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ABSTRACT

During eukaryotic transcription, RNA polymerase
(RNAP) translocates along DNA molecules covered
with nucleosomes and other DNA binding proteins.
Though the interactions between a single nucleo-
some and RNAP are by now fairly well understood,
this understanding has not been synthesized into
a description of transcription on crowded genes,
where multiple RNAP transcribe through nucleo-
somes while preserving the nucleosome coverage.
We here take a deductive modeling approach to
establish the consequences of RNAP–nucleosome
interactions for transcription in crowded environ-
ments. We show that under physiologically crowded
conditions, the interactions of RNAP with nucleo-
somes induce a strong kinetic attraction between
RNAP molecules, causing them to self-organize into
stable and moving pelotons. The peloton formation
quantitatively explains the observed nucleosome
and RNAP depletion close to the initiation site on
heavily transcribed genes. Pelotons further translate
into short-timescale transcriptional bursts at termi-
nation, resulting in burst characteristics consistent
with instances of bursty transcription observed in
vivo. To facilitate experimental testing of our pro-
posed mechanism, we present several analytic re-
lations that make testable quantitative predictions.

INTRODUCTION

On every scale, motility is a hallmark of life (1,2). On the
smallest scales, directed motion through the densely packed
interior of cells is crucial for biogenesis, morphogenesis
and the timely delivery of vital cargo to distant parts (3).
The motion is often induced by large molecular complexes,
powered along tracks by internal chemical reactions: poly-
merase and helicase move along DNA and RNA, ribosome

along RNA, myosin along actin filaments, and dynein and
kinesin along microtubules, to name but a few.

The intracellular environment is crowded (4), and
translocating enzymes often have to bypass large amounts
of other proteins bound to their track (5). This is particu-
larly true for the eukaryotic RNA polymerases, as over 80%
of eukaryotic DNA is organized into nucleosomes (6) that
consists of 147 base pairs (bps) of DNA wrapped tightly
around an octameric core of histone proteins. Maintain-
ing this dense nucleosome coverage is important since it or-
ganizes genomic DNA into compact, higher order struc-
tures that can fit within the limited space of the cell nu-
cleus, but it also creates a formidable barrier to transcrip-
tion (7). Importantly, the local degree of nucleosome cov-
erage correlates with gene-expression levels (6,8–12) show-
ing that transcription activity has important implications
for nucleosome coverage and vice versa.

To shed light on the mechano-chemistry of transcription
in the presence of nucleosomes (Figure 1A), single-molecule
experiments have been used to show that polymerases slow
down at positions where nucleosomes are formed (13). It
is also known that multiple polymerases can cooperate to
increase the transcription rate through nucleosomes (14)
showing that the spatial organization of polymerases could
be of crucial importance for understanding transcription in
crowded environments.

Even though it is experimentally established that poly-
merase organization and nucleosome coverage affect the
transcriptional output, it remains unclear how this is actu-
alized on a mechanistic level (5). With the aim to under-
stand the basic implications of molecular crowding in eu-
karyotic transcription, we here start from a limited num-
ber of established facts to construct a theoretical model
that quantitatively describes the collective motion of poly-
merases interacting with dynamic nucleosomes. Accounting
for that polymerases are slowed down by such roadblocks,
we show that polymerases attract each other through a
physical mechanism analogous to drafting in racing sports
(15). At physiological conditions, the attraction is so strong
that two polymerases that meet along a gene remain to-
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Figure 1. A model for motors interacting with dynamic roadblocks. (A) We
study the dynamics of RNAP (gray) interacting with nucleosomes (red),
while they move along the DNA. (B) Schematic illustration of model fea-
tures (i)–(v) (see text) for motors (gray) interacting with dynamic road-
blocks (red) along a one-dimensional track. Though we here consider only
transcription, the model rules likely apply to many other biological pro-
cesses where motors interact with dynamic roadblocks.

gether until termination, thus ensuring a progressive clus-
tering of polymerases into stable pelotons as they move
along the gene.

Our calculations show that peloton formation should be
expected as soon as transcription initiation rates exceed the
nucleosome exchange rate. Local polymerase clustering into
pelotons could thus function to increase polymerase coop-
eration on highly transcribed genes (14), and it is interesting
to note that clustering has been directly observed in Miller
spreads of ribosomal genes (16–19), and for polymerases
moving along heavily transcribed genes in live-cell exper-
iments (20). The model further explains how both nucle-
osome and polymerase densities can increase along heav-
ily transcribed genes, even though polymerases and nucleo-
somes compete for space along the DNA (12,21,22). Lastly,
the peloton formation predicted by our model results in
bursts of mRNA production when the pelotons arrive at the
termination site, pointing to a so-far unrecognized type of
transcriptional bursts (23–25).

