 participants from 27 countries. This study collected

119
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141,628 discrete perceived risk ratings from more than 233 hours of time-continuous
perceived risk data. The discrete perceived risk ratings were analysed using generalised
linear regression and Jensen-Shannon (J-S) divergence to assess the impact of simula-
tion parameters on perceived risk. The results indicate significant effects of factors such
as initial merging distance, desired cruising speed, and braking intensity on perceived
risk. Perceived risk is significantly higher when the initial merging distance is smaller,
the desired cruising speed is higher, or the braking intensity is stronger. Furthermore,
Chapter 4 obtained time-continuous perceived risk ratings from the discrete perceived
risk ratings using the interpolation method. The continuous perceived risk ratings reflect
detailed variations in perceived risk in real-time corresponding to the driving scenarios.
For instance, perceived risk increases when the subject vehicle encounters other vehi-
cle’s actions such as merging, hard braking and lane changing. Perceived risk decreases
when the driving scenarios become stable again.

Objective 2: To develop computational models for interpreting perceived risk and
trust

To achieve this objective, Chapter 2 formulated regression models to capture the ef-
fect of merging and braking events and the influence of personal characteristics on per-
ceived risk and trust. These models integrate crucial kinematic measures like minimum
gap, time to collision (TTC), and braking intensity, along with personal characteristics,
such as driving experience and gender, showing the influence of these factors on per-
ceived risk. The regression models demonstrate capability in predicting event-level per-
ceived risk and trust.

Chapter 3 introduced a novel physics based computational model (PCAD) to quan-
tify continuous perceived risk in automated driving. This model offers a new perspective
on how perceived risk is determined, formulating it as the least amount of control effort
(braking and steering) needed to prevent possible collisions with neighbouring vehicles.
By integrating factors such as visual looming, behavioural uncertainties of neighbouring
vehicles, imprecise control by the subject vehicle, and collision severity, PCAD offers a
comprehensive assessment of task difficulty in a 2D plane. Test results with two unique
datasets, Dataset Merging and Dataset Obstacle Avoidance, show that the PCAD model
outperforms existing models in model accuracy, detection rates in predicting perceived
risk but with longer computation times. Its theoretical and empirical analyses reveal
that perceived risk is not static, but varies with evolving positions, velocities, and accel-
erations of both the subject and neighbouring vehicles.

Learning-based deep neural networks (DNNs) model were developed to predict per-
ceived risk in Chapter 4, allowing for a nuanced understanding of how perceived risk
fluctuates with real-time changes in driving conditions. Additionally, explainable AI
technology SHAP (SHapley Additive exPlanations) based on the trained DNNs reveal that
the factors contributing to perceived risk are dynamic, changing over time with varia-
tions in speed, distance, and driver behaviour. Consistently, distance to other road users
emerged as the most significant factor affecting perceived risk; concerns about poten-
tial collisions due to manoeuvre uncertainties become particularly pronounced when
vehicles were in close proximity to each other. The success of these neural networks in
accurately predicting perceived risk underscores their potential in enhancing automated
driving systems’ adaptability and safety.
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Objective 3: To assess the impact of UI modalities and information types on per-
ceived risk and trust

Chapter 5 investigated how user interfaces (UIs) in partially automated vehicles in-
fluence drivers’ trust, perceived risk, and acceptance. The study designed four UIs by
combining automation information (surrounding vs. surrounding and manoeuvre) and
modalities (visual vs. visual and auditory), to investigate how they affected drivers’ in-
teractions with automation in a simulator experiment, based on Chapter 2.

It was found that a UI providing both surrounding and manoeuvre information through
visual and auditory modalities significantly enhanced drivers’ trust and acceptance while
reducing perceived risk. This multimodal and comprehensive information approach
was the most favoured, highlighting the importance of effective communication be-
tween drivers and automation systems.

Drivers’ preferences show that auditory delivery of manoeuvre information signif-
icantly enhanced trust and acceptance without distracting from road attention, high-
lighting auditory feedback’s role as a complementary source to visual information. This
chapter also noted that event criticality and individual driver differences impacted trust
and perceived risk, with drivers feeling less safe and trusting in highly critical situations
despite UI improvements.

6.2. CONCLUSIONS
The comprehensive exploration conducted in Chapters 2-5 provides essential findings
on perceived risk, trust and the effect of user interfaces (UIs) in automated vehicles. This
section provides overarching conclusions from the combined results of all chapters.

1. Perceived risk as a context-dependent and multi-dimensional construct
The research in this dissertation demonstrates that perceived risk in automated driv-

ing is not a static concept, but rather one that is highly context-dependent and influ-
enced by multiple factors. This is evidenced by the findings in Chapter 2, the physics-
based potential collision avoidance difficulty (PCAD) model in Chapter 3 and the in-
terpretation of the deep neural networks in Chapter 4, where perceived risk varies dy-
namically along with factors such as relative distance to neighbouring vehicles, braking
intensity, and behaviour uncertainties during automated driving. The findings of Chap-
ters 2-4 also emphasise the need to account for factors from both longitudinal and lateral
directions, which demonstrates that perceived risk is multi-dimensional. These insights
align with existing studies on driving risk and perceived safety Ping et al. [38], Kolekar
et al. [41], Chen et al. [44], Ma et al. [98], and Kondoh et al. [103]. By incorporating sim-
ulator studies, real-time data collection and new computational modelling approaches,
this dissertation pushes beyond the traditional, event-level understanding of perceived
risk and captures its continuous nature.

2. Perceived risk is highly personalised. This variability should be accounted for
to enable more reasonable interpretations and accurate predictions of perceived risk
at the individual level.

Perceived risk is not only context-dependent but also highly personalised. The stud-
ies in this dissertation reveal that individual characteristics, such as driving experience
and gender, significantly influence how perceived risk is formed. In Chapter 2, the re-
gression model showed that experienced drivers tend to perceive lower risk compared
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to less experienced drivers, and female drivers reported higher perceived risk compared
to male drivers. In Chapter 3, the PCAD model effectively captured perceived risk at the
population level, but showed limited effectiveness at the individual level, highlighting
the variability of personal perceived risk. In Chapter 4, the data collected from a large
and diverse group of participants exhibited considerable variability, indicating that per-
ceived risk is highly influenced by personal sensitivity and interpretation. These find-
ings align with previous studies that demonstrated the significant influence of personal
characteristics on perceived risk in automated driving [53], [54], [252], [253], but extend
beyond static evaluations by incorporating a more dynamic, context-sensitive approach.

3. Modelling and interpreting perceived risk based on driving conditions is feasi-
ble

The findings in Chapter 2, the PCAD model developed in Chapter 3, and the interpre-
tation of the DNNs in Chapter 4 all indicate that modelling perceived risk based on driv-
ing conditions, particularly focusing on relative motion such as distances, speed, and
accelerations, is feasible. These driving conditions are shown to account for a signifi-
cant portion of perceived risk, suggesting that understanding and quantifying the driv-
ing conditions is a feasible way to interpret perceived risk. Insights from both physics-
based modelling (as presented in Chapter 3 and in Chen et al. [44]) and data-driven mod-
elling approaches (as presented in Chapter 2 and 4 and in Kolekar et al. [36], de Winter et
al. [37], and Ping et al. [38]), demonstrates the viability of such models. Although these
models differ in their methodologies, the results consistently show that variables related
to driving conditions, particularly relative motion are critical determinants of perceived
risk, supporting the idea that these driving dynamics can be effectively transformed into
measurable perceived risk. Moreover, the large-scale data collected from simulator stud-
ies and the online study confirmed the feasibility of using motion-related data for mod-
elling perceived risk.

4. Anticipating the behaviour of other road users is crucial for interpreting per-
ceived risk.

The interpretation of perceived risk should not only focus on the current moment
but also account for future uncertainties in the driving environment. In Chapter 3, the
“uncertain velocity” construct within the PCAD model was formulated using calibrated
parameters that effectively fits perceived risk data from a simulator study. Similarly, in
Chapter 4, this “uncertain velocity” was used as an input to DNNs, where it emerged as a
significant contributor to perceived risk. Although this construct does not directly quan-
tify the anticipation of other road users’ behaviour, it does reflect the anticipation mech-
anisms of human drivers. Given that this anticipation plays a critical role in predicting
perceived risk in both the physics-based model and the data-driven model, it suggests
that anticipating the behaviour of other road users is essential for accurately interpreting
perceived risk. This also aligns with the observation that drivers tend to maintain longer
distances than necessary when following a vehicle with a small gap or overtaking a heavy
truck [129], [130].

5. UIs can mitigate perceived risk and enhance trust, but have limitations
The findings from Chapter 5 demonstrate that user interfaces (UIs) are crucial in en-

hancing perceived risk, trust, and user acceptance. The research shows that multimodal
interfaces, which integrate both auditory and visual elements, are effective in reducing
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perceived risk and increasing trust, particularly in moderately critical driving scenarios.
The findings support existing theories regarding the use of multi-channel communica-
tion to enhance system usability [246]. However, UIs cannot sufficiently make people
feel safe during highly critical driving situations. This indicates that UIs are influential
factors but not definitive determinants of perceived risk. Perceived risk and trust are not
only influenced by information access but are more significantly shaped by the driving
context.

6.3. RECOMMENDATIONS FOR PRACTICE
The practical applications derived from this dissertation are primarily focused on en-
hancing the design and interaction of AVs with users. The insights from the regression
model, the PCAD model and deep neural networks developed in this dissertation indi-
cate that automotive designers and engineers are encouraged to integrate specific be-
havioural adjustments into AVs. These adjustments should focus on maintaining safe
distances from neighbouring vehicles, adjusting speeds appropriately in real time, and
optimising manoeuvre responsiveness to reduce user perceived risk and enhance trust.
In addition, special attention should be paid to female users, who are often more sen-
sitive to perceived risk, ensuring that AVs are able to accommodate diverse user sen-
sitivities and safety expectations. Furthermore, the PCAD model offers a practical and
computationally efficient tool for controller, path planner, or decision-making module
design to align with user expectations and enhance perceived safety. While the deep
neural networks (DNNs) developed in this dissertation outperformed PCAD in fitting
perceived risk, their applicability remains highly scenario-specific. Therefore, one in-
tending to use DNNs in predicting perceived risk in AVs must ensure that these models
are generalised enough to be effective across a wide range of driving conditions.

