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Exercise 2.3. SFD to CLD 

 

Figure 2.2. SFD of human trafficking 

Consider the SFD of the population sub-model of a model related to prostitution and 
human trafficking displayed above. 

a. Draw a disaggregated CLD. 

b. How many feedback loops are there in the SFD above? 

Exercise 2.4. SFD to CLD 

 

Figure 2.3 

a. Draw a disaggregated CLD. 

b. How many feedback loops are there in the SFD above? 
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Exercise 2.5. SFD to CLD 

 

Figure 2.4 

a. Draw a disaggregated CLD. 

b. How many feedback loops are there in the SFD above? 

Exercise 2.6. SFD to CLD 

 

Figure 2.5 

a. Draw a disaggregated CLD. 

b. How many feedback loops are there in the SFD above? 
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Exercise 2.7. SFD to CLD 

 

Figure 2.6 

a. Draw a disaggregated CLD. 

b. How many feedback loops are there in the SFD above? 

Exercise 2.8. SFD to CLD 

 

Figure 2.7 

a. Draw a disaggregated CLD. 

b. How many feedback loops are there in the SFD above? 

Exercise 2.9. Units 

The unit of time in a model concerning the large-scale introduction of electrical 
vehicles (EVs) is expressed in month. The production capacity of a company that 



https://surfsharekit.nl/objectstore/637caae4-415d-4854-a87f-d03d5df1387c
https://surfsharekit.nl/objectstore/527b56b7-f417-40e5-a74b-e5dab93d3826
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Assume that, at this moment, there are about 20000 feral pigs in the area, that feral 
pigs can mate at any time of the year, that sows produce on average 4 litters per 
year with each litter consisting of 8 piglets on average, and that half of the pig 
population consists of sows. 

a. Draw a simple CLD of the feral pig problem. 

b. Make a simple SD simulation model of the feral pig population to assess the 

dynamics of the population over time, given the departmental gaming rules. 

c. Make a graph of the number of feral pigs over time. Show what happens in 

the graph for different values of the proportionality factor (15%, 16% and 

17%). 

d. Try to verify and validate your model. What would you do? 

e. Given the uncertainty (of the proportionality factor, of the initial number of feral 

pigs, and of the number of new pigs), design a better (dynamic) licensing 

strategy that allows for stabilisation of the feral pig population at less than 

25000 animals. 
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Figure 3.4. Input (above left), variable time delay (above right) and different delays of the 
input with the variable time delay (below). 

a. What are the delay types (material or information) and orders (1st, 3rd, or 

FIXED) of each run? 
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(Lake Yaxha and Lake Sacnab) in the Peten lake district of northern Guatemala. The 
area was inhabited as early as 3000 years ago and the first agricultural settlements 
appeared there about 1000 BC. The land was largely deforested by 250 AD. The 
gradual intensification of agriculture and increasing number of settlements seem to 
have caused severe cumulative damage to an originally verdant environment. 
Essential nutrients washed away into the lakes, diminishing the fertility of agricultural 
land. Increases in phosphorus in the lakes from agriculture and human waste seem 
to have aggravated the environmental damage. Tropical environments are 
notoriously fragile, so that at one point, the population became too large for the 
environment to sustain. 

Simulate this SD model over a period of 2000 years from 1000 BCE (-1000) till 1000 
CE.  

Model description 

At the time of onset of agricultural developments, around 100000 persons lived in the 
area. The Population saw a Natural increase due to a Natural increase rate of 0.17% 
per year. The Population could also decrease due to Emigration. For now, assume 
that this flow is equal to 0. We assume the Consumed food per person was around 
400 kg per person per year, which roughly corresponds to a bit more than one kg per 
day. Define the Food demand using the Population and the Consumed food per 
person.  

The Mayans converted Forest into agricultural Lands by Deforestation. The Forest 
initially measured 4992 km2, and the Lands used 8 km2, making the total area 5000 
km2. Assume for now that Deforestation is 0 and pick a suitable unit for this variable. 

The Fertility of lands, initially equal to 5 million kg of food produced per square km, 
decreased due to Losses in fertility. There was a Potential fertility to be lost, equal to 
the difference between the Fertility of lands and the Minimum fertility. This flow is the 
product of the Potential fertility to be lost and the lowest value of either the Max relative 
fertility reduction (equal to 2), or the quotient of Lands and Forest to the power of 
Fertility loss exponent, in which the exponent is equal to 1.9 to get the right population 
dynamics, divided by the Intensity of agriculture. The Intensity of agriculture is equal 
to 1 year to model the speed by which the Fertility of lands changes.  

