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A B S T R A C T

Organic Rankine cycle (ORC) systems are a class of distributed power-generation systems that are suitable for
the efficient conversion of low-to-medium temperature thermal energy to useful power. These versatile systems
have significant potential to contribute in diverse ways to future clean and sustainable energy systems through,
e.g., deployment for waste-heat recovery in industrial facilities, but also the utilisation of renewable-heat
sources, thereby improving energy access and living standards, while reducing primary energy consumption
and the associated emissions. The energetic and economic performance, but also environmental sustainability
of ORC systems, all depend strongly on the working fluid employed, and therefore a significant effort has
been made in recent years to select, but also to design novel working fluids for ORC systems. In this context,
computer-aided molecular design (CAMD) techniques have emerged as highly promising approaches with
which to explore the key role of working fluids, and present an opportunity, by focusing on the design of
new eco-friendly fluids with low environmental footprints, to identify alternatives to traditional refrigerants
with improved characteristics. In this review article, an overview of working-fluid and system optimisation
methodologies that can be used for the design and operation of next-generation ORC systems is provided. With
reference to wide-ranging applications from waste-heat recovery in industrial and automotive applications, to
biomass, geothermal and solar-energy conversion and/or storage, this review represents a comprehensive,
forward-looking exposition of the application of CAMD to the design of ORC technology.
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1. Introduction

Despite recent progress in the development of renewable energy
echnologies and their increased deployment, global energy consump-
ion is still dominated by non-renewable sources such as coal, oil, and
atural gas [1]. Given this persisting reliance on fossil fuels and the

significant amount of heat that is inherently wasted from a diverse
ange of processes, important opportunities exist for the recovery,
ntegration, use and/or conversion of this waste heat into electricity
r useful work [2,3], thus enabling energy efficiency improvements,

primary fuel consumption minimisation and, consequently, associated
emissions abatement [4,5]. The recovery and utilisation of industrial

aste-heat streams has the potential to provide an additional 8 EJ
f energy towards the annual energy consumption in Europe, thereby
2 
reducing annual primary-energy use by over 15% [6]. The significant
opportunities that exist for technologies suitable for heat recovery and
energy integration are then apparent.

A wide variety of thermal power cycles have been studied for the
urpose of industrial energy integration and power generation from
ower-temperature thermal sources, including the Kalina cycle [7–10],

the Goswami cycle [11,12], carbon dioxide cycles [13,14], trilateral
cycles [15–17] and organic Rankine cycles [18–24], along with various
combined cycles [25,26]. Beyond these cycles, more novel and niche
alternative cycles have also been proposed for waste-heat recovery and
onversion applications, including various thermoacoustic and ther-
ofluidic heat engines [27–30], as well as phase-change unsteady

heat engines such as the non-inertive-feedback thermofluidic engine
(NIFTE) [31–37] and the Up-THERM engine [6,38–42].
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Nomenclature

Abbreviations / acronyms
𝜇CHP Micro combined heat and power
A Primary characteristic point on saturated

liquid curve
ANN Artificial neural network
ASOG Analytical solution of groups

(activity-coefficient model)
B&B Branch-and-bound
B&C Branch-and-cut
BARON Branch-and-reduce optimisation navigator
C Critical point
CAM2PD Computer-aided molecular and

multi-operating process design
CAMbD Computer-aided mixture and blend design
CAMD Computer-aided molecular design
CAMPCD Computer-aided molecular process and con-

trol design
CAMPD Computer-aided molecular and process de-

sign
CE Chapman–Enskog
CFC Chlorofluorocarbon
CFD Computational fluid dynamics
CHP Combined heat and power
CMR Continuous-molecular representation
CoMT Continuous-molecular targeting
COSMO Conductor-like screening model
COSMO-RS COSMO for realistic solvents
COSMO-SAC COSMO segment activity-coefficient model
DRORC Dual-stage regenerative ORC
EI99 Eco-indicator 99
EoS Equation of state
FVM Finite-volume model
GA Genetic algorithm
GC Group-contribution
GT Gas turbine
GWP Global-warming potential
HCFC Hydrochlorofluorocarbon
HCFO Hydrochlorofluoroolefin
HELD Helmholtz free energy Lagrangian dual
HEX Heat exchanger
HFC Hydrofluorocarbon
HFO Hydrofluoroolefin
HHS Hammersley-sequence sampling
HT High-temperature
HTS High-throughput screening
ICE-CHP Internal-combustion engine with combined

heat and power
KCORC Knowledge center on ORC technology
L Liquid phase
LatHS Latin-hypercube sampling
lb Lower bound
LCA Life Cycle Assessment
LHC Long haul cycle
LHS Left-hand side
3 
LINMAP Linear-programming technique for
multi-dimensional analysis of preference

LMTD Logarithmic-mean temperature difference
LNG Liquified natural gas
LT Low-temperature
M Secondary characteristic point on saturated

vapour curve (higher temperature)
MAiNGO McCormick-based algorithm for

mixed-integer nonlinear global optimisation
MBM Moving-boundary model
MDM Octamethyltrisiloxane
MILP Mixed-integer linear programming
MINLP Mixed-integer nonlinear programming
MIOCP Mixed-integer optimal control problem
MIQP Mixed-integer quadratic problem
ML Machine-learning
MM Hexamethyldisiloxane
MOO Multi-objective optimisation
MPC Model predictive control
MUSCOD MUltiple Shooting CODe for Optimal Control
N Secondary characteristic point on saturated

vapour curve (lower temperature)
NIFTE Non-inertive-feedback thermofluidic engine
NLP Non-linear programming
NPV Net present value
NRTL Non-random two-liquid (activity-coefficient

model)
NSGA Non-dominated sorting genetic algorithm
NTU Number of transfer units
OA Outer-approximation
OCP Optimal control problem
ODP Ozone depletion potential
ODS Ozone-depleting substances
OFC Organic flash cycle
ORC Organic Rankine cycle
ORCLFE ORC with liquid-flooded expansion
ORCSC ORC with solution circuit
PC-SAFT Perturbed-chain SAFT
PEM Proton-exchange membrane
PEORC Partially evaporating organic Rankine cycle
PFA Poly-fluoroalkyl substances
PGS-COM Particle generating set-complex algorithm
PI Proportional-integral
PSO Particle-swarm optimisation
PSRK Predictive-SRK (EoS)
PTES Pumped-thermal electricity storage
PTORC Parallel two-stage ORC
QSAR Quantitative structure–activity relationship
QSPR Quantitative structure–property relationship
RHS Right-hand side
RO Robust optimisation
SA Simulated annealing
SAFT Statistical associating fluid theory
SAFT-VR SAFT for chain molecules with attractive

potentials of variable range
SIC Specific investment cost
SMILES Simplified molecular-input line-entry system
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SOFC Solid-oxide fuel cell
SOO Single-objective optimisation
SPT SMILES-to-property transformer
SQP Sequentially quadratic programming
SRK Soave–Redlich–Kwong (EoS)
SRORC Single-stage regenerative ORC
SS Sobol sampling
STORC Series two-stage ORC
TCI Total capital investment
TIC Total investment costs
TLC Trilateral cycle
TOPSIS Technique for order preference by similarity

to ideal situation
UA Global conductance
ub Upper bound
UNIFAC UNIQUAC functional-group activity coeffi-

cients
UNIQUAC Universal quasichemical activity coefficients
V Vapour phase
VCC Vapour-compression cycle
VECTO Vehicle energy-consumption tool
VTPR Volume-Translated Peng–Robinson
WF Working fluid
WHR Waste-heat recovery
Z Primary characteristic point on saturated

vapour curve
Constants

R Universal gas constant
Variables (Greek symbols)
𝛼 Ansatz in cubic equations of state
𝛥 𝑇SH Degree of superheating (K)
𝜂 Viscosity (Pa s)
𝜂∗ Dimensionless viscosity
𝜂carnot Carnot efficiency
𝜂ex Exergetic efficiency
𝜂th Thermal efficiency
𝜔 Acentric factor, defined as − log10(𝑝sat∕𝑝c) − 1

at 𝑇r = 0.7
𝜌 Molar density
𝜉 Variable indicating if a fluid is dry, isentropic

or wet
Variables

𝑚̇ Mass flow rate (kg s−1)
𝑄̇ Heat flow rate, or thermal power (W)
𝑊̇n Net power output (kW)
𝐴IDEAL Ideal free energy
𝑐𝑝 Isobaric specific heat capacity (J K−1 kg−1, or

J K−1 mol−1)
𝑐0𝑝 Ideal-gas (isobaric) specific heat capacity

(J K−1 kg−1, or J K−1 mol−1)
𝑓 Objective function
𝑔 Inequality constraints of the process and

molecular properties
𝐺𝐸 Excess Gibbs energy
4 
ℎ Equality constraints of the process and molecular
properties

𝑘 Inequality constraints of the CAMD formulation
𝑘𝑖𝑗 Binary interaction parameter
𝑝 Pressure (Pa, or bar)
𝑝c Critical pressure (Pa, or bar)
𝑃net Net power output (W)
𝑝sat Saturation (or vapour) pressure (Pa, or bar)
𝑄 Heat (J)
𝑠 Specific (or molar) entropy (J kg−1 K−1, or

J mol−1 K−1)
𝑠ig Ideal-gas specific entropy (J kg−1 K−1, or

J mol−1 K−1)
𝑠r es Residual specific entropy (J kg−1 K−1, or

J mol−1 K−1)
𝑇 Temperature (K, or ◦C)
𝑇c Critical temperature (K, or ◦C)
𝑇H Temperature of the high-temperature thermal reser-

voir (heat source) of a power cycle (K, or ◦C)
𝑇L Temperature of the low-temperature thermal reser-

voir (heat sink) of a power cycle (K, or ◦C)
𝑇r Reduced (dimensionless) temperature, defined as

𝑇 ∕𝑇c (with 𝑇 and 𝑇c in absolute units)
𝑉c Critical specific volume (m3 kg−1 or m3 mol−1)
𝑥 Process degrees of freedom
𝑥 Vapour quality
𝑦 Molecular structure of the working fluid
k Number of objective functions in an MOO problem

Amongst all of these options, particular interest has been observed
in organic Rankine cycle (ORC) systems due to their applicability to
the efficient conversion of lower grade heat to useful power [2,4].
ORC technology has been experiencing increasingly wider adoption
in comparison to competing solutions due to continued performance
mprovements and cost reductions, as well as its versatility in being
uited to a wide-ranging mix of heat sources and applications. However,
t remains beset by a number of technical challenges; in particular,
orking-fluid design and selection are key areas of ongoing attention
nd research focus [18,21,43–45]. The working fluid is an important

and integral element of ORC systems as it has a direct bearing on the
esign and specifications of key components and overall system size

and also affects important operational procedures. Therefore it has a
controlling role in determining not only the technical and thermody-
amic performance but also the capital/investment and operational

costs of these systems and, thus, ultimately, their financial viability and
potential deployment in real applications.