The study on different UI modalities and information types has practical implica-
tions for designing user interfaces in AVs. The findings help optimise UI designs to en-
hance drivers’ perceived safety, trust, and acceptance of partially automated vehicles.
Specifically, practitioners are encouraged to provide the UIs that display both surround-
ing and manoeuvre information using both visual and auditory modalities as this ap-
proach enhances perceived safety, trust and acceptance. If this is not feasible, integrat-
ing auditory information can still get considerable benefits. These recommendationscan
inform industry best practices and contribute to the broader acceptance and efficiency
of AV technology in everyday use.

6.4. RECOMMENDATIONS FOR FUTURE RESEARCH
Future research should continue to explore the dynamic and multidimensional aspects
of perceived risk and trust, as current models including those developed in this disserta-
tion provide valuable insights but are not yet comprehensive enough to fully capture the
complexity of perceived risk in automated vehicles. Therefore, further improvements
are needed to enhance their accuracy and applicability across a wider range of driving
conditions. Researchers should continue work on refining these models or developing
new models that consider the complex, nonlinear interactions among various factors in-
fluencing perceived risk and trust, which could offer deeper insights into perceived risk,
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trust and user behaviour. Moreover, incorporating multiple road users, different road
user types and infrastructure elements in risk models would provide a more accurate
estimation of perceived risk, especially in complex driving conditions.

Extensive data collection and model validation remain crucial. Current models re-
quire more diverse and robust datasets for validation, and expanding perceived risk
data collection through various methodologies and scenarios, including on-road exper-
iments, simulator studies and online experiments to advance perceived risk modelling.
Integrating driving data in real world will help employ these models from research to
practical scenarios, while exploring personalised risk models fitting individual drivers’
perceptions and behaviours could improve the accuracy and reliability of these models,
contributing significantly to the development of safer AV technologies.

In addition, more research is necessary on the effects of different UI designs on driver
attention and behaviour, considering the variability introduced by aesthetic design, lay-
out changes, and environmental urgencies. Investigating the impacts of head-up dis-
plays and addressing the challenges associated with auditory UIs, including potential
distractions over long time exposure, would be beneficial. Future work could also ex-
plore UIs that provide extensive manoeuvre information, considering human factors
such as annoyance and workload, alongside trust and acceptance, particularly for higher
levels of driving automation.
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A.1. QUESTIONNAIRE FOR PERSONAL CHARACTERISTICS COL-
LECTION

To get started, we would like to introduce our study purpose. Vehicle automation has
been developed fast, with substantial mobility and safety potentials. The interaction
between the automation and users, and the user’s reaction to the automation are still
not considered sufficiently. For instance, we don’t know to what extent is the automation
reliable and will we feel safe in a driving automation. The problems need to be solved.

In this study, we want to know the mechanism of perceived safety and trust in au-
tomated vehicles. You will experience a driving automation on a driving simulator. The
driving data will be collected. Before, during, and after the simulator driving, you will be
asked to fill the questionnaire and tell your feelings of safety & trust regarding the driving
automation and the driving scenarios.

There are 15 questions in this questionnaire and it will approximately takes 2 min to
fill it. All the personal information collected (e.g., name, age, gender, driving experience,
etc.) will not be shared beyond the study team.

1. Email address:

2. Age (in years):

3. Gender:

◦ Female

◦ Male

◦ Don’t want to respond

4. What is your educational level? (if currently enrolled, highest degree received.)

◦ No schooling completed

125
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◦ Primary school graduate

◦ Middle school graduate

◦ Some high school, no diploma

◦ High school graduate, diploma or the equivalent

◦ Some college credit, no degree

◦ Trade/technical/vocational training

◦ Associate degree

◦ Bachelor’s degree

◦ Master’s degree

◦ Professional degree

◦ Doctorate degree

◦ Other

5. Years with driving license:

6. Approximately how many kilometres did you drive in your whole life as a driver?

◦ I didn’t drive in the past 12 months

◦ Less than 2000 km

◦ 2,000~5,000 km

◦ 5,000~10,000 km

◦ 10,000~15,000 km

◦ 15,000~20,000 km

◦ 20,000~50,000 km

◦ 50,000~100,000 km

◦ 100,000~200,000 km

◦ More than 200,000 km

◦ I don’t know

7. Approximately how many kilometres did you drive in the past 12 months as a
driver?

◦ I didn’t drive in the past 12 months

◦ Less than 2000 km

◦ 2,000~5,000 km

◦ 5,000~10,000 km

◦ 10,000~15,000 km

◦ 15,000~20,000 km

◦ 20,000~50,000 km
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◦ More than 50,000 km

◦ I don’t know

8. How much do you know about automated driving?

◦ None at all

◦ A little

◦ A moderate amount

◦ A lot

◦ A great deal

◦ I am engaged in automated driving related work.

9. Experience of using Adaptive Cruise Control (ACC) in your whole life? (in years)
Note: Adaptive cruise control (ACC) is a system for road vehicles that automati-
cally adjusts the vehicle speed to maintain a safe distance from vehicles ahead or
maintain a target speed.

◦ I never used it

◦ Less than 1 year

◦ 1~3 years

◦ 3~5 years

◦ More than 5 years

◦ I don’t know

10. Experience of using Adaptive Cruise Control (ACC) in your whole life? (in kilome-
tres)

◦ I never used it

◦ Less than 100 km

◦ 100~500 km

◦ 500 km~1,000 km

◦ More than 1,000 km

◦ I don’t know

11. Experience of using Lane Keeping System (LKS) in your whole life? (in years) Note:
Lane keeping support (LKS) is a system for road vehicles that can steer you back
into the current lane if you begin to drift out of it or automatically keep the car in
the lane centre.

◦ I never used it

◦ Less than 1 year

◦ 1~3 years
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◦ 3~5 years

◦ More than 5 years

◦ I don’t know

12. Experience of using Lane Keeping System (LKS) in your whole life? (in kilometres)

◦ I never used it

◦ Less than 100 km

◦ 100~500 km

◦ 500 km~1,000 km

◦ More than 1,000 km

◦ I don’t know

13. Experience of using Adaptive Cruise Control (ACC) and Lane Keeping System (LKS)
at the same time in your whole life? (in years)

◦ I never used both at the same time

◦ Less than 1 year

◦ 1~3 years

◦ 3~5 years

◦ More than 5 years

◦ I don’t know

14. Experience of using Adaptive Cruise Control (ACC) and Lane Keeping System (LKS)
at the same time in your whole life? (in kilometres)

◦ I never used both at the same time

◦ Less than 100 km

◦ 100~500 km

◦ 500 km~1,000 km

◦ More than 1,000 km

◦ I don’t know
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A.2. EXTRA FIGURES AND TABLES FOR THE REGRESSION ANAL-
YSIS

Figure A.1: Non-linear transformations. Upper row min_gap vs perceived risk, min_TTC vs perceived risk
and min_THW vs perceived risk (mean value regarding different events in logarithmic scale); Lower row:
1/min_gap vs trust, 1/min_TTC vs trust and 1/min_THW vs trust

Figure A.2: Regression results of perceived risk (model 4 in Table 2.4). The dots with the same colour are from
a specific participant.
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Figure A.3: Regression results of trust (model 4 in Table 2.5). The dots with the same colour are from a specific
participant.

Figure A.4: Validation results of perceived risk (based on the data of 5 extra participants). One kind of marker
represents a specific participant
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Table A.3: Coefficients of Pearson correlation between perceived risk and trust. Correlations with ’*’ are signif-
icant (p < 0.05).

Participant
Average

perceived risk (std)
Average

trust (std)
Pearson

Coefficient
p-value

1 3.95 (3.08) 7.16 (1.04) -0.043 0.858
2* 3.50 (1.06) 8.40 (1.76) -0.779 0.000
3 5.47 (2.32) 7.05 (1.31) -0.105 0.659
4* 2.60 (2.61) 8.10 (2.11) -0.913 0.000
5* 4.90 (1.22) 6.40 (0.97) -0.473 0.036
6* 3.55 (2.27) 7.05 (1.43) -0.840 0.000
7* 2.55 (2.77) 8.70 (1.93) -0.880 0.000
8* 4.55 (2.25) 7.55 (1.88) -0.851 0.000
9* 3.65 (2.63) 7.80 (1.97) -0.905 0.000

10* 4.90 (2.70) 6.65 (2.69) -0.859 0.000
11 6.16 (1.49) 7.10 (0.97) 0.337 0.146
12* 2.80 (2.23) 9.00 (1.97) -0.830 0.000
13 3.89 (2.12) 8.21 (1.15) -0.129 0.588
14* 4.35 (2.24) 7.70 (1.10) -0.708 0.000
15 5.61 (2.09) 6.83 (1.12) 0.499 0.025
16 3.52 (2.01) 7.58 (0.82) 0.008 0.974
17 3.11 (2.71) 8.56 (1.34) -0.065 0.785
18 4.30 (1.93) 9.55 (0.59) -0.277 0.236
19 3.80 (2.82) 8.35 (0.57) -0.081 0.736
20 3.10 (2.17) 9.20 (0.87) -0.249 0.290
21 3.44 (3.61) 7.61 (3.06) -0.355 0.125
22 6.60 (2.18) 7.90 (1.26) -0.233 0.323
23 2.40 (2.27) 8.90 (2.28) -0.098 0.679
24* 5.45 (1.50) 6.23 (1.60) -0.449 0.047
25* 2.30 (1.52) 8.00 (1.22) -0.913 0.000

Mean 3.97 (1.77) 7.99 (0.97) -0.919 0.000
Overall 4.01 (2.60) 7.83 (1.83) -0.649 0.000
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A.3. INDIVIDUAL CALIBRATION OF THE REGRESSION MODEL
For perceived risk, the individual calibration results are shown in Table A.4 YDL and GEN
were meaningless for individual data so they were excluded from the regression. Accord-
ing to the calibrated model structure, participants were divided into 2 clusters (Table
A.5). In Cluster 1, we find that there is only one female participant and there are only 2
participants having driving automation experience. In Cluster 2, 8 out of 9 female par-
ticipants and 9 out of 11 automation-experienced participants are in this cluster. Partic-
ipants in Cluster 2 are only sensitive to minimum gap during the events.

