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a b s t r a c t

There is a growing interest in model-based decision support under deep uncertainty, reflected in a va-
riety of approaches being put forward in the literature. A key idea shared among these is the use of
models for exploratory rather than predictive purposes. Exploratory modeling aims at exploring the
implications for decision making of the various presently irresolvable uncertainties. This is achieved by
conducting series of computational experiments that cover how the various uncertainties might resolve.
This paper presents an open source library supporting this. The Exploratory Modeling Workbench is
implemented in Python. It is designed to (i) support the generation and execution of series of compu-
tational experiments; and (ii) support the visualization and analysis of the results from the computa-
tional experiments. The Exploratory Modeling Workbench enables users to easily perform exploratory
modeling with existing models, identify the policy-relevant uncertainties, assess the efficacy of policy
options, and iteratively improve candidate strategies.

© 2017 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Software availability

Name of Software: Exploratory Modeling Workbench
Description: The Exploratory Modeling Workbench is an open

source Python library for exploratory modeling.
Exploratory modeling underpins the various model-
based approaches for decision making under deep
uncertainty. The library can be used to develop interfaces
to existing simulation models, define computational
experiments to conduct with those models, analyze the
results of these experiments, and store the results. The
software is available through pip, a Python package
manager: pip install ema_workbench. It depends on the
Python scientific computing stack (numpy, scipy,
matplotlib) as well as seaborn and ipyparallel (both are
available through the conda package manager). Optional
dependencies are platypus (available through github) for
many-objective optimization, SALib (available through
the pip package manager) for global sensitivity analysis,
and mpld3 (available through conda) for interactive
visualizations of PRIM
td. This is an open access article u
Developer: Jan H. Kwakkel (j.h.kwakkel@tudelft.nl) with
contributions from M. Jaxa-Rozen, S. Eker, W. Auping, E.
Pruyt, and C. Hamarat

Source language: Python
Supported systems: unix, linux, windows, Mac
License: BSD 3 clause
1. Introduction

In many planning problems, planners face major challenges in
coping with uncertain and changing physical conditions, and rapid
unpredictable socio-economic developments. How should planners
and decision makers address this confluence of uncertainty? Given
the presence of irreducible uncertainties, there is no straightfor-
ward answer to this question. Effective decisions must be made
under unavoidable uncertainty (Dessai et al., 2009; Lempert et al.,
2003). In recent years, this has been labeled as decision making
under deep uncertainty: the various parties to a decision do not
know or cannot agree on the system and its boundaries; the out-
comes of interest and their relative importance; the prior proba-
bility distribution for uncertain inputs to the system (Lempert et al.,
2003; Walker et al., 2013); or decisions are made over time in dy-
namic interaction with the system and cannot be considered
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Fig. 1. The XLRM framework.
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independently (Haasnoot et al., 2013; Hallegatte et al., 2012).
There is a rapidly growing interest in the challenge of offering

decision support under deep uncertainty (Maier et al., 2016). A
variety of approaches have been put forward including Robust
Decision Making (Groves and Lempert, 2007; Lempert et al., 2006),
Many Objective Robust Decision Making (Kasprzyk et al., 2013),
Adaptive Policy Making (Hamarat et al., 2013; Kwakkel et al., 2010;
Walker et al., 2001), Dynamic Adaptive Policy Pathways (Haasnoot
et al., 2013), Info-Gap decision analysis (Ben Haim, 2001), Real
Options (de Neufville and Scholtes, 2011), and Decision Scaling
(Brown et al., 2012; LeRoy Poff et al., 2015). There are three ideas
that underpin this literature:

1. Exploratory modeling: in the face of deep uncertainty, one should
explore the consequences of the various presently irreducible
uncertainties for decision making (Lempert et al., 2006; Weaver
et al., 2013). This exploration uses model-based scenario tech-
niques for the systematic exploration of a very large ensemble of
plausible futures (Bankes, 1993, 2002; Bankes et al., 2013; Van
Asselt and Rotmans, 2002).