Traditionally, working-fluid selection for ORC systems has been
erformed via ad hoc selection rules and predefined screening lists
nd criteria [46–52]. Following this conventional practice is inevitably

time-consuming and sub-optimal. Typically, multiple system-level op-
timisation studies are undertaken, drawing from a database of known,
pre-existing fluids of known chemical families, of which the ther-
mophysical properties are readily available [53,54]. The process is
omplicated by the numerous chemical families and working-fluid
ptions available, with a risk of missing suitable fluids if these are not
ncluded a priori in the search database. Such approaches can also lead
o sub-optimal system designs and limit the flexibility in the design of
orking fluids for ORCs, especially when one considers the possible
se of fluid mixtures [4]. A further complication is that differing

ORC applications generally have different requirements, whereby this
approach can neither be used to identify new and potentially novel



C.N. Markides et al. Progress in Energy and Combustion Science 107 (2025) 101201 
working fluids nor be used to inform on the prospective manufacturing
processes required.

Computer-aided molecular design (CAMD) offers a more holistic
approach to the design of working fluids for ORC power systems
across a wide range of applications, wherein the molecular structure of
prospective working fluids is optimised simultaneously alongside the
ORC system design and operation in a single optimisation problem.
This has been facilitated by the development of advanced fluid theories
rooted in interactions on the molecular scale, providing an opportunity
for the intelligent design of working fluids for any ORC system con-
figuration [4,55], and bypassing the pre-emptive screening criteria of
traditional methods. When applying CAMD to ORC systems, potential
working fluids are described by functional groups; these groups can be
combined in different ways to form novel molecules such that a handful
of groups can be used to describe a large number of potential working
fluids across multiple chemical families. This presents a powerful tool
for understanding the impact of the working fluid on the design,
performance, sizing, environmental impact, and operation of ORC
power systems.

With CAMD, several molecular groups with free bonding sites are
defined; these could be individual single/double/triple bonds or mul-
tiple combinations of these, (e.g., –CH3, =CH2, >CH2, >CH–, >C<,
=CH–). These molecular groups can then be combined accordingly to
form a large number of different hydrocarbon molecules. Theoretically,
a collection of such molecular groups (including those with halogenated
groups to form refrigerants) can be used to describe any arbitrary
molecule, so long as all relevant groups present in the molecule are
incorporated in the decision space. While CAMD was initially applied
to solvent-design problems considering molecular target functions [56],
it has been further developed to integrate the design of process mod-
els to consider a process-based target function (thus, the develop-
ment of computer-aided molecular and process design, CAMPD), to ad-
vance the integrated design and optimisation of solvent and separation
processes [57–60].

Aside from the required process models and constraints, such CAMPD
problems require molecular feasibility constraints to ensure that the
solutions generated from the combination of the molecular groups
represent genuine molecules [61–63]. A group-contribution equation
of state (EoS) is also typically required to provide accurate estimates of
the fluid properties of a molecule based on the constituent molecular
groups. Group-contribution models like those of Joback and Reid [64]
can provide pure-component property values as inputs to cubic EoS,
whereas group-contribution activity coefficient models such as UNI-
FAC [65] can be combined with such EoS to account for both the
vapour and liquid phase behaviour of working fluids. While those
are empirical in nature, an alternative would be to deploy molecular
EoS such as those based on the statistical associating fluid theory
(SAFT) [66,67]; group-contribution versions of these EoS are also read-
ily available [68–79] (see Section 4 for a discussion). By means of such
group-contribution EoS one can predict the properties of a working
fluid based on its constituent molecular groups, and the molecular
structure of the fluid can be optimised simultaneously alongside the
system, potentially identifying novel working fluids which may other-
wise be overlooked [4]. Finally, an optimisation algorithm is required
to provide a solution to the problem formulation; such algorithms
are usually of the mixed-integer nonlinear programming (MINLP) type
due to the integer nature of the molecular groups (and possibly other
process variables) involved in the problem.

In this paper, a comprehensive review of CAMD techniques as ap-
plied to ORC systems design is presented in the context of the efficient
and economically feasible conversion of heat to power. The discussed
design techniques are relevant to a diverse range of energy applications
featuring a variety of heat sources, from geothermal and biomass to
solar and waste heat. The details involved in formulating and solving
the optimisation problems describing the ORC system and working-
fluid design simultaneously are examined, while the important role of
5 
Fig. 1. A simple Rankine-cycle system configuration with key components and flows.
Source: Reprinted with permission from Lecompte et al. [80].
© 2015 Elsevier.

working-fluid property prediction via various equation-of-state models
is also explored. Finally, the review is concluded with a discussion
of the outlook of working-fluid design for ORC power systems, their
impact on technology development in important energy applications,
and current challenges and opportunities, along with promising future
research directions.

2. Overview of organic Rankine cycle power systems

2.1. State-of-the-art

Rankine cycles are a well-known principle in power production
today. In a Rankine cycle, water (i.e., the working fluid) is evaporated
in the evaporator. This evaporated working fluid then flows through an
expander, effectively transforming heat into work. Subsequently, the
working fluid condenses by rejecting thermal energy to a heat sink.
Finally, a pump pressurises the working fluid, closing the loop. This
cycle is often used with water in large-capacity thermal plants where
the heat source comes either from combustion, nuclear fission, or other
relatively high-temperature heat (> 300 ℃) from, for example, solar
sources. In Fig. 1, we show the main components, overall configuration
and flows in a simple Rankine cycle system.

This cycle can also use other working fluids instead of water.
Usually these are organic in nature, and the cycle is then referred to as
an organic Rankine cycle (ORC), with the working fluid being typically
a compound that exhibits its boiling point at lower temperatures than
water. Throughout the article, when using the terms ‘‘ORC’’ (without
any qualifier), or ‘‘simple ORC’’, we are referring to the cycle as
illustrated in Fig. 1, either with or without superheating. We note
that some authors use the term ‘‘basic ORC’’ equivalently, although to
avoid confusion we avoid this terminology since it is sometimes used
to indicate exclusively the cycle without superheat.

ORCs are hereby applicable as power-production cycles on lower-
temperature ranges where the traditional vapour Rankine cycle is too
inefficient or costly to operate. In Fig. 2, we show the operation range
for typical ORCs based on the temperature of the heat source and the
electrical power of the installation. The figure is divided into different
regions: ocean thermal energy conversion (OTEC), micro combined
heat and power (𝜇CHP) systems, steam Rankine cycles and main-
stream ORC systems. Mainstream ORC systems typically use waste heat,
geothermal energy or heat from biomass combustion as the heat source.
However, the applicability of ORC applications keeps extending. This is
partly due to new cycle topologies but also due to the introduction of
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Fig. 2. Heat-source temperature and power-rating application range for ORC structures [81].
Source: Reprinted with permission from Colonna et al. [82].
© 2015 ASME.
new working fluids that, for example, extend the ORC fluid thermal
stability limit to higher temperatures. It is important to note that
ORC efficiency is significantly impacted when the power rating and/or
heat source temperature decrease. The temperature impact follows
from thermodynamic (Carnot efficiency) limitations, while size has an
impact on the relative losses and investment potential for increased
optimisation. Fig. 2 suggests that larger ORC systems with a higher
power-rating can offset the detrimental effect of attempting to operate
with reduced heat-source temperatures, and can remain cost-effective
when used in lower temperature applications.

2.2. ORC market and potential

The ORC is a key technology in increasing the effective use of
medium and low-temperature heat sources. The ORC can be applied
to convert a wide variety of heat sources [83], but currently, it is
primarily used in geothermal, waste-heat recovery (WHR), and biomass
applications [84]. These three together form 99% of the installed ORC
power. Other smaller utilised sources are waste-to-energy, solar, and
ocean thermal energy. The Knowledge Center on Organic Rankine Cycle
technology (KCORC) [85] performed market reports in 2016 and 2020,
which showed that the installed power at the end of 2020 was 4.1 GW,
of which 29% was installed in the last 4 years. Another 430 MW has
been installed or is planned to be installed since December 2020 [84].
This indicates the clear growth of this technology, in particular for
manufacturers of large (1 MW) ORC installations (ORMAT, Turboden,
and EXERGY), which have all increased their installed capacity by
around 40%–50% in the past four years [84]. Yet, also manufacturers
of small ORC units have substantially increased their installed capacity.

In assessing the potential of this technology, we can consider the
available global waste-heat resource that can be technically recovered.
Waste heat has been found to account for over half of the global
primary energy [86]. As such, waste heat alone was in 2012 globally
estimated [87] to be around 68 PWh with a Carnot potential of 13 PWh.
In particular, significant unutilised low-grade waste heat is rejected
from industrial facilities to the environment [88,89]. This untapped
resource has been found to amount to 15%–20% of the total industrial
energy consumption in the EU, UK and USA [90–92].
6 
Looking at the KCORC [85] reports, only a very small fraction of
that potential is exploited. Economic considerations could affect the
exploitation potential. When comparing the specific investment cost of
ORC systems relative to other installations (e.g., internal combustion
engines, gas turbines, hydro, wind, or solar), the specific cost of an ORC
should be around 2500–3500 Euro/kW to be economically viable [93]
(2017). This only takes into account the revenue of the power output
and no indirect costs are considered such as related to environmental
impact and reliability. The investment cost for an ORC unit can be
estimated around 2000–4000 Euro/kW [94] (2016), where the higher
values are typically for smaller installations. Efforts should be taken
to reduce the specific cost, especially for small-scale installations, and
that research should include thermodynamic, economic, and technical
aspects to be optimised [93]. Also the importance of the electricity
cost from the grid should not be neglected, as was also found in case
studies [95].

2.3. Selection of optimal working fluids

Working-fluid selection is an important and intrinsic part of ORC
design. There are no a priori ‘‘best’’ working fluids for ORC applications
because the choice of the optimal fluid depends on several design
aspects which are application-dependent and do not concern only the
plant energy performance. For instance, working-fluid characteristics
also influence the safety and cost of the installation [96–99]. These are:

• Specific cost; this has a rather direct impact on the ORC unit cost,
especially for large power capacity.

• Flammability; flammable fluids, such as hydrocarbons, are in use
in ORC plants, but they induce additional safety complications
and consequently increase the cost.

• Toxicity; toxic fluids can be used, but they bring with them extra
safety measurements and costs.

• Material compatibility; the working fluid has to be compatible
with all materials within the installation. This includes the metals
and elastomer seals of the machines but also lubricating oil(s).

• Environmental impact; while there are many indexes that would
need to be considered to enable a comprehensive environmental
impact assessment [100], two indexes have been mainly used in
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the published literature: the Ozone Depletion Potential (ODP) and
the Global Warming Potential (GWP). The ODP is the amount of
degradation a fluid causes to the ozone layer compared to CFC-11,
which has a fixed ODP of 1. Similarly, the GWP gives a measure
of the effect as a greenhouse gas relative to CO2 over a time frame
of 100 years.

• Thermal stability; the risk that working fluids will decompose to
other chemical constituents. While this will have a direct effect
on the original fluid thermodynamic and thermophysical proper-
ties, it can also degrade heat transfer, introduce non-condensable
gasses, or lead to corrosion problems.

