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Abstract. The regional surface soil heat flux (G0) estimation is very important for the large-scale
land surface process modeling. However, most of the regionalG0 estimation methods are based on
the empirical relationship between G0 and the net radiation flux. A physical model based on har-
monic analysis was improved (referred to as “HMmodel”) and applied over the Heihe River Basin
northwest China with multiple remote sensing data, e.g., FY-2C, AMSR-E, and MODIS, and soil
map data. The sensitivity analysis of the model was studied as well. The results show that the
improved model describes the variation of G0 well. Land surface temperature (LST) and thermal
inertia (Γ) are the two key input variables to the HM model. Compared with in situ G0, there are
some differences, mainly due to the differences between remote-sensed LST and the in situ LST.
The sensitivity analysis shows that the errors from −7 to −0.5 K in LSTamplitude and from −300
to 300 Jm−2 K−1 s−0.5 in Γ will cause about 20% errors, which are acceptable for G0 estimation.
© 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.11.016028]
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1 Introduction

The at-surface soil heat flux, G0, is an important component of the land surface energy balance,
particularly in the condition of dry soil or sparse canopies where G0 can be as large as 50% of net
radiation flux (Rn).

1,2 G0 can be comparable with the maximum sensible heat flux (H) for well-
watered conditions and be nearly the same as the maximum latent heat flux (LE) for senescent
vegetation.3 Many studies have proved that the incorrect estimation of G0 is also an important
factor leading to the surface energy imbalance problem. For example, Wilson et al.4 revealed that
the energy balance closure error for agricultural, grassland, and chaparral land surfaces was
reduced by 20% when G0 was used instead of being measured by soil heat flux plate buried
in some depth in the soil. Heusinkveld et al.5 proved that the energy balance closure error in
an arid region became negligible with correctG0 measurement. Wang et al.6 found that the energy
balance closure underestimation decreased from 32% to 14% when using G0 (which was calcu-
lated by thermal diffusion equation) instead of using the heat flux plate measurements in depth of
soil. Thus, the correct determination of G0 is very important for improving the closure of surface
energy balance.7,8 The regional estimation of G0 is urgently needed for the regional evapotran-
spiration estimation and the verification of regional or global circulation models.9 Many empirical
methods have been developed to derive regional G0 from remotely sensed variables such as net
radiation,10–12 vegetation index,11,13 land surface temperature (LST),14 and land surface albedo.14

The majority of the methods focused on developing the relationship between the ratio of G0∕Rn
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and remote sensing variables. For example, Reginato et al.15 built a linear relationship between
G0∕Rn and vegetation height; Choudhury et al.10 related G0∕Rn to leaf area index using Beer’s
law; Su13 estimatedG0∕Rn from fractional vegetation cover. However, those methods ignored the
important effect of soil thermal properties on G0 explicitly, and did not consider the effect of the
LSTon G0. Santanello and Friedl

12 determined the diurnal course of G0∕Rn using a cosine model
that relates the maximum daytime G0∕Rn to the daily maximum and minimum LSTs. Although
LST (usually defined as a composite temperature of vegetation canopy and soil when vegetation
exists) was utilized, this method is only applicable to dry and bare soil or dry and sparse canopy
areas.8,16 Bastiaanssen et al.14 developed another empirical approach to estimateG0∕Rn from LST,
normalized difference vegetation index (NDVI), and land surface albedo assuming both LST and
albedo reflect land surface wetness. However, neither the land surface albedo nor LST retrieved
from remote sensing data can accurately reflect the soil wetness under dense vegetation condi-
tions. However, the soil wetness is important for soil thermal properties and soil temperature.
Cammalleri et al.17 introduced a correction factor to explicitly incorporate the soil water content
behavior. Based on the previous work (e.g., Carslaw and Jaeger,18 Van Wijk and DeVries,19

Horton and Wierenga20), Murray and Verhoef8,16 proposed a physically based model using
the harmonic analysis of soil surface temperature to estimate G0 (HM model hereinafter),
which is independent of net radiation flux Rn. In the HM model, the input variables include
soil surface temperature, soil surface moisture, and fractional vegetation cover. These variables
can be obtained from satellite observations, which make the model promising for the regional G0

estimate. In addition, errors and uncertainties on G0 are more transparent and more easily inter-
preted in Murray’s HM model. However, there are still some disadvantages in the HM model.
First, a fixed value of phase shift between canopy composite temperature and below-canopy soil
surface temperature is used in the HM model, while it may vary with the underlying surfaces.
Second, the HM model uses empirical and simulated soil properties, so it needs more discussion
since soil properties vary with time and space. Moreover, in addition to the study of Verhoef et al.,9

the HM model has not yet been applied at the regional scale using remote sensing data.
To improve the application of the HM model at the regional scale, the objectives of this study

are: (1) to develop a parameterization of the phase shift between canopy composite temperature
and below-canopy soil surface temperature rather than using a fixed value as in the original
scheme; (2) to obtain soil properties (soil porosity and sand fraction) from a soil map to replace
the empirical and simulated ones; (3) to estimate regional G0 in the Heihe River Basin (HRB)
using multisource remote sensing data including visible, thermal infrared, and microwave remote
sensing data; (4) to perform a sensitivity analysis of the HM model to input variables and clarify
which variables are significant for G0 estimate.