To facilitate future experimental testing, we analyze our
model analytically and present simple quantitative relation-
ships that capture how nucleosome and polymerase densi-
ties, peloton sizes and separation and transcriptional burst
parameters depend on polymerase initiation and translo-
cation rates, as well as nucleosome turnover times. As our
model is based on general principles, it has the potential to
describe motor and obstacle interactions in many other bi-
ological systems, suggesting that peloton formation should
be expected as soon as motors interact with dynamical road-
blocks.

MATERIALS AND METHODS

The theoretical modeling of stochastic and driven molecu-
lar traffic on one-dimensional tracks has a long history in

biology, starting almost half a century ago with the intro-
duction of the Totally Asymmetric Simple Exclusion Pro-
cess (TASEP) (26). The TASEP consists of motors hopping
stochastically in one direction along a one-dimensional lat-
tice, moving only if the track just ahead is empty. Coupling
this simple bulk rule to injection and extraction of motors
at the boundaries gives rise to rich dynamical behavior, and
the model has been extended to describe a wide range of
physical and biological systems (27–33). Here, we extend
the TASEP to include the interaction with roadblocks by
building on earlier studies that considered a single road-
block (34,35), as well as multiple dynamic roadblocks in the
so-called Bus-Route Model (BRM) (36).

A minimal model of motors interacting with roadblocks

To capture motor and roadblock interactions, we consider
a system (Figure 1B) for which: (i) motors move stochas-
tically in one direction along a track, (ii) motors cannot
overtake each other, (iii) roadblocks dynamically appear on
empty sites of the track, (iv) roadblocks immediately ahead
of a motor impede the motion of the motor and (v) a pass-
ing motor temporarily removes a roadblock. The BRM is a
specifically simple realization of the above criteria on a cir-
cular track, and with motor and roadblock sizes equal to
the motor step size. As both nucleosome and polymerase
are orders of magnitude larger than the basic polymerase
step size, we here extend this model to the physiologically
more relevant situation with larger motor and roadblock
sizes (δm and δrb respectively, measured in units of the motor
step size). To allow for transcription initiation and termina-
tion, we further allow motors to enter and leave the track at
specific initiation and termination sites. The above rules are
captured in the microscopic model illustrated in Figure 2A.

Though we are not able to solve the model we put for-
ward exactly, it is readily analyzed by computer simulations.
Still, simulations only yield results for the particular param-
eter values tested, and will not give the general relationship
between input and output parameters needed for easy com-
parison to experimental results. Therefore, we here opt for
a heuristic approach that yields approximate analytical re-
lations between input and output parameters. Monte-Carlo
simulations are then used to check validity of our approxi-
mations, showing that we loose little precision by taking a
heuristic approach. Instead, this approach allows us to cap-
ture the dominant behavior of the wide class of motor sys-
tems satisfying condition (i)–(v).

Spontaneous formation of stable pelotons

To build intuition for the phenomenology of motor-
roadblock-track interactions, we first investigate the dy-
namics in the bulk of the track, far away from initiation and
termination sites. The roadblock occupancy should vary de-
pending on the roadblock binding dynamics and motor-
roadblock interactions. We start by consider the two lim-
its of rare and ubiquitous roadblocks. The former limit is
reached when roadblocks bind slowly, or the motor density
is so high that roadblocks are excluded from the track and
the dynamics should approach that of the TASEP with the
motor hopping rate set by the rate of hopping into empty
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Figure 2. Roadblocks induce a hierarchy of TASEPs. (A) Schematic illus-
tration of the rules of the bulk dynamics of our model. Microscopic rates
are indicated, as well are the roadblock-DNA binding equilibration time τ ,
the roadblock shadow �, instances of the peloton size np, and the gap size
for both trans- and intra-peloton gaps, gip and gtp respectively (for defini-
tions see main text). In this example, the motors occupy four lattice sites
(δm = 4) and roadblocks two (δrb = 2) but the model is solved for arbi-
trary sizes. (B) Kymographs generated through Monte-Carlo simulations
of the BRM for systems with low roadblock density (left), intermediate
roadblock density (middle) and high roadblock densities (right) for kipτ

= 10. Motors are shown in black, roadblocks in pink and the roadblock
shadow is visible as a roadblock depleted region (white) behind the mo-
tors. (C) The simulated gap-size distributions (green dots) corresponding
to (B), together with our analytical results (black lines). The left and right
panel show a dominating single exponential (note the log-scales on the y-
axes), which corresponds to a single TASEP. The gap size distribution in
the middle panel shows two exponentials, which suggests that the system
can be described as a combination of two TASEPs.

sites. The limit of ubiquitous roadblocks is reached when
roadblocks rebind quickly behind every motor or when the
motor density is low enough for roadblocks to bind be-
tween every pair of motors and the dynamics should ap-
proach that of a TASEP with a motor hopping rate set by
the rate of hopping into a site occupied by a roadblock. In
either limit, the exact solution of the TASEP (37) gives a
geometric distribution of gap sizes between adjacent mo-
tors (see the Supplementary Material). In Figure 2B and C,
we show kymographs and gap-size distributions generated
by Monte Carlo simulations (see Supplementary Material)
of the BRM (36). As expected, both ubiquitous (left panel
Figure 2B and C) and sparse (right panes Figure 2B and
C) roadblocks result in gap-sizes distributions that are well
described as geometrical.