The Food produced is the product of Lands and Fertility of lands. Define the Emigration 
flow now as the Gap in food production divided by the Consumed food per person, 
times an Emigration ratio of 5% per year, as due to food redistribution only a small 
proportion of people actually left. 

The Mayans deforested the area they needed to close the Gap in food production (in 
kg) between the Food produced and the Food demand, given the Fertility of lands 
(kg/km2) and the Intensity of agriculture. Deforestation should, therefore, be defined 
as the minimum of either the Gap in food production divided by the Fertility of lands, 



https://surfsharekit.nl/objectstore/4d4bfb23-83f3-4401-8687-24b064e08f92
https://surfsharekit.nl/objectstore/a5dd26c3-8f4b-4fb2-b764-d4a9df505a54
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necessarily resort to crime. Model an ageing chain of kids, youngsters, adults and 
retirees. Initially, there are 1 million kids, 1 million youngsters, 3 million adults, and 
750000 retirees within these families with multiple problems. Suppose for the sake of 
simplicity that only retirees die, on average after an average time as retiree of 15 
years, which means that deaths equals retirees divided by average time as retiree. 
Similarly, adults flow from adults to retirees after an average time as adult of 40 
years, youngsters from youngsters to adults after an average time as youngster of 
12 years, and kids from kids to youngsters after an average time as kid of 12 years. 
Both adults and youngsters give birth: the birth inflow is thus the sum of the adults 
times the annual fertility rate of adults of 3 percent and the number of youngsters 
times the annual fertility rate of youngsters of 0.3%. 

Suppose 6 million crimes are committed annually by others, that is, by criminals that 
are not part of families with multiple problems. Apart from these crimes by others, 
crimes are committed by criminal kids at a rate of 2 criminal acts per criminal kid per 
year, by criminal youngsters at a rate of 4 criminal acts per criminal youngster per 
year, by criminal adults at a rate of 12 criminal acts per criminal adult per year, and 
by criminal retirees at a rate of 4 criminal acts per criminal retiree per year. Suppose 
that, in these families with multiple problems, the percentage of kids with criminal 
behaviour amounts to 5%, the percentage of youngsters with criminal behaviour 
amounts to 50%, the percentage of adults with criminal behaviour amounts to 60%, 
and the percentage of retirees with criminal behaviour amounts to 10%. 

a. Make a SD simulation model of this description and verify it. Simulate a base 

run over a period of 50 years. 

b. Now assume that due to successful voluntary family planning measures, the 

birth flow is 75% lower, that is, 25% times the sum of the adults times the 

annual fertility rate of adults of 3 percent per adult per year and the 

youngsters times the annual fertility rate of youngsters of 0.3 percent per 

youngster per year. Change the name of the run, and run it. 

c. Compare the behaviour of the latter run to the behaviour of the base run. How 

much time do you think it would take before people would notice something is 

going on? 

d. This simulation model only focuses on the first-order effects, that is, the 

reduction of individuals. The biggest gains, however, are likely to relate to 

higher-order effects such as the better socio-economic circumstances of 

those children that are born in families with fewer children that need to be 

taken care of. Make a highly aggregated CLD of the simulation model and 

extend it with higher-order effects. Use the CLD to explain the problem and 

possible solutions. 



https://surfsharekit.nl/objectstore/e995fa41-5435-4d56-8914-da7e4966c8a1
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Exercise 5.3. Accumulation  

Consider the following inputs (left) and outputs (right) and the behaviour of a stock 

with all possible combinations of these inputs and outputs (below). 

  

 

a. Indicate for each run what the corresponding input and output are. 
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Exercise 5.4. Delays (extra difficult)  

Consider the figure below with three different outputs of the same input and dynamic 

time delay. 

 

a. What are the delay types (material or information) of each output? 

b. What are the delay orders (1st or 3rd) of Output 2 and Output 3? 

c. What does the input of the delays look like? Create a graph of the input. 

