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A B S T R A C T

The targeted removal of efficient but toxic corrosion inhibitors based on hexavalent chromium 
has provided an impetus for discovery of new, more benign organic compounds to fill that role. 
Developments in high-throughput synthesis of organic compounds, the establishment of large 
libraries of available chemicals, accelerated corrosion inhibition testing technologies, the 
increased capabilities of machine learning (ML) methods, and a better understanding of mech
anisms of inhibition provide the potential to make discovery of new corrosion inhibitors faster 
and cheaper than ever before. These technical developments in the corrosion inhibition field are 
summarized herein. We describe how data-driven machine learning methods can generate models 
linking molecular properties to corrosion inhibition that can be used to predict the performance of 
materials not yet synthesized or tested. The literature on inhibition mechanisms is briefly sum
marized along with quantitative structure–property relationships models of small organic mole
cule corrosion inhibitors. The success of these methods provides a paradigm for the rapid 
discovery of novel, effective corrosion inhibitors for a range of metals and alloys, in diverse 
environments. A comprehensive list of corrosion inhibitors tested for various substrates that was 
curated as part of this review is accessible online https://excorr.web.app/database and available 
in a machine-readable format.

1. Introduction

Catastrophic structural failures of engineered structures occur mostly due to a combination of corrosion and stress and can cause 
death, injury, and major capital loss in a wide variety of industries and application areas [1]. These ongoing, short-term impacts 
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coupled with economic losses due to corrosion, materials loss, failure, and aesthetic damage mean that corrosion control is extremely 
important and expensive. Recent publications have listed corrosion and stress-corrosion cracking as being by far the most severe cause 
of loss of longevity and integrity of metal products [3]. It has been estimated this loss equates to 3.4 % of the annual global gross 
domestic product (US$2.5 trillion) [4,5]. Clearly, any progress in corrosion control will significantly improve the longevity of metal 
components. According to the latest NACE report, implementing best practices in corrosion prevention could result in global savings of 
15–35 % of that cost, or up to 875 billion dollars [5]. There is also a growing concern over the large amount of energy required to 
extract and manufacture metals and alloys required to replace corroded components, and the greenhouse gases and pollution this 
produces. For example, it was estimated by Ianuzzi and Frankel that the steel required to replace only that conservatively estimated to 
be corroded, contributes 1.9 % to the total world CO2 emissions [6]. Raabe et al. [3] identified ten measures that can reduce these 
impacts, with corrosion control being the most effective and feasible in the short term (Fig. 1). While adequate corrosion control 
measures are available, clearly there is room to reduce ongoing economic, health, and environmental impacts through the discovery of 
better corrosion inhibitors.

A working definition of a corrosion inhibitor is “a substance that, when added to an environment in small concentrations, mini
mizes the loss of metal, reduces the extent of hydrogen embrittlement, and protects the metal against pitting [7]. Corrosion inhibitors 
can be used in multiple ways. Inhibitors in aqueous systems reduce corrosion by forming an adsorbed or passivation layer that acts as a 
barrier, or by retarding cathodic, anodic, or both electrochemical processes. They can also be incorporated into anodic and conversion 
coatings (industrially applied active barrier coatings [8,9]) and as paint pigments [10]. Chromate has been used as a nearly universal 
corrosion treatment for a wide variety of metals for a century but is a teratogen, mutagen, and carcinogen [11]. Clearly, it poses an 
unacceptable risk to workers. It has been estimated that workers exposed to chromate residues when aircraft are repainted have ~ 
250,000-fold higher risk of cancer than the public [12,13], thus the use of chromate inhibitors is being phased out in most countries. 
Other highly effective corrosion inhibitors containing tin and lead also have unacceptable risks and will be banned, or their use will be 
restricted due to health and safety and environmental concerns.

Fig. 1. An impact and technology readiness diagram for measures that can be taken to improve the sustainability of metals into the future. Note that 
corrosion protection ranks highest for both technological readiness and potential impact. Reproduced from Raabe et al. [3] with permission.
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1.1. The critical importance of replacing chromate corrosion inhibitors

Chromate has been targeted for removal from the metal finishing and coatings industries in many jurisdictions including Europe 
and the US [13,14]. Some of these jurisdictions may have reduced usage of chromate in conversion coatings, but market reports 
suggest that chromate-based inhibitors as pigments for paint coatings are a growth area (see for example [15,16]) There are specific 
issues with chromate withdrawal in some aerospace applications because some parts of airframes may not be inspected for many years 
and need durable and highly reliable corrosion protection applied at the start of the service life [17].

Another issue with chromate replacement is the availability and cost of alternatives, as has been addressed by Hughes et al. [18] for 
inorganic inhibitors. Any organic inhibitor must match the cost and quantity issues of chromates. Chromate chemicals used in 
corrosion protection are derived from mineral chromite. However, the main reason for mining chromite is to obtain chromium for the 
manufacture of ferrochrome and stainless steel. Use in this application has remained steady at around 13 M tons per annum for several 
years [19]. Over a similar period, around 600,000 to 700,000 tons are converted to sodium dichromate (Na2Cr2O7) [20] thus di
chromate is a commodity chemical. 224,000 tons were subsequently converted to chromic acid, ~50 % of which was used for metal 
finishing [20]. Thus, on a purely weight for weight basis, somewhere between 112,000 – 139,000 tons of inhibitor will be required to 
replace chromic acid used in industry. If replacement inhibitors are less efficient, then the amount required will be larger.

Small organic molecules offer a vast diversity of structures and properties, some of which may be potentially superior corrosion 
inhibitors for industrial corrosion control and occupational health and safety needs. Organic inhibitors are widely used for multiple 
industrial applications owing to their selectivity, affordability, and stability under operational conditions. While their danger to 
humans is generally lower than chromate (by a factor of 10 to 20 as assessed by LD50 (rats)), they are not without issues. Mercap
tobenzothiazoles are a group of commonly studied inhibitors which perform well on a range of metals. However, 2-mercaptobenzo
thiazole has been declared a potential carcinogen in humans by the WHO, based on studies of worker exposure [21]. There are also 
environmental issues associated with organic molecules like EDTA due to its strong and persistent complexing of metal ions in natural 
water [22].

Typically, organic corrosion inhibitors adsorb onto metal/oxide/hydroxide surfaces and form protective films that displace the 
water and slow down the ingress of aggressive chloride ions. Efficient small organic molecule inhibitors usually contain oxygen, ni
trogen, sulfur, and phosphorus atoms with lone electron pairs, along with moieties providing π-electrons, all facilitating adsorption 
[23]. The number of organic corrosion inhibitors studied to date is approximately 1500 out of 150 million compounds catalogued in 
Chemical Abstract Service database. Among these organic corrosion inhibitors none, so far, has the effectiveness and wide applicability 
of chromate.

Here we review important developments likely to impact the discovery of more effective organic corrosion inhibitors. These 
include automation of the synthesis and characterization of organic inhibitors, AI and machine learning, and mechanism-based in
hibitor design. We also provide an overview of the literature on organic inhibitors for metals including copper, iron, aluminium, 
magnesium, and their alloys. Specifically, we briefly summarize recent developments in high-throughput synthesis and corrosion 
testing, and the use of quantitative structure–property relationships (QSPR) and advanced machine learning methods to predict the 
inhibitory properties of organic compounds. The latter allows the corrosion inhibition of compounds not yet synthesized or tested to be 
predicted [24–29]. Machine learning models can also be used as surrogate fitness functions for the evolutionary design of new 
corrosion inhibitors with multiple desirable properties [31–33]. We provide a concise summary of current knowledge on relationships 
between inhibitor structure, mechanisms of inhibition, and efficacy and perspectives for future developments. A database of corrosion 
inhibitors tested for various substrates that was curated as part of this review, accessible online https://excorr.web.app/database and 
is available in a machine-readable format.

2. Impact of automation on synthesis and characterization of organic inhibitors

Discovery of inorganic and organic inhibitors has traditionally followed the one-compound-at-a-time paradigm. This can be 
accelerated in two ways. First, increasingly science and technology are embracing robotics and automation to dramatically increase 
the number of materials that can be synthesized and tested. Second, these experimental techniques are expanding data collection by 
many orders of magnitude over conventional techniques (see sect. 2.5). These data are important for training machine learning models 
for discovery, design, and optimization of next generation organic corrosion inhibitors. Unlike some other important areas of science 
and technology, corrosion science has been slow to adopt of these paradigm-shifting technologies. They promise to leverage valuable 
prior knowledge and technology to accelerate discovery of more effective and safer organic corrosion inhibitors to replace toxic 
materials that have dominated the field for decades.

Faster methods of synthesis and testing clearly have major advantages over the traditional ways of performing these tasks. The 
development of these technologies is driven by the recognition of the vastness of the organic chemical space in which inhibitors exist, 
and the potentially large, paradigm-changing advantages that data-driven AI and machine learning methods (for which Nobel Prizes in 
physics and chemistry were awarded in 2024) can bring to the field. Increased synthesis and testing rates means that a much larger part 
of chemical space can be explored than by traditional methods. However, even the most optimistic projections of the capacity of these 
automated methods suggest that it is possible to explore only a minute fraction of the estimated 1063 organic molecules [35–36] (far 
exceeding the 1021 stars in our observable universe) that are synthetically accessible using the known laws of chemistry. Thus, the size 
of chemistry space represents both a challenge and an opportunity for the discovery of new, safer, more effective corrosion inhibitors. 
The challenge is the impossibility of exploring the whole of chemical space exhaustively, and the opportunity is that the vast chemical 
space provides an almost infinite number of candidate materials, many of which will have valuable properties, if we can discover them.
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Automated methods will also generate large data sets that can be used to train machine learning models that predict properties of 
new materials orders of magnitude faster than any automated experimental method. The paucity of high quality, large (> 100 
compounds), chemically diverse data sets is one of the main issues holding back the wider application of data-driven machine learning 
methods described below. Here we briefly summarize the main methods for synthesizing organic corrosion inhibitors and measuring 
their performance and discuss the current progress towards automation, the value of AI and machine learning in discovery of new 
organic corrosion inhibitors, and the potential for future improvements in this area.

2.1. High-throughput synthesis of organic compounds

The need for high-throughput (HT) synthesis was first recognized by the pharmaceutical industry around 1990 [38]. They 
developed combinatorial chemistry that increased the rate of synthesis of small organic molecules by orders of magnitude compared to 
traditional one-molecule-at-a-time approaches. Subsequently, click chemistry facilitated the reliable generation of large libraries of 
molecules containing nitrogen heterocycles, potentially valuable corrosion inhibitors chemotypes [39], and flow chemistry has pro
vided a pathway to efficient, safe, and at-scale synthesis of chemical compounds [40]. These are now very large and mature research 
and technology areas, well covered by numerous books and reviews, see, for example [41,42], so they are not discussed further here.

Although high-throughput and combinatorial synthesis of small organic compounds is well established in the pharmaceutical 
industry, it is yet to be employed in corrosion inhibition research. This is due to the lack of HT corrosion inhibition testing methods, 
and the existence of very large libraries of virtual, commercially available or make-on-demand organic compounds (billions of 
compounds) that can be tested or computationally screened for corrosion inhibition without requiring synthesis. An additional factor 
delaying the development of HT methods for inhibitor testing is the large variety of deployment conditions of metallic structures, 

Fig. 2. The values of inhibition efficiency a) and inhibition power b) calculated for the identical set of Cu corrosion inhibitors, introduced by Kokalj 
et al. [43], reproduced from [43] under Creative Commons CC-BY license. Differentiation between highly potent inhibitors is more clearly seen in 
b), the inhibition power plot. c) Symmetrized inhibition efficiency that penalizes the negative values of inhibition efficiency, keeping all the ηsym 
values within � 100 to 100 % range, introduced by Kokalj et al. Reproduced from [1] with permission.
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resulting in an even larger range of exposure environments and a lack of understanding of the most relevant testing conditions.

2.2. Experimental measurements of corrosion inhibition

Corrosion inhibition (CI) can be measured using a range of well-known techniques summarized below, and metrics from these 
different techniques can often be compared directly to assess performance. Many studies report “inhibitor efficiency” η:

η =
γ� γinhib

γ ⋅ 100 %.
where γ and γinh are the parameters of interest (e.g., corrosion current, mass loss, hydrogen evolution, polarization resistance 

derived from EIS spectra, etc.) in the absence and presence of the inhibitor respectively. Although widely used, this relationship is 
highly non-linear: for low values of γinh, a small increase in inhibition causes a rapid increase in inhibition efficiency, whereas for ~ η 
> 90 %, further reduction in corrosion only leads to a small increase in η. Clearly, η is more useful for screening poor or modest in
hibitors since in such cases γinh will be of a similar magnitude to γ. However, its ability to distinguish between good inhibitors is poor 
since γinh may be two or more orders of magnitude smaller than γ. This means that several orders of magnitude difference in per
formance between good inhibitors is squeezed into two percentile points at the top of the inhibitor range.

A recently conceived inhibitor performance metric, inhibition power Pinh expressed as 

Pinh = 10log10

(
γ

γinh

)

enables easier differentiation of the good inhibitors by ranking them in an unbiased way [43]. The unbiased distribution of data is also 
important in the training of machine learning models for which skewed data results in lower predictive performance. This lack of 
balance [44] in the data usually generates models with poor predictive performance, specifically for the minority class. Inhibition 
power delivers more balanced data, hence is expected to improve the predictive power of the models. Fig. 2 illustrates the difference 
between inhibition efficiency and inhibition power for the identical set of corrosion inhibitors tested on pure Cu by Kokalj et al. [43].

An alternative metric for corrosion inhibitor performance, symmetrized inhibition efficiency (Fig. 2c), was also introduced by 
Kokalj et al. [1]. It penalizes negative values of inhibition efficiency, deemphasizing the importance of large negative values that are 
not always measured with the same precision (e.g. due to difficulties of accounting for change of sample surface area in hydrogen 
evolution measurements or missing deeper pitting in image analysis). These values can potentially bias machine learning models: 

ηsym =

⎧
⎨

⎩

η if η ≥ 0
100η

100 � η otherwise,
[1] 

The value of inhibition efficiency and symmetrized inhibition efficiency are virtually the same in the range between 100 to � 20 %, 
Fig. 2c, but ηsym decreases more slowly below this, asymptoting so that no datapoint can be lower than � 100 % or greater than +100 %. 
Comparing the applicability of these two recent metrics, the inhibition power (Pinh) is more suitable for strong corrosion inhibitors, 
while symmetrized inhibition efficiency ηsym is more intuitive and may be better for the datasets of modest corrosion inhibition effi
ciency [1].

The three metrics quantify total corrosion impact without differentiating between different types of localization of corrosion attack, 
a potential shortcoming. Mechanical integrity of metallic components that can be compromised by pitting, intergranular and other 
types of localized corrosion, is of prime concern in practical applications. However, the existing metrics for inhibition efficiency do not 
elucidate these processes because they assume a homogeneous degradation and evenly distributed corrosion attack. It has been shown 
for a magnesium alloy that inhibition efficiency does not necessarily correlate with the ability of given inhibitor to prevent localized 
corrosion and help retain mechanical properties of the alloy [45]. Industrially, many tests are used to assess corrosion performance of 
bare metals and painted materials. Many of these tests are codified in standards such as ASTM and DIN. Often, tests are based on visual 
inspections of colour changes in corrosion products or number of pits developed after a defined exposure time, see for example salt- 
spray exposure according to ASTM B117, ASTM G85 and evaluation according to ASTM D1654, ASTM D714. A detailed description of 
these is beyond the scope of this review, so we only summarize more common corrosion inhibition test methods here. This is because 
accelerated testing is a distinct topic, ranging from cyclic outdoor tests to museum environments [46], to the auto industry [47,48], 
aerospace [49,50,51,52,53,54] and infrastructure industries [55].

One of the biggest issues with accelerated testing is whether acceleration accurately mimics natural corrosion processes. Thus, 
accelerated tests are often categorised into cyclic or constant stress testing, i.e., where stressors are factors like temperature, elec
trolyte, UV exposure etc., and cyclic refers to repeated temperature cycles, or wet/dry cycles etc. Cyclic tests tend to be more realistic 
predictors of performance, particularly those with wet/dry cycles [56]. This is because they account for formation of possible insoluble 
corrosion products that provide protection to the substrate and allow for electrolytes to become more concentrated during drying, 
facilitating more aggressive corrosion. Dante et al. [49,50] developed an accelerated dynamic corrosion test method that more 
accurately predicts corrosion of bare or coated alloys and galvanic couples in operational environments. In doing so, they concluded 
that the relative humidity and its cyclic variations are by far the most important factors in governing the atmospheric corrosion.

The issue of accurate mimicking of natural corrosion processes is, of course, also relevant to high-throughput testing and will 
undoubtedly be the subject of further debate on how HT tests are designed. Combined stressors, such as corrosion and mechanical 
impacts, widely encountered together, lead to even faster degradation of material systems in operational environments. The Boeing 
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company patented two experimental testing designs combining mechanical load with corrosion attack. A cyclic flexing salt-spray 
chamber [51] is able to exert cyclic mechanical stress (at a frequency between 0.1 to 60 Hz) to metallic panels in controlled salt- 
fog environment. Another patent describes the perturbed oscillatory kinetics electrochemistry setup suited to record electro
chemical response of metallic coupons before and after applying mechanical load [52].

A common method for assessing corrosion is weight loss, which is used in both industrial and research environments. It can be used 
to assess any type of environment. Coupons are weighed before and after an experiment (preceded by removal of corrosion products 
following established standards [57]), and the test measures the amount of corrosion product removed or amount of metal or alloy 
remaining. Hydrogen evolution is usually only employed in Mg corrosion and inhibition research because, unlike Al, Zn, Fe, and Cu- 
alloys where oxygen reduction is the main cathodic reaction, hydrogen evolution reaction is the main cathodic process during 
magnesium corrosion, with oxygen reduction being secondary process [58–61]. Galvanic corrosion test methods typically start with 
manufacturing galvanic test assembly panels comprising, for example, titanium or stainless-steel fasteners in aluminum alloy panels. 
These are exposed to salt-spray followed by visual inspection [54], and profilometric quantification of material lost due to the galvanic 
corrosion or galvanic current measurements in full immersion condition [53].

Electrochemical approaches are widely used in the research environment because they provide quantitative measures of corrosion 
performance. The most common types of tests include electrochemical impedance spectroscopy (EIS), potentiodynamic and poten
tiostatic polarization, electrochemical noise, and zero resistance ammeter (ZRA) for galvanically coupled dissimilar metals (e.g. 
Boerstler et al [53]). Raw EIS data can be used for qualitative comparisons of the performance of inhibitors. Inspection of these data 

a b c

Fig. 3. Experimental high-throughput corrosion inhibitor screening setups. a) Multi-electrode assembly showing the layout of wire specimens. 
Reproduced from Muster et al. [72] with permission; b) Multi-well corrosion inhibition setup. Reproduced from White et al. and Winkler et al. 
[73,74] with permissions; c) Multi-channel microfluidic arrays adapted from White et al. [75]; d) Test-tubes containing of iron-thiocyanate Fe 
(SCN)3 complex for spectrophotometric quantification of dissolved Fe concentration, proposed by Zabula et al. [76] reproduced with permission; e) 
Automated eudiometer setup logging volume of released H2 during corrosion of Mg alloys by weighing the among of displaced water adapted from 
[60,77]. The insert shows the visual appearance of the Mg chips used for H2 evolution measurements reproduced from Lamaka et al. [60]
with permission.
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provides an estimate of the low-frequency impedance, which is usually related to the charge transfer or polarization resistance and is a 
typical performance indicator for inhibitor studies. The corrosion current is measured by potentiodynamic polarization experiments 
and is used to calculate corrosion inhibition values that are comparable between samples. Other, more sophisticated techniques are 
used for laterally resolved corrosion (inhibition) studies, such as the scanning vibrating electrode technique (SVET) used for inhibitor 
screening for galvanically coupled dissimilar metals [62–64].

2.3. High-throughput corrosion inhibition screening

Development of high-throughput direct or surrogate methods for assessing corrosion inhibition is essential to progress this field 
because collection of inhibitor performance data is the rate-determining step, not chemical synthesis. Although high-throughput 
assessment methods have become the mainstay of diverse research fields, corrosion science is a slow adopter [65]. However, 
encouraging progress has been made in the past 10–15 years. The most important consideration in developing these rapid methods is 
how their results relate to ‘real world’ corrosion inhibition. Currently, electrochemical methods, weight loss, hydrogen evolution, 
spectroscopic, and photometric methods are still being used to measure corrosion inhibition in medium- to high-throughput formats.

Seminal work by Chambers et al. employed the direct current polarization between two aerospace aluminium alloy (AA2024) wire 
electrodes and a multi-electrode testing system to assess corrosion inhibition of fifty chemistries in just 9 h. The results correlated 
highly with those from extended testing over 10 days [66]. They extended their work by scoring corrosion using fluorometric detection 
of Al3+ levels [67]. They measured corrosion inhibition of 14 compounds over a wide range of initial pH values after 1–7 days [68]. 
They subsequently developed a system for rapidly assessing inhibition characteristics of 100 diverse chemistries using DC polarization, 
cyclic voltammetry of re-deposited copper, and fluorometric detection of Al3+[69,70]. Muster et al. and Garcia et al. also reported high- 
throughput screening techniques for corrosion inhibitors using a multielectrode electrochemical system [71,72]. This allowed 30 
electrochemical experiments per hour to be performed, facilitating rapid discovery of inhibitors that protect different metals, and 
quickly identifying optimal inhibitor concentrations (Fig. 3).

Kallip and coworkers reported a novel procedure using SVET to assess corrosion inhibitors [62]. They determined the percent 
corrosion inhibition efficiencies (%IE) of four inhibitors for Fe and Zn. He et al. described a high-throughput electrochemical 
impedance spectroscopy (HT-EIS) method for the rapid evaluation of corrosion coatings. They developed a 12-element, spatially 
addressable electrochemical platform interfaced with a commercial EIS instrument [78].

White et al. described a novel multi-well method for high-throughput testing of corrosion inhibition based on image analysis of 
corrosion surfaces generated after exposure to inhibitor-containing electrolyte (Fig. 3b) [73,74]. Up to 88 simultaneous corrosion 
inhibition tests could be carried out on a single plate, plus positive and negative controls. After a 24 h assessment period and using the 
AA2024-T3 aerospace alloy, the amount of white corrosion product was used to assess the extent of corrosion. Corrosion inhibition was 
assessed using a novel, robust, computerized image processing method. Shi et al. reported a similar automated system for corrosion 
assessment using optical imaging that showed a linear relationship between the apparent grey value of the image and the depth of 
corrosive pitting in the specimen.[79].

A spectroscopic method for studying metal dissolution using multi-channel microfluidic arrays was reported by White et al. (Fig. 3c) 
[75]. They employed inductively coupled plasma atomic emission spectroscopy to determine Al and Cu levels, visual inspection, and 
image analysis of pits to quantify the relative performance of AA2024-T3 corrosion inhibitors under flowing electrolyte conditions in 
10 parallel channels. The flow conditions accelerated corrosion up to 15-fold, resulting in shorter experimentation times. Different 
chemistries could also be readily investigated through parallel experimentation. Analogously, Zabula et al. [76] (Fig. 3d) determined 
the amount of dissolved iron formed during corrosion by spectrophotometric measurements of the colour intensity of iron-thiocyanate 
Fe(SCN)3 complex and used this to quantify the inhibition due to the presence of corrosion inhibitors.

For reactive metals like magnesium, hydrogen evolution can also be used to measure corrosion inhibition or acceleration properties 
of molecules. Here, fixed amounts of Mg-alloys with large (180 – 550 cm2/g) surface areas were exposed to a corrosive agent with, or 
without added inhibitor or accelerant. Magnesium dissolution and hydrogen evolution occur during aqueous magnesium corrosion. 
The amount of hydrogen evolved over a given time was used to quantify the performance of inhibitors. Lamaka et al. reported a 
medium- to high-throughput testing rig that used hydrogen evolution to measure the performance of organic inhibitors of magnesium 
corrosion (Fig. 3e)[60]. They reported the inhibiting properties of 151 chemical compounds on AZ31, AZ91, AM50, WE43, ZE41, and 
Elektron 21 Mg alloys, and three grades of pure magnesium, generating ~ 2000 corrosion inhibition values. The large surface area and 
rapid corrosion in the absence of oxygen in these experiments made it possible to ignore the significant contribution of the oxygen 
reduction reaction (ORR) to Mg corrosion under atmospheric conditions [80] or in air-equilibrated electrolytes [59,81].

Encouragingly, most of these rapid inhibition measurement methods are amenable to substantial scale up. This should be an active 
area of research going forward, together with more substantial validation of the methods under real world operating conditions.

2.4. Potential impact of additive manufacturing technologies

Additive manufacturing (3D printing) is having a large impact in many areas of science, technology and commerce [82]. Metals and 
alloys can now be deposited by additive manufacturing processes like powder sintering, cold spray, laser, laser powder bed fusion, 
thermal inkjet printing, electron beams, and wire arc melting [83–89]. These AM approaches provide two types of opportunities. First, 
new metal alloys can be produced using conventional compositions but with different properties due to the rapid cooling associated 
scanned beam (laser, electron) processing. Second, they can potentially be used to simulate microstructures of conventionally man
ufactured materials.
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Indeed, in the former case, there is a considerable body of work emerging on the corrosion behaviour of electron and laser beam AM 
materials [90]. Note that, in this area, the range of metal alloys investigated has been narrow due to the limited number of metal 
powders that are available commercially. Summaries of the types of materials that have been produced, their microstructures and 
mechanical properties are available [85,91]. For example, SS316L steel manufactured using laser powder bed fusion (LPBF) has been 
extensively studied. It has been shown that the microstructure of the as-manufactured material is fundamentally different from 
conventionally manufactured (CM) material. AM materials exhibit better mechanical properties (microhardness, yield strength, tensile 
strength), and similar elongations [92–96]. The corrosion behaviour is also fundamentally different because the microstructure is 
different. Specifically, LPBF SS316L steel has an extensive dislocation cell structure that captures Mn and S (and other elements) thus 
inhibiting the formation of MnS, which leads to higher breakdown potentials than CM SS316L steel [93,97 98]. These microstructural 
features may require special inhibitors to interact with the dislocation structures or the Mn and S trapped in them, for example.