2. Adaptive planning: decision robustness is to be achieved through
plans that can be adapted over time in response to how the
future actually unfolds (Haasnoot et al., 2013; Kwakkel et al.,
2010; Wilby and Dessai, 2010)

3. Decision Support: the aim of the various deep uncertainty ap-
proaches is to enable joint sense-making amongst the various
parties to decide on the basis of thousands to millions of
simulation model results, covering impacts on a wide variety of
outcomes of interest, regarding the concerns of the various ac-
tors within the decision problem and the consequences of
various means of resolving these concerns (Herman et al., 2015;
Tsouki�as, 2008).

In parallel to the development of various approaches for sup-
porting decision making under deep uncertainty, software tools are
being developed to support the application of these approaches.
Examples include the closed-source Computer Assisted Reasoning
software used by the RAND Corporation, the open source Scenario
Discovery Toolkit (Bryant, 2014), and the openMORDM library
(Hadka et al., 2015).

From an analytical perspective, all model-based approaches for
supporting decision making under deep uncertainty are rooted in
the idea of exploratory modeling (Bankes, 1993; Bankes et al.,
2013). Traditionally, model-based decision support is based on a
predictive use of models. Simulation models are used to predict
future consequences, and decisions are optimized in light of this.
Under deep uncertainty, this predictive use of models is highly
misleading. Instead, models should be used in an exploratory
fashion, for what-if scenario generation, for learning about system
behavior, and for the identification of critical combinations of as-
sumptions that make a difference for policy (Weaver et al., 2013).

In this paper,we introduce the ExploratoryModelingWorkbench.
The Exploratory Modeling Workbench is an open source library for
performing exploratory modeling. By extension, the workbench can
be used for the variousmodel-based approaches for decisionmaking
under deep uncertainty. In scope, it is fairly similar to the open-
MORDM toolkit (Hadka et al., 2015), although there are some inter-
esting differences in the approach taken to supporting exploratory
modeling. Theworkbench is implemented in Python. It is compatible
with both Python 2.7, and Python 3.5 andhigher. The latest version is
available through GitHub, and a stable version can be installed using
pip, one of the standard package managers for Python.

The remainder of this paper is structured as follows. Section 2
introduces a theoretical framework that underpins the design of
the Exploratory Modeling Workbench. Section 3 discusses the
design and key implementation details of the workbench; these are
then compared and contrasted to some of the other available open
source tools for mode-based decision support under deep uncer-
tainty. Section 4 demonstrates the use of the workbench for the
Lake Problem (Hadka et al., 2015; Lempert and Collins, 2007; Quinn
et al., 2017; Singh et al., 2015; Ward et al., 2015). Section 5 contains
some concluding remarks and a discussion of future extensions.

2. Framework

There are three key ideas that jointly underpin the design of the
Exploratory Modeling Workbench. These are the XLRM framework,
the use of simulation models as if they were a function, and a
taxonomy of robustness frameworks.We now elaborate these three
ideas and how they influence the design of the workbench.

The first idea which underpins the workbench is the system dia-
gram (Walker, 2000), orXLRM framework (Lempert et al., 2003). This
diagram is shown in Fig. 1, where X stands for the exogenous or
external factors. These are factors that are outside the control of the
decision-makers. L stands for policy levers. R stands for relationships
inside thesystem, andMstands forperformancemetricsoroutcomes
of interest. In the ExploratoryModelingWorkbench, this framework
is used for structuring the relevant information. In exploratory
modeling, the system is always conceptualized such that all un-
certainties can be handled as external factors. For example, if there is
structural uncertainty about specific relations inside the system, this
is transformed intoanexogenousparameterwhereeachvalue stands
for one particular representation of this relation. Exogenous factors
are called uncertainties, policy levers are called levers, and perfor-
mance metrics are called outcomes. These three are attributes of a
model, which contains the relationships in the system.

The second idea behind the design of the Exploratory Modeling
Workbench is the idea of running a simulation model as if it were a
function. Adopting the XLRM notation, a simulation model is sim-
ply a function called with a set of parameters X and L. The return of
the function is a set of outcomes of interest M. So

M ¼ f ðX; LÞ (1)

In the workbench, there is a wrapper around the actual model.
This wrapper presents a consistent interface to the underlying
model that the other parts of the Exploratory ModelingWorkbench
can use. This interface enables running the simulation model as if it
were a function. This enables the workbench to interface with any
modeling or simulation package that exposes some kind of API. For
example, Vensim, a package for System Dynamics modeling ex-
poses a DLL. The workbench can use this DLL to perform explor-
atory modeling with simulation models implemented in Vensim.
Presently, the workbench comes with off the shelf interfaces to
Vensim (system dynamics), NetLogo (agent based modeling), and
Excel. Proof of concept wrappers are available for Simio and Arena
(discrete event simulation), PCRaster (spatio-temporal
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environmental models), Modflow (groundwater modeling), and
GAMS (mathematical optimization).

