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A B S T R A C T

Iterative feedback tuning (IFT) enables the tuning of feedback controllers using only measured data to obtain
the gradient of a cost criterion. The aim of this paper is to reduce the required number of experiments for
MIMO IFT. It is shown that, through a randomization technique, an unbiased gradient estimate can be obtained
from a single dedicated experiment, regardless of the size of the MIMO system. The gradient estimate is used
in a stochastic gradient descent algorithm. The approach is experimentally validated on a mechatronic system,
showing a significantly reduced number of experiments compared to standard IFT.
1. Introduction

Data-driven methods for feedback controller design are appealing
because their limited dependency on accurate modeling. In contrast
to data-driven methods, fully model-based feedback design requires
accurate models that are typically obtained through system identifica-
tion, an expensive and difficult process, especially for multiple-input
multiple-output (MIMO) systems. Data-driven approaches often use
approximate models in conjunction with measured data, leading to
less stringent modeling requirements. Some data-driven control meth-
ods include frequency-domain tuning (Kammer, Bitmead, & Bartlett,
1998), virtual-reference feedback tuning (VRFT) (Campi, Lecchini, &
Savaresi, 2002; Formentin & Savaresi, 2011), correlation-based tun-
ing (Mišković, Karimi, Bonvin, & Gevers, 2007) and iterative feedback
tuning (IFT) (Hjalmarsson & Birkeland, 1998; Hjalmarsson & Kan Hjal-
marsson, 1999), see also Sanfelice Bazanella, Campestrini, and Eckhard
(2012) for an overview. This paper focuses on IFT, an optimization-
based approach that tunes the feedback controller parameters to min-
imize a cost function aimed at tracking or disturbance rejection. In
contrast to the other methods, IFT does not require an explicit model,
yet it can be interpreted as using local modeling of the dependence of
closed-loop signals on the controller (Hjalmarsson, 2005).

The key mechanism of iterative feedback tuning is that the gradient
of the cost function can be obtained directly from system experi-
ments. This measured gradient is used in an iterative optimization-
based algorithm, typically based on stochastic gradient descent when
iteration-varying system disturbances are taken into account. Exper-
imental gradients are available for both single-input single output

✩ This work is part of the research programme VIDI with project number 15698, which is (partly) financed by the NWO, The Netherlands.
∗ Corresponding author.
E-mail address: l.i.m.aarnoudse@tue.nl (L. Aarnoudse).

(SISO) and MIMO systems, yet most applications and extensions are
limited to SISO systems. Some examples of successful implementations
include applications for the process industry (Hjalmarsson, Gevers,
Gunnarsson, & Lequin, 1998) and motion systems (Hamamoto, Fukuda,
& Sugie, 2003; Heertjes, Van Der Velden, & Oomen, 2016; Kissling,
Blanc, Myszkorowski, & Vaclavik, 2009; Roman et al., 2022), cas-
caded control for quadrotors (Tesch, Eckhard, & Guarienti, 2016) and
robotic systems (Xie, Jin, Tang, Ye, & Tao, 2019), intelligent PID
control (Baciu & Lazar, 2023) and even control of nonlinear sys-
tems (Codrons, De Bruyne, De Wan, & Gevers, 1998). Extensions of IFT
consider, e.g., robustness (Heertjes et al., 2016), system constraints (Xie
et al., 2019), convergence speed (Huusom, Hjalmarsson, Poulsen, &
Jørgensen, 2011) and, for the specific case of disturbance rejection,
methods for optimal prefiltering (Hildebrand, Lecchini, Solari, & Gev-
ers, 2004) and measuring unbiased Hessian estimates (Solari & Gevers,
2004).

IFT is typically only applied to SISO systems, because MIMO IFT
is highly inefficient. MIMO IFT requires 𝑛𝑖 × 𝑛𝑜 experiments per it-
eration to measure the gradient for a system with 𝑛𝑖 inputs and 𝑛𝑜
outputs (Hjalmarsson & Birkeland, 1998), resulting in poor scaling
for large MIMO systems since the number of dedicated experiments
increases with the size of the system. Related methods that gener-
ate gradients for MIMO systems through experiments suffer from the
same limitation, examples include VRFT (Formentin, Bisoffi, & Oomen,
2015), 𝐻∞-norm estimation (Oomen, Van Der Maas, Rojas, & Hjal-
marsson, 2014) and data-driven iterative learning control (ILC) (Bolder,
Kleinendorst, & Oomen, 2018).
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Fig. 1. Control scheme.

Randomization based on insights from simultaneous perturbation
tochastic approximation (SPSA) (Spall, 1988) can reduce the required
umber of experiments to obtain experimental gradients for MIMO sys-
ems significantly. In SPSA, an unbiased gradient estimate is obtained
y perturbing all parameters simultaneously in random directions. An
PSA-based randomized MIMO IFT algorithm that aims at reducing
he number of dedicated experiments is introduced in Gerencsér, Vágó,
nd Hjalmarsson (2002). However, this approach is limited to systems

with periodic reference signals and negligible measurement noise, and
it is unclear how the unbiased gradient estimates are obtained. In
the current paper, it is shown that an unbiased gradient estimate for
MIMO IFT can be obtained from a single experiment, regardless of the
size of the system. A similar idea is developed for data-driven MIMO
iterative learning control (ILC) in Aarnoudse and Oomen (2021). The
nbiased gradient estimates are used in a stochastic gradient descent
lgorithm (Robbins & Monro, 1951), for which convergence can be
hown. The method is reminiscent of SPSA, but it is fundamentally
ifferent because it retains the gradient expressions from MIMO IFT
nd does not replace them with less accurate parameter perturbations.

Although significant steps have been taken towards fully data-
driven tuning of feedback controllers for MIMO systems, an efficient
method without scaling issues for large MIMO systems is lacking. The
aim of this paper is to develop an efficient MIMO iterative feedback
tuning method that requires only a single experiment per iteration to
obtain an unbiased gradient estimate. The contribution consists of the
following elements.

• A new approach is developed for fast MIMO IFT that requires
a single experiment per iteration to obtain an unbiased gradient
estimate.

• A convergence proof of the presented algorithm is obtained.
• Experimental validation and comparison to standard MIMO IFT

of the presented approach.

Preliminary results are presented in Aarnoudse and Oomen (2023),
which introduces a single experiment to obtain an unbiased gradient
estimate for MIMO IFT. The present paper extends these results by
experimental implementation on a mechatronic system, detailed expla-
nations in the form of illustrations and procedures for the presented
method, an adapted method that reduces the variance when not all
MIMO controller channels are used, and consideration of the problem
of robust optimization.

The paper is structured as follows. In Section 2, the considered
problem is introduced. In Section 3, a new method to efficiently obtain
gradient estimates for MIMO IFT is presented. Section 4 applies these
radient estimates in a stochastic approximation IFT algorithm. The
resented method is compared to standard MIMO IFT in Section 5,

in which also the case of non-full controllers is considered. In Sec-
tion 6, implementation aspects are discussed. Experimental results are
resented in Section 7 and finally, conclusions are given in Section 8.