Regarding the second opportunity that AM presents, it might be possible to create a large number of small area samples of different 
alloys and metals for subsequent high-throughput corrosion testing. AM can also create gradients of two or more metal alloys [86] that 
could also be tested in high-throughput methods, thus expanding the number of metallic systems available for corrosion inhibition 
studies. New developments in multi-materials AM promise unprecedented control over these systems [99]. For example, a new multi- 
metal AM technique called electrohydrodynamic redox printing (EHD-RP) overcomes the limitations of small-scale multi-metal AM, 
allowing direct printing and mixing of multiple, high-quality metals from a single nozzle with high spatial resolution [100].

As additive manufacturing is increasingly adopted because of its parsimonious use of materials, versatility, and low cost for pro
totyping, the study of corrosion in additively manufactured metals and alloys, and the use of AM to screen larger numbers of these 
materials for effective corrosion inhibitors will undoubtedly increase markedly in the near future.

2.5. Advances in physicochemical characterization for screening

While it may be possible to manufacture artificial microstructures using AM manufacturing processes, an alternative for high- 
throughput investigations of inhibitor interactions with metals is extensive characterization of the surfaces before and after inhibi
tor exposure. Here the focus is on obtaining excellent data on inhibitor interactions at the micron scale. This has two advantages over 
3D printing: (i) it does not require prior knowledge of the microstructure that is needed to devise the scanning pattern program that 
allows 3D printers to produce realistic microstructures and (ii) large data mapping (centimetres) can be done at micron scale reso
lution. In the case of aluminium alloys, this means that hundreds of thousands of intermetallic particles can be characterized in a single 
experiment (Al-alloys typically have a few hundred thousand particles/cm2) [101–103]. This provides primary information, such as 
their elemental composition, as well as secondary information about their spatial relationships (such as clustering of intermetallic 
particles that can lead to more active corrosion initiation sites). This approach would be useful for many alloys that have heteroge
neous microstructures such as iron and magnesium alloys. Another technique, Electron Backscatter Diffraction, can provide both 
elemental and structural characterization over large areas of a surface. This means that structural information on intermetallic par
ticles and the matrix in which they are imbedded can be obtained in great detail. Moreover, large scale characterisation can be 
performed prior to and after exposure to corrosion inhibitors, thus providing site-specific information on inhibitor interactions with 
the microstructure of the surface at a statistical level. In principle, the information derived from these large-scale characterisation 
studies can be coupled with scanning electrochemical techniques to provide spatially resolved information on composition and 
electrochemical activity. This has already been done on much smaller scales [104]. The information gained from these studies may 
well provide important metrics for assessment of inhibitor interactions with metallic surfaces.

Some of the earliest research on intermetallic particles effects was done on aluminium alloys, which have a highly heterogeneous 
microstructure comprised of many small intermetallic particles embedded in an aluminium alloy matrix (see for example Table 3). For 
example, Boag et al. [105] measured 82,000 phase domains in 18,000 particles in a 2 mm × 2 mm area of AA2024-T3 alloy. These 
studies ultimately led to the identification of new structures for some of AA2024-T3 intermetallic particles, plus an assessment of the 
electrochemical potential differences between the particles and the matrix [104]. On a smaller scale, LaCroix et al. [106,107] reported 
the composition and electrochemical activity of over 300 S-phase particles in AA2024-T3. In other work, Cawley and Harlow [108]
investigated the influence of 3D clustering on AA2024-T3 using image analyses on large areas of material. They found that clustering of 
intermetallic particles had an important role in pit initiation. Similarly, Mao et al., [109] did extensive modelling of optical micro
graphs to develop realistic 3D microstructures of intermetallic particle distributions in AA7075 plate. Chen et al. [110] also performed 
large scale microstructural characterization and devised a method for generating statistically similar surfaces for modelling.

The breadth of application for these techniques is, however, limited by the intrinsic resolution of the techniques and the amount of 
data they produce. Resolution is primarily determined by the probe size and the excitation volume. Generally, the best current res
olution is of the order of a few hundred nanometres, with most being around the micron scale. Hence, these large area/volume ap
proaches miss many of the smaller features such as segregation at grain boundaries, decoration of dislocation structures, hardening 
precipitates, and very small inclusions (see section 5 for further details on these microstructural features).

Outside of corrosion, large characterization datasets are being generated for a range of applications by new detectors and the use of 
synchrotron sources [111]. Apart from allowing exploration of much larger parts of organic chemical space, high throughput corrosion 
inhibition methods can generate much larger datasets. They are, therefore, ideally matched to the capabilities of AI and machine 
learning methods. The combination of large datasets with deep learning methods is a rapidly emerging area of research [112].
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3. Impact of inhibition mechanisms on design and discovery of organic corrosion inhibitors

The scope of this review is confined to organic inhibitors. However, it is important to note that organic inhibitors are not the only 
potential replacements for chromate. There are numerous inorganic inhibitors and compounds that include an inorganic component 
(usually a cation) with an organic component (usually anion) whose properties are outside the scope of this review.

Organic compounds with molecular weights below 1000 Da are one of the most promising classes of materials for replacing toxic 
chromate inhibitors for the following reasons. The size of the accessible chemistry space described above provides vast scope for the 
discovery of novel, effective organic inhibitors [113]. Organic molecules exhibit very high structural, physiochemical, and redox 
property diversity, important for effective corrosion control for different metals and alloys and exposure scenarios. Many compounds 
will have acceptable mill costs and compatibility with components of coatings and treatments. Proof of concept experiments have 
demonstrated their potential as corrosion inhibitors. Additionally, there are large libraries of organic compounds commercially 
available for experimentation. As discussed above, these libraries plus the increasing capabilities of automated high-throughput 
chemical synthesis [114,115], and corrosion inhibition assessment will provide large, rich data sets that can be used to train ma
chine learning models used to discover or design new, more effective corrosion inhibitors [116,117]. Also, as foreshadowed, other 
data-driven methods like design of experiments[118], statistical QSPR modelling[119], and evolutionary methods [31,32] will 
become essential to fully exploit data from high throughput synthesis and screening methods, allowing the exploration of much larger 
regions of chemical space for ‘islands of utility.

Organic corrosion inhibitors largely function by forming films or by inhibiting cathodic or anodic processes, or both. Independently 
of which reaction is suppressed, most organic inhibitors act by surface adsorption and precipitate film formation (Fig. 4), akin to 
inorganic chromates, phosphates, and nitrites, the best-known oxide film-forming inhibitors [120]. Molecules exhibiting a strong 
affinity for metal surfaces often exhibit good inhibition efficiency. However, an optimal value of adsorption energy should not be 
exceeded. Otherwise, a corrosion inhibitor might turn into a corrosion promoter, as reported by Kokalj, Fig. 5 [121].

Anodic inhibitors perform two main functions, slowing the reaction rate of anodic dissolution and generating sparingly soluble 
reaction products that form thin films over the anode. Fig. 6.1 shows a potentiostatic polarization plot illustrating the behaviour of an 
anodic inhibitor. As the anodic reaction is modulated by the inhibitor, the corrosion potential (Ecorr) of the metal is shifted to more 
positive values, and the corrosion current (Icorr) decreases in the presence of the inhibitor.

Cathodic inhibitors also inhibit corrosion via two main processes, disrupting the cathodic oxygen reduction reactions and 
generating reaction products that precipitate selectively at cathodic sites. Fig. 6.2 shows an example of a polarization curve of a metal 
with a solution of a cathodic inhibitor. When the cathodic reaction is affected, the corrosion potential Ecorr is shifted to more negative 
values. Fig. 6.3 illustrates a theoretical potentiostatic polarization curve showing the effect of a mixed (anodic and cathodic) organic 
inhibitor. With inhibitor, the corrosion potential Ecorr remains the same, but Icorr decreases. Inhibitors with functional groups that 
suppress both anodic and cathodic reactions are the most desirable.

So far, the discussion has centred on inhibitors may operate largely by a single mechanism. In reality, many organic inhibitors have 
more than one mechanism of interaction with a surface. The introduction of heteroatoms, such as S, N, and O containing lone pair 
electrons, into organic ring structures often improves the binding capacity (Fig. 7). The electron density around these atoms depends 
on the electronic configuration of the entire molecular structure and promotes chemisorption of these heteroatoms.

As illustrated in the examples of machine learning modelling of organic corrosion inhibition later in the text, quantum mechanical 
density functional theory (DFT) calculations can provide valuable information about surface interactions of individual molecules and 
functional groups. Bonding to a surface may also depend on the separation between heteroatoms, as well as the type and number of 
intermediate atoms. These types of factors are captured more strongly by molecular descriptors used in machine learning and AI 
models than those derived from DFT calculations. Molecules can only bind perpendicular to the metal surface if heteroatom sites are 
adjacent, or at specific angles, to the surface depending on the number of atoms separating the hetero atoms. For carboxylic acids, the 

Fig. 4. Diagram of conditional division of corrosion inhibitors into main mechanism groups.
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strongest binding site is more localized around the carboxylic acid group. The rest of the inhibitor molecule can also modulate binding 
to metals. For example, self-assembled monolayers (SAMs) may form by self-organization of molecules on the surface to minimizes 
their interaction energy. Alternatively, where molecules also contain unsaturated, cyclic, branched, or linear hydrocarbons, phys
isorption can also play an important role in binding to metal surfaces. Thus, molecules may have two or more types of interaction with 
the surface. For example, more complex branched molecules with additional heteroatoms can, in principle, have multiple points of 
interaction with the surface and a diverse range of inhibition properties. Ideally, inhibitors with strong absorption characteristics for a 

Fig. 5. Schematic illustration of inhibitor-metal interactions. Weak inhibitor-metal interactions result in low inhibiting efficiency, while too strong 
bonding assists metal dissolution. Reproduced from Kokalj, [121] under Creative Commons CC-BY license.

Fig. 6. Potentiostatic polarization diagram showing behaviour of a metal with 1(a) anodic 2(a) cathodic, 3(a) mixed (cathodic and anodic) in
hibitor, and without inhibitor (b), respectively. Reproduced from Dariva and Galio [122] under Creative Commons CC-BY license.

Fig. 7. Many small organic inhibitors exhibit more than one inhibition mechanism. Examples of two classes of inhibitors are shown, a heterocyclic 
compound and a carboxylic acid both with strong metal binding and R-groups that may exhibit weaker surface interactions. Common heteroatoms 
for × and Y are S, N, and O.
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range of different metals will be the most widely applicable.

4. Summary of mechanisms of small organic inhibitors

Here we provide an overview of current knowledge on the mechanism of corrosion inhibitors for several of the most commercially 
important metals and their alloys. These include the transition metals Cu, Fe and steels, and the light metals Al and Mg and their alloys. 
We summarize the transition metals before the light metals because transition metals occur as alloying additions and impurities in the 
light metals. They form secondary phases or inclusions that are a major cause of micro-galvanic corrosion in the light metals. 
Consequently, small organic inhibitors that perform well on Fe and Cu, in particular, are often good at suppressing corrosion in the 
light metal alloys. Thus, an understanding of inhibitor performance on Cu and Fe provides a valuable insight into small organic in
hibitors for the light metals and alloys.

Environmental factors and inhibitor concentration clearly influence inhibitor performance and mechanisms. pH determines the 
nature of speciation of ionizable organic molecules. For some poly-hetero-substituted molecules this can be complicated, with a large 
number of possible stable species coexisting in some pH ranges. Protonated molecules dominate in low pH, which often hinders 
adsorption [123]. Increasing the pH to ~ 8.5 leads to stronger adsorption and increased protection [124,125].

Inhibition generally increases up to a critical concentration then, in some cases, starts to decrease. The putative mechanism is that 
after the critical concentration, adsorbed inhibitor molecules desorb because they form oligomers with their soluble forms [126]. An 
alternative explanation is that oligomers that form in solution reduce the concentration of inhibitor available for adsorption. Due to 
adsorption reactions being generally exothermic, an increase in temperature most often results in decrease in inhibition. Time- 
dependent behaviour of the environment-interface may also alter the inhibition [127].

A clear example of concentration and time dependence is surfactants. For short immersion times both chemisorption and elec
trostatic attraction are observed but, at longer timescales, molecules desorb from the surface and aggregate to form micelles, 
decreasing surface coverage and inhibition [128]. This effect is also concentration-dependent because an increase after a threshold 
concentration promotes the formation of micellar aggregates that promote inhibitor desorption from the interface [129]. Micelle 
formation above the Krafft temperature (the minimum temperature from which the micelle formation takes place) has also been an 
effective route to loading higher concentrations of inhibitor into porous ceramic-like polyethylene oxide (PEO) conversion layers on 
Mg alloy [130]. Inhibitor concentrations can even change the dominant inhibition behaviour. It was reported that, up to 1 mM 
concentration, benzotriazole derivatives exhibit cathodic inhibition. However, with increasing concentration, the main inhibition 
mechanism switched to copper-benzotriazole passive layer formation [131]. Thiosemicarbazide was seen to inhibit copper surfaces via 
adsorption at low concentrations (<50 ppm). However, at higher concentrations the nature of protection changes, with formed Cu+

complexes subsequently being oxidized to Cu2+ complexes [132].

4.1. Micro-galvanic corrosion

Micro-galvanic corrosion is one of the most important processes in light metals and alloys. The metallic microstructure of these 
metals contains transition metal inclusions whose electrochemical activities, at the mixed potential of the metal, results in the sep
aration of anodic and cathodic reactions. These separated electrode sites are where small organic inhibitor play their role. These 
moieties encompass a range of microscopic structures: –. 

(i) Secondary phases in the form of particles composed of alloying elements;
(ii) Enrichments – Cu in Al-alloys concentrates at many sites due to processing or corrosion. Fe, Cu, and Ni are the most detrimental 

elements for Mg alloys; alloying and impurity elements can aggregate at ferrous metal grain boundaries;
(iii) Mixed phase materials, predominantly transition metals, where various forms of Fe can crystallize in steels and Cu brasses and 

bronzes have different phases;
(iv) Different grain (small crystallite) orientations at surfaces can lead to differential corrosion;
(v) Deformed or stressed structures resulting from manufacturing or subsequent processing can be more susceptible to corrosion 

than areas of lower stress;
(vi) Concentration gradients of inclusions resulting from thermomechanical processes.

These processes are commonly the source of micro-galvanic corrosion that leads to localized attack. However, much of the reported 
literature on corrosion inhibition efficiency largely omits this important information. This is due to the three most common ways of 
measuring inhibition efficiency, impedance, corrosion current, and mass loss, being effectively averages across the surface, so they 
integrate localised corrosion into general corrosion. High-throughput experiments suffer from the same problem because their aim is to 
obtain a single performance metric.

In the sections on the transition metals below, the mechanisms described should be transferable to the light metals and their alloys 
since micro-galvanic corrosion associated with sites where Cu and Fe are often dominant. However, a major caveat is that the 
background electrolyte is different to that for the transition metal corrosion environments. This is due to pH changes caused by anodic 
and cathodic reactions and by presence of light metal cations that can hydrolyse (especially Al3+ and Fe2+) leading to autocatalytic 
pitting corrosion and precipitation of hydroxides, hydroxychlorides, and hydroxycarbonates that buffer the interface pH.
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databases. Thus, the following section provides an overview of contemporary mechanistic details of corrosion inhibition rather than 
comprehensively describing the wide variety of known copper corrosion inhibitors.

4.2.1. Corrosion mechanisms
Copper corrosion mechanisms are different in the absence and presence of oxygen and other oxidants such as nitrate, sulfate and 

chloride species. In anoxic environments, copper surfaces are heterogenous catalysts that promote water splitting and adsorption of 
molecular hydrogen on the surface: 

Cu + yH2O ↔ HxCuOy + (2y � x)Hads 

The durability of copper is determined by how well H2 is removed [133,141]. This reaction can continue when the dissolved H2 can 
be transported away. However, since H2 evolution is not a part of its corrosion process, for most of the practical applications it is 
accepted that copper does not corrode in non-oxidizing environments. For oxidizing, near neutral, and slightly alkaline environments 
copper corrosion products form in the order Cu2O, CuO, and Cu(OH)2: 

2Cu + H2O ↔ Cu2O + 2H+ + 2e�

Cu2O + H2O ↔ 2CuO + 2H+ + 2e�

Cu2O + 3H2O ↔ 2Cu(OH)2 + 2H+ + 2e�

Corrosion products generate a passive double layer composed of an outer cupric hydroxide and an inner cuprous oxide, which is 
only stable in the pH range 8–12 [137,142]. The stability of the passive layer is key to the corrosion protection afforded by an inhibitor. 
A good corrosion inhibitor should prevent both surface roughening via acidic etching at low pH: 

Cu2O + 2H+ ↔ 2Cu+ + H2O 

CuO + 2H+ ↔ Cu2+ + H2O 

and stabilize soluble complexes formed by corrosive species: 

CuCl2 �
+ Inh.H ↔ Cu � Inh + H+ + 2Cl�

4.2.2. Corrosion inhibition mechanisms
Organic molecules prevent copper corrosion by physisorption or chemisorption to the oxide/metal surface, commonly by forming 

chelates. Physisorbed and chemisorbed inhibitor layers provide barrier protection for metal surfaces. Physical adsorption results from 
electrostatic interactions between partially charged centres of the molecules and charged oxide or metal surfaces. Physisorption can 
also occur through hydrogen-bonding and Van der Waals interactions. Depending on the molecule, electrostatic interactions can make 
an important contribution to the adsorption energies, like chemisorption modes. Chemical adsorption stems from sharing or transfer of 
charge from the inhibitor to the surface. The vacant d-band of transition metals enables parallel chemisorption of the molecule to a 
surface via pronounced π-d orbital hybridization, or perpendicular chemisorption via the σ-molecular orbitals of unsaturated het
eroatoms. For fully occupied d-bands of copper, weaker perpendicular chemisorption through σ-molecular orbitals is expected [123]. 
Inhibitor-copper substrate chemisorption frequently occurs by donation of readily available free electron pairs on the inhibitor to the 
free orbitals on copper.

Aqueous phase adsorption can be considered a substitution reaction that results from several competing interactions: molecule- 
water; metal-water; water-water; molecule–metal; and similar interactions with corrosive ions and contaminants. The adsorbed 
layer physically inhibits corrosion by keeping aggressive, corrosion-inducing ions away from the surface. It can also electrochemically 
inhibit corrosion by slowing anodic and/or cathodic reactions. The entire surface can be covered by an anodic passivation layer, or 
adsorption can occur on rate limiting cathodic zones.

Protection is achieved through self-assembly of inert, insoluble polymeric inhibitor barrier layers on naturally formed Cu2O. 
Stabilizing Cu(I) is the key to inhibiting the copper corrosion reactions. Cu(II) complexes often do not provide protection [143,144]. 
The stability of these self-assembled monolayers is dependent on the chemical structure of the molecule and the presence of appro
priate, active functional groups.

Functional groups containing heteroatoms such as nitrogen, oxygen, sulfur, and conjugated π-bonds facilitate copper corrosion 
inhibition by coordinating these electron donor species with vacant orbitals of copper. Due to the strong adsorption affinity of sulfur for 
copper [145], many nitrogen-containing organic molecules with sulfur functional groups have been investigated as copper corrosion 
inhibitors. Nitrogen- and sulfur-containing molecules (thiazoles, azoles, amines, etc.) improve the copper oxide layer stability by 
preventing the formation of copper chloride complexes.

Additionally, the introduction of nonpolar functional groups in appropriate molecular positions increases the hydrophobicity of the 
organic film, improving corrosion protection performance due to stronger surface-electrolyte interactions. For example, increasing an 
alkyl chain length initially improves inhibition by increasing the hydrophobicity, but eventually the aqueous solubility of the molecule 
becomes so low that any benefit gained from the protective properties is lost. For 5-alkylbenzotriazoles, protection increases with 
longer chain lengths up to six carbon atoms, with no improvements beyond that [146]. With alkyl esters of 4- and 5-carboxybenzo
triazoles chemisorbed to copper surfaces through the triazole ring nitrogen, the inhibition improves with increasing chain length, 
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with the 5-octyl derivative showing excellent protection in low/neutral pH [147,148].
The chemical configuration of molecules and steric hindrance effects also play an important role in the effectiveness of protective, 

self-assembled monolayer barrier films. These factors are exemplified by substituted benzenethiol derivatives. Those containing 
amino, acetamido, fluoro, methyl, and isopropyl functional groups form protective self-assembled monolayers on copper substrates, 
whereas unsubstituted benzenethiol provides weaker corrosion protection. Molecules adsorb to copper via thiolate bonds, and 
substituted benzene rings provide hydrophobic protection, resulting in densely packed monolayer protective films. The effectiveness of 
thiolate and aromatic substituents depends on their type and position. They can modify the acidity of the thiol proton, change the 
ligand properties of the thiolate, and improve or degrade the adsorption of the molecule on the copper surface. Sterically crowded 
substituents may act as a diffusional barrier to the incoming corrosive species and affect the formation of monolayers in some cases. For 
para-substituted benzenethiol molecules it was observed that electron-withdrawing functional groups such as � F increase the acidity 
of the thiol hydrogen, which improves bonding to the copper substrate. In comparison, electron-donating substituents such as –NH2 
increase the SH pKa and weaken binding of benzenethiolate to the Cu surface. However, despite being electron-donating, these 
substituents can also improve inhibition by blocking corrosive species due to their bulkiness and hydrophobicity, as is the case for 
methyl and isopropyl substituents. Compared to the unsubstituted molecule, substituted benzenethiolate inhibition increases in the 
order of para, ortho, meta for –NH2 substitution. Due to mesomeric effects, the electron donating meta-NH2 is unable to adversely 
influence the pKa of the thiol group, so bind more strongly to copper than the ortho and para substituents. However, the para sub
stituent can regain some its binding energy by facilitating formation of a bidentate coordination to Cu through both sulfur and nitrogen 
moieties, and by forming intermolecular hydrogen bonds not observed for the ortho and meta isomers [149]. Thus, elucidating the 
effects of substitution on the performance of certain chemotypes can be complex. Given that barrier formation is the main mechanism 
for protection of copper and its alloys, we describe the mechanisms of specific chemotypes, rather inhibition mechanisms used for the 
magnesium inhibitors section.

4.2.3. Azoles
Azoles interact with copper through heteroatom lone pair electrons, forming copper-azole complexes by coordinating with Cu0, 

Cu+, and Cu2+. The nature of protection can be physical and/or chemical. Molecules can bond to the surface through ring nitrogen 

Fig. 8. DFT calculations of most stable gas-phase bonding configurations of imidazole, triazole, tetrazole and pentazole on Cu (111) for top: neutral, 
and bottom: deprotonated states of molecules. N-Cu bond lengths and adsorption energies are also stated. Reproduced from Kovacevic et al. [154]
with permission.
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atoms and through metal-hydrogen bonds [150].
Imidazole, triazole, and tetrazole preferentially adsorb to Cu2O via a single unsaturated N σ-bond, and a hydrogen bond to a nearby 

surface O ion [151]. Triazole and tetrazole can chemisorb perpendicular to the surface via two N atoms, however, such a binding mode 
is unfavourable for imidazole. This is due to its molecular geometry that places the two N atoms on opposite sides of the imidazole ring. 
Instead, dissociative cleavage of C–H bond leads to adsorption perpendicular to the surface. On the other hand, bonding through two N 
atoms to the Cu surface results in adsorption parallel to the surface, with the former being more thermodynamically favourable than 
the latter [152].

Fig. 8 summarizes the most stable bonding configurations for imidazole, triazole, tetrazole, and pentazole. Increasing the number 
of nitrogen atoms in the ring causes the molecule to be more electronegative and chemically harder, which makes hybridization with 
the metal states and molecule-surface contact more difficult, reducing adsorption by decreasing the adsorption energy in the order of 
imidazole < triazole < tetrazole < pentazole [153].

Azoles in their protonated and deprotonated forms interact strongly with water due to their charged nature and hydrogen bond 
donor/acceptor properties. However, despite strong solvation, deprotonated molecules bind so strongly to the surface that they result 
in superior adsorption compared to neutral forms. The aqueous-phase adsorption free energies of 1,2,3-triazole, tetrazole, and pen
tazole are considerably more exothermic for their deprotonated forms. However, due to its high pKa, imidazole binds with similar 
energy in its protonated and neutral forms [154].

Fig. 9 displays the molecular structure of azoles commonly used as copper corrosion inhibitors. The complexes of such molecules 
are likely polymeric, forming adherent protective films on the surface and blocking aggressive ions such as chlorides. When cuprous 
ions interact with these azoles, they are chemisorbed on the copper surface and form a protective film that inhibits anodic dissolution 
of copper. Corrosion inhibition of common azoles increases in the order of imidazole < benzimidazole < mercaptobenzothiazole <
benzotriazole for neutral pH in saline environments [155], and benzotriazole < benzimidazole ~ mercaptobenzimidazole < benzo
thiadiazole < mercaptobenzothiazole for alkaline borate buffer environments [125].

Imidazole derivatives exhibit increasing inhibition in the order of 1-methyl-imidazole < imidazole < benzimidazole < 2-mercapto- 
1-methyl-imidazole < 2-mercaptobenzimidazole. Mercapto- and benzene groups improve inhibition, whereas methyl groups can 
accelerate corrosion with increasing concentration. While methyl and phenyl groups reduce solvation free energy, and hence increase 
the relative adsorption to the surface, electronegativity is increased by the phenyl group and reduced by the methyl and thiol sub
stituents [156]. Imidazole and 1-methyl-imidazole form soluble cupric corrosion products, but only the cuprous compounds were 
detected for the other inhibitors. Thiol and phenyl substituents have a weaker tendency to form soluble complexes with Cu2+ ions and 
result in stable adsorbed layers [157,158].

Thiadiazoles have strong inhibition properties due to sulfur in the ring and presence of thiol functional groups. 2-amino-5-ethyl- and 
2-amino-5-ethylthio- derivatives of 1,3,4-thiadiazole prevent formation of soluble CuCl2- /Cu2(OH)3Cl species in acid and saline en
vironments [159–162]. Protective 1,3,4-thiadiazole-2,5-dithiol-Cu+/Cu2+ complexes are formed by spontaneous substitution of sur
face water molecules with inhibitor [162].