For trust, the calibration results are shown in Table A.6. We find that the variance
among different participants is huge. Only participant 19 did not obtain the significant
calibrated trust model because this participant always rated 8 or 9 during the simulator
drive. According to the trust model structure, the participants can be divided into 5 clus-
ters that are shown in Table A.7. However, we did not find significant features regarding
different trust clusters.

For both perceived risk and trust, the individual calibration results show that the co-
efficients on the models are stable to some degree, where values vary slightly with con-
sistent signs.

Table A.4: Calibration results of perceived risk based on individual data (For the data within individual partic-
ipants, years with a driving license (YDL) and gender (GEN) were always constant, which were not applicable
and were omitted in the table)

Participant intercept
Coefficient

ln(min_gap)
Coefficient BI R2 Adjusted

R2 F p

1 7.927 -2.684 -0.498 0.551 0.494 9.802 0.002
2* 9.481 -2.446 0 0.772 0.759 60.913 0.000
3 13.160 -3.598 -0.249 0.782 0.755 28.748 0.000
4* 12.032 -3.726 0 0.617 0.596 29.000 0.000
5 8.454 -1.468 0 0.718 0.702 45.778 0.000
8* 9.843 -2.263 0 0.637 0.616 29.841 0.000

10* 13.513 -3.702 0 0.729 0.714 48.494 0.000
11 12.259 -2.430 0 0.734 0.719 46.959 0.000
12 9.791 -3.229 -0.184 0.816 0.795 37.792 0.000
13 8.418 -2.575 -0.316 0.724 0.689 20.971 0.000
14 12.010 -3.288 0 0.839 0.830 93.934 0.000
15 11.233 -2.503 0 0.529 0.499 17.953 0.001
16 7.765 -2.423 -0.258 0.782 0.755 28.622 0.000
17 11.678 -3.534 0 0.706 0.688 38.491 0.000
18 7.144 -1.842 -0.273 0.551 0.498 10.412 0.001
19 5.082 -2.069 -0.663 0.642 0.600 15.234 0.000
20 5.481 -2.133 -0.488 0.806 0.783 35.343 0.000
21 11.747 -3.627 0 0.442 0.408 12.695 0.003
22 10.575 -1.720 0 0.275 0.235 6.837 0.018
23* 3.015 -1.258 -0.437 0.405 0.335 5.784 0.012
24* 8.595 -1.359 0 0.308 0.207 8.030 0.011
25 5.244 -1.831 -0.249 0.833 0.814 42.501 0.000

Overall 9.384 -2.473 -0.201 0.487 0.482 100.427 0.000
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Table A.5: Clustering results according to the perceived risk regression equation

Clusters Participants
1 1, 3, 12, 13, 16, 18, 19, 20, 23, 25
2 2, 4, 5, 8, 10, 11, 14, 15, 17, 21, 22, 24

Table A.6: Calibration results of trust based on individual data (For the data within individual participants,
years with a driving license (YDL) was always constant, which was not applicable and omitted in this table)

Participant intercept
Coefficient
1/min_TTC

Coefficient
BI

Coefficient
REP

R2 Adjusted R2 F p

1 9.978 -5.450 0 0 0.499 0.469 16.921 0.001
2 9.908 -9.920 0 0 0.671 0.653 36.764 0.000
3 9.752 -11.102 0.233 0 0.838 0.818 41.360 0.000
4 10.116 -14.797 0 0 0.476 0.446 16.326 0.001
5 6.414 -3.827 0 0.969 0.623 0.578 14.032 0.000
8 9.600 -7.709 0.242 0 0.887 0.873 62.971 0.000

10 7.990 -7.711 0 0 0.718 0.703 45.917 0.000
11 8.322 -8.801 0 0 0.606 0.582 26.107 0.000
12 10.264 -5.961 0.165 1.107 0.772 0.729 18.063 0.000
13 9.236 -8.341 0 0 0.464 0.434 15.552 0.001
14 8.445 -7.002 0 0 0.404 0.371 12.221 0.003
15 7.544 -2.128 0.203 1.154 0.657 0.584 8.957 0.001
16 8.579 -4.888 0.123 0.398 0.777 0.732 17.391 0.000
17 9.443 -5.191 0 0 0.403 0.365 10.782 0.005
18 9.335 -2.171 -0.892 0 0.718 0.685 21.663 0.000
19 8.760 0.239 0.092 0.101 0.161 0.003 1.020 0.410
20 8.374 -0.897 -0.023 1.597 0.854 0.826 31.135 0.000
21 9.047 -6.808 0 0 0.702 0.684 37.760 0.000
22 8.522 -5.495 0 0 0.260 0.219 6.337 0.022
23 9.389 -4.889 0 0 0.414 0.382 12.741 0.002
24 9.376 0 0.458 -1.450 0.713 0.679 21.121 0.000
25 9.705 -10.152 0.188 0 0.840 0.822 44.783 0.000

overall 8.780 -6.265 0.125 0.372 0.416 0.410 75.290 0.000

Table A.7: Clustering results according to regression model structure of trust

Clusters Participants
1 1,2,4,10,11,13,14,17,21,22,23
2 3,8,25
3 5,18
4 12,15,16,19,20
5 24
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A.4. BRAKING BEHAVIOUR, PUPIL DILATION AND ECG VERSUS

PERCEIVED RISK AND TRUST

A.4.1. BRAKING BEHAVIOUR
We used the medians of the bars in different events, and then compare the medians
between braking group and non-braking group. Braking groups reported a higher per-
ceived risk and lower trust level supported by t-test (p = 0.021 for perceived risk and
p = 0.000 for trust). (See Figure A.5)

Figure A.5: Comparison between the braking and non-braking group (left bar: non-braking group; right bar:
braking group). Upper chart: Perceived risk; Lower chart: Trust

A.4.2. PUPIL DILATION
The first row of Figure 2.7 shows the participant-averaged pupil diameter signal in the
most critical merge MB3, the least critical merge MB7, and the hard braking HB1 (with
the time scale from t = −55s to t = 55s where t = 0 means the smallest gap to the lead
vehicle). Across all events, a consistent pattern emerged with maximum pupil dilation
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around t = 0, reflecting the smallest gap to the lead vehicle and closely corresponding to
the peak in perceived risk. Figure A.6 compares the median pupil diameter in four dif-
ferent conditions (different participant groups and different events) over time windows
of 10 seconds. We divided the period of one event into 10 time windows and checked the
change of the median pupil diameter across all participants in these 10 time windows.
A Kruskal-Wallis test showed significant variations in median pupil diameter over the 10
time windows within four different conditions (p = 0.000). We tested 5 extra participants
without speaking and analysed the signals (the black curve in Figure A.6). The t-test re-
sult indicates no significant difference compared to the median series of the 22 original
participants, demonstrating that speaking has no significant influence on pupil dilation.

Figure A.6: Median pupil diameter (average removed) over 10 time windows of 10 seconds. The time scale is
t =−55s to t = 55s, where t = 0 means the smallest gap to the lead vehicle.
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Table A.8: Correlation coefficients between participant-averaged pupil diameter signal and continuous per-
ceived risk signal within different events. Signals were re-sampled with 10 Hz within time scope t = −20s to
t = 10s. Insignificant correlations are shaded in grey.

Event
a (first exposure) b (second exposure) Over all events

N
r p r p R p

MB1 0.47 0.00 0.29 0.00 - - 300
MB2 0.50 0.00 0.11 0.05 - - 300
MB3 0.86 0.00 0.83 0.00 - - 300
MB4 0.58 0.00 0.72 0.00 - - 300
MB5 0.30 0.00 0.23 0.00 - - 300
MB6 0.89 0.00 0.66 0.00 - - 300
MB7 0.53 0.00 -0.28 0.00 - - 300
MB8 0.31 0.00 0.10 0.07 - - 300
MB9 0.64 0.00 0.45 0.00 - - 300
HB1 -0.07 0.21 -0.26 0.00 - - 300

Over all
397 events

- - - - 0.88 0.00 300

A.4.3. ECG

Table A.9: ANOVA results of ECG metrics (significance not corrected for multiple comparisons. Greenhouse-
Geisser correction was applied on each because of violation of the sphericity assumption; Correction factors
were well below 0.75.)

