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A B S T R A C T

The linear viscoelastic behavior of materials is represented using mechanical models of choice, which are further
utilized in different numerical investigations, such as finite element simulations and discrete element simula-
tions. Burger’s model is one of the widely adopted mechanical models and remains highly favored in contem-
porary research due to its multiple advantages. Specifically, it excels in representing long-term creep and stress
relaxation behavior in a relatively simplified manner. Accurate identification of the long-term behavior for the
viscoelastic material, particularly asphalt concrete, is crucial, as it serves as a key indicator of asphalt pavement
performance over its service life. However, past research studies show that the parameters of Burger’s model
should be back-calculated from experimental data only within a limited range of frequency, otherwise, the pa-
rameters fail to represent the true material behavior. To the best of the authors’ knowledge, there is no approach
for researchers to obtain the critical frequency range in which the experiments should be performed. Therefore,
this study proposes a novel framework to find the critical frequency range to obtain appropriate model pa-
rameters of Burger’s model, to better characterize the viscoelastic behavior of the materials. To examine the
framework, asphalt concrete mixtures are used as examples in this study. Necessary laboratory tests including
complex modulus tests and stress relaxation tests, are performed on two distinctive types of asphalt concrete
mixtures. The generalized Maxwell model with different number of Maxwell chains are used to evaluate the
performance of Burger’s model. Furthermore, since commercially available finite element packages generally do
not have a direct built-in Burger’s model, the article shows a way of implementing Burger’s model in finite
element simulation. The simulations corresponding to the laboratory tests are carried out in both frequency
domain and time domain to thoroughly evaluate the performance of Burger’s model. The optimal frequency
range of 0.1–20 Hz for the examined mixtures is found to significantly improve the accuracy of the descriptive
master curve. The results also suggest that the generalized Maxwell model requires a minimum of four Maxwell
chains to maintain good performance in accurately characterizing the behavior of asphalt mixtures. However,
adding more Maxwell chains beyond a critical limit may not provide significant benefits. Finite element simu-
lations demonstrate that the stress relaxation behavior predicted by the obtained Burger’s model parameters
aligns more closely with experimental data over longer time intervals. This makes Burger’s model a strong choice
for aiding in the design of simulations for studies focused on the long-term behavior of materials.

1. Introduction

Viscoelasticity becomes an important aspect in modelling dynamic
responses of many flexible multibody systems [1]. Hence, an accurate
representation of the viscoelastic bodies in concern is of prime impor-
tance in many disciplines. Asphalt concrete (AC) is typically considered
as a viscoelastic material that consists of aggregate particles, bitumen,
fines, and sometimes other additives [2]. The inclusion of various types
of constituent materials results in different viscoelastic behaviour. The

design of the pavement and its life-time performance is directly related
to the rheological properties which describe the time-dependent
(viscoelastic) behaviour of materials [3,4]. Hence, the reliable predic-
tion of the performance can only be achieved if the appropriate assess-
ment of rheological properties is incorporated into the performance
prediction toolkit [5]. The accurate characterization of viscoelastic
behaviour in the prediction tool serves as an important task for pave-
ment asset management.

The viscoelastic behaviour possesses linear and nonlinear
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characteristics depending on the selection of materials and load appli-
cations [6]. To assess the nonlinear viscoelastic properties, complicated
mathematical formulations are required [7,8], whereas the linear
viscoelastic description is relatively straightforward. Therefore, in the
laboratory, usually small strain level (typically < 100 μm/m) [9] tests
are performed and linear viscoelastic (LVE) characteristics (such as
dynamic modulus) are used as a key parameter for the prediction of field
performance of the material [10]. Over the years, researchers have
developed different procedures [11–17] to characterize LVE properties
of materials. The common principle underlying these procedures in-
volves laboratory tests in either the time domain (creep and relaxation
tests) or in the frequency domain (complex modulus/DMA tests). The
major difference among their LVE characterization procedures is re-
flected in the utilization of different mechanical models [18–23].

Mechanical or mathematical models describe viscoelastic behaviour
by using a constitutive relationship that accounts for the material’s
response based on factors such as stress/strain levels, loading rates, and
stress states [24,25]. Among different mechanical models, the
stress-strain relationships are often expressed using combinations of
linear springs (Hooke’s element) and dashpots (Newton’s element). This
gives mechanical models the advantage of providing a physical inter-
pretation for each parameter [26], unlike several empirical models [27,
28], which are primarily based on statistical relationships. Moreover,
mechanical models have become popular due to the widespread adop-
tion of computational methods, such as the Finite Element Method
(FEM) [29–31] and the Discrete Element Method (DEM) [32–34].
However, it should be noted that different mechanical models can be
accurate or inaccurate depending upon the conditions of applications
[18]. A brief review of widely used mechanical models is given in the
subsequent paragraphs.

Researchers [32,35,36] have evaluated the capability of different
mechanical models consisting of 2–4 spring/dashpots, for characterizing
the LVE behavior of different viscoelastic materials. Feng [32] revealed
the limitations of two-element models (e.g., Maxwell model or
Kelvin-Voigt model), noting that these models cannot accurately
describe the LVE behavior under both imposed stress and imposed strain
conditions. Furthermore, Hubert [35] highlighted that four-element
models (Burger’s model) can accurately represent rheological
behavior (creep compliance) of polymethyl methacrylate without
compromising fitting accuracy, deeming it the best option for modelling
the viscoelastic behavior of resists for nanoimprint lithography. Simi-
larly, Arindam [36] concluded that Burger’s model has the excellent
potential for correctly representing the time-dependent behavior of
viscoelastic soils beds.

Mechanical models with more than four elements, such as the
generalized Maxwell (GM) model and the generalized Kelvin-Voigt
(GKV) model, are frequently used to characterize the LVE behavior of
the materials. Kim et al. [37,38] employed the GM model, represented
through Prony series coefficients [39], to characterize the viscoelastic
properties in the time domain within their performance prediction
model. Duffrène [40] employed the GM model to characterize the
multiaxial linear viscoelastic behavior of a soda–lime–silica glass using
creep-recovery tests.

In addition to the models comprised of a simple combination of
linear springs and dashpots, an alternative approach to modelling
viscoelastic response involves the use of a parabolic element [41,42].
This element governs the viscoelastic response of materials by intro-
ducing a differential equation of a non-integer order [43], while the
simple spring and dashpot only formulate the response function in an
integer order. This unique expression, also known as fractional deriva-
tive [21,44], can be used to represent an infinite number of Maxwell or
Kelvin-Voigt elements. Representative models [45,46] that incorporate
the parabolic elements, such as the 2S2P1D model, have been reported
to accurately characterize the LVE behavior of different types of visco-
elastic materials. However, it is noted that the numerical implementa-
tion of fractional derivative models is far more complicated than models

composed of simple spring and dashpot. The development of numerical
simulation for fractional derivative models falls outside the scope of this
research.

Generally, the use of spring or dashpot element-based models often
leads to a suboptimal fitting of the master curve, as compared to frac-
tional derivative models. Researchers [26] have reported that an
apparent “waveform” is particularly pronounced in models with fewer
discrete spectrums. The GM/GKV model, as a representative of these
models, also exhibits this limitation. However, incorporating an
increased number of Maxwell/Kelvin chains spans the applicable fre-
quency range with more flexibility in defining viscosity effects. Conse-
quently, the GM/GKV model remains effective across the wide range of
frequencies for the LVE characterization. In addition, GM model’s
constitutive formulation yields the Prony series representation [47],
provides a straightforward way for implementation in the computa-
tional method. This approach is particularly favoured in finite element
simulations of asphalt mixtures, where the Prony series model has
become one of the most widely adopted choices [48–52]. This type of
LVE representation has been available in finite element software, such as
Abaqus [53], MSC Marc [54] and ANSYS [55]. However, researchers
[41,56] emphasized that GM/GKV models usually require a consider-
able number of Maxwell or Kelvin-Voigt chains to achieve a satisfactory
curve fitting. Olard [41] noted a minimum of eight Maxwell elements is
required for the GM model, while Milliyon [56] concluded that a min-
imum of 10 to 15 Kelvin-Voigt elements (equivalent to 21 to 31 model
parameters) is needed for the GKV model. It is noted that adopting a
higher number of parameters may lead to statistical underfitting and
unreliable results [57]. Additionally, determining these parameters can
present a mathematically ill-posed problem [58]. Furthermore, exces-
sive model parameters can reduce computational efficiency, which is
crucial as contemporary studies often require increasingly complex
simulations and longer computational times [59]. Therefore, evaluating
the performance of the Prony series (GM) model with different numbers
of Maxwell chains is a valuable analysis for balancing accuracy and
computational efficiency.