2 Materials and Methods

2.1 Study Area

The HRB is located in arid and semiarid regions of northwest China. The study area is located in
the upper and middle reach of HRB (Fig. 1). The HRB is a typical inland river basin in China with
a geographic range between 37.5 to 42.2°N and 97.1 to 102.0°E, and with an area of about
14 × 104 km2. It has a unique mixed landscape of “ice/frozen soil–forest–river and wetland–
oasis–desert” and complicated ecohydrological processes.21 The upper reach lies in the Qilian
Mountains with an elevation of about 3000 to 5000 m and is mainly covered by forest, shrubs,
and alpine meadows with an average annual air temperature, annual precipitation, and relative
humidity of 2.0°C, 350 mm, and 60% (from 1960 to 2000), respectively.22 The middle reach is
flat with an elevation between 1400 and 1700 m and is mainly irrigated farmland; from east to west
the mean annual air temperature is about 2.8°C to 7.6°C and precipitation is 250 to 50 mm (1960 to
2000). Ground measurements in two experimental sites were used in this study. The Yingke site
(100° 24’ 37” E, 38° 51’ 26” N) is located in the middle reach of the HRB with maize and spring
wheat from May to July, maize only in August to September, and bare soil (loamy soils) in the
remaining period. The maximum height of maize canopy is 1.8 m and that of spring wheat is about
1 m in the growing season.23,24 The Arou site lies in the upper reach of the HRB and is covered with
grass in the growing season from May to September with 0.2 to 0.3 m height on sandy soils.
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2.2 Data

2.2.1 Remote sensing data and soil map

The forcing data of the HM model include LST, surface soil moisture, and fractional vegetation
cover fc, which can be derived from remote sensing data. Relevant surface properties are soil
porosity and soil texture, which can be obtained from a soil map. Table 1 gives the summary of
the remote sensing data and soil map used for regional scale application in this paper. The LST
was retrieved from Chinese Geostationary Meteorological Satellite Feng Yun (FY-2C) using a
generalized split-window algorithm25,26 and gap-filled by applying the harmonic analysis of time
series (HANTS) and multichannel singular spectrum analysis methodology.27,28 The dataset was
provided by the EU-FP7 project CEOP-AEGIS.29 The hourly LSTwas then linearly interpolated
to 30-min intervals in this study. The soil moisture product produced by Liu et al.30 is retrieved
from the observations by AMSR-E (Advanced Microwave Scanning Radiometer for EOS) sen-
sor using a new dual-channel algorithm based on the Qp model developed by Shi et al.31,32

Compared with ground measurements, the new soil moisture product performs better than
the NASA product of AMSR-E, with a root mean square error (RMSE) improved from
0.066 to 0.048 cm3 cm−3 and a coefficient of determination (R2) from 0.08 to 0.59. Moreover,
the new soil moisture product reveals the seasonal variation of soil moisture better than the
NASA product. The cloud-free NDVI time series are reconstructed based on the MODIS
NDVI product using the improved HANTS method (iHANTS),33,34 and the data can be
found in the Cold and Arid Regions Science Data Center at Lanzhou.35 This gap-free
NDVI dataset is employed in this paper to calculate fc as fc ¼ 1 − ½ðNDVImax − NDVIÞ∕
ðNDVImax − NDVIminÞ�0.7, where NDVImax and NDVImin are NDVI values for full vegetation
cover and bare soil, respectively.36 The soil properties are taken from a soil map produced by
Shangguan et al.37 The remote sensing data in May and July of 2009 were selected and unified to
1-km spatial resolution with a bilinear interpolation method.

Fig. 1 The land cover map of upper and middle reaches of the HRB in 2010.
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2.2.2 In situ data

Since the 1980s, many comprehensive hydrological and ecological experiments have been car-
ried out in the HRB, e.g., the HRB field experiment (HEIFE),38,39 Watershed Allied Telemetry
Experimental Research (WATER),40–42 and the Heihe Watershed Allied Telemetry Experimental
Research (HiWATER).21,43 The in situmicrometeorological data at the Yingke and Arou sites are
from WATER in 2009 with 30-min intervals and are provided by the Cold and Arid Regions
Science Data Center at Lanzhou.