For intermediate roadblock densities, the situation is sub-
tler. Motors that are slowed down by roadblocks induce
trailing traffic jams, while the gap to the motor ahead in-
creases. As gap opens up ahead of the motor causing the
jam, it grows more likely to be slowed down by further road-
blocks deposited in the gap, and the jam stabilizes. The jams
do not grow indefinitely though, but organize into finite
moving pelotons, as can be seen by the following argument:
Defining a peloton as being a group of motors with no in-
terspersing roadblocks, a peloton can split at any position

through the binding of a roadblock between two motors in
the peloton. The rate of this splitting should be roughly pro-
portional to the number of internal gaps in (i.e. the size of)
the peloton. Pelotons can also merge, but with a rate that
is independent of peloton size. In the steady state we expect
pelotons to have a well-defined typical size, such that the
average peloton merging and splitting rates balance.

A hierarchy of TASEPs control motor organization

To understand the interactions between pelotons, we note
that when two pelotons of a typical size merge, the new
peloton is larger than the typical stable peloton. The new
peloton is therefore unstable, and will eventually split in
two. This merging and subsequent splitting can be seen
as an effective steric repulsion between pelotons, much
like the interaction between motors in the original TASEP.
The steady-state system can therefore be seen as a su-
perposition of two steady-state TASEP models: the intra-
peloton TASEP (ipTASEP) originating from motor dy-
namics within pelotons, and the trans-peloton TASEP (tp-
TASEP) originating in the dynamics of the pelotons them-
selves acting as basic units of a TASEP. This heuristic hi-
erarchical picture is confirmed in the middle panels of Fig-
ure 2B and C, where we show a kymograph and a double-
geometric gap distribution for intermediate roadblock cov-
erage in the BRM.

A heuristic solution

It is now important to establish how large the typical bulk
pelotons are, as this will give an indication of the effective
interaction strength between motors. Here we describe the
important features of our heuristic solution, but refer the
interested reader to the Supplementary Material for further
details. Due to the finite size and equilibration time of road-
blocks, roadblocks cannot rebind as soon as they have been
evicted. To allow binding, the motor must both have moved
away from the site of binding, and have allowed for enough
time for the stochastic rebinding of the roadblock. Conse-
quently, there is a region behind every moving motor that
is depleted of roadblocks. We will refer to this region as the
roadblock shadow, and estimate its size to be � ≈ vbulkτ +
δrb (Figure 2A). With vbulk being the average motor veloc-
ity in the bulk, the term vbulkτ captures the average distance
traveled by a motor during the equilibration time τ of road-
blocks, and δrb accounts for that the motor must clear the
whole footprint of the roadblock before it can rebind. Note
that as long as the roadblock has a substantial size com-
pare to the basic step of the motor, the roadblock shadow
will remain extensive also for very fast roadblock rebinding,
contrary to the situation in the BRM.

We have defined gaps between pelotons as those gaps that
have roadblocks in them, meaning that they are typically
larger than the roadblock shadow. Conversely, gaps within
pelotons are devoid of roadblocks, and thus they are typi-
cally smaller than the roadblock shadow. We denote the ef-
fective motor hopping rate into gaps without roadblocks as
the intra-peloton hopping rate kip, and the rate of hopping
into gaps with roadblocks as the trans-peloton hopping rate
ktp. In the Supplementary Material we show that knowing
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the density of motors along the track we can analytically
predict the dynamic state of the system, and that the aver-
age velocity in the system is vbulk = ktp as soon as pelotons
form.

In the Supplementary Material we further show that the
typical size of a bulk peloton is proportional to (kip/ktp)�/2,
which can be seen to combine the strength of the inter-
action between motors and roadblocks (kip/ktp is large if
roadblocks substantially slow down motors) with the range
of the interaction (� is the maximum typical distance over
which two motors dynamically interact through roadblock
depletion). As the size of a peloton depends exponentially
on the roadblock shadow size �, and the roadblock size is
generally substantially larger then the motor step for any
physiological system (cf. the fact that the nucleosome cov-
ers 147 bp of DNA, while the polymerase step is 1 bp), we
expect the system to strive towards extremely large steady-
state pelotons in the bulk. Indeed, for transcription with re-
alistic parameter values (see Table 1), the steady-state pelo-
ton size is so enormous that it will never fit on any gene
(see Supplemental Material). Though the steady-state pelo-
tons size is thus never realized, its magnitude shows that two
motors that meet will typically stay together until termina-
tion. We now use this observation to derive the peloton size
reached over finite tracks, such as genes.