Burger’s model has been prominently used and remains favoured in
various studies over the past decades [36,60–66]. In certain applica-
tions, such as DEM simulations [67,68] of asphalt mixtures, Burger’s
model is the most widely adopted choice among other models. This is
because of its numerous advantages. Burger’s model is the simplest
model that incorporates both Maxwell and Kelvin-Voigt elements,
allowing it to represent both creep and stress relaxation behavior in the
time domain (long-term behaviour) [66]. In addition, the Maxwell and
Kevin-Voigt element in series allow Burger’s model to describe the
elastic, viscous and viscoelastic components of material response. In
particular, the viscous component of the material response reflects the
remaining part of the material deformation, which is shown to be a
characteristic feature observed in asphalt mixtures. Researchers [69–72]
have highlighted that other models, built on the foundations of the
generalized Maxwell and Kelvin model, can also improve long-term
predictions in finite element and discrete element simulations. The
reasoning is similar to that of Burger’s model, as these models incor-
porate at least one Maxwell and one Kelvin-Voigt element. However,
assessing these models requires significantly more effort in mathemat-
ical derivation and numerical implementation than Burger’s model,
which is beyond the scope of this paper.

Typically, above advantages of Burger’s model are not fully captured
by assessing the fitted master curve in the frequency domain, which is
the common method of evaluation. However, contemporary research
increasingly focuses on evaluating time-domain behavior, such as stress
recovery and stress relaxation, which are more relevant to practical
applications [73]. The ability of Burger’s model to perform well in these
time-domain analyses contributes to its continued popularity. Moreover,
for Burger’s model, the use of four model parameters can reduce the
computational time for the numerical simulation. However, Burger’s
model exhibits the drawback in its poor fitting for the master curve, due
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to the presence of the “waveform” behavior [26]. As a result, the ac-
curacy in simulating the LVE behavior in the computational method can
be influenced. This is because the implementation of the mechanical
models for the numerical simulation generally follows the so-called
back-calculation technique, where the FEM or DEM input parameters
are back-calculated through the fitting of the master curve in the fre-
quency domain. In addition, such “waveform” behavior makes the
back-calculated Burger’s model parameters sensitive to the frequency
range of complex modulus data. The utilization of different frequency
ranges causes variations in the obtained model parameters. Hence, the
researchers [74–77] concluded that Burger’s model accurately describes
the linear viscoelastic behavior of the materials within a limited fre-
quency range. To the best of the author’s knowledge, limited research
has focused on identifying this critical frequency range to obtain
appropriate parameters of Burger’s model. Given that Burger’s model is
often the preferred choice or serves as the foundation for most models in
certain applications, such as DEM modelling, it is highly promising to
propose an optimal frequency identification.

The structure this article is organized as follows: The research
objective and scopes are outlined in the subsection (Section 1.1) of the
introduction. Section 2 provides an overview of the methodology, de-
tailing the proposed framework and its working procedure for identi-
fying the optimal frequency range. Section 3 describes the laboratory
tests conducted for the calibration and validation of the framework. In
Section 4, the finite element simulation process is presented, including
the modelling of laboratory tests and the derivation of the material
subroutine. Section 5 presents the results, including the obtained
optimal frequency range for the examined materials and performance
evaluation of the proposed framework. Finally, Section 6 summarizes
the conclusions and potential directions for future research. Additional
details, such as laboratory test information and the derivation of equa-
tions for the material model, are presented in the Supplementary
material.

1.1. Research objective and scopes

The present article proposes a framework capable of providing an
optimal frequency range to obtain better model parameters for Burger’s
model. This framework is expected to be a valuable tool for practitioners
and researchers who would like to adopt Burger’s model for their (FEM,
DEM, etc.) numerical investigations. Since the proposed approach uti-
lizes simple statistical assessments, it can also be used to judge the
relative performance of different models. Keeping the above in mind, the
following research scopes were identified:

• Propose a simple statistics-based framework capable of identifying
the optimal frequency range for Burger’s model based on laboratory
investigations.

• Demonstration of the working procedure of the proposed framework
via two types of asphalt mixtures. One of the mixtures consisting of
virgin materials, serves as the reference, while another type of
mixture consisting of reclaimed asphalt pavement materials (RAP)
and agent, represents the prevalent mixture type in the current
practice.

• Performance evaluation of the proposed framework with both fre-
quency domain and time domain data which are obtained from
laboratory tests.

• Implementation of the FE model by incorporating material sub-
routines to further investigate the performance of the proposed
framework.

• Comparison of the relative performances of Burger’s model within
the optimized frequency range and the GM model with different
number of Maxwell chains (N = 2, 3, 4, 5, 6 and 13) using the tested
frequency range.

2. Methodology

The methodology of this paper, as shown in Fig. 1, is discussed in the
following sections. This section aims to provide a detailed description of
the proposed framework to find the optimal frequency range for Bur-
ger’s model. At first, a brief literature overview of GM and Burger’s
model, including their relevant equations, is presented.

2.1. Brief overview of Burger’s model and GM model

In this subsection, the necessary derivation for the constitutive
equations is discussed. Burger’s model is a four-element model incor-
porating a Maxwell element and a Kelvin-Voigt element (see Fig. 2(a)).
The constitutive equation of Burger’s model can be expressed in a dif-
ferential form, as shown in Eq. (1):

σ + p1σ̇ + p2σ̈ = q1ε̇ + q2ε̈, (1)

where p1, p2, q1 and q2 are constants of Burger’s model in the differential
operator and each constant can be described in terms of four model
parameters in Fig. 2(a), as shown in Eq. (2)-(5):

p1 =
ηm
Em

+
ηm
Ek

+
ηk
Ek
, (2)

p2 =
ηmηk
EmEk

, (3)

q1 = ηm, (4)

q2 =
ηmηk
Ek

, (5)

The time-domain LVE equation (creep compliance) of Burger’s
model was derived from Eq. (1), as shown in Eq. (6):

D(t) =
1
Em

+
t

ηm
+

1
Ek

⎛

⎜
⎝1 − e−

Ek
ηk

t

⎞

⎟
⎠, (6)

where D(t) represents the creep compliance of Burger’s model.
The interconversion approaches [78] involving the Carson-Laplace

transform (see Eq. (7)) were employed to convert the creep compli-
ance from the time domain to a complex s (s = iω) domain, as shown in
Eq. (8):

f̃(s) = s⋅
∫ ∞

0
f(t)e− stdt, (7)

D̃(s) = s⋅

⎛

⎜
⎜
⎝

1
Ems

+
1

ηms2
+

1
Eks

−
1

Ek
(

s+ Ek
ηk

)

⎞

⎟
⎟
⎠. (8)

As the reciprocal of Eq. (8), the complex modulus of Burger’s model
was obtained, as shown in Eq. (9).