By combining the XLRM framework and the idea of running a
model as a simple function, it is possible to use the workbench to
explore uncertainty pertaining to relationships within the model.
This can be done either by parameterizing the uncertain relation-
ship through some categorical variable where each category rep-
resents one possible realization of the uncertain relationship, or by
working with multiple distinct simulation models. The workbench
can be used for both, and implementation concerns dictate the
most efficient way of exploring model uncertainty.

The third foundational idea for the workbench is a taxonomy of
robustness frameworks. Most recently, Herman et al. (2015) pre-
sented such a taxonomy. The workbench evolved separately from
this specific taxonomy, but is coherent with it. In the taxonomy of
Herman et al. (2015), there are four components:

3. Generation of policy options; policy options can be pre-specified,
they can be identified through design of experiments, through
(many-objective) search, or they can be developed using itera-
tive vulnerability analysis. The Exploratory Modeling Work-
bench can be used for all four.

4. Generation of states of the world; States of the world are the
scenarios against which candidate policy options are evaluated.
These can be pre-specified, or generated using methods for
design of experiments. The workbench supports the use of user-
specified states of the world, as well as Monte Carlo sampling,
Latin Hypercube sampling, and Full Factorial sampling. More
specialized samplers for the Sobol, Morris, and FAST sensitivity
analysis techniques can also be applied using SALib (Herman
and Usher, 2017).

5. Vulnerability analysis; Vulnerability analysis aims at identifying
the relative influence of the various uncertain factors on policy
robustness. This can be done through factor prioritization based
approaches as found in the sensitivity analysis literature, or
through scenario discovery. The workbench offers support for
Scenario Discovery using either Classification and Regression
Trees (Breiman et al., 1984) or the Patient Rule Induction
Method (Friedman and Fisher, 1999). In addition, it implements
a random forest based feature scoring approach (Breiman, 2001;
Geurts et al., 2006), which can be used as an alternative to
traditional global sensitivity analysis techniques, as well as a
regional sensitivity analysis technique (Spear and Hornberger,
1980; Young et al., 1978).

6. Robustness evaluation; There is a wide literature on robustness
metrics. Broadly speaking, three families of metrics can be
identified: (i) satisficing metrics; (ii) regret metrics; and (iii)
descriptive statistics of the distribution of outcomes over the
states of the world (Kwakkel et al., 2016a). The workbench does
not include pre-defined robustness metrics, but it is straight-
forward to implement any robustness metric in Python as part
of the analysis of the results.
3. The Exploratory Modeling Workbench

The Exploratory Modeling Workbench is implemented in Py-
thon. Python is a widely used high-level open source programming
language that supports various programming paradigms. Python
places a strong emphasis on code readability and code expres-
siveness. It is increasingly popular for scientific computing pur-
poses due to the rapidly expanding scientific computing ecosystem
available for Python. Theworkbench extensively uses libraries from
this scientific computing ecosystem and can be used with both
Python 2.7, and Python 3.5 and higher.

The workbench is composed of four packages: em_framework,
analysis, connectors, and util. In addition, there is a folder with a
wide variety of examples. The em_framework package contains the
core classes and functions of the workbench. These key compo-
nents are

� Model and FileModel; two classes that can be used directly or as a
starting point for amore detailed wrapper class of an underlying
simulation model. The difference is that FileModel has a work-
ing directory where one or more files that are used for the
simulation model reside. This can be the model itself, if the
model is implemented in another programming language or in a
simulation package (e.g. Vensim, NetLogo), or data files used by
the model.

� Evaluators; A singleton class that is responsible for performing the
computational experiments. The workbench comes with three
types of evaluators: SequentialEvaluator, Multi-
processingEvaluator (for simple parallelization on a single ma-
chineusing themultiprocessing library), and IpyparallelEvaluator
(for distributed parallelization using the ipyparallel library).