2. Problem formulation

The problem considered in this paper is the data-based optimiza-
tion of the parameters of a feedback controller 𝐶(𝜌) for an unknown
discrete-time linear time-invariant MIMO system 𝑃 (𝑞), given by
2 
Fig. 2. General control scheme.
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⎢

⎢

⎣
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⋮ ⋱ ⋮
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⎢

⎣
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⋮
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⎣

𝑣1(𝑡)
𝑣2(𝑡)
⋮

𝑣𝑛𝑜 (𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏟⏟
𝑣(𝑡)

, (1)

with 𝑞 denoting the shift operator, input 𝑢(𝑡) ∈ R𝑛𝑖 , output 𝑦(𝑡) ∈ R𝑛𝑜

and disturbance 𝑣(𝑡) ∈ R𝑛𝑜 , as illustrated in Fig. 1. System 𝑃 has 𝑛𝑖
inputs and 𝑛𝑜 outputs, and the controller 𝐶(𝜌) is parameterized by a
arameter vector 𝜌 ∈ R𝑛𝜌 . The aim is to find the controller parameters

𝜌 that minimize the cost function

 (𝜌) = 1
2𝑁

𝑁
∑

𝑡=1

[

(𝑟(𝑡) − 𝑦(𝜌, 𝑡))𝖳(𝑟(𝑡) − 𝑦(𝜌, 𝑡))] , (2)

with reference 𝑟(𝑡) ∈ R𝑛𝑜 . When 𝐶(𝑞 , 𝜌) is connected to 𝑃 (𝑞) using
negative feedback, the output 𝑦(𝑡) can be rewritten as

𝑦(𝑡) =(𝐼 + 𝑃 (𝑞)𝐶(𝑞 , 𝜌))−1𝑃 (𝑞)𝐶(𝑞 , 𝜌)𝑟(𝑡)+ (3)
(𝐼 + 𝑃 (𝑞)𝐶(𝑞 , 𝜌))−1𝑣(𝑡),

The feedback error 𝑒(𝑡) ∈ R𝑛𝑜 is given by 𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡). In the
emainder of this paper, the time 𝑡 and shift operator 𝑞 are omitted
hen not needed for brevity of notation.

The aim of this paper is to develop an experimentally inexpensive
pproach to minimizing (2) for an unknown MIMO system, i.e., it is as-

sumed that no model of 𝑃 is available. A gradient-based approach based
n iterative feedback tuning (IFT) is used, in which the experimentally
xpensive gradient expressions are replaced by gradient estimates that
ollow from a single experiment.

Remark 1. Many SISO IFT applications use a two-degree-of-freedom
(DOF) controller structure, for which a reference model is necessary.
The focus of this paper is on MIMO mechatronic systems with single-
DOF controllers, therefore reference models are omitted. All results can
be extended to the case with reference models, for which 𝑟(𝑡) in the cost
function (2) is replaced by 𝑦𝑑 (𝑡) = 𝑀(𝑞)𝑟(𝑡) for reference model 𝑀(𝑞)
nd desired output 𝑦𝑑 (𝑡).

3. Efficient gradient estimates for MIMO iterative feedback tuning

In this section, an efficient method to minimizing (2) for unknown
MIMO systems is introduced. The method is derived from iterative
feedback tuning, yet it improves the efficiency significantly through
unbiased gradient estimates that follow from a single dedicated ex-
periment. The main result is given in Theorem 1 in Section 3.3, and
constitutes the first contribution. To obtain this result, gradient ex-
pressions are derived in Section 3.1, and the gradient estimates are
illustrated for a 2 × 2 example in Section 3.2 before extending this to
MIMO systems of any size in Section 3.3.
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3.1. Gradient expressions for MIMO IFT

The gradient 𝑔(𝜌) = 𝜕 (𝜌)
𝜕 𝜌 of (2) is given by

𝑔(𝜌) = 1
𝑁

𝑁
∑

𝑡=1

[

−
(

𝜕 𝑦(𝜌)
𝜕 𝜌 (𝑡)

)𝖳

(𝑟(𝑡) − 𝑦(𝜌, 𝑡))
]

. (4)

The term 𝑟 − 𝑦(𝜌) in (4) is the error signal 𝑒 from an experiment
ith reference 𝑟 and controller 𝐶(𝜌) and can therefore be measured

directly. To illustrate how the term 𝜕 𝑦(𝜌)
𝜕 𝜌 (𝑡) can be obtained through

xperiments, the system is rewritten to the generalized plant 𝐺 with
eedback controller 𝐶(𝜌), shown in Fig. 2, for which
(

𝑦
𝑒

)

=
[

0 𝐼 𝑃
𝐼 −𝐼 −𝑃

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐺

⎛

⎜

⎜

⎝

𝑟
𝑣
𝑢

⎞

⎟

⎟

⎠

, (5)

𝑢 = 𝐶(𝜌)𝑒, (6)

with 𝑢(𝑡) ∈ R𝑛𝑖 denoting the controller output. The derivative 𝜕 𝑦(𝜌)
𝜕 𝜌 (𝑡) ∈

R𝑛𝑜×𝑁𝜌 is of the form
𝜕 𝑦(𝜌)
𝜕 𝜌 (𝑡) = (7)
[

𝑦′(𝜌(1))(𝑡) 𝑦′(𝜌(2))(𝑡) … 𝑦′(𝜌(𝑛𝜌))(𝑡)
]

,

with 𝑦′(𝜌(𝑥))(𝑡) ∈ R𝑛𝑜 denoting the derivative of 𝑦(𝜌) to the 𝑥th
parameter in 𝜌. For each of these derivatives to a single parameter, it
holds that
(

𝑦′

𝑒′

)

= 𝐺
⎛

⎜

⎜

⎝

0
0
𝑢′

⎞

⎟

⎟

⎠

(8)

𝑢′ = 𝐶 ′(𝜌(𝑥))𝑒 + 𝐶(𝜌)𝑒′, (9)

where the index 𝜌(𝑥) is omitted for all signals for brevity, and where
′(𝜌(𝑥)) denotes the derivative of 𝐶(𝜌) to the 𝑥th entry of 𝜌. From (8),

it follows that

𝑦′(𝜌(𝑥)) = 𝑆(𝜌)𝑃 𝐶 ′(𝜌(𝑥))𝑒, (10)

with 𝑆(𝜌) = (1 + 𝑃 𝐶(𝜌))−1. Eq. (10) shows that for each parameter,
he derivative can be obtained from an experiment with 𝑟 = 0, where
′(𝜌(𝑥))𝑒 is injected between the plant and the controller. Rewriting

10) gives

𝑦′(𝜌(𝑥)) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∑𝑛𝑜
𝑙=1

∑𝑛𝑖
𝑘=1(𝑆(𝜌)𝑃 )1𝑘𝐶

′
𝑘𝑙(𝜌(𝑥))𝑒𝑙(𝜌)

∑𝑛𝑜
𝑙=1

∑𝑛𝑖
𝑘=1(𝑆(𝜌)𝑃 )2𝑘𝐶

′
𝑘𝑙(𝜌(𝑥))𝑒𝑙(𝜌)

⋮
∑𝑛𝑜

𝑙=1
∑𝑛𝑖

𝑘=1(𝑆(𝜌)𝑃 )𝑛𝑜𝑘𝐶
′
𝑘𝑙(𝜌(𝑥))𝑒𝑙(𝜌)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (11)

in which the derivatives 𝐶 ′
𝑘𝑙 are the SISO elements of 𝐶 ′, such that 𝐶 ′

𝑘𝑙
nd (𝑆(𝜌)𝑃 )𝑚𝑘 commute. It follows that in order to find the derivative
rom 𝑦 to each of the parameters in 𝜌, and with that the gradient of (2),

it is only necessary to obtain the terms (𝑆(𝜌)𝑃 )𝑚𝑘𝑒𝑙(𝜌) for 𝑚 = 1,… , 𝑛𝑜,
𝑘 = 1,… , 𝑛𝑖, and 𝑙 = 1,… , 𝑛𝑜.