Exercise 5.5. Sensitivity analysis  
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case allowed to not explicitly define these initial stock values, which are initially 
empty. Keep the Infection for now equal to 0. The Exposed population is decreased 
by Incubation to Presymptomatic infectious, initially 0, and by Asymptomatic 
incubation to Asymptomatic infectious, also initially 0. Asymptomatic incubation is 
defined as the Share of asymptomatic infections, which is believed to be 50%, times 
the Total incubation. The Total incubation is a third-order delay of Infection with the 
Average SARS-CoV-2 incubation time of 3 days divided by the number of Days per 
week. Choose a logical value for this last constant. Incubation is equal to 1 minus the 
Share of asymptomatic infections, times the Total incubation. 

Presymptomatic infectious also increases by the Influx of presymptomatic infectious 
people from abroad. Keep this flow equal to 0 for now. Presymptomatic infectious 
develops into Symptomatic infectious (again, initially 0) by Developing symptoms. 
Developing symptoms is equal to a third-order delay of the sum of Incubation and 
the Influx of presymptomatic infectious people from abroad, delayed by the 
Presymptomatic period of 3 days divided by the Days per week. Symptomatic 
infectious can either go via Recovery to the Recovered population, or via Dying of 
COVID-19 to the Cumulative COVID-19 deaths. Both these stocks are initially empty. 
Dying of COVID-19 is equal to the product of the Case fatality rate of COVID-19 
patients of 1% and the Symptomatic infectious, and is divided by the Average length 
of symptomatic period of 1 week. Recovery is thus to be defined as 1 minus the 
Case fatality rate of COVID-19, etc. The Recovered population also increases by the 
flow of Recovery without symptoms, which is equal to a third-order delay of 
Asymptomatic incubation with the Average period of asymptomatic infections of 6 
days, divided by the number of Days per week. Finally, to complete this rather 
elaborate stock-flow structure, you have to include the effect of Losing immunity, 
which leads from the Recovered population back to the Susceptible population. 
Losing immunity is to be equated to the Recovered population divided by the 
Average immunity period, which we assume to be 52 weeks. The Total population 
should be equal to the sum of all stocks you have now, excluding the Cumulative 
COVID-19 deaths. 

If you are building this model from scratch, check whether it simulates and save it. 

Dynamic transmission model 

To make the model dynamic, you first need to define the Influx of presymptomatic 
infectious people from abroad. This influx was created by people exposed to SARS-
CoV-2 on holiday destinations in especially the Alps, and was equal to 0 in the 
beginning of the run time. It gradually increased to 70 in week 4.5, to 500 in week 7, 
2000 in week 8, and 1000 in week 10. It then strongly reduced down to 80 in week 
12, and hovered around 5 between week 14 and week 17, only to increase gradually 
due to more people going on holiday to 200 in week 26, 500 in week 34, and 200 in 
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week 35. It reduced back to 5 in week 38, at which value it remained until week 52. 
After this, you may assume it gradually decreased to 0 in week 104. 

Change the Infection to the product of the Infectious population, the number of 
Contacts per person per week, the Infection rate per contact (30%), and the Chance 
of contact with an susceptible person. The Infectious population is equal to the sum 
of the Symptomatic infectious, the Presymptomatic infectious, and the Asymptomatic 
infectious. This is special about SARS-CoV-2: most other viruses are assumed to 
only be infectious when symptomatic. The Chance of contact with a susceptible 
person is equal to the Susceptible population as fraction of the Total population. The 
Contacts per person per week is equal to the Normal number of contacts per week of 
7.5 per week, times 1 minus the Social distancing measures. The Social distancing 
measures represent the effect of the interventions the Dutch government took to 
curb virus transmission by reducing the number of contacts people had.  

The interventions were at 0% until week 8.9, when the advice was introduced to stop 
shaking hands at week 9. Assume this had a 10% effect until the end of that week. 
Then, the advice was given to work from home and stay 1.5 metres away from other 
people at all times. The maximum group size allowed was reduced in week 10. 
Assume this led to 40% reduction up to week 10.9. Next, schools and day care 
facilities were closed in week 11, which resulted in 70% reduction between that 
moment and the end of week 18 (week 18.9), when the measures were relaxed a bit 
by carefully reopening primary schools, making the reduction equal to 60% between 
week 19 and week 21.9. After that, in week 22, secondary schools, restaurants and 
bars were reopened, reducing the number to 55%. Gradually, this decreased due to 
further relaxation of the interventions, as well the population being less careful, to 
50% in week 40.9. Increased infections led to renewed closing of restaurants and 
bars in week 41 till week 49.9 (leading to 55% reduction of contacts) and mandatory 
wearing of face masks, and finally a strict lockdown between week 50 and 55.9 (60% 
reduction). A curfew was enforced between week 56 and week 58 (70% reduction). 
After this, assume that measures were gradually relaxed till 0% contact reduction in 
week 104.  