Working-fluid thermodynamic characteristics that are important for
the cycle performance [96–99] are:

• Critical point; the critical point is important for multiple reasons.
Firstly, it determines the type of cycle. If the critical pressure is
above the maximum operating pressure, the cycle is subcritical,
as shown in Fig. 1. When the critical pressure is above the max-
imum operating pressure, the cycle is transcritical, as explained
later. The optimal critical temperature range is typically closely
related to the temperature of the thermal source. In practice [99],
the chosen critical temperature is often slightly larger than the
targeted evaporation temperature in subcritical ORCs. As such, a
better match with the heat transfer-fluid is achieved, resulting in
a higher average temperature during heat addition and, therefore,
higher thermal efficiency. Note that close to the critical point,
the specific heat of vaporisation is small, leading to higher pump
work [101].

• Dew-curve slope; a working fluid can be either defined as dry,
isentropic, or wet depending on the slope of the saturation
vapour-pressure curve on the 𝑇 –𝑠 diagram, i.e., 𝜉 = (d𝑠∕d𝑇 )𝑥=1,
where 𝑠 is the specific entropy, 𝑇 the temperature and 𝑥 the
vapour quality. A fluid is defined as ‘dry’ when 𝜉 > 0, ‘isentropic’
when 𝜉 = 0, and ‘wet’ when 𝜉 < 0. A dry fluid is consid-
ered beneficial because droplets, which may impinge on turbine
blades, cannot be formed along the expansion process as the fluid
expands through a superheated-vapour region. However, for very
dry fluids, the condenser load can become significantly high due
to the high degree of superheating reached by the vapour at the
end of the expansion process. It is noted, with respect to the
above, that the fluid classification based on the dew-curve slope
has been the traditional classification approach of pure working
fluids, introduced by Tabor and Bronicki [102], and later Badr
et al. [103]. In a more recent approach, Györke et al. [104]
identifies limitations with this classification, and introduces a new
categorisation approach comprising eight distinct fluid classes:
ACZ, ACZM, AZCM, ANZCM, ANCZM, ANCMZ, ACNZM, AC-
NMZ. This new approach is useful as it further facilitates the
identification of working fluids for ORCs.

• Density; a low density leads to high volume flow rates. This leads
to higher pressure drops in the heat exchangers and a larger
size of the expander, thus increasing the cost of the plant. At
the same time, a low fluid density facilitates the realisation of
turbomachines also in small power-capacity applications.

• Enthalpy of vaporisation; a high enthalpy of vaporisation is pre-
ferred as it increases the thermal efficiency due to ‘carnotisation
of the cycle’ as more heat is added during evaporation [105,106].
However, other authors [107,108] say that low enthalpy of va-
porisation is better. In this way the temperature profile of the
working fluid matches better with the heat transfer-fluid and this
effectively increases the second-law efficiency.

• Viscosity; a low viscosity is beneficial in achieving low frictional
losses and promotes better heat transfer rates.

• Thermal conductivity; this must be high to achieve high heat-
transfer rates per surface area.
 c
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• Melting temperature; the working fluid should never solidify
within the ORC circuits. The melting temperature should thus be
below the lowest possible ambient temperature.

• Condensing pressure; a condensing pressure above atmospheric
is advisable to reduce the risk of infiltration of non-condensable
gasses, which would lead to degradation of the system perfor-
mance [109]. Another benefit is the reduction in expander price
due to the smaller volumetric ratio.

• Evaporating pressure; a higher evaporating pressure results in
higher component cost and more-stringent safety considerations.

• Boiling point; a lower boiling point allows the working fluid to
evaporate from low-temperature heat sources.

The design of a cycle and choice of working fluid, which should be
performed simultaneously, can be based on various figures of merit,
epending on the application:

• Thermal efficiency [110,111]; the thermal efficiency is defined as
the net output work divided by the input thermal energy [110].
The maximum thermal efficiency of any power cycle between
two infinite thermal reservoirs at temperatures 𝑇L (low) and 𝑇H
(high) is the Carnot efficiency, defined as 𝜂carnot = 1 − 𝑇L∕𝑇H. For
non-infinite reservoirs a logarithmic mean temperature can be
used. The thermal efficiency is a common figure of merit for cycle
design.

• Exergy efficiency [112] (also known as the second-law efficiency);
This is defined as the net output power divided by the incoming
exergy flow of the heat transfer-fluid. This efficiency is often used
for low-grade heat-recovery applications because the thermal
efficiency does not take into account the finite thermal capacity
of the heat source.

• Cost-effectiveness; not only the thermodynamic efficiencies are
important but the cost of the installation can influence the de-
cision as well. It is possible to optimise the design based on a
thermo-economic objective function, as in [45]. As an alternative,
the ratio of the total heat-exchanger surface area to the net
produced power is a good measurement for the cost per unit
of power of the ORC unit [113]. This is not to been further
substantiated against actual ORC prices.

A working fluid should be chosen considering the above figures
of merit, given the chosen cycle configuration. There is a wide va-
riety of possible working-fluid choices: chlorofluorocarbons (CFCs);
hydrochlorofluorocarbons (HCFCs); hydrochlorofluoroolefin (HCFOs);
hydrofluorocarbons (HFCs); hydrofluoroolefin (HFOs); siloxanes; and
many others [114]. Some of these may no longer be used due to
legislation. For example, due to the Montreal Protocol, 98% of ozone-
depleting substances (ODS) have been phased out globally compared
to 1990 levels. These regulations primarily imposed restrictions on the
utilisations of CFCs and HCFCs. Nowadays, refrigerants with high GWP
are in the process of being phased out. Depending on the country, there
are different regulations, but the trend is to ban the use of fluids with
GWP to 150 by 2030. Current GWP values are set at IPCC 4, but all
refrigerants have been reassessed during IPCC 6 [114]. Refrigerants
are also classified according to whether they can be found in nature or
ot. The natural refrigerants include ammonia, water, carbon dioxide,
nd hydrocarbons. They exhibit zero ODP and low GWP values and,

in general, are compatible with elastomers of common use in industry.
nother important benefit is that they do not contain chlorine or fluo-
ine. Thus, they do not form aggressive acids when coming into contact
ith water, a common cause of system failure in plants operating with

ynthetic refrigerants [115].
Some refrigerants are actually mixtures of various refrigerants. For

xample, R410a is a specific mixture of R32 and R125. These mixtures
an be azeotropic, showing no temperature glide during phase change,
r zeotropic. In this case, a temperature glide is observed during phase
hange. This can be beneficial for a better temperature profile matching
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Fig. 3. Configuration of a recuperated ORC system.

with the heat source or sink. Changing the mixture percentage has an
influence on the amount of temperature glide [116]. The mixture com-
position gives immense flexibility in the optimal selection of working
fluids, therefore CAMD can be an important asset [117–119].

2.4. ORC architectures and operating conditions

In this section, different cycle configurations will be discussed and
described. The simple ORC system, as shown in Fig. 1, is the first
possible architecture, as also introduced in Section 2.1.

A first possible adaption is the addition of a recuperator (Fig. 3),
whose purpose is to recover part of the thermal energy of the vapour
after expansion to preheat the working fluid pumped to the evaporator.
With respect to the simple ORC system, this results in a higher power
output per unit of heat input, or a higher thermal efficiency [110]. The
use of a recuperator does require that the vapour exhibit some degree
of superheating at the expander outlet, meaning that dry fluids are
necessary. It is important to note that the additional heat exchanger
also increases the installation cost and the overall pressure drop in the
working-fluid loop.

Another possibility is to cascade ORC systems, as shown in Fig. 4,
where a two-stage ORC system is presented. The heat exchanger that
works as an evaporator for the bottom cycle functions also as a con-
denser for the topping cycle. The expander design can be further
optimised for each working-fluid loop according to the selected tem-
perature and pressure ranges. Selection of the optimal combination
of working fluids could be achieved with CAMD. It is also important
to note that the thermal input is fully determined by the topping
unit, while the thermal input in the cascaded cycles depends on the
thermal energy rejected during condensation in the working-fluid loops
above [120,121].

The addition of turbine bleeding and direct-contact heat exchangers
(Fig. 5) leads to so-called regenerative ORC system configurations. Tur-
bine bleeding refers to the process of extracting a portion of the steam
or gas from a turbine during operation. The preheating effect achieved
is similar to that in recuperator cycles. The difference, however, lies
in the type of heat exchanger used to preheat the liquid leaving the
condenser and the source of thermal energy used for this purpose.
It has been shown that regenerative cycles have higher thermal effi-
ciencies than the simple ORC system, and that the irreversibilities are
smaller, resulting in higher second-law efficiencies [122]. However,
the authors also note that this improvement heavily depends on the
used working fluid; the improvements in efficiency were negligible for
some working fluids, which would not justify the additional component
8 
Fig. 4. Configuration of a cascade ORC system.

cost in practice. Furthermore, any performance improvements must
more than compensate for the added capital investment and operat-
ing/maintenance costs. Therefore, these substantial modifications are
typically reserved for larger-scale systems, for which the implementa-
tion cost is lower relative to the performance benefits. In addition, in
many low-temperature applications, such as geothermal, waste or other
renewable heat sources, it will not result in a higher output power or
fuel reduction.

Another possibility is to combine different cycle adaptations. The
regenerative cycle with a recuperator is a common example of such
a combination.

Another way to reduce the irreversibilities associated with heat
transfer is to realise a cycle with multiple pressure levels, as shown
in Fig. 6. Here, the thermal energy is added to the cycle through two
evaporators operating at two different pressure levels.

In Fig. 7 we illustrate an additional configuration known as the
organic flash cycle (OFC). With respect to the simple ORC system con-
figuration, a flash tank is installed downstream of the heat exchanger,
where the working fluid is heated up. The reason is that no working-
fluid evaporation occurs during the heat-transfer process. The dry
vapour needed to power the turbine is then generated in the flash tank,
which introduces a pressure drop causing a fraction of the working fluid
to evaporate. The same tank performs the function of separating the re-
sulting two-phase flow. The saturated vapour is routed to the expander,
while the saturated liquid is immediately routed to the condenser over
a throttling valve. The advantage of this cycle configuration is the good
temperature profile match with the heat source if the working fluid is
well chosen. A drawback, instead, is that saturated vapour is fed into
the turbine. This means that for wet working fluids, the vapour quality
diminishes along the expansion process. This has to be accounted for
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Fig. 5. Configuration of a regenerative ORC system.
Fig. 6. Configuration of an ORC system with two distinct pressure levels.
in the expander design, which increases the production cost. Another
important drawback are the associated throttling irreversibilities over
the expansion valves. In Fig. 7, we show only the most simple OFC
system configuration. Different variations are possible, for instance,
by including in the system multiple flash tanks, phase separators, and
expanders to split the corresponding thermodynamic transformations
over different pressure levels.