3.2. Efficient unbiased gradient estimates: 2 × 2 example

Next, it is shown how a single experiment leads to unbiased gradient
stimates for a 2 × 2 system. The key point is the introduction of a
atrix 𝐴 ∈ R2×2, which for the 2 × 2 system is of the form

𝐴 =
[

𝑎11 𝑎12

𝑎21 𝑎22

]

. (12)

The entries of 𝐴 are samples from a symmetric Bernoulli ±1 distri-
bution, i.e., 𝑎𝑙 𝑚 ∈ {−1, 1} with probabilities 𝑃 (𝑎𝑙 𝑚 = 1) = 1∕2 and
𝑃 (𝑎𝑙 𝑚 = −1) = 1∕2. Matrix 𝐴 is time-invariant and iteration-varying,
3 
Fig. 3. Stochastic approximation IFT experiment that leads to an unbiased gradient
estimate. The experiment corresponds to Eq. (26) and the post-processing is according
o (20), respectively (14) and (15) for the 2 × 2 example.

i.e., when the gradient estimates that are developed next are applied
in iterative feedback tuning, each iteration 𝑗 uses a different random
matrix 𝐴𝑗 .

The derivative to a single parameter 𝑦′(𝜌(𝑥))(𝑡) ∈ R2 for a 2 × 2
system is given by

𝑦′(𝜌(𝑥)) = (13)
[

(𝑆 𝑃 )11(𝐶 ′
11𝑒1 + 𝐶 ′

12𝑒2) + (𝑆 𝑃 )12(𝐶 ′
21𝑒1 + 𝐶 ′

22𝑒2)

(𝑆 𝑃 )21(𝐶 ′
11𝑒1 + 𝐶 ′

12𝑒2) + (𝑆 𝑃 )22(𝐶 ′
21𝑒1 + 𝐶 ′

22𝑒2)

]

,

where 𝐶 ′
11 denotes the derivative of the (1, 1) element of 𝐶 to 𝜌(𝑥). The

ependence on 𝜌(𝑥) in these derivatives and in 𝑆 and 𝑒 is omitted for
revity. The terms (𝑆(𝜌)𝑃 )𝑚𝑘(𝜌)𝑒𝑙(𝜌) for 𝑚 = 1, 2, 𝑘 = 1, 2, and 𝑙 = 1, 2
an be obtained from a single experiment using 𝐴 as follows:
[

(𝑆 𝑃 )11 (𝑆 𝑃 )12
(𝑆 𝑃 )21 (𝑆 𝑃 )22

]

𝐴
(

𝑒1
𝑒2

)

= (14)
[

(𝑆 𝑃 )11(𝑎11𝑒1 + 𝑎12𝑒2) + (𝑆 𝑃 )12(𝑎21𝑒1 + 𝑎22𝑒2)

(𝑆 𝑃 )21(𝑎11𝑒1 + 𝑎12𝑒2) + (𝑆 𝑃 )22(𝑎21𝑒1 + 𝑎22𝑒2)

]

.

In this experiment, the signal 𝐴𝑒 is added to the signal 𝑢, i.e., it is in-
jected between the controller and the plant as illustrated in
Fig. 3.

The output of this experiment is processed to give an unbiased
estimate 𝑦̂′(𝜌(𝑥)) for each parameter 𝜌(𝑥), 𝑥 = 1, 2,… , 𝑛𝜌. The estimates
re given by

𝑦̂′(𝜌(𝑥)) =
⎡

⎢

⎢

⎣

(

𝑎11𝑗 𝐶 ′
11 + 𝑎12𝑗 𝐶 ′

12 + 𝑎21𝑗 𝐶 ′
21 + 𝑎22𝑗 𝐶 ′

22

)

×
(

𝑎11𝑗 𝐶 ′
11 + 𝑎12𝑗 𝐶 ′

12 + 𝑎21𝑗 𝐶 ′
21 + 𝑎22𝑗 𝐶 ′

22

)

×
(

(𝑆 𝑃 )11(𝑎11𝑗 𝑒1 + 𝑎12𝑗 𝑒2) + (𝑆 𝑃 )12(𝑎21𝑗 𝑒1 + 𝑎22𝑗 𝑒2)
)

(

(𝑆 𝑃 )21(𝑎11𝑗 𝑒1 + 𝑎12𝑗 𝑒2) + (𝑆 𝑃 )22(𝑎21𝑗 𝑒1 + 𝑎22𝑗 𝑒2)
)

⎤

⎥

⎥

⎦

. (15)

The expected value of this expression is obtained by noting that
𝐸{𝑎𝛼 𝛽𝑎𝛾 𝛿} = 1 if 𝛼 = 𝛾 , 𝛽 = 𝛿 and otherwise, if 𝛼 ≠ 𝛾 and/or 𝛽 ≠ 𝛿,
𝐸{𝑎𝛼 𝛽𝑎𝛾 𝛿} = 0. This gives

𝐸{𝑦̂′(𝜌(𝑥))} = (16)
[

𝑎11𝑗 𝐶 ′
11(𝑆 𝑃 )11𝑎11𝑗 𝑒1 + 𝑎12𝑗 𝐶 ′

12(𝑆 𝑃 )11𝑎12𝑗 𝑒2
𝑎11𝑗 𝐶 ′

11(𝑆 𝑃 )21𝑎11𝑗 𝑒1 + 𝑎12𝑗 𝐶 ′
12(𝑆 𝑃 )21𝑎12𝑗 𝑒2

+𝑎21𝑗 𝐶 ′
21𝐽12𝑎

21
𝑗 𝑒1 + 𝑎22𝑗 𝐶 ′

22(𝑆 𝑃 )12𝑎22𝑗 𝑒2
+𝑎21𝑗 𝐶 ′

21𝐽22𝑎
21
𝑗 𝑒1 + 𝑎22𝑗 𝐶 ′

22(𝑆 𝑃 )22𝑎22𝑗 𝑒2

]

=

[

(𝑆 𝑃 )11(𝐶 ′
11𝑒1+𝐶

′
12𝑒2) + (𝑆 𝑃 )12(𝐶 ′

21𝑒1 + 𝐶 ′
22𝑒2)

(𝑆 𝑃 )21(𝐶 ′
11𝑒1 + 𝐶 ′

12𝑒2) + (𝑆 𝑃 )22(𝐶 ′
21𝑒1 + 𝐶 ′

22𝑒2)

]

,
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i.e., 𝐸{𝑦̂′(𝜌(𝑥))} = 𝑦′(𝜌(𝑥)). These estimated derivatives of the output 𝑦
o each parameter are used to construct an estimate of 𝜕 𝑦(𝜌)

𝜕 𝜌 of the form
𝜕̂ 𝑦(𝜌)
𝜕 𝜌 (𝑡) = (17)

[

𝑦̂′(𝜌(1))(𝑡) 𝑦̂′(𝜌(2))(𝑡) … 𝑦̂′(𝜌(𝑛𝜌))(𝑡)
]

,

which is used to construct an unbiased estimate of the gradient 𝑔(𝜌) in
(4) of cost function  (𝜌) in (2), given by

𝑔̂(𝜌) = 1
𝑁

𝑁
∑

𝑡=1

⎡

⎢

⎢

⎣

−

(

𝜕̂ 𝑦(𝜌)
𝜕 𝜌 (𝑡)

)𝖳

(𝑟(𝑡) − 𝑦(𝜌, 𝑡))
⎤

⎥

⎥

⎦

. (18)

Since 𝐸{𝑦̂′(𝜌(𝑥))} = 𝑦′(𝜌(𝑥)), 𝑔̂(𝜌) is an unbiased estimator of 𝑔̂(𝜌). Thus,
a single experiment (14) leads to an unbiased estimate of the gradient
4), which can be used to minimize the cost function (2) through
tochastic approximation as shown in Section 4. Next, the approach is
xtended to general MIMO systems.