� Parameters; In order to support both sampling and search over
either the levers or the uncertainties, theworkbench has generic
Parameter classes that can be used for both. The workbench
distinguishes three types of parameters: RealParameter, Inte-
gerParameter, and CategoricalParameter.

� Outcomes; the workbench distinguishes between Scalar-
Outcomes and TimeSeriesOutcomes. In case one is using search,
only ScalarOutcomes are considered as part of the optimization.

� Data storage; a basic easily extendable mechanism for storing
the results of the computational experiments.

� Samplers; the workbench offers support for Monte Carlo, Latin
Hypercube, and Full Factorial designs, as well as Sobol, Morris
and FAST using SALib.

With these components, it is possible to realize the idea of
running a simulation model as if it was a function. The paralleli-
zation support reduces runtime. The data storage is straightfor-
ward, simple, and human readable, and has proven to be sufficient
in virtually all use cases.

The analysis package contains a variety of functions and classes
for visualization of results, and more in-depth analysis. Visualiza-
tion focuses on displaying time series data, and primarily supports
the rapid exploration of the results. The analysis functionality can
be decomposed into feature scoring metrics, regional sensitivity
analysis, and scenario discovery. Feature scoring is a machine-
learning alternative to global sensitivity analysis and can be used
to get insight into the relative influence of the various uncertain
factors onmodel outcomes. For scenario discovery, both the Patient
Rule Induction Method (Friedman and Fisher, 1999) and Classifi-
cation and Regression Trees (Breiman et al., 1984) are supported,
and employ as much as possible an identical interface.

The connector package contains off the shelf connectors for
Excel, Vensim, and NetLogo. With these off the shelf connectors, it
becomes very easy to perform exploratory modeling on simulation
models implemented in these simulation packages. In the trivial
case, it is sufficient to only specify the uncertain factors, their
ranges or sets of values, and the outcomes. Other simulation
packages can easily be added if desired by extending either the
Model or FileModel class.

The util package contains various utility functions. Most
importantly it offers support for logging which functions even



Table 1
Deeply uncertain parameters.

Parameter Range Default value

m 0.01e0.05 0.02
s 0.001e0.005 0.0017
b 0.1e0.45 0.42
q 2e4.5 2
d 0.93e0.99 0.98
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when running in parallel on either a single machine or a high
performance cluster. It also offers functionality for serializing re-
sults and storing them to disk, and loading the results back into
memory. The storage format currently is a simple tarbal of csv files,
with separate metadata text files. This is a format that is human
readable, cross platform, and simple.

There exist various other tools for supporting exploratory
modeling and scenario discovery. The closest in spirit is the open-
MORDM toolkit. This toolkit is implemented in R, has strong sup-
port for interactive visualization, and good support for working
with BORG (Hadka and Reed, 2013) and other state of the art multi-
objective optimization algorithms. The Exploratory Modeling
Workbench supports both robust optimization and multi-objective
optimization of outcomes for policy search, using the platypus li-
brary (https://github.com/Project-Platypus/Platypus not yet avail-
able on pypi). The interactive web-based visualization of
openMORDM is better developed, in particular with respect to the
visualization of multi-dimensional data. OpenMORDM comes with
interactive parallel coordinates plotting functionality, something
that the Exploratory Modeling Workbench lacks. In contrast, the
workbench is much better developed when it comes to supporting
the design and execution of experiments, including the off the shelf
support for parallelization on single machines and high perfor-
mance clusters. The Scenario Discovery support in the workbench
is also more elaborate.

Regarding scenario discovery, the standard alternative to the
workbench is the scenario discovery toolkit of Ben Bryant. This
toolkit is implemented in R. The main difference presently is that
the workbench does not implement the resampling statistic
(Bryant and Lempert, 2010). In contrast, the workbench imple-
mentation is much easier to extend, as evidenced by its use for f-
PRIM (Hallegatte et al., 2015), the easewith which it was possible to
implement the multi-boxes modification suggested by Guivarch
et al. (2016), and its use in implementing a random forest
inspired extension (Kwakkel and Cunningham, 2016). The imple-
mentation of PRIM offered by the Exploratory Modeling Work-
bench also support PCA-PRIM (Dalal et al., 2013).