E∗(iω) = Ẽ(s)|s→iω =
1

D̃(s)
=

iωEmηmEk − ω2Emηmηk
− ηmηkω2 + ω[iηm(Em + Ek) + iEmηk] + EmEk

,

(9)

where ω is the angular frequency.
The storage modulus and loss modulus of Burger’s model were ob-

tained by calculating the real and the imaginary part of Eq. (9):

Eʹ(ω) =
Emηm2(ηk2ω2 + Ek(Ek + Em))ω2

ηk2ηm2ω4 +
(
(ηk + ηm)

2Em2 + 2Ekηm2Em + Ek2ηm2
)
ω2 + Em2Ek2

,

(10)
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Eʹ́ (ω) =
Em2ηm

(
ηk(ηk + ηm)ω2 + Ek2

)
ω

ηk2ηm2ω4 +
(
(Ek + Em)2ηm2 + 2ηkEm2ηm + ηk2Em2)ω2 + Em2Ek2

.

(11)

Therefore, the LVE function of Burger’s model in the frequency
domain was obtained. In addition, the relaxation modulus of Burger’s
model was also adopted in this study. Using the four constants in Eq. (1),
the relaxation modulus of Burger’s model can be described in Eq. (12):

E(t) =
1
A
[(q1 − q2r1)e− r1 t − (q1 − q2r2)e− r2 t ], (12)

where E(t) is the relaxation modulus of Burger’s model,A =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
p12 − 4p2

√
,

r1 = (p1 − A)/2p2 and r2 = (p1 + A)/2p2.
Eq. (10)-(12) are the kernel functions used in the proposed frame-

work for this study.
The generalized Maxwell (GM) model consists of a linear spring and

multiple Maxwell elements in parallel, as shown in Fig. 2(b).
The time domain LVE function under imposed strain (relaxation

modulus) of the GM model is expressed using Eq. (13) [78]:

E(t) = E∞ +
∑N

i=1
Eie

−

(
t
ρi

)

, (13)

The corresponding constitutive equations in the frequency domain
can be found elsewhere [79], as shown in Eq. (14)-(15).

Eʹ(ω) = E∞ + E0
∑N

i=1

giρi2ω2

1+ ρi2ω2, (14)

Eʹ́ (ω) = E0
∑N

i=1

giρiω
1+ ρi2ω2, (15)

where E0 is the instantaneous moduli of the viscoelastic material, gi is the
weight of relative modulus to the instantaneous moduli Ei/E0. In these
constitutive equations (see Eq. (13)-(15)) of GMmodel, N represents the
number of the Maxwell chains, and GM model with N = 2, 3, 4, 5, 6 and
13 were analysed in this study. It is noted that theoretically, the pro-
posed approach allows for the evaluation of the relative performance of
GM model with any values of N. However, for an illustrative purpose, a
range of small N (from two to six) and an extreme case ofN= 13 (limit of
several commercially available FE software, such as Abaqus) were

Fig. 1. Overview of research methodology: (a) Proposed framework for determining the optimal frequency range for Burger’s model. This subfigure illustrates the
process of identifying the optimal frequency subset range, utilizing experimental data from both complex modulus and relaxation tests. Model parameters derived
from the relaxation test data serve as reference values, guiding the evaluation of model parameters obtained from complex modulus test data across different subset
frequency ranges. Number k and N dictate the frequency data point limits, generating various subset frequency ranges for evaluation. Statistical analysis of all derived
model parameters ultimately determines the optimal frequency range. (b) Laboratory tests. Complex modulus and relaxation test data are used as inputs for the
proposed framework, while asphalt sample geometry and test conditions inform the FE simulation. (c) FE simulation process. Model parameters from the identified
optimal frequency range are the key input to define the material’s linear viscoelastic properties. Two material model subroutines are implemented within the FE
software. (d) Performance evaluation of Burger’s Model in both frequency and time domains, comparing FE simulation results with test results. (e) Nomenclature and
additional explanations related to terms and processes in the methodology.
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selected.

2.2. Proposed framework to find the optimal frequency range for Burger’s
Model

As discussed in the introduction, the back-calculated Burger’s model
parameters are sensitive to the utilized frequency ranges, hence, going
beyond the optimal frequency range may lead to an incorrect descrip-
tion of the LVE behavior. In such cases, it is necessary to incorporate a
prior step in which the optimal frequency range is determined from the
tested data. It is important to note that determining the optimal fre-
quency range requires specifying a reference temperature to plot the
master curve. Accordingly, the proposed framework is applicable at any
reference temperature to identify the optimal frequency range and in
this paper, a case study using a reference temperature of 10 ◦C was
presented. It is possible that different temperatures could results in
varying optimal frequency ranges. However, due to the length con-
straints and a focus on the working procedure of the framework in this
article, the effect of temperature on the framework will be explored in
future research.

To obtain the optimal frequency range using the proposed frame-
work (see Fig. 1(a)), the sensitivity analysis of the back-calculatedmodel
parameters with respect to different frequency ranges (Fi) needs to be
carried out. The optimal frequency range is selected from a group of
subsets of tested frequencies via simple statistical investigation. The
subset of frequency range was defined based on the need to explore the
effect of reducing available frequency data points, while maintaining a

sufficient number of data points for reliable analysis. First, these subsets
of frequency ranges are generated by randomly removing the frequency
data points from either the top or bottom of the experimental frequency
range (see Fig. 1(a)). In addition, to ensure that the reduced frequency
range would still be sufficient for meaningful LVE characterization, a
lower limit was set to be half of the original data points (i.e., a minimum
of 6 out of 11). Specifically, the subset frequency ranges were stopped to
generate once the number of data points was reduced to six. Based on
these criteria, the subsets ranges shown in the second column of Table 1
were generated, with no preference given to any specific frequency data
points.

Among these defined subset ranges, the optimal subset frequency
range is found based on statistical assessment for the obtained (Tested)
back-calculated parameters (Eim, Eik, ηim and ηik) against the Reference
back-calculated parameters (ERm, ERk, ηRm and ηRk). Therefore, the reference
behavior should be a “true” (close) representation of the actual material
behavior. For this purpose, this research employs relaxation test data
(σR(t)) which is expected to capture the long-term behavior of visco-
elastic material more accurately. Eq. (12) was used to obtain the back-
calculated Reference parameters. In addition, as shown in Fig. 1(a),
the pre-smoothing technique was introduced. A brief description is
provided in the following subsection.

2.2.1. Pre-smoothing technique
Fig. 1(a) shows that a pre-smoothing technique based on the 2S2P1D

model was implemented for obtaining the Tested Parameters (Eim, Eik, ηim
and ηik). This technique is introduced in the framework to address the

Fig. 2. Mechanical models considered in this study: (a) Burger’s model, characterized by four parameters: Em (elastic modulus of the Maxwell spring), ηm (viscosity of
the Maxwell dashpot), Ek (Kelvin spring modulus), and ηk (Kelvin dashpot viscosity). (b) Generalized Maxwell model, where E∞ represents the equilibrium moduli (in
uniaxial direction) of viscoelastic material. For each Maxwell element, Ei is the relative Young’s modulus for each Maxwell element, ηi is the viscosity, and ρi=ηi/Ei
represents the relaxation time. Consequently, for GM model with N Maxwell chains, the total number of model parameters is 2N+1.
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difficulties associated with complex modulus data, which often exhibit
local variances or scatters [80]. Direct fitting of experimental data to the
mechanical models, particularly the Prony series model used in this
study, frequently leads to issues such as negative spectrum strengths and
local spectrum oscillations [81]. The pre-smoothing technique provides
a simple and practical approach to overcome these difficulties by
generating a smoothed curve based on the experimental data. Over the
years, this technique has been implemented using various broadband
functions, such as simple power-law series [81], empirical algebraic
models like sigmoidal functions, the Christensen-Anderson-Marasteanu
(CAM) model, and the Havriliak-Negami model [82–84]. In addition,
it has been applied with mechanical models, including the Huet-Sayegh
(HS) model and the 2S2P1D model [80,85]. As discussed in the intro-
duction, the 2S2P1D model, a representative of fractional derivative
models, produces a smooth master curve in the frequency domain. This
model-based technique was incorporated into the framework to aid in
determining the parameters for both Burger’s model and the Prony se-
ries model.