There are also other ways to reduce the irreversibilities associated
with heat transfer. The cycle configurations discussed in the following
share the same configuration as the simple ORC (Fig. 1), but they differ
in their operating principles. Firstly, in the trilateral cycle (TLC), the
working fluid is heated up only to saturated-liquid conditions before
it is fed to the expander. The TLC operating principle is thus similar
to that of the OFC presented earlier. The difference lies in the fact
that no flash tank is adopted: the fluid directly expands from a liquid
state in the expander. The temperature-profile matching in the heat
exchanger interconnected with the thermal source, also called the
primary heat exchanger, results in higher second-law efficiencies of
the TLC compared to the simple ORC [17]. Nevertheless, the overall
thermal efficiency of the TLC tends to be lower due to the relatively
low critical temperature of organic fluids [123]. This makes the TLC
more applicable as a bottoming cycle. A bottoming cycle utilises waste
heat from a primary cycle, leading to increased power output. The
bottoming cycle therefore operates at lower temperatures then the top
cycle in the cascade. Another drawback of this solution is that the
fluid volume flow rate drastically increases compared to the simple
9 
Fig. 7. Configuration of an organic flash cycle system.

ORC. A second option is to partially evaporate the working fluid in
the primary heat exchanger, realising a cycle known as the partially
evaporating ORC (PEORC). The achievable second-law efficiency and
specific volume flow rate are somewhere between those of a simple
ORC and a TLC. It has been shown [124] that the PEORC can increase
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the net power output of the system compared to the TLC. However,
both the TLC and PEORC do require an expander capable of handling
two-phase flows, and this technology is not readily available.

Lastly, it is possible to increase the maximum pressure of the cycle
above the fluid critical pressure. This results in a transcritical cycle.

ecause the working-fluid heating happens in supercritical conditions,
the temperature profile can be matched to the heat source, depending
on the working fluid. Similarly to the TLC, the transcritical cycle
could show lower thermal efficiencies (due to high pumping power)
in favour of increased heat addition to the cycle and reduced irre-
ersibilities (neglecting possible increased pressure drop) in the vapour
enerator [125]. An interesting working fluid for transcritical cycles

is carbon dioxide [126]. Due to the low critical temperature (31 ◦ C),
the supercritical state can already be achieved for low temperature
eat sources. Because it is a natural refrigerant, it also has a small
nvironmental impact as mentioned before.

A final adaptation is to use zeotropic mixtures, resulting in non-
isothermal phase changes depending on the mixture composition. These
fluids can be used in all topologies and configurations mentioned ear-
lier. Their benefit is that their temperature profiles during phase change
can be matched to the heat transfer-fluid or heat sink, reducing the irre-
versibilities and thus increasing the plant efficiency. It was shown [19]
hat the best second-law efficiencies for zeotropic simple ORC cycles are
btained by matching the temperature profiles of the working fluid and
he heat sink. Literature about zeotropic refrigerants combined with
arious cycle architectures is scarce. In some studies [19,127] it has

been shown that zeotropic mixtures do improve the exergy efficiency
of supercritical cycles and cycles with a recuperator.

As can be seen from the above brief review, many cycle configura-
tions and operating principles exist. The system performance does not
depend on only the cycle configuration and heat-source characteristics,
ut also the chosen working medium and its composition in the case of
 zeotropic mixture [128]. This means that choosing an optimal design

is no simple feat, and the assistance of CAMD for working-fluid design
and selection is a much-welcome tool.

2.5. Off-design operation

Cycles are typically designed around their nominal working condi-
ions. However, they should still operate in off-design conditions as
he heat source or the heat sink are frequently transient in nature.
urthermore, due to component selection based on availability and
ost, the actual operation can deviate from the original design condi-
ions. Part-load operation, meaning that the work output is modulated
ccording to a set-point, is less common. ORCs typically operate at
ull power, extracting the maximum work out of a heat transfer-fluid.
he temperature and mass flow rates of these flows have a significant

nfluence on the system performance [129]. The mass flow rate of the
heat transfer-fluid is a key variable in net power generation. However,
contrary to expectation, the plant efficiency could decrease due to the
faster increase of condensing pressure resulting from increasing heat-
source flow rate and temperature [130]. A key component in off-design
ycle performance is the expander, as its isentropic efficiency and filling
actor vary with suction pressure and temperature and with discharge
ressure, influencing the system thermal efficiency [131]. The filling

factor is defined as the ratio of the actual volume flow rate of gas
drawn into expander to the theoretical volume flow rate based on its
working chamber geometry and the expander speed. A low filling factor
is detrimental as the expander is not utilised effectively. However, a
high filling factor does not necessarily mean that a higher power output
is achieved. It is possible that due to leakage paths the flow bypasses
much of the expansion process.

In literature, three methods are applied for simulating off-design
onditions [132]: a constant-efficiency method, a polynomial regres-
ion method, and a semi-empirical method. The constant-efficiency
ethod, as its name suggests, is based on an assumption of constant
10 
component efficiencies and filling factors independent of the opera-
tional design conditions. In the polynomial regression method, one
adapts the component efficiencies and filling factors to the operat-
ing conditions by means of a polynomial function. A second-order

ultivariate polynomial [132] is frequently used. Lastly, in the semi-
mpirical method, one models the components by means of physically-
ased equations. On a component level, the discrepancies with exper-
mental data of a polynomial regression method and a semi-empirical
ethod can give comparable results. The coupling of polynomial re-

ression methods could show unreliability on the system level, while
his is not the case for a semi-empirical method [132]. Zeotropic mix-
ures are also interesting for off-design conditions, even though not a lot
f literature covers this topic. However, it was shown that a zeotropic
RC outperforms a simple ORC in off-design conditions [133]. The au-

thors investigated a composition-adjustable ORC, where the zeotropic
ixture can be altered by adding or removing one of the two compo-
ents online. They concluded that there is an increase in performance,
ut that it is not worth the extra investment cost and cycle complexity.

3. Computer-aided design of ORC power systems

3.1. Overview of fluid and ORC design problem challenges

By definition, the goal of CAMD is to determine the chemical
structures of molecules that optimise a set of properties that represent
desired performance targets [56]. Both parts of this definition, i.e.,
he ‘‘chemical structures’’ and the ‘‘properties’’, have very significant
ffects on the working-fluid and ORC design procedures and their
erformance [134].

In conventional approaches, the working fluid in an ORC system is
elected from a set of pre-determined molecular structures that usually
esults from prior know-how about the suitability of some fluids for
he given process [135,136]. Such fluids are hereafter described as

conventional working fluids. This is very limiting in view of the vast
number of molecular structures (billions) [137] that could be consid-
ered as ORC working-fluid options. Such an approach prohibits the
discovery of novel molecular structures that may be worth synthesising,
or of molecular structures that exist and are commercially available but
have never before been used in ORCs and may therefore be consid-
ered novel ORC working fluid options [98]. In CAMD, the molecular
structures result from the combination of molecular fragments that
ould be functional groups, atoms, or bonds [138]. This is because

the properties of a molecule can be estimated through contributions
from its fragments [139]. Systematic approaches are often used that
acilitate the evaluation of combinations of these molecular fragments
ntil a chemical composition is identified that exhibits the highest
erformance according to the selected figures of merit. The advantage
f this approach is that vast numbers of molecular structures may
e attained by forming combinations from a finite set of less than
00 molecular fragments [140]. This enables the discovery of novel

molecular structures. Furthermore, there is no need to derive a database
of pre-existing molecules, hence avoiding the arbitrary exclusion of
molecular structures that could exhibit high performance when used in
an ORC. The immense number of combinations makes the fluid-design
problem computationally challenging, even for pure working fluids.

These computational requirements have not prevented researchers
from targeting the design of fluid mixtures, which enable higher exer-
getic performance than pure fluids for certain ORC applications [21].
In the context of CAMD, the identification of the desired ORC mixture
equires the simultaneous determination of (i) the number of pure com-
onents that will comprise the mixture, (ii) the chemical composition of

each pure component, and (iii) the concentration of each component in
he mixture [141]. It is clear that this induces additional combinatorial

complexity, which has been addressed through various approaches over
the years for the design of both pure and mixed working fluids [134].
Optimisation algorithms appear to be the most efficient among the



C.N. Markides et al.

o
t
m
c
o

c
a
E

p
d
r

g

a
i

w

o

n
s
d
o

w

c

e

c
t
I

Progress in Energy and Combustion Science 107 (2025) 101201 
existing approaches, as the synthesis of the chemical structure(s) is
systematically guided by the algorithmic operations in order to avoid
the exhaustive enumeration of all options [142].

The above are major requirements that pertain to the identification
f appropriate ORC working fluids with respect to their chemical struc-
ure. The determination and calculation of the ‘‘desired properties’’ that
ay lead to the appropriate working fluids raise additional, significant

hallenges. The development of CAMD has been based on the advent
f group contribution (GC) methods [65]. These provide quantitative

structure–activity relationships (QSPRs) that enable the prediction of
the working-fluid properties based on their molecular-fragment con-
stituents. The original CAMD implementation in ORCs [98] was based
on GC QSPRs [143] for the prediction of pure-component properties
at standard conditions [139]. Such QSPRs can be used as input to
ubic EoS to predict the vapour–liquid behaviour of mixtures as well
s enthalpies and other important properties. In recent years, advanced
oS have also been developed that introduce physical molecular char-

acteristics in the prediction of mixture properties, hence avoiding the
use of QSPRs; these include SAFT [66,67] and its many variants, includ-
ing PC-SAFT [144], SAFT-VR Mie [145] and SAFT-𝛾 Mie [79]. In the
case of PC-SAFT, the CAMD problem formulation was further changed
into one where discrete molecular structure decisions were replaced by
continuous targeting of molecules [57]. All these developments are im-
ortant and have been used in ORC molecular or molecular-and-process
esign applications [51,134,146]. Depending on the performance met-
ic against which the ORC system is optimised, different ‘‘desired

properties’’ are of interest. To determine the relevant properties as
well as their search directions, the relationships between economic
and thermodynamic performance criteria commonly employed in ORC
design and working-fluid properties have been developed [147]. In
addition to core criteria related to thermodynamic efficiency and eco-
nomics, additional criteria related to safety and environmental impacts
of working fluids, such as toxicity or GWP, have been considered [98].