Benzimidazoles chemisorb and form an insoluble Cu(I)benzimidazole anodic passivating polymeric film [155]. 2-mercaptobenzi
midazole binds to the surface strongly due via the thiol moiety. At low surface concentrations the molecules lie flat, with both S and N 
atoms bound to the copper. At higher concentrations, molecules adsorb with S and one N tilted away from the metal surface, creating a 
denser protective monolayer [163].

2-mercaptobenzothiazoles (MBT) inhibit copper corrosion by forming a thin water-insoluble polymeric film of Cu(I)MBT. It is not 
formed by precipitation of MBT from the bulk solution but by an anodic corrosion product formed by a surface reaction of cuprous ion. 
Chemisorption occurs through the thiocarbonyl group coordinated to cuprous ions. The formation of chelate structures is not likely 
because of high formation strain. An S-bridged polymeric structure results in nearly parallel adherent films with an outer 
dibenzothiazolyl-disulphide (DBDS: oxidation product of MBT molecules) and an inner Cu(I)MBT film. The protective Cu(I)MBT film 
forms over the Cu2O surface during the initial corrosion stage and grows at the Cu2O/ Cu(I)MBT or Cu(I)MBT/DBDS interface via 
diffusion of cuprous ions to the interface [164–167].

Triazoles may adsorb by displacing water molecules on the surface and by sharing the triazole nitrogen lone pair electrons The 
protection offered by triazoles is due to formation of an insoluble, semipermeable, polymeric copper-triazole film formed by covalent 

Fig. 9. Structure of azoles commonly used for copper corrosion inhibition.

D.A. Winkler et al.                                                                                                                                                                                                    Progress in Materials Science 149 (2025) 101392 

15 



or coordinate bonds. 3-amino-1,2,4-triazole inhibits corrosion by forming complexes with Cu(I) and preventing dissolution of the 
soluble CuCl2- [167,168]. Introduction of amine groups at position 3 results in reduced cathodic currents in HCl medium by increasing 
the fraction of transferred electrons during chemisorption; this effect further increased by second amine substitution at position 5 
[169]. For 3-amino-1,2,4-triazole, introduction of a thiol group in position 5 increases inhibition due to additional bonding by sulfur, 
while introduction of a methylthio moiety increases inhibition because of higher electron donation by the methyl group [170]. 
However, when the positions of thiol and amino groups are swapped, the trend reverses where 5-amino-3-mercapto substitution has 
higher inhibition than the 5-amino-3-methylthio analogue. This was thought to be due to the methylthio moiety preventing the 
formation of C–S bond tautomers [171]. 5-phenyl substituted analogues exhibited ~ 99 % inhibition efficiency due to the formation of 
Cu-inhibitor(–H2O) complexes [172]. Among 1,2,4-triazole phosphonate derivatives, maximum protection was observed for the 
electron-donating methoxyphenyl group, and minimum protection for the electron-withdrawing p-nitro substituents. Electron 
donation results in increased basicity of the coordinating atoms, assisting in electron transfer during chemisorption. 5- and 6- 
membered Cu(II)-phosphonate ring complexes formed through Lewis acid-base electron exchange were the main inhibiting struc
tures [173].

Benzotriazole (BTA) derivatives have been used since 1947 [143] to slow down degradation of copper. Both physisorption (<0.1 eV) 
and weak chemisorption (~0.4 eV) play roles in the protection mechanism [174]. Chemisorption takes place through the triazole ring 
N sp2 lone pair electrons. Protection occurs by the formation of Cu(I)BTA complex, which retards both the cathodic oxygen reduction 
reaction and anodic oxidation of metal [137]. The bonding can be parallel or perpendicular to the substrate, with parallel orientation 
resulting in better inhibition due to the interaction of d-orbitals of Cu with of π-electrons of the benzene ring and intermolecular bond 
formation [137]. An increase in coverage makes parallel physisorption to the surface more stable than perpendicular chemisorption 
[175].

BTA only binds the surface strongly enough to compete with Cl-Cu surface interactions in its deprotonated form [176–179]. 
Deprotonation can occur by release of hydrogen atoms on the copper surface or by classical dissociation in the electrolyte [179]. 
Complex formation generally increases with increasing pH, but protection decreases in highly alkaline and acidic media, or envi
ronments containing highly aggressive ions. In alkaline environments, inhibition results from substitution of the –NH hydrogen and 
coordination with the lone pair of nitrogen electrons [180]. In acidic environments, thicker but more oxygen-permeable and less 
protective films are formed [181]. The combined effect of potential, pH, Cl-, and BTA concentrations on thermodynamic stability of 
copper-BTA systems can be usefully elucidated by Pourbaix diagrams [182].

Molecular structure investigations of methyl-benzotriazoles reveal that methyl substitutions at positions 1 and 2 hinder bonding 
due to steric effects, while substitutions at positions 4 and 5 improve protection due to increased hydrophobicity [183]. Functional 
group substitutions in position 5 enhance the inhibition performance, with electron acceptor groups having a stronger effect than 
electron donor groups [146]. Substitution of methyl groups in position 4, 5, and 6 increases film hydrophobicity and is responsible for 
the increased inhibition performance of tolytriazole [184]. Increasing linear chain length also increases hydrophobicity. Alkyl group 
substitutions at the 5 position increase protection by increasing chain length up to an alkyl chain with 6 carbons [146]. Adding carboxy 
group chains to BTA increases inhibition due to additional hydrophobicity of the chain, and electron-withdrawing effect of carboxy 
group. This is less apparent for 5-substituents than for 4-substituents, which has stronger chemisorption [147]. Compared to 

Fig. 10. Mechanisms of corrosion inhibition for mono and di-carboxylates. Reproduced from Hefter et al. [187] with permission.
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unsubstituted BTA, the electron-withdrawing 5-Cl substituent enhances inhibition, whereas the electron-donating 5-NO2 group de
creases protection due to stronger dissociation of the molecule to its anion [185]. Despite having similar electronic properties, 3-hy
droxyl BTA has a non-planar structure which results in a thick, porous film that does not provide corrosion protection [126].

Tetrazoles also have the potential to replace current inhibitors. 1-Phenyl-5-mercaptotetrazole (PMTA) has a much higher corrosion 
inhibition performance than other tetrazoles, and protective abilities increase in the order hydroxybenzotriazole < imidazole <

aminopyrimidine < mercaptobenzimidazole < mercaptobenzothiazole < benzotriazole < tetrazole. A Cu(I)-PMTA film forms over 
Cu2O, where every PMTA molecule binds to two or more Cu(I) ions through N and S atoms. The hydrophobic phenyl backbone assists 
inhibition by blocking access of hydrated corrosive ions to the copper surface [144].

4.2.4. Carboxylates
Carboxylate layers limit the interaction of copper with the environment. Fig. 10 provides a summary of the general corrosion 

inhibition mechanisms for mono- and dicarboxylates. Formation of a hydrophobic diffusional barrier is the basis of inhibition. 
Adsorption occurs through the COO– group, heteroatoms and unsaturated π-bonds. Protection can be increased by linear alkyl chains 
[186,187] or aromatic [188,189] moieties. Protected surfaces show a micro textured hydrophobic plate-like morphology [190].

Increased chain length results in thinner layers with coarser morphologies and better corrosion protection. Copper carboxylate 
surfaces created by linear alkyl carboxylates show inhibition that depends on a critical chain length. Long chain tetradecanoic and 
octadecanoic acids are better inhibitors than shorter decanoic and hexanoic acids [190]. Electrochemically deposited copper dec
anoate/dodecanoate increase polarization resistance, whereas heptanoate films exhibited no change [186]. This shows that a critical 
chain length is required for inhibition.

Monocarboxylates with chain lengths smaller than 10 exhibit weak copper corrosion inhibition. There was no significant depen
dence on chain length until a chain length of 10 (decanoate), where a significant increase in polarization resistance was observed. 
Resistance remained high but dropped at n = 11 (undecanoate) and increased with further increases in chain length. Abrupt decline in 
resistance was related to decreased aqueous solubility, increased micellization of carboxylate anions, or both. For α, ω-dicarboxylates 
the resistance increased gradually with increasing chain length, increased significantly at n = 11, and resistance continued to increase 
gradually with growing chain length. The oxalate (zero chain length) accelerated corrosion [187]. These suggest that copper 
complexation increases with increasing carboxylate bonding and decreasing chain length, but hydrophobicity/surface-coverage 
offered beyond a critical chain length was necessary for protection.

π-bonds from heterocycles and unsaturated carboxylates with long chains can also assist inhibition. 1,2,4-triazole-3-carboxylic acid 
binds strongly to copper in a perpendicular orientation through N1, N2 and one of the carboxylate O atoms [189]. Carboxylated indoles 
physisorb in their neutral form and chemisorb through Cu–N bonds in deprotonated form [191]. Sodium oleyl sarcosinate and sodium 
oleate have lower free adsorption energies than the widely used BTA, which suggests chemisorption [192]. Hydrophobic tails form a 
polymolecular film which provides high protection [193]. The dicarboxylate dimegin stabilizes Cu(I) oxide by forming carboxyl 
bridges over several copper cations, resulting in a self-organized dense protective layer, despite being present in less than 1 mM 
concentration [194].

Amino acids and nucleobases: Biological molecules are promising, environmentally friendly alternatives to current effective but toxic 
inhibitors, such as benzotriazole and benzimidazole derivatives. Amino acids and nucleobase derivatives interact with copper surfaces 
via their benzo/azole moieties, carboxyl groups, and heteroatoms present in other functional groups. Cysteine, glutamic acid, glycine, 
and glutathione coordinate to copper surfaces through N, O, S atoms [195]. A comparison of electrochemical performance shows that 
cysteine exhibits better binding than lysine, arginine and alanine due to its thiol moiety. A lack of heteroatom means glycine, alanine, 
and valine have no inhibition properties [196,197]. In acid environments, glutamic acid is a better inhibition in comparison than 
serine and threonine, attributed to improved electrostatic interaction between positively charged copper surface and negatively 
charged oxygen adsorption centres of the protonated amino group [197]. Physical adsorption increases with more active N hetero
atoms i.e., aspartic acid < glutamic acid < asparagine < glutamine [198]. The presence of an aromatic ring allowed more efficient 
surface coverage through parallel physisorption of tyrosine and tryptophan, which resulted in higher performance compared to 
glycine, alanine, valine, proline and phenylalanine [199,200]. Both cysteine [201] and tryptophan [202] act as promising corrosion 
inhibitors for acidic environments. For sulfate media, the main rate limiting corrosion product was seen to be Cu(I)-cysteine, which 
was used up in the formation of slightly soluble copper-amino acid complex and limited the Cu2+ electrooxidation. A similar mech
anism was observed for methionine, where inhibition succeeds by prevention of oxidation of Cu+ into soluble Cu2+ [203]. The for
mation mechanism of the self-assembled monolayers of cysteine is different for copper and copper oxide, where adsorption occurred 
through N for bare copper, and via S for Cu2O, which was also easier to adsorb to due to its lower adsorption energy [204].

Purine and adenine inhibit corrosion reactions in sulfate [205] and nitrate [206] environments by forming a chemisorbed Cu(I)- 
inhibitor complex. A substituted electron donating amino group improved adenine inhibition relative to purine. Purine chemisorbs 
perpendicular to the copper surface through nitrogen donor electrons, and CuCl2 reacts with purine to form a protective film [207]. 
Uracils with hydroxyl, thiol and methyl substituents inhibit corrosion in saline environments, with dithiouracil exhibiting the highest 
inhibition. This is due to complexation with copper ions through delocalization of aromatic ring, nitrogen electron pairs from the 
thioamide moiety, and the presence of two thiol groups [208].

4.2.5. Other organic molecules
Surfactants inhibit corrosion due to their amphiphilic nature. They physisorb or chemisorb to the surface through covalent coor

dination by the polar group, while the long non-polar carbon chains form a hydrophobic barrier that protects surfaces from aggressive 
environments. Common surfactants like sodium dodecyl sulfate [128,170], sodium dodecyl benzene sulfonate [129], ammonium 

D.A. Winkler et al.                                                                                                                                                                                                    Progress in Materials Science 149 (2025) 101392 

17 



dodecyl sulfate [209], cetyl trimethyl ammonium bromide [128,170], sodium oleate [128], polyoxyethylene sorbitan monooleate 
[128] can inhibit copper corrosion in acidic media, mainly by electrostatic interactions of adsorbed ions.

Ionic liquids are room temperature molten salts with a high self-assembly capability. They are comprised of organic cations with a 
hydrophobic tail, a linear chain branch, and a hydrophilic polar head. Ionic liquids inhibit corrosion by blocking the active sites on the 
copper surface by forming a protective film. As we have noted, this mechanism is common to many inhibitors. In acidic chloride 
environments, (1-butyl-3-methylimidazolium) chloride or bromide chemisorbs to the surface via the imidazoline ring to form stable, 
insoluble films [210]. The presence of the chloride anion results in higher performance. In phosphate environments, 1-butyl-4-meth
ylpyridinium tetrafluoroborate exothermically physisorbs to the surface [211]. The inhibition increases with increasing carbon length 
of the alkyl chain connecting N3 of imidazolium ring by modifying the electron donor properties and covering the surface better [212]. 
Investigation of two new protic (PIL) and four aprotic (APIL) room-temperature ionic liquids revealed that di-[bis-(2-hydroxyethyl) 
ammonium] adipate (DAD) and 1-hexyl-3-methylimidazolium hexafluorophosphate (HMH) have strong inhibiting properties 
[213]. HMH forms a uniform solid layer on a copper surface due to reactions with the hexafluoro-phosphate anion. DAD formed 
adsorbed layers, but no corrosion products.

Schiff bases also possess good corrosion inhibition properties. Inhibition stems from the coordination of copper ions with azome
thine nitrogen [214], resulting in adsorbed inhibitor forming a thin protective film. These interactions are crucial, as the presence of 
unoccupied π-orbitals enables electron back-donation from the copper d-orbital. The benzene ring, combined with unpaired electrons, 
enables stable chelate formation through multisite chemical adsorption [140]. It was observed that the geometry of the Schiff bases 

Table 2 
Iron and iron alloy UNS designation and composition [225]. UNS assigns a letter followed by 5 numbers. D denotes carbon steels and alloy casting 
steel, F denotes cast irons, G denotes carbon and alloy steels, H denotes AISI and SAE H steels, J denotes cast steels, K denotes miscellaneous steels and 
ferrous alloys, S denotes heat and corrosion resistant steels, and T denotes tool steels.

Name UNS 
Numbers

Composition

Cast irons F33800 C3.2-4.1, Mn 0.1-1.0, P0.015-0.1, Si1.8-3.0, S 0.005-0.035
Carbon steel (Mn < 1 %) G10xxx C0.06-1.04, Mn 0.25-1.00
Carbon steel (Mn 1.00 to 1.65 %) G15xxx C0.18-0.55, Mn 1.05-1.65
Re-sulfurized carbon G11xxx C0.08-0.55, Mn0.30-1.65, S0.08-0.20
Re-sulfurized re-phosphorized carbon 

steels
G12xxx C0.09-0.13, Mn0.6-1.15, P0.04-0.12, S0.10-0.35

Mn steels G13xxx C0.28-0.48, Mn 1.6-1.9, P < 0.35, S < 0.4
Ni Steels G23xxx Ni 3.5

G25xxx Ni 5.0
AISI and SAE H-steels H10380 C0.34–0.43, Mn0.50–1.0, Si 0.15–0.30

H15220 C0.17–0.25, Mn1 � 1.5, Si 0.15–0.30
H94301 C0.27–0.33, Mn0.7–1.05, Si 0.15–0.30, Cr0.25–0.55, Ni 0.25–0.65, Mo 0.08–0.15

Cast stainless steels J92605 C < 0.5, Cr26-30, Ni < 4, Si < 2
J93005 C < 0.5, Cr26-30, Ni4-7, Si < 2
J94065 C < 0.35–0.75, Cr13-17, Ni 33–37, Si < 2.5

Cast steels K11510 C < 0.15, Mn < 1, P < 0.45, S < 0.05, Cu > 0.20
K11856 C 0.15–0.21, Mn 0.80–1.1, P < 0.35, S < 0.04,Si < 0.3, Cu > 0.20

C < -.-7, Mn0.40–0.70, P < 0.25, S < 0.25,Si < 0.35, Cr 0.6–0.9, Ni 0.7–1.0, Mo 0.15–0.25, Cu 
1.0–1.3, Nb > 0.02

K20747
Ni-Cr steels S31xxx Ni 1.25 – 3.5; Cr 0.65–1.57

S32xxx Ni 1.25 – 3.5; Cr 0.65–1.57
S33xxx Ni 1.25 – 3.5; Cr 0.65–1.57

Mo steels S40xxx C 0.13–0.50, Mn 0.4–1.0, P < 0.35, S < 0.4, Cr 0.3–1.1, Ni 0.7 to 2.0, Mo 0.08–0.45
S44xxx

Ni-Cr-Mo S43xxx Ni 1.82; Cr 0.50 and 0.80; Mo 0.25
S43BVxx Ni 1.82; Cr 0.50; Mo 0.12 and 0.25; V > 0.03
S47xxx Ni 1.05; Cr 0.45; Mo 0.20 and 0.35
S81xxx Ni 0.30; Cr 0.40; Mo 0.12
S86xxx Ni 0.55; Cr 0.50; Mo 0.20
S87xxx Ni 0.55; Cr 0.50; Mo 0.25
S88xxx Ni 0.55; Cr 0.50; Mo 0.35
S93xxx Ni 3.25; Cr 1.20; Mo 0.12
S94xxx Ni 0.45; Cr 0.40; Mo 0.12
S97xxx Ni 0.55; Cr 0.20; Mo 0.20
S98xxx Ni 1.00; Cr 0.80; Mo 0.25

Tool steels T11301 C 0.78–0.88, Mn 0.15–0.4, Cr 3.5–4.0, Ni < 0.3, Mo 8.2–9.2, W 1.4–2.1, V 1–1.35, Si 0.2–0.5
C 0.65–0.80, Mn 0.1–0.4, Cr 3.75–4.5, Ni < 0.3, W 17.25–18.75, V 0.9–1.3, Si 0.2–0.4

T12001 C 0.95–1.05, Mn < 1.0, Cr 4.75–5.5, Ni < 0.3, Mo 0.9.-1.4, V 0.15–5.0, Si < 0.5
C 0.44–0.55, Mn 0.1–0.4, Cr 1.0–1.8, Ni < 0.3, Mo < 0.5, W 1.5–3.0, V 0.15–0.30, Si 0.15–2.0

T30102 C 0.7–1.5, Mn 0.1–0.4, Cr < 0.15, Ni < 0.2, Mo < 0.1, W < 0.15, V < 0.1, Si 0.1–0.4

T41901
T72301
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influences the inhibition efficiency of N,N’-o-phenylen-bis(3-methoxysalicylidenimine) (~90 %), N,N’-p-phenylen-bis(3-methox
ysalicylidenimine) (~80 %), and N-[(2-hydroxy-3-methoxyphenyl)methylene]-histidine (~40 %).While Schiff bases can form chelates 
with both Cu+ or Cu2+ ions, the structure of the molecules determines whether stable chelates are possible with Cu2+ ions. More stable 
chelates result in better inhibition of anodic dissolution [215]. The influence of molecular structure was also observed for N,N’- 
ethylene-bis(salicylidenimine), N,N’- isopropylene-bis(salicylidenimine), and N,N’-ortho-phenylene acetyl acetone imine (2-hydrox
ybenzophenone imine), where a coplanar conformation provides increased interaction of aromatic π-electrons with the copper surface 
[216].

Caffeine and its derivatives theobromine and theophylline have been investigated as inhibitors in sulfuric acid [217], nitrate, [218]
and chloride [219] environments. The simulated adsorption energy distributions of caffeine and water were distinct from each other, 
whereas for theobromine and theophylline they were overlapping [220]. This is consistent with experimental results, where caffeine 
alone showed minor inhibiting activity by creating a hydrophobic film consisting of Cu(II)-caffeine complex [217,219].

Other plant-based compounds were also studied due to their non-toxic, environmentally friendly nature. Extracts of cannabis [221]
and Azaridirachta indica (Neem) [222] were among the most efficient compounds. For example, 1 g/l cannabis inhibited carbon steel 
corrosion in 1.0 mol/L HCl at by > 90 %, while Neem provided 95 % protection of steel reinforced concrete after 182 days. Com
pounds with higher inhibition efficiency often contained tannins, flavonoids, and phenolic species, which physisorbed to the surface 
through N and O heteroatoms, and carbonyl and hydroxyl functional groups [223,224]. The mode of action in most cases was blocking 
surface interactions by creating a diffusional barrier.

4.3. Corrosion inhibitors for iron and steel

Iron is used both in its pure form and in alloys, of which there are a vast number. There are over 3,500 steels that are given grade 
numbers according to various steel bodies. Table 2 shows the UNS classifications and compositions for some typical iron alloys. [225].

In practice, pure iron is most used in wrought iron for applications where complex shapes with high load-bearing properties are 
required. More commonly, iron is alloyed with other metals and elements. Iron and steels have complex microstructures containing 
many phases as seen in the Fe phase diagram. Alloying is often used to improve mechanical properties and corrosion resistance. Often, 
the alloying additions are designed to stabilise particular phases e.g., high temperature austenite at room temperature, which can be 
stabilised by alloying with Mn, Ni, Co and Cu.

As with Cu alloys, Fe alloys are subject to all forms of corrosion generally experienced by metals. These are related to the underlying 
microstructure/composition and types of applications. Iron is intermediate in the electrochemical series but is susceptible to galvanic 
corrosion when coupled with more noble metals (e.g. Cu). Iron corrosion is generally attributed to the properties of the corrosion 
product that develops on its surface. It forms a loose product that allows ingress of corrodents that can easily generate more corrosion 
product. Iron oxidation has been extensively investigated [226]. Other steels, for example stainless steels and weathering steels, owe 
their corrosion resistance to additional Cr, Cu, Ni, P, Si, Mn and sometimes rare-earth elements, which form passive films or compact 
corrosion products on the surface of the steel.

In steels corrosion can occur between the different polymorphs of iron as well as through local galvanic corrosion, such as between 
inclusions and the metal matrix. There are several polymorphs of iron in carbon steel including, bainite, austenite, pearlite, ferrite, and 
lederburite [227]. There are a range of inclusions, with sulphides, carbides, and oxides being the major types. Martensite is an Fe-C 
solidi solution and cementite is a ferrous carbide. Bainite and pearlite are mixes of two phases: carbide and ferrite. Corrosion on, or 
between different polymorphs of Fe, or between inclusions and the Fe matrix, has completely different chemistry than aluminium, for 
example. Clearly, this is important when considering inhibitor performance metrics (e.g. %IE) for one metal compared to another, or 
even between different phases in the same metal.

Precipitates in steels are a major source of localised corrosion [228]. Although inhibitors for steels are often reported, differences in 
inhibition on inclusions/precipitates/different phases (i.e., the effects of microstructures on corrosion inhibition) are very much 
overlooked. Carbides are among the most common precipitates, formed by reaction with a number of alloying elements; carbo-nitrides 
are also formed [229]. The sulphides are also very active inclusions that can form from any of the transition metal alloying additions 
and with iron itself. Oxides are another type of inclusion and are more prevalent in additively manufactured materials. Corrosion 
inhibitors that perform well on the light metals may not perform as well in suppressing carbide corrosion. The chemistry of inhibition 
of corrosion of a carbide will be different the intermetallic particles found in light alloys.

4.3.1. Corrosion mechanisms
Compared to other metals, the corrosion of steel is very prevalent. Specifically, carbon steels and low-alloy steels exhibit the most 

obvious corrosion because of their rusty colours. During corrosion, iron undergoes the following reaction:
Anodic Reaction: 

Fe→Fe2+ + 2e�

Cathodic reactions vary depending on the solution environment [230].
In an acidic aqueous environment with dissolved oxygen: 

2H3O+ + 1/2O2 + 2e� →3H2O 

In an acidic aqueous environment without dissolved oxygen: 
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2H3O+ + 2e� →2H2O + H2↑ 

In a neutral aqueous environment with dissolved oxygen: 

2H2O + O2 + 4e� →H2↑ +4OH�

In a neutral aqueous environment without dissolved oxygen: 

2H2O + 2e� →2OH� + H2 

The corrosion products of iron are complex, comprising multiple constituents. Their composition depends on factors such as the 
nature of the medium, pH, oxygen concentration, transport conditions, and the presence of other chemical substances such as chlorides 
and sulfates. Misawa [231] et al. conducted a systematic study of the formation processes of iron corrosion products in aqueous so
lutions, and established the relatively complicated reaction system summarized in Fig. 11.

In neutral environments, typical corrosion products of iron include hematite (α-Fe2O3), magnetite (Fe3O4), iron trihydroxide (Fe 
(OH)3), goethite (α-FeOOH), akageneite (β-FeOOH), lepidocrocite (γ-FeOOH), feroxyhyte (δ-FeOOH), and iron hydroxide (Fe(OH)2). 
[232] Notably, Fe3O4 and α-Fe2O3 are dense and very stable [233]. However, in aqueous environments, corrosion products often 
manifest as FeOOH forms. These products possess a porous structure that not only fail to prevent corrosive ions from reaching the metal 
substrate, but also serves as a reservoir to store these ions and moisture that further intensifies the corrosion reaction [234]. This 
behaviour contrasts markedly with the protective role of the dense alumina film formed on the surface of aluminium [235]. In acidic 
solutions, iron oxide on the surface cannot maintain stability and is predominantly present as iron ions in the solution, with hydro
chloric acid as an example [236].

Anodic Reaction: 

Fe + Cl� →(FeCl�
)ads 

(FeCl� )ads→(FeCl)ads + e�

(FeCl)ads→(FeCl+)ads + e�

Fig. 11. Reaction scheme governing the appearance and evolution of species in aqueous solution during the iron oxidation process. Reproduced 
from Misawa et al. [231] with permission.
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FeCl+→Fe2+ + Cl�

Cathodic reactions: 

2H3O+ + 2e� →2H2O + H2↑ 

4.3.2. Corrosion inhibition mechanisms
Different types of corrosion inhibitors exhibit distinct mechanisms when interacting with the surface of steel. They fall into three 

categories: oxide film-forming, precipitation film-forming, and adsorption film-forming inhibitors. Among these, oxide film-forming 
and precipitation film-forming inhibitors are commonly used in neutral environments, where they form stable and compact protec
tive films that enhance corrosion resistance of the metal surface [234]. Specifically, oxidizing film inhibitors can directly act on the 
steel surface or use the dissolved oxygen in the solution as an oxidizing agent, thereby transforming the loose rust layer into a robust 
passive oxide film. Common oxide film-forming inhibitors are primarily inorganic molecules, such as chromates, molybdates, nitrites, 
and tungstates [237]. Precipitation film-forming inhibitors generate a precipitated film on the metal surface, mostly on the cathodic 
regions [238]. Common precipitation film-forming inhibitors include zinc salts, cerium salts, phosphate salts, and others [239].