Motor and roadblock reorganization on finite genes

Initiation of transcription generally controls transcription
levels (48). To capture this situation, we now consider open
systems where initiation sets the overall activity, i.e. initi-
aiton rates are low enough that that a motor does not gen-
erally block the initiation of subsequent motors. During eu-
karyotic transcription, the initiation site is kept free of nu-
cleosomes (6,49), and consequently we will assume the ini-
tiation site in our model to also be devoid of roadblocks.
Taking motors to initiate with a rate kin, some of the mo-
tors will have a roadblock just ahead of them, while some
will not. Motors unhindered by roadblocks catch up with
motors slowed down by roadblocks (see schematic kymo-
graph in Figure 3A upper panel), and motors start to collect
into pelotons.

As more and more motors are absorbed into pelotons, the
average motor velocity goes down. To maintain a constant
steady-state motor flux (flux is velocity times density), the
motor density then goes up as we move away from initia-
tion (Figure 3A, lower panel). Simultaneously, as motors
organize into pelotons, roadblock shadows start to over-
lap and they leave more room available for roadblocks to
bind. Spontaneous organization into pelotons thus allow
both motor and roadblock densities to increase along genes.

After the initial pelotons are formed, these will continue
to evolve towards the bulk peloton size through a merging
process described by diffusion-limited coagulation (50). Re-
laxation in such systems (referred to as aging in the physics
literature) is exceedingly slow, and we do not expect to see
any appreciable evolution of the initially formed pelotons
over a finite gene.

In The Supplementary Material we give the general ex-
pressions relating the microscopic parameters to the aver-
age size np of pelotons, and the distance xp over which they

form. For simplicity we here give the physiologically rele-
vant limit where motors typically clear the initiation site be-
tween attempted initiation events,

np ≈ 1 + kinτ�,

xp = 1/kin

1/ktp − 1/kip

1
ln (1 + 1/kinτ�)

,

τ� = �/ktp = τ + δrb/ktp.

(1)

Here we recognize the timescale τ� as the time needed
for a motor to clear the roadblock shadow and allow a new
roadblock to bind. We will refer to this time as the effective
roadblock-rebinding time. The average peloton size beyond
the leading motor, np − 1, can be understood as a ratio be-
tween the effective roadblock-rebinding time and the time
to initiate a new motor (1/kin), giving the number of motors
initiated between roadblock binding events at the start of
the track. The distance over which pelotons are formed, xp,
contains the ratio of the effective roadblock-rebinding time
and the time difference between taking a step for slow and
fast motors (1/ktp − 1/kip) (see The Supplementary Mate-
rial for details), giving the number of steps needed for the
last motor to catch up with the rest of a forming peloton.

As it is often easier to experimentally measure relative
rather than absolute changes in densities and velocities, we
here report the evolution of the motor density/roadblock
density/motor velocity (�m(x)/� rb(x)/υm(x)) relative to its
final value once pelotons are formed (�m/� rb/υm) (for de-
tails see The Supplementary Material)

ρm(x)/ρm ≈ 1 − kinτ�

1 + kinτ�

(
1 − ktp

kip

)
e−x/xp ,

vm(x)/vm ≈ 1 + kinτ�

1 + kinτ�

(
kip

ktp
− 1

)
e−x/xp ,

ρrb(x)/ρrb ≈ 1 − kinτ�

eδrb/xp + kinτ�

e−x/xp .

(2)

From Equation (2), we see that all measures approach
their final value with an exponential decay over the region
where pelotons form. We see that relative changes along the
track grow in magnitude with the initiation rate, but that the
effect saturates around kin ∼ 1/τ� for motor-density and
velocity changes, while the roadblock density saturates later,
around kin ∼ eδrb/xp/τ�. The relative increase of the velocity
and the densities saturate because when the initiation rate is
larger than the effective roadblock binding time kin > 1/τ�

most initiating motors have no roadblock in front of them
and the initial density and velocity become independent of
the initiation rate. The evolution of the density and veloc-
ity further depends on the strength of interactions between
motors and roadblocks (ktp/kip) since the change in velocity
(density) when a motor catches up with a peloton is larger
when ktp/kip is smaller.