1st encounters 2nd encounters
IBI F (3.877,81.4) = 2.467, p = 0.053 F (5.318,106.368) = 4.032, p = 0.002

RMSSD F (2.832,59.471) = 1.419, p = 0.247 F (4.042,80.836) = 0.945, p = 0.443
HF F (2.039,42.825) = 1.059, p = 0.357 F (3.655,73.098) = 1.521, p = 0.209

Table A.10: Repeated measure correlations between ECG and risk metrics

N Correlation: r Significance: p
IBI vs. max_cont._risk 433 -0.053 0.272

RMSSD vs. max_cont._risk 433 0.006 0.894
HF vs. max_cont._risk 433 0.023 0.634

IBI vs. min_THW 433 -0.001 0.979
RMSSD vs. min_THW 433 0.064 0.185

HF vs. min_THW 433 0.071 0.140
max_cont._risk vs. min_THW 433 -0.383 < 0.001

Since these BPM increases do not correlate with risk, we evaluated whether the effect was
caused by verbal responses. Bernardi et al. [254] show that free talking can increase heart
rate by about 8 bpm compared to spontaneous, fast or slow breathing. The absence of
the verbal rating tasks did not elicit a consistent change in average heart rate and a paired
t-test does not yield a significant difference (see Figure A.7): t (9) = −0.434, p = 0.674.
Hence the BPM increase is not an artefact of speaking.
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Figure A.7: Comparison of BPM increase following each event (difference between local extrema after smooth-
ing) between the original 25 participants, and the extra 5 participants without speaking
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B.1. RELATED PERCEIVED RISK MODELS

B.1.1. REGRESSION PERCEIVED RISK MODEL (RPR)
The Regression Perceived Risk model (RPR) is an event-based perceived risk model de-
rived from our previous simulator experiment, where 18 merging events with various
merging distances and braking intensities on a 2-lane highway were simulated. RPR
predicts human drivers’ event-based perceived risk ratings ranging from 0-10 regarding
merging events based on the corresponding kinematic data from the simulator drive.

The RPR model builds on several assumptions:

• Perceived risk stems from the vehicles directly in front of the subject vehicle, which
means the merging vehicles cause perceived risk only after entering the current
lane.

• Drivers can accurately estimate the motion information (e.g., relative position, ve-
locity, acceleration, etc.) with the human sensory system.

The initial model can predict event-based perceived risk [117], as shown in Equation
(B.1)

RRPR_event = 9.384−2.473 · ln(g apmi n)−0.038 ·Y DL−0.201 ·B Imax +0.470 ·GE N (B.1)

where RRPR_event is the event-based perceived risk ranging from 0-10; g apmi n is the
minimum clearance in metres to the leading vehicle during an event; Y DL represents
the years with a valid driving license; B Imax denotes the maximum braking intensity
(m/s2) of the merging vehicle; GE N represents the gender of the participants with Femal e =
1 and M al e = 0. The model coefficients were originally calibrated based on a perceived
risk dataset [117], detailed in Section 3.5.1.

We extend the model to compute real-time perceived risk by replacing mi n_g ap
and max_B I with the real-time values. Y DL and GE N are omitted since they remain
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constant for a certain group of participants, and can be accounted for by the intercept.
In this way, RPR is formulated in the continuous time domain as

RRPR (t ) =C0 +C1 · ln(xn(t )−xs (t ))+C2 ·an,X (t ) (B.2)

where xn(t ) and xs (t ) are the real-time longitudinal position (m) of the neighbouring
vehicle and the subject vehicle; an,X (t ) is the current acceleration (m/s2) of the neigh-
bouring vehicle, which is the braking intensity in this model; According to the simulator
experiment settings [117], the validity range of the model is that xn(t )−xs (t ) < 33m and
−8m/s2 É an,X (t ) É −2m/s2. Verification is required for the model outside this range.
For enhanced performance, we recalibrate parameters C0, C1 and C2 using two datasets.

B.1.2. PERCEIVED PROBABILISTIC DRIVING RISK FIELD MODEL (PPDRF)
Perceived Probabilistic Driving Risk Field Model (PPDRF) enhances the Probabilistic Driv-
ing Risk Field Model (PDRF) [40] by accounting for diverse traffic scenarios and driver in-
dividuality. The model is inspired by artificial potential field used in driving automation
[119], [120], [255]. PDRF estimates collision risk by considering potential risk from non-
moving vehicles/objects and kinetic risk from other road users. The former accounts for
collision energy and probability with stationary obstacles, while the latter involves spa-
tial overlap with neighbouring vehicles using predicted positions and stochastic accel-
erations. In stable highway driving, the longitudinal and lateral accelerations of a neigh-
bour follow a Gaussian distribution [124], [125]. However, due to uncertainties and be-
havioural deviations, human drivers perceive risk differently, leading to a bias between
objective and perceived risk. To address this, we introduce assumptions to extend PDRF
into PPDRF for predicting perceived risk.

• The future acceleration in longitudinal and lateral directions of neighbouring ve-
hicles follows independent Gaussian distributions with the current acceleration as
the mean value, remaining constant over the prediction horizon;

• The subject vehicle maintains the current acceleration over the prediction hori-
zon;

The two assumptions simplify road users’ motion.
In PPDRF model, human drivers, at time t , perceive a total risk as a combination of

kinetic risk and potential risk as follows

RPPDRF (t ) = Rn,s (t )+Ro,s (t ) (B.3)

The kinetic risk in PPDRF concerning moving neighbouring vehicles is given by

Rn,s (t ) = 0.5Msβ
2 ∣∣∆vs,n(t +τ)

∣∣2 · p̃(n, s | t ) (B.4)

where Rn,s (t ) is the kinetic collision risk between the subject vehicle s and a neighbour-
ing vehicle n in Joules at time t . β = Mn

Ms+Mn
denotes the mass ratio. Ms and Mn are the

mass of the subject vehicle and the neighbouring vehicle. ∆vs,n(t +τ) is the relative ve-
locity between the subject vehicle and the neighbouring vehicle at time t +τ. p̃(n, s | t )
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is the collision probability to the neighbouring vehicle estimated by drivers ranging on
[0,1].

The collision probability p̃(n, s | t ) to the neighbouring vehicle estimated by human
drivers is constructed as Equation (B.5).

p̃(n, s | t ) =N

(
∆x(t )−∆vX (t )τ

0.5τ2 |µX (t ), σ̃X

)
·N

(
∆y(t )−∆vY (t )τ

0.5τ2 |µY (t ), σ̃Y

)
(B.5)

where N is the assumed Gaussian collision probability density function (Figure B.1).
µX (t ) and µY (t ) represent the mean values for longitudinal and lateral acceleration dis-
tribution, while σ̃X and σ̃Y are the respective standard deviations. The relative spac-
ing and velocities between the subject and neighbouring vehicles are denoted as ∆x(t ),
∆y(t ), ∆vX (t ), and ∆vY (t ). PPDRF evaluates collision probability using multiple val-
ues of τ = 0.5s,1s,2s,3s, with the model employing all these values to maximise the
computed collision probability. Using the constant acceleration assumption, the pre-
dicted position of the subject vehicle and stochastic positions of neighbouring vehicles
are calculated over a prediction horizon. Spatial overlap and collision predictions are
determined accordingly. The actual p̃(n, s | t ) is obtained through integration over the
expected accelerations.

The potential risk posed to vehicle s by a static object o can be modelled as

Ro,s (t ) = 0.5kM
(
∆vs,o

(
t ))2 ·max

(
e−|rs,o |/D ,0.001

)
(B.6)

where Ro,s (t ) denotes the potential risk caused by the static object o; M denotes the
mass of s;

∣∣rs,o
∣∣ = ||p s −pn || is the distance between the subject vehicle s and the non-

moving object o; Vs,o denotes the relative velocity; 0.5kM(Vs,o)2 represents the expected
crash energy scaled by the parameter k, with range [0−1], which is set to 1 in this study
representing the neighbour is immovable; the term e−|rs,o |/D is the collision probability
ranging between [0-1], where D determines the steepness of descent of the potential
field, varying among different drivers.

It is noteworthy that RPPDRF (t ) represents a probabilistic energy value, and can at-
tain up to 3×104 J under stable motorway driving conditions [40].

Figure B.1: The acceleration distribution of the neighbouring vehicle and the relative spacing between the
subject vehicle and the neighbouring vehicle
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B.1.3. DRIVING RISK FIELD MODEL (DRF)
The DRF represents human drivers’ risk perception as a 2D field, combining the proba-
bility (probability field) and consequence (severity field) of an event [41], the product of
which provides an estimation of driver’s perceived risk. The DRF model was derived from
a simulator experiment involving obstacle avoidance with 77 obstacles distributed on a
2D plane in front of the subject vehicle. During each drive, one obstacle was randomly
chosen and suddenly appeared, after which participants needed to steer to avoid the ob-
stacle and gave a non-negative number indicating required steering effort. Based on the
position information of the obstacles, the maximum steering angle, and the subjective
ratings, the DRF model was fitted to the data, and thereby it is essentially an empirical
model. The DRF is based on the following assumptions:

• Perceived risk is the product of the probability of a hazardous event occurring es-
timated by drivers and the event severity;

• The perceived risk field widens as the longitudinal distance from the subject vehi-
cle increases;

• The height of the perceived risk field decays as the lateral and longitudinal distance
from the vehicle increases;

The DRF model quantifies overall perceived risk as

RDRF (t ) =∑
p(x(t ), y(t )) · sev(t ) (B.7)

where p(x(t ), y(t )) is the probability of an event happening at position (x(t ), y(t )); sev(t )
is the severity field of events. Specifically, in straight drive, the probability field can be
simplified as

p(x(t ), y(t )) = h ·exp

(−y(t )2

2σ2

)
(B.8)

h = s · (x(t )− vs,X (t ) · tl a
)2 (B.9)

σ= m · x(t )+ c (B.10)

where the subject vehicle is at the origin (0,0) with h and σ representing the height and
the width of the Gaussian at longitudinal position x(t ); s defines the steepness of the
height parabola; tl a is the human driver’s preview time (s); m defines the widening rate
of the 2D probability field; c is the quarter width of the subject vehicle (m). vs,X (t ) is the
subject vehicle’s velocity (m/s). The lateral cross-section of the 2D probability field is a
Gaussian. Note that the height of the Gaussian h and the widthσ are separately modelled
as a parabola and linear function of longitudinal distance x in front of the subject vehicle.

The severity field of the events in this study can be defined as

sev(t ) =
{

Csev , (x(t ), y(t )) ∈ AO ,

0, (x(t ), y(t )) ∉ AO .
(B.11)

where Csev is the severity value that is set empirically and AO represents a neighbouring
vehicle’s spatial area.
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B.2. PCAD TIME HISTORY OUTPUT
This Appendix presents the PCAD time history outputs in Dataset Merging (Figure B.2
and Dataset Obstacle Avoidance (Figure B.3).