Small organic molecules can inhibit corrosion of iron and steels via an adsorption film-forming mechanism and are widely used in 
industrial acid pickling processes. As for other metal corrosion inhibitors, they can be classified into physisorbed inhibitors and 
chemisorbed inhibitors. The mechanism of physical adsorption relies primarily on electrostatic interactions between organic mole
cules and the metal surface [240]. This is influenced by the solution properties and the surface charge of the metal. This type of 
adsorption usually occurs in two ways. One applies to ionic surfactants or ionic liquids that carry a positive charge and are easily 
adsorb onto areas of the steel surface with a negative charge [241]. The other is via heteroatoms of organic corrosion inhibitors that are 
easily protonated and converted into cationic forms in acidic solutions [242]. The steel surface accumulates a negative charge due to 
the adsorption of anions such as Cl-. Species with positive and negative charges interact electrostatically, resulting in physical 
adsorption. It is important to note that physical adsorption is unstable, reversible, and fairly weak.

In chemical adsorption, organic molecules attach to the iron surface through atoms with high electron density, forming a protective 
film that prevents the attack by corrosive ions [243]. In general, the adsorption centre involves unsaturated bonds, such as in alkene, 
alkyne, nitrile, carbonyl, imine, thione etc. [244,245]. These ligands donate σ-electron density to the metal and the metal donates 
π-electron density to the ligand, so-called “back-bonding“ interactions. More importantly, some functional groups composed of polar 
heteroatoms, such as –OH, –NH2, –COOH [246,247], can chemisorb by transferring non-bonding electrons to the d orbital of Fe to form 
coordination bonds. Thus, chemisorption between organic molecules and steel is not a simple one-way transfer of electrons. When the 
heteroatom in the organic molecule transfers electrons to the empty orbital of iron, because of the large number of electrons in iron, 
there can be backdonation from the iron to the organic molecules. This process of mutual electron transfer enhances the adsorption 
process and is the essence of the chemical adsorption of corrosion inhibitors to iron [248,249].

4.3.3. Physisorbed inhibitors
Ionic surfactants are well known to physically adsorb onto the steel surface. In acidic solutions, the surface tends to carry a positive 

charge, enabling anions with a negative charge to preferentially adsorb onto it. These negatively charged areas due to the adsorption of 
anions, attract cationic surfactants through electrostatic interactions, resulting in physical adsorption [250]. Elaraby [251] and his 
colleagues synthesized a tetra-cationic surfactant CS4 (1,N1�-(ethane–1,2-diyl) bis (N1, N2—didodecyl–N2–(2- (((E)-3-hydroxy-4- 
methoxy-benzylidene)amino)ethyl)ethane-1,2-diaminium) chloride), and studied its corrosion inhibition on carbon steel in 1 M HCl. 
Their electrochemical studies showed that, at a concentration of 50 ppm, the %IE reached ~ 96 %. Further theoretical studies indicated 
that the electrostatic interaction between the N (cationic head) of CS4 and the negatively charged areas on the carbon steel surface 
aided the adsorption of the inhibitor molecules to the carbon steel surface. Aiad and colleagues [241] prepared three cationic sur
factants based on alginic acids with varying alkane chain lengths. They found that the corrosion inhibition efficiency was directly 
proportional to the hydrophobic chain length and the inhibitor concentration and decreased at higher solution temperatures. Spe
cifically, the quaternary ammonium group (N+) adsorbs onto cathodic sites on the steel to reduce hydrogen evolution, while Br- 
adsorbs onto anodic sites to reduce steel anodic dissolution. Achouri and colleagues [252] synthesized a series of 1,2-ethane bis 
(dimethyl alkyl ammonium) bromide surfactants with different chain lengths. These surfactants exhibited corrosion inhibition in 1 M 
HCl, with increased inhibition efficiency also observed as the chain length increased. The authors proposed that the corrosion inhi
bition mechanism involved electrostatic interactions between the two positively charged ammonium groups in the surfactant structure 
and Cl- ions adsorbed on the steel surface.

Ionic liquids, as discussed in the copper section, are composed of complex cations and anions. Fadhel [253] and colleagues syn
thesized three ionic liquids (i.e. 1-methyl-3-propylimidazolium iodide (MPIMI), 1-butyl-3-methylimidazolium iodide (BMIMI), and 1- 
hexyl-3-methylimidazolium iodide (HMIMI)) to assess their ability to inhibit mild-steel corrosion in 1 M HCl. These inhibitors all used 
iodide as the anion and alkyl imidazolium as the cation. HMIMI exhibited an %IE of 93 % at a concentration of 5 mM due to the Br- ions 
being preferentially adsorbed on the surface of the positively charged steel by electrostatic action, with the alkyl imidazole cation 
adsorbing to the surface of steel by electrostatic interactions with Br-.

Oliavres [254] and colleagues reported four ionic liquid corrosion inhibitors derived from ammonium (free-halide ionic liquids) 
that exhibited %IE of up to 89 %. Potentiodynamic polarization results indicated that these inhibitors suppressed both cathodic and 
anodic processes. Their adsorption followed the Langmuir adsorption isotherm consistent with physical adsorption on the steel surface. 
Likhanova [255] and colleagues synthesized two ionic liquids with different anions, N-ethyl-N,N,N-trihexylammonium adipate 
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(CPA6), and N-ethyl-N,N,N-trioctylammonium ethyl sulfate (ESA8), to study the impact of anionic ionic liquids on corrosion inhi
bition. The results revealed that ESA8 was a more effective corrosion inhibitor than CPA6, attributed to the superior corrosion in
hibition properties of the ethyl sulfate anion compared to the adipate anion.

4.3.4. Chemisorbed inhibitors
Chemisorbed inhibitors encompass a diverse array of compounds including Schiff bases, amine-based organic molecules, imid

azoles, and their derivatives [256–259]. Outstanding chemical organic inhibitors possess polar functional groups that usually include 
heteroatoms such as O, S, or N. These functional groups chemically adsorb onto the steel surface, forming a protective layer that shields 
the metal from the intrusion of corrosive ions. Unlike some inorganic corrosion inhibitors, chemisorbed organic inhibitors often exhibit 
excellent corrosion inhibition performance in harsh acidic environments [259].

Schiff base derivatives are widely used to mitigate the corrosion of carbon steels in various electrolytes due to their low cost and 
ease of synthesis. The imine group (RC = N) can coordinate strongly with iron. Hanane and coworkers [260] synthesized three Schiff 
base derivatives containing quinoline-derived moieties: 4,4-oxybis(N-[(E)-quinoline-2-ylmethylidene]aniline), 4,4-ethane(N-[(E)- 
quinoline-2-ylmethylidene]aniline), and 4,4-methylenebis(N-[(E)-quinoline-2-ylmethylidene]aniline). All three displayed corrosion 
inhibition efficiencies exceeding 90 % in 1 M HCl for steel. Theoretical studies indicated that the imine groups, together with electron 
donation and back-donation between Fe 3d orbitals, drive chemical adsorption. 4,4-oxybis(N-[(E)-quinoléine-2-ylmethylidene]ani
line) exhibited the highest corrosion inhibition efficiency due to its additional oxygen atoms. Recently, Caio and colleagues [261]
studied green synthesized vanillin derivatives, vanillin TRIS imine (VTRIS), vanillin cyanoguanine imine (VCNG), and vanillin 
tosylade imine (VTOS), that achieved corrosion inhibition efficiencies of up to ~ 93 % for steel in acidic environments. Electrochemical 
studies revealed them to be mixed-type corrosion inhibitors. Ansari and his colleagues [262] developed salicylaldehyde-chitosan Schiff 
base (SCSB) as a corrosion inhibitor for carbon steel in 3.5 % NaCl solution saturated with CO2. At a concentration of 150 ppm, the %IE 
reached ~ 95 %. Theoretical studies suggested that this organic molecule exists in both protonated and neutral forms in acidic so
lutions, which spontaneously chemically adsorb onto the metal surface by transferring electrons from heteroatoms (O, N) and their 
conjugated systems to the empty orbitals of iron.

Imidazoline derivatives, known for their excellent corrosion inhibition performance and low toxicity, find widespread application 
in the petroleum, natural gas storage, and transportation industries for mitigating steel corrosion. Solomon [263] synthesized an 
imidazoline derivative, N-(2-(2-tridecyl-4,5-dihydro-1H-imidazol-1-yl)ethyl)tetradecanamide (NTETD), using myristic acid and 
diethyleneamine as raw materials. At a concentration of 300 ppm, NTETD exhibited a minimum %IE of over 93 % on steel in a 15 % 
HCl solution. Potentiodynamic polarization results indicated that NTETD was a mixed-type inhibitor, primarily inhibiting cathodic 
corrosion. The exceptional corrosion inhibition was attributed to the strong chemical adsorption between the active N, O, and imi
dazoline ring moieties in the NTETD structure and the iron surface. Zhang et al. [264] studied the influence of the number of imi
dazoline rings and the alkyl chain length of imidazoline derivatives on %IE. Three inhibitors, lauric acid imidazoline (SAI), tetralauric 
imidazoline (LAI), and symmetric stearic imidazoline (SPI) were synthesized. These inhibitors followed the Langmuir adsorption 
model, adsorbing on the steel surface through chemical adsorption. Increasing the number of imidazoline rings and alkyl chain lengths 
of the derivatives enhanced corrosion inhibition. Zheng et al. [265] synthesized two imidazoline derivatives, oleic imidazoline (OI) and 
mercapto-oleic imidazoline (MOI). MOI demonstrated %IEs of up to ~ 96 % at an extremely low concentration of 20 ppm. 
Conspicuously, the strong corrosion inhibition was maintained even after an immersion time of 144 h. Using the GFN-XTB method, 
they discovered that MOI is strongly adsorbed on the steel surface by bonding with Fe via the N and S atoms in the molecular backbone.

4.3.5. Chemical conversion film-based inhibitors
Protective films can be formed on the surfaces of metals by irreversible reactions with the corrosion product, or by commercial 

conversion coatings [8]. While there has been a recent trend to call all these types of coatings conversion coatings, here we refer to the 
former as protective coatings and the latter as conversion coatings. The formation mechanisms of the chemical conversion coatings and 
protective films differ from the common physical or chemical adsorption mechanism of organic substances. Instead, like inorganic 
inhibitors, they protect the steel substrate by stabilizing the rust layer. A common member of this class of substances is phosphate 
derivatives. It has been reported that alkyl phosphate esters can form P-O-Fe bonds in water, resulting in the formation of insoluble 
protective films on steel surfaces [266]. Additionally, alkyl phosphate ester derivatives possess active functional groups that can attach 
to oxide surfaces. Hu and colleagues [266] investigated the corrosion behaviour of bis(2-ethylhexyl) phosphate (BEP) on carbon steel 
in a CO2-O2 environment. They showed the %IE reached 93 % at a concentration of 500 ppm. Further studies revealed that the 
excellent corrosion inhibition effect was due to the formation of P-O-Fe bonds and the production of FePO4 protective layers. 
Furthermore, BEP can interact with Fe3+, Fe2+, and iron oxides, resulting in a thicker and more compact corrosion product layer. 
Phytic acid (PA) is another commonly used phosphate derivative. It is a six-fold dihydrogen phosphate ester of inositol. Cao et al. [267]
investigated the corrosion inhibition effect of phytic acid on 20SiMn steel in simulated carbonated concrete pore solution contami
nated with Cl ions. The addition of PA resulted in the formation of a dense deposited film with a three-layer structure on the surface of 
20SiMn steel. The inner layer consisted of Fe3O4 and FeOOH, the middle layer contained Fe3O4, FeOOH and FePO4, and the outer layer 
comprised Fe3O4, FeOOH, FePO4, and Fe(II)-IP6.

Hu et al. recently reported the strong corrosion inhibition properties of bis(2-ethylhexyl) phosphate (BEP) in CO2-O2-containing 
solution and proposed putative inhibition mechanisms [266]. Corrosion was almost eliminated in 1 % NaCl solution in a CO2-O2 
solution by 500 ppm BEP. The inhibitor forms P-O-Fe and P-Fe bonds to generate a barrier layer that is responsible for the protective 
performance. Similarly, Mandal et al. reported a study of 1–3 % of 0.5 M ammonium phosphate monobasic (APMB) as a corrosion 
inhibitor for steel rebar[268]. EIS results showed that 2 % inhibitor in SCP plus 3.5 wt% NaCl solution inhibited 90 % of the corrosion 
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after 1 h. XPS and Raman spectroscopy showed that the inhibition was due to the formation of a thermodynamically stable, insoluble 
mixed goethite (alpha-FeOOH), maghemite (gamma-Fe2O3), and iron phosphate (FePO4) passive film on the steel rebar surface.

Other phosphonic acid-based inhibitors have been reported recently. Shaban, Felhosi and Telegdi studied a phosphonic-acid based 
inhibitor blend (Corin P22SU), composed of a mixture of potassium hydroxy-ethane-diphosphonate (HEDP)), inorganic additives, and 
potassium phosphates), on mild steel corrosion in simulated cooling water (SCW) containing chloride ion using electrochemical 
methods and visual characterization [269,270]. Different concentrations of nitrite ion synergized the inhibition efficiency of the 
P22SU inhibitor. The inhibition of mild steel corrosion at pH ≥ 6 increased with soaking time. The mechanism of action of P22SU on 
mild steel corrosion inhibition in SCW was found to be the formation of a robust inhibitor film that blocks the active sites of the metal 
surface to a large extent.

Another class of substances that can react with rust to form protective films is tannins. Tannins interact with iron oxide through 
their polyphenolic structure, converting rusted iron into a deep blue coating, which is sparingly soluble in solution and effectively 
protects the substrate [270,271]. Gust and colleagues [272] conducted Mossbauer spectroscopy studies and found that there is an 
interaction between the rust phase components in aqueous solution and oak tannins, resulting in a mixture of mono and bis-complexes. 
Flores Merino et al. [273] used tannic acid as a corrosion inhibitor for low-carbon steel in a 0.1 M NaCl solution. Infrared spectroscopy 
(IR), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) studies revealed the transformation of rusted 
portions into tannin-iron compounds. Inspired by functional mangrove tannins, Cui and colleagues [274] developed a corrosion in
hibitor for protecting Q235 carbon steel in an acidic 3.5 wt% NaCl solution. Mangrove tannin inhibitors significantly slowed the 
cathodic corrosion process and exhibited a better corrosion inhibition performance than commercial tannins.[270,271].

Wang et al. investigated 2-(5-mercapto-1,3,thiadiazole-2-yl)-(4-methylbenzene) as an inhibitor for steel. Inhibition efficiency and 
adsorption behaviour of the inhibitor film was assessed using electrochemical and theoretical methods [275]. The results showed that 
corrosion is initiated under a microzone without the inhibitor film but is prevented when the protective film was present. Electro
chemical studies showed increasing inhibitor concentrations up to 40 ppm generated a positive shift in the corrosion potential and 
reduced the corrosion current density. The derived ΔGads implies that the physisorption of inhibitor molecules on the stainless-steel 
surface is the main mechanism of action.

Other novel organic species have also been reported to be potent inhibitors of steel corrosion. Glycine, N-[N-[(phenylmethoxy) 
carbonyl] glycyl]-, 4-nitrophenyl ester, N alpha,omega-dicarbobenzoxy-L-arginine, N-(2-benzoylphenyl)-1-benzyl pyrrolidine-2- 
carboxamide, ethyl(E)-3-(4-(((E)-4-methoxybenzylidene)amino)-phenyl)acrylate, and 2-amino-3-(5-hydroxy-1H-indol-3-yl)propa
noic acid were shown to be inhibitors of N80 steel in 15 % (wt) HCl solution [276]. Inhibition mechanisms were deduced from 
electrochemical impedance spectroscopy and polarization measurements as adsorption to the metal surface and passivating formation 
that limits the transmission of ions and reduces the corrosion current density. Quantum chemistry revealed that electron transfer from 
the metal surface atoms to the inhibitor molecules was key to suppressing corrosion. The same group also reported the protective 
efficiency of a new triazole inhibitor for carbon steel, (2-sulfhydryl)-(5-phenmethyl)-(1-(4-phenol)-methanimine)-triazole (SPMT) 
[277]. The inhibitor readily formed a protective film on the carbon steel surface.

As an atomic-level insight into the organic molecule corrosion inhibition mechanisms is still lacking, and DFT is ill-equipped to 
handle large inhibitor-metal adsorption systems, a density functional based tight-binding (DFTB) approach was used to investigate the 
adsorption properties of three large chalcone derivative inhibitors on an iron surface [278]. Guo et al. studied the molecular activity of 
these chalcone derivatives using frontier molecular orbital theory. The growth characteristics of alpha-Fe, adsorption parameters such 
as charge density difference, the density of states, and changes of molecular orbital were reported.

4.3.6. Plant-based green corrosion inhibitors
As seen above, many organic compounds can inhibit corrosion of metals. However, some chemicals can be expensive and envi

ronmentally harmful. In recent years, there has been significant interest in the discovery, extraction, and synthesis of non-toxic and 
potentially cost-effective plant-based corrosion inhibitors. Research has shown that saponins, flavonoids, organic acids, and various 
organic substances present in plant roots, stems, and leaves contribute to corrosion inhibition [279]. These types of inhibitors typically 
follow a mixed adsorption mechanism involving both physical and chemical adsorption.

Gowraraju and colleagues [280] evaluated the corrosion inhibition efficiency of biopolymer Iota-carrageenan (IC) on low-carbon 
steel in 0.5 M H2SO4 solution using weight loss tests, potentiodynamic polarization, and EIS. They found that at a concentration of 
1000 ppm, IC exhibited a corrosion inhibition efficiency of 96 %, and its adsorption followed the Langmuir isotherm. The presence of 
heteroatoms such as oxygen and electronegative sulfate atoms as IC adsorption centres results in high %IE. Wang et al. [281] utilized 
an Oxalis corniculata L. extract (OCLE) as a green corrosion inhibitor for carbon steel in 1 M HCl. Electrochemical test results indicated 
that OCLE achieved a %IE of ~ 94 % at a concentration of 500 ppm. High-performance liquid chromatography (HPLC) confirmed that 
the main components of this extract were monosaccharides. Quantum chemical calculations and MD simulations suggested that 
monosaccharide molecules present in OCLE could form an adsorption film on carbon steel through O and N to inhibit corrosion. Maizia 
and colleagues [282] investigated the corrosion inhibition effect of Urtica dioica L. extract (NE) on X80 low-carbon steel in 0.5 M H2SO4 
solution. NE achieved a corrosion inhibition efficiency of 95 % at a concentration of 4 g/L. Further research indicated that the 
corrosion inhibition effect was due to the synergistic adsorption of various chemical components present in NE extract (quercetin and 
kaempferol, serotonin and histamine) on iron. Typically, plant extracts are multi-compound mixtures that for corrosion inhibition 
might mean cooperative inhibition effects. Further plant extract studies need to include efforts for unravelling their chemical 
composition for tracing down the origin of the inhibition effect.
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4.3.7. Effects of corrosion inhibitors on different structures of steel
Corrosion inhibition mechanisms can be also influenced by the nature of the metal adsorption sites. Due to differences in 

manufacturing processes and compositions, the microstructures and structures of different types of steel vary. Consequently, when 
corrosion inhibitors act on different microstructures, their inhibiting mechanisms may also differ. López [283] and his colleagues used 
electrochemical methods to study the corrosion inhibition effect of three imidazoline inhibitors on steel with two different micro
structures in a CO2 environment. Their research revealed that the inhibitors were more effective on annealed samples than quenched 
and tempered samples. They proposed that Fe3C is the adsorption site of corrosion inhibitor molecules, and the layered Fe3C in 
annealed samples is more stable than the spherical Fe3C in quenched and tempered samples, with respect to corrosion. Spherical Fe3C 
is more easily removed from the sample surface, resulting in a decrease in adsorption sites. In contrast, Zhang et al. [284] recently 
synthesized a new imidazoline corrosion inhibitor and studied its corrosion behaviour on two types of steel with different micro
structures in a CO2 environment. They showed that steel treated by quenching and tempering has a pronounced homogeneous dis
tribution of pearlite (globular and short rod-shaped) and a low density of dislocations, allowing corrosion inhibitor molecules to adsorb 
more closely on the surface, resulting in better corrosion inhibition. In contrast, annealed steel may preferentially dissolve iron atoms 
in the pearlite region, facilitating the desorption of corrosion inhibitor molecules from the pearlite. Overall, although the importance of 
the microstructure of steel on corrosion mechanisms and effects has been recognized, the current research remains limited.

4.4. Corrosion inhibitors for aluminium

4.4.1. Corrosion mechanisms
Aluminium forms a passive oxide or barrier layer that is stable between pH 4 and pH 9 but is soluble at lower and higher pH values 

[285]. The structure of the passive oxide layer is still not clear. Some reports suggest it is amorphous while others state that it is 
crystalline γ-Al2O3, with different formation processes on each crystal face [286,287]. Hydration of the passive oxide layer by water 
generates terminal hydroxyl groups. This results in thickening of the surface oxide, with an outer, more porous layer covering the 
barrier layer. Aluminium ions generated at the metal/oxide interface migrate to the outer surface to form a hydrated surface oxide. 
This can also be viewed as cation vacancies migrating from the outer surface, where they are filled by Al3+ cations. The terminal 
hydroxyl groups can react with inhibitors forming layers that can block corrosion.

The most detailed and precise computational studies have involved single crystal surfaces (Al(111)) with various levels of oxidation 
and hydroxylation [152,291,292]. The Al(111) surface is most often modelled because it has a high density of surface atoms that 
provide a large atom coordination surface (Fig. 12) and a low surface energy [288]. The Al(110) [290] and Al(100) [291,292] surfaces, 
and Al clusters [293,294] have also been studied [152,291,292]. Al(111) is also one of the most frequently occurring grain orientations 
in experimental studies, along with Al(001) and Al(101) [295,296]. These crystal orientations occur most frequently because of the 
way deformation is manifest through mechanical processing. Due to its dense packing, Al(111) is also one of the more difficult ori
entations to oxidize (Fig. 12) [297]. Open structures tend to be more reactive because, if an adsorbate sits in an empty site, the back 
donation of electrons promotes bond lengthening and dissociation. This mechanism has been amply modelled by DFT calculations of 
N≡N on Fe single-crystal surface [295,296].

Aluminium forms alloys with elements having specific materials properties. Table 3 summarizes the main classes of wrought 
aluminium alloys, exemplifies alloys in each class, and lists typical application areas. Aluminium alloys present entirely different 
problems for corrosion inhibition compared to pure aluminium. Alloying results in microstructure development via particle formation 
at multiple scales. This can range from hardening precipitates at the smallest scale (nm), through dispersoids at intermediate scales 
(submicron), to primary intermetallic particles (IMP) at the micron scale and above. Alloys also contain levels of Fe, Si, Cu, and other 
transition metals. Intermetallic particles generate galvanic couples with the aluminium matrix to form nano- to micron-sized galvanic 

Fig. 12. Hard-sphere models for the three main faces of Al with suggested adsorption sites. The table shows surface density ρhkl and stacking 
distance dhkl for low index faces of Al. Adapted from Martinson et al. [297] with permission.
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4.4.2. Corrosion inhibition mechanisms
Understanding alloy microstructure is important for corrosion inhibitor design and discovery. For example, intermetallic particles 

containing transition metals, particularly copper, act as cathodes for oxygen reduction (see section 4.3.1). Activating cathodic re
actions creates anodic sites is facilitated by consumption of electrons produced at the anodic reaction. This translates into localized 
attack around intermetallic particles, dissolving the surrounding aluminium matrix (called trenching) [323,332]. Thus, an important 
role of inhibitors is to suppress cathodic reactions with Cu as well as the anodic reactions adjacent to these sites. Organic inhibitors 
containing S, O, or N have delocalized π electrons and lone pair electrons that can interact with the 3d electrons of Cu (and other 
transition metals) [333] (refer to discussion in the copper inhibitor section 4.3). Aluminium alloys also form a passive oxide layer 
across the matrix that is only stable in the pH range of 4 to 8 [285]. As cathodic sites have higher, and anodic sites lower pH values than 

Fig. 13. TEM analysis of local corrosion induced by Al7Cu2Fe(Mn) phase. (a) Top-view SEM and cross-sectional STEM image of an Al7Cu2Fe(Mn) 
particle immersed in 0.01 M NaCl for 15 min. Elemental scan lines were reconstructed from the rectangular region in the image, showing pref
erential dissolution of Al and Mn and formation of a Cu-, Fe-rich layer on top. (b) Magnified cross-sectional STEM/EDS analysis of a dealloyed 
Al7Cu2Fe(Mn) particle exposed to 0.01 M NaCl for 6 h. The spectra show the chemical composition of corroded (I) and intact (II) regions. (c) Top- 
view SEM and cross-sectional STEM/EDS analysis of an undercut Al7Cu2Fe(Mn) particle immersed in 0.01 M NaCl for 6 h. Reproduced from Kosari 
et al.[302] under Creative Commons CC-BY license.

Table 5 
Compositions of Hardening Precipitates.