As shown in Fig. 3, the 2S2P1D model incorporates parabolic ele-
ments (A and B) in addition to the spring and dashpot elements. Para-
bolic elements are representative of an infinite number of Maxwell

elements or Kelvin-Voigt elements. The complex modulus in the 2S2P1D
model is described in Eq. (16):

E∗(iωτ) = E0 +
E∞ − E0

1+ δ(iωτ)− k + (iωτ)− h + (iωβτ)− 1
, (16)

Complex modulus EC*(ω) was at first fitted to the corresponding
equation (see Eq. (16)). The curve fitting technique for the 2S2P1D
model, as described in the literature [41], was used to obtain a smooth
curve. Subsequently, the obtained smoothed curve was used to obtain
the back-calculated parameters (Eim, Eik, ηim and ηik) with their corre-
sponding frequency range (Fi), using Eq. (9)-(11).

2.2.2. Statistical evaluation
Once the parameters mentioned in the previous section were ob-

tained, statistical evaluation was performed for all the Tested Parame-
ters from each subset of the frequency range (Fi). For this purpose, three
commonly used indicators namely: a) the standard error of the estimate
(SEE), b) Root-Mean-Square Error (RMSE), and c) Mean Normalized
Error (MNE) were used to measure the “statistical error” between the
Tested Parameters and the Reference Parameters. The final decision of
the optimal subset frequency range is obtained after consistent smallest
values from all three errors are found.

2.2.3. Sample demonstration of the framework to obtain the optimal range
By following the described framework of Section 2.2.1, Table 1 was

obtained based on conducted laboratory tests in this research (see Sec-
tion 3). The second column of the corresponding table shows the
different subsets of the frequency range that were generated. In order to
have consistent results, the corresponding back-calculated (Tested) pa-
rameters are stored in different arrays (in accordance with the i value).
All the data set that was generated in this last column was passed
through statistical filtering, as described in Section 2.2.2. The results of
statistical analysis and the determined optimal frequency range are
shown in Section 5.1.

3. Description of laboratory tests

As explained in the previous section, the input data for the proposed
framework were obtained through performing necessary laboratory
tests in this research. Two different types of mixtures were considered to
reduce any biased conclusions. This present section provides detailed
information regarding the materials, samples, devices and methodo-
logical test programs. It is noted that the tests were conducted with
standard devices that are used in pavement engineering with their
prescribed norm EN 12,697–26.

3.1. Materials and sample preparation

In the present paper, two types of asphalt mixture samples, denoted
as Mixture S1 and Mixture S2, were prepared (see Table 2), whereas a
comprehensive breakdown of the studied mixtures is presented in the
Supplementary material (see Section A1). Mixture S1 was produced with
100 % virgin aggregate, whereas Mixture S2 incorporated 70 % RAP
(reclaimed asphalt pavement) material and 30 % virgin aggregate, with
a recycling agent [86]. The produced mixtures were compacted using
Superpave Gyratory Compactor. The compacted cylindrical specimens

Table 1
The generated subset frequency ranges and nomenclature.

i Subset frequency ranges Nomenclature

Subset frequency
ranges Fi

Tested
parameters

1 0.01, 0.1, 0.2, 0.5, 1, 2, 5, 8, 10, 20
and 30 Hz

F1 E1m, E1k, η1m and
η1k

2 0.01, 0.1, 0.2, 0.5, 1, 2, 5, 8, 10
and 20 Hz

F2 E2m, E2k, η2m and
η2k

3 0.01, 0.1, 0.2, 0.5, 1, 2, 5, 8, 10
and 30 Hz

F3 E3m, E3k, η3m and
η3k

4 0.1, 0.2, 0.5, 1, 2, 5, 8, 10, 20 and
30 Hz

F4 E4m, E4k, η4m and
η4k

5 0.01, 0.2, 0.5, 1, 2, 5, 8, 10, 20 and
30 Hz

F5 E5m, E5k, η5m and
η5k

6 0.1, 0.2, 0.5, 1, 2, 5, 8, 10 and 20
Hz

F6 E6m, E6k, η6m and
η6k

7 0.1, 0.2, 0.5, 1, 2, 5, 8, 10 Hz F7 E7m, E7k, η7m and
η7k

8 0.2, 0.5, 1, 2, 5, 8, 10, 20 Hz F8 E8m, E8k, η8m and
η8k

9 0.2, 0.5, 1, 2, 5, 8, 10 Hz F9 E9m, E9k, η9m and
η9k

Fig. 3. 2S2P1D model. In this model, E∞ represents the modulus at infinite
frequency, and E0 is the modulus at zero frequency. The viscosity of the single
dashpot is denoted by β. Parameters h and k, where 1 > h > k > 1, are the
exponents for the two parabolic elements, A and B. The parameter τ(τ0), which
is temperature-dependent, accounts for the Time-Temperature Superposition
Principle. Additionally, the 2S2P1D model incorporates a parameter δ (not
shown in the figure) to differentiate the fraction between the two parabolic
elements, A and B.

Table 2
Description of the studied asphalt concrete mixtures.

Type of
mixture

Description Composition

S1 AC22 Base 40/60 100 %VA-0 %RAP
(reference)

S2 AC22 Base 40/60 + 70 %PR &
agent

30 %VA-70 %RAP + agent
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were cored and polished to the desired size (100 mm in diameter and
150 mm in height) after storing them at 12 ◦C for a week.

3.2. Testing program

Fig. 4 shows all the laboratory tests that were performed on the cy-
lindrical samples of Mixture S1 and Mixture S2. For both mixtures, two
replicas were prepared to mitigate potential biases. Uniaxial displace-
ment control tests were performed at two different loading modes. In the
first loading mode, sinusoidal displacement was applied at different
frequencies and temperatures to calculate the complex modulus, while
in the second loading mode, the constant displacement was applied at
same temperatures to calculate the relaxation modulus. To avoid non-
LVE behavior, the resulting strain amplitude for both tests was kept
low at 50 μm/m. After the relaxation test, a one-day recovery was
adopted so that the samples could return to their initial state. To verify
that the samples regained their initial strength, the complex modulus
tests at 0.01 Hz, which were done before the relaxation test, were
repeated after the recovery period. The data for complex modulus tests
were recorded at the prescribed time interval Δt as shown Table 3. For
the relaxation test, a constant time interval of 0.1 s was adopted.

3.3. Uniaxial displacement control setup

The uniaxial test setup for the complex modulus/relaxation tests can
be seen in Fig. 5(a). The specimen was positioned between two plates of

the diameter of 104±1 mm and the axial load was applied through the
bottom plate. Three springs were arranged to create parallel lines,
indicating the location of the Linear Variable Differential Transformer
(LVDT) sensors at top and bottom. The measured difference in the
movement between the bottom and top LVDT sensors reflects the
displacement of the sample. These two displacement-control tests were
performed by regulating the displacement to the desired form.

The sinusoidal displacement amplitude (for complex modulus tests)
or constant displacement amplitude (for relaxation tests) was deter-
mined based on the geometries of the specimen, LVDT sensors, and the
desired strain (50 μm/m) for both tests. A detailed geometry of the
sample and setup can be found in the Supplementary material (see
Section A2).

4. Finite element modeling to simulate the uniaxial
displacement control setup

This section presents the implementation of viscoelastic models
(Burger’s model and GM model) for numerical simulations. In line with
the objective of the research, these models were implemented inside the
FE tool to gain a deeper understanding of the material responses under
prescribed test conditions. Since many commercially available FE
packages, such as Abaqus, ANSYS, and COMSOL Multiphysics [55,87],
do not have a direct built-in Burger’s model, a material subroutine was
developed as part of this research. The outputs of the developed FE
model were used to evaluate the performance of the Burger’s model

Fig. 4. Test program for displacement-control tests on two asphalt mixtures: Asphalt mixtures S1 (virgin mixture) and S2 (incorporating RAP materials and reju-
venating agent) are tested, with each test performed on two replicates per mixture. Displacement-control complex modulus tests are performed at 11 frequencies*
(0.01, 0.1, 0.2, 0.5, 1, 2, 5, 8, 10, 20 and 30 Hz) across temperatures ranging from − 20 ◦C to 20 ◦C. Stress relaxation tests are also conducted at these temperatures. A
one-day recovery period is applied to verify the validity of the experimental data.
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within the proposed framework. The following subsections provide a
brief description of the developed FEmodel used to simulate the uniaxial
test setup.