In Figure 3B, we illustrate how the relative change in mo-
tor density is affected by the motor initiation rate, compar-
ing the full expressions derived in The Supplementary Ma-
terial to simulations. For slow initiation (kinτ� < 1, green
arrow in Figure 3B), a roadblock typically binds between
every two initiating motors. For such initiation rates, pelo-
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Table 1. Parameter values as estimated from the literature and implemented in the simulations

Microscopic parameter Value Citation

δPol: RNAP footprint 35 bp (38)
δrb: Footprint Nucleosome + linker DNA 167 bp (39,40)
kip: Average RNAP elongation rate on bare DNA 10 bp/s (41–43)
ktp: RNAP elongation rate through nucleosome 3 bp/s (42)
kin: Initiation rate on highly transcribed genes 0.6-3/min (44)
kb: Nucleosome binding rate 0.02 s−1 (45,46)
τ : Hexamer binding time τktp � δrb⇒� ≈ δrb (45–47)
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Figure 3. Peloton formation close to the initiation site. (A) The upper panel shows a schematic kymograph showing motors (black lines) initially not
interacting with each other, until they reach the growing peloton. Motors initiate from the left and then travel into the system, moving through roadblock
depleted regions (white) and roadblock filled regions (pink). If a roadblock is deposited between two motor initiation events, the last motor propagates
with rate ktp and otherwise with rate kip. After a typical distance xp, a peloton of size np is formed. In the lower panel we sketch how peloton formation
influences the motor density along genes. Once pelotons have formed (x > xp) the density reaches ρm. Once formed, the pelotons continue to merge and
split until the system reaches the density ρbulk

m . Figures (B)–(D) show simulations and predictions for an open system with small roadblocks (δm = δrb =
1) such that τ� ≈ τ for large roadblock binding times. (B) The dots are values for the relative change in motor density, (�m − �m(0))/�m, from the start of
the lattice to the point where all the initial pelotons have formed, obtained by fitting an exponential function to the motor density in the peloton forming
region (estimated as the first 4xp lattice points) of simulated data. The line represents our theoretical predictions and the green and red arrows indicate the
initiation rates used for Figure (D). (C) The distance xp over which pelotons form as a function of the roadblock equilibration time for kin/kip = 0.1. The
dots are values for xp obtained by fitting an exponential distribution to the peloton forming region (estimated as the first 4xp lattice points) of simulated
data, while the line represents our theoretical predictions. (D) Motor density profiles for τkip = 20, and kin/kip = 0.01 < (τkip)−1 in the top panel, and
kin/kip = 0.1 > (τkip)−1 for the lower panel. Blue dots are the result of Monte Carlo simulations and black lines are our analytical predictions. Note, there
are no free parameters in any of the analytical predictions in (B)–(D).

tons are typically of size one, giving only a marginal motor
density change along the track (top density profile of Figure
3D). For faster initiation (kinτ� > 1, red arrow Figure 3B),
multiple motors bind before a roadblock rebinds to the start
of the track, pelotons are larger than one, and we have a sub-
stantial increase in motor density as we move away from the
initiation site (lower density profile of Figure 3D). In Figure
3C we compare our prediction for the distance over which
pelotons form to estimates extracted by fitting an exponen-
tial relaxation distance to the density profiles generated by
simulations. It is quite remarkable that our crude approxi-
mations capture the simulated data without any adjustable
parameters.

RESULTS

From pelotons to bursts

Transcriptional bursts have been observed in both eukary-
otic and prokaryotic systems (23,51), and are often ascribed
to a promoter that can be turned on and off (52) (Fig-
ure 4A). In the presence of roadblocks along the gene, our

model shows that we should expect the same type of bursts
even for promoters that are constantly turned on (Figure
4B). To facilitate future experimental testing through the
many known downstream effects of a bursty promoter (52),
we here relate the bursts of motor activity in our model to
those arising from the standard assumption of a promoter
that turns on and off as described by a two-state model (53),
(Figure 4C). This should prove especially useful when char-
acterizing the level of noise in mRNA production by us-
ing the Fano factor (the ratio between the variance and the
mean in mRNA copy numbers), which has been widely used
as a measure to classify transcriptional noise experimentally
(54,55). The fano factor for the two-state model is known
(52,53), such that a mapping of our model to the two-state
model allows for a direct comparison with experiments.

In the two-state model (Figure 4C), the system switches
between an on-state with production rate ktr, and an off-
state where nothing is produced. The off-state switches to
the on-state with rate kon, and back again with rate koff.
Though we present the full form of how the effective burst
parameters depend on microscopic parameters in The Sup-
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similar to the time distribution at termination. (B) A kymograph for tran-
scription without a bursty promoter, but with roadblocks along the gene
(shown in red). Though the initiation events are exponentially distributed
over time, the events at termination are more clustered, resulting in bursts
of RNA production. (C) The phenomenological two-state model normally
used to describe bursty transcription. In Equation (3), we report the pa-
rameters that would result from fitting the bursts generated by our model
to the two-state model.

plementary Material, we here again limit ourselves to the
physiologically relevant case where initiation rates are low
enough that motors typically clear the initiation site be-
tween attempted initiation events,

ktr = kinτ�

1 + kinτ�

ktp

δm
,

koff = 1
1 + kinτ�

ktp

δm
,

kon ≈ 1
τ�

.