Alloy Type Precipitate Composition Precipitate Nomenclature 
(Includes coherent, semi-coherent and incoherent particles)

Al-Cu Al2Cu θ
Al-Mg Al8Mg5 β
Al-Si Si �

Al-Cu-Mg Al2CuMg S
Al-Mg-Si Mg2Si β
Al-Zn-Mg MgZn2(Al,(Cu,Zn) 

)49Mg32

ηT

Al-Li-Mg Al3Li 
Al2LiMg

δ 
�

Al-Li-Cu Al3Li 
Al2CuLi

δ 
T1
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from the transition from Mg-O to Mg-OH and the continuous dissolution-precipitation processes occurring in the bilayer [368–373]. 
The thickness of the bilayer film varies between 20 – 300 nm and several microns. Mg surface layers are defective and incompletely 
cover the underlying metal due to a Pilling-Bedworth ratio (the ratio of the volume of the elementary cell of a metal oxide to the 
volume of the elementary cell of the corresponding metal) being less than 1. This metric can be used to determine whether a metal is 
likely to passivate in dry air by creation of a protective oxide layer. Additionally, Mg(OH)2 (brucite) possesses relatively high solubility 
that increases as pH decreases [371]. This leads to a partially passivated surface that cannot block the contact with the immersion 
electrolyte, even though the contribution of the oxygen reduction reaction to the total cathodic process decreases with increasing 
thickness of Mg(OH)2 [59]. The secondary phases, IMPs, and impurities in Mg alloys are typically covered with even less effective 
protective surface films and induce micro-galvanic corrosion. Given the highly electronegative potential of Mg, most of the alloying 
elements (e.g. Al, Zn, Mn) and impurities (Fe, Cu, Ni) act as local cathodes promoting anodic dissolution of Mg matrix. Table 6 presents 
selected examples of well-studied Mg alloys with industrial applications in aerospace, automotive, motorsport, defence, consumer 
goods and biodegradable implants. Table 7 presents the corrosion potentials of most common second phases.

In aqueous electrolytes, the main corrosion reactions for magnesium are [81,375,376].
Anodic oxidation: 

Mg→Mg2+ + 2e�

Cathodic reduction: 

2H2O + 2e� →2OH� + H2↑ 

the primary process, hydrogen evolution reaction (HER) and the secondary, oxygen reduction reaction (ORR) 

Fig. 18. Adsorption topologies and electronic density variation (Δρ) at two coverages (θ = 0.66 and θ = 1 for 8HQ (χ), tautomer (τ), hydrogenated 
(η) and dehydrogenated (δ) species. Each coverage frame shows both the top view and side view. Reproduced from Chiter et al. [366]
with permission.
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Table 6 
Selected magnesium alloy codification [372] and examples.

Codification Examples Main alloying elements Common usage

A � aluminum AZ31AZ91 Al 2.5–3.5, Zn 0.6–1.4, Mn 0.2–1.0 
Al 8.3–9.7, Zn 0.4–1.0, Mn 0.1–0.5

Automotive, consumer goods, aerospace

E � rare earths Elektron 21 Nd 2.6–3.1, Gd 1.0–1.7, Zn 0.2–0.5 Aerospace and motorsport
K � zirconium ZK40 Zn 3.5–4.5, Zr 0.4–0.9 Aerospace, biodegradable Implants
L � lithium LA 141LA91 Li 13–15, Al 0.7–1.9 

Li 8–10, Al 0.6–1.5
Aerospace

M � manganese AM50, 
AM60

Al 4.4–5.4, Mn 0.2–0.6, Zn 0.2–1.0 
Al 5.5–6.5, Mn 0.2–0.6, Zn 0.2–1.0

Automotive (e.g. wheels)

Q � silver QE22 Ag 2.0–3.0, (Nd, Pr) 1.8–2.5, Zr 0.3–1.0 Aerospace and defence (landing wheels, gear box housing)
W � yttrium WE43 

WE54
Y 3.7–4.3, Nd 2.0–2.5, (Gd, Dy, Yb, Er) 1.9, Zr 0.2–1.0, Zn 
0.2 
Y 4.7–5.5, Nd 1.5–2.0, (Gd, Dy, Yb, Er) 2.0, Zr 0.4–1.0, Zn 
0.2

Aerospace (engine parts, rotor heads), defence, automotive (wheels, gearbox, frames), biodegradable implants;suitable for 
LPBF AM

X � calcium Mg-0.1Ca Ca 0.05–0.2, Mn 0.03 Anode for Mg-air batteries; biodegradable implants
Z � zinc ZE41 Zn 3.7–4.8, (Ce, La, Nd, Pr) 1.0–1.75, Zr 0.3–1.0 Automotive, electronic equipment, biodegradable implants
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HER starts with water reduction in the Volmer step, associated with atomic hydrogen adsorption on magnesium:
H2O + e� →OH� + Had(Volmer step).
The HER can continue by recombination of two adsorbed hydrogen atoms (Tafel step) or by the adsorbed hydrogen reacting with a 

partially positive hydrogen atom in a water molecule (Heyrovský step):
H2O + e� + Had→OH� + H2(Heyrovský step) [377,378].
or the Heyrovský-like reaction implying a negative charge on the adsorbed hydrogen atom, a hydride:
H2O + H�

ad→OH� + H2(Heyrovský-like step) [379].
This is supported by experimental evidence, as magnesium hydride formation has been observed experimentally [380,381]. With 

the help of DFT calculations, the Volmer-Heyrovsky pathway was found to be more energetically favourable [377 381–384] and is 
predominant mechanism of hydrogen formation during Mg degradation, Fig. 19.

Traditionally, the HER has been regarded as the only cathodic reaction during Mg corrosion under immersion conditions. The 
contribution of ORR, as a secondary cathodic process was identified quite recently [59,61,63,81,383,384]. Counterintuitively, the 
ORR is stronger for slower degrading magnesium of higher purity, with ca. 29 % of total cathodic process accounted for by the ORR. 
For the much faster corroding commercial purity magnesium (CP-Mg), the ORR contribution was only around 1 % [384]. This was 
observed during immersion in saline solution and explained by the faster growth of the Mg(OH)2 layer on CP-Mg that impedes diffusion 
of molecular oxygen to the metal interface. In a model atmospheric condition with wet-dry cycles, the contribution of the ORR to the 
total cathodic process could approach 60 % for the AZ91 alloy [80]. Recent first principles DFT calculations of ORR and HER con
tributions to Mg corrosion showed excellent agreement with experimental results [385]. For a more detailed description of Mg 
corrosion, interested readers should refer to a seminal review by Esmaily et al. [369] and other recent publications [378,388–393].

4.5.2. Corrosion inhibition mechanisms
Development of new corrosion inhibitors for magnesium alloys is an active research topic, with multiple international research 

groups contributing to the field. The organic corrosion inhibitors for Mg can be categorized into adsorption and precipitation groups. 
The cathodic inhibitors are a distinct class due to their iron-binding or tailored adsorption on Fe-rich impurities. The chemotypes of 
organic inhibitors are broad, from the simplest organic anions like acetate and formate, to long chain (C8-C18) saturated and un
saturated fatty acid anions like caprylate and oleate, surfactants such as dodecylsulfate and dodecylbenzenesulfonate, and large ionic 
liquids such as 1-n-butyl-2decylpyrazole bis(trifluoromethylsulfonyl) ([BOPz][NTf2]). The largest Mg inhibitor performance database 
was generated by Lamaka et al., [60] with > 1000 values of inhibitor efficiency measurements for 151 individual chemical compounds 
on six magnesium alloys and three grades of pure Mg. An overview of the most efficient corrosion inhibitors is given in Fig. 20 for the 
group of aluminium-containing Mg alloys (AZ31, AZ91 and AM50), rare-earth-containing alloys (WE43, ZE41 and Elektron 21) and 
two grades of pure Mg. Apart from identifying a number of promising inhibitors, this database is a valuable collection of consistent data 
acquired under the same experimental conditions and well suited to computational methods that correlate inhibitor performance with 
the molecular properties of the inhibitor (see section 5.2 of this review). As noted earlier in the review, many highly performing 
inhibitors may have undesirable toxicities or adverse environmental impacts, hence the search for new more benign, efficient can
didates. Further details of specific interaction of inhibitors with magnesium alloys are given below. Unlike other sections in this review 
that describe mechanisms of inhibition for other metals in terms of the major chemotypes, here we discuss Mg corrosion inhibitors in 
terms of their diverse inhibition mechanisms. Two comprehensive reviews on magnesium corrosion inhibitors have been published 
recently [391,392].

Fig. 20. Most efficient organic corrosion inhibitors with corresponding values of IE for eight Mg substrates. under Creative Commons CC-BY license. 
The original values of corrosion inhibition were published by Lamaka et al. .
Adapted from Vaghefinazari et al. [391][60]
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4.5.3. Adsorption inhibitors
An early suggestion by Guo et al. was that adsorption inhibitors may not strongly inhibit the corrosion of magnesium alloys [393]. 

This opinion was based on the notion that the interaction of these inhibitors with Mg surfaces plays a crucial role in establishing an 
adsorptive layer that prevents access of corrosive species. While unoccupied d orbitals of Fe and Zn can accept π electrons and lone-pair 
electrons of O, N, S atoms of inhibitor molecules to form adsorbed films, the energy of 3d orbital of Mg is much higher and barely able 
to accept electrons from inhibitor molecules. Yet, multiple reports have shown that adsorptive inhibitors can be highly effective for 
various Mg alloys [60,397–403]. This apparent paradox can be explained either by adsorption on cathodic phases and impurities that 
often contain d elements (Mn, Zn, Fe), [397] or formation of much denser Mg(OH)2 in presence of adsorption inhibitors. The high 
reactivity of Mg results in fast formation of magnesium hydroxide upon immersion. An inhibitor adsorbed onto nano-sized Mg(OH)2 
flakes prevents their further growth, promoting formation of smaller flakes that eventually result in much denser layer of Mg(OH)2. 
This prevents further ingress of Cl- to the surface of Mg/MgO/Mg(OH)2 interface and decreases the corrosion rate. This mechanism was 
first proposed by Maltseva et al. for salicylate, 2,5-pyridinedicarboxylate and fumarate [401].

Carboxylates, fatty acids, and anionic surfactants are potent inhibitors of magnesium corrosion, and their properties are well 
described for many magnesium alloys in recent publications [60,395,398,401,402]. Organic moieties such as carboxy- or amino 
groups bind to heterogeneous alloy surfaces by electric dipoles. The adsorptive nature of the organic moiety is modulated by the 
overall polarizability of the functional group and the electron density of its heteroatoms. A continuous layer of adsorbed organic 
corrosion inhibitor at the electrolyte-metal interface slows down the electrochemical dissolution of the metal and prevents access of 
corrosive anions like chlorides, inhibiting corrosion. Chemisorption occurs on MgO and Mg(OH)2 layers which typically get thicker 
during exposure to aqueous electrolytes, also contributing to decrease of surface reactivity and increase of inhibiting effect. By 
coupling ATR-FTIR with an electrochemical cell, Fockaert et al. observed both phenomena Fig. 21 [403]. A dynamic equilibrium 
between growth of a hydroxylated MgO/Mg(OH)2 layer and its consumption due to interaction with corresponding carboxylate was 
identified during immersion in 2,5-pyridinedicarboxylate (PDC), 3-methylsalicylate (MSA), and fumarate (FA) solutions, Fig. 21. 

Fig. 21. (a) Coupled ATR-FTIR and EIS setup for simultaneous measurements; b) protective outer film resistance evolution retrieved from EIS 
spectra during immersion in 2,5-pyridinedicarboxylate (PDC), 3-methylsalicylate (MSA) and fumarate (FA) solutions; (c) Mg-OH and (d) asymmetric 
carboxylate peak area evolution calculated from in situ ATR-FTIR results. Reproduced from Fockaert et al. [403] under Creative Commons CC- 
BY license.
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These were in contact with a 20 nm thin layer of pure Mg produced by physical vapour deposition on germanium internal reflection 
element.

The adsorption structures of tested carboxylates were computed by DFT on a partially hydroxylated MgO(100) surface (Fig. 22). 
Interestingly, salicylate tested under the same conditions accelerated corrosion. This is explained by strong cation binding ability of 
salicylate that can caused either corrosion inhibition or acceleration depending on the prevalence of iron-impurity binding (at high 
content of impurities) or magnesium binding for high purity materials. This aspect is addressed in more detail in section 4.2.2.3 of this 
review. Surfactants [404] are the most common and efficient small-organic corrosion inhibitors for magnesium alloys. These include 
the sodium salts of N-lauroylsarcosine, N-lauroyl-N-methyltaurine, dodecylbenzensulphonic acids, and dodecyl (lauryl) sulphate 
[60,398–400,405]. According to Frignani et al., the mechanism of inhibition of AZ31 magnesium alloy corrosion in NaCl or Na2SO4 
containing aqueous electrolyte is a two-stage process. Firstly, surfactant is adsorbed to the metallic surface, decreasing the area 
available for anodic and cathodic reactions. This step is followed by the precipitation of a Mg-inhibitor compound that strengthens the 
ability of the layer to inhibit the anodic process [395]. Similarly, sodium salts of stearic, palmitic, and myristic acids inhibited ZE41 
magnesium alloy corrosion in NaCl and Na2SO4 containing electrolyte by forming a physisorbed layer that obeys the Langmuir 
adsorption isotherm. Moreover, these alkyl carboxylates chemically adsorbed onto the intermetallic phases and inhibited cathodic 
reactions, while anodic inhibition was due to densification of the magnesium hydroxide layer by precipitates of Mg-inhibitor salts 
[406]. Many corrosion inhibiting surfactants act at least partially by precipitation. Zucchi et al. studied sodium salts of linear, long- 
chain monocarboxylic acids such as capric, lauric, and myristic acids as inhibitors of AZ31 corrosion in synthetic cooling water. 
Here, the inhibition was due to the formation of an insoluble magnesium carboxylate layer that forms a barrier on the Mg surface 
[394]. Following the work by Frignani et al. [395], Lu et al further investigated the inhibition mechanism of sodium dodecyl sulfate 
(SDS, also known as sodium lauryl sulfate) [396,397]. Inhibition of cathodic and anodic activity was attributed not only to the 
adsorption layer formed on cathodic sites and Mg matrix, but also to thickening of the passive inner oxide layer (the effect disappeared 
in de-aerated electrolyte). However, the inhibiting effect of surfactants diminishes once they are incorporated in the protective 

Fig. 22. The DFT-computed adsorption structures and respective adsorption energies of selected carboxylate molecules on the partially hydrox
ylated MgO(100) surface for a coverage θ = 0.25 ML. Reproduced from Fockaert et al. [403] under Creative Commons CC-BY license.
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coatings or primers. Indeed, they were primarily developed for applications when an alloy could be employed in continuous contact 
and in a closed system with the inhibitor solution [395].

4.5.4. Precipitation film-forming inhibitors
These are typically anionic compounds (e.g., phosphates and fluorides) and are especially relevant to magnesium [400,411–413]. 

The reaction is initiated by the slight dissolution of the magnesium substrate. The increase in local pH generates fast precipitation of a 
magnesium-inhibitor compound. This forms a continuous barrier film on magnesium with corrosion products of low solubility. The 
most relevant organic example is 8-hydroxyquinoline that, in aqueous electrolytes, forms a sparingly soluble chelate complex with Mg 
that is a barrier layer on Mg surface [60,410,411].

Apart from the above-described surfactants that often combine adsorption and precipitation corrosion inhibition mechanisms, 
several other organic compounds form passivating precipitate films on the surface of magnesium alloys. 2-Hydroxy-4-methoxy-aceto
phenone (paeonol) was reported as precipitation type Mg corrosion inhibitor [412], lowering the rate of anodic dissolution of AZ91D 
alloy. Mg-inhibitor chelate compounds precipitated along with Mg(OH)2, providing the inhibiting efficiency of 88 % at the optimal 
concentration of 50 ppm. Later, paeonol was incorporated in silica nanoparticles and dispersed in a silane coating that released the 
inhibitor upon alkalinization of local increase of Mg2+ concentration [413]. Similarly, it was shown that 5,10,15,20-tetraphenylpor
phyrin forms Mg-Inh chelate complexes that precipitate together with Mg(OH)2 reducing the porosity of the surface film and 
decreasing the corrosion rate by up to 90 % [393].

8-hydroxyquinoline (8-HQ) is probably one of the most efficient and most studied magnesium corrosion inhibitors reported to date. 
It was first shown to be an efficient corrosion inhibitor for zinc [414] by forming insoluble chelates with Zn and copper [415,416]
particularly by precipitating Cu-inhibitor polymeric layers on the surface. Following this, 8-HQ was tested as a corrosion inhibitor for 
pure Al and AA2024 alloy where it effectively inhibited localized corrosion of S-phase particles Al2MgCu [417,422 244]. Dissolution of 
Mg from S-phases was inhibited in presence of 8-HQ, suggesting its potential use as a Mg corrosion inhibitor [410,423–425 415]. The 
corrosion inhibition of 8-HQ on Mg alloys is typically described by a combination of adsorption and precipitation, likely coupled with 
Fe2+/3+ binding [60]. 8-HQ forms sparingly-soluble chelate complex with Mg, Mg(8-HQ)2, Ks = 6.8 •10-16 that is stable between pH 
9.4 – 12.7. Precipitation of Mg-inhibitor chelates is accompanied by slow adsorption of 8-HQ, thus preventing the access of chloride 
ions. It was also noted that 8-HQ is efficiently inhibiting corrosion of pure Mg with a high level of iron impurities. The same effect was 
observed for 8-hydroxy-5-quinoline sulfonate and 8-hydroxy-7-iodo-5-quinolinesulfonate [60].

Apart from classifying inhibitors by the way they interact with Mg surfaces, corrosion inhibitors can be also categorized by their 
interactions with anodic or cathodic processes on Mg alloy surface. Anodic corrosion inhibition results in the formation of a uniform 
barrier film across the magnesium surface, and specifically above local anodic sites. Metal oxidation and dissolution are restricted at 
the inhibited locations. This is manifested by a decrease in anodic currents on the PD polarization curve. Eventually, diminished anodic 

Fig. 23. Schematic representation of inhibition mechanism suggested for salicylate. Corrosion starts with cathodic HER (and possibly ORR) on 
noble Fe-rich impurities accompanied by anodic dissolution of Mg with Mg(OH)2 nucleation. Its further growth is restricted by adsorbed salicylate 
that prompts precipitation of dense layer of corrosion products. Concurrently, Fe(III) ions generated due to undermining and dissolution of iron-rich 
impurities, are bound in FeSal3 complex preventing Fe-redeposition and stifling cathodic activity. Reproduced from Maltseva et al. [401]
with permission.
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reactions lead to the decay of cathodic activity. Cathodic corrosion inhibition occurs by blockage of local sites where hydrogen 
evolution or oxygen reduction takes place. This can be achieved by selective adsorption on more noble cathodic phases, formation of 
precipitates on cathodic sites due to fast increase of local pH, prevention of enlargement of cathodic areas (due to enrichment or re- 
deposition [60,401,422,423]) or even poisoning of hydrogen atoms recombination [424]. In practice, mixed-type corrosion inhibitors 
are often found where: both partial reactions, anodic and cathodic are suppressed in the presence of an inhibitor (e.g. 2,5-pyridinedi
carbocylate in [401,402]); or adsorption is combined with active cathodic inhibition (e.g. salicylate in [401]), Fig. 23; or the initial 
adsorption layer is reinforced by precipitation of sparingly-soluble products (e.g. anionic surfactants in [395]).

4.5.5. Cathodic inhibitors
Like copper in aluminium alloys being activator of cathodic reactions, iron-rich impurities are known to be critical active sites of 

local cathodic activity [423,430–432] in pure Mg and its alloys. Therefore, tolerance limits are introduced for Fe impurities and also 
for Ni, Cu, [58] and Si, because they promote the growth of Fe-rich nano- and micro-intermetallic particles in Mg matrix [428]. Iron- 
binding organic compounds, which prevent enlargement of cathodic sites and block existing locations of cathodic reaction by selective 
adsorption on Fe-rich intermetallic particles or binding dissolved Fe2+/3+ species, effectively inhibit corrosion of Mg. This was proposal 
was first based on indirect evidence (correlation between increasing %IE with increase of stability constants of Fe-inhibitor complexes) 
[60,402,422] and experimentally confirmed by identifying Fe-salicylate soluble species in [401].

Amino-, methyl-, thio-, nitro-, and dinitro- derivatives of salicylate have high inhibiting efficiencies (up to 97 %) for three grades of 
pure Mg and AZ31, AZ91, AM50, WE43, ZE41 and Elektron 21 alloys. Similar corrosion inhibiting properties were identified for 
oxalate, diglycolate, and folate that are known to form strong iron complexes [60]. However, citrate, with a similar iron-binding 
ability, accelerated corrosion in most Mg alloys as it does with Al-alloys. The inhibiting effect is low or even negative if substances 
forming Fe3+/Fe2+ chelates also bind Mg2+ to form soluble complexes [422,429]. This balance between the ability of a compound to 
bind Mg2+ and Fe3+/Fe2+ with different stability constants was demonstrated recently [34]. Fig. 20 lists 15 most efficient corrosion 
inhibitors for each of the six Mg alloys, high and low (i.e. commercial) purity Mg [391]. Note, that on average the highest values of 
inhibiting efficiencies were for CP-Mg that contains the highest amount of Fe impurity, 220 ppm, while on average the lowest values 
are characteristic for HP-Mg with the low content of Fe impurities, 51 ppm.

The electronic properties of 2, 2��bipyridine, a strong Fe2+ binding agent (but also binds other cations, including Mg2+), were tuned 
by introducing electron-donating or electron-withdrawing functional groups (methoxy and dimethylamino, or carboxylic and meth
ylcarboxylic) [34]. These additional moieties changed the partial negative charge on the nitrogen atoms of bipyridine and the distance 
between the nitrogen atoms in the central metal atom in the coordination compound. A shorter distance is indicative of stronger 
interaction with the metal ion (Mg2+ or Fe2+). Thus, the methoxy derivative accelerates Mg dissolution and the carboxyl derivative of 
bipyridine strongly inhibits corrosion. This study combined DFT calculations with experimental validation on two grades of pure Mg.

Mercier et al. suggested blocking the HER on iron-rich cathodic impurities and Mg by treating it with a solution of hydrogen 
sulphide [430]. Highly insoluble adsorbed sulphides restrict H adsorption on Fe-rich sites and thus inhibit the HER on these 
cathodically active areas. Consequently, the corrosion inhibition effect of organic molecules containing thiol groups should be 
investigated. So far, the reports on this approach are limited to thiosalicylate, 2,3-dimercapto-1-propane, and 1,3,4-thiadiazole de
rivatives. These have some positive effect on corrosion while for sulphonate containing compounds, such as tiron, 5-sulphosalicylate, 
and quinolinesulfonates the inhibiting effect was weaker [60].

Another way to suppress the cathodic HER on Mg was proposed by Williams and co-workers. They reported that arsenic species 
poison hydrogen recombination and thus inhibit the HER [431,432]. (It is interesting to note that arsenic oxide was used to suppress H2 
evolution during electrochemical hydrogen charging of pipeline steels [433,434]). A similar effect was for Mg alloyed with Ge, Sn, and 
In [431,432,440–444]. Although interesting phenomenologically, we do not consider these effects in further details as it is out of scope 
of this small organic molecule review and arsenic is a highly undesirable material toxicologically.

The protective effect of several ionic liquids on magnesium alloys was also explored [440–450]. In a recent report, an inhibitor 
efficiency of almost 92 % was achieved by octadecyl triphenyl phosphonium bis(trifluoromethylsulfonyl)amide for AZ31B magnesium 
alloy [442]. The inhibition effect, primarily cathodic, is explained by several factors, including chemical adsorption, formation of 
protective film blocking corrosive species, and chemical reaction with Mg forming the composite layer. Ionic liquids are a highly 
versatile yet barely investigated class of organic compounds that are very promising for Mg corrosion inhibition.

It is noteworthy that conflicting data on the inhibition efficiency of many organic compounds exist in the literature. Although 
potentially worrying, this can be understood in terms of the multiple factors affecting inhibition. Firstly, no organic corrosion inhibitor 
can be universal, i.e., efficient for a wide range of magnesium alloys, see Fig. 20. This is due to different corrosion susceptibilities of Mg 
substrates, alloy composition, microstructure, and distribution of the cathodic sites, the kinetics of surface alkalization, the compo
sition and location of precipitate formation. Multiple additional factors affect the inhibition mechanism for each specific alloy, such as 
amount and distribution of impurities, the ratio of electrolyte volume to the surface area of the tested material, the concentration of the 
inhibitor and the aggressiveness of the corrosion medium, aeration and amount of dissolved CO2, temperature, immersion time and 
hydrodynamic condition of the electrolyte, surface preparation condition, etc. These factors need to be accounted for when comparing 
the absolute values of inhibitor efficiencies derived by different methods and under potentially varying experimental conditions (by 
different research groups). This again highlights the need for reliable high-throughput inhibitor testing, so that large datasets can be 
collected under the same experimental conditions, yielding consistent values.

4.5.6. Conversion coatings and primers containing corrosion inhibitors
While most papers report inhibition efficiency for full immersion in aqueous electrolytes, only a few real-world applications like 
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heat-exchanger coolants have distributed corrosion inhibitors into an electrolyte in contact with a metallic magnesium part [446]. In 
most applications, metallic parts are exposed to corrosive electrolytes intermittently or, more commonly, to an atmospheric 
condensation electrolyte thin film. In the latter case, corrosion inhibitors are combined with other protection strategies. Often, 
corrosion inhibitors are added to conversion layers or primers directly in contact with a metallic part. A recent comprehensive review 
summarized several ways of combining magnesium corrosion inhibitors with other protection strategies [447,448]. These include 
direct inhibitor admixing to sol–gel coatings [419,449], inhibitor impregnation in porous anodic layers produced by PEO (plasma 
electrolytic oxidation) [421,450,451], incorporation via ion-exchange in LDH (layered double hydroxide) [452–459], and encapsu
lation in other inorganic or polymeric reservoirs followed by their distribution in sol–gel or primer [413]. A combination of these 
strategies provides even stronger barrier and active protection effects: e.g., inhibitor-containing PEO sealed with sol–gel coating 
[410,457–461], and encapsulation in other inorganic or polymeric reservoirs followed by their distribution in sol–gel or primer [413]
and PEO loaded with inhibitor containing reservoirs [457,458]. Nevertheless, a wide gap remains between the number of corrosion 
inhibitors tested on bare magnesium alloys in full immersion and those tested in protective coatings.

4.6. Synergistic inhibition by binary inhibitor mixtures

Synergy occurs when the corrosion inhibition of a combination exceeds the sum of the performances of the individual components. 
The synergistic effect (S) can be quantified in different ways, the most common of which is that reported by Aramaki and Hackerman 
[459]: 

S =
(1 � IE1+2)

(1 � IE12)

IE1+2 = (IE1 + IE2) � (IE1 ⋅ IE2)

IE1 and IE2 correspond to the inhibition efficiencies for inhibitors 1, 2 tested individually and IE1+2 is the inhibition efficiency of the 
mixture of two inhibitors. S values above 1 indicate the existence of synergies between the selected combination, while S value below 1 
indicate antagonistic effect of two inhibitors, also often observed.