If you are building the model from scratch, the model should simulate again. 

Testing and keeping track of the virus 

To keep track of the virus, the Actual reproduction number was continuously 
reported. This can be most easily calculated by the division of Infection by the 
infectious population. Make sure that this value is 0 when the Infectious population is 
equal to 0. Next, it is considered relevant to know the Estimated cumulative cases, 
which was of course initially 0, and increases by the Cases tested and Additional 
case estimates. The variable Cases tested is equal to the product of the 
Symptomatic infectious and the Testing grade, which increased from 0% per week in 
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week 7, to 20% in week 10, 70% in week 40, and 80% in week 104. The Additional 
case estimates are equal to the sum of two information delays: first the 
Asymptomatic infectious divided by the Measurement period of 1 week delayed by 
the Estimation period, and second the Symptomatic infectious times 1 minus the 
Testing grade, also delayed by the Estimation period. The Estimation period 
decreased from 20 weeks in week 0 to 2 weeks in week 52 and to 1 week in week 
104. 

If you build the model from scratch, check whether your model simulates and has the 
right settings, and save it. 

The model described above should have been modelled as precisely as possible. 
You can download several versions of this model from here. However, these SD 
models each contain three errors, despite the detailed description given. Please use 
the text and your common sense to correct the three errors. 

a. Debug one of the incorrect COVID-19 models. The behaviour of the variables 

Infectious population and Estimated cumulative cases should be exactly like 

the two graphs below. 

  

1. What are the correct model settings for this model? 

2. What are the three errors in this model? List the variable names and 

corrected equations. 

b. Draw a CLD of this model on a high aggregation level. 

c. Perform a validation test of the structure of the model. Describe the name of 

the test, how you executed it, what you observe, and what your conclusion is. 

d. Perform a validation test of the behaviour of the model. Describe name of the 

test, how you executed it, what you observe, and what the conclusion is. 

e. What is unrealistic about this model? What could one do to improve the 

model, its usefulness, and the simulations it generates? 
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j. After the previous proposed correction has been made, the government now 

argues that the LOOKUP function of the fraction of slow students needs to be 

adapted too, since the government assumes, after all, that students will study 

faster in the new system. Change the lookup, discuss the new function and 

the consequences of this change for the faculty. 

k. It should be clear that this model requires further adaptation. How could you 

make it more realistic? Describe what and how should be added; model 

these, and describe the possible changes in results. 

From Fining to Lending 

When implementing the fine system, the Dutch government first turned the slow 
students fine forced upon universities into a lump sum cut in their subsidies. Then, 
during the first year of imposing an individual fine on slow students, the system was 
abolished. This resulted in big losses, both financial and human: financial systems 
had already been changed, students had dropped out, et cetera. The fine system 
was then turned into a social lending system. Nowadays, Dutch students can borrow 
money to finance their studies. 

l. If you feel like it, model the new system. What could be you conclusion? 

m. An even bigger challenge would be to model and simulate the political 

process. From this process, much can be learned about how not to change a 

system but nevertheless stay in power. 

Exercise 5.12. Financial Turmoil on the Housing Market 
Example and 

explanation 

Introduction 

The Dutch housing market has been in crisis for a while and will most likely remain in 
crisis for several years to come: average real estate prices have increased 
enormously; the largest mortgage lenders made it more difficult to get a mortgage, 
and new housing construction is only a fraction of what is needed. Policymakers, 
therefore, gain insight into how the existing shortage on the housing market may 
evolve in the medium to long term. Suppose that the Ministry of Housing asks you to 
develop a SD model that would allow them to foresee the evolution of the Dutch 
housing market and to assess policies related to it. 

Iteration I 

Assume for the sake of simplicity that the Dutch housing market only consists of 
houses for sale (no apartments, no rental market, and no social housing market). 

https://surfsharekit.nl/objectstore/526d9d27-73f9-4ecc-8e7f-420f1bcf9ce8
https://surfsharekit.nl/objectstore/526d9d27-73f9-4ecc-8e7f-420f1bcf9ce8
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Houses are either new (younger than 15 years old) or old (15 years or older). The 
supply of new houses, equal to 1500000 in the year 1985, increases through 
completion of brand new houses and decreases through aging of houses, after 
which they are added to the old houses. The supply of old houses, initially 3665000 
houses in 1985, decreases through demolishing of old houses. 