A new and upcoming project is Platypus. This is project on
GitHub (https://github.com/Project-Platypus) containing a collec-
tion of libraries for many objective optimization (somewhat
confusingly this library is also named platypus), sampling
(rhodium), and scenario discovery (prim, a stand-alone port of the
prim code from the Exploratory Modeling Workbench). Project
Platypus is essentially a Python implementation of the MORDM
toolkit and has the same developers. There is ongoing cross-
fertilization between project Platypus and the Exploratory
Modeling Workbench, as evidenced by the fact that the workbench
uses the many-objective optimization library from Project Platypus
while project Platypus has adapted the prim code from the
workbench.

4. The lake problem

The Exploratory Modeling Workbench includes an example
folder. This folder contains a variety of examples that demonstrate
the functionality of the workbench. Many of these examples have
been drawn from published cases. Here, we use the Lake Problem as
an example for demonstrating some of the key functionality of the
workbench. A repository with the source code and data can be
found on GitHub (https://github.com/quaquel/lake_problem).

The lake problem is a stylized and hypothetical decision prob-
lem where the population of a city has to decide on the amount of
annual pollution it will put into a lake. If the pollution in the lake
passes a threshold, it will suffer irreversible eutrophication. In
recent years, the Lake problem, in various forms, has been used to
test and demonstrate several approaches for supporting decision
making under deep uncertainty (Hadka et al., 2015; Lempert and
Collins, 2007; Singh et al., 2015; Ward et al., 2015). The model's
basic behavior is given by:

Xtþ1 ¼ Xt þ at þ Xq
t

1þ Xq
t
� bXt þ εt (2)

where Xt is the pollution at time t, at is the rate of anthropogenic
pollution at time t, b is the lake's natural recycling rate, q controls
the rate of recycling of phosphor from the sediment, εt is the rate of
natural pollution at time t and this is modeled following Singh et al.
(2015), as a log normal distribution with mean m and standard
deviation s. The rate of anthropogenic pollution at is the decision
variable and is somewhere between 0, and 0.1. So at ε ½0; 0:1�.

There are four outcomes of interest. The first is the average
concentration of phosphor in the lake.

fphosphor ¼
1
jT j

X
t2T

Xt (3)

where jTj is the cardinality of the set of points in time.
The second objective is the economic benefit derived from

polluting the lake. Following Singh et al. (2015), this is defined as
the discounted benefit of pollution minus the costs of having a
polluted lake

feconomic ¼
X
t2T

�
aat � bX2

t

�
dt (4)

where a is the utility derived from polluting, b is the cost of having
polluted lake, and d is the discount rate. By default, a is 0.04, and b

is 0.08.
The third objective is related to the year over year change in the

anthropogenic pollution rate.

finertia ¼ 1
jTj � 1

XjT j

t¼1

Iðjat � at�1j< tÞ (5)

where I is an indicator function that is zero if the statement is false,
and 1 if the statement is true; t is the threshold that is deemed
undesirable, and is for illustrative purposes set to 0.02. Effectively,
finertia is the fraction of years where the absolute value of the change
in anthropogenic pollution is smaller then. t:

The fourth objective is the fraction of years where the pollution
in the lake is below the critical threshold.

freliability ¼ 1
jT j

X
t2T

IðXt <XcritÞ (6)

where I is an indicator function that is zero if the statement is false,
and 1 if the statement is true; Xcrit is the critical threshold of
pollution and is a function of b and q.

The lake problem is characterized by both stochastic uncertainty

https://github.com/Project-Platypus/Platypus
https://github.com/Project-Platypus
https://github.com/quaquel/lake_problem
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and deep uncertainty. The stochastic uncertainty arises from the
natural inflow. To reduce this stochastic uncertainty, multiple
replications are performed and the average over the replication is
taken. That is, running many replications and taking summary
statics over these replications handles the stochastic uncertainty.
Deep uncertainty is presented by uncertainty about the mean m and
standard deviation s of the lognormal distribution characterizing
the natural inflow, the natural removal rate of the lake b , the
natural recycling rate of the lake q, and the discount rate d. Table 1
specifies the ranges for the deeply uncertain factors, as well as their
best estimate or default values.
5. Analyzing the lake problem using the Exploratory
Modeling Workbench