(a) Merging gap is 25m and the deceleration of the merging vehicle is −2m/s2

(b) Merging gap is 25m and the deceleration of the merging vehicle is −8m/s2

Figure B.2: PCAD historical output in merging and hard braking events
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(a) The obstacle position is (25, 0), which means the obstacle is 25m in front and the
lateral offset is 0.

(b) The obstacle position is (75, 0), which means the obstacle is 75m in front and the
lateral offset is 0.

Figure B.3: PCAD historical output in obstacle avoidance events
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B.3. CROSS VALIDATION
This Appendix presents the model performance in cross-validation between the two
datasets.

Table B.1: Model performance indicators for the cross-validation

Dataset Performance indicators PCAD RPR PPDRF DRF

Dataset Merging
(with parameters calibrated

with Dataset Obstacle Avoidance)

RMSEevent 2.37 7.72 4.86 5.14
RMSEpeak 3.73 8.29 5.14 5.79

Adjusted R-Square 0.79 0.88 0.20 0.00
Detection rate 1.00 1.00 1.00 1.00

Time consumption (ms) 3.25 2.09×10−4 1.03×10−2 1.01

Dataset Obstacle Avoidance
(with parameters calibrated

with Dataset Merging)

RMSEevent 2.28 3.20 3.48 3.19
RMSEpeak 2.73 3.84 3.93 3.87

Adjusted R-Square 0.90 0.38 0.11 0.42
Detection rate 1.00 0.09 1.00 1.00

Time consumption (ms) 5.58 1.98×10−4 7.28 1.82

(a) Performances in Dataset Merging (with parameters
calibrated with Dataset Obstacle Avoidance)

(b) Performances in Dataset Obstacle Avoidance (with pa-
rameters calibrated with Dataset Merging)

Figure B.4: Radar chart of model performance indicators for the cross-validation
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(a) PCAD (Adjusted R-Square = 0.79) (b) RPR (Adjusted R-Square = 0.88)

(c) PPDRF (Adjusted R-Square = 0.20) (d) DRF (Adjusted R-Square = 0.00)

Figure B.5: Validation results in Dataset Merging with model parameters calibrated based on Dataset Obstacle
Avoidance. ’#’ indicates raw event-based perceived risk and ’ ’ indicates the averaged event-based perceived
risk across the same event type.
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(a) PCAD (Adjusted R-Square = 0.90) (b) RPR (Adjusted R-Square = 0.38)

(c) PPDRF (Adjusted R-Square = 0.11) (d) DRF (Adjusted R-Square = 0.48)

Figure B.6: Validation results in Dataset Obstacle Avoidance with model parameters calibrated based on
Dataset Merging. ’#’ indicates raw event-based perceived risk and ’ ’ indicates the averaged event-based
perceived risk across the same event type.
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B.4. EXPLANATION OF THE UNCERTAIN VELOCITY DIRECTION
In this Appendix, we explain why the line connecting the subject vehicle and the neigh-
bouring vehicle is selected as the direction of the uncertain velocity.

With the uncertain velocity and the perceived velocity derived from acceleration,
Equation (3.3) and (3.6) are changed to

θ̇
′
s j1,n j2

=
(

p s j1
−pn j2

)
× (v ′

s j1
−v ′

n j2
)∥∥∥p s j1

−pn j2

∥∥∥2

=
(

p s j1
−pn j2

)
× [

(v s j1 +∆v s,a +∆v s,u)− (v n j2 +∆v n,a +∆v n,u)
]

∥∥∥p s j1
−pn j2

∥∥∥2

= θ̇s j1,n j2 +∆θ̇s j1,n j2,a +∆θ̇s j1,n j2,u , j1, j2 ∈ {l ,r }

(B.12)

and

ḋ ′
s,n = 1

ds,n
(p s −pn)T (

v ′
s −v ′

n

)
= 1

ds,n
(p s −pn)T [

(v s +∆v s,a +∆v s,u)− (v n +∆v n,a +∆v n,u)
]

= ḋs,n + ḋn,a + ḋs,n,u

(B.13)

where v ′
s = v s +∆v s,a +∆v s,u and v ′

n = v n +∆v n,a +∆v n,u are the perceived velocity
with the uncertain velocity∆v s,u and∆v n,u for the subject vehicle and the neighbouring
vehicle respectively.

In order to make the situation more dangerous, the uncertain velocity has to create a
situation that is opposite to Equation (3.9) namely

min θ̇si ,n j ,u ·max θ̇si ,n j ,u É 0 (i , j ∈ {l ,r }, ) and ḋs,n,u < 0, (B.14)

where all relative bearing rate and the distance changing rate are only caused by the
uncertain velocity.

Comparing with Equation (3.9), the optimal direction for the uncertain velocity based
on Equation (B.13) to create a negative distance changing rate should be ∂ḋs,n,u

∂vs,X ,u
∂ḋs,n,u
∂vs,Y ,u

=
 ∂ḋ ′

s,n
∂vs,X ,u
∂ḋ ′

s,n
∂vs,Y ,u

= 1

ds,n

[
∆p X
∆pY

]
= p s −pn

||p s −pn || ∂ḋs,n,u
∂vn,X ,u
∂ḋs,n,u
∂vn,Y ,u

=
 ∂ḋ ′

s,n
∂vn,X ,u
∂ḋ ′

s,n
∂vn,Y ,u

= 1

ds,n

[ −∆p X
−∆pY

]
=− p s −pn

||p s −pn ||

(B.15)

where ∆p X = p s,X −pn,X , ∆pY = p s,Y −pn,Y .
Equation (B.15) means that the distance direction is the optimal for the uncertain

velocity of the subject vehicle and the neighbouring vehicle to create a negative distance
changing rate in Equation (B.14).
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Simultaneously, the uncertain velocity should not cause extra relative bearing rate
which makes the situation less dangerous. In other words, the uncertain velocity should
follow the normal direction of the relative bearing rate gradient. Hence, the direction
should be ∂θ̇s,n,u

∂vs,X ,u
∂θ̇s,n,u
∂vs,Y ,u

∣∣∣∣
⊥
=

 ∂θ̇′s,n
∂vs,X ,u
∂θ̇′s,n
∂vs,Y ,u

∣∣∣∣
⊥
= 1

d 2
s,n

[
∆pY
−∆p X

]∣∣∣∣
⊥
= p s −pn

||p s −pn ||2 ∂θ̇′s,n
∂vn,X ,u
∂θ̇′s,n
∂vn,Y ,u

∣∣∣∣
⊥
= 1

d 2
s,n

[ −∆pY
∆p X

]∣∣∣∣
⊥
=− p s −pn

||p s −pn ||2

(B.16)

which are exactly the directions shown in Equation (B.15). That means the distance di-
rection is the optimal direction for the uncertain velocity to create a negative distance
changing rate and in the meantime not to cause less perceived risk.
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C.1. EXTENDED DATA

(a) Video stream of an MB event (b) Video stream of an HB event

(c) Video stream of a LC event (d) Video stream of an SVM event

Figure C.1: Video streams of MB, HB, LC and SVM events. Each image shows the last frame of a clip. After each
clip the perceived risk is rated.
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(e) (f)

(b) (c)(a)

(d)

Figure C.2: Environment parameters influence in HB. a, Initial braking distance: Perceived risk ratings in 5
clips under condition A (5 m), B (15 m) and condition C (25 m). b, Cruising speed: Perceived risk ratings in 5
clips under condition A (80 km/h), B (100 km/h) and condition C (120 km/h). c, Braking Intensity of the leading
vehicle: Perceived risk ratings in 5 clips under condition A (−2 m/s2), B (−5 m/s2) and condition C (−8 m/s2).
d, J-S divergence of perceived risk ratings between different initial braking distance (5 m, 15 m and 25 m), e,
J-S divergence of perceived risk ratings between different cruising speed (80 km/h, 100 km/h and 120 km/h), e,
J-S divergence of perceived risk ratings between different cruising speed (80 km/h, 100 km/h and 120 km/h),
f, J-S divergence of perceived risk ratings between different braking intensity of the leading vehicle (−2 m/s2,
−5 m/s2 and −8 m/s2).
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(e) (f)

(b) (c)(a)

(d)

Figure C.3: Environment parameters influence in LC. a, Merging distance: Perceived risk ratings in 6 clips
under condition A (5 m) and condition B (15 m). b, Lateral control: Perceived risk ratings in 6 clips under
condition A (Lateral speed 1 m/s), B (Lateral speed 1 m/s), condition C (fragmented lane change with lateral
speed 1 m/s) and condition D (aborted lane change with lateral speed Lateral speed 1 m/s). c, ACC category:
Perceived risk ratings in 6 clips under condition A (Cautious ACC), B (Mild ACC) and C (Aggressive ACC). d, J-S
divergence of perceived risk ratings between different merging distance (5 m and 15 m), e, J-S divergence of
perceived risk ratings between different lateral behaviour of merging vehicle (normal lane change with lateral
speed 1 m/s, normal lane change with lateral speed 3 m/s, fragmented lane change with lateral speed 1 m/s
and aborted lane change with lateral speed 1 m/s). f, J-S divergence of perceived risk ratings between ACC
categories (Cautious, mild and aggressive ACC).
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(e) (f)

(b) (c)(a)

(d)

Figure C.4: Environment parameters influence in SVM. a, Initial merging distance: Perceived risk ratings in 5
clips under condition A (5 m), B (15 m) and condition C (25 m). b, Cruising speed: Perceived risk ratings in 5
clips under condition A (80 km/h), B (100 km/h) and condition C (120 km/h). c, Braking Intensity of the leading
vehicle: Perceived risk ratings in 5 clips under condition A (−2 m/s2), B (−5 m/s2) and condition C (−8 m/s2).
d, J-S divergence of perceived risk ratings between different initial merging distance (5 m, 15 m and 25 m), e,
J-S divergence of perceived risk ratings between different cruising speed (80 km/h, 100 km/h and 120 km/h), e,
J-S divergence of perceived risk ratings between different cruising speed (80 km/h, 100 km/h and 120 km/h),
f, J-S divergence of perceived risk ratings between different braking intensity of the leading vehicle (−2 m/s2,
−5 m/s2 and −8 m/s2).
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Algorithm 1 Rating Moment Alignment Based on Empirical Data