The advantage of using molecular or mixture properties as tar-
ets in CAMD is that the need to develop and incorporate an ORC

model is avoided, with beneficial effects on the ease of implementation
nd computational complexity. Such approaches have succeeded in
dentifying efficient working fluids [98,137], as shown in subsequent

studies that performed an exhaustive evaluation of millions of working-
fluid structures using ORC model simulations [148] or thermodynamic
analysis of the atomic chemistries of the derived fluids [149]. However,
as the working fluids are inherent components of the ORC system, their
design or selection procedure should account for the prevailing ORC
operating conditions and equipment characteristics in order to evaluate
the economic and environmental behaviour of the system in which they

ill be used. Depending on the level of detail of the employed ORC
model, it is possible to capture the equipment interactions at the ORC
system level, the dynamics of the processes in view of disturbances, the
changes in the temperature of the thermal energy sources and sinks, or
even local heat and mass transfer phenomena. All these characteristics
may affect the selection of the working fluid, putting emphasis on the
specific application needs and eventually expediting the development
and delivery of such systems. Clearly, the simultaneous evaluation of
the widest possible set of fluid and ORC system options with models of
high resolution, both in space and time, would be highly desirable in
rder to attain designs that are both optimum and realistic prior to their

practical implementation. However, such a formulation would result
in an intractable computational problem. The need to address these
challenges has fostered the development of various methods that:

(a) Consider the design or selection of single fluids or mixtures1;

1 The mixture-selection problem refers to the determination of the optimum
umber of components and/or concentration of a mixed fluid, using an initial
et of pure components with pre-specified chemical structures. The mixture-
esign problem includes the determination of the chemical structure of at least
ne of the components.
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(b) Implement exhaustive enumeration of all design options or em-
ploy optimisation algorithms, considering single or multiple cri-
teria;

(c) Integrate ORC models either as part or after the design or
selection of fluids;

(d) Consider ORC equipment models of varying resolutions or ORC
and heat source/sink configurations of varying structures;

(e) Account for the uncertainties in the property prediction or in the
ORC equipment models;

(f) Propose designs considering steady-state or off-design operation.

To this end, important approaches have been developed that im-
plement CAMD (i.e., the determination of molecular structures of ORC

orking fluids) considering some of the above features. These ap-
proaches will be discussed in Section 5. In the current section, we
will address how the above considerations have been accounted for
as part of fluid-selection approaches. The latter is not without sig-
nificant challenges. For example, the simultaneous mixture-selection
and process-design problem requires the use of efficient optimisation
formulations and algorithms to attain high-quality designs, whereas the
onsideration of high-resolution models in fluid selection requires very

intense computations. In all the above areas, there are important fluid-
selection and ORC-design contributions that need to be discussed in
order to highlight the following:

• Opportunities and challenges in future research efforts, as existing
CAMD approaches will move to integrate additional features;

• The features of the different methods and models, as prerequisites
for the understanding of the CAMD methods in Section 5;

• The benefits of CAMD over fluid selection approaches.

With respect to points (a), (b), (c), in this section, we review
works that include mixture-selection problems, using either single-
or multi-objective optimisation algorithms. The focus is on the most-
advanced approaches that exhibit interesting methodological insights.
The results of straightforward implementations of such approaches, or
of approaches that employ either single or mixed fluids in an exhaustive
numeration of options and eventually present mainly technological

insights with respect to ORC operation, are not within the scope of this
section. The selection of mixtures is more challenging than that of pure
fluids because of the higher combinatorial complexity (mixture concen-
tration or composition are additional design variables) but also because
the non-ideal phase-change behaviour of mixtures introduces numerical
hallenges. These features often result in different, non-trivial optimisa-
ion approaches in order to address the increased computational effort.
n points (d), (e), and (f), we are covering contributions with either pure

or mixed fluids, exhaustive enumeration, or optimisation approaches.
These points include considerably fewer works and represent directions
for future developments.

3.2. Mixture selection using optimisation algorithms

In this section, we present approaches where the concentration
of mixtures comprising fluids of pre-specified structures, or the mix-
ture composition itself (i.e., the type and combination of pre-specified
fluid structures that comprise the mixture), are optimisation variables,
together with the ORC design parameters. The considered ORC configu-
rations are mainly of the simple or of the recuperated type, whereas in a
few cases, the ORC extracts heat or provides power to more-extensive
process systems. The reviewed studies include single-objective (SOO)
and muti-objective optimisation (MOO) formulations, which integrate
not only models for thermodynamic-cycle calculations but also models
for preliminary sizing of the ORC components, such as heat exchangers
and expanders. Within this review we aim to highlight key features of
the presented algorithms or design approaches in a sequence of increas-
ing complexity in terms of the employed models or optimisation formu-
lations. Key features of the reviewed works are summarised in Table 1



C.N. Markides et al.

f
o
t

p
T
t
d
o
w

(
a
f
i
f
i
o

m
f

t
c
c
c

Progress in Energy and Combustion Science 107 (2025) 101201 
Table 1
Overview of key features presented in Section 3.2 (details available in Table A.1, in the Appendix).
Work context Categories Reference (s)
Mixture formulation approach Pre-specified mixture compositions [19,150–165]

Mixtures resulting from combinations of pure components [166–171]

Optimisation problem formulation Single objective optimisation (SOO) [19,150–157,166–170]

Multi-objective optimisation (MOO) [158–165,171]

Optimisation algorithm

Meta-heuristic (PSO, GA, SA, other evolutionary approach) [152–154,156–162,164–167]

Deterministic [19,151,163,168,169,171]

Both [170]

Other software specific routine [150,155]
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and presented in more detail in Table A.1, in Appendix. Table A.1 con-
tains information about the number and type of the considered working
luids, the optimisation problem formulation (i.e., MOO or SOO and
bjective functions used), the employed optimisation algorithm, and
he specifics of the design variables used during optimisation.

3.2.1. Pre-specified mixture compositions
Angelino and Colonna [150] investigated a ternary mixture with

pre-specified concentration, but it is worth mentioning because it was
one of the first studies incorporating an optimisation approach for the
ORC conceptual design. The optimisation enabled the identification of
important trade-offs between plant cooling power consumption and the
air-cooled condenser surface area.

Chys et al. [151] investigated the use of 13 mixtures in a recu-
erated ORC system for low-to-medium thermal-source temperatures.
hey considered both binary and ternary mixtures, and they performed
he optimisation of the cycle parameters for every mixture. They used a
eterministic, non-linear programming algorithm (NLP). The cycle was
ptimised for each binary mixture separately, and a third component
as added afterwards in the tertiary mixtures. In addition to the

optimisation, they performed a parametric evaluation of the thermal
efficiency and the net generated electricity of the optimum solutions.
The authors noted that the use of mixtures may lead to fractionation
a large amount of one component in the liquid phase and a large
mount of the other in the vapour phase); mixtures that may exhibit
ractionation in the heat exchangers should be avoided. This is because
n a case of leakage the mixture concentration would change very
ast, with detrimental effects on system performance. This constraint
s commonly overlooked in current studies dealing with the assessment
f fluid mixtures for ORC applications. It is also recommended to avoid

linear interpolation of pure-fluid heat-transfer coefficients as a method
for mixture heat-transfer coefficient prediction, as the latter is often
smaller than what is predicted from linear interpolation.

Victor et al. [152] proposed the optimisation of the concentration of
pre-specified working fluids for a simple ORC system, using simulated
annealing (SA) as the optimisation algorithm. The concentration of the
pre-specified mixture compositions was the optimisation parameter.

Lecompte et al. [19] optimised the ORC operating conditions and
ixture concentration for a set of binary fluids with pre-specified

luid structures. After attaining the optimum results for given design
conditions, a parametric sensitivity analysis was performed where the
design variables were re-optimised for variable operating conditions
and design assumptions. These included varying the heat-source tem-
perature, the pinch-point temperature difference, and the glide slope
of the cooling fluid. Based on the definition provided by the authors,
the term pinch-point temperature difference refers to the temperature
of the heat carrier at the point of minimum temperature difference
between working fluid and heat carrier.

Garg and Orosz [153] used particle swarm optimisation (PSO)
o optimise the concentration of 10 binary mixtures of pre-specified
omponents, together with several ORC operating parameters and the
ondenser area. The binary mixtures resulted from shortlisting and
ombining five pure components that exhibited optimum performance
12 
when adopted as working fluids of the ORC system. The optimisation
as performed for all the binary mixtures considering a fixed power

apacity of the plant of 5 kW and a wide heat-source temperature range.
Kolahi et al. [154] investigated six binary mixtures of pre-specified

compositions for the optimisation of an ORC in a geothermal binary
flash cycle. Each mixture was evaluated, optimising the highest and
lowest ORC temperatures in their entire concentration range with a
coarse step change of 10 %. At the optimum ORC design solution, the
authors selected the concentration range where the mixtures exhibited
their highest performance in terms of power output, thermal efficiency,
exergy destruction, and exergy efficiency. In a subsequent optimisation
step, the concentration was treated as a continuous parameter, together
with the operating ORC parameters, to find the overall optimum design
of the ORC unit.

The above studies included thermodynamic models of the ORC,
hich mainly consist of mass and energy balances. The calculation of

heat-transfer areas requires models for heat-exchanger (HEX) sizing. A
few such studies that are based on SOO formulations are reported be-
low. MOO fluid-mixture selection and ORC design approaches without
or with HEX sizing models are reported subsequently. This classifi-
ation is performed here to highlight that some works include more
hallenging optimisation problems due to the need for HEX sizing.
etails regarding the modelling and the types of HEX are reported in
ection 3.4.2.

Heberle and Brüggemann [155] evaluated several mixtures and
fluids in an ORC system at various temperatures within the range 80–
180 ℃. The authors first identified the optimum operating conditions
and fluid concentrations of the cycle using the second-law efficiency as
an indicator. For a few selected highly performing mixtures, the authors
performed cycle simulations using a model for the heat exchangers that
ncluded correlations for heat transfer.

Wang et al. [156] determined the concentration of several binary
mixtures of pre-specified concentrations through optimisation of a
imple ORC. The goal was to evaluate the ORC performance of each
ixture considering different criteria, including the cycle network out-
ut with or without leakage and the carbon footprint of the cycle.
he ORC model included the calculation of the evaporator area. A
arbon-footprint model was employed to calculate the emissions during
ycle construction, operation, and decommissioning (including disposal
nd recycling of materials and working fluids). A leakage model was
sed to account for the leak rate of the fluid and the operation of
he cycle with different amounts of the working fluid at different time
nstants. Equilibrium models and correlations were used for the leakage
nd carbon-footprint calculations, respectively. The PSO algorithm was
sed for optimisation, implemented for all fluids considering one of the
hree different criteria in each case. In this study the authors introduced
nconventional criteria related to the environmental performance of

the cycle, which should be accounted for during mixture selection
or design.

Han et al. [157] investigated the performance of binary mixtures of
pre-specified compositions in an ORC system that was part of a geother-

al flash cycle and a proton-exchange membrane (PEM) electrolyser
that used the ORC power output for the production of hydrogen. In the
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optimisation, the authors aimed to maximise the ORC power output
sing the high and low cycle temperatures and binary-mixture con-

centration (mass fraction of one component) as optimisation variables.
he PSO algorithm was implemented for each binary mixture. Through

this study the authors showed that working-fluid selection impacts the
design of the entire system where an ORC is used.