The in situG0 measurements in this study were calculated by the thermal diffusion equation44

with measurements of soil temperature and moisture profiles at the Yingke and Arou sites
(Table 2). The in situ LST required in the thermal diffusion equation is derived from upward
and downward longwave radiation fluxes [Eq. (7)].

2.3 Methods

2.3.1 HM model

The physical model for the land surface soil heat flux estimate based on the harmonic
analysis of soil surface temperature (HM model) is described by Murray and Verhoef8,16 as
follows:

EQ-TARGET;temp:intralink-;e001;116;190G0 ¼ Γ ·
XM
n¼1

An
ffiffiffiffiffiffi
nω

p
sin

�
nωtþ ϕn þ

π

4

�
¼ Γ · Js; (1)

whereG0 (Wm−2) is the at-surface soil heat flux, Γ (Jm−2 K−1 s−0.5) is the soil thermal inertia,M
is the total number of harmonics used (M ¼ 10 in this study), An is the amplitude of the n’th soil
surface temperature (Ts) harmonic, ω (rad s−1) is the angular frequency, t is the time (s), ϕn (rad)
is the phase shift of the n’th soil surface temperature harmonic, and Js is the summation of
harmonic terms of soil surface temperature.

Table 1 Remote sensing data and soil map used in the present study.

Data Satellite/other source Spatial resolution Temporal resolution

NDVI MODIS-Terra 1 km Daily

Soil moisture AMSR-E 0.25 deg Twice a day

Land surface temperature FY-2C 5 km Hourly

Soil texture and porosity Soil map 30 arc sec Perennially

Table 2 Variables measured and the depths/heights of the sensors at the Yingke and Arou sites
in the HRB in 2009 (according to Liu et al.23,24).

Variables Yingke site (m) Arou site (m)

Soil temperature 0.1, 0.2, 0.4, 0.8, 1.2, 1.6
(109, Campbell)

0.1, 0.2, 0.4, 0.8, 1.2, 1.6
(107, Campbell)

Soil moisture 0.1, 0.2, 0.4, 0.8, 1.2, 1.6
(CS616, Campbell)

0.1, 0.2, 0.4, 0.8, 1.2, 1.6
(CS616, Campbell)

Upward/downward long
wave radiation fluxes

4 (CG3, Kipp, and Zonen) 1.5 (PIR, Eppley)
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The parameter soil thermal inertia, Γ, is a key variable for estimating G0 using Eq. (1).
Murray and Verhoef8 adopted the concept of normalized thermal conductivity45 and developed
a physical method to calculate Γ as

EQ-TARGET;temp:intralink-;e002;116;699Γ ¼ exp½γ · ð1 − Sγ−δr Þ� · ðΓ� − Γ0Þ þ Γ0; (2)

where Γ� and Γ0 are the thermal inertia for saturated and air-dry soil (Jm−2 K−1 s−0.5),
respectively, and can be calculated as Γ� ¼ 788.2 · θ−1.29� and Γ0 ¼ −1062.4 · θ� þ 1010.8

with θ� (cm3 cm−3) as soil porosity (equal to the saturated soil moisture content); γ (−) is
a parameter depending on soil texture; Sr (cm3 cm−3) is relative saturation and is equal to
θ∕θ�, with θ (cm3 cm−3) as actual soil moisture; and δ (−) is a shape parameter.

With remote sensing observations by space-borne or ground-based radiometers, usually
the composite temperature of soil and vegetation canopy is measured for vegetated land
surfaces other than soil only. Assuming the same time offset Δt (s) applies to all harmonics,
Js is written as

EQ-TARGET;temp:intralink-;e003;116;547JsðtÞ ¼
�
1 −

1

2
· fc

�
·
XM
n¼1

�
A 0
n

ffiffiffiffiffiffi
nω

p
· sin

�
nωtþΦ 0

n þ
π

4
−
π · Δt
12

��
; (3)

where fc is fractional vegetation cover, A 0
n (K) and ϕ 0

n (rad) are the daily amplitude and phase
shift of the n’th canopy composite temperature harmonic, respectively. Δt (s) is the time offset
between the canopy composite temperature and the below-canopy soil surface temperature and is
found as 1.5 h in Murray and Verhoef based on their data.8 In this paper, we propose a simple
parameterization to estimate this time offset Δt by taking into account the effect of vegetation
condition (see Sec. 2.3.2).