1: procedure ALIGNRATINGMOMENTS(eventData)
2: Initialise a matrix to store aligned rating moments
3: for each event in eventsData do
4: for each clip of the event do
5: if the clip is the first clip then
6: 0s is a rating moment of the first rating in the first clip
7: else if the clip is the last clip then
8: 30s or 36s is a rating moment of the last rating in the last clip
9: end if

10: if there exists a stimulus (merging or braking) within this clip then
11: Determine the onset time of the stimuli
12: Determine the timing for perceived risk peak as the moment for the cur-

rent perceived risk rating based on statistics
13: Determine the timing for perceived risk returning to baseline as the rat-

ing moment for the next perceived risk rating
14: else
15: if there exists a determined timing within this clip then
16: Continue
17: else
18: Determine the first and last moment of this clip as the rating mo-

ments for the current perceived risk rating.
19: end if
20: end if
21: Store the aligned rating moment
22: end for
23: end for
24: return the array of aligned rating moments
25: end procedure

Algorithm 2 Linear Interpolation Method

1: procedure LINEARINTERPOLATION(x, y , xnew )
2: Initialize an array ynew to store interpolated values
3: for each xi in xnew do
4: Find the closest points xa and xb from x such that xa ≤ xi ≤ xb

5: Calculate the slope m between (xa , ya) and (xb , yb) from y
6: Interpolate to find yi using the equation yi = ya +m · (xi −xa)
7: Store yi in ynew

8: end for
9: return ynew

10: end procedure
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Algorithm 3 Quadratic Spline with Monotonicity Adjustment (Part 1)

1: procedure QUADRATICSPLINE(x_tr ai n, y_tr ai n)
2: n ← length(x_tr ai n)−1
3: A ← zeros(2n,3n)
4: b ← zeros(2n,1)
5: coe f f s ← array of 3n zeros
6:

7: procedure BUILDSYSTEM(A, b, x_tr ai n, y_tr ai n)
8: for i ← 1 to n do
9: A(2i −1,(3i −2) : (3i )) ← [x_tr ai n(i )2, x_tr ai n(i ),1]

10: b(2i −1) ← y_tr ai n(i )
11: A(2i , (3i −2) : (3i )) ← [x_tr ai n(i +1)2, x_tr ai n(i +1),1]
12: b(2i ) ← y_tr ai n(i +1)
13: end for
14: end procedure
15:

16: procedure APPLYMONOTONICITY(A, b, x_tr ai n, y_tr ai n)
17: peaks, tr oug hs ← IDENTIFYPEAKSTROUGHS(y_tr ai n)
18: for all peak in peaks do
19: Apply zero derivative constraint for segments adjacent to peak
20: end for
21: for all tr oug h in tr oug hs do
22: if tr oug h is not adjacent to peak then
23: Apply zero derivative constraint for segments adjacent to trough
24: end if
25: end for
26: end procedure
27:

28: procedure SOLVESYSTEM(A, b)
29: coe f f s ← A\b
30: end procedure
31: end procedure
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Algorithm 3 Quadratic Spline with Monotonicity Adjustment (Part 2)

1: Continued from Part 1
2: procedure QUADRATICSPLINE CONTINUED()
3: procedure EVALUATESPLINE(coe f f s, x_eval )
4: y_spl i ne ← array of size(x_eval ) zeros
5: for i ← 1 to n do
6: i ndi ces ← find(x_eval ≥ x_tr ai n(i )∧x_eval < x_tr ai n(i +1))
7: y_spl i ne(i ndi ces) ← coe f f s(3i −2) ·x_eval (i ndi ces)2 +coe f f s(3i −1) ·

x_eval (i ndi ces)+ coe f f s(3i )
8: end for
9: return y_spl i ne

10: end procedure
11:

12: BUILDSYSTEM(A, b, x_tr ai n, y_tr ai n)
13: APPLYMONOTONICITY(A, b, x_tr ai n, y_tr ai n)
14: SOLVESYSTEM(A, b)
15: y_quad ← EVALUATESPLINE(coe f f s, x_dense)
16:

17: return y_quad
18: end procedure

Algorithm 4 PCHIP Improved Cubic Spline Interpolation (Part 1)

1: procedure PCHIPNEW(x, y , xq)
2: (x, y, sizey) ← CHECKANDADJUSTINPUT(x, y)
3: h ← COMPUTEINTERVALS(x)
4: ∆← COMPUTESLOPES(y,h)
5: slopes ← COMPUTEMODIFIEDPCHIPSLOPES(h,∆)
6: yq ← COMPUTEPWCH(x, y, slopes,h,∆)
7: yq.dim ← sizey
8: if nargin = 3 then
9: yq ← EVALUATEPCHIP(yq, xq)

10: end if
11: return yq
12: end procedure
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Algorithm 4 PCHIP Improved Cubic Spline Interpolation (Part 2)

1: Continued from Part 1
2: procedure CHECKANDADJUSTINPUT(x, y)
3: Ensure x and y are of compatible sizes
4: Remove NaNs from x and y
5: Sort x and reorder y correspondingly
6: Determine end conditions based on y ’s size
7: return (x, y, sizey,endslopes)
8: end procedure

9: procedure COMPUTEINTERVALS(x)
10: h ← diff(x)
11: return h
12: end procedure

13: procedure COMPUTESLOPES(y , h)
14: ∆← diff(y)/repmat(h, size(y,1),1)
15: return ∆
16: end procedure

17: procedure COMPUTEMODIFIEDPCHIPSLOPES(h, ∆)
18: d ← InitializeSlopes(size(h))
19: d ← AssignZeroSlopes(d)
20: d ← ComputeNonzeroSlopes(h,∆,d)
21: return d
22: end procedure

23: procedure COMPUTEPWCH(x, y , slopes, h, ∆)
24: Perform piecewise cubic Hermite interpolation
25: return yq
26: end procedure

27: procedure EVALUATEPCHIP(yq , xq)
28: Evaluate the piecewise cubic Hermite interpolant at xq
29: return yq
30: end procedure
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Table C.1: Rating moments in MB Scenario (in seconds). Within R1, R2 and R5, the rating for the second
moment was copied.

Event
number

R1 R2 R3 R4 R5

1 0.00 5.90 11.00 13.90 16.85 20.78 24.00 30.00
2 0.00 5.90 10.40 13.40 16.25 20.18 24.00 30.00
3 0.00 5.90 10.20 13.00 15.55 19.48 24.00 30.00
4 0.00 5.90 11.20 13.80 16.95 20.88 24.00 30.00
5 0.00 5.90 11.00 13.30 16.05 19.98 24.00 30.00
6 0.00 5.90 10.40 12.80 16.75 20.68 24.00 30.00
7 0.00 5.90 11.00 13.80 17.25 21.18 24.00 30.00
8 0.00 5.90 11.00 13.30 16.65 20.58 24.00 30.00
9 0.00 5.90 10.10 12.90 16.25 20.18 24.00 30.00

10 0.00 5.90 10.80 12.90 15.55 19.48 24.00 30.00
11 0.00 5.90 10.30 12.40 14.85 18.78 24.00 30.00
12 0.00 5.90 9.90 12.20 14.55 18.48 24.00 30.00
13 0.00 5.90 10.70 12.90 15.65 19.58 24.00 30.00
14 0.00 5.90 10.50 12.50 14.95 18.88 24.00 30.00
15 0.00 5.90 10.20 12.10 16.65 20.58 24.00 30.00
16 0.00 5.90 10.80 12.90 15.95 19.88 24.00 30.00
17 0.00 5.90 10.40 12.40 16.25 20.18 24.00 30.00
18 0.00 5.90 10.20 12.10 15.95 19.88 24.00 30.00
19 0.00 5.90 12.20 14.20 16.55 20.48 24.00 30.00
20 0.00 5.90 12.00 13.80 16.05 19.98 24.00 30.00
21 0.00 5.90 12.00 13.60 15.75 19.68 24.00 30.00
22 0.00 5.90 12.50 14.20 16.55 20.48 24.00 30.00
23 0.00 5.90 12.00 13.80 16.05 19.98 24.00 30.00
24 0.00 5.90 12.00 13.60 15.75 19.68 24.00 30.00
25 0.00 5.90 12.60 14.20 16.85 20.78 24.00 30.00
26 0.00 5.90 12.20 13.80 16.05 19.98 24.00 30.00
27 0.00 5.90 12.00 13.60 17.95 21.88 24.00 30.00



C.1. EXTENDED DATA

C

163

Table C.2: Rating moments in HB Scenario (in seconds). Within R1, R2 and R5, the rating for the second
moment was copied.