MOO formulations include the work of Feng et al. [158], who inves-
tigated the performance of a binary mixture in a simple ORC system,
considering simultaneously the optimisation of the mixture concen-
tration and the ORC operating conditions. A MOO genetic algorithm
GA) was used to derive Pareto-optimum solutions that simultaneously
aximised the exergetic efficiency and minimised the levelised energy

cost of the cycle. The authors initially implemented the optimisation
onsidering four different cases of evaporating and condensing tem-
erature values. Alternatives that had the shortest distance from the

ideal solution were selected using the technique for order preference by
imilarity to ideal situation (TOPSIS) [172]. For the optimum mixture
oncentration and the two pure components of the mixture, the authors
itted polynomials of the levelised energy costs as a function of exer-
etic efficiency for each model. They then compared the performance of
ure and mixed fluids and found that the performance of the mixture is
vercome by the pure fluids in some of the evaporating and condensing
emperatures explored.

In a follow-up study, Feng et al. [159] used the same optimisation
pproach to evaluate the performance of a pentane-R245fa mixture.
n addition to the TOPSIS technique to select the most favourable
ptions from the generated Pareto front, they used the Shannon en-
ropy technique [173] and the linear programming technique for
ulti-dimensional analysis of preference (LINMAP) [174]. The authors

found that TOPSIS was the most efficient of the three. Finally, Tiwari
t al. [160] investigated four mixtures using GA in a straightfor-

ward MOO formulation, deriving useful technical insights from the
Pareto fronts.

In the case of MOO formulations, studies that address the sizing of
eat exchangers also exist. Andreasen et al. [161] used an ORC model

considering heat-transfer features in the heat exchangers to assess the
performance of three fluids, including one mixture of pre-specified
composition and concentration, separately. Although in this work the
mixture concentration and composition are pre-specified, it has some
nteresting features. MOO was used to consider 11 cycle parameters as
esign variables, including parameters pertaining to the internals of the

boiler and of the condenser (i.e., number of tubes, inner tube diameter,
nd baffle spacing). The optimisation procedure was also interesting,
s the authors performed the calculations following a sequence that
ncluded simulation without considering pressure losses, design of the
eat exchangers, and simulation with pressure losses considered to
acilitate the computational effort in view of the rigorous heat-exchange
odels. The sequence was repeated in every iteration of the GA. An
nusually large population number of 30000 individuals was used,
ossibly to address the multiple design parameters, several of which
re continuous.

Oyewunmi and Markides [162] optimised a simple ORC system
onfiguration for two mixtures of pre-specified composition, where
redictions were performed using SAFT-VR. This is an important EoS,
s discussed in subsequent sections. An NLP algorithm was used for
ptimisation. The cycle was optimised for all mixture concentrations,
ncluding the pure-component cases, in 10 % intervals. The authors

initially used a single objective (net power output), whereas an MOO
mplementation was further used (equipment cost), and the Pareto
ronts were presented.

Noriega Sanchez et al. [163] considered 28 mixtures of pre-defined
omposition that were evaluated through an ORC system. The sizing

of the heat exchangers was performed using the logarithmic-mean
temperature-difference method (LMTD). Further discretisation was per-
formed of the pressure difference across the turbine in order to evaluate

he vapour quality and to ensure that no liquid will be formed, which

13 
usually results in corrosion. The mixture concentration was one of
the optimisation variables, along with the evaporation pressure, the
ondensation temperature, and the minimum temperature difference

approach in the evaporator. The net power output, the second-law
efficiency, and the size of the heat exchangers (represented as global
conductance-UA values) were the objective functions. The NSGA-II
algorithm was implemented using a large population and executed
everal times. The repeated executions revealed that for the selected
lgorithmic parameters, the Pareto front changed insignificantly.

Nasir et al. [164] investigated a case of an ORC system that was
combined with a vapour-compression cycle (VCC), either using separate
condensers or using a shared condenser. The authors investigated single
working fluids for both the ORC and the VCC, but they tested 12
different combinations, together with the optimisation of both cycles.
The latter were optimised in terms of 11 operating parameters, so the
problem was challenging due to the increased model size (ORC and
VCC) and the number of design variables.

Rodriguez-Sotomonte et al. [165] investigated the performance of
an ORC in power and cooling cogeneration plant, considering a few
different fluids. An interesting feature of this work was that the authors
etermined the number of individuals used in the GA through a 3k
actorial design of the design variables. The LINMAP approach was used

to select designs from the Pareto fronts.
The models used to size the heat exchangers during optimisation

ave significant differences in the employed heat transfer correlations.
n most of them correlations are used that include the Nusselt number
ut use different overall forms of the correlations (e.g., with different
oefficients). Furthermore, some works model only few of the heat
ransfer phenomena, whereas other works provide more comprehensive
odels. For example, Wang et al. [156] use a formula only for the

single- phase heat transfer in the shell side, whereas Heberle and
Bruggemann [155] additionally provide correlations for the evapora-
tion of pure working fluids on a plain tube considering pool boiling
and for the condensation of a pure working fluid in plain tubes. In
addition to using different models, the optimisation studies also often
use different objective functions (see Table A.1 in Appendix). Therefore,
the results are only valid for the specific heat exchangers under inves-
tigation in each case and the specific assumptions made. The effects of
different heat transfer correlations in heat exchanger model predictions
and ORC performance are further discussed in Section 3.4.3.

3.2.2. Derivation of mixtures from pure components
In this section, we discuss studies in which the mixture compo-

sition (number and type of fluids in the mixture) and concentration
(amount of components in the mixture) are design variables. In all
cases, the mixture compositions are derived from a list of pre-specified
pure components.

Micheli et al. [166] investigated various siloxane mixtures in a
regenerative ORC system, aiming to identify the optimum mixture
composition and concentration. An initial set of 11 pure components
was searched freely by an evolutionary algorithm. As the optimisation
search proceeded, components that exhibited zero concentration were
gradually excluded until, eventually, 11 binary and five ternary mix-
tures were shortlisted as promising options. The off-design assessment
was also performed for a randomly selected pure component. In this
case, the turbine was modelled using the Stodola ellipse method [175],
allowing both the efficiency and expansion ratio to vary with the load.

he evaporator and condenser pressures were the design variables.
Andreasen et al. [167] identified the optimum mixture composition,

oncentration, and ORC operating conditions, in a work where pre-
specified pure components were combined into binary mixtures by
the optimisation algorithm. Mixtures of up to five components of pre-
specified compositions and concentrations were also included in the
atabase and compared with the designed binary mixtures. Optimisa-

tion results for the ORC were reported for each mixture (for either the

designed binary options or the pre-specified options). When the binary
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mixture composition and concentration were optimisation variables,
he mixture composition identified in up to 500 generations of the GA

was kept fixed for another 200 generations, where the concentration,
the turbine inlet state, and the hot-fluid outlet temperature were op-
timised. This approach was followed because, as noted, the optimum
results varied at different executions of the GA. To facilitate the search,
when a mixture exhibited lower performance than that of its pure-fluid
constituents, it was removed from the list. The ORC model accounted
for both subcritical and supercritical conditions. The discretisation of
the boiler (pre-heater, evaporator, and superheater) was coarse for
subcritical pressures, as the pinch point could be easily located at
the saturated-liquid point. When the pressure of the resulting design
solution was close to or higher than supercritical, the optimisation of
the cycle and the mixture concentration was performed again using a
igher number of segments in the boiler to improve the accuracy of the

pinch point prediction.
Molina-Thierry and Flores-Tlacuahuac [168] proposed the simul-

taneous blend (i.e., mixture) selection and ORC system design in an
LP formulation, testing several different objective functions in inde-

pendent SOO problems. The number of working fluids participating
n the mixture, the type of working fluids that formed the mixture,

and the mixture concentration were optimised together with the ORC
operating conditions. The working fluids that were used to attain
mixture combinations were selected from a pre-specified set of 3, 11 or
 pure fluids in the performed case studies. The results in the different
bjective functions indicated mainly binary or ternary mixtures as

optimum solutions.
Satanphol et al. [169] developed a mixture-selection and ORC-

esign approach, where the mixtures were generated and selected
from a pool of 24 pure components. A maximum of six components
were allowed in the mixture, and the optimisation algorithm freely
varied the mass flow rate of each component, together with the ORC
design variables. Each time that the mass flow rate of one component
was reduced to zero, that component was replaced with another one
from the pool. Two quaternary mixtures were shortlisted as optimum,
and their pure constituents were used to generate binary and ternary
mixtures. Indeed, it was observed that at least one ternary mixture
could outperform the quaternary mixture from which it was generated.
The ORC model was not based on the simultaneous solution of all
the equations, as in Molina-Thierry and Flores-Tlacuahuac [168], but
n a tear-stream approach. Internally to the sequentially quadratic
rogramming (SQP) optimisation algorithm used here, two loops were
sed to ensure the ORC model convergence. These included a procedure
or the determination of the upper bound on the evaporator pressure

to avoid the assumption of setting it to the critical temperature of the
ure constituent with the highest value. The procedure further included
 gradual increase of the evaporation temperature until convergence
ould not be achieved in the corresponding flash.

Lee and Mitsos [170] developed a mixture selection and ORC op-
imisation approach in order to recover the maximum exergy from
n LNG stream. A total of 1771 mixtures of up to three components
ere derived from a pool of 23 pure components. The presence or not
f a pure component in the mixture was represented through binary
ariables, whereas three continuous variables represented the com-
onent concentrations in the mixture and the condensation pressure.
he condenser was discretised in 100 segments. The area minimisation
etween the hot- and cold-temperature curves was used as the objective
unction instead of minimising the exergy loss because the entropy
alculations were avoided, and the problem could be solved faster. A
ybrid algorithm (Fig. 8) was used comprising a GA to initially handle
he MINLP problem formulation. The mixture composition attained

from the GA was then used in a subsequent NLP formulation which
included the two mixture concentrations and the condenser pressure
as design variables. This was done in order to improve the solution
attained from the GA with respect to the continuous variables. It was

noted that multiple executions of the GA resulted in the same solution

14 
with respect to the integer variables (i.e., the mixture composition).
The NLP was decomposed into several subproblems where constraints
were added gradually to provide good starting points for the subsequent
subproblem, until the entire problem was solved. Specific focus was
placed on avoiding trivial solutions of the cubic EoS. BARON [176]
was used in the NLP stage. The authors noted that although the NLP
methodology solved the problem globally, the decomposition approach
id not provide global optimality.

Whereas in all the above works SOO formulations were used,
ernal-Lara and Flores-Tlacuahuac [171] extended the previous work

of Molina-Thierry and Flores-Tlacuahuac [168] towards incorporating
igorous heat-exchanger models in a MOO formulation. The authors

considered 10 pure working fluids, which were used freely by the
lgorithm to generate multi-component mixtures and any concentra-
ion. The goal was to optimise the cycle thermal efficiency and total
nnualised costs simultaneously.

3.2.3. Key observations
Tables 1 and A.1 (in the Appendix) indicate that mixture-selection

approaches where the components of the mixture are pre-specified,
considered very few options. On several occasions, the authors pre-
selected the mixtures from literature sources, mainly using criteria
pertaining to their GWP and ODP etc. In the case where the mixtures
were derived from pure components, Lee and Mitsos [170] indicated
hat a much larger number of 1771 mixtures can be generated, hence
ignificantly increasing the possibilities of identifying a suitable fluid
or the requirements of a particular application. CAMD approaches can
e much more efficient as they may generate and assess billions of
olecular structures.