4.1. Description of finite element modeling of the conducted laboratory
experiments

A three-dimensional FE model was developed to simulate the labo-
ratory tests as described in Section 3.3. In the FE model the top surface
was constrained for all degrees of freedom, while the load was applied
by defining the boundary condition at the bottom surface, which is
similar to the operating condition of the device. For ease of under-
standing, corresponding loading and boundary conditions are shown in

Fig. 5(a). The meshes displayed in Fig. 5(b) represents the actual mesh
size adopted in the finite element simulation, which was determined
based on a mesh sensitivity analysis. In the uniaxial test setup, the
displacement was controlled by LVDT and the actual displacement of the
bottom boundary remained unknown, which is a necessary input for the
FE model. In order to solve this issue, a trial-error approach was fol-
lowed in which trial displacements were applied until the simulated
displacements matched with the experimental data at the prescribed
location of the LVDT, as shown in Fig. 5(c). Finally, Fig. 5(d) shows a
sample result of the FE simulation (σC(t) and σR(t)) for complex modulus
tests and relaxation tests. FE simulated vertical stress σC(t) is used to
provide the observation (see Section 5.3) to check the designed FEM
model, whereas the simulated relaxation test data σR(t) plays the role of

Table 3
Values of the used Δt for the complex modulus tests with different tested frequencies.

Frequency (Hz) 0.01 0.1 0.2 0.5 1 2 5 8 10 20 30

Δt (s) 1 0.1 0.05 0.02 0.01 0.005 0.002 0.001 0.001 0.0005 0.0003

Relaxation tests (Δt) = Constant 0.1s.

Fig. 5. FE simulation of displacement-control laboratory tests: (a) Displacement input for complex modulus test and relaxation test. U1, U2 and U3 indicate
displacement levels at each input direction. “Sinu_20Hz” represents a sinusoidal waveform with a frequency of 20 Hz, while “Relax_30s” denotes a constant
displacement applied for 30 s. (b) Uniaxial displacement control test setup and the FE model. In this subfigure, the three-dimensional FE model is developed based on
sample geometry, with boundary conditions that reflect testing specifications. Load inputs are applied at the bottom, and stress output is recorded at two nodes (A
and B) corresponding to the positions of the LVDT sensors. (c) Trial-error approach for FE nodal displacement. This iterative process is necessary because the actual
displacement at the bottom boundary is unknown. Trial displacements are applied at bottom until the simulated displacements align with experimental data at the
prescribed location of the LVDT. (d) FE vertical stress output from both complex modulus test and relaxation test for performance evaluation. These FE simulation
results are compared with the corresponding test results.
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assessing the capability of Burger’s model to capture the long-term
behavior (see Section 5.4) under the imposed strain condition.

4.2. Implementation of the material subroutine for Burger’s model

Three steps were followed to develop the material subroutine of
Burger’s model: a) Formulation of the time-incremental constitutive
equations of Burger’s model in 1D; b) 3D generalization; c) Verification
of Burger’s model subroutine. The following subsections are used to
describe these three steps.

4.2.1. Time-incremental 1D constitutive equation of Burger’s model
In this research, a recursive integral was utilized to formulate the

time-incremental constitutive equations for the viscoelastic material,
enabling the consideration of stress and strain history during previous
loading cycle with the assumption that the Poisson ratio remains con-
stant following past studies [88]. Keeping the above assumption in
mind, the derivation of the time-incremental stress-strain relationship of
Burger’s model is given below.

Burger’s model consists of a Maxwell element and a Kelvin-Voigt
element in series. Consequently, the total strain can be expressed as
the sum of three additive components, the stress remains the same for
each component:

εtot = εe + εv + εve, (17)

σ = σe = σv = σve, (18)

where εtot represents the total strain, εe indicates the strain of the linear
spring, εv is the strain of the linear dashpot and εve is the strain of the
Kelvin-Voigt element.

Expressing Eq. (17) in the incremental formulation yields Eq. (19):

Δεtot = Δεe + Δεv + Δεve. (19)

Each strain component in Eq. (19) can be described in terms of the
incremental stress by using the compliance of each element. The
detailed derivation for these strains is provided in the Supplementary
material (see Section A3.1). A summary of the derivation results is
presented below. For the linear spring:

Δεe = 1
Em

Δσ(t). (20)

For the linear dashpot:

Δεv(t) = Δt
ηm

[Δσ(t)
2

+ σ(t − Δt)
]
, (21)

where the value of εv depends on the stress value at the previous time
step, σ(t-Δt), reflecting the hereditary (time-dependent) effect of the
dashpot.

Regarding the Kelvin-Voigt element:

Δεve(t) = Δεins(t) − ΔH(t), (22)

where εins(t) denotes the instantaneous response in the Kelvin-Voigt
element and H(t) represents the recursive strain response, accounting
for the hereditary effect of the Kelvin-Voigt element. The incremental
form of εins(t) was described by Eq. (23):

Δεins(t) = 1
Ek

Δσ(t). (23)

The incremental form of H(t) was derived as follows:

ΔH(t) = D⋅

⎛

⎝1 − e−
Δt
ρ

⎞

⎠Δσ(t) −

⎛

⎝1 − e−
Δt
ρ

⎞

⎠⋅H(t − Δt), (24)

where D =
ρ

EkΔt, represents the time-dependent compliance for the strain
component of H(t).

By substituting Eq. (20), Eq. (21) and Eq. (22) into the Eq. (19), the
incremental form of the stress-strain relationship for Burger’s model can
be described by:

Δε(t) =
[
1
Em

+
1
Ek

+
1
2ηm

Δt −
ρ

EkΔt

(
1 − e

− Δt
ρ
)]

⋅Δσ(t) + Δt
ηm

⋅σ(t − Δt)

+
(
1 − e

− Δt
ρ
)

⋅H(t − Δt). (25)

Rewriting Eq. (25) to express the stress function in terms of strain
yields Eq. (26):

Δσ(t) = E⋅
[

Δε(t) − Δt
ηm

⋅σ(t − Δt) −
(
1 − e

− Δt
ρ
)

⋅H(t − Δt)
]

, (26)

whereE = ∂Δσ
∂Δε =

1

1
Em+

1
Ek
+ 1
2ηm

Δt− ρ
EkΔt (1− e

− Δt
ρ )

, represents the time-dependent

modulus of the material that allows for the computation of incremen-
tal stress based on the inputs of incremental time and incremental strain.

4.2.2. Time-incremental 3D constitutive equations for Burger’s model
It was found that Eq. (26) is inherently recursive and also includes

the strain component H(t), which updates recursively (as shown in Eq.
(24)). To ensure accurate stress updates, both equations must be scripted
within the subroutine algorithm which requires their formulation in
three dimensions. To generalize the 1D constitutive equations into 3D
equations, two matrices M

̃̃
and N

̃̃
were used. Matrix M

̃̃
converted all the

1D modulus E into 3D modulus E
̃̃
, as shown in Eq. (27):

E→E
̃̃
=E⋅M

̃̃
=

E
(1+ν)(1 − 2ν)⋅

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − ν ν ν 0 0 0

ν 1 − ν ν 0 0 0

ν ν 1 − ν 0 0 0

0 0 0
1 − 2ν
2

0 0

0 0 0 0
1 − 2ν
2

0

0 0 0 0 0
1 − 2ν
2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(27)

where ν represents the Poisson’s ratio. The derivation for the general-
ized matrix M

̃̃
is provided in the Supplementary material (see Section

A3.2).
Through the transformation of Eq. (27), Eq. (26) was rewritten in a

3D formulation:

Δσ
̃
(t) = E

̃̃
⋅Δε
̃
(t) − E⋅

Δt
ηm

⋅σ(t − Δt) − E
̃̃

⋅
(
1 − e

− Δt
ρ
)

⋅H
̃
(t − Δt). (28)

It is noted that in Eq. (26), E⋅Δt
ηm

is a dimensionless value (not a
modulus). Therefore, it maintains its original form through the 3D
generalization process.