Event
number

R1 R2 R3 R4 R5

1 0.00 5.90 9.00 14.10 15.25 19.18 24.00 30.00
2 0.00 5.90 9.00 14.10 15.25 19.18 24.00 30.00
3 0.00 5.90 9.00 14.10 15.25 19.18 24.00 30.00
4 0.00 5.90 9.00 14.10 15.25 19.18 24.00 30.00
5 0.00 5.90 9.00 14.10 15.25 19.18 24.00 30.00
6 0.00 5.90 9.00 14.70 15.85 19.78 24.00 30.00
7 0.00 5.90 9.00 14.60 15.25 19.18 24.00 30.00
8 0.00 5.90 9.00 14.80 15.95 19.88 24.00 30.00
9 0.00 5.90 9.00 14.90 15.25 19.18 24.00 30.00

10 0.00 5.90 9.00 14.10 15.25 19.18 24.00 30.00
11 0.00 5.90 9.00 14.10 15.25 19.18 24.00 30.00
12 0.00 5.90 9.00 14.10 15.25 19.18 24.00 30.00
13 0.00 5.90 9.00 14.30 15.25 19.18 24.00 30.00
14 0.00 5.90 9.00 14.30 15.45 19.38 24.00 30.00
15 0.00 5.90 9.00 14.30 15.25 19.18 24.00 30.00
16 0.00 5.90 9.00 14.60 15.75 19.68 24.00 30.00
17 0.00 5.90 9.00 14.40 15.25 19.18 24.00 30.00
18 0.00 5.90 9.00 14.30 15.45 19.38 24.00 30.00
19 0.00 5.90 9.00 14.30 15.25 19.18 24.00 30.00
20 0.00 5.90 9.00 14.30 15.45 19.38 24.00 30.00
21 0.00 5.90 9.00 14.20 15.25 19.18 24.00 30.00
22 0.00 5.90 9.00 14.30 15.45 19.38 24.00 30.00
23 0.00 5.90 9.00 14.40 15.25 19.18 24.00 30.00
24 0.00 5.90 9.00 14.30 15.45 19.38 24.00 30.00
25 0.00 5.90 9.00 14.40 15.25 19.18 24.00 30.00
26 0.00 5.90 9.00 14.40 15.55 19.48 24.00 30.00
27 0.00 5.90 9.00 14.40 15.25 19.18 24.00 30.00
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Table C.3: Rating moments in LC Scenario (in seconds). Within R1, R5 and R6, the rating for the second mo-
ment was copied.

Event
number

R1 R2 R3 R4 R5 R6

1 0.00 5.90 8.00 14.40 21.55 25.48 30.00 36.00
2 0.00 5.90 8.00 14.40 21.80 25.73 30.00 36.00
3 0.00 5.90 8.00 14.40 21.35 25.28 30.00 36.00
4 0.00 5.90 8.00 14.40 23.05 26.98 30.00 36.00
5 0.00 5.90 8.00 14.40 22.55 26.48 30.00 36.00
6 0.00 5.90 8.00 14.40 22.95 25.95 30.00 36.00
7 0.00 5.90 8.00 14.40 19.95 23.88 30.00 36.00
8 0.00 5.90 8.00 14.40 21.60 24.55 30.00 36.00
9 0.00 5.90 8.00 14.40 20.35 24.28 30.00 36.00

10 0.00 5.90 8.00 14.40 23.55 27.48 30.00 36.00
11 0.00 5.90 8.00 14.40 19.65 23.58 30.00 36.00
12 0.00 5.90 8.00 14.40 22.95 26.88 30.00 36.00
13 0.00 5.90 8.00 14.40 19.85 27.25 31.18 36.00
14 0.00 5.90 8.00 14.40 20.05 27.25 31.18 36.00
15 0.00 5.90 8.00 14.40 20.05 27.15 31.08 36.00
16 0.00 5.90 8.00 14.40 22.95 26.88 32.25 36.00
17 0.00 5.90 8.00 14.40 19.65 28.75 32.68 36.00
18 0.00 5.90 8.00 14.40 22.95 26.88 32.25 36.00
19 0.00 5.90 8.00 14.40 22.75 26.68 29.30 33.23 36.00
20 0.00 5.90 8.00 14.40 19.75 23.68 26.20 30.13 36.00
21 0.00 5.90 8.00 14.40 23.05 26.98 29.30 33.23 36.00
22 0.00 5.90 8.00 14.40 19.75 23.68 26.20 30.13 36.00
23 0.00 5.90 8.00 14.40 22.95 26.88 29.30 33.23 36.00
24 0.00 5.90 8.00 14.40 19.75 23.68 26.20 30.13 36.00



C.1. EXTENDED DATA

C

165

Table C.4: Rating moments in SVM Scenario (in seconds). Within R1, R2 and R5, the rating for the second
moment was copied.

Event
number

R1 R2 R3 R4 R5

1 0.00 5.90 12.00 12.70 16.20 19.15 24.00 30.00
2 0.00 5.90 12.00 12.70 16.20 19.15 24.00 30.00
3 0.00 5.90 12.00 12.70 16.20 19.15 24.00 30.00
4 0.00 5.90 12.00 12.70 16.20 19.15 24.00 30.00
5 0.00 5.90 12.00 12.70 16.20 19.15 24.00 30.00
6 0.00 5.90 12.00 12.70 16.20 19.15 24.00 30.00
7 0.00 5.90 12.00 12.70 16.20 19.15 24.00 30.00
8 0.00 5.90 12.00 12.70 16.20 19.15 24.00 30.00
9 0.00 5.90 12.00 12.70 16.20 19.15 24.00 30.00

10 0.00 5.90 12.00 12.70 16.20 19.15 24.00 30.00
11 0.00 5.90 12.00 12.70 16.20 19.15 24.00 30.00
12 0.00 5.90 12.00 12.70 16.20 19.15 24.00 30.00
13 0.00 5.90 12.00 12.70 16.20 19.15 24.00 30.00
14 0.00 5.90 12.00 12.70 16.20 19.15 24.00 30.00
15 0.00 5.90 12.00 12.70 16.20 19.15 24.00 30.00
16 0.00 5.90 12.00 12.70 16.20 19.15 24.00 30.00
17 0.00 5.90 12.00 12.70 16.20 19.15 24.00 30.00
18 0.00 5.90 12.00 12.70 16.20 19.15 24.00 30.00
19 0.00 5.90 12.00 12.70 16.20 19.15 24.00 30.00
20 0.00 5.90 12.00 12.70 16.20 19.15 24.00 30.00
21 0.00 5.90 12.00 12.70 16.20 19.15 24.00 30.00
22 0.00 5.90 12.00 12.70 16.20 19.15 24.00 30.00
23 0.00 5.90 12.00 12.70 16.20 19.15 24.00 30.00
24 0.00 5.90 12.00 12.70 16.20 19.15 24.00 30.00
25 0.00 5.90 12.00 12.70 16.20 19.15 24.00 30.00
26 0.00 5.90 12.00 12.70 16.20 19.15 24.00 30.00
27 0.00 5.90 12.00 12.70 16.20 19.15 24.00 30.00
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(a) Continuous perceived risk in MB scenarios.
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(b) Continuous perceived risk in HB scenarios.
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(c) Continuous perceived risk in LC scenarios.
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(d) Continuous perceived risk in SVM scenarios.

Figure C.5: Continuous perceived risk in four scenarios. The solid blue curve represents the mean of perceived
risk and the light blue areas represent the standard deviations.

Figure C.6: The uncertain velocity ∆v s,u and ∆v n,u of the subject vehicle s and the neighbouring vehicle n. In
this case, the subject vehicle (red) is passing by a neighbouring vehicle (white). The uncertain velocities ∆v s,u
and ∆v n,u are pointing to each other.

Table C.5: Parameters to be calibrated of computational perceived risk models

Model Parameters Explanation

PCAD

σn,X The standard deviation in X of the velocity Gaussian of a neighbouring
vehicle

σn,Y The standard deviation in Y of the velocity Gaussian of a neighbouring
vehicle

σs,X The standard deviation in X of the velocity Gaussian of the subject vehicle
σs,Y The standard deviation in Y of the velocity Gaussian of the subject vehicle
ts,a The accumulation time for the acceleration-based velocity of the subject

vehicle
tn,a The accumulation time for the acceleration-based velocity of a neighbouring

vehicle
α The exponent of the power function in weighting function

DRF

D The steepness of descent of the potential field
s The steepness of the height parabola of the risk field

tl a Human driver’s preview time
m The rate of the risk field width expanding
c The initial width of the DRF
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(a) Prediction results of PCAD, DRF and neural network from the top to bottom in MB scenario. Solid curves represent the
mean of perceived risk and model output and the light coloured area represent the epistemic uncertainty of the model.
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(b) Prediction results of PCAD, DRF and neural network from the top to bottom in HB scenario. Solid curves represent the
mean of perceived risk and model output and the light coloured area represent the epistemic uncertainty of the model.
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(c) Prediction results of PCAD, DRF and neural network from the top to bottom in LC scenario. Solid curves represent the
mean of perceived risk and model output and the light coloured area represent the epistemic uncertainty of the model.
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(d) Prediction results of PCAD, DRF and neural network from the top to bottom in SVM scenario. Solid curves represent the
mean of perceived risk and model output and the light coloured area represent the epistemic uncertainty of the model.

Figure C.7: Prediction results of PCAD, DRF and neural network in four scenarios.
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C.2. THE SELECTION OF THE INTERPOLATION METHOD
This section clarifies the selection of the method to interpolate discrete perceived risk
ratings. The interpolation methods were selected to satisfy certain criteria: traversing
all known data points, preserving monotonicity between adjacent samples, and ensur-
ing that the first derivative at the first, last, and peak points is zero, where applicable.
Exempt from this derivative condition is the Linear Interpolation method. We checked
three interpolation strategies to learn the most suitable interpolation method to obtain
continuous perceived risk ratings: Linear Interpolation, Quadratic Spline Interpolation
with Monotonicity Adjustment, and Piecewise Cubic Hermite Interpolating Polynomial
(PCHIP) (Algorithms 2-4 in Appendix C.1).

We used the data from two pivotal studies: Ref. [153] that clarified the relationship
between time and GSR in response to stimuli, and Ref. [154] that explained the corre-
lation between GSR and perceived risk ratings. Based on this, the relationship between
time and perceived risk faced with a stimulus was derived, represented in Figure C.8a.
To establish time-continuous perceived risk ratings, we strategically selected the 1st, 7th,
13th, 19th, 25th, and 31st data points from a total of 31 samples of a time-continuous
perceived risk signal for interpolation using linear, quadratic, and PCHIP methodolo-
gies. The accuracy of these interpolations was evaluated by calculating the deviation of
the remaining samples from the interpolated curve, thereby determining the most accu-
rate method, which is shown in Figure C.8b.