Among the employed optimisation algorithms, it appears that SA,
A, and PSO have been used more frequently because they are easy to
ttain (e.g., through commercial software such as MATLAB) or to imple-
ent. These metaheuristic algorithms can avoid local minima, enable
erivative-free optimisation, and are suitable for problems where the
ack of information, noise, non-smoothness, and discontinuities prohibit
he use of deterministic methods, as noted in Boukouvala et al. [177].

The same authors note that metaheuristic algorithms can be used
with black- or grey-box models and in cases where large systems of
partial differential equations are coupled with nonlinear correlations
to represent systems including design aspects, heat transfer, fluid dy-
namics, etc. These are useful features for ORC systems design, and
in the future, such algorithms could be used to introduce models of
high resolution in the simulations (e.g., turbine CFD). The downside of
such algorithms is that repeated executions result in a distribution of
locally optimum solutions. They could, therefore, be used to shortlist a
few promising solutions out of millions of options, which can then be
explored more rigorously. Apparently, they are not appropriate if the
ptimum solution is desired with first- or second-derivative guarantees,
lthough they can be combined with deterministic algorithms to attain
uarantees for the NLP part of the problem, as in Lee and Mitsos [170].

Another downside is that metaheuristic algorithms often include multi-
ple control parameters and require large populations in order to attain
convergence [161]. The determination of the algorithmic parameters
hould also follow a certain, rigorous procedure in order to be able

to statistically assess the quality of the optimum solution [178]. Such
issues are important, but they were not addressed in most reviewed
implementations, where the control parameters were defined arbitrar-
ily. The factorial design of Rodriguez Sotomonte et al. [165] was an
interesting exception. The time-consuming performance of such algo-
ithms is largely due to the lack of mechanisms to avoid revisiting the
ame design points. More-advanced implementations exploit records of
ast solutions to skip the re-evaluation of the expensive model when a

design point was simulated at a previous instant [179].
Deterministic algorithms provide mathematical guarantees about

local or global optimality within finite runtime. Relaxations of the
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Fig. 8. Hybrid algorithm of Lee and Mitsos [170].
Source: Reprinted with permission from Lee and
Mitsos [170].
© 2017 Elsevier.
constraints are used in global algorithms (e.g., branch-and-bound ap-
proaches) until a desired tolerance is reached [180]. Their execution
is faster than metaheuristics because they exploit gradient informa-
tion, as opposed to a random search. Lee and Mitsos [170] provided
very useful insights regarding optimisation strategies that can be used
with such algorithms in ORCs. They proposed the gradual addition of
constraints in the calculations in order to generate starting points for
the solution of the subsequent problem with more constraints until
the full problem is solved. They noted that such strategies facilitate
algorithmic execution, but global optimality cannot be guaranteed
when they are used. These algorithms are not without challenges either,
as they require the identification of a feasible starting point, which is
usually done through multi-start strategies. Different starting points of-
ten result in a distribution of different locally optimum solutions when
non-convex, MINLP formulations are used [60]. The phase-equilibrium
calculations may also introduce discontinuities in the constraints of
the phase-behaviour and other numerical issues that also affect the
non-linear solvers, irrespective of the type of optimisation algorithm
(metaheuristic or deterministic). An excellent discussion is presented in
Gopinath et al. [60], along with strategies to address such challenges.
In this study the authors address multiphase separation processes, but
the discussed approaches are very relevant to ORCs. In Satanphol
et al. [169], the numerical solution of ORC models has been facilitated
through the use of tear-stream approaches in order to avoid the need for
simultaneous solution of large equation systems. In such approaches,
recycle streams are broken into an input and output stream, where an
iterative procedure allows the continuation of the calculations around
the units in the recycle loop until these streams match [181]. Although
these are easy to implement in simple ORC structures, their use in more-
advanced structures and in superstructure approaches is difficult. The
need to identify and use the non-trivial roots of the EoS is also very
important and should be considered in the area of ORCs [170].
15 
In recent years, the incorporation of approximation algorithms in
deterministic approaches is becoming increasingly relevant [182]. Such
approaches are likely to enable the use of surrogates of high-resolution
models with deterministic algorithms. Huster et al. [180] presented an
algorithm where artificial neural network (ANN) models were fitted
for 20 different cases of pure-working-fluid–ORC model combinations
to perform thermo-economic optimisation. The global deterministic
algorithm MAiNGO [183] was used in both MOO and SOO formula-
tions. Approximations are also very relevant for metaheuristic algo-
rithms, where integrated material selection, process and controllability
assessment problems can be addressed efficiently [184].

Another important feature of the above studies is the use of MOO.
There is a large volume of publications on MOO for the design of
ORCs or the selection of pure fluids [185]. The evaluation of different
mixtures based on thermodynamic calculations includes indicators that
exhibit conflicting behaviour. For example, as the pure components of
binary mixtures move towards equal concentrations, the ORC exergy
efficiency increases, whereas the thermal efficiency decreases [141].
MOO can help select mixtures that exhibit optimum trade-offs. Insights
on the influence of mixture concentration may be unveiled, as a mixture
with the same composition may participate in a Pareto front at different
concentrations. Opposing trends may also be observed in economic
and thermal indicators or in economic and environmental, health, or
safety indicators. Several of the previously reviewed studies proposed
methods for the selection of Pareto solutions that exhibit the shortest
distance from an ideal point. An important feature of MOO approaches
that has been overlooked is how to generate Pareto points that are
distributed evenly, and that approximate the Pareto front as efficiently
as possible. This is very challenging because the search space may be
nonconvex due to the underlying ORC models and integer variables.
The Pareto front itself may be discontinuous and non-convex. Important
algorithms that address such issues, such as the sandwich algorithm
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Table 2
Overview of key features presented in Section 3.3 (details available in Table A.2, in the Appendix).
Work context Categories Reference (s)

Component selection scope
Pure fluids [189–208]

Mixtures [209–212]

Both [190,213]

Design scope

Pre-specified ORC configuration [189–193,209,213]

Advanced ORC configuration (superstructure or other
generic, evolvable structure)

[194,196–202,210,214]

Integration with heat source [195,203,204,206–
208,211,212,215]

Optimisation problem
formulation

Single objective optimisation — SOO [189–192,194–197,200,202–
204,206–208,210–212,214,
215]

Multi-objective optimisation — MOO [193,213]

Both [198,199,201,209]

Optimisation algorithm

Meta-heuristic (PSO, GA, SA, other evolutionary approach [189,193,202,209–213]

Deterministic [192,194,195,200,203,204,
207,208,215]

Both [196–199,201,214]

Other software-specific routine [190,191]
s

c
c

l

o

with multi-level single linkage, have been developed and applied in
AMD problems recently [186].

A cradle-to-grave analysis of ORC equipment and fluids was per-
formed by Wang et al. [156] to calculate the equivalent greenhouse-gas
missions, also accounting for working-fluid leakage scenarios. Clearly,

issues of environmental, health, and safety impacts are very important
and should be accounted for during mixture selection or design. The
valuation of such mixture properties is much more challenging than

for pure fluids because the former often exhibit non-ideal behaviour.
For example, mixtures exhibit minimum or maximum flash points,
i.e., flash points that are not between the flash points of the pure
components [187]. Flash points are indicators of safety, and vapour–
liquid equilibrium calculations are needed for their prediction in the
case of mixtures. Liquid–liquid equilibrium calculations are also needed
o determine the solubility of mixtures in water in cases of leakage into
he environment. Frameworks for the incorporation of holistic sustain-
bility calculations in CAMD [100] and CAMPD [188] of solvents have

been developed that could also be used for ORC working-fluid selection
and system design.

Finally, it is worth discussing the work of Schwöbel et al. [148] and
he follow-up work of Preißinger et al. [216]. Although the authors

did not use optimisation algorithms or mixtures in these studies, the
key feature was the assessment of a database comprising 72 million
molecular structures. The authors applied thermodynamic filtering
criteria and initially reduced the candidates to approximately two
million options. After applying quantum-chemical calculations on those
ptions, they shortlisted 3174 fluids which were evaluated using ORC

simulations. While Schwöbel et al. [148]s used the cycle thermal effi-
ciency as a criterion, Preißinger et al. [216] employed a multi-criteria
pproach where other aspects such as environmental impacts, toxicity,

and flammability were also considered. These studies are noteworthy
due to the sheer number of evaluated molecules as well as due to
he use of advanced thermodynamic and quantum-chemical models.
he investigated molecules were part of the PubChem database, which

s available publicly. It is worth noting that the attainable structural
pace that is generated through CAMD is much wider, as it may
omprise up to billions of options [137]. With the use of optimisation
lgorithms, it is not necessary to evaluate all options exhaustively. It
s sufficient to evaluate up to a few hundred thousand options [217]
n order to identify the molecular structure that optimally matches the
esired criteria.
16 
3.3. Fluid selection and optimum design of advanced ORC systems

In this section, we discuss different structural ORC and heat-recovery
options that go beyond conventional layouts and the systematic repre-
sentation approaches that are often used to derive and evaluate them.
Key features of the studies reviewed are summarised in Table 2 and
presented in more detail in Table A.2, in Appendix. Table A.2 contains
similar sections as those of Table A.1 in addition to details on the type
of ORC configuration (e.g., single, dual-loop, regenerative, etc.).

3.3.1. Pre-specified ORC structures
In this section, we review studies that include pre-selected ORC

tructures with different pressurisation levels or separation of working-
fluid streams, to name but a few options. In all of these, multiple
different fluids are considered but their selection is not part of the
optimisation problem formulation. The operating conditions of the ORC
structure are optimised for each one of the considered fluids.

Xi et al. [189] optimised a simple ORC and two regenerative ORC
onfigurations considering few pure fluids. The first configuration in-
luded the single-stage regenerative ORC (SRORC), where part of the

vapour at the turbine outlet circumvents the condenser and is used
in a feed-water heater to preheat the remaining part of the working
fluid that has been condensed, before entering the evaporator. In this
configuration one pump was used after the condenser to pump the
iquid to the feed-water heater, where the liquid came into contact

with the vapour from the turbine. Another pump followed to drive the
verall liquid to the evaporator. In the dual-stage regenerative ORC

(DRORC), one stream was directed to the condenser after the turbine,
whereas two other vapour streams (instead of one in the SRORC) were
directed to two feed-water heaters, hence the system has three pumps.
The GA used for optimisation included deterministic selection, simple
arithmetic crossover and mutation, and an elite preservation strategy
as operators. Each ORC structure was optimised separately for each
working fluid.