Recently, Kokalj [460] took a critical look at Aramaki–Hackerman approach and cautioned that it may predict synergies incorrectly 
if a compound with stand-alone negative inhibition efficiency (corrosion accelerant) is used in a mixture. Several other equations for 
quantifying synergistic effects have been proposed using a “corrosion activity” (CA) parameter. It is the complement to inhibition 
efficiency (CA = 1- IE or CA, % = 100 %-IE, %) and used to define new synergistic models. It is worth noting that the data for inhibitor 
mixtures are much less reported in the literature than that for single inhibitors.

From a machine learning perspective, examining mixtures of inhibitors may provide guidance on synthesizing new inhibitor 
molecules by combining the selected functionalities of the individual inhibitors into a single molecule. Many small organic molecules 
already have dual functionality arising from different parts of a molecule (e.g. both physisorption and chemisorption).

Typically, inhibitors with different inhibition mechanisms are combined, e.g., anodic and cathodic inhibitors. For example, the 
combined effect of dodecylbenzenesulphonate and 8-HQ on the corrosion of AZ91D magnesium alloy was 98 % inhibition. This was 
explained by the adsorption of dodecylbenzenesulphonate on the layer of precipitated Mg-8-hydroxyquinolinate [411]. Qiu et al. 
tested a binary mixture of sodium fluoride and DL-malate as a corrosion inhibitor for AM50 magnesium alloy [461]. The inhibiting 
effect varied between � 31 % and +95 %, depending on the concentration of each component. The highest inhibition, with a synergy 
factor of 3.82, was achieved by equimolar concentrations of both components at 0.05 M.

Several publications explored the effect of binary inhibitor mixtures on AA2024 alloy. 8-hydroxyquinoline mainly protects the 
aluminium matrix, while benzotriazole inhibits the cathodic activity of Cu-rich intermetallic particles [365]. Additionally, binary 
mixtures of Ce3+, 8-HQ, salicylaldoxime, and 2,5-dimercapto-1,3,4-thiadiazolate (DMTD) were tested for their abilities to inhibit 
corrosion of bare or coated AA2024. For bare alloy, the most effective mixtures were 8-HQ with salicylaldoxime, and 8-HQ with 2,5- 
dimercapto-1,3,4-thiadiazolate. For alloys with epoxy-based coatings containing CaCO3 microparticles impregnated with corrosion 
inhibitors, the best effect was achieved by 8-HQ with salicylaldoxime and Ce3+ with salicylaldoxime inhibitor combinations. The 
synergy factor, reflecting the extent of improved inhibition of a mixture compared to that of performance of individual inhibitors was 
highest (above 15 after 2 weeks of immersion) for Ce3+ with salicylaldoxime and coated AA2024 [462]. A binary inhibitor mixture of 
3-amino-1,2,4-triazole-5-thiol with CeCl3 demonstrated synergistic improvement of inhibition for this alloy. This effect was explained 
by the reinforcement of more specific localized inhibition in cathodic sites by Ce3+ and a relatively uniform mixed-type inhibition by 3- 
amino-1,2,4-triazole-5-thiol at cathodic and anodic sites [463].

Synergism between 2-mercaptobenzimidazole and potassium iodide on copper was observed in acidic media. Iodide anions 
facilitated copper-inhibitor bonding by reversibly adsorbing on copper, hence decreasing the positive surface charge and easing 
adsorption of protonated 2-mercaptobenzimidazole on the surface [464]. This was also the case for physical adsorption between 
multiple amino acid species and copper surfaces in the presence of potassium iodide additions [198]. The highest amino acid inhibition 
efficiencies were consistently seen in environments with Zn2+ and iodide ions [257]. Iodide also showed synergistic effects with 
benzotriazole in sulfuric acid media, where iodide ions adsorbed on cuprous ions preferentially adsorb a protonated benzotriazole 
overlayer, creating a thicker, more robust polymeric film [465]. A similar synergism mechanism occurs for the surfactant sodium 
dodecylsulfate with benzotriazole and 3-amino-5-methylthio-1,2,4-triazole [170], and sodium dodecylbenzenesulfonate with 2-mer
captobenzimidazole [466]. It is postulated that surfactants modify the electrostatic interaction of the main inhibitor molecule and, at 
an optimum concentration, lead to interfacial co-adsorption [129]. Similarly, results have been reported for co-adsorption of iodide 
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ions and organic inhibitors on ferrous metals [467,473 474–478] and aluminium [474,480 474]and with cerium ions on both types of 
metals [474–482]. Synergism can also result in reversal of the electrochemical behaviour. It was observed that in acidic media ethylene 
diamine acts as a corrosion accelerator due to autocatalytic CuCl formation. However, introduced into an already Na2S–containing 
environment, strong chemisorbed HS- layer covering the entire copper surface facilitates adsorption of protonated ethylene diamine 
and prevent dissolution of Cu+ ions. Although inhibitor mixtures often possess a synergistic inhibitor effect, experimental testing is 
onerous as it requires matrix testing of at least two inhibitors at multiple concentrations. High throughput testing methods and 
combinatorial matrix design methods need to be part of the solution. Synergies are believed to be non-linear and hence hard to predict 
a priori. Machine learning methods can overcome this limitation if sufficiently large experimental databases become available.

4.7. Synergy by n-ary inhibitor mixtures

Beyond binary and ternary combinations, there haven’t been systematic studies of organic corrosion inhibitor mixture predictions 
due to rapidly increasing complexities. However, the potential of combinatorial space is vast. Combining compounds at different 
concentrations in n-dimension ways (n = 2 binary, n = 3 ternary, etc.) results in an explosion of possibilities, with (c n)c n � c2 n 
combinations for a combinatorial grid chemical space where c is the number of selected concentrations and n the number of selected 
molecules. The challenge and opportunity resulting from such a vast chemical space were previously displayed in the optimisation of 
corrosion inhibition of a quaternary combinatorial matrix of rare earth mixtures [478].

Fig. 24. Galvanic series for metals in seawater with moderate flow. Reproduced from Tugsataydin, under Creative Commons CC-BY license, via 
Wikimedia Commons.
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Historically, large scale galvanic couples are most prevalent in fastened, jointed structures where dissimilar metals meet each other 
[489,493]. This also extends to other types of joins such as welded joints. Here both, microstructure through regions such as heat 
affected zones, and the weld material (which can have a different composition to the metal to be welded) may cause galvanic corrosion. 
Recently, newer methods of joining such as friction stir welding and advanced manufacturing techniques have the potential to create 
graded materials that will have their own galvanic corrosion issues. Table 8 provides some examples of the types of mixed metal 
components that might be encountered in joints in selected industries. This table is not intended to be an exhaustive review of all 
potential galvanic sites, but to show that galvanic corrosion is pervasive across many industries. This area represents a huge challenge 
for corrosion prevention, particularly in finding inhibitors that can suppress galvanic corrosion. It also presents a great opportunity for 
AI to explore the complex variable space associated with discovering inhibitors in multi-metal, multi-environment situations.

The specific challenge for small organic inhibitors is to make an impact in this area by finding, ideally, a universal inhibitor that 
inhibits both cathodic and anodic processes or, more realistically, a combination of inhibitors that deals with each aspect of the 
galvanic couple. Currently, there is no single formulation that addresses this issue, but there are formulations used in specific in
dustries. In the aerospace industry corrosion prevention compounds are used regularly to suppress and prevent corrosion. These 
formulations are applied by spraying and typically contain a solvent and a chemical that can form a film. Gui [494] noted that for
mulations are generally proprietary. Conspicuously, one typical formulation contained barium petroleum sulfonate and alkyl 
ammonium organic phosphate as corrosion inhibitors. The solvent serves to spread these chemicals across the surface where they form 
a protective oily film, after solvent evaporation, which prevents corrosion including galvanic corrosion. Other types of corrosion in 
joints are crevice corrosion, often facilitated by fraying surfaces that disrupt the protective coating, and filiform corrosion, facilitated 
by defects in the paint coating particularly around fasteners. This type of formulation may be applicable to many metals and metal 
couples, since the sulphonate group can interact with the surface of many metals and the phosphate forms insoluble metal-phosphate 
compounds so a reaction that can happen on the metal surface, thus providing a barrier.

The need for either universal inhibitors to cover all these applications, or higher performing inhibitors for specific applications, is 
an active area of research. Clearly, exploring large chemical spaces (mixes of chemicals, solvents, electrolytes and environments) is a 
challenge that is best tackled by high throughput experimentation for candidate formulations and machine learning to model this rich 

Fig. 25. Qualitative schematic outlining regions where the approaches described in this paper best apply in terms of space and time scales, relative 
to general corrosion processes. This figure aims to identify potential gaps in information on inhibition processes. For example, for HTP a single 
performance metric (e.g., %IE) has no meaningful representation in the spatial domain because it averages over the material, however, it does in the 
time domain because time is measured in the experiment. HTP taken over shorter times require more experiments to cover the time scale, thus 
compromising the high-throughput aspect. Alternatively, data rich characterisation sets (microprobe, EBSD etc), cover orders of magnitude in size or 
scale, but obtaining kinetic information requires registration of sites before and after exposure, limiting the time domain. Additionally, DFT models 
the molecular scale, but the computational complexity severely limits the time scale, meaning outcomes only relate to very fast surface interactions 
not real-world corrosion process time frames.
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dataset, but also by efficiently leveraging current performance databases. Neither of these avenues is currently an intensive area of 
research. There are, of course, some research efforts examining the effects of inhibitors on multi-material systems. For example, 24 
individual inhibitors and their mixtures were tested for AA2024-graphite (representative of CFRP) galvanic couples by Coelho et al. 
[64]. A ternary mixture containing, 2-mercaptobenzothiazole, Tween 80 (a non-ionic surfactant) and either benzotriazole or trie
thanolamine exhibited the strongest inhibition. Quantification was based on local current density measurements by SVET or ZRA. The 
high dependence of outcomes on specific experimental conditions (anode/cathode ratio above all) was emphasized. The Al-CFRP 
galvanic couple is commonly encountered in aerospace applications and wind turbines and remains problematic to overcome. The 
adsorption-based anodic inhibitor, 1,2,3-benzotriazole, was combined with the cathodic inhibitor Ce(NO3)3 to generate effective 
inhibition of corrosion activity of Zn and Fe galvanic couples [495]. The synergistic effect of binary mixtures was lower for stand-alone 
Zn or Fe but reached over 30 with inhibition efficiencies above 90 % for the galvanically coupled Zn + Fe. In another report, the 
inhibiting effect of binary mixtures of organic inhibitors, or with cerium nitrate, was studied for a model galvanic couple representing 
Al2CuMg S-phase [63]. The highest value of synergistic parameter for inhibiting the cathodic process on Cu, anodic process on Mg and 
anodic + cathodic processes on Al, was achieved in presence of 8-hydroxyquinoline (8HQ) and 2,5-dimercapto-1,3,4-thiadiazolate 
(DMTD). Both were earlier shown to be efficient corrosion inhibitors for Cu, Al and Mg alloys. An Al-Cu multi-electrode system 
was developed to simulate the galvanic activity of dealloyed S-phase of AA2024 alloy by Catubig et al. [496]. The addition of sufficient 
praseodymium mercaptoacetate (>10-3M) significantly reduced the corrosion process. This effect was ascribed to deposition of a thin 
protective film. Similarly, a combination of CeCl3 and 1,2,3-benzotriazole was shown to be effective in suppressing corrosion of an Al 
and Cu galvanic couple [497]. Although these studies were aimed at better understanding of micro-galvanic mitigation, and the results 
are relevant for addressing the galvanic corrosion of Al-Cu joint busbars used for automotive applications, especially with the rapidly 
increasing number of electric vehicles.

In addressing these issues, it is important to recognize the limitations on using high throughput data derived by AI from these 
experiments. All approaches discussed in this review have their limitations. This as elaborated below in relation to Fig. 25 which 
qualitatively places the strengths of different approaches according to length and time scales thereby identifying gaps where further 
research can bridge these gaps. Here we attempt to establish where most corrosion process occur in terms of location (space), duration 
(time) and corrosion activity. This volume defined by the light and dark grey regions which fills the space between these three axes. Of 
course, any part of this volume can be probed by specific, one-off experiments, but here, we are interested in the extent to which the 
data derived from information-rich experiments, such as HTP or large-scale characterisation, overlaps with this space, i.e., how it 
samples this space. As projected onto the space/corrosion activity plane, corrosion goes from lower activity associated with micro- 
galvanic corrosion to high activity associated with generalised corrosion, often driven by galvanic corrosion domain by a change in 
length scale from large scales reactions to much finer scales. A similar projection is made onto time-corrosion activity plane of Fig. 25. 
Generalised corrosion can occur over a range of timescales and, under galvanic control, can be quite active. Localised corrosion can 
occur at low activity very early, starting with activity on the nanoscale, but micro-galvanic corrosion may need a short time for 
localised corrosion to develop the active anodes and cathodes to develop significantly.

The approaches that have been the focus of this paper sit in different places in the volume depicted space–time-corrosion activity 
axes depicted in Fig. 25, which identifies the “sweet spots” for optimum outcomes for these approaches. Importantly, they do not have 
full coverage of the volume. For example, DFT is useful at the atomic to molecular scale and its strength is in revealing aspects of 
adsorption rather than dissociative reaction and formation of reaction products related to the molecule under examination, as well as 
the electrolyte and underlying metal. It can’t include galvanic reactions over larger spatial dimensions under potential gradients. DFT 
calculations have also not generally investigated adsorption over different timescales. At the other end of the length scale, high 
throughput experimentation commonly integrates large areas through visual or digital assessment of optical images or H2 evolution 
from a large area of a magnesium sample compared to the scale of individual molecular adsorption. Currently, the sweet spot for HTP is 
often confined to specific timescales depending on the type of measurement; 24 h is often reported to get a quick before/after 
assessment of corrosion performance. So HTP generally “averages out” micro galvanic corrosion because the length scale of these 
reactions is much smaller than the sampling scale used in HTP and the timescale is shorter. Thus inhibition events may not be 
adequately encompassed by a typical HTP experiment. This has been observed in Al- and Mg-alloys corrosion, where the anodic re
action must be activated prior to cathodic inhibition because the inhibitor reacts with the corrosion product to suppress corrosion. Of 
course, there is no in-principle reason why HTP needs to be confined to these scales but longer times (e.g. days) or finer spatial scales 
come at the cost of quick and reliable outcomes, i.e. high-throughput becomes low throughput. Characterization can cover reactions 
from the submicron to millimetre scales and can be applied over different timescales, capturing both adsorption and any subsequent 
reactions. However, large, information-rich datasets (hundreds of gigabytes to terabytes, such as microprobe compositions or EBSD 
analyses) from which statistically significant data is obtained, performed over a several orders in magnitude on the space scale (mi
crons to centimetres) are uncommon. Electron or proton microprobes can, in principle, sample large areas being only limited by the 
sample stage movement (probes scan the sample under the beam so they can sample large areas at fine detail without any change in 
beam conditions – this is one reason why quantitative analysis is so good in microprobes). These types of measurements are often 
limited in the time domain by the need to register features before and after exposure to an inhibitor. Without this registration in
formation, reaction information of specific corrosion initiation sites can be lost. Thus, the reason for the short timescales on these data- 
rich datasets is due to the need for registration. Of course, longer timescales can potentially be examined, but as corrosion product 
builds up the features of the underlying metal microstructure are lost; hence the timescales are limited to minutes in the figure 
(extending to hours may not be unreasonable depending on the specifics of the reaction). It should also be noted that while the 
corrosion inhibition experiment may only take a few minutes the mapping exercise may take several days. Clearly, the approaches 
described in this review only sample portions of the total volume in the space–time-corrosion activity volume. The implications of this 
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have yet to be determined.
In summary, Fig. 25 shows there is scope to use existing tools to explore different spatial and temporal scales, thereby probing the 

properties of inhibitors under expanded sets of conditions. The insight provided through these experiments will be valuable for human 
interpretation as well as for training machine learning models.

5. Impact of machine learning on organic corrosion inhibitor discovery

As discussed above, even the most optimistic projections of the capabilities of high throughput experimental methods cannot 
explore more than an infinitesimal fraction of small organic chemistry space. Data-driven machine learning methods can leverage 
available experimental inhibition datasets into larger regions of chemical space. However, the generation of large datasets of corrosion 
inhibitors, development of data-driven machine learning models, and the use of models to design or optimize novel organic inhibitors 
is still limited and recent. The few reported models are overwhelmingly related to a single metal or alloy, and a significant number of 
these studies are flawed because they are based on very small datasets.

Before examining this topic in detail in the context of small organic inhibitors, it is useful to provide an overview of the inter- 
relationships between the different modelling approaches to illustrate the types of information they provide. The purpose here is to 
identify possible knowledge gaps in our endeavour to find a universal inhibitor akin to the family of chromates, or, at least, a small 
number of inhibitors that can be applied to a large number and variety of metal alloys. This process is summarized in Fig. 26.

Currently, machine learning models of organic corrosion inhibitors are trained on molecular features and performance metrics such 
as %IE. There are several gaps between model predictions and real-world performance that are summarized in Fig. 26. On the left of 
Fig. 26, there are three boxes describing (a) molecules, (b) electrolytes and (c) surfaces. The first conceptual gap is the assumption in all 

Fig. 26. Flow chart for generating machine learning models of corrosion inhibition from chemical structures and experimental inhibition data. The 
figure identifies the types of features used in current modelling approaches (grey boxes and dashed lines) and identifies other important factors that 
are currently captured by one parameter (e.g. %IE)). (a) machine learning features are largely defined by structures and DFT studies and use %IE to 
cover many other variables or metrics related to the electrolyte and the surface. (b) Ideally, models should use features related to real world 
electrolytes, which contain many different ions, have variable volume and concentrations due to wet/dry cycles and experience variable temper
ature, UV exposure, and pressure etc. Laboratory electrolytes have constant concentrations of simple salts. (c) The surface where the inhibitor reacts 
is also complex. Manufactured surfaces are quite different to carefully prepared, highly polished, well characterised laboratory surfaces. They have 
features such as surface deformed layers with a range of gradients from the surface to the bulk, as well as surface oxides and corrosion products. 
Laboratory surfaces are often single crystal used to observe surface oxidation and inhibitor absorption. (d) Quantum chemical simulations generate 
features for training machine learning models. Most published work uses highly simplified systems (e.g. in vacuo simulations of free molecules) due 
to the cost of the calculations and calculates frontier orbital or adsorption energies for pure metal substrates. (e) Studying more realistic systems on 
different scales (e.g., accounting for impurities or simulation of the inhibitors in a coating matrix) have great potential to link lab-scale experiments 
to the real target applications.

D.A. Winkler et al.                                                                                                                                                                                                    Progress in Materials Science 149 (2025) 101392 

43 



AI/ML models is that inhibitor performance is related to molecular features or descriptors. The algorithms are initially trained on a 
limited set of data using those features to generate a mathematical relationship between them and the inhibition performance. The 
trained model is then applied to another, often larger dataset for predictive purposes. Everything related to the electrolyte (box (b)) 
and the surface (box (c)) are collectively captured only by the inhibition performance. This means that there is a loss of information 
about the electrolyte characteristics (such as wet/dry cycles, local concentrations, temperature, diurnal cycles) and the surface (e.g. 
number of phases, distribution of phases, number of intermetallic particles, surface roughness, etc. (see Fig. 26 (c)). This gap does not 
represent a fundamental problem with the machine learning approach since these characteristics can potentially be included in the 
models as additional features if they are available, but currently this is not the case and represents a gap. The second conceptual gap is 
that inhibition performance data is generally collected under constant stress i.e. static conditions (one concentration, fixed temper
ature and often initial pH, one time point, etc.,) whereas cyclic stress is the most common environment for real world performance, see 
Fig. 26 (b). These limitations need to be front of mind when considering model outcomes.

A third issue depicted in Fig. 26 (d) is related to the use of quantum chemical approaches such as density functional theory (DFT). 
These types of calculations are very time- and resource-intensive. Hence, they are necessarily performed on greatly simplified model 
systems, the simplest being an isolated molecule in a vacuum and more complex systems incorporating an averaged aqueous envi
ronment and a single crystal surface (usually a small metal cluster). In these models, molecular features can be calculated for a series of 
similar compounds and their trend compared to the inhibition performance for a particular metal to establish relationships between 
the two. It is important to remember that the molecular features derived from DFT are for an idealized model system that is not the 
same as a real-world electrolyte or surface. The potential of simple computed properties (like frontier orbital energies, dipole moments, 
electron density at certain atoms) to contribute to an accurate prediction has been highly metal dependent so far. As discussed below, 
the correlation with the corrosion inhibition performance of small organic molecules for Al or Cu has been reported to be essentially 
zero, while a correlation has been observed for Mg and Fe. The lack of correlation between DFT properties and the inhibition per
formance for Al, Cu and other materials might be overcome by simulating more complex systems. Moreover, performing simulations 
on different scales (e.g. numerical modelling) to determine the mobility of the inhibitors in a coating matrix, or how they are released 
in case of corrosion, will yield highly relevant input features for training machine learning models.

Clearly, the electrolyte in real-world applications is very complex due to the presence of multiple anions and cations, temperature 
cycles, wet/dry cycles, and many other factors. There is much more control of the electrolyte in a laboratory environment. The surface 
condition of the metal may be even more complex than the electrolyte, depending on surface preparation, composition, contamination, 
microstructure, and deformation structures to name a few variables. Everything about the electrolyte and the surface are rolled into a 
single value of inhibition performance, clearly a very large approximation. For example, >50-year-old weathered and new polished 
AA2024-T3 may be exposed to 0.1M NaCl and inhibitor under the same conditions but give entirely different inhibition performance 
values because of small differences in composition leading to different aggregations of intermetallic particles. The old aggregations are 
often much more electrochemically active [498] (note this is a real example.) Another example is the determination of inhibitor ef
ficiency of a particular compound for a Mg alloy where, in one case, the alloy is polished and in the other, a residual oxide layer 
remains. The inhibition performance values again will be quite different. In both examples, the difference in inhibitor performance 
values might be attributed to errors whereas, in reality, it is the surface condition that is the cause of the variation. Current experi
mental approaches often do not report the details mentioned above, so extracting trends using only one metric (e.g., %IE) to model a 
surface/inhibitor combination can be problematic.

5.1. Machine learning models for predicting organic corrosion inhibitor performance

The diverse mechanisms by which organic compounds inhibit corrosion on multiple alloys is largely, but not completely, under
stood as described above. Mechanism-based de novo design of bespoke organic corrosion inhibitors for a given metal and application is 
not yet possible, except in very limited cases. Fortunately, the recent developments in high throughput experimentation discussed 
above, the availability of very large libraries of small organic molecules, and recent step changes in the power of machine learning 
modelling methods have provided a robust, useful paradigm for discovery and optimization of next-generation organic corrosion 
inhibitors. Quantitative structure–property relationship (QSPR) methods have amply demonstrated their capacity to model and 
accurately predict complex materials properties [119]. These data-driven methods are very well matched to high throughput 
experimental methods.

Although machine learning and pattern recognition methods often do not provide direct insight into inhibitor mechanisms at the 
molecular level, they are nonetheless very useful for generating quantitative predictions of performance in real-world situations where 
molecules interact with metal and alloy surfaces in very complex environments. Machine learning methods are not devoid of mech
anistic insight as they describe the relationships between the molecular properties of the inhibitors and their efficiencies, but this 
information is usually not straightforward to extract. The application of machine learning-based QSPR methods to small organic 
molecule corrosion inhibitor design has been comprehensively reviewed recently by Winkler [499] so only the main methods and 
results are summarized in this section.

Clearly, the structures and physicochemical properties of organic inhibitors directly affect their abilities to inhibit corrosion, and 
machine learning-based computational models have been shown to capture these relationships quantitatively, as discussed below.

The predictive power of machine learning models is critically dependent on the quantity, quality, and molecular diversity of the set 
of molecules used to train them, and on the relevance of molecular descriptors (features) used to encode them. Descriptors are 
mathematical representations of the structural, physicochemical, and sometimes provenance properties of inhibitors in the training 
set.[24,26,119,499] They may be derived computationally from the molecular structure, predicted by other models (e.g., lipophilicity, 
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water solubility, acid-base properties, redox properties), or may be measured experimentally.
QSPR modelling involves several unit operations, summarized in Fig. 27 [500]. A set of molecules is first screened for their ability 

to inhibit corrosion. The larger and more chemically diverse this training set of molecules is, the more accurate and widely applicable 
the resulting machine learning model will be. Thousands of molecular descriptors can be calculated or measured, so it is essential that 
only the most relevant ones are used in the model. If too many descriptors are used relative to the number of training examples, the 
model may be overfitted and will not make reliable predictions of the properties of new molecules. Even if overfitting does not occur, 
the presence of too many irrelevant features (noise) will degrade model quality and efficiency. Optimally sparse models make the best 
predictions, and sparsity also aids model interpretation. There are diverse methods for selecting relevant features from a larger pool of 
possibilities. This must be done carefully to avoid chance correlations, apparently good models that can occur by chance if enough 
subsets of descriptors are investigated. Common methods for reducing the dimensionality of descriptors include removing those with 
high correlations with other descriptors, stepwise elimination of descriptors from models until significant model degradation occurs, 
stepwise addition of descriptors until model quality does not improve, and the use of genetic algorithms to select the best subsets of 
descriptors that generate the most predictive models. However, sparse feature selection methods such as multiple linear regression 
with expectation–maximization (MLR-EM), LASSO, and the sure independence screening and sparsifying operator (SISSO) are 
particularly useful because they select the most relevant features in a context-dependent way and generate very sparse models 
[501–508]. Description of these latter methods is beyond the scope of this review and interested readers are referred to the cited 
references for more details.

Statistical modelling methods such as multiple linear, polynomial, and kernel regression and efficient machine learning methods 
like random forest (RF), support vector machines (SVM), recursive partitioning (RP), and artificial neural networks (ANN) are 
commonly used to decipher the relationships between descriptors and corrosion inhibition. The application of these machine learning 
methods to modelling and prediction of the properties of materials has been comprehensively reviewed [119,509–511].