Similarly, the matrix N
̃̃
was used to convert the 1D compliance D into
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3D compliance D
̃̃
for the H(t), as shown in Eq. (29):

D→D
̃̃
= D⋅N

̃̃
= D⋅

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − ν − ν 0 0 0
− ν 1 − ν 0 0 0
− ν − ν 1 0 0 0
0 0 0 2(1+ ν) 0 0
0 0 0 0 2(1+ ν) 0
0 0 0 0 0 2(1+ ν)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(29)

The derivation for the generalized matrix N
̃̃
is also provided in Sec-

tion A3.2 of the Supplementary material.
As a result, Eq. (24) was formulated into its 3D version:

ΔH
̃
(t) =

⎛

⎝1 − e−
Δt
ρ

⎞

⎠⋅D
̃̃

Δσ
̃
(t) −

⎛

⎝1 − e−
Δt
ρ

⎞

⎠⋅H
̃
(t − Δt). (30)

Eq. (28) and Eq. (30) represent the 3D functions of Burger’s model,
which can be adopted to simulate the material behavior. In this study,
these 3D formulations were implemented into the commercially avail-
able finite element platform, Abaqus. A User Material (UMAT) subrou-
tine code was scripted in FORTRAN, with the corresponding algorithm
detailed in Section A3.3 of the Supplementary material.

4.2.3. Verification of the developed material subroutine
A verification study was conducted to demonstrate the applicability

of the developed UMAT code, by assessing the FE model simulations in
Abaqus. As shown in Fig. 6(a), simulations were performed on a
designed cubical test block. To replicate the laboratory setup where the
top of the asphalt mixture sample is mounted in the hydraulic test ma-
chine, the top of the block was fixed with constrained displacements and

rotations. Meanwhile, a load was applied from the bottom. As illustrated
in Fig. 6(b), the pulse load was used to simulate the typical time-
dependent behavior in uniaxial load-controlled test with a recovery
period.

The capability of the UMAT code is demonstrated by comparing the
strain responses calculated using the analytical formulation of Burger’s
model (See Eq. (6)) with the results from the FE simulations. As dis-
cussed earlier, Burger’s model consists of elastic, viscous and visco-
elastic responses. Thus, this verification study includes a comparison for
the strain responses for each component as well as the total strain
response. These results have been presented in Fig. 6(c)-(f). It was found
that the FE simulations closely match the analytical results with an
average coefficient of determination (R2) of 0.9910 across all compari-
sons. However, minor deviations are observed, particularly in Fig. 6(c)
and 6(d). These deviations are likely due to the difference in dimen-
sionality. It is apparent that the FE simulations are based on a 3D nu-
merical solution, while the analytical results derive from a 1D equation.
Despite these deviations, which are independent of the UMAT sub-
routine’s algorithm, the results sufficiently demonstrate the applica-
bility of the finite element model.

5. Results and discussions

Burger’s model and Prony series model are the widely adopted
choices for simulating the LVE behavior of asphalt mixtures, in the
discrete and finite simulations. As highlighted by previous researchers,
one of the challenges for using Burger’s model is to find out a critical
range of frequency in which its parameters could be back-calculated, so
that the viscoelastic response of the material is accurately captured. In
contrast, the Prony series (GM) model offers the advantage of not
requiring additional frequency optimization techniques to better
represent LVE behavior. However, more accurate LVE representation

Fig. 6. Verification of the UMAT subroutine: (a) Cubical test block with defined boundary conditions. (b) Applied pulse load, which consists of one second of creep
followed by four seconds of recovery. The analytical strains were compared with the FE simulated strains for each strain component: (c) elastic strain εe, (d) viscous
strain εv, (e) viscoelastic εve and (f) the total strain εtot. Note the input parameters for the verification study: σ0=1 [MPa], Em=1000 [Mpa], ηm=1000 [Mpa•s], Ek=800
[MPa], ηk=1000 [Mpa•s] and ν=0.3.
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may require a high number of Maxwell chains. Including a high number
of chains may lead to additional computational time and necessitate
more data points to avoid underfitting. Although for simpler geometrical
cases computation time may not be a big issue, it poses significant
hurdles in the complex model. To solve these issues, this research pro-
poses a novel statistics-based framework to automatically obtain the
critical range of frequency in which accurate parameters for Burger’s
model could be back-calculated. Then the performance of the obtained
Burger’s model parameter is evaluated against the GM model in both
frequency and time domains. The performance of GM model with
different number of Maxwell chains is assessed in this analysis. In
addition, the FE simulations of the relaxation test is used to further
assess the capability of Burger’s model to capture the long-term
behavior (under imposed strain condition) of the examined AC mix-
tures. The following subsections discuss the findings in line with the
above-mentioned aspects.

5.1. Determination of an optimal frequency range for the tested samples

With the described approach in the previous section (see Table 1),
the parameters (Eim, ηim, Eik and ηik) of Burger’s model were back-
calculated for all the tested samples considering the generated fre-
quency ranges Fi. Using the three commonly used statistical indicators
(SEE, RMSE and MNE) as described in Section 2.2.2, the errors between
the Tested parameters against the Reference parameters (ERm, ηRm, ERk and
ηRk) were calculated. As shown in Fig. 7, the reduction in the data points
from F1 to F9 did not provide linearly increasing/decreasing trends in
errors. This observation is in line with the finding from the previous
research [75–77] which postulated that a critical frequency range exists
in which Burger’s model seems to fit well. It could be explained by the
fact that beyond the critical frequency range Burger model is not able to
truly capture the nonlinearity in the material behavior.

Fig. 7(a) and Fig. 7(b) show that statistical indicators (SEE, RMSE
and MNE) of F6 (0.1–20 Hz, see Table 1) is the optimal choice for the
tested samples (both mixture S1 and S2). It is apparent that considering
full frequency range values yields higher errors, at the same time
considering frequency ranges with fewer values also results in high er-
rors. The observation is logical that by considering only a few frequency
values, meaningful information is discarded. Since the proposed statis-
tical approach is able to identify the above over-fitting or under-fitting

issues, an optimal frequency range for Burger’s model is obtained.

5.2. Performance of the proposed framework with the frequency domain
data

Using the approach presented in the previous subsection, an optimal
frequency range (i.e., F6) was identified, and the corresponding Burger’s
model parameters were obtained through the adopted back-calculation
approach. A detailed procedure of this approach is presented in the
Supplementary material (see Section A4). To assess the improvement in
prediction accuracy using the proposed framework, the master curve of
Burger’s model calibrated by the optimal frequency F6 was compared
with that using the tested frequency range F1. Furthermore, to evaluate
the characterized LVE behavior with Burger’s model, the LVE charac-
terization results from the GMmodel with different numbers of Maxwell
chains were presented. Therefore, the effect of the different number of
Maxwell chains was also discussed in this section. It is noted that in this
article, the GM model was characterized using the full frequency range
F1. There might be concerns that using different frequency ranges could
also affect the LVE response of the GM model, although it has been
demonstrated that the GM model is minimally influenced by frequency
range. To clarify this, an analysis of frequency effect on the GM model
was included in the Supplementary material (see Section A5), which
compares the master curve calibrated by GM model using the full fre-
quency range F1 and the frequency range F6. The results confirm that
the frequency effect is negligible for the GM model. Therefore, this
section focuses on the effect of frequency range on Burger’s model and
the effect of the number of Maxwell chains on the GM model.