In this section, the Exploratory Modeling Workbench is
demonstrated using a stylized case. Throughout this example, it is
assumed that various standard Python scientific computing
packages are imported accordingly:

5.1. Specifying the lake model

The first step in performing exploratory modeling with the
workbench is to implement the lake model. This implementation
can be split into two separate parts. The first part is the lake model
itself, as described above. We have chosen to implement this as a
separate function that takes various parameters as keyword argu-
ments with default values, and returns the four specified outcomes
of interest. We also include in the function signature the possibility
of passing policy lever values. For this we wrap any additional
keyword arguments into a dict, and next process this dict assuming
it contains the policy lever values.
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The second part is the specification of the Model object, which
makes it possible to perform exploratory modeling on the lake
model using the workbench. This involves instantiating a Model
object, with a name and the lake_problem functionwe just defined.
Next, we specify the time horizon over which we run the model.
Given the model, we can now specify the uncertainties, the levers,
the outcomes, and constants. Of these, only uncertainties and
outcomes are always required. Constants give us the possibility to
overwrite default values of parameters that are not uncertain. Here,
for example, we set nsamples to 150, meaning that we will run 150
replications of the lake model for each computational experiment.
This completes the specification of the model, which we can
now use for performing exploratory modeling.
5.2. Generation of states of the world and vulnerability analysis

The next step is to use the model for performing a first series of
experiments. To do this, we first turn on the default logging func-
tionality that comes with the workbench. Next we specify the
number of scenarios and create a file name using this information.
For our first set of experiments, we are going to use four randomly
generated release policies. We do this by sampling over the policy
levers using a Monte Carlo sampler. Given these four random pol-
icies and the number of scenarios, we can now perform the ex-
periments. In case only a number is used to indicate the number of
scenarios or the number of policies, the workbench defaults to
using Latin Hypercube sampling. The workbench comes with
various evaluators, which handle the execution of the experiments.
If we want to run in parallel on a single machine, we can use the
MultiprocessingEvaluator.
5.2.1. Visual analysis of results
The foregoing exploration results in a data set of 4000 compu-

tational experiments. We can now analyze this data set. A first



Table 2
Feature scoring using extra trees feature scoring.

Uncertain factor Feature score

0 b 0.889158
1 q 0.067018
2 mean 0.022405
3 policy 0.014576
4 delta 0.003477
5 stdev 0.003366
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simple visualization in this case is to look at the pairwise scatter
plot for each of the four objectives. This can easily be achieved with
the pairs_scatter function, which is built on top of the matplotlib
plotting library (Hunter, 2007). Theworkbench contains a variety of
other convenient visualization functions for rapid visual explora-
tion of the results, many of which are specifically useful for time
series outcomes. All plotting functions return the figure instance, as
well as a dictionary with all the axes, giving the user full control
over the further layout etc. of the figures.
5.2.2. Feature scoring
More elaborate analyses involve feature scoring and scenario
discovery. Feature scoring is a family ofmachine learning techniques
for identifying the relative importance of various features for a
certain outcome or class of outcomes. Various feature scoring tech-
niquesare included in the scikitelearn library (Pedregosaetal., 2011).
The workbench provides a convenient function that wraps some of
the scikit-learn feature scoring techniques. As an example, we
perform feature scoring on the concentration of phosphor in the lake
at the end of the simulation. To achieve this, we first need to pre-
process the experiment array. Since we sampled over the policy le-
vers, this array contains the sampled values for each lever, aswell as a
shorthand name for each policy. In this particular case, the levers are
the values for the anthropogenic release for each year. Because we
have generated randomvalues for these, we first remove them from
the experiment array. We still keep the name of the policy, so if the
results are particularly sensitivity to a policy, we can still detect this.
The results of this analysis are shown in Table 2. As can be seen,
the parameter b is by far the most important factor affecting the
terminal value of the concentration of phosphor in the lake. The
second and third parameter are the policy and the parameter q.
Interestingly, the mu and sigma, which together specify the
lognormal distribution of the natural inflow, have only a limited
impact on the final concentration of phosphor.