The completion of brand new houses could be approximated by dividing the houses 
in planning and under construction by the planning and construction time. The 
number of houses in planning and under construction increases only through the 
inflow into planning and construction and decreases only through the completion of 
brand new houses. Suppose that the initial number of houses in planning and under 
construction in 1985 was 175000. Suppose that the planning and construction time is 
a function of the number of houses in planning and under construction divided by the 
initial amount of houses in planning and under construction: the planning and 
construction time equals 1 year if this ratio is equal to 1, equals 1.5 years if the ratio 
is equal to 2, equals 2.5 years if the ratio is equal to 5, equals 3.25 years if the ratio 
is equal to 9, equals 4.5 years if the ratio is equal to 20, and equals 0.75 years if the 
ratio is close to 0.  

The inflow into planning and construction could be modelled as the housing gap 
multiplied by the profitability multiplier and divided by the delayed direct effect of 
uncertainty. Suppose in this first iteration that the profitability multiplier is 1. Model 
the delayed direct effect of uncertainty as a 3rd  order delay of uncertainty with a 
delay time of 1 year. Assume the uncertainty on the housing market was normal (i.e., 
100%) from 1985 until mid-2007, after which uncertainty suddenly doubled. The 
uncertainty remained this high until the end of 2013, and decreased linearly from 
double to normal between the end of 2013 and the beginning of 2015, and remained 
normal after this. 

The non-negative housing gap is equal to the estimated number of households times 
the number of houses per household minus the expected total housing supply. The 
estimated number of households amounted to 5,430,000 in 1985, to 5978000 in 
1990, to 6798000 in 2000, to 7397000 in 2010, to 7470000 in 2011, and is assumed 
to amount to 8500000 in 2050, and to 9000000 in 2085. Assume that households do 
not have more than one house: the number of houses per household is 1. The 
expected total housing supply is the sum of new houses, houses in planning and 
under construction, and old houses, minus the houses expected to be demolished 
over the course of the year. 

The aging of houses follows the completion of brand new houses with a delay time 
equal to the life expectancy as new houses of exactly 15 years. Model the 
demolishing of old houses as the number of old houses over the average life 
expectancy of old houses of about 60 years multiplied with a demolishing multiplier 
of old houses. Suppose the latter multiplier could be modelled as the 3rd order delay 
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recommendation concerning the real estate market: what is your advice to the 

government, to current homeowners, and to those looking to buy a house? 
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Theory 
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it is also possible to establish indicative relations between the system structure and 
system behaviour without accurate mathematical formulations. A few examples can 
illustrate this. 

Example: capital and interest 

A starting capital is put into a bank account at a fixed interest rate. We are interested 
in the development of the capital as a function of time. The relevant variables are the 
size of the capital and the amount of interest added per time unit. The amount of 
interest is in proportion to the capital. As the capital becomes larger, the interest 
received will be larger; and as the interest is larger, the capital grows faster. Thus, 
both influences are positive and because they form a closed loop. This is called a 
positive feedback loop. 

 

Figure 6.8. Causal diagram of a positive feedback loop 

Such growth behaviour is typical for all dynamic systems with one positive, linear 
feedback as the basic structure. This is called a reinforcing loop. Examples include 
an economic system with a constant growth rate per year, or a population system 
with a constant growth percentage. 

Simple systems with a single, negative feedback loop without a time delay usually 
show a tendency towards stable behaviour. However, generalisations about the 
behaviour of these loops must be viewed with some caution, as we shall see below. 
Negative loops are called balancing loops. 

Example: water tank 

A water tank has a constant inflow, while the outflow depends on the level in the 
tank. As the level goes up, the outflow becomes larger, which in turn has a negative 
effect on the level. With a constant inflow, this system tends towards a state of 
equilibrium and is, therefore, stable. This causal structure is sketched in Figure 6.9. 
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Figure 6.9. Causal diagram of a negative feedback loop. 

Negative feedback is also shown to lead to stabilising behaviour in a number of other 
systems, such as a mass-spring system or a pendulum. In some economic 
processes, negative feedback also occurs. The classical example is the so-called 
hog (hogs are domesticated pigs) cycle (Hanau, 1928) discussed below (Figure 
6.10). 