2.3.2 Parameterization of time offset

Murray and Verhoef16 and Verhoef et al.9 showed that the below-canopy soil surface temperature
arrived at the daily maximum a few hours later than canopy composite temperature according to
their field data due to the extinction by the vegetation canopy. Such time offset between the
canopy composite temperature and the below-canopy soil surface temperature results in the
delayed maximum daily surface soil flux G0 for vegetated surface when compared with bare
soil surface. They also showed that a constant value 1.5 h was sufficient for various canopy
densities (observed fc ranged from 0.6 to 0.99) and canopy types (oilseed rape, winter
wheat, spring wheat, and borage). Theoretically, the time offset depends on canopy density
and canopy structure.9 According to measurements in July at the Yingke site in the HRB,
the time offset (Δt) value of 1.5 h is applicable for full covered vegetation canopy (i.e.,
fc ¼ 1) but not for sparse canopy, and Δt is equal to zero for bare soil (fc ¼ 0). Although
canopy structure influences the radiation extinction, only fractional vegetation cover fc is
used to represent the canopy condition in the present study. With the two boundary values
(i.e., Δt ¼ 1.5 h for fc ¼ 1 and Δt ¼ 0 h for fc ¼ 0), a linear approach is proposed here to
describe the time offset Δt as a function of fc:

EQ-TARGET;temp:intralink-;e004;116;200Δt ¼ 1.5 · fc (4)

2.3.3 Sensitivity coefficient

Sensitivity analysis is important for understanding the source of uncertainties in hydrological
and ecological modeling studies;46,47 in particular, in this study it can identify which input
parameter most affects G0 estimate. A simple method is to plot the relative changes of a
dependent variable against the relative changes of an independent variable as a curve.48,49

Nevertheless, a mathematically defined sensitivity coefficient is mostly used in sensitivity
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analysis.47,50–53 It is difficult to compare the sensitivity of variables by partial derivatives
for a multivariables model (e.g., Penman–Monteith method). A nondimensional sensitivity
coefficient is a transform of the partial derivative approach, which has been widely used in
evapotranspiration studies.52–55 The sensitivity coefficient is as follows:52

EQ-TARGET;temp:intralink-;e005;116;687SVi
¼ lim

ΔVi→0

�
ΔG0∕G0

ΔVi∕Vi

�
¼ ∂G0

∂Vi
·
Vi

G0

; (5)

where SVi is the sensitivity coefficient and Vi is the i’th variable. A positive/negative sensitivity
coefficient indicatesG0 will increase/decrease as the variable increases. The larger the sensitivity
coefficient is, the larger effect of the given variable on G0.

The relative error (RE) is used to evaluate variation in G0, as follows:

EQ-TARGET;temp:intralink-;e006;116;587RE ¼ G 0
0 − G0

G0

× 100%; (6)

where RE is the RE of G0, G 0
0 is G0 with varying LST or Γ, and G0 is the original value.

2.3.4 In situ LST

The in situ LST is calculated as follows:

EQ-TARGET;temp:intralink-;e007;116;474Tðz0Þ ¼
�
RL↑ − ð1 − εÞRL↓

εσ

�
1∕4

; (7)

where RL↑ and RL↓ are the upward and downward longwave radiation fluxes (Wm−2), respec-
tively, ε is the land surface emissivity (taken as 0.987 at the Yingke and Arou sites),23,24 and
the Stefan–Boltzmann constant σ ¼ 5.67 × 10−8 (Wm−2 K−4).

3 Results and Discussion

3.1 In Situ Soil Heat Fluxes with Different Time Offsets

The surface soil heat flux estimated by the HM model [Eq. (1) withM ¼ 10], with time offset of
1.5 h and 1.5fc h using in situ micrometeorological measurements in May and July of 2009 at
the Yingke site, were compared with the in situ G0 measurements. To show the difference in the
estimated G0 with different time offsets more clearly, only some days with varying fc (14, 22,
23, 25, 28, 29, 30 in May and 17, 19, 21, 23, 24, 26, 28 in July of 2009) were selected, as shown
in Fig. 2. G0 estimation with time offset of 1.5 h are lagged G0 with 1.5fc h in May, and they are
nearly the same in July (Fig. 2). RMSE is improved from 80.8 to 52.8 W · m−2 when using time
offset of 1.5fc h instead of 1.5 h in whole May [Fig. 3(a)], and R2 increases from 0.59 to 0.83.
However, the improvement is not obvious in July, with nearly the same RMSE and R2

[Fig. 3(b)]. Thus, the improved model improves the accuracy of G0 for sparse vegetation in
May when the mean fc was about 0.3. Furthermore, the results in July are not better than
May, and the HM model for vegetated surface should be improved further in our following
work. At the Arou site, fc had less variation over the whole year than that at the Yingke site.
In conclusion, the improvement performs better at the Yingke site than at the Arou site, which is
not shown here.