(3)

For significant peloton formation kinτ� > 1 (Equation
1), the production rate ktr becomes insensitive to the ini-
tiation rate, and is simply set by the rate at which motors
pass termination. The off-rate koff depends strongly on the
initiation rate, and is given by the rate at which a typical
peloton passes termination. The on-rate kon is simply given
by the inverse roadblock-rebinding time. It should also be
noted that as long as the track extends further than the pelo-
ton forming distance xp (which is the case for transcription,
see below), the burst characteristics do not depend on the
length of the track. The analytical relationships given in

Equations (1)–(3) are the main results of this work. As these
relationships dictate the precise dependence of a number of
observables on microscopic parameters they should be well
suited for falsification through comparison to future exper-
iments (see Discussion). Next we show that the predictions
are in line with the results from a number of recent stud-
ies, using as input parameters values from the literature (see
Table 1).

Transcription on highly induced genes

Now that we have a quantitative understanding of how the
non-specific interactions between motors and roadblocks
give rise to peloton formation, we consider transcription
on inducible genes in eukaryotes. These considerations are
complicated by that nucleosome assembly and disassembly
are not single step processes, as a tetramer and two dimers
come together to make the full histone octamer contained
in the nucleosome. In vitro studies have shown that a single
polymerase only removes the histone dimer (56–58), while
a second polymerase can dislodge the remaining hexamer
(59). These in vitro results broadly agree with the in vivo
observations that the density of histone dimers decreases
strongly with transcription intensity genome wide, while an
increased exchange and depletion of all core histones is only
observed on highly transcribed genes (8–12,60,61).

On highly transcribed genes, we expext polymerases
to form pelotons, and are thus expected to cooperate
in dislodging the full nucleosome (59). Therefore, we as-
sume that the roadblocks consist of histone hexamers that
are dislodged by a passing polymerase. Further, we only
consider genes where initiation is both active and non-
paused, excluding situations where transcription is stalled
by promoter-proximally paused polymerases (62). As Equa-
tion 1 shows that pelotons form when initiation is high
(kinτ� > 1), we compare our model to experiments tracking
highly expressed genes (see Table 1).

We compare our analytical predictions of our heuristic
approach to simulations (Figure 5). In our simulations we
assume that the motors are only impeded at the nucleosome
dyad, since this forms the largest obstacle for RNA poly-
merase II translocation (13). We consider the initiation rates
kin = 0.6 pol/min and kin = 3.0 pol/min, where both rates
correspond to highly induced genes, and the highest rate is
chosen to match the maximal estimate of initiation rates on
yeast genes (44). It is known that histones rebind on a sub-
minute time scale (47), while it takes about a minute to clear
space for a roadblock (see Table 1). Consequently, the nu-
cleosome shadow is dominated by the roadblock size, and
we assume � ≈ δrb for simplicity in the analytical theory.

With only a small set of known microscopic input param-
eters (Table 1), our theory quantitatively captures the dy-
namics without free parameters. As predicted by Equation
(1), we see that pelotons grow over the first few hundred
base pairs after initiation (Figure 5A and C). The peloton
growth in turn means that the density of polymerases and
nucleosomes near the initiation site is lower than further
into the gene, while the velocity decreases as we move away
from initiation (Figure 5B and D). After the pelotons have
formed, the polymerases and nucleosome densities, as well
as polymerase velocities, remain virtually constant through-
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Figure 5. Bursts and density evolution for eukaryotic transcription on in-
ducible genes. The parameter values used are shown in Table 1. (A) Ky-
mograph for relatively moderate initiation rates. A polymerase (shown in
black) evicts a nucleosome when it passes its center (the dyads, indicated
by red lines). As the polymerases enter the gene, pelotons form over a dis-
tance of a few hundred base pairs. (B) The polymerase density, polymerase
velocity, and nucleosome density corresponding to the kymograph in (A).
Simulations were averaged over the size of a nucleosome and are shown as
black dots, while our analytical predictions as red lines. (C) Kymograph
for relatively high initiation rates, resulting in larger pelotons as compared
to (A). (D) The polymerase density, polymerase velocity, and nucleosome
density corresponding to the kymograph in (B). Comparing (B) and (D),
we see that larger pelotons give a visibly stronger density and velocity evo-
lution.

out the bulk of the gene. In Table 2, we give an overview of
the predicted values of several observables, including burst
parameters.

DISCUSSION

With the aim of describing transcription in the crowded en-
vironment of the cell, we have introduced a general model
that captures a large class of systems where molecular mo-
tors interact with dynamic roadblocks (Figure 1B). Assum-
ing that roadblocks have a finite size and/or rebinding time,
and that motors slow down when evicting nucleosomes, we
show that a physical mechanism reminiscent of drafting in
racing sports gives rise to a strong kinetic attraction be-
tween motors. This attraction induces the motors to spon-
taneously reorganize into pelotons, and motors arrive to the
terminus in bursts. Our analysis shows that one should al-
ways expect bursts in the presence of roadblocks if the mo-
tor initiation rate exceeds the inverse effective roadblock-
rebinding time (τ� in Equation 1), independently of if the
promoter itself is bursty.