The comparison focused on their effectiveness in capturing the temporal change
in perceived risk. The analysis revealed differences in how each method interpolated
the discrete data, providing insights into the most accurate and representative method-
ologies for continuous risk evaluation. The RMSE between perceived risk ratings and
the fitted perceived risk ratings for Linear Interpolation, Quadratic Spline Interpolation
with Monotonicity Adjustment and Piecewise Cubic Hermite Interpolating Polynomial
(PCHIP) are 0.94, 1.42, and 0.88 separately. As graphically represented in Figure C.8b,
these interpolations show how each method captures the temporal change in perceived
risk ratings. Specifically, PCHIP offers the closest fit to the trajectory of perceived risk
ratings, indicated by the lowest RMSE .

(a). Deriving the relationship between perceived risk ratings and time by combining the relationship between GSR phasic
activation (µS) and perceived risk ratings (first plot) with the GSR temporal response (second plot), resulting in the derived
temporal profile of perceived risk (third plot).
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(b) Interpolating time continuous perceived risk signal. Different fitting methods were used to interpolate these discrete per-
ceived risk ratings, where the PCHIP curve provided the best fit for generating a continuous signal over time.

Figure C.8: Deriving a time-continuous perceived risk signal from discrete perceived risk ratings.

C.3. DNN OVERFITTING EVALUATION
In this evaluation, we firstly check the training and validation loss curves to confirm if
there are any significant signals of overfitting. Taking MB scenario as the example, Figure
C.9 indicates that during the training the loss on the validation data is decreasing along
with the loss on the training data which is not a signal of overfitting.

Additionally, we trained a simplified DNN with fewer neurons (referred as DNN B,
with 21×50×2 neurons) and compared the original DNN (referred as DNN A, with 21×
500× 2 neurons) with the simplified version in specific scenario types. Both types of
models were trained and validated under the same conditions to assess overfitting risks
and robustness against variations due to random factors during training, such as neuron
dropout. For both types of DNNs, a learning rate of 0.001 and a dropout rate of 50%
were employed, and we randomly used 80% of the data for training with the remaining
20% for validation. Training was repeated 10 times to evaluate the impact of training
randomness on model performance. Table C.6 shows the loss on the 80% training data
and loss on the 20% validation data. The original DNN A has smaller loss on both training
and validation data with less deviation across 10 times of training compared to DNN B
with less neurons, which is also not a signal of overfitting.

(a) Loss on training data (b) Loss on validation data

Figure C.9: Training and validation loss curves.



C

174 C. APPENDIX FOR CHAPTER 4

Table C.6: Training and validation loss (with RMSE mean (std) in each cell)

Loss (RMSE) on 80% training data Loss (RMSE) on 20% validation data
DNN A 0.6724 (0.045) 0.6815 (0.037)
DNN B 0.9748 (0.052) 0.9837 (0.061)

C.4. SUPPLEMENTARY MATERIALS

C.4.1. ONLINE QUESTIONNAIRE
The online questionnaire used in the study can be accessed at Qualtrics.

C.4.2. LOCAL FEATURE CONTRIBUTIONS TO PERCEIVED RISK OVER TIME
The local feature contributions to perceived risk over time in all 105 events can be ac-
cessed at https://surfdrive.surf.nl/files/index.php/s/N3HQxZ4ocsXBuzV.

https://tudelft.fra1.qualtrics.com/jfe/form/SV_bQ2JkNfOCMp2FLM
https://surfdrive.surf.nl/files/index.php/s/N3HQxZ4ocsXBuzV
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D.1. PRELIMINARY EXPERIMENT

D.1.1. METHOD

EXPERIMENT CONDITIONS

The five interface conditions were the same as in Main Experiment, but the experimental
design was between-subjects; each participant experienced one of five user interfaces.

SCENARIO

In Table D.1, the scenarios of the preliminary experiment are described, where seven
different event types were repeated twice, and the order was randomised but fixed.

Table D.1: Event types of the preliminary experiment

Manoeuvre Merging gap (m) Automation action Event

Exposure 1
Exposure 2

(Repetition)

Braking

5
-2 m/s2 deceleration E1a E1b
-8 m/s2 deceleration E2a E2b

15
-2 m/s2 deceleration E3a E3b
-8 m/s2 deceleration E4a E4b

25
-2 m/s2 deceleration E5a E5b
-8 m/s2 deceleration E6a E6b

Lane Change 25 Lane change E7a E7b

APPARATUS

The apparatus was the same as in the main text experiment, but there were no side mir-
rors on the simulator. To prevent feeling unsafe, drivers were informed that there were
no other vehicles on the left lane when changing the lane as a manoeuvre [256], [257].

175
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MEASUREMENTS

During the experiment, brake pedal signal and eye gaze behaviours were recorded. In
addition, trust and perceived risk questions using a 10-point Likert scale [117] were col-
lected on a tablet on the left side of the steering wheel in English.

PARTICIPANTS

In each UI group, seventeen drivers participated, with a total of eighty-five participants
(twenty-one females) holding a driving license for more than one year. The average age
of participants was 30.7 years (SD= 13.1 years). Twenty-four participants had experi-
enced adaptive cruise control (ACC), seventeen lane keeping assist (LKA), and eleven
combination of ACC and LKA.

D.1.2. RESULTS

BRAKING BEHAVIOUR

Participants’ brake pedal usage of each interface condition is shown in Figure D.1. In
the No UI condition, most participants used the brake pedal, and the least number of
participants used the brake pedal in the SM-VA UI condition. Participants who used
the brake pedal all used it in the most critical events EI2a and EI2b, slowing down with
−8m/s2 deceleration and 5 m merging gap.

Figure D.1: Number of participants who used brake pedal on each user interface

TRUST AND PERCEIVED RISK

Average trust and perceived risk for each user interface are shown in Figure D.2. There
was an effect of UI on trust, but no effect on perceived risk. We analysed the effect of UI
on trust and perceived risk using repeated-measure ANOVA. Participants’ trust and per-
ceived risk on each UI were used as the dependent variable and the interface condition
as an independent factor. The main effect of user interface conditions on trust was sig-
nificant (F (4,84) = 4.23p = 0.004,η2 = 0.18). The post-doc analysis indicated that No UI
condition is lower than SM-V, S-VA, and SM-VA. Participants had the highest perceived
risk in No UI, but there was no significant effect of user interface condition on perceived
risk (F (4,84) = 1.48p = 0.217,η2 = 0.07).
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Figure D.2: Trust (Left) and Perceived Risk (Right) in each user interface condition (∗p < 0.05,∗∗p < 0.01,∗∗
∗p < 0.001)

EYE GAZE BEHAVIOUR

Participants gazed almost (i.e., more than 90% of the simulator drive duration to the road
and the UI display area. Hence, it is reasonable only to analyse the gaze fixation duration
and the gaze transitions between these two areas.

Eye-tracking results did not show a significant effect of UI conditions on the fixation
duration towards the road (F (4,72) = 1.46, p = 0.225) and the gaze transition frequency
between the road and the display (F (4,72) = 1.47, p = 0.221), but the gaze fixation du-
ration towards the display area with S-V UI is significantly higher than that with No UI
(F (4,72) = 3.32, p = 0.015). However, we cannot conclude that the surrounding infor-
mation via visual UI can attract drivers’ attention because of the between-subject ex-
periment design, which will be discussed later. In general, the average fixation duration
towards the display and the average transition frequency are higher in all UI conditions
than No UI conditions, as shown in Figure D.3.

We merged the two exposures of specific event types to analyse their effects. In most
of the cases, event types did not significantly influence the fixation duration towards
the road, the display area and the transition number between the road and the display.
However, the 50 percentile of the boxes in Figure D.4 generally indicates that drivers con-
centrated more on display in non-critical events with a −2m/s2 deceleration but focused
more on the road in critical events with a −8m/s2 deceleration.

Figure D.3: Left: Fixation duration ratio on the road; Middle: fixation duration ratio on display (∗p < 0.05);
Right: Transition numbers of fixations between the road and the display.
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Figure D.4: Left: Fixation duration ratio on the road (per event); Middle: fixation duration ratio on display
(per event); Right: Transition numbers of fixation between the road and the display (per event). Numbers 1 7
represent EI1 EI7, including both exposures.

D.2. SUPPLEMENTARY AUDIO
• Supplementary audio 1

https://ars.els-cdn.com/content/image/1-s2.0-S1369847824000305-mmc1.mp3

• Supplementary audio 2
https://ars.els-cdn.com/content/image/1-s2.0-S1369847824000305-mmc2.mp3

• Supplementary audio 3
https://ars.els-cdn.com/content/image/1-s2.0-S1369847824000305-mmc3.mp3
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PROPOSITIONS ACCOMPANYING

THE DISSERTATION

1. Perceived risk in automated driving is much more influenced by interactions with
other vehicles than by differences in user’s personal characteristics. (Chapter 2)

2. Modelling perceived risk in automated driving based on modelling collision risk
directly addresses the core concern of people during driving. (Chapter 3)

3. Perceived risk in automated driving arises not only from imminent collisions but
also from uncertainties in the manoeuvres of neighbouring vehicles and the con-
trol of the ego vehicle. (Chapter 4)

4. Enhancing the transparency of automated driving systems can reduce perceived
risk but cannot eliminate it. (Chapter 5)

5. Enforcing a 40-hour workweek limit at universities enhances scientific quality.

6. The distinction between scientists and artists lies in their objectives for processing
data.

7. Preconception is a form of overfitting in the brain and is difficult to detect.

8. Dutch authorities believe that highly skilled migrants are excellent at driving.

9. Epidemic diseases have a more profound impact on human society compared with
wars.

10. Removing propositions from TU Delft doctorate regulations slows down science.

These propositions are regarded as opposable and defendable, and have been approved as
such, by the promotors prof. dr. ir. R. Happee and prof. dr. M. Wang.
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