3.3. Efficient unbiased gradient estimates for MIMO IFT

The approach that is illustrated for a 2 × 2 system can be extended
o general 𝑛𝑖×𝑛𝑜 MIMO systems directly. The general form of the matrix
∈ R(𝑛𝑖)×(𝑛𝑜) is as follows.

𝐴 =
⎡

⎢

⎢

⎣

𝑎11 … 𝑎1𝑛𝑜
⋮ ⋱ ⋮

𝑎𝑛𝑖1 … 𝑎𝑛𝑖𝑛𝑜

⎤

⎥

⎥

⎦

. (19)

Again, the entries 𝑎𝑙 𝑚 are samples from a symmetric Bernoulli ±1
istribution, such that 𝑎𝑙 𝑚 ∈ {−1, 1} with probabilities 𝑃 (𝑎𝑙 𝑚 = 1) = 1∕2

and 𝑃 (𝑎𝑙 𝑚 = −1) = 1∕2, and matrix 𝐴 is time-invariant and iteration-
varying. The following theorem formalizes the results for general MIMO
systems.

Theorem 1. Let

𝑦̂′(𝜌(𝑥)) = (20)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑛𝑖
∑

𝑚=1

𝑛𝑜
∑

𝑞=1
𝑎𝑚𝑞𝐶 ′

𝑚𝑞

( 𝑛𝑖
∑

𝑘=1
(𝑆 𝑃 )1𝑘

( 𝑛𝑜
∑

𝑙=1
𝑎𝑘𝑙𝑒𝑙

))

⋮
𝑛𝑖
∑

𝑚=1

𝑛𝑜
∑

𝑞=1
𝑎𝑚𝑞𝑗 𝐶 ′

𝑚𝑞

( 𝑛𝑖
∑

𝑘=1
(𝑆 𝑃 )𝑛𝑜𝑘

( 𝑛𝑜
∑

𝑙=1
𝑎𝑘𝑙𝑒𝑙

))

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

with 𝑎𝑚𝑞 and 𝑎𝑘𝑙 the entries of matrix 𝐴 in (19), and define

𝑔̂(𝜌) = 1
𝑁

𝑁
∑

𝑡=1

⎡

⎢

⎢

⎣

(

𝜕̂ 𝑦(𝜌)
𝜕 𝜌 (𝑡)

)𝖳

(𝑟(𝑡) − 𝑦(𝜌, 𝑡))
⎤

⎥

⎥

⎦

, (21)

with
𝜕̂ 𝑦(𝜌)
𝜕 𝜌 (𝑡) = (22)
[

𝑦̂′(𝜌(1))(𝑡) 𝑦̂′(𝜌(2))(𝑡) … 𝑦̂′(𝜌(𝑛𝜌))(𝑡)
]

∈ R𝑛𝑜×𝑁 𝜌.

Then 𝐸
{

𝜕̂ 𝑦(𝜌)
𝜕 𝜌 (𝑡)

}

= 𝜕 𝑦(𝜌)
𝜕 𝜌 (𝑡) and consequently,

𝐸{𝑔̂(𝜌)} = 𝑔(𝜌). (23)

Proof. For the entries of (20) it holds that 𝐸{𝑎𝛼 𝛽𝑎𝛾 𝛿} = 1 if 𝛼 = 𝛾 , 𝛽 = 𝛿
and 𝐸{𝑎𝛼 𝛽𝑎𝛾 𝛿} = 0 otherwise. Therefore, (20) is equal to 𝑦̃′(𝜌(𝑥)) + 𝜂,

ith

𝑦̃′(𝜌(𝑥)) =
⎡

⎢

⎢

⎣

∑𝑛𝑖
𝑘=1

∑𝑛𝑜
𝑙=1 𝐶

′
𝑘𝑙(𝑆 𝑃 )1𝑘𝑒𝑙

⋮
∑𝑛𝑖

𝑘=1
∑𝑛𝑜

𝑙=1 𝐶
′
𝑘𝑙(𝑆 𝑃 )𝑛𝑜𝑘𝑒𝑙

⎤

⎥

⎥

⎦

, (24)

and 𝜂 containing all the terms for which 𝛼 ≠ 𝛾 or 𝛽 ≠ 𝛿. Since 𝐸{𝜂} = 0,
and since the SISO elements 𝐶 ′

𝑘𝑙 and (𝑆 𝑃 )1𝑘 commute, it holds that
𝐸{𝑦̂′(𝜌(𝑥))} = 𝑦̃′(𝜌(𝑥)) = 𝑦′(𝜌(𝑥)). (25)

4 
From (25) and (22) it follows that 𝐸
{

𝜕̂ 𝑦(𝜌)
𝜕 𝜌 (𝑡)

}

= 𝜕 𝑦(𝜌)
𝜕 𝜌 (𝑡) and conse-

quently, it holds that 𝐸{𝑔̂(𝜌)} = 𝑔(𝜌). □

The unbiased estimate 𝑔̂(𝜌) in Theorem 1 is obtained from a single
experiment on 𝑆 𝑃 , illustrated in Fig. 3 and given by

𝑆 𝑃 𝐴𝑒 =
⎡

⎢

⎢

⎣

(𝑆 𝑃 )11 … (𝑆 𝑃 )1𝑛𝑖
⋮ ⋱ ⋮

(𝑆 𝑃 )𝑛𝑜1 … (𝑆 𝑃 )𝑛𝑜𝑛𝑖

⎤

⎥

⎥

⎦

𝐴
⎛

⎜

⎜

⎝

𝑒1
⋮
𝑒𝑛𝑜

⎞

⎟

⎟

⎠

=

⎡

⎢

⎢

⎣

∑𝑛𝑖
𝑘=1(𝑆 𝑃 )1𝑘

(
∑𝑛𝑜

𝑙=1 𝑎
𝑘𝑙𝑒𝑙

)

⋮
∑𝑛𝑖

𝑘=1(𝑆 𝑃 )𝑛𝑜𝑘
(
∑𝑛𝑜

𝑙=1 𝑎
𝑘𝑙𝑒𝑙

)

⎤

⎥

⎥

⎦

. (26)

Experiment (26) gives the terms ∑𝑛𝑖
𝑘=1(𝑆 𝑃 )𝑖𝑘

(
∑𝑛𝑜

𝑙=1 𝑎
𝑘𝑙𝑒𝑙

)

for 𝑖 = 1,… ,
𝑜, which are the entries of (20) that allow for computation of (22) and
inally 𝑔̂(𝜌).

Remark 2. In practice, experiment (26) often contains noise and
disturbances, described by the term 𝑣 in Fig. 3 but omitted in the
xperiment expressions for brevity. Under certain assumptions on 𝑣,

see Section 4, the estimate 𝑦̂(𝜌(𝑥)) obtained through experiment (26),
s well as the gradient estimate, remain unbiased.