Example: hog cycle 

When pork prices are high, pig breeders will buy more piglets. If these pigs are put 
on the market once they have grown, the supply goes up; if the demand stays the 
same, the price will drop. As a response, the pig breeders will breed fewer piglets, 
and the (negative) feedback loop is closed. However, if the responses are too strong, 
the system will show strong fluctuations. 

 

Figure 6.10. Causal diagram of the pork production cycle 

Negative feedback occurs in many processes controlled or invented by man (but 
also occur in nature). Examples include a supermarket where the manager will open 
more checkouts if there are long queues in order to reduce the waiting time: a 
negative feedback intended to limit the waiting time as much as possible. Another 
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Figure 7.2 shows a Vensim representation of this situation. At time 0 the desired 
number of houses changes from 100000 to 120000 houses. The figure shows the 
response of the output variable (housing) to a step input variable (desired number of 
houses). The figure also shows the effect of the adjustment time of 3 months. 

The model shows goal-seeking behaviour: the actual number of houses (Housing) 
moves towards the desired number of houses, i.e. the goal. A sudden decrease in 
the desired value would result in a similar response, except that the flow would be 
negative, decreasing the number of houses towards the lower goal. 

Delays and smoothing are two specific applications of flows of the type of flow = 
(variable - stock)/constant and will be discussed in section 7.4.2.  

7.3.4 Flow = normal flow + effect 

A more complicated flow may be formulated as a normal or reference flow that is 
adjusted by adding one or more effects, or by multiplying the flow by one or more 
effects. 

Example: housing portfolio 

 

Figure 7.3. Housing portfolio 

A large building company adjusts the normal production with a quantity of houses 
that ensures that the housing portfolio remains at the desired level. As a result, the 
production equation has the form normal flow + effect. If there are too many houses 
in the portfolio, the production of houses will be adjusted to below the normal flow. In 
such an additive equation, the units of all elements of the equation must be the 
same. Note that in such an equation, the monthly production could become negative 
if the housing portfolio is large enough. This cannot happen in reality, which indicates 
that an additive equation for a flow needs to be used with care.  
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7.3.5 Flow = normal flow * effect 

Multiplication of effects, as shown above, is frequently used in SD models. The flow 
often consists of an average flow that is multiplied by one or more factors (acting 
independently and simultaneously) that ensure that the flow becomes larger or 
smaller. 

Example: migration 

Migration into and out of a city is influenced by the available housing in the city, 
amongst other aspects. Figure 7.4 shows that migration is determined by the 
housing fraction, that is, the number of houses in the city divided by the number of 
potential residents requiring housing. 

 

Figure 7.4. Population change as a result of housing availability in a city. 

Immigration and emigration can be formulated in terms of normal immigration and 
normal emigration multiplied by a certain effect. In contrast to the additive effects 
discussed above, the multiplicative effects are dimensionless. 

Although it may seem easier to aggregate input and output into a net flow, this can 
lead to a loss of insight. When multiplicative effects are used, we are dealing with 
positive and negative flows together and in it is very difficult to see whether and why 
the net flow is positive or negative. A strengthening effect may not increase the 
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As indicated above, a smoothed variable is determined at each time-step by taking 
the difference between the actual variable and the smoothed variable up to that 
point, and by dividing this by the smoothing time. This divided difference is then 
added to the smoothed variable up to that point to obtain the new smoothed variable. 
Consequently, the flow is the difference between the real and the smoothed variable 
divided by the smoothing time. This means that, as the smoothing time increases, 
the change in the smoothed variable (i.e., the flow) decreases.  

Figure 7.7 shows the effect of smoothing for a varying input variable. A step function 
has been used for the demand to demonstrate what happens to the smoothed 
variable if a sudden change occurs in the input. 

  

Figure 7.8. Effects of different smoothing times on the smoothed variable (right) under a 
step-wise change in the input variable (left). 

Higher-order delays  

In the previous section, first-order time delays were described. For some systems, 
however, a first-order delay cannot adequately represent the system behaviour. For 
example, in a situation in which new employees are first trained and then start to 
work, but it still takes some time before they are fully productive, two stocks can be 
used. The total training time of the employees is seen as two linked first-order 
stocks, which jointly result in a second-order delay.  