Peloton formation has been observed in vivo

Already 40 years ago there was evidence from Miller
spreads suggesting that polymerases cluster on heavily tran-
scribed genes (16–19). Recently, direct real-time evidence
of polymerase ‘convoys‘ on HIV-1 and POLR2A genes in
HeLa cells has been produced (20). In accordance with
our predictions, the typical distance between polymerases
within convoys is too small for a nucleosome to bind, the
distances between convoys are geometrically distributed,
and a typical convoy includes several polymerases (see Ta-
ble 2). Though our model can not rule out alternative expla-
nations relying on specific polymerase–nucleosome interac-
tions, the agreement between our predictions and the exper-
imental observations without any adjustable fit parameters
suggests that peloton formation through non-specific inter-
actions with nucleosomes should be seriously considered,
and could drive the formation of the observed polymerase
convoys. This hypothesis can readily be tested by correlat-
ing the average peloton size (Equation 1) with changes in
induction levels.

Predicted density profiles agree with observations in yeast

Our model also gives parsimonious explanations for sev-
eral recent in vivo experimental observations pertaining to
density profiles of polymerases and nucleosomes along in-
ducible genes. In both yeast and human cells, highly tran-
scribed genes without promoter-proximally paused poly-
merases show low nucleosome and polymerase densities
for the first few hundred base pairs after initiation (12,63).
This distance agrees with our predicted distance over which
are pelotons are formed, xp (Table 2). Though there are
many specific interactions that could give rise to nucleo-
some and polymerase depletion (64), the fact that this is a
general property of heavily transcribed genes (12,65) sug-
gests a non-specific mechanism. Indeed, our model accu-
rately predicts the occurrence and extent of such depletion
without evoking any specific interactions (see Equations 1
and 2, as well as Figure 5 and Table 2). Our model correctly
predicts a pausing-index (relative polymerase density within
the promoter-proximal region compared to the bulk) that is
below one for highly transcribed genes (63), and can be fur-
ther tested by correlating changes in the pausing-index with
for example histone modifications (42) that modify the tran-
scription rate through nucleosomes.

The predicted increase of the polymerase density along
the gene coincides with a decrease in the elongation rate
(see Figure 5B and D). Global run-on sequencing (GRO-
seq) (63) experiments on active genes, on the contrary, have
shown that the elongation rate increases over the first 15 kb
(66). The velocity increase in these GRO-seq experiments
was likely caused by the gradual maturation of the tran-
scription machinery (64) with mechanisms such as inter-
actions with elongation factors not presently included in
our model. Though it would be interesting to see how such
mechanisms modulate the formation of pelotons, the ob-
served increase of the elongation rate takes place over dis-
tances much longer than the few hundred base pairs over
which pelotons form (see Table 2), and we do not expect our
quantitative results to change due to these moderate veloc-
ity changes close to the promoter. Another source of veloc-



7630 Nucleic Acids Research, 2017, Vol. 45, No. 13

Table 2. Calculated observables for the physiological parameters in Table 1

Initiation rate 0.6 pol/min 3.0 pol/min

vm(0): RNAP velocity at initiation 5.5 bp/s 8.1 bp/s
vm: RNAP velocity once pelotons have formed 3 bp/s 3 bp/s
J: Transcriptional output 0.6 mRNA/min 2.3 mRNA/min
ρm(0): RNAP density at initiation 0.002 pol/bp 0.006 pol/bp
ρm: RNAP density once pelotons formed 0.003 pol/bp 0.013 pol/bp
np: Peloton size 1.6 pol 3.8 pol
xp: Distance over which pelotons form 420 bp 280 bp
kon: Apparent on rate in two-state model 1.1/min 1.1/min
ktr: Apparent production rate in two-state model 1.8/min 3.8/min
koff: Apparent off rate in two-state model 3.3/min 1.4/min

ity variation during transcription is that two polymerases
are faster in evicting a nucleosome than one (14). We can see
post hoc that such modifications would do little to change
the model results, as we are interested in peloton forming
systems where single polymerases forcing roadblocks are
rare.

Another mechanism suggested to explain the observed
density profiles is that transcription becomes termination-
limited for high transcription rates (12). However, on a
termination-limited gene, cued polymerases typically block
each other’s movement sterically (26) and leave no place for
nucleosomes in between, which is inconsistent with experi-
mental observations (12).

It is interesting to note that a nucleosome-free region at
the start of genes (12,21,22) has been suggested to increase
the accessibility of transcription factor binding sites close to
the initiation site, thereby increasing the potential for tran-
scriptional regulation (21,22). Our model thus suggests that
nucleosome depletion close to the initiation site could be a
transcriptional epiphenomenon that has been coopted to al-
low for a greater regulatory response.