This result is only applicable for a single outcome of interest. It
might be convenient to have some insight into the sensitivity of
each of the four outcomes of interest to the various uncertainties as
well as the policy. Again, this is easily achieved with the work-
bench, using the get_feature_scores_all function. By default, this
function uses the Extra Trees feature scoring algorithm, although
other options are provided as well. The result of this code is shown
in Fig. 3. Note here that the table includes a row titled model. The
Exploratory Modeling workbench offers support for designing and
executing experiments over more than one model, considering
either the intersection or the union of the uncertainties associated
with the various models. Demonstrating this functionality is
beyond the scope of the present paper, but examples of this can be
found in Kwakkel et al. (2013), Pruyt and Kwakkel (2014), and
Auping et al. (2015).
5.2.3. Scenario discovery
A second analysis technique is to perform scenario discovery

(Bryant and Lempert, 2010) using either the Patient Rule Induction
Method (PRIM) (Friedman and Fisher, 1999) or Classification and
Regression Trees (CART) (Breiman et al., 1984). Here we show the
application of PRIM. The implementation of PRIM,which comeswith
the workbench, is designed for interactive use through jupyter
notebook (P�erez andGranger, 2007). Inpractice, the codewould thus
be executed in several steps and the user would make choices based
on the results shown. The first step in applying scenario discovery is
to specify which experiments are of interest. In a typical application,
one would focus on the subset of experiments where one or more
objectives have not been achieved. For the lake problem, this would
mean the caseswhere the anthropogenic pollution is high. However,
as can be seen in Fig. 2 there are many experiments where this is the
case. PRIM is not particularly useful if there aremany experiments of
interest. Therefore instead we have chosen to focus on the



Fig. 2. A pairwise scatter plot of the performance of the four policies for each experiment.
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experiments where the pollution remains below 1. Any experiment
where the concentration in the lake is below 1 is of interest.
Fig. 4 shows the results for PRIM. On the left, we see the trade-
off between coverage and density, and color coded information
on the number of restricted dimensions. On the right, we see the
identified box, including information on the quasi p-values of
each of the limits, and the coverage and density of the box. For
more details on the meaning of these numbers and how they can
be used when performing Scenario Discovery, see Bryant and
Lempert (2010) and Kwakkel and Jaxa-Rozen (2016). This partic-
ular box is the last one (top left) on the peeling trajectory shown
on the left.
5.2.4. Global sensitivity analysis
A third analysis technique is to use global sensitivity analysis.

The SALib library (Herman and Usher, 2017) in Python makes this
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particularly easy. All we need to do is generate some reference
policy, in this case without any release, and pass the sampling
technique we want to use to perform experiments. This will
generate a Sobol sample using SALib, and execute these.
Any subsequent analysis requires using SALib directly. To make
this easier, the workbench comes with a convenience function that
will generate the SALib problem object given the uncertainties in
themodel. Herewe calculate the Sobol indices, and extract the total
order and first order indices including confidence intervals. The
results are shown in Table 3.
5.3. Generating policy options using search
The workbench is designed to enable sampling and search
over both the uncertainties and the levers. In contrast to sam-
pling, where the workbench comes with a variety of standard
sampling techniques, the workbench does not provide any
(many-objective) optimization algorithm itself. The Exploratory
Modeling Workbench has the library platypus as an optional
dependency. If platypus is installed, the workbench can use it for
many-objective (robust) optimization. Many-objective
optimization can be used to search over either the levers or the
uncertainties. The former is used in many-objective robust de-
cision making (Kasprzyk et al., 2013; Watson and Kasprzyk,
2017), while the later enables worst-case discovery (Halim
et al., 2016). Many-objective robust optimization searches over
the levers, while the performance of a candidate strategy is a
function of a set of scenarios (see e.g. Kwakkel et al., 2015,
2016b).

If we would like to find a set of candidate release strategies for a
reference scenario as is done in many-objective robust decision
making, we can use the following.
By default ε-NSGAII (Kollat and Reed, 2006) is used, but any of
the other algorithms that are available in platypus can be used as
well. ε-NSGAII requires the specification of epsilons. For a more
in-depth discussion on the meaning of this and how to choose
these see e.g. Kollat and Reed (2006). The optimize method takes



Fig. 3. Extra trees feature scoring for all outcomes of interest.
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an options reference scenario argument, which can be used to
specify explicitly the scenario under which one wants to opti-
mize. This is useful for example in case of performing search for
multiple different scenarios in MORDM, as suggested by
Watson and Kasprzyk (2017), The evaluator returns a pandas
dataframe with the levers and outcomes as columns. We can
easily visualize this using the parallel coordinates plot func-
tionality that comes with pandas, the resulting figure is shown in
Fig. 5.