3.2 Spatial Distribution of G0

The improved HM model [Eqs. (3) and (4)] was applied to remote sensing data in the HRB
region, as listed in Table 1. To analyze the spatial patterns of the estimated G0 in different
seasons, G0 at the same time on different days over a month were averaged to avoid the
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contingency caused by gaps in the remote sensing data due to cloud cover and other reasons.
The mean monthly G0 maps at 10:30 am in May and July are shown in Fig. 4. As expected,
it is found that the G0 values are generally higher in bare soil than in vegetated surfaces
[Figs. 4(a) and 4(b)] in both May and July of 2009. More energy was transferred into the soil
directly for bare surfaces, while for vegetated surface the energy is intercepted by vegetation
canopy for transpiration, so less energy was conducted into the soil. The G0 values over the
desert area in the center of the middle reach are significantly higher than the values in the
surrounding bare soil in both May and July of 2009 due to higher sand fraction and lower
porosity in desert area, according to the soil map, which gives higher thermal inertia according
to Eq. (2) [Figs. 4(c) and 4(d)].

For the same land cover type, the G0 values vary with fc from May to July. The mean G0

values in May are 222 Wm−2 at the Yingke site and 156 Wm−2 at the Arou site, while the mean
values of G0 in July are 103 and 87 Wm−2 at the two sites, respectively. In both sites, the G0

values are lower in July due to higher fc over maize and grass land surfaces in May than in July.
The fc increased from 0.32 to 0.77 from May to July at the Yingke site and from 0.46 to 1.0 at
the Arou site in 2009.

(a) (b)

Fig. 3 Scatter plot of G0 measurement and G0 estimation by HM model in the whole (a) May and
(b) July of 2009 at the Yingke site. G0 measure, G0 HM 1.5, and G0 HM 1.5f c are the same as in
Fig. 2.

(a)

(b)

Fig. 2 The diurnal variations ofG0 on some days in (a) May and (b) July of 2009 at the Yingke site.
G0 measure is the in situ measurements of surface soil heat flux, G0 HM 1.5 and G0 HM 1.5f c
are calculated by HM model with time offset of 1.5 h and 1.5f c h, respectively, using in situ
measurements of LST.
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In July of 2009, the maximum of monthly G0 value in the study area at 10:30 am can
reach to 329 Wm−2 in desert area in the middle reach of HRB, where Rn is about
600 Wm−2. This leads to G0 being up to 50% of Rn. The G0 for the cropland in the
middle reach is higher in May than that in July as the cropland is at the emergence stage
in May with a lower fc [Fig. 4(e)]. The G0 for the vegetated surfaces in the upper reach
in July is lower than in May, which is attributed to higher fc for grass land in the growing
season [Fig. 4(f)].

Fig. 4 The distribution of mean monthly G0 estimation at 10:30 am local time (a) in May and
(b) in July, the distribution of mean monthly thermal inertia (c) in May and (d) in July, and the
distribution of monthly f c (e) in May and (f) in July in 2009 in the upper and middle reaches of
the HRB.
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3.3 Validation of Estimated Soil Heat Flux from Remote Sensing

The calculated G0 by the improved HM model using remote sensing data and soil map was
evaluated at the Yingke and Arou sites by comparing in situ G0 measurements. It was found
that the estimated G0 is overestimated in both daytime and nighttime at the Yingke site
[Fig. 5(a)]. At the Arou site, the estimated daytime G0 (positive) is underestimated in May
and overestimated in July [Fig. 5(b)]. The deviations are mainly caused by remote sensing
data, which are different from ground measurements. To investigate which remote sensing
data lead to G0 errors the most, cross-calculation with remote sensing data and in situ measure-
ments were performed in this study.

As shown in Table 3, four different variables were applied to the HM model. A, B, C, and D
in Table 3 represent LST from FY-2C, the in situ LST derived from the observed longwave
radiation, the thermal inertia from AMSR-E data and soil map, and the in situ thermal inertia
derived from the observed soil properties, respectively. It is important to know which forcing
data caused the overestimation or underestimation in the calculated G0 when applying the HM
model to remote sensing data. Equation (1) shows that the thermal inertia and LST affect G0

directly. Compared to G0 estimated with A and C, the G0 estimated with B and C is more con-
sistent with in situ G0 measurements (Fig. 6). The R2 increased from 0.80 to 0.84 at the Yingke
site and from 0.54 to 0.72 at the Arou site. The RMSE also increased from 48.2 to 37.4 Wm−2 at
the Yingke site and from 52.4 to 33.2 Wm−2 at the Arou site. Although G0 estimated with A
and D is also improved, the improvement is not so obvious. It shows that the deviation of esti-
mated G0 using remote sensing data is mainly caused by the difference between remotely
sensed LST and ground-measured LST, and the AMSR-E soil moisture and soil texture
bring fewer errors.

(a)

(b)

Fig. 5 The diurnal variations of land surface soil heat flux G0 in May and July of 2009: (a) at the
Yingke site and (b) at the Arou site. G0 HM is calculated by the improved HM model using remote
sensing data and soil map data.