A goodness-of-fit statistic was used to evaluate the fitting of the
master curve. Typically, the goodness-of-fit metrics, including both the
error-deviation ratio (Se/Sy) and coefficient of determination (R2), are
calculated for the evaluation. However, due to the inclusion of the
number of independent variables k (number of model parameters) in the
Se/Sy, as shown in Eq. (31), Se/Sy becomes a more suitable indicator for
the case of this study. This is because each model (Burger’s model and
GM model with different number of Maxwell chains in parallel) studied
in this paper possesses a different number of parameters.

Se =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ (

xmeasured − xpredicted
)2

n − k

√

, (31)

Fig. 7. Statistical analysis of Tested Parameters from different subset frequency ranges for two mixtures: (a) Mixture S1, and (b) Mixture S2. Frequency sets F1 to F9
correspond to the defined subset frequency ranges as shown in Table 1. Deviations between the model parameters obtained from different subset frequency ranges
(Tested parameters) and the model parameters derived from the relaxation test data (Reference parameters) are assessed using three “statistical errors”. The Standard
Error of the Estimate (SEE) and Root-Mean-Square Error (RMSE) are presented in the bar chart, while the Mean Normalized Error is illustrated in the line chart.
Overall, this figure demonstrates that F6 yields the lowest statistical error for both asphalt mixtures examined.
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Sy =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(xmeasured − x)2

n − 1

√

, (32)

where n is the number of the measured data points, k is the number of
independent variables, xmeasured is the X data measured from the raw
experimental data, xpredicted is the X data described/predicted by the
model. It is noted that in this paper, X specifically represents the dy-

namic modulus |E| =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Eʹ)2 + (Eʹ́ )2
√

. x is the mean value of the X data. A
smaller value of Se/Sy indicates a better correlation between the
measured and predicted data.

As shown in Fig. 8(a) and (b), plot B (using frequency range F6) lies
closer to the pre-smoothing 2S2P1D plot as compared to plot A (using
frequency range F1) for both S1 and S2 mixtures, suggesting that with
the proposed optimal frequency range, better fitting can be obtained,
although the typical “waveform” remains visible. Statistical

investigations of these plots (see Table 4) show that the goodness-of-fit
(Se/Sy) is 0.538 for plot A and 0.358 (almost excellent level) for plot B
for Mixture S1, similarly for mixture S2, 0.444 for plot A and 0.371 for
plot B. Keeping Se/Sy values of 2S2P1D 0.225 and 0.141 for Mixture S1
and S2 respectively as the best alternate fitting, it can be seen that the
Burger’s model in optimal frequency provides closer approximation
against its full frequency range counterpart.

To have a direct comparison of the back-calculated parameters from
the GM models with different number of Maxwell chains, Fig. 8(c) and
(d) were plotted. It is apparent that moving from GM (2) to the GM with
a greater number of Maxwell chains provides better curve fitting. This
can be attributed to the fact that GM model with more Maxwell chains
produces less curve waves. It is also evident in Table 4 that when the
number of Maxwell chains rises from 2 to 13, the fitting improves from
being statistically “Poor” to “Excellent”. To ensure an “Excellent” fit of
the master curve using the GM model, a minimum of four Maxwell

Fig. 8. Fitting of the master curve at the reference temperature of 10 ◦C using different models: (a) Burger’s model calibrated using the complex modulus data of
frequency range F1 and F6, presented with the experimental data and smoothed data from the 2S2P1D model for Mixture S1. (b) Burger’s model calibrated using the
complex modulus data of frequency range F1 and F6, presented with the experimental data and smoothed data from the 2S2P1D model for Mixture S2. (c) GM model
with different numbers (2, 3, 4, 5, 6 and 13) of Maxwell chains calibrated using the complex modulus data of frequency range F1, presented with the experimental
data for Mixture S1. (d) GM model with different numbers (2, 3, 4, 5, 6 and 13) of Maxwell chains calibrated using the complex modulus data of frequency range F1,
presented with the experimental data for Mixture S2. It is noted that for the GM model, results obtained using data of F6 is presented in the Supplementary material
(see Section A5).
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chains (nine model parameters) is required. However, it was also found
that increasing the model complexity beyond GM (4) with nine pa-
rameters to GM (13) with 27 parameters results in only minimal sta-
tistical improvement, as the reduction in Se/Sy is less than 0.2 for both
mixtures. This observation reveals that there might not be much benefit
of adding a greater number of Maxwell chains beyond a critical limit,
with the obvious danger of statistical underfitting with artificially
inflated statistical values if the number of data points is not sufficient.
Nevertheless, the overall results indicate that Burger’s model can ach-
ieve an almost “Excellent” condition with just four model parameters,
whereas the GM model requires at least four Maxwell chains (nine pa-
rameters) and potentially increases computational time. The following
section explores this aspect in greater detail.

5.3. Observations through the finite element implementation

Using the constitutive equations and material subroutine, a finite
element model was developed to simulate both types of laboratory tests
using Burger’s model. Complex modulus values were obtained at an
arbitrarily selected reference temperature (T0=10 ◦C) and frequency
(1Hz).

The experimental and simulated data (see Fig. 5(d)) of the initial five
time periods (equivalent to five seconds for the 1 Hz test) were ignored
and the subsequent data from the following four periods were utilized
for further analysis. With the chosen Δt (see Table 3) for the 1 Hz test
and a consistent value for the incremental time in the FE simulation, four
hundred simulated data points were obtained for a detailed investiga-
tion. As shown in Fig. 9, the obtained FE simulation using different
models was plotted against the laboratory-measured stress σC(t), along
with the line of equality [90], which indicates the FE simulated stress
and the experimental stress are exactly the same. The corresponding run
time (CPU time) to complete these FE simulations for different models is
presented in Table 5. By adopting the FE mesh as presented in Fig. 5, the
designed simulations involved a total of 12,420 C3D8H elements. All
simulations were performed on a desktop PC with an i5–10210 U
processor.

As shown in Fig. 9, for both mixtures S1 and S2, the FE simulated
stress from Burger’s model matched well with the laboratory-measured
stress, with slight deviations. This could not be avoided because of the
inherent waveforms as observed in the four-parameter model. In
comparing Burger’s model with the GM model, it can be seen that the

performance of the GM model, particularly with higher number of
Maxwell chains (see Fig. 9(b) and Fig. 9(d)), is closer to the equality line.
Burger’s model (with four parameters) performs better than the GM (2)
and GM (3) model with five and seven parameters, respectively (see
Fig. 9(a) and Fig. 9(c)). These results are in line with the findings in
Section 5.2, which indicate that a minimum of four Maxwell chains
(nine parameters) is required to ensure good quality when using Bur-
ger’s model as a benchmark for evaluating the performance of GM
model. The corresponding runtime data in Table 5 shows that, for the
simulation of this study, Burger’s model takes 27.83 % less time as
compared to the GM (13). Even when considering the best GM model
with lowest model parameters, GM (4) model, it still takes 22.52 %more
time than Burger’s model to complete the simulation. These results
highlight the distinct advantage of Burger’s model in reducing compu-
tational time. It is important to note that this outcome has already
accounted for the additional computational cost associated with Bur-
ger’s model, as the simulation of Burger’s model was done via the user
defined subroutines against in-built GM models.

5.4. FE-based performance evaluation of the proposed framework with
the time domain data

As explained in Section 3, relaxation tests were conducted to obtain
long-termmaterial behavior under the imposed strain condition for both
mixtures and FE simulations were performed with both Burger’s model
and GM model back-calculated parameters. The FE results of different
models were plotted against the laboratory-measured stress σR(t) for 120
s, as shown in Fig. 10(a) and Fig. 10(b) for both mixtures. The relaxation
time was determined based on the literature [91,92] and trial tests
conducted on the two asphalt mixtures.