4. Stochastic approximation IFT using unbiased gradient esti-
mates

In the previous section, it is shown that unbiased estimates of the
gradient of (2) can be obtained efficiently from a single experiment on
he closed-loop system, reducing the required number of experiments
ignificantly compared to the existing MIMO IFT approach. In this
ection, these estimates are used in a stochastic gradient descent param-
ter update, leading to a stochastic approximation iterative feedback
uning (SAIFT) algorithm for minimizing (2). First, the parameter up-

dates are introduced and second, convergence conditions are derived,
constituting the second contribution.

4.1. Parameter updates

In order to minimize (2), the controller parameters 𝜌 are updated
teratively in the direction of the unbiased gradient estimate 𝑔(𝜌𝑗 ) at
teration 𝑗. Each iteration, 𝑔(𝜌𝑗 ) is determined according to Theorem 1

and experiment (26), using an iteration-varying matrix 𝐴𝑗 that is
constructed according to (19).

The gradient estimates 𝑔̂(𝜌) are used in a stochastic gradient descent
update, given by

𝜌𝑗+1 = 𝜌𝑗 − 𝜀𝑗 𝑔̂(𝜌𝑗 ). (27)

Here, 𝜀𝑗 denotes the step size. The method, including the two ex-
periments required at each iteration to determine 𝑒𝑗 (𝜌𝑗 ) and 𝑔̂(𝜌𝑗 ), is
ummarized in Algorithm 1.

Algorithm 1 Efficient MIMO SAIFT
1: for 𝑗 = 0 ∶ 𝑛iteration − 1
2: Experiment: for controller 𝐶(𝜌𝑗 ) and

reference 𝑟, measure 𝑒𝑗 = 𝑟 − 𝑦𝑗 (𝜌𝑗 ).
3: Experiment: using controller 𝐶(𝜌𝑗 ),

input 𝐴𝑗𝑒𝑗 , and no reference, measure
𝑆 𝑃 𝐴𝑗𝑒𝑗 according to (26).

4: Compute all estimates 𝑦̂′(𝜌(𝑥)) according
to (20).

5: Compute 𝑔̂(𝜌𝑗 ) according to (21) and (22).
6: Update 𝜌𝑗+1 = 𝜌𝑗 − 𝜀𝑗 𝑔̂𝑗 according to (27).
7: end
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4.2. Convergence

Next, conditions for the convergence of the SAIFT algorithm (27)
re developed. In the previous section, the presence of noise and
isturbances in the system evaluations was omitted for brevity. In
ractice, there are disturbances during experiments, included in the

term 𝑣 in Fig. 3, for which the following is assumed.

Assumption 1. The disturbance signal 𝑣 is a bounded discrete-
time zero-mean stochastic process. The second-order statistics are the
same for all experiments, and sequences from different experiments are
mutually independent.

Note that when a disturbance signal 𝑣 is present in the experiments,
wo different realizations of 𝑒𝑗 should be used for computing respec-

tively 𝑆 𝑃 𝐴𝑗𝑒𝑗 and 𝑔̂(𝜌𝑗 ) to avoid bias, thus introducing an additional
xperiment. Then, Assumption 1 ensures that the gradient estimates
𝑔̂ remain unbiased when disturbances are taken into account. The
radient estimate 𝑔̂(𝜌𝑗 ) is rewritten as

𝑔̂(𝜌𝑗 ) = 𝑔(𝜌𝑗 ) + 𝜔𝑗 . (28)

Here, the disturbance term 𝜔𝑗 results from 𝜂𝑗 in (20), which is prop-
gated when (22) and 𝑔̂(𝜌𝑗 ) are constructed. It contains both the

unbiased stochastic terms resulting from the inclusion of 𝐴𝑗 , and the
propagation of the disturbance term 𝑣. Similar to 𝜂𝑗 and 𝑣, for 𝜔𝑗 it
holds that 𝐸{𝜔𝑗} = 0 by Theorem 1 and Assumption 1. In addition, the
choice of matrix 𝐴𝑗 and Assumption 1 ensure that the sequence {𝑤𝑗}
is square-integrable.

Using (28), the SAIFT algorithm is written as a Robbins–Monro
algorithm:

𝜌𝑗+1 = 𝜌𝑗 − 𝜀𝑗 (𝑔(𝜌𝑗 ) + 𝜔𝑗 ), (29)

Consider the following assumptions, which are standard for these type
f algorithms.

Assumption 2. The iterates 𝜌𝑗 remain almost surely bounded.

Assumption 3. The step size 𝜀𝑗 is chosen such that
∞

𝑗
𝜀𝑗 = ∞,

∞
∑

𝑗
𝜀2𝑗 < ∞.

Assumptions 2 and 3 can be satisfied by choosing 𝜀𝑗 appropriately.
However, in practice, satisfying Assumption 2 is not trivial. Even if the
parameter iterate 𝜌𝑗 is bounded, the resulting controller might lead to
an unstable closed-loop system. This leads to an unbounded error 𝑒(𝜌𝑗 )
and consequently the gradient estimate and the next iterate 𝜌𝑗+1 are
nbounded. It is therefore essential that the parameter update leads to a
tabilizing controller. This can be ensured by choosing 𝜀𝑗 small enough,
ut it is difficult to guarantee in practice, see also Section 6.1. Note
hat Assumption 2 also requires that the controller 𝐶(𝜌𝑗 ) is Lipschitz

continuous, since the derivatives 𝐶 ′(𝜌𝑗 (𝑥)) must remain bounded in
order for 𝜌𝑗 to remain bounded. In addition, the sequence {𝑤𝑗} is
square integrable due to the choice of matrix 𝐴𝑗 and Assumption 1.

The assumptions lead to the following theorem.

Theorem 2. Under Assumptions 2 and 3, the sequence of iterates {𝜌𝑗} in
(29) converges to a stationary point 𝜌∗ for which 𝑔(𝜌) = 0 almost surely.

The disturbance term 𝜔𝑗 is a Martingale difference sequence since
𝐸{𝜔𝑗} = 0 and it is square integrable. The proof of Theorem 2 follows
from this property and the almost sure convergence of a Robbins–
Monro algorithm under Assumption 2 and 3, see, e.g., Borkar (2008,
Chapter 2).
 t

5 
Remark 3. Note that Theorem 2 is similar to the convergence the-
orem (Hjalmarsson & Kan Hjalmarsson, 1999, Theorem 1), which
considers only the disturbance terms that are due to noisy system evalu-
ations, and in which boundedness of the iterates is ensured by requiring
hat the closed-loop system remains stable. Again, this stability must be
nsured by the user through a suitable choice of step size.

5. Comparison to MIMO IFT and non-full controllers

In this section, stochastic approximation IFT as developed in the
revious two sections is compared to the existing experiment-intensive
ethod for IFT for MIMO systems. In addition, the special case of MIMO

controllers in which not all controller blocks are used, is considered for
both SAIFT and IFT.

5.1. Experiment-intensive MIMO iterative feedback tuning

In the existing approach to MIMO IFT (Hjalmarsson & Birkeland,
1998), an unbiased estimate of the gradient of cost function (2) is
generated through 𝑛𝑖 × 𝑛𝑜 noisy experiments on the 𝑛𝑖 × 𝑛𝑜 system.

ere, the stochastic nature of the estimate results directly from the
isturbances during the experiments, and for deterministic experiments
his method leads to exact, deterministic gradients.