It is important to assess the abilities of models to predict the properties of new molecules not used to train them. The best way is to 
employ an independent set of inhibitors (a test set) not used to train the model [507]. This set is usually drawn from the available data 
set, either randomly or by choosing members from representative clusters of similar molecules (not completely independent but is 
reproducible and covers the same chemistry space as the training set). Every machine learning model has a specific domain of 
applicability defined by the properties of the molecules used to train it. Predictions of properties of molecules that lie outside of this 
domain are less reliable than those made within the domain because new molecules often have novel chemical features that the model 
has not seen.

Models can be analysed to gain an understanding of which inhibitor features improve or degrade performance, potentially also 
providing mechanistic understanding. Models can be used to predict the properties of putative inhibitors not yet synthesized or tested 
using computational virtual screening, or by using models to identify promising compounds in existing chemical libraries (e.g., 
ChEMBL > 2.3 M compounds, ChemBridge > 1.3 M molecules, Available Chemicals Database > 3.2 M compounds, ZINC-22 > 37Bn 
make-on-demand compounds) [508,509]. Clearly, screened molecules must lie near the domain of applicability of the models for the 
predictions to be useful.

New machine learning methods such as active learning (adaptive experimental design) can minimize the number of molecules 
required to be synthesized to expand the domain of applicability of models [510]. This involves training a model using a relatively 
small number of molecules and predicting the properties of a larger set of molecules with unknown corrosion inhibition that lie outside 
of the domain of the model. Those with the largest prediction uncertainties are synthesized, their inhibition determined, and they are 
added to the training set. This process proceeds iteratively until the required prediction accuracy in the new chemical domain is 
achieved.

The rise of deep learning algorithms (multiple layers in a neural network) within the last five years has stimulated more widespread 
use of neural network and machine learning approaches [116,117,511]. Generative deep learning models and encoder-decoder net
works can, for the first time, take machine learning predictions of desirable corrosion properties and convert them directly into 
chemically synthesizable molecules, effectively inverting the QSPR problem [505,517–519]. This innovation is of great importance for 
the future design of drugs and materials, and should extend to corrosion inhibitors. In a recent example, a generative model was 
developed based on variational autoencoder to produce novel molecular structures of corrosion inhibitors for carbon steels with 
potentially improved performance at lower concentrations. Nine attributes, comprising seven molecular descriptors, the counts of N, 
O, S, and P atoms, inhibitor concentration, and inhibitor efficiency were employed in the model [515]. This kind of research is only 
possible in strong collaboration between researchers with a strong background in material science, chemistry, physics and computer 
science.

Fig. 27. Steps involved in QSPR modelling using statistical or machine learning methods.
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5.2. Summary of successful and unsuccessful corrosion inhibitor models

A substantial number of papers have reported correlations between corrosion inhibition and molecular properties of small organic 
molecules, particularly those calculated by quantum chemical methods. Molecular modelling methods applied to prediction for 
corrosion inhibitors have been reviewed very recently by Ebenso and coworkers [516] and Verma et al.[517]. Some of the common 
techniques they reviewed included DFT, molecular dynamics (MD) and MC simulations, ANNs, and QSAR modelling.

Unfortunately, early studies employed very small data sets with limited chemical diversity. The workflow to model training data 
and predict the performance of untested corrosion inhibitors is exemplified for Mg in Fig. 28. Structural features of molecules in the 
training set must be encoded before training the learning algorithms. The accuracy and robustness of the models is assessed by an 
independent test set or, ideally, by subsequent experimental blind testing. The domain of applicability and accuracy of the models can 
be improved by methods such as active learning.

The frontier orbital energies (highest occupied molecular orbital EHOMO and lowest unoccupied molecular orbital ELUMO) or the 
HOMO-LUMO gap (EHOMO – ELUMO) derived from quantum mechanical calculations are often cited as being important for corrosion 
inhibition. For example, Sastri and Perumareddi found correlations between corrosion rates of iron and EHOMO, the HOMO-LUMO gap, 
and Hammett’s σ parameter for a small set of organic compounds [518]. Ozcan and Dehri also found a correlation between frontier 
orbital properties of thiourea, thioacetamide, and thiobenzamide and corrosion inhibition for steel [519]. They later found similar 
correlations for corrosion inhibition for three additional small organic compounds with high corrosion inhibition and similar struc
tures. The low chemical diversity and small range of inhibition values (93–97 %) throw doubt on the validity and generalizability of 
these relationships [520]. Sastri et al. also reported that corrosion inhibition in copper and iron was driven by EHOMO, HOMO-LUMO 
gap, the chemical softness of inhibitors, and the chemical potential and degree of charge transferred to the metal surface from the 
inhibitor [521]. However, inhibitor ionization, speciation, and solvent effects were not accounted for, and the training data set was 
very small. In most early studies, the predictivity of models was not assessed by an independent test set because the data sets were too 
small. Bedair [522] used DFT, ab initio, and semi-empirical quantum chemical methods to study the corrosion inhibition properties of 
pyridine, quinolone, acridine and their n-hexadecyl derivatives on steel. He found that the dipole moments, EHOMO, ELUMO, and HOMO- 
LUMO gap correlated significantly with corrosion inhibition. Again, small data sets and a lack of broad chemical diversity compromises 
the validity of these relationships [499].

Recent studies that use larger, more chemically diverse sets of organic corrosion inhibitors suggest that frontier orbitals and other 
properties calculated by quantum chemical methods by themselves are often not useful for modelling corrosion inhibition of 
aluminium and its alloys by small organic molecules [43,523,524]. One of these larger studies found essentially zero correlation 
between the frontier orbital or any other quantum chemically derived parameters and aluminium corrosion inhibition [73,524]. Even 
when speciation of organic molecules is considered, there was a very low correlation between ionization potential, HOMO or LUMO 

Fig. 28. General workflow to predict the performance of untested corrosion inhibitors for Mg using QSPR. First the structural features of the small 
organic molecules in the database must be encoded before they can be used as input for different (un)supervised learning approaches. In a last step, 
the accuracy and robustness of the models is assessed by experimental blind testing. Suitable test candidates are selected based on the model 
uncertainties, either following a more explorative (high uncertainty) or exploitative approach (low uncertainty). After multiple interactions of this 
workflow and the associated continuous increase in available training data, the domain of applicability and accuracy of the predictive models can be 
improved by active learning and new corrosion inhibitors can be discovered.
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energies, or any other quantum chemically derived descriptors and corrosion efficiency [524]. These conclusions were confirmed in a 
later study of 100 diverse organic inhibitors, using data from novel high-throughput corrosion inhibition experimental methods. On 
the other hand, more recent studies have suggested that combining QM-derived descriptors with other types of descriptors can improve 
the quality and robustness of machine learning models of corrosion inhibition properties [525].

Intrinsically, quantum mechanical calculations should be able to generate descriptors that are effective in modelling corrosion 
inhibition by small molecules. The current failure to universally do so may be due to several factors: 

1. As mentioned, a substantial number of studies use very small data sets with limited chemical diversity and range of inhibition values. 
The apparent significance of frontier orbital properties on corrosion inhibition in studies using small training sets may be due to 
chance correlations not indicative of causal relationships between the QM-derived properties of compounds and corrosion 
inhibition.

2. Greatly simplified models of the inhibitor-alloy system are necessarily used because of the computational demands of current quantum 
chemical methods. It is not tractable to model a complete alloy surface with metal inclusions, dislocation structures, electro
chemical couples, water, air, ions etc. using quantum chemical methods with chemical accuracy. Innovative solutions to this 
dilemma are beginning to emerge so more computationally efficient DFT methods (or machine learning surrogates), and more 
realistic model systems should improve the accuracy of prediction and allow quantitative, or at least semi-quantitative predictions 
of corrosion inhibition [526].

3. The role of frontier orbitals in corrosion inhibition are likely to be both metal and alloy dependent. For example, Feiler et al. found 
that frontier orbitals were important factors in modelling the inhibition of magnesium corrosion [527].

In earlier machine learning studies of corrosion inhibitors, statistically significant and robust models were developed using general 
molecular descriptors calculated by software packages such as Dragon. These descriptors include atom and functional group counts, 
physicochemical property predictions, descriptors generated from the chemical graph or adjacency matrix (how atoms in molecules 
are connected) and many thousands of other more arcane but effective descriptors. Models of corrosion inhibition efficiency generated 
from these general molecular descriptors made reliable, quantitative predictions of the corrosion inhibition of inhibitors not used to 
train the model (Fig. 29)[73]. Clearly, the most reliable machine learning models are those trained on larger, more chemically diverse 
sets of inhibitor molecules across a broad range of inhibition values and concentrations.

Many measured and computed molecular descriptors are available for modelling organic corrosion inhibitors, leveraging the long 
history of QSAR/QSPR modelling of small, drug-like molecules in the pharmaceutical and agrochemical industries. Molecular de
scriptors may encode properties of the chemical graph (the way the atoms are connected in a molecule), the existence of molecular 
fragments and fingerprints, atom types and their properties, molecule physicochemical properties such as dipole moment, pKa of 
ionizable groups, lipophilicity (polarity), water solubility and many other molecular characteristics. More than 5000 different types of 
descriptors can be generated for molecules using packages such as the open-source solution RDKit, or commercially available packages 
such as [528] Dragon[529] and its successor alvaDesc, [530]. Robust, predictive QSPR models for corrosion inhibition by small 
molecules can be generated using these numerous, general molecular descriptors. However, the models may be difficult to interpret 

Fig. 29. Quantitative prediction of corrosion inhibitory properties of organic compounds for aerospace alloys AA-2024 and AA-7075 generated 
using molecular descriptors. Inhibition is scaled between 0 (no inhibition) and 10 (highest inhibition). Circles denote model prediction of training 
set inhibitors and triangles denote predictions for test set inhibitors. Reproduced from Winkler et al. [73] with permission.
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because the descriptors are often arcane and hard to relate to chemical structures.
An example of easy-to-correlate descriptors is given by Fernandez et al., who used a 3D-QSPR method (comparative molecular 

surface analysis, CoMSA) to model the aluminium corrosion inhibition efficiencies of 28 small organic molecules [531]. They 
employed distributions of electronegativity, polarizability, and van der Waals volumes from DFT calculations to map QM properties 
onto molecular surfaces used to model inhibition. This qualitative computational approach identified high-performing corrosion 
inhibitors.

Some studies have combined molecular descriptors generated by quantum chemical methods with other types of descriptors. 
Horner and Meisel reported the %IE on Al of 400 organic corrosion inhibitors in 1978 [532] (these are included in a data base 
containing several thousand inhibitors collected during preparation of this review paper, at https://excorr.web.app/database [533]
and presented some simple QSAR models. Jayalakshmi and Muralidharan [534] generated QSPR models for iron and nickel corrosion 
inhibition by four candidate organic corrosion inhibitors. They identified inhibitor concentration, hydrophobicity, and π electron 
density as important properties influencing inhibitor efficiency. Again, the very small data set size is an important limitation of this 
study. A steel corrosion inhibition model for substituted imidazoles and benzimidazoles was reported by Keshavarz et al.[535]. They 
generated a simple multiple linear regression model for 34 diverse organic inhibitors: 

η = 38.47 + 20.21n(N) – 7.98n(O + NH2) + 14.94 η+ – 17.93 η–                                                                                                  

where η is the corrosion inhibition efficiency (i.e. IE%), n(N) is the number of nitrogen atoms; n(O + NH2) is the sum of the number 
oxygen atoms and amino groups; η+ and η– are related to positive and negative structural parameters. The structural factors are 
complex indicator or 1-hot descriptors. Hydrogen bond donor and extended π electron substituents in the structure of an organic 
inhibitor are considered positive (η+=1) while hydrogen bond acceptor and electron withdrawing substituents or steric crowding have 
a negative effect (η–=1). Model prediction efficiency was assessed by a separate test set of 11 compounds and was higher than two 
QSPR models that employed quantum chemical descriptors reported by Zhang et al.[536]. However, the range of inhibition values for 
the training and test sets was small (60–95 % for test set) and how the η + and η– parameters were derived was unclear. The models 
Zhang et al. reported for the same compounds [536] used the quantum chemical descriptors electron density, EHOMO, ELUMO, frontier 
orbital properties, partial charges, and polarizability plus nX and δi’ topological indices derived from the chemical graph of each 
inhibitor and log octanol–water partition coefficients (a measure of lipid solubility). Their two 6-parameter models predicted the 
inhibition of the 34-molecule data set with an r2 = 0.81 and a standard error of 10 %. However, they did not use an independent test set 
to assess the ability of the models to predict new data.

More recently, interest in the application of machine learning methods to the design and discovery of organic corrosion inhibitors 
has increased substantially. Liu et al. reported an machine learning model for corrosion inhibition efficiency of benzimidazole de
rivatives that encoded energy, electronic, topological, physicochemical and spatial properties of the 3-D structures by 150 descriptors 
[537]. They used feature selection methods to identify 47 descriptors, subsets of which were used to train support vector machine 
(SVM) models for corrosion inhibition. They did not use a test set but validated their models by leave-one-out cross-validation. The best 
model had an r2 value of 0.96 and RMSE of 4 % IE and was used to identify six new benzimidazoles with high predicted inhibition 
values.

El Assiri and colleagues also used DFT-derived descriptors to model corrosion inhibition of organic compounds for steel [538]. They 
used EHOMO, ELUMO, the energy gap, dipole moment, hardness, softness, absolute electronegativity, ionization potential, electron af
finity, fraction of electrons transferred, log P, molecular mass, and several other QM-derived properties as descriptors. PLS, PCR, and 
ANN were used to build the models. The leave-one-out cross-validated r2 values for their PCR and ANN models were 0.92, and 0.90 
respectively, and they predicted the inhibition of compounds in an external test set with r2 values 0.94 and 0.92.

A machine learning algorithm correctly classified organic inhibitors (> 50 % efficiency) and non-inhibitors (< 50 % efficiency) for 
aluminium, even for different alloys at different pH values [539] that allowed an increase in the size of the training set for the model. 
These authors devised new descriptors encoding the self-association of the molecules, but the predictive power of the models was 
limited. Later these authors, together with several co-authors of this review, released a database (CORDATA https://datacor. 
shinyapps.io/cordata/) comprising several hundreds of corrosion inhibitors [540]. The database is continuously growing as new 
compounds are added by the authors and anyone in possession of a reliable data.

Obot et al. studied eight pyrazine derivatives as mild steel corrosion inhibitors in a simulated oil field environment[541]. Using 
descriptors derived from DFT calculations they showed that all derivatives protected steel to a greater of lesser extent. An MLR model 
correlated the inhibition efficiency with the molecular descriptors with an r2 of 0.90. They reported inhibition efficiencies of the 
pyrazine derivatives were mainly modulated by ELUMO, dipole moment, and molar volume, although the small data set size and lack of 
test set are significant limitations in this study. Four new pyrazine derivatives were designed that had good, predicted inhibition 
efficiencies.

Four imidazole derivatives were assessed for corrosion inhibition in 1020 carbon steel in an acidic medium by Costa and coworkers 
[542]. Gravimetric and electrochemical tests ranked the four inhibitors consistently. DFT-derived global hardness and inhibition ef
ficiency were found to be inversely correlated. Monte Carlo methods calculated the adsorption energies in water and the Compass force 
field estimated the solvation energy between inhibitors and the metallic surface. The solvation energy was inversely correlated with 
corrosion inhibition. Again, the very small data set size left the conclusions at risk of chance correlations.

Sadik et al. employed MLR, kernel PLS, and Pharma-RQSAR to model the relationship between chemical descriptors for thiadiazole 
derivatives and their corrosion inhibition [543]. Classical descriptors and binary fingerprints that represented the inhibitor properties 
were used to train the models. The resulting contribution maps identified the optimum substitution patterns for the thiadiazole 
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derivatives.
Molecular fingerprints were also used by Dai et al. to create a generalizable %IE prediction model independent of theoretical 

calculations and expert-crafted features [544]. SMILES (a simple text-based description of organic molecules) was used to create 
molecular graph structures of 270 corrosion inhibitors used to train a three-level direct message passing neural network. Integrated 
atomic, chemical bond, and molecular level features enabled cross-category prediction. The accuracy of the model (10-fold validation 
r2 = 0.46) was higher than the support vector machine, random forest and single level direct message passing neural network 
counterparts that incorporate atomic and chemical features. Because of the high generalization ability, the model was able to predict 
molecules of diverse categories, which was demonstrated by validation using 27 molecules outside the training domain (23 from 
literature studies and 4 experimentally tested). With an expanded training dataset, the same group further improved this approach by 
incorporating 3D structural characteristics of molecules and corrosion inhibitor concentration information (0.005 to 5 mmol/L) 
[545]. This model was particularly good at predicting the %IEs of large molecules and recommending lowest effective concentration of 
cross-category corrosion inhibitors.

The role of quantum chemical descriptors relative to other descriptors was highlighted in studies of Mg alloys. From a dataset of 71 
small organic molecules, Feiler et al. discovered a moderate correlation between the frontier orbital energy gaps and their corrosion 
inhibition effect on commercially pure Mg (containing 220 ppm iron) [527]. They trained a backpropagation ANN with a shallow 
architecture using chemical intuition to select the input features for the model. They combined the calculated HOMO-LUMO gaps with 
structural features that provide the model with information on the number of carboxylic acid moieties present in the molecules. They 
subsequently assessed the robustness of their model by experimental blind testing of seven corrosion inhibitors that were not part of 
the training dataset. The correlation between the predicted and measured values had an R2 of 0.74 and an RMSD of 33 % where the 
Pearson test indicated statistical significance of the correlation. Moreover, the authors demonstrated that the trained model could also 
be used to predict the corrosion inhibition efficiencies of the untested molecules for a Mg-based substrate with a similar composition to 
the one that was used to train the model.

Starting from the same seed dataset, Li et al. [546] developed predictive models for the Mg alloy AZ91 using kernel ridge regression 
(KRR) and support vector regression (SVR) following a two-step feature selection. First, the pool of available features was converted to 
a 25-tuple using RFE, which was subsequently screened for the best n-tuple to train the predictive model. Two blind testing compounds 
were found to be strong accelerators, with IE values of � 563 % (IEpred,SVR = -172 %, IEpred,KRR = � 108 %) and � 517 % (IEpred,SVR = �

195 %, IEpred,KRR = � 109 %) that are far outside of the domain of the available training data. However, the models could still predict 
that they are both strong accelerators. For the remaining eight compounds, the SVR-based model made robust estimates for the in
hibition performance for four and the KRR-based model for six. The SVR predictions were closer to the experimental results while the 
KRR model generalized better.

Schiessler et al. [30] used the measured corrosion inhibition of 60 small organic molecules to the Mg alloy ZE41 as a metric to train 
an ANN model. Here, a pool of 1260 input features (1254 calculated using alvaDesc and six derived from DFT) was used to encode the 
structure of the molecules under investigation. As there are no ANN-based feature selection techniques available, the pool of calculated 
descriptors was processed by two sparse feature selection approaches based on analysis of variance (ANOVA) and recursive feature 
elimination (RFE) to identify those most relevant to the target property. The authors claim that it is important to take the interactions 
between a group of selected features into account when selecting a subset of features for training a predictive model as single feature 
selection based on ANOVA fails to capture complex dependencies between variables. The accuracy and robustness of models using 3, 5, 
and 63 input features derived from ANOVA, RFE, and from a randomly picked set was assessed by predicting the %IE of six members of 
the dataset that were withheld from the training process (test set). The best performing model had an R2 0.94 and an RMSD of 26 % and 
employed five input features, including frontier orbital energies calculated by DFT. However, the model has not yet been evaluated by 
experimental blind testing. Interestingly, the authors also described how the encoder part of an autoencoder can be used to generate a 
lower dimensional representation of the input data, that can be displayed as 2D maps of molecular similarities and can detect 

Fig. 30. (a) Predicted versus actual corrosion inhibition responses for the validation set used by Schiessler et al. [30]. A sparse model using only 5 
input features selected by RFE (M5b) clearly outperforms a model that uses all available features (M1260). (b) An autoencoder was used to visualize 
the five-membered input feature set in two dimensions. The decoder part in combination with an appropriate predictive model (such as a deep 
neural network) can be subsequently used to generate contour maps across the space spanned by the dimensions of the two-dimensional code to 
detect outliers in the model. Figure adapted from Schiessler et al. [30] under Creative Commons Attribution 4.0 International License.
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anomalies in the training dataset (Fig. 30). Sparse and recursive feature selection methods have suggested that the information 
contained in only a few molecular descriptors can generate efficient and reliable predictive models for the identification of effective 
small organic molecule corrosion inhibitors. However, a critical concern is how well predictive models trained on the original data can 
generalize and capture the properties of completely unseen (i.e., blind testing) data. In a follow-up to Schiessler et al.’s study [547], the 
generalization capability of the previously reported deep neural network model [29] was assessed by predicting the performance of 
additional 15 corrosion inhibitors and subsequent experimental testing. The model trained on the original data and feature set 
confirmed that the originally selected descriptors showed moderate correlation between predicted and experimentally determined %IE 
values, as only 9 out 15 compounds were accurately predicted. A comparison was made between a model trained on sparse features 
selected for the original data set (60 compounds), the blind test set (15) compounds, and for all 75 compounds. It concluded that these 
sparse feature sets are not yet able to sufficiently cover enough of chemical space. Selection of molecular descriptors is a crucial step in 
developing predictive models for corrosion inhibitor discovery even when there are limited data available to train them. However, this 
work suggests that the modelling approaches used may be scalable. Feiler and Schiessler et al. have also provided strong evidence that 
DFT parameters can be a useful addition to a feature set when modelling %IE models for Mg based on QSPR methods. Furthermore, 
consistent with the universal approximation theorem, shallow network architectures (a single hidden layer) are usually sufficient and 
deep neural network approaches (multiple hidden layers) do not improve the accuracy of the models, at least with the limited training 
data available [547]. However, deep neural networks can be highly effective in converting simple representations of molecular 
structures to latent features that can generate accurate predictive models of corrosion inhibitor performance. This is a major advantage 
of these novel methods.

A common challenge for researchers using ANNs to model properties is selection of the best network architecture. For shallow 
neural networks this means how many hidden layer neurons to use, and what kind of transfer function each layer should use. If the 
network is too large, the number of adjustable weights is also large, risking overfitting of models. If the number is too small, the model 
may not capture complex, nonlinear relationships in the data. This is known as the bias-variance trade off. Use of model regularization 
methods, such as sparse prior Bayesian, weight drop out, or ReLU transfer functions can minimize overfitting for large architectures 
[548].

Instead of using distinct molecular descriptors, molecular structural features can also be encoded by molecular fingerprints, such as 
the SOAP (Smooth Overlap of Atomic Positions) kernel [549–556]. This kernel defines a global similarity matrix for chemical com
pounds in the dataset. Applying dimensional reduction techniques, the high-dimensional similarity space can be mapped onto two or 
three dimensions to help visualize structure–property relationships. These methods attempt to retain the multidimensional distance 
relationships in the lower dimensional representation of chemical space. Thus, close/distant, i.e., similar/dissimilar, structures in the 
high-dimensional space maintain this relationship in lower dimensions. Pattern recognition capabilities of these unsupervised learning 
techniques make it possible to visualize the relationship between molecular structures and the corresponding inhibition performance 
in a structure–property landscape, where all experimentally tested structures exist as landmark points. Clusters in these similarity maps 
indicate correlations between the inhibition efficiency and associated molecular structure, identifying key structural features that 
drive dissolution modulating properties. Here, dissolution modulators are the organic molecules that either inhibit corrosion for 
structural applications or promote even dissolution of magnesium as anode material of Mg-air batteries [28,60,552].

Following this approach, Würger et al. used out-of-sample embedding to qualitatively predict the inhibition efficiencies of Mg 
corrosion inhibitors [27]. Subsequently, six structures of interest were projected onto the structure–property landscape generated from 
74 small organic molecules. These authors showed how mapping structural features to specific clusters helps to qualitatively assess the 
potential impact on the corrosion rate of the projected compounds, thus helping choose which untested candidate inhibitors require 
further experimental validation. This reduces the amount of time and resources required to find better inhibitors, compared to a purely 
experimental screening approach.

The SOAP kernel can also be used to train supervised machine learning methods such as kernel ridge regression (KRR) to obtain 
quantitative predictions of the corrosion inhibition efficiency of small organic molecules. Using the same database the previous ANN 
study of Feiler et al., Würger et al. showed that a KRR model based on SOAP features achieved similar prediction accuracy, with an R2 of 
0.79 and an RMSD of 36 % [28]. Although the statistical metrics of the predictions derived from the KRR and ANN model are very 
similar overall, they show distinct differences in the predicted IE values for two compounds in the blind test set. This highlights the 
potential of committee (consensus) models to mitigate the drawbacks of a single approach and provides guidance on how models can 
be extended to describe larger chemical spaces (e.g., by adding input features that improve the prediction of outliers, see active 
learning discussion above). These models allow many potential candidates to be virtually screened for their associated corrosion 
inhibition efficiencies. Using a database of experimentally measured Mg corrosion inhibitors, Würger et al. predicted the %IE of > 7000 
commercially available small organic molecules. To help identify potent Mg corrosion inhibitors in very large chemical spaces, the 
authors developed ExChem (https://www.exchem.de). Using the underlying SOAP similarities of the combined dataset allows se
lection of candidates for further testing that show significant similarity to an already tested compound of interest. If a structur
e–property relationship exists, the proposed structure has a high chance of yielding similar results on experimental testing. This is 
particularly important for identifying alternative candidate inhibitors similar to those that have been identified as useful but are 
expensive or potentially toxic. Limited experimental blind testing of such candidates has validated this approach. In this example, the 
model showed high accuracy with an R2 of 0.84 and an RMSD of 36 %. The reason for the relatively high RMSD values is that 2 out of 5 
compounds of the 5-membered blind test set were not correctly predicted. These molecules are outliers outliers possibly because of the 
method used to encode the molecular structures. The SOAP kernel contains information on the local environments of the atoms. 
However, it does not encode the electronic structure of certain functional moieties (nitro in this case), which subsequently leads to false 
prediction for compounds with a nitro group in ortho or para position. Clearly, augmenting the model training data with more nitro 
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compounds will enable the model to learn the electronic contribution of the functional group and link it to the inhibitor performance.
By changing the target value used to train the machine learning model, the ExChem method can be extended to fields other than Mg 

corrosion. In another study, Würger et al. trained a kernel principal covariates regression (KPCovR) model on a dataset of electrolyte 
additives for primary aqueous Mg-air batteries [552]. The target was the measured discharge potential and utilization efficiency of a 
Mg-Ca working electrode against an Ag/AgCl reference electrode. Starting from an initial seed database of 49 compounds, the authors 
used ExChem to select potential candidates in the chemical space of structurally similar, commercially available compounds that might 
improve the Mg-Ca anode performance. The small training set size resulted in low prediction accuracy for the test set of only five 
compounds. Model performance improved significantly for a second test set when an active learning-based design of experiments 
scheme, illustrated in Fig. 28, was used. Using a sub-sampling approach, the authors additionally provided uncertainty estimates for 
the predictions, allowing selection of compounds for testing likely to further improve the model performance. Based on the predictions 
for both target parameters, Würger et al. developed a multi-objective optimization method that identifies new electrolyte additives that 
maximize the battery anode performance for target applications.