Performing many-objective robust optimization is a bit more
involved. Most importantly, we need to specify the function(s) we
want to use for calculating our robustness. We also need to specify
the scenarios or number of scenarios over which we want to define
our robustness function(s). Below is a proof of principle. Using the
lake model, we define four robustness metrics: the mean of the
maximum pollution, the standard deviation of the maximum
pollution, the signal to noise ratio of reliability, and the 10th
percentile for utility. A detailed discussion of these ways of oper-
ationalizing robustness is beyond the scope of this paper. For a
broad introduction of a wide variety of metrics see Giuliani and
Castelletti (2016); Herman et al. (2015); Kwakkel et al. (2016a).
Next, we generate a number of scenarios, in this case 10. In real
world applications this is something to be established through trial
and error, or by assessing how the robustness value changes as a
function of the number of random scenarios (Hamarat et al., 2014).
Instead of specifying the scenarios up front, we could also pass the
number of scenarios to the robust optimization method, in which
case new random scenarios are generated for each iteration of the
optimization algorithm. With this setup we can now call the robust
optimization method.
6. Concluding remarks

This paper has introduced the Exploratory Modeling Work-
bench. We explained the key ideas that underpin the design of the
workbench, and demonstrated the key functionality of the work-
bench using the Lake Problem. This demonstration only shows the
essential functionality using a relatively simple case. A reader
interested in learning more about the workbench and what it can
do is kindly referred to the examples that come with the



Fig. 4. Results of PRIM analysis, with the tradeoff between coverage and density (left), and the box limits including quasi-p values for each restriction and coverage and density
information (right).

Table 3
Sobol indices for the lake problem.

S1 S1_conf ST ST_conf

b 0.963029423 0.199196639 1.004861419 0.071067392
q �0.000116163 0.000151987 1.65E-06 1.89E-06
mean 0.020551529 0.024681916 0.019212303 0.005819627
stdev 0.021225864 0.040653511 0.046739934 0.007108621
delta 0.000428036 0.000526972 2.12E-05 3.15E-05
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workbench.
The Exploratory Modeling Workbench is one amongst several

tools that can be used to support decision making under deep
uncertainty. If we compare the Exploratory Modeling Workbench
with the openMORDM toolkit, several differences stand out.
Obviously, openMORDM uses R while the Exploratory Modeling
Workbench uses Python. Both are fine programming languages for
scientific computing and their respective strengths are quite com-
plementary. OpenMORDM includes links to a variety of web based
tools for visual analytics, something that is less developed in the
Exploratory Modeling Workbench. The openMORDM toolkit was
designed to support the many-objective robust decision making
process. The design of the workbench, in contrast, is more generic
since it starts from a taxonomy of model-based approaches for
supporting decision making under deep uncertainty.

Compared to project Platypus, the main difference is that the
workbench offers support for working with simulation models that
Fig. 5. Parallel coordinate plot of optimization results for a reference scenario.
need to access the file system. We have found this to be quite
convenient, for it enables analysts to support decision making un-
der deep uncertainty with existing simulation models rather than
having to first recode the entire model. As we have shown, one can
easily combine the workbench with the optimization part of
Platypus. Presently, there is a fertile exchange of ideas between
platypus and the workbench, with platypus building on ideas from
the workbench and extending them further, and vice versa.

Going forward, there is an ongoing discussion of working to-
wards an integration of platypus and the workbench. The extent to
which this will be realized is dependent on time, as well as con-
siderations regarding the exact scope of both projects. In particular,
the explicit inclusion of support for models that require interaction
with the file system creates various technical challenges that might
be outside the scope of project platypus. Similarly, the workbench
considers the implementation of many objective optimization al-
gorithms to be outside its scope. A possible direction to reconcile
these differences is to develop the workbench into a collection of
related libraries rather than a single integrated library.
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