Figure 7.9 shows four ways to represent a second-order delay. These result in the 
same value for the out variables if the time delay is constant. 
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same material and information delays. In Vensim, depending on whether a material 
delay or an information delay is involved, DELAY or SMOOTH are used (see Eq. 
7.14 and Eq. 7.16). 

  

Figure 7.10. Results for the four representations of a second-order delay (right) from the 
same input and constant time delay (left). 

Connecting three first-order systems results in a third-order delay. A third-order delay 
gives a somewhat more delayed response to a change in the input and will rise more 
sharply in the middle of the behavioural mode than a second-order delay (Figure 
7.10).  

Pipeline delays 

A pipeline delay is by definition an infinite-order material delay. In a pipeline delay, 
the output variable precisely follows the input variable, except that there will be a 
time lag. A pipeline delay of 10 hours with a stepped input variable, therefore, results 
in a stepped output variable, except that the step will take place 10 hours later. In the 
example of Figure 7.5, a pipeline delay would mean that the modeller makes the 
implicit assumption that the training of every employee takes exactly 10 months, no 
more, no less. In practice, pipeline delays do not occur very often, and the response 
to a stepped input variable usually shows a less marked response.  

In Vensim pipeline delays can be modelled with the function DELAY FIXED, in Stella 
with DELAY.  
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Figure 7.14. Terminals in a new port development. 

The fraction of land occupied can in principle range between 0 and 1. The most 
important characteristic of the table function Effect of Fraction Land Occupied is that 
this must have the value 0 if the fraction of land occupied equals 1 (1 , 0) , because 
in that case no more terminals can be built there. Because a multiplicative effect is 
involved, the value of the fraction of land occupied for which the effect equals 1 must 
also be considered (i.e., the normal value applies in that case). The value of the 
fraction of land occupied for which the effect equals 1 (x , 1) implicitly determines the 
normal or reference condition of the site: a data point in the table that can serve as a 
benchmark against which system behaviour can be compared. We will define the 
reference condition as 60% of the fraction of land being occupied. This means that 
(0.6 , 1) is a point that should be defined in the table. 

Following this, data must be found on the (normal) construction fraction. In this 
example we assume that this construction fraction equals 0.07 per year (7% new 
terminals per year) if the fraction of land occupied equals 0.6. This point in the table 
function is called the normal or reference point.  

After specifying the reference point, it is important to consider the gradient and form 
of the function. At a certain moment in time, as land becomes scarcer, the more 
popular or easily accessible areas are already occupied and the remaining land 
becomes more difficult to build on. Here, the relation between the fraction of land 
occupied and establishment of terminals has a negative gradient. Figure 7.15 shows 
two alternative curves that conform to the conditions laid down so far. 
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The incorrect choice of method emerges when the behaviour of the model is 
dependent on the choice of integration method. This can be detected by comparing 
runs using one method with runs using another. It is up to the modeller to determine 
which outcome is correct. A classic example is a model that should display stable 
oscillation, but displays expanding oscillation when Euler is used (Figure 8.1). For a 
more extensive discussion on numerical methods see Boyce and DiPrima (2005, CH 
8), Borelli and Coleman (2004, pp. 122-129), or Strang and Herman (2016, theorem 
4.1 and following). 

 

Figure 8.1. Results of an incorrect choice of numerical method. The model should 
give stable oscillation, as per the RK4 method. Using Euler, however, results in an 
increasing amplitude of the oscillation. 

The second type of error is an incorrect choice of time step, where a reduction in the 
step size results in a significant change in the behaviour of the model (Figure 6.2). 
The solution is to reduce the step size to a size at which a reduction in step size no 
longer results in a significant change in behaviour. 

 





   
 

   
 

 

Figure 8.4. Flowchart for the debugging process of SD models (Auping & d'Hont, 2023) 
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coded�_��first order 

delay to check what 
goes wrong

No

Yes

YesNo

No

Yes

Check the lookup 
shape

Does the 
shape make 

sense?

Improve the shape

No

Yes





























   
 

146 

5. Run the model for each different scenario and save the runs with different run 
names apart from the base case. 

If one wants do test policies for robustness, the goal would be to test the policies for 
each different scenario. Robustness is a policy characteristic which means that the 
policy functions in the desired way in all plausible futures (Lempert, Groves, Popper, 
& Bankes, 2006). There are different possible measures for robustness (e.g., see 
Kwakkel, Eker, & Pruyt, 2016), for example to make sure that the KPIs stay within 
desirable bounds, or that the results change in a desirable direction in all scenarios. 