To illustrate how the term 𝜕 𝑦(𝜌)
𝜕 𝜌 (𝑡) can be obtained through 𝑛𝑖×𝑛𝑜 ex-

eriments, consider again the derivatives 𝑦′(𝜌(𝑥)) in (11). Constructing
this term requires only the signals (𝑆 𝑃 )𝑚𝑘(𝜌)𝑒𝑙(𝜌) for 𝑚 = 1,… , 𝑛𝑜, 𝑘 =
,… , 𝑛𝑖, 𝑙 = 1,… , 𝑛𝑜. In MIMO IFT, these signals are obtained through
𝑖 × 𝑛𝑜 experiments, where in each experiment the measured error 𝑒𝑙
rom one of the output directions is injected between the controller and
he plant in one of the 𝑛𝑖 input directions 𝑘. This is illustrated in Fig. 4.

With the 𝑛𝑖 × 𝑛𝑜 signals (𝑆 𝑃 )𝑚𝑘(𝜌)𝑒𝑙(𝜌), all derivatives 𝑦′(𝜌(𝑥)) can be
omputed, leading to 𝜕 𝑦(𝜌)

𝜕 𝜌 (𝑡) and finally the gradient 𝑔(𝜌).
An overview of the 𝑛𝑖 ×𝑛𝑜 + 1 experiments needed for each iteration

to determine 𝑒𝑗 (𝜌𝑗 ) and 𝑔̂(𝜌𝑗 ) in MIMO iterative feedback tuning is given
in Algorithm 2.

Algorithm 2 Experiment-intensive MIMO IFT
1: for 𝑗 = 0 ∶ 𝑛iteration − 1
2: Experiment: for controller 𝐶(𝜌𝑗 ) and

reference 𝑟, measure 𝑒𝑗 = 𝑟 − 𝑦𝑗 (𝜌𝑗 ).
3: for 𝑙 = 1 ∶ 𝑛𝑜
4: for 𝑘 = 1 ∶ 𝑛𝑖
5: Experiment: using controller 𝐶(𝜌𝑗 ),

input
[

01×(𝑘−1) 𝑒𝑙(𝜌𝑗 )𝖳 01×(𝑛𝑖−𝑘)
]

𝖳,
and no reference, measure
𝑦 = (𝑆 𝑃 )𝑚𝑘(𝜌)𝑒𝑙(𝜌) for 𝑚 = 1, ..., 𝑛𝑜.

6: end
7: end
8: Compute all derivatives 𝑦̂′(𝜌(𝑥)) according

to (11).
9: Compute 𝑔̂(𝜌𝑗 ) according to (4) and (7).

10: Update 𝜌𝑗+1 = 𝜌𝑗 − 𝜀𝑗 𝑔̂𝑗 according to (27).
11: end

It is also possible to measure each derivative in a separate ex-
eriment by injecting 𝐶 ′(𝜌(𝑥))𝑒 at the position of 𝑢, i.e., between the
ontroller and the plant, in an experiment with 𝑟 = 0. Obtaining the
omplete expression 𝜕 𝑦(𝜌)

𝜕 𝜌 (𝑡) this way requires 𝑛𝜌 experiments for 𝑛𝜌
arameters, and since typically 𝑛𝜌 > 𝑛𝑖×𝑛𝑜, this may require even more
xperiments. It follows that overall, this existing approach to MIMO IFT
s experimentally inefficient for large MIMO systems, as is illustrated in
he simulations and experimental results in the next sections.
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Fig. 4. In each of the 𝑛𝑖 ×𝑛𝑜 experiments required for MIMO iterative feedback tuning,
he measured error 𝑒𝑙 , 𝑙 = 1,… , 𝑛𝑜, from one of the output directions is injected between

the controller and the plant in one of the 𝑛𝑖 input directions 𝑘, 𝑘 = 1,… , 𝑛𝑖, resulting
in 𝑛𝑜 signals (𝑆 𝑃 )𝑚𝑘(𝜌)𝑒𝑙(𝜌), 𝑚 = 1,… , 𝑛𝑜. The noise term is omitted for brevity.

5.2. Non-full MIMO controllers

In cases where not all controller blocks are used, such as diagonal
controllers, both MIMO IFT and SAIFT can be implemented more
efficiently. In case of MIMO IFT, each controller block that is not used
educes the required number of experiments with one (Hjalmarsson &

Kan Hjalmarsson, 1999). This is easily illustrated for the 2 × 2 example
in Section 3.2. In the case that, for example, 𝐶12 = 0, the derivative
𝑦′(𝜌(𝑥)) in (13) reduces to

𝑦′(𝜌(𝑥)) =
[

(𝑆 𝑃 )11𝐶 ′
11𝑒1 + (𝑆 𝑃 )12(𝐶 ′

21𝑒1 + 𝐶 ′
22𝑒2)

(𝑆 𝑃 )21𝐶 ′
11𝑒1 + (𝑆 𝑃 )22(𝐶 ′

21𝑒1 + 𝐶 ′
22𝑒2)

]

, (30)

since in this case 𝐶 ′
12 = 0 also. As a result, the experiment with input

[

𝑒𝖳2 0
]

is not necessary. If 𝐶21 = 0 also, then the experiment with input
0 𝑒𝖳1

]

can be omitted also and only two experiments per iteration
are needed for the diagonal controller. This extends directly to larger

IMO systems. In (11), each controller block 𝐶𝑘𝑙 that is zero removes
all terms with (𝑆 𝑃 )𝑚𝑘𝑒𝑙 from the equation, and the experiment with
nput

[

01×(𝑘−1) 𝑒𝑙(𝜌𝑗 )𝖳 01×(𝑛𝑖−𝑘)
]𝖳 can be omitted.

In case of SAIFT, a similar step can be taken to reduce the variance
n the single experiment needed for each iteration. In particular, it
s possible to set 𝑎𝑘𝑙 = 0 if 𝐶𝑘𝑙 is zero. This element of matrix 𝐴
orresponds to the terms (𝑆 𝑃 )𝑚𝑘𝑒𝑙 in (11), and taking 𝑎𝑘𝑙 = 0 ensures
hat the signal 𝑒𝑙 is not injected in input 𝑘 of the system. While this
oes not reduce the number of experiments needed in SAIFT, it does
educe the variance of the stochastic gradient estimate, which is likely
o improve the efficiency of the method in terms of the number of
terations needed to converge.

Remark 4. It is also possible to reduce the variance of the gradient
estimate for full MIMO controllers at the cost of additional experiments,
by averaging the gradient estimates obtained using several realizations
of the random matrix 𝐴𝑗 . However, this is in general not expected
to lead to improved efficiency in terms of the number of experiments
needed to converge.

6. Implementation aspects

The application of IFT involves certain implementation aspects that
re elaborated upon in this section. First, some approaches to ensure
tability of the controller and boundedness of the iterates are suggested.

Second, scaling of the gradient experiments is introduced and third,
some methods for robust optimization are presented.

6.1. Choosing step sizes and ensuring stability

The convergence result in Theorem 1 requires that Assumption 2 is
met, i.e., that the iterates remain bounded. To satisfy this assumption,
the parameter update (27) must be chosen such that it results in a
tabilizing controller 𝐶(𝜌𝑗+1). This is essential for both SAIFT and stan-

dard MIMO IFT. In practice, it is necessary to assess the stability of the
 f

6 
closed-loop system with 𝐶(𝜌𝑗+1) before the controller is implemented,
and if necessary the step size 𝜀𝑗 in (27) should be adapted until the
arameter update results in a stabilizing controller. There are several
pproaches to assessing the stability of the system, some of which are
isted below.

• A non-parametric model such as a frequency-response measure-
ment can be used directly to assess stability, for example using
the generalized Nyquist theorem for MIMO systems.