Aghaaminiha et al [553] reported a model for corrosion rates of carbon steel that included scheduled dosing of corrosion inhibitors. 
A Random Forest model that included environmental variables was found to best predict the time-profile of corrosion rates in presence 
of corrosion inhibitors.

To deal with small corrosion dataset sizes, some research groups added virtually generated data points using methods such as 
Virtual Sample Generation (VSG) to mitigate data scarcity, class imbalance and enhance the prediction accuracy of machine learning 
models. In a study by Sutojo et al [554], a K-Nearest Neighbour algorithm was combined with VSG based on bush topology to predict 
the %IE of inhibitor compounds when trained on six datasets. Similarly, Akrom et al.[555] enhanced the model performance by 
leveraging a kernel density estimation (KDE)-based VSG. Iyer et al. [556] built an ANN-based QSAR model to predict the inhibition 
efficiencies of 2-alkyl benzimidazole scaffold-based corrosion inhibitors for mild steel in 1 M HCl. They used VSG based on conditional 
GANs to generate synthetic data, thus enhancing the model towards recognizing relationships between chemical features and %IE. 
Although VSG can have a positive impact on the predictive performance of machine learning models, it has to be treated with care. It is 
easy to introduce biases, e.g., when the data distribution is not captured correctly, leading to overfitting or the model working well on 
synthetic data but failing to generalize for real-world data. Aside from that, the quality of data plays an important role. Validation of 
generated samples is difficult as a ground truth often does not exist. Additionally, since corrosion data is usually afflicted with rather 
large noise, VSG can further amplify uncertainties, thus impairing the quality of predictions. In worst cases, bad practices such as 
splitting data into training and test sets after VSG would leak test set information into the training set, resulting in an artificial spike in 
prediction accuracy for the test set. However, VSG for corrosion inhibitors shows some promising potential and developments of the 
underlying model architectures (e.g., GANs) may further improve the quality of the generated data in the future if due care is taken.

Quantum computing (next generation computers using quantum properties like superposition and entanglement to solve complex 
problems faster than on classical computers) and quantum machine learning (classical machine learning methods trained on data 
generated by high level quantum chemical calculations) are still in very early stages of development. The advantages of this approach 
suggest they will play a significant role in advancing corrosion control strategies and improving the understanding and mitigation of 
corrosion-related issues in the near future. Quantum materials science has the potential to become a paradigm shifting technology in 
scientific research [557]). It is highly likely that quantum computing approaches will be able to simulate the electronic structure and 
behaviour of materials in corrosive environments more accurately so these larger systems will become accessible to quantum machine 
learning (QML) methods. Such highly complex material systems are currently intractable for classical quantum chemical modelling 
approaches. Understanding the very fundamental processes of corrosion on the atomistic and quantum level will naturally enable the 
design of materials that are more resistant to degradation and protective coatings and may enable researchers to identify promising 
candidates without the need for expensive and time-consuming experimental testing. QML techniques can help identify and optimize 
processes as well as novel materials with desired properties more efficiently than the most sophisticated deep learning approaches that 
are available today. These algorithms can analyse complex data sets related to materials’ properties, environmental conditions, and 
corrosion rates much faster with more complex architectures and pseudo first principles quantum chemical methods. The application 
of QML in natural sciences already shows great potential e.g. for the simulation of catalytic cycles [558] as well as for the evaluation of 
corrosion inhibitors [559] whereas the author used a dataset consisting of 94 pyrimidine-type molecules to provide a proof of concept 
for the integration of QML with traditional QSPR. High potential of quantum computing for materials science and beyond has been 
already recognized by large industries: Airbus and BMW have announced a “Quantum Computing Challenge” in 2024 [560]. Modelling 
the process of inhibitor adsorption on an aluminium surface using quantum methods is one of four challenges proposed by the in
dustrial consortium.

5.3. Evolutionary methods

Given that the chemical space of small organic molecules, like that of potential drug-like molecules, is huge (>1060), there are a 
vast number of organic molecules that may exhibit useful corrosion inhibition properties. Clearly, accelerated testing using auto
mation, and leveraging of these data into larger areas of chemistry space using machine learning methods, will undoubtedly uncover 
new corrosion inhibitors. However, these approaches can still only explore a minute fraction of possible chemical space. Evolutionary 
methods, like biological evolution, are more efficient ways to explore very large solution spaces. These approaches are being adopted 
for drug and materials discovery, as reviewed recently.[31,32] These methods involve converting the relevant structural, physico
chemical, and prevenance properties of molecules into a bit string, a type of chemical genome. A small initial population of molecules 
is selected using leads, chemical intuition, or randomly and their fitness (e.g., corrosion inhibition) determined by experiment. The 
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fittest molecules are subject to mutation operators such as point mutation (perturbing a single bit in the genome, local search), 
crossover (splitting two genomes at a random point and combining the fragments in new ways, entering new chemical space), and 
elitism (retaining the best solutions without change). Molecules corresponding to these mutated genomes are synthesized and assessed 
for fitness, with the cycle repeating until an acceptance criterion is met, or no further improvement results.

There are multiple advantages of using evolutionary methods to discover next-generation corrosion inhibitors. Evolutionary 
methods allow complex fitness functions to be defined that provide optimal solutions for multiple properties e.g., high corrosion 
inhibition, low toxicity, compatibility with coating formulations, lower cost. As mentioned, they also explore chemistry space more 
efficiently than other methods and work synergistically with design-of-experiments techniques to increase the size of chemical space 
explored. They can minimize the number of physical experiments that need to be performed, reducing cost and increasing the speed of 
discovery. They also work well with methods such as active learning (adaptive experimental design). As the evolutionary process 
operates, the accumulated experimental data can be used to train machine learning models of the fitness landscape, replacing the need 
to conduct experiments in some cases.

There are currently no examples of the application of evolutionary methods to discover corrosion inhibitors, but we expect this 
approach to be of increasing importance in the near term. Genetic and evolutionary algorithm methods have, however, been used to 
derive corrosion-rate expressions for steel and zinc [561], to detect corrosion profiles on steel matrices [562] as well as to forecast the 
aging of single base propellants [563].

5.4. Autonomous systems

More speculatively, there is growing interest in autonomous systems (self-driving labs) for the discovery of novel molecules and 
materials [564–572]. Here, automated chemical synthesis and testing are combined with evolutionary algorithms or generative 
machine learning methods that convert a predicted activity from a machine learning model into a synthesizable molecule. This creates 
a system that can be initiated by lead materials and will iterate a synthesis-characterization-mutation cycle, without a human in the 
loop, until molecules with the desired properties are achieved. This paradigm is clearly very applicable to the discovery of next- 
generation corrosion inhibitors. The challenge is that the performance of a corrosion inhibitor molecule typically differs signifi
cantly from one alloy to another even within one metallic substrate (e.g. compare inhibitor performance for E21 and AZ31 Mg alloys in 
[60] or AA2024 and AA7075 in [73]). Two-three “universal” inhibitors, effective for several alloys of the same base metal, were also 
found per 100 tested, e.g. 3-amino-5-mercapto-1,2,4- triazole and 1,2,4-triazole-3-thiol were highly ranked for AA2024 and AA7075 
[73], benzotriazole suppressed Cu corrosion in pure and alloy forms [568], while 2,5- and 2,6-pyridine-dicarboxylates and fumarate 
were highly ranked for all nine tested Mg alloys [60]. Testing conditions, such as surface pretreatment, inhibitor concentration, initial 
bulk pH, electrolyte volume to surface area ratio, temperature, and medium composition and concentration also significantly influence 
measured inhibition efficiency. Thus, evolutionary methods will work best when all relevant metadata are captured in the genome. 
“Read across” methods for prediction of corrosion inhibition from one metal to another may also be useful, as other fields of technology 

Fig. 31. User interface of the web application ExCorr that enables browsing the database of corrosion inhibitors. Available online https://excorr. 
web.app/.
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such as nanomaterials, have shown these methods to have considerable value. Ideally, targeted screening for a particular alloy, tested 
under specified conditions, needs to be performed. The discovery of ‘universal’ corrosion inhibitors exhibiting the same performance 
as chromates, that perform equally well for a wide range of metallic substrates and microstructures, would be an important goal.

6. Diverse chemical classes of organic inhibitors

Hundreds of small organic molecules have been tested as corrosion inhibitors by a diverse range of methods and against the full 
spectrum of commercially important metals and alloys.

As outlined in Section 5 of this review, the databases containing corrosion inhibition entries should be the intermediate point, 
rather than the destination. Even the most efficient, automated experimental inhibitor screening will not be able to process 160 million 
compounds currently listed in the Chemical Abstracts Service database, let alone all hypothetically synthesizable small organic 
molecules. Given the size of chemical space, AI and Machine Learning models are the only feasible way to discover more robust and 
effective corrosion inhibiting small organic compounds tailored for specific alloys. The most prominent species identified by the 
experimental screening should be studied to unravel their inhibition mechanisms and to explore ways of incorporating inhibitors into 
metal protective coatings, their main application area.

We have compiled an extensive database comprising 1308 individual organic molecules, tested as corrosion inhibitors for Al-, Cu-, 
Zn, Mg-alloys and steels using different methods and operating concentrations etc., resulting in about 6000 database entries. This 
constitutes the largest data source so far for use by QSPR and other machine learning studies of organic corrosion inhibitors for diverse 
types of metal protection. To enable corrosion scientists to browse the database assembled as part of this review, and to render the data 
easily accessible for the community, we created a structure-–property landscape which is available at https://excorr.web.app/
(Fig. 31). This app summarizes the known organic corrosion inhibitors and their chemical diversity. The details of the experimental 
methods, measurement techniques, and inhibition efficiencies are also listed in the database. As an additional feature, a structure of 
interest in the given database can be selected by the user and the n most similar compounds from the underlying database are provided. 
Given that a structure–property relationship exists, the suggested compounds might be potent corrosion inhibitors for material of 
interest even if they have originally been tested for an entirely different material. First, the structures of all compounds in the database 
are encoded using the smooth overlap of atomic positions (SOAP) approach. Atoms are replaced by three-dimensional Gaussian 
functions and their rotationally and translationally invariant overlap is calculated between all local atomic environments using a 
defined cutoff radius around all atoms in the molecules. A global similarity matrix can be built from the resulting covariance matrix. To 
visualize this high-dimensional kernel as a 2D map, a dimension reduction method is applied (here we use kernel principal component 
analysis). Visualization is useful for checking operating centration ranges, a specific material (Mg, Al, Cu, Zn, Steel) or testing method 
(H2 evolution, weight loss gravimetry, EIS, PP, etc.).

A visualization the database of corrosion inhibitors is available as a Word document in the supporting information of this review. As 
machine learning algorithms require standardized input data, the authors created a machine-readable version of the reported 
corrosion inhibitors which is also provided as a supporting information file. To help keep the database up to date, the authors have 
provided a template to enable the community to add their own data in the future, to further expand data available for the training of 
machine learning models. The database behind ExCorr also contains less efficient or relatively novel species that have not been well 
studied to date. These nevertheless constitute highly relevant entities for machine learning algorithms as they extend the domains of 
applicability of the models. The https://excorr.web.app/ will be regularly updated with newly constituted sets of data contributed by 
the corrosion community. Another database, CORDATA, (https://datacor.shinyapps.io/cordata/) has been recently created and is 
being updated by researchers from University of Aveiro, Portugal [540].

7. Summary and path forward for organic corrosion inhibitors

As was exemplified in Section 4.5.5 of this review, conflicting values of inhibition efficiency for many organic compounds exist in 
the literature and have been unselectively collected in the ExCorr or CORDATA databases. The discrepancies stem from varying 
experimental conditions that affect measured corrosion inhibition values in many ways. These include alloy composition and pro
cessing steps defining the microstructure, surface condition, composition and concentration of corrosive medium and inhibitor con
centration, initial pH and sample surface to electrolyte volume ratio, electrolyte flow and thickness, aeration, CO2 content and 
temperature, to mention a few. These factors can significantly influence corrosion rate and inhibition mechanisms that impact the 
measured inhibition efficiency. Two general strategies for dealing with these discrepancies can be proposed: collecting databases with 
strictly controlled experimental conditions using robotic screening when possible; or collecting the most potent, universal, corrosion 
inhibitors under a wide range of varying conditions. Although discovering a single ecologically benign molecule as potent as chromate 
is unlikely, the latter approach may allow researchers to narrow down the set of universal inhibitor candidates with high inhibition 
efficiency for many metallic materials under diverse service conditions.

Most current inhibitor screening approaches consist of extensive testing of varying chemotypes on one metallic substrate, i.e. one 
specific alloy, under fixed conditions of surface preparation, inhibitor and corrosion medium concentration, testing time, etc. 
Exploring and defining the strategies for extending corrosion inhibition data within the same alloy family (e.g. Al containing Mg alloys, 
AZ31, AZ91, AM50) or across different alloy families (e.g. Al- or rare-earth-containing Mg alloys, AZ31 vs WE43) would significantly 
decrease the need for experimental [60] and computational [29,34] efforts and accelerate discovery of corrosion inhibitors with wide 
applicability. Lack of defined industry acceptance criteria is another hurdle on the way of adopting multiple successful, from academic 
standpoint, corrosion inhibitors into industrial practice. Comprehensive selection criteria for the inhibitors developed together by 
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academic and industrial researchers might shorten the path to industrial acceptance. Such selection criteria are unlikely to be common 
for a wide range of industries/applications due to a wide range of service conditions and hence performance validating tests. This 
results in a large variety of industrial standards per company, let alone the industry branch. Just like stand-alone inhibitors are prone to 
environmentally dependent performance, as demonstrated in Section 4.5.5 and Fig. 26, protective coatings incorporating such in
hibitors possess the same property. Perhaps, the most practical solution is to aim at inhibitor-containing protective coatings for specific 
industrial applications, considering corresponding service conditions and industrial testing requirements.

Only a small fraction of service applications embodies full immersion of a metallic part in inhibitor-containing electrolyte. In most 
cases, metallic parts are exposed to intermittent atmospheric conditions, where corrosion inhibitors are combined with other pro
tective strategies such as being distributed in polymeric or inorganic reservoirs, serving as inhibitor delivery system. They are typically 
added to primer coatings. Often, the inhibiting effect is retained when corresponding compounds are incorporated in the inhibitor 
delivering reservoirs distributed in a coating, but this cannot be taken for granted and needs to be verified for each specific coating- 
inhibitor combination. A loss of inhibitor capacity or deterioration of coating barrier properties have been reported [450,569] and are 
related to low local concentration of inhibitor upon leaching, local electrolyte conditions, interaction of inhibitors with the sur
rounding coating or reservoirs, or altered inhibition mechanism. Data related to protective performance of inhibitor-containing 
coatings are rarely reported and are much smaller (e.g. [570]), probably because testing is considerably longer, requires separation 
of the coating, reservoir and inhibitor effects, and is even more difficult to standardize owing to a wide variety of coating components. 
Nevertheless, given that the inhibitor-containing coating is closest to the real application, new high-throughput testing methods 
validating efficiency of corrosion inhibitor incorporated into protective coating, are urgently needed. These can include electro
chemical testing (e.g. LPR [570]), new approaches to accelerated corrosion testing, combining purely experimental testing with 
machine learning methods [571] and developing models predicting coating behaviour under various atmospheric conditions (digital 
twins). Designing accelerated yet representative experimental workflows for testing stand-alone and coating-incorporated corrosion 
inhibitors will overcome the current bottlenecks holding back in silico screening of corrosion inhibitors. These include lack of reliable, 
representative and diverse experimental data for training machine learning models. Another approach is contributing to shared da
tabases, following the best practice for data reporting (recording and disclosing experimental conditions including alloy type, 
composition, impurity level, grain size, surface preparation, type and concentration of corrosive medium, inhibitor concentration, 
initial and final pH, test duration, evaluation method, sample surface to electrolyte volume ratio, electrolyte flow and thickness, 
aeration, CO2 content and temperature).

Although machine learning models for corrosion inhibition are available and are developing rapidly, another challenge stems from 
deciphering the language of corrosion inhibition. Evolution of language and notation often precedes major breakthroughs in science. A 
good example of this is Newton and Leibniz’s definition of differential calculus, which started with a lack of language to describe the 
scientific problem of mechanics itself. After, this mathematical foundation enabled simpler understanding of a myriad of unsolved 
problems. Meanwhile the language of quantum mechanics also started with a new mathematical notation, which changed the un
derstanding of all physical sciences. Similarly, we currently lack the best notation or description needed to digitize our experiments. 
This is critical in communicating our results to predictive machine learning models. To this end, finding the computational descriptors 
that best digitize corrosion inhibition is crucial. Currently, the literature contains many descriptor generation packages for 
quantitative-activity relationships. There are very promising new approaches that move beyond externally generated features by 
intrinsically defining molecules (graph neural networks, adjacency matrices, natural language embeddings of SMILES/SMARTS/ 
SELFIES) [572]. Although initially developed solely for small organic molecules, in future, generalization of descriptor definitions 
would better capture the complex behaviour of inorganic inhibition systems such as Li, Ce, chromate systems, and later, interaction 
between different inhibitor chemicals, and components of coating systems. However, devising such a unified language is non-trivial 
[573]. Especially, the rise of the transformers (e.g. ChatGPT) in recent years bears high potential to usher a new era in the development 
of predictive models for corrosion inhibitor research as the self-attention mechanism at the core of their learning process can 
potentially connect hidden links between the experimental and computational realm.

The search for chromate-free corrosion inhibitors is an ongoing quest for at least two decades. Yet, the results are far from optimal. 
This made aerospace, automotive, construction and other industries appeal to environment regulatory bodies to extend (limited) use of 
hexavalent chrome inhibitors. While such extensions are often justified and granted, this holds back the progress in development of 
alternative corrosion inhibitors. Another issue is that environmental compatibility and toxicity of organic corrosion inhibitors are 
typically not properly addressed in publications dealing with corrosion inhibitor discovery. It is often done much later, at the industrial 
implementation stage. Clarifying hazardous properties at the inhibitor screening stage might save time and effort that otherwise would 
be put into a potentially dangerous compound. There is clearly a need for such pre-screening stage to be implemented before including 
any compound into a testing routine. Manual consulting of MSDS data of existing compounds, screening or estimating toxicity using 
existing apps linked to biomedical databases [574] might be a starting point.

So, what else is needed to move towards a bright future of machine learning in corrosion inhibition research? If the right data are 
available, machine learning is already proving to be an invaluable tool to predict the inhibition performance of, e.g., individual 
chemical compounds for a given base material. Machine learning models that predict the synergistic effects of mixtures also already 
exist, although mostly in other domains than corrosion inhibition as described in section 4.6 and 4.7. However, the necessary tools are 
available and combining them with a solid data foundation (for example, acquired by recently proposed droplet micro-array testing 
[575]) will help to accelerate the discovery of synergistic mixtures for corrosion inhibition. Atomistic simulations [576] bear the 
potential to increase the mechanistic understanding of investigated systems and mixtures, revealing relationships that can be incor
porated into the modelling process to further increase the predictive performance. New molecular descriptors such as MolSets will 
further support the modelling process [577], whereas the rise of self-driving labs [578] will facilitate the reproducible collection of 
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[152] Kokalj A, Gustinčič D, Poberžnik M, Lozinšek M. New insights into adsorption bonding of imidazole: A viable C2–H bond cleavage on copper surfaces. Appl 

Surf Sci 2019;479:463–8.
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[311] Schimbäck D, Mair P, Bärtl M, Palm F, Leichtfried G, Mayer S, et al. Alloy design strategy for microstructural-tailored scandium-modified aluminium alloys for 
additive manufacturing. Scr Mater 2022;207:114277.

[312] Oliveira GHM, Belei C, de Carvalho WS, Canto LB, Amancio-Filho ST. On the fully additive manufacturing of PC/AlSi10Mg hybrid structures. Mater Lett 2023; 
330:133378.

[313] Gao M, Feng C, Wei RP. An analytical electron microscopy study of constituent particles in commercial 7075–T6 and 2024–T3 alloys. Metall Mater Trans A 
1998;29:1145–51.

[314] Ayer R, Koo JY, Steeds JW, Park BK. Microanalytical study of the heterogeneous phases in commercial Al-Zn-Mg-Cu alloys. Metall Trans A 1985;16:1925–36.
[315] MacRae CM, Hughes AE, Laird JS, Glenn AM, Wilson NC, Torpy A, et al. An examination of the composition and microstructure of coarse intermetallic particles 

in AA2099-T8, including Li detection. Microscopy Microanal 2018;24:325–41.
[316] Phragmen G. On the phases occurring in alloys of aluminium with copper, magnesium, manganese, iron, and silicon. J Inst Met 1950;77:489–551.
[317] Mondolfo LF. Aluminum Alloys: Structure and Properties Butterworth-Heinemann; 1976.
[318] Polmear I, St John D, Nie J-F, Qian M. Light Alloys: Metallurgy of the Light Metals. 5th ed: Butterworth-Heinemann; 2017.
[319] Buchheit RG, Grant RP, Hlava PF, Mckenzie B, Zender GL. Local dissolution phenomena associated with S phase (Al2CuMg) particles in aluminum alloy 

2024–T3. J Electrochem Soc 1997;144:2621–8.
[320] Buchheit RG, Martinez MA, Montes LP. Evidence for Cu ion formation by dissolution and dealloying the Al2CuMg intermetallic compound in rotating ring-disk 

collection experiments. J Electrochem Soc 2000;147:119.
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[533] Winkler; DA, Hughes; AE, Özkan; C, Mol; A, Würger; T, Feiler; C, et al. https://excorr.web.app/database 2024.
[534] Jayalakshmi M, Muralidharan VS. Correlation between structure and inhibition of organic compounds for acid corrosion of transition metals. Indian J Chem 

Technol 1998;5:16–28.

D.A. Winkler et al.                                                                                                                                                                                                    Progress in Materials Science 149 (2025) 101392 

67 

https://excorr.web.app/database


[535] Keshavarz MH, Esmaeilpour K, Golikand AN, Shirazi Z. Simple approach to predict corrosion inhibition efficiency of imidazole and benzimidazole derivatives 
as well as linear organic compounds containing several polar functional groups. Z Anorg Allg Chem 2016;642:906–13.

[536] Zhang SG, Lei W, Xia MZ, Wang FY. QSAR study on N-containing corrosion inhibitors: quantum chemical approach assisted by topological index. J Mol Struc- 
Theochem 2005;732:173–82.

[537] Liu Y, Guo Y, Wu W, Xiong Y, Sun C, Yuan L, et al. A machine learning-based QSAR model for benzimidazole derivatives as corrosion inhibitors by 
incorporating comprehensive feature selection. Interdiscipl Sci-Comput Life Sci 2019;11:738–47.

[538] El Assiri EH, Driouch M, Lazrak J, Bensouda Z, Elhaloui A, Sfaira M, et al. Development and validation of QSPR models for corrosion inhibition of carbon steel 
by some pyridazine derivatives in acidic medium. Heliyon 2020;6:e05067.

[539] Galvao TLP, Novell-Leruth G, Kuznetsova A, Tedim J, Gomes JRB. Elucidating structure-property relationships in aluminum alloy corrosion inhibitors by 
machine learning. J Phys Chem C 2020;124:5624–35.

[540] Galvão TLP, Ferreira I, Kuznetsova A, Novell-Leruth G, Song C, Feiler C, et al. CORDATA: an open data management web application to select corrosion 
inhibitors. npj Mater Degrad 2022;6:48.

[541] Obot IB, Umoren SA. Experimental, DFT and QSAR models for the discovery of new pyrazines corrosion inhibitors for steel in oilfield acidizing environment. 
Int J Electrochem Sci 2020;15:9066–80.

[542] Costa SN, Almeida-Neto FWQ, Campos OS, Fonseca TS, de Mattos MC, Freire VN, et al. Carbon steel corrosion inhibition in acid medium by imidazole-based 
molecules: Experimental and molecular modelling approaches. J Mol Liq 2021;326:115330.

[543] Sadik K, Byadi S, Hachim ME, Hamdani NE, Podlipnik C, Aboulmouhajir A. Multi-QSAR approaches for investigating the relationship between chemical 
structure descriptors of thiadiazole derivatives and their corrosion inhibition performance. J Mol Struct 2021;1240:130571.

[544] Dai J, Fu D, Song G, Ma L, Guo X, Mol A, et al. Cross-category prediction of corrosion inhibitor performance based on molecular graph structures via a three- 
level message passing neural network model. Corros Sci 2022;209:110780.

[545] Ma J, Dai J, Guo X, Fu D, Ma L, Keil P, et al. Data-driven corrosion inhibition efficiency prediction model incorporating 2D–3D molecular graphs and inhibitor 
concentration. Corros Sci 2023;222:111420.

[546] Li X, Vaghefinazari B, Würger T, Lamaka SV, Zheludkevich ML, Feiler C. Predicting corrosion inhibition efficiencies of small organic molecules using data- 
driven techniques. npj Mater Degrad 2023;7:64.

[547] Schiessler EJ, Würger T, Vaghefinazari B, Lamaka SV, Meißner RH, Cyron CJ, et al. Searching the chemical space for effective magnesium dissolution 
modulators: a deep learning approach using sparse features. npj Mater Degrad 2023;7:74.

[548] Burden FR, Winkler DA. An optimal self-pruning neural network and nonlinear descriptor selection in QSAR. QSAR Comb Sci 2009;28:1092–7.
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