Example: Scenario development 

Scenario development starts with creating an overview of the parameters or driving 
forces which are at least somewhat uncertain, and might influence model behaviour. 
Table 8.1 shows this for the COVID-19 pandemic. 

Table 8.1. Overview of uncertain parameter values in the COVID-19 model. 

Parameter Unit Value 

Average immunity period Week 52 

Average length of symptomatic 
period 

Week 1 

Average period of asymptomatic 
infections 

Day 6 

Average SARS-CoV-2 incubation 
time 

Day 3 

Case fatality rate of COVID-19 
patients 

Dimensionless 0.01 

Infection rate per contact Dimensionless 0.30 

Normal number of contacts per 
week 

1/week 7.5 

Presymptomatic period Day 3 

Share of asymptomatic infections Dimensionless 0.5 

The next step is to perform a univariate sensitivity analysis in order to find out for 
which of these parameters the model is sensitive. We can do this by changing their 
values one by one with, for example, plus and minus 10%, and observe the impact 
on the infectious population (Figure 8.9). This implies performing 19 runs in this 
case, as there are nine uncertain parameters plus the base case.  
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Once we have identified which variables are the most uncertain and have the most 
impact, we can develop a scenario logic. We will use the infection rate per contact 
and the normal number of contacts per week for that logic (see Figure 8.10). We use 
the logic to explain the experimental setup we can use for performing runs with the 
model.  

x 

Scenario 1 

 0.5 infection 
rate per 
contact  

 x 

Scenario 2 

 

  
 

(Base 
case) 

 

normal 
number of 
contacts 
per week 

5     10 

 

Scenario 3 

x  0.1   

Scenario 4 

x 

Figure 8.10. Scenario logic for the COVID-19 model. 

In this experimental setup, you explain how many runs you perform, the time 
horizon, the time step and the integration method, and what the parameter values 
are that feed into these runs. In this case, the experimental setup could contain the 
following. 

We run the model five times over a time horizon of 60 weeks. We use Vensim Pro 
version 9.3.3. x64 on a Windows computer. The time step is 0.0078125 weeks and 
the integration type is Euler due to the discrete nature of the social distancing 
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Example: Static policy 

  

Figure 9.1. Actual reproductive number (left) and infectious population (right) with no 
policy, a static policy and the real policy derived from the actual situation in the 
Netherlands in 2020. 

In this example, we introduce a very stringent static policy for the case of the COVID-
19 pandemic. To do this, we first disconnect the original policy. Figure 9.1 shows, 
firstly, the behaviour of the model in an uncontrolled epidemic in a completely 
susceptible population. First there is exponential growth, followed by a situation in 
which the growth is reduced when a large enough share of the original susceptible 
population is either exposed, infectious or recovered, and finally a situation in which 
a new, smaller peak may grow as recovered people lose their immunity. 

The static policy with strict social distancing rules is strong enough to avoid the 
actual reproduction number ever getting over 1. As a consequence, it quickly stops 
infections from occurring. Policies like this are dangerous, however, as at some 
moment discontent among the population will grow and demand a relaxation of the 
policies. This is exactly what happened in China after the immediate suspension of 
the original, very strict policies. The population was insufficiently immune (i.e., a 
large share of the population was still susceptible), causing an enormous surge in 
cases.  

9.1.2 Adaptive policies 

Adaptive policies rely on changing the system structure by introducing feedback 
between an existing system variable and a policy lever. A rule linking the 
performance indicator with the policy lever should be made explicit and, ideally, be 
institutionally embedded. A good example of an adaptive policy is the change in the 
formal retirement age in the Netherlands, which was captured (with a formula) in new 
legislation. As a consequence, the retirement age will gradually rise from 65 to 70 
years in 2069. Adaptive policies can be seen as closed loop policies, as they add a 
balancing loop to the system. For the societal ageing case, this is visible in Figure 
9.2. 
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Figure 9.2. Hybrid CLD/SFD of the societal ageing model. Observe how the adaptive 
retirement age introduces two new loops (R2p and B1p). 

Example: Adaptive policies 

  

Figure 9.3. Actual reproductive number (left) and infectious population (right) with no, 
a static, an adaptive policy, and the real policy derived from the actual situation in the 
Netherlands in 2020. 

For the adaptive policy in the case of COVID-19, we introduce a rule to link the 
actual reproduction number to the number of contacts the population is allowed to 
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