• A non-parametric model may be used to determine the gener-
alized stability margin, and choose the step size such that the
Vinnicombe distance (Vinnicombe, 1993) between a stabilizing
controller and the controller update remains below this value, see
also Kammer et al. (1998).

• In order to ensure robust stability, frequency-domain constraints
such as developed in Heertjes et al. (2016) for SISO systems can
be added to the optimization problem.

• An approximate parametric model of the system, combined with
appropriate bounds to ensure robustness, can be used to assess
stability.

These approaches all require at least a non-parametric model of the
system, such as a frequency-response measurement, which are often
relatively inexpensive, fast and accurate to obtain.

6.2. Scaling of experiments

The SAIFT approach in Algorithm 1 requires a dedicated experiment
in which the measured error signal of the previous iteration, pre-
multiplied with a random matrix 𝐴𝑗 , is injected between the controller
nd the plant as illustrated in Fig. 3. In this type of experiment, it

may be necessary to scale the input signal 𝐴𝑗𝑒𝑗 . While it is assumed
that the system is linear, in practice most mechanical systems are
subject to nonlinear effects such as static friction and actuator limits.
 suitable scaling of the gradient experiment ensures that the system

remains within the linear domain during the experiment and can be
implemented using a scaling factor 𝛼 by taking

𝑆(𝜌)𝑃 𝐴𝑗𝑒𝑗 =
1
𝛼𝑗

𝑆(𝜌)𝑃 𝛼𝑗𝐴𝑗𝑒𝑗 . (31)

The scaling factor 𝛼𝑗 is chosen separately for each iteration, because the
magnitude of 𝐴𝑗𝑒𝑗 depends strongly on 𝐴𝑗 . Note that a similar scaling
may be necessary for each of the 𝑛𝑖×𝑛𝑜 gradient experiments in standard
MIMO IFT.

6.3. Methods for robust optimization

The cost function considered in IFT is typically non-convex, such
that only local optimality may be achieved. In previous examples from
literature, see, e.g., Hjalmarsson (2002), it has been observed that

hen the actual closed-loop response of the system is very different
from the desired response, updating the controller in a direction of
decreasing cost may lead to unexpected and undesired controller per-
formance. Hjalmarsson (2002) suggests two approaches to avoid this
problem, that can be directly applied to SAIFT. First, it is possible to
choose the initial desired response as something that is relatively sim-
ilar to the system response in a reference-model setting. In the setting

ithout reference models that is considered here, this is comparable to
choosing the initial reference such that the tracking error is limited. The
performance requirements can then be increased successively in each
iteration. Second, it is possible to include a time-varying weighting in
the cost function (2) to reduce the weight in certain challenging parts
of the reference.

A third approach that is particularly suitable to mechatronic systems
is the use of feedforward control to reduce the initial error. Similar to
the strategy of increasing the performance requirements iteratively, the
eedforward contribution can be reduced iteratively to avoid too large
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Fig. 5. Photo (top) and schematic representation (bottom) of the two-mass–spring–
damper system with inputs 𝐹1 and 𝐹2 [V] and outputs 𝑦1 and 𝑦2 [r ad].

deviations between reference and system response. For mechatronic
systems, suitable feedforward components are mass feedforward and
compensation of viscous and static friction, implemented using the ref-
erence acceleration, velocity and sign of the velocity, see, e.g., Bolder,
Oomen, Koekebakker, and Steinbuch (2014).

7. Application: experiments on a mechatronic system

In this section, the stochastic approximation IFT method devel-
oped in the previous sections is applied to a mechatronic system
and compared to the existing experimentally-expensive IFT method,
constituting the third contribution. First, the system is introduced and
second, experimental results are presented.

7.1. Experimental setup

The experimental setup consists of two rotating masses that are
connected by an elastic band that acts as a spring and a damper, as
shown in Fig. 5. Both masses are actuated with inputs

[

𝐹1 𝐹2
]𝖳, and

the system output consists of the positions of both masses
[

𝑦1 𝑦2
]𝖳.

The system is sampled at 1 k Hz such that the sampling time is 𝑇𝑠 = 0.001
s. The dynamics of the 2 × 2 system 𝑃 are shown in the measured
frequency response function in Fig. 6, which illustrates that there is
strong interaction between the two axis of the MIMO system. The
system can be decoupled in a rigid-body and a flexible mode, resulting
in a decoupled system 𝑃dec, given by

𝑃dec =

[ 1
2

1
2

1
2 − 1

2

]

[

𝑃11 𝑃12
𝑃21 𝑃22

] [
1 1
1 −1

]

. (32)

First, a full MIMO controller that uses all controller channels is designed
for the original plant 𝑃 . Second, a decentralized controller is designed
for the decoupled system 𝑃dec. In this case, only two controller channels
are used, leading to more efficient IFT implementations.

7.2. Experimental results: full MIMO controller

SAIFT and experimentally-intensive IFT are used to optimize a full
MIMO controller for the original system 𝑃 . All experiments use the
same reference 𝑟1 = 𝑟2, shown in Fig. 7. The controller is constructed as
a combination of a diagonal controller with two decoupling matrices,
the parameters of which are free. The first element of the diagonal
7 
Fig. 6. Measured frequency response function of the system 𝑃 . Note that this model
information is not used in the IFT algorithms.

Fig. 7. The reference 𝑟1 = 𝑟2 is identical for both axes.

controller contains a proportional term, an integrator, a lead/lag filter
and a lowpass filter. The second element consists of a proportional term
and a lead/lag filter. This leads to a discrete-time controller of the form

𝐶full(𝜌, 𝑧) = (33)
[

𝜌(9) 𝜌(10)
𝜌(11) 𝜌(12)

][

𝐶11(𝜌, 𝑧) 0
0 𝐶22(𝜌, 𝑧)

][

𝜌(13) 𝜌(14)
𝜌(15) 𝜌(16)

]

,

𝐶11(𝜌, 𝑧) =
𝑇𝑠 𝜌(1)

(

2 𝑧−2
2 𝑇𝑠 𝜌(3)𝜋 (𝑧+1)+1

) (
2𝜋 𝜌(2)+ 𝑧−1

𝑇𝑠

)

(

2 𝑧−2
2 𝑇𝑠 𝜌(4)𝜋 (𝑧+1)+1

) (
2 𝑧−2

2 𝑇𝑠 𝜌(5)𝜋 (𝑧+1)+1
)

(𝑧−1)
,

𝐶22(𝜌, 𝑧) =
𝑇𝑠 𝜌(6)

(

2 𝑧−2
2 𝑇𝑠 𝜌(7)𝜋 (𝑧+1)+1

)

(

2 𝑧−2
2 𝑇𝑠 𝜌(8)𝜋 (𝑧+1)+1

) .

The initial parameters are listed in Table 1, and the frequency
response function of the initial controller is shown in Fig. 10. Since
this full MIMO controller uses all controller channels, experimentally-
intensive IFT requires four experiments to obtain a gradient estimate. In
contrast, SAIFT requires only a single experiment with a full iteration-
varying 𝐴-matrix of the form

𝐴𝑗 =

[

𝑎11𝑗 𝑎12𝑗
𝑎21𝑗 𝑎22𝑗

]

, (34)

The experimental results for both SAIFT and experiment-intensive IFT
are shown in Figs. 8 and 9, using constant step sizes of respectively
𝜀 = 0.1 in Fig. 8 and 𝜀 = 0.01 in Fig. 9. The results demonstrate that
SAIFT requires far fewer experiments to obtain the same cost compared
to the experimentally-intensive method, while the number of iterations
is approximately equal. In this case, the difference in accuracy between
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Table 1
Controller parameters at iteration 0 and 50 for a full MIMO controller and a
ecentralized controller, both using SAIFT with 𝜀 = 0.1.