Table 3 The combinations of LST and Γ derived from remote sensing data and in situ measure-
ments, respectively.

Variable Remote sensing data In situ measurement

LST A: FY-2C B: field LST

Γ C: AMSR-E, soil map D: field soil moisture, soil texture
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3.4 Sensitivity of Estimated G0 to Input Variables

3.4.1 Sensitivity coefficients for each variable

The estimated G0 is related to LST, soil moisture, fc, and soil properties, which have different
dimensions and different ranges of values. The input variables are interrelated and the question
arises as to which parameter is more influential on the estimated G0. Sensitivity analysis can
answer the question. According to Eq. (5), the sensitivity coefficients for the input variables were
evaluated and are listed in Table 4. The data used to perform the sensitivity analysis are from the
Yingke site. The LST, soil moisture, and sand fraction are positively correlated to G0, while fc
and porosity are negatively correlated to G0. Notably, the porosity is the most influential on G0,
and sand fraction is the least important with a sensitivity coefficient of 0.06. fc is more related to
G0 for dense vegetation, which shows that the relationship of fc and G0 is nonlinear.

3.4.2 Sensitivity of G0 to LST and thermal inertia

According to the HM model, G0 values depend on the amplitude of LST and thermal inertia.
The sensitivity coefficients give the qualitative dependence of G0 on input variables. This
section presents the quantitative sensitivity analysis of G0 to the amplitude of LST and
thermal inertia. With a fixed thermal inertia, G0 was calculated using varied LST with
daily amplitude ðAÞ � dA (dA ¼ −12;−11;−9;−7;−6;−2;−0.5; 1; 3; 5 K). Similarly, with
a fixed LST, G0 was calculated using varied thermal inertia values Γ� dΓ (dΓ ¼
−1000;−800;−600;−400;−200; 0; 200; 400; 600; 800; 1000 Jm−2 K−1 s−0.5) by the HM
model. The RE is used to evaluate G0 variation based on Eq. (6).

Table 4 The sensitivity coefficients of input variables in the HM
model.

Variables SVi

Amplitude of LST 0.99

Soil moisture 0.44 to 0.46

f c −0.18 to −0.69

Porosity −1.3

Sand fraction 0.06

(b)(a)

Fig. 6 Scatterplot of G0 estimation for cases A, B, C, and D in Table 3 versus in situ G0 meas-
urement, respectively, on 14 days (14, 22, 23, 25, 28, 29, 30 in May and 17, 19, 21, 23, 24, 26, 28 in
July of 2009) (a) at the Yinke site and (b) at the Arou site.
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G0 is nonlinearly correlated to LST amplitude and linearly correlated to thermal inertia.
Therefore, RE value is constant in each day with the same dΓ. However, RE is varied with
the same dA. An error of 20% on G0 evaluation is acceptable.56–58 When dA is varied from
−0.5 to −7 K, and dΓ is varied from −300 to 300 Jm−2 K−1 s−0.5, respectively, the mean
RE on G0 in the 14 days (14, 22, 23, 25, 28, 29, 30 in May and 17, 19, 21, 23, 24, 26, 28
in July of 2009) is less than 20% at the Yingke site (Fig. 7).

3.4.3 Sensitivity of thermal inertia to soil properties and soil moisture

The soil porosity and soil sand fraction, together with soil moisture were used to calculate ther-
mal inertia in the HMmodel [Eq. (2)]. According to the China soil map used in this study, the soil
porosity varies from 0.43 to 0.67 when the sand fraction is less than 0.4, and the sand fraction
value is mostly less than 0.8 for soil. The relative saturation Sr (θ∕θ�) describes the soil moisture
conditions. The variations of Γ from dry to wet soil conditions are shown in Fig. 8. Different
values of soil porosity (0.43, 0.55, and 0.67) when the sand fraction is less than 0.4 were used to
calculate Γ under different soil moisture conditions [Fig. 8(a)]. Different values of sand fraction
and a fixed soil porosity of 0.46 were also used to calculate Γ [Fig. 8(b)]. It is shown that Γ
increases with the increasing soil moisture. Γ varies largely under wet soil conditions (with larger
Sr) than dry soil conditions (with smaller Sr) with the same soil porosity variation [Fig. 8(a)],
which means that Γ under wet conditions (i.e., when Sr is larger) is more sensitive to soil poros-
ity. Γ is sensitive to smaller porosity, according to Fig. 8(a), because there is greater change of Γ

(a) (b)

Fig. 7 The mean RE onG0 in 14 days (14, 22, 23, 25, 28, 29, 30 in May and 17, 19, 21, 23, 24, 26,
28 in July of 2009) with (a) varied amplitude of LST and (b) varied thermal inertia at the Yingke site.