Burst characteristics agree with in vivo observations

Though bursts in RNA production has been observed in
both prokaryotes (23,67) and eukaryotes (54,68), the ori-
gin is unclear, and usually modeled phenomenologically
as arising from a promoter that turns on and off (69,70).
Though not developed with bursts in mind, our model pre-
dicts that transcriptions should be expected to be bursty as
soon as the transcription initiation rate is comparable to
the nucleosome binding rate, Equation (3), even if the pro-
moter is constantly turned on. Several properties of the pre-
dicted bursts agree quantitatively with experimental obser-
vations. First, the pelotons are completed over a few hun-
dred base pairs, which is shorter than the most genes. There-
fore the predicted burst size is independent of gene length,
agreeing with observations in yeast (71). Secondly, the pre-
dicted time between production events is on a sub-minute
time scale (see Table 2), which falls within the experimen-
tally observed range (71). Thirdly, our model predicts that
when bursts are significant, only the apparent burst dura-
tion should be sensitive to transcription intensity, and that
it decreases with increasing induction (see Equation 3). This
behavior is broadly agreeing with the behavior reported for
transcriptional bursting in Escherichia coli (E. coli) (25),
where many other DNA binding proteins might act as the
necessary roadblocks (72).

It should be noted that bursts generated during elonga-
tion does not rule out a bursty promoter. Instead, multi-

scale bursting was recently reported (20) and could very
well originate in a promoter turning on and off on long
timescales, while pelotons form during elongation, giving
rise to bursting on shorter timescales.

DNA supercoils as a source of bursts

Though there are many DNA binding proteins in E. coli
(72), another interesting candidate for producing bursts is
DNA supercoiling. Due to the helicity of DNA, transcrib-
ing polymerases are known to induce positive supercoils
ahead and negative supercoils behind (73). Such supercoils
slow down the polymerase (67), and will in the steady state
extend some finite distance in front and behind. As nega-
tive supercoils spontaneously annihilate with positive su-
percoils, any DNA between two polymerases will have a
lower net supercoiling density the closer together they are.
With a lower supercoiling density ahead, a trailing poly-
merase will move faster than a leading polymerase, and all
the conditions for peloton formation as described by our
model (Figure 1A) are fulfilled.

Our general mechanism of burst generation is connected
to the mechanism suggested as a source of transcriptional
bursting observed in bacteria, where a buildup of supercoils
in torsional constrained plasmids was shown to suppress
transcription until the supercoils were released (67). Im-
portantly though, our model does not require the DNA to
be torsional constrained as the supercoiling density around
polymerases is set by the supercoils diffusivity (74) and a
balance between supercoil creation and release.

Experimental testing and alternative models

Many mechanisms have been suggested for promoter in-
duced bursting. As indicated in Figure 4, our model can be
differentiated from such models by comparing the input and
output dynamics. Our model could also be refuted by using
existing techniques reporting on polymerase ‘convoys’ (20)
or transcriptional bursting (23) by manipulating or screen-
ing the limited set of effective parameters that controls the
spatial and temporal evolution of the system (Equations
1-3). For example, the typical peloton size could be ma-
nipulated by changing the transcription initiation rate, or
through histone modifications (42) that change the tran-
scription rate through nucleosomes or the nucleosome re-
binding time.

If the initiation dynamics cannot explain the bursts of
RNA production, the elongation phase is likely the source
of the bursts. To our knowledge, there are only two previous
theoretical studies suggesting that bursts are created dur-
ing elongation (28,75). In both cases, intrinsic polymerase
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pausing through backtracking (76) was suggested as the
source. However, backtracking is unlikely to produce bursts,
as it does not induce an effective attraction between poly-
merases, but rather an effective repulsion: interaction with a
trailing polymerases is known to help terminate backtracks
of a leading polymerase, and so speeds it up; interaction
with a leading polymerase increases the chance of pausing
in a trailing polymerase (59,77), and so slows it down. Poly-
merases thus kinetically repulse each other, and jams in-
duced by backtracks are unstable. Instead, we have shown
that the interaction with roadblocks induces a persistent ef-
fective attraction between polymerases, resulting in a fast
buildup of stable pelotons as polymerases move through the
gene to terminate in bursts.

CONCLUSION AND OUTLOOK

Our model points to a single source for a wide range of ob-
served phenomena, from burst characteristics to the spatial
organization of polymerases and nucleosomes. Surprisingly,
the model agrees quantitatively with multiple experimental
observations without adjustable parameters. Though fur-
ther experiments are needed to determine the degree to
which the observed phenomena can be explained through
the non-specific polymerase and nucleosome interactions as
we suggest, this work has the potential to reshape our un-
derstanding of how transcribing polymerases and nucleo-
somes organize spatially and temporally in physiologically
crowded environments. Only by first understanding this or-
ganization, and how it can be modulated to effect things like
polymerase cooperation, will it be possible to fully under-
stand the action of transcription factors and other impor-
tant cellular responses acting the elongation phase of tran-
scription.
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