As shown in Fig. 10, in the initial seconds, the predictions from
Burger’s model led to a rapid decay of the stress. This is associated with
the fact that Burger’s model only includes a limited number of relaxation
spectrums (two relaxation times). As shown in the plots of Fig. 10(a) and
Fig. 10(b), predictions from the GM model in general show a smoother
transition of the decaying function whereas Burger’s model exhibits a
kink at around 3–4 s of the stress relaxation. Another key observation on
these plots shows that in the GM model, due to its parallel arrangement
and including an infinite spring element (E∞, see Fig. 2(b)), the pre-
dicted relaxation curves approach an asymptotic non-zero value after a
long-time interval, while, since all the elements in Burger’s model are
arranged in series (see Fig. 2(a)), the curves approach to near zero.
Therefore, these results reveals that Burger’s model outperforms the GM
model beyond a time interval (roughly around 50 s). The inclusion of
additional Maxwell chains in the GM model provides trivial improve-
ment in predictions after this point. As mentioned in the introduction,
one possible solution to address this limitation for the GM model is to
add an additional dashpot in parallel with all the Maxwell chains,
thereby incorporating both Maxwell and Kelvin elements. Researcher
[72] have shown this modification would enhance the model’s ability to
more accurately describe long-term behavior. The same insight is
applicable to the generalized Kelvin model with an extra dashpot con-
nected in series with Kelvin chains as well, which can better capture the
long term behavior [69–71]. However, these models are unlike the
Prony series (GM) model, which are directly available in many com-
mercial FE software packages. Furthermore, developing and analyzing
these models would require significantly more effort than Burger’s
model.

These results demonstrate that Burger’s model more accurately de-
scribes the long-term behavior of the bituminous materials studied in
this paper under imposed displacement. Additional insights into pre-
dictions under imposed stress are also provided in the Supplementary
material (see Section A6). As mentioned in the abstract, testing asphalt
concrete and evaluating its performance over an extended service life is
crucial. Several past researchers [93–95] have highlighted the impor-
tance of monitoring and simulating commonly observed distresses such

Table 4
Evaluation for the fitting of master curve based on Goodness-of-fit statistic.

Dynamic modulus_ Mixture S1 Dynamic modulus_ Mixture S2

Model Se/Sy Classification Model Se/Sy Classification

Pre-smoothing
2S2P1D 0.225 Excellent 2S2P1D 0.141 Excellent
Burger’s model (using the full frequency range F1)
Burger’s 0.538 Good Burger’s 0.444 Good
Burger’s model (using the optimal frequency range F61)
Burger’s 0.358 Good Burger’s 0.371 Good
GM model
GM (13) 0.039 Excellent GM (13) 0.164 Excellent
GM (6) 0.059 Excellent GM (6) 0.112 Excellent
GM (5) 0.136 Excellent GM (5) 0.141 Excellent
GM (4) 0.193 Excellent GM (4) 0.195 Excellent
GM (3) 0.369 Good GM (3) 0.450 Fair
GM (2) 0.671 Fair GM (2) 0.761 Poor

(According to the Statistic Goodness-of-Fit criterion, the Se/Sy value which is
smaller than 0.35 is classified as “Excellent” curve fitting, the Se/Sy value be-
tween 0.36 and 0.55 is classified as “Good” curve fitting, the Se/Sy value between
0.56 and 0.75 is classified as “Fair” curve fitting, the Se/Sy value between 0.76
and 0.89 is classified as “Poor” curve fitting, and the Se/Sy value which is greater
than 0.90 is classified as “Very poor” curve fitting [89]).
1 Only reduced frequencies, shifted by the frequencies in this range (F6), are

adopted in the statistics.

C. Wang et al. International Journal of Mechanical Sciences 285 (2025) 109817 

13 



as fatigue, rutting and transverse cracks, which are vital for the
long-term performance analysis and evaluation of asphalt pavement. In
fact, prominent tests, such as the four-point bending tests, triaxial tests
and indirect tensile tests (ITT), have been proposed in European [96]
and American standard [97,98] to assess these aspects. Consequently,
the accurate identification of the material’s long-term behavior is highly
valued in many studies. These results demonstrate that Burger’s model is
a strong choice for designing simulations in the relevant studies.

6. Conclusions

Past research has highlighted that Burger’s model performs effec-
tively within an interest range of frequencies. This presented study fo-
cuses on developing a framework for finding the critical frequency range
required to obtain appropriate parameters of Burger’s model. Labora-
tory tests, such as complex modulus tests and relaxation tests, were
performed on two types of asphalt concrete mixtures. To evaluate the
capability of the proposed framework, the performance of the general-
ized Maxwell model with different numbers of Maxwell elements was
compared with Burger’s model, based on both frequency domain and
time domain data. Moreover, the article also presents the formulation to
implement Burger’s model in finite element packages. FE simulations
were carried out to further evaluate the capability of Burger’s model to
capture the long-term behavior of the materials under imposed
displacement.

The results showed that with the “optimal frequency” obtained from
the proposed approach, the accuracy of the obtained Burger’s model
parameters has been significantly improved. For both the examined

Fig. 9. FE simulated stress versus laboratory-tested stress in the complex modulus test at 10 ◦C and 1 Hz using different models: (a) Burger’s model, presented with
results from GM (2), GM (3) and GM (4) for Mixture S1. (b) Burger’s model presented with results from GM (5), GM (6) and GM (13) for Mixture S1. (c) Burger’s
model, presented with results from GM (2), GM (3) and GM (4) for Mixture S2, (d) Burger’s model, presented with results from GM (5), GM (6) and GM (13) for
Mixture S2.

Table 5
CPU time.

Model CPU time (s)

GM (13) 5991.7
GM (6) 5622.3
GM (5) 5601.9
GM (4) 5581.0
Burger’s 4324.0

(Data from Mixture S1).
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mixtures, the optimal frequency range was found to be 0.1–20 Hz. This
implies that both expanding and reducing the frequency range resulted
in the predictions moving away from the predictions of reference pa-
rameters. This is in line with the findings of past researchers who
postulated that Burger’s model is applicable in a critical range of fre-
quency. Generally, it is expected that the tested frequency range, in
particular for asphalt mixtures, are broader than the identified interest
range of the frequency. However, there is a concern that the optimal
frequency range might fall outside the tested frequency range. Future
research, which is beyond the scope of this paper, should address this
issue. A promising approach could involve assessing the uncertainty of
the predictions when it is beyond the tested frequency range, as results
in this paper show that outside certain limit the calculated error could be
significant. The magnitude of the error depends on how far the fre-
quency deviates from the optimal range. Alternatively, one might
consider using other models that remain effective across a wider fre-
quency range instead of Burger’s model.

Statistical results demonstrate that GMmodel requires a minimum of
four Maxwell chains (nine model parameters) to maintain its good
performance in accurately characterizing LVE behavior for the asphalt
mixtures. These results also shows that there might not be much benefit
from adding a greater number of Maxwell chains for the GM model
beyond a critical limit with the obvious danger of statistical underfitting,
particularly with fewer tested data points.

FE simulations of the complex modulus tests show that the perfor-
mance of Burger’s model was superior to the GM model with three
Maxwell chains. As expected, in general, the GMmodel with 13Maxwell
chains produced the most accurate result but required more CPU time to
complete the same FE simulation. It is noted that caution should be
taken that a higher number of parameters may lead to statistical
underfitting and hence unreliable results. At the same time, an ill-posed
mathematical problemmay also occur in the determination of the model
parameters.

FE simulation for the relaxation test demonstrate that Burger’s model
more accurately describes the long-term behavior of the bituminous
materials studied in this paper under imposed displacement. Given that
accurately identifying the long-term behavior of bituminous materials is
crucial for evaluating the performance of both designed and existing
asphalt pavements over their extended service life, Burger’s model
proves to be a strong choice for designing simulations in these evalua-
tion studies.
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