(a) (b)

Fig. 8 The sensitivity of thermal inertia as a function of relative saturation (Sr ) to (a) porosity and
(b) sand fraction.
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with porosity from 0.43 to 0.55 than that from 0.55 to 0.67 under the same Sr. Figure 8(b) shows
that the difference in thermal inertia with varied sand fraction becomes smaller with increasing
soil moisture. There is little change in Γ with sand fraction less than 0.8 (which is the dominant
case in the Chinese sand fraction distribution). Thus, Γ is more sensitive to porosity than sand
fraction in any soil moisture conditions.

The sensitivity coefficients of thermal inertia for soil moisture with a porosity of 0.46 and for
porosity varying from 0.46 to 0.67 were calculated under different soil moisture content with a
sand fraction less than 0.4 [Fig. 9(a)]. The sensitivity coefficient is positive for soil water content
and negative for porosity. Thermal inertia is more sensitive to porosity than soil water content
with a maximum sensitivity coefficient of 1.14 versus 0.54. Thus, accurate porosity is most
important to estimate thermal inertia. This is also consistent with the results of Lu et al.59

Figure 9(b) shows the RE in Γ estimate as a function of Sr. The largest RE in Γ is found
for soil with sand fraction greater than 0.8 under dry soil conditions (Sr < 0.1), whereas the
error rapidly declines with increasing values of Sr. The soil with sand fraction between 0.4
and 0.8 shows a steady decline in error. The error for other soils reaches a maximum at Sr ¼
0.2 then drops and under dry soil conditions is smaller than in soils with sand fraction greater
than 0.4. This conclusion is consistent with the study of Murray and Verhoef.8 The thermal
inertia has a stronger sensitivity to soil moisture at low values of Sr (Sr < 0.3 for soil of
sand fraction less than 0.4; Sr < 0.2 for other soils) with a more than 20% RE. An RE of
20% in Γwill cause a error of 20% inG0 based on the HMmodel. According to the soil moisture
category by Murray and Verhoef8 (dry with Sr < 0.1; dry-moist with 0.1 < Sr < 0.25; moist with
0.26 < Sr < 0.5; moist-wet with 0.51 < Sr < 0.75; wet with 0.76 < Sr < 0.1), for the same soil
type, the accurate soil moisture is important for G0 estimates in dry and dry-moist soil condi-
tions. The sand fraction has a greater effect on Γ for dry and dry-moist soil because the RE in
Γ varies largely when different sand fraction is applied [Fig. 9(b)]. That can also be seen
obviously in Fig. 9(c): the sensitivity coefficient for sand fraction decreases with increasing
Sr and the value is less than 0.2, which is smaller than that for porosity.

3.4.4 Influence of fractional vegetation cover and satellite zenith angle on G0

According to Eqs. (3) and (4), fc affects not only the amplitude of LST but also the phase of
below-canopy soil surface temperature. Thus, if there is a large error on remote sensed fc, the
accuracy of G0 will be decreased. According to the 30-min interval data in this study, the phase
of soil surface temperature can be regarded as invariant when the difference of fc between
remote sensing data and field measurement is less than 0.1 over sparse or dense vegetated sur-
faces. fc affects only the amplitude of soil surface temperature and gives less than 10% RE on

Fig. 9 (a) The sensitivity coefficients of Γ for soil moisture and soil porosity under conditions of
sand fraction less than 0.4 soil, (b) the RE in Γ as a function of relative saturation, and (c) the
sensitivity coefficients of Γ for sand fraction and soil porosity [the porosity is same as in (a)].
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G0. Therefore, if the deviation of fc is less than 0.1, the impact of the fc error on G0 can be
neglected.

Murray and Verhoef16 considered different satellite zenith view angles (β) ranging from
0 deg to 45 deg and found that they bring nearly same Js and have small effects on G0.
In the present study, FY-2C LST has 40 deg to 45 deg zenith view angles in the HRB area.
Thus, the zenith view angle has little effect on G0 estimation.

4 Conclusions

This study applied the improved physically based HM model based on the one developed by
Murray and Verhoef8,16 to estimate regional G0 in the HRB. The thermal infrared remote sensing
data (LST from FY2C), microwave radiation remote sensing data (surface soil moisture from
AMSR-E), visible remote sensing data (NDVI from MODIS), and soil map were used in this
study. The improvement is on the parameterization for the phase shift between canopy temper-
ature and below-canopy soil surface temperature by introducing the fractional vegetation cover
instead of applying a constant value as in the original model. The improved model was then used
to calculate spatiotemporal G0 in the HRB using satellite data and a soil map. Furthermore, we
also studied qualitatively and quantitatively the sensitivity of G0 to input variables. The main
conclusions obtained from the investigation are as follows:

(1) The revised phase of below-canopy soil surface temperature improves the accuracy ofG0

estimation especially over sparsely vegetated surfaces, with R2 increasing from 0.59 to
0.83 and RMSE decreased from 80.8 to 52.8 Wm−2 in May of 2009 at the Yingke site.