𝜌0 𝜌50 𝜌0 𝜌50
MIMO MIMO dec. dec.

𝜌𝑗 (1) 0.169 0.433 0.169 0.398
𝜌𝑗 (2)

5
3

1.685 5
3

1.663

𝜌𝑗 (3)
5
3

1.638 5
3

1.643
𝜌𝑗 (4) 15 15.00 15 15.00
𝜌𝑗 (5) 30 30.00 30 30.00
𝜌𝑗 (6) 4.640 4.620 4.640 4.627
𝜌𝑗 (7) 10 10.00 10 10.00
𝜌𝑗 (8) 90 90.00 90 90.00
𝜌𝑗 (9) 1 1.035 – –
𝜌𝑗 (10) 1 1.041 – –
𝜌𝑗 (11) 1 0.889 – –
𝜌𝑗 (12) −1 −1.015 – –
𝜌𝑗 (13)

1
2

0.570 – –
𝜌𝑗 (14)

1
2

0.313 – –
𝜌𝑗 (15)

1
2

0.575 – –
𝜌𝑗 (16) − 1

2
−0.514 – –

Fig. 8. Experimental results for a full MIMO controller using 𝜀 = 0.1. Five different
AIFT runs ( , , , , ) require the same number of iterations to achieve
 similar cost compared to experiment-intensive IFT ( ) (top), but SAIFT requires far

fewer experiments (bottom).

the deterministic gradients and the gradient estimates does not influ-
nce the number of iterations required to converge. Comparison of the
esults for different step sizes shows that reducing the step size for
AIFT leads to a smoother convergence curve, but it also reduces the
onvergence speed.

The parameters and frequency response for the final controller for
n SAIFT experiment with 𝜀 = 0.1 are shown in respectively Table 1 and

Fig. 10. In addition, Fig. 11 depicts the change in the MIMO sensitivity
function 𝑆 = (𝐼 + 𝑃 𝐶)−1 between iteration 0 and 50, and Fig. 12
shows the reduction in error. Interestingly, Fig. 10 seems to suggest
that the main changes in the controller consist of an increased gain
t frequencies below 1 Hz, yet Fig. 11 shows a reduction in sensitivity
8 
Fig. 9. Experimental results for a full MIMO controller using 𝜀 = 0.01. Five different
SAIFT runs ( , , , , ) each require far fewer experiments to achieve a
imilar cost compared to experiment-intensive MIMO IFT ( ).

Fig. 10. Initial feedback controller 𝐶 at iteration 0 ( ) and final controller ( ) at
teration 50 using SAIFT with 𝜀 = 0.1.

magnitude around 7 Hz instead, corresponding to the dominant fre-
quency of the error in the constant-velocity part of the reference, cf.
Fig. 12 in which this error component is indeed reduced. Fig. 11 also
shows that in this case, the initial controller based on loop tuning was
too conservative, and that the performance can be increased signifi-
cantly when models are omitted and consequently, robustness margins
uch as sup𝜔∈[0,2𝜋) 𝜎̄(𝑆(𝑒𝑖𝜔)) do not have to be taken into account. In
ddition, the differences between the changes in 𝐶 and 𝑆 illustrate that
ven for relatively simple MIMO systems, manual controller design is
on-trivial, motivating the use of data-driven controller design.

7.3. Experimental results: decentralized controller

Next, SAIFT and experimentally-intensive IFT are used to design
 decentralized controller for the decoupled MIMO system 𝑃dec. The
utput and reference for the decoupled system are based on those for
he original system and are given by

𝑦dec=

[ 1
2

1
2

1
2 − 1

2

] [
𝑦1
𝑦2

]

, 𝑟dec=

[ 1
2

1
2

1
2 − 1

2

]

[

𝑟1
𝑟2

]

=
[

𝑟1
0

]

,

since 𝑟1 = 𝑟2. In these experiments, the cost function dec(𝜌) to be
minimized follows from replacing 𝑟 and 𝑦 in (2) by 𝑟dec and 𝑦dec,
respectively.
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Fig. 11. Initial sensitivity function 𝑆 at iteration 0 ( ) and final sensitivity function
) at iteration 50 using SAIFT with 𝜀 = 0.1.

Fig. 12. Errors at iteration 0 ( ) and 50 ( ) while tuning a full MIMO controller
sing SAIFT with 𝜀 = 0.1.

The first element of the diagonal controller contains a proportional
term, an integrator, a lead/lag filter and a lowpass filter. The second
element consists of a proportional term and a lead/lag filter. The
iscrete-time transfer function of the controller is given by

𝐶diag(𝜌, 𝑧) =
[

𝐶11(𝜌, 𝑧) 0
0 𝐶22(𝜌, 𝑧)

]

, with (35)

𝐶11(𝜌, 𝑧) =
𝑇𝑠 𝜌(1)

(

2 𝑧−2
2 𝑇𝑠 𝜌(3)𝜋 (𝑧+1)+1

) (
2𝜋 𝜌(2)+ 𝑧−1

𝑇𝑠

)

(

2 𝑧−2
2 𝑇𝑠 𝜌(4)𝜋 (𝑧+1)+1

) (
2 𝑧−2

2 𝑇𝑠 𝜌(5)𝜋 (𝑧+1)+1
)

(𝑧−1)
,

22(𝜌, 𝑧) =
𝑇𝑠 𝜌(6)

(

2 𝑧−2
2 𝑇𝑠 𝜌(7)𝜋 (𝑧+1)+1

)

(

2 𝑧−2
2 𝑇𝑠 𝜌(8)𝜋 (𝑧+1)+1

) .

The initial parameters, as well as the parameters for iteration 50, are
given in Table 1. Since 𝐶diag is a diagonal controller with only two
controller blocks, SAIFT can be implemented with a partial iteration-
varying 𝐴-matrix of the form

𝐴 =

[

𝑎11𝑗 0
]

, (36)
𝑗 0 𝑎22𝑗

9 
Fig. 13. Experimental results for a diagonal MIMO controller using 𝜀 = 0.1. Five
different SAIFT runs ( , , , , ) each require fewer experiments to achieve
a similar cost compared to experiment-intensive MIMO IFT ( ).

as explained in Section 5.2. In this case, experimentally-intensive IFT
equires two experiments to obtain a gradient estimate, whereas SAIFT
equires only a single experiment. The step size is chosen as 𝜀 = 0.1.

The experimental results are shown in Fig. 13 and demonstrate that
AIFT reduces the required number of experiments significantly. In
ddition, using only a partial 𝐴-matrix reduces the variance in the
radient estimates and leads to much smoother convergence, especially

for this decoupled system for which the error of the flexible mode is
lose to zero.

8. Conclusion

The introduction of randomization in MIMO IFT reduces the num-
er of experiments per iteration significantly, thus enabling broader
pplications of this model-free feedback tuning approach. A stochas-
ic approximation IFT algorithm is presented that obtains unbiased

gradient estimates from a single randomized experiment. The gra-
dient estimates are used in a stochastic gradient descent parameter
update, and the convergence is analyzed. Experimental implementa-
tion on a mechatronic system demonstrates that SAIFT requires far
fewer experiments to reach the same cost compared to the existing,
experiment-intensive MIMO IFT approach.
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