(2) G0 varies nonlinearly with the amplitude of LST and linearly with thermal inertia.
Compared with G0 measurement over maize, a variation of −300 to 300 Jm−2 K−1 s−0.5

in thermal inertia and −7 to −0.5 K in the amplitude of LSTwill cause a less than about
20% RE on the G0 estimation, which is acceptable.

(3) The soil porosity is the most influential variable on thermal inertia with a maximum
sensitivity coefficient of 1.14 under different soil moisture status. The sensitivity of
thermal inertia for sand fraction decreases with increasing Sr, and is small when soil
is wet. G0 is more sensitive to soil porosity under wet soil conditions than under dry
soil conditions. Thus, the accuracy of porosity is most important for the regional estimate
of G0, especially for wet soil conditions.

(4) The RE in the thermal inertia estimate decreases with increasing Sr. When Sr is less than
about 0.3, the RE in the thermal inertia is larger than 20%, which will cause an RE of
20% in G0 estimate.

(5) The G0 estimation is more sensitive to fc for dense vegetation than for sparse vegetation.
Approximately 0.1 error in fc leads to an RE on G0 of less than 10%. In addition,
the effect of the FY-2C view zenith angle of 40 deg to 45 deg on G0 estimation in
the HRB can be neglected.

Appendix: Derivation of LST Amplitudes and Phases of Harmonics
The harmonic analysis of surface temperature is as follows (Horton and Wierenga):20

EQ-TARGET;temp:intralink-;e008;116;198T ¼ T̄ þ
XM
n¼1

An sinðnωtþ ϕnÞ; (8)

EQ-TARGET;temp:intralink-;e009;116;148

An sinðnωtþ ϕnÞ ¼ An sinðnwtÞ cos ϕn þ An cosðnwtÞ sin ϕn

¼ an sinðnwtÞ þ bn cosðnwtÞ; (9)

where T̄ is daily average temperature, an ¼ An cos ϕn, bn ¼ An sin ϕ. an and bn are unknown
parameters; other parameters are known. If M ¼ 10 and LST is at 30-min timescale (48 data in
one day), the expanding Eq. (8) can be expressed as follows:
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EQ-TARGET;temp:intralink-;e010;116;7352
666664

sinðwt1Þ cosðwt1Þ sinð2wt1Þ cosð2wt1Þ sinð3wt1Þ cosð3wt1Þ ::: sinð10wt1Þ cosð10wt1Þ
sinðwt2Þ cosðwt2Þ cosð2wt2Þ cosð2wt2Þ sinð3wt2Þ cosð3wt2Þ ::: sinð10wt2Þ cosð10wt2Þ

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

sinðwt48Þ cosðwt48Þ sinð2wt48Þ cosð2wt48Þ sinð3wt48Þ cosð3wt48Þ sinð10wt48Þ cosð10wt48Þ

3
777775

·

2
66664

a1
b1

..

.

b20

3
77775¼

2
66664

T1

T2

..

.

T48

3
77775; (10)

Eq. (10) is written as

EQ-TARGET;temp:intralink-;e011;116;577A · X ¼ Y; (11)

where
EQ-TARGET;temp:intralink-;x1;116;534

A¼2
666666664

sinðwt1Þ cosðwt1Þ sinð2wt1Þ cosð2wt1Þ sinð3wt1Þ cosð3wt1Þ ::: sinð10wt1Þ cosð10wt1Þ
sinðwt2Þ cosðwt2Þ cosð2wt2Þ cosð2wt2Þ sinð3wt2Þ cosð3wt2Þ ::: sinð10wt2Þ cosð10wt2Þ

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

sinðwt48Þ cosðwt48Þ sinð2wt48Þ cosð2wt48Þ sinð3wt48Þ cosð3wt48Þ ::: sinð10wt48Þ cosð10wt48Þ

3
777777775
:

EQ-TARGET;temp:intralink-;x1;116;418

X ¼

2
66664

a1
b1

..

.

b10

3
77775;

EQ-TARGET;temp:intralink-;x1;116;339

Y ¼

2
66664

T1

T2

..

.

T48

3
77775:

EQ-TARGET;temp:intralink-;e012;116;261AT · A · X ¼ AT · Y; (12)

EQ-TARGET;temp:intralink-;e013;116;234X ¼ ðAT · AÞ−1 · ðAT · YÞ; (13)

where AT is A matrix transpose, ðAT · AÞ−1 is matrix (AT · A) inverse, an and bn can be obtained
from Eq. (13).
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