Woodland et al. [190] performed operating optimisation of ad-
vanced ORC system configurations (Fig. 9), even at transcritical con-
ditions, considering up to two unconventional mixtures. The ORC with
liquid-flooded expansion (ORCLFE) is a cycle where the expander is
flooded with a subcooled liquid in equilibrium with the working fluid
when the latter is expanded. The flooding liquid operates as a heat
source, helping to maintain a constantly high temperature during the
expansion, bringing it closer to the ideal isothermal expansion. The

ORC with solution circuit (ORCSC) uses a mixture of the primary
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Fig. 9. The ORCLFE structure and ORSCS structure.
Source: Reprinted with permission from Woodland
et al. [190].
© 2013 Elsevier.
working fluid and an absorbent with a high boiling-point difference.
The cycle exploits the temperature glide in the evaporator/ desorber
due to the use of the mixture to enable increased exergetic efficiency.
The absorbent is desorbed during the heat addition, hence enabling
an almost pure working fluid to be expanded in the turbine. The
ORCLFE enables higher efficiency than the simple ORC, but a positive
displacement expander is needed. The ORCSC facilitates better capacity
control and can have lower working pressures than the typical ORC,
but its efficiency is lower. In terms of working fluids, investigations
should be performed to find more efficient options, as the cycles have
received little attention. The ORCSC cycle shares common features
with the operation of absorption refrigeration cycles (ammonia–water
is a typical fluid for such a cycle) hence similar fluid options may be
considered [218,219]. Despite the interesting features of these cycles,
additional capital expenditures are introduced due to the additional
equipment, whereas the separation and absorption processes in these
cycles need to be very efficient.

Walraven et al. [191] investigated different working fluids in a
single-pressure recuperative and a double-pressure ORC configuration.
In the latter, part of the working fluid in the intermediate pressure
level goes through the boiler and into the turbine, whereas the other
part is pre-heated at the intermediate pressure level and is then driven
to the higher pressure level before it is expanded in the turbine. The
operating conditions of the ORC (e.g., temperatures, pressures, etc.)
were optimised simultaneously with the HEX geometrical character-
istics (e.g., tube lengths, etc.). An NLP solver was used [220] with
automatic gradient differentiation [221]. The authors [222] mention
that the gradient-based algorithm using finite-differencing results in
slow calculation and low accuracy. These issues were avoided by cal-
culating the gradients with automatic differentiation in reverse/adjoint
mode. Multi-pressure configurations enable higher work extraction
than single-pressure ones. The number of pressure levels, the type of
turbine used (e.g., expansion, induction), and their placement in the
multi-pressure cascade should be accounted for during optimisation as
they greatly affect the minimisation of exergy losses [194].

Sadeghi et al. [209] investigated several mixtures of up to five
components of pre-specified composition and concentration in a simple,
a parallel two-stage (PTORC) and a series two-stage ORC (STORC). The
PTORC includes separation and pressurisation of the saturated liquid
from the condenser into two pressure levels, using two pumps, prior
to absorbing heat from two evaporators placed in series. The high-
pressure fluid absorbs heat from the hot fluid that enters the first
17 
evaporator, whereas the low-pressure fluid absorbs heat in the second
evaporator from the heat source fluid that exits the first evaporator.
The two streams then enter the turbine where power is generated, and
one outlet stream is led to the condenser. In the STORC, the working
fluid after the condenser is pressurised to the low-pressure level. It
is then separated into two streams; one stream is led directly to the
turbine, whereas the other is pressurised to the high-pressure level and
then led to the turbine. The selection was performed in three stages. In
the first stage, a parametric analysis was performed with all fluids and
configurations, and the authors found that the STORC configuration is
the most efficient based on first- and second-law efficiency criteria. In
the second stage, specific STORC cycle parameters for all fluids were
varied, using the net power output and the turbine-sizing parameter
as cycle-performance criteria. The third stage included multi-objective
optimisation, using specific STORC cycle parameters as design variables
for mixture R32/R125/R134a, and the two criteria of the second stage
as objective functions. It was observed that the STORC configuration
with the selected fluid enables the highest power output with the
second-lowest turbine size.

Theamtat and Koonsrisuk [192] investigated different working flu-
ids in subcritical, supercritical, and trilateral cycles. The latter is an
advanced layout where the working fluid enters the expander in a
saturated-liquid instead of a saturated-vapour state. A two-phase expan-
sion occurs, reducing the heat-rejection requirements at the condenser.
In all cases, the golden-section search algorithm was used to identify a
locally optimum solution for the working fluid flow rate that maximised
the work output.

Wang et al. [213] investigated a dual-loop ORC considering dif-
ferent working-fluid mixtures for the low-temperature (LT) and the
high-temperature (HT) loops. In the dual cycles, heat is extracted firstly
in the HT loop and then in the LT loop. An internal heat exchanger
acts as the condenser of the HT loop, where the fluid of the LT loop
is pre-heated after the pump. An MOO approach was used with the
NSGA-II algorithm, using the TOPSIS technique to identify the optimum
solution. Thermal, economic, and environmental criteria (emissions)
were used in the optimisation. Gray relational analysis was further used
to identify the optimum pair of fluid mixtures for the two cycles.

Emadi et al. [193] investigated a dual ORC configuration to exploit
the heat from a solid-oxide fuel cell (SOFC) with a gas turbine (GT)
(Fig. 10). In this cycle, all the heat is extracted from the HT evapo-
rator (ORC1), whereas its condenser acts as the LT evaporator (ORC2
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Fig. 10. Layout of dual-loop cycle in Emadi et al. [193].
Source: Reprinted with permission from Emadi et al. [193].
© 2020 Elsevier.
evaporator). An MOO approach was used with GA as the optimisation
approach. ANNs were used to generate a model of the SOFC–GT–ORC
that facilitated the implementation of the GA. The time-consuming
simulations of the rigorous SOFC–GT–ORC model where thus avoided.
The LINMAP technique was used to select the optimum solution from
the generated Pareto front. The combination of two different fluids
for the top (R601) and bottom (ethane) cycle resulted in the optimum
trade-off between efficiency and cost.

3.3.2. Design of ORC structures
The previous section included studies where the ORC configura-

tion was pre-determined, and an optimisation algorithm was used to
further determine the optimum operating conditions. In this section
we consider studies in which the ORC configuration itself is a de-
sign variable, and the optimisation algorithm is used to guide the
search towards structural features that optimise a performance in-
dicator. In these cases, superstructure-based approaches (e.g., [210])
may include pre-determined structural options which are activated
or deactivated during the search. There are also superstructure-free
approaches (e.g., [196] or [198]), where the optimisation algorithm
adds or removes options, and the ORC structure evolves and results
from the optimisation search. There are a few such works, and hence
the superstructure-free approaches are discussed here even if there is
no selection of working fluids.

Stijepovic et al. [194] proposed a generic approach for the design
of multi-pressure ORC networks, built on a mathematical representa-
tion of the exergy composite curves approach [223]. This approach
is an extension of the original Pinch analysis method [224] where
temperature-enthalpy diagrams of the heat source fluid and the work-
ing fluid represent the composite curves and determine the amount
of heat that is available for recovery from the heat source. In the
exergy composite curves, the temperature is replaced by the Carnot
factor (1 − 𝑇 ∕𝑇 ). The area between the heat source fluid curve and
0
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the enthalpy axis in the Carnot factor-enthalpy diagram represents the
maximum work that can be generated, whereas the area between the
heat source fluid and working fluid composite curves corresponds to
the exergy loss or the ideal work equivalent lost in heat transfer. With
the proposed representation (Fig. 11) the authors could determine the
optimum configuration of the heat-exchange operations between the
external pressure loop and the heat source and between the internal
heat-exchange processes within the different pressure loops. Expansion
and induction turbines were design options, with the latter enabling
different pressure loops to be contacted. The number of pressure levels
could be increased if the addition of a new level improved the per-
formance of the previous one. An induction turbine is essentially a
layout that may be represented as single stage turbine units connected
in series. The working fluid vapour from the high-pressure evaporator
first flows into the high-pressure turbine and the pressure decreases to
the low-stage evaporation pressure. The exhaust from the high-pressure
turbine and the vapour from the low-pressure evaporator flow into the
low-pressure turbine together, and the vapour pressure decreases to the
condensation pressure [225].

Toffolo [196] presented an approach for the synthesis of ORC
systems, where the ORC is represented through two basic components,
an expander, and a compressor, allowing for interruptions (thermal
cuts) between them in the cycle path. The thermal cuts represent the
heat-transfer processes within the cycle components or between the
cycle components and the environment. The optimisation algorithm
may freely select the optimum number of thermal cuts and basic com-
ponents, allowing for stream splitting and mixing, different temperature
and pressure levels, and numbers of basic cycles. This was called the
HEATSEP method (Fig. 12) and was based on the original work of
Lazzaretto and Toffolo [226] for the synthesis of thermal processes.
Toffolo further proposed a two-level formulation of the optimisation
problem. Externally, he showed how to model the structural design
options within the operations of an MOO evolutionary algorithm such



C.N. Markides et al. Progress in Energy and Combustion Science 107 (2025) 101201 
Fig. 11. Generic structure for representation of multi-pressure ORC network.
Source: Reprinted with permission from Stijepovic et al. [194].
© 2014 Elsevier.
Fig. 12. Representation of a multi-pressure cycle (left) through the HEATSEP approach of Toffollo [196] (right).
Source: Reprinted with permission from Toffollo [196].
© 2014 Elsevier.
as GA, indicating how a move between states of the algorithmic op-
erations represents a change in the structure of the designed ORC.
Internally, for every generated structure, he proposed the use of an
SQP to identify the optimum operating conditions of the structure.
The implementation of the algorithm in a case study resulted in multi-
pressure cycles that comprised various dependent loops, where the flow
of the working fluid might be split and mixed, whereas heat might
be drawn at different cycle points. The work was further extended
to the SYNTHSEP framework [197] where rules were proposed for
the framework of Toffolo [196] to allow for the implementation of
reasonable thermal cuts in the generated structures.
19 
Wang et al. [198] further proposed a rule-based approach for the
generation of structural options during ORC system optimisation. The
approach was based on the hierarchical imposition of rules, imple-
mented through a mutation operation in an evolutionary optimisation
algorithm. The latter was used to handle the discrete structural design
variables, whereas, for each generated ORC structure, an NLP was used
internally to optimise the continuous parameters. A notable feature of
this work is that the authors discussed algorithmic convergence issues
in the form of repeated execution of the evolutionary algorithm and
the determination of optimality gaps. The work was extended by Wang
et al. [199] to account for MOO.
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Lee et al. [210] proposed a superstructure of a cryogenic ORC,
hich included several different alternatives such as multi-stream cryo-
enic heat exchangers, vapour flashes, multi-stage turbines, and vapour
e-condensation processes. All these were pre-specified in the super-
tructure, and the GA algorithm could freely select different options.

Huster et al. [200] presented a superstructure approach for the
design of ORCs that included various options, such as multiple pres-
sure levels, additional superheating options, direct expansion from the
higher to the lower pressure levels, omitting intermediate pressures and
urbine bleeding. The heat sources could also be used in sequential

or parallel modes (split into different streams). A key feature of this
work was the use of ANNs for the prediction of the thermodynamic
properties of the working fluid. Furthermore, the authors reduced the
attainable design space by introducing logical propositions to ratio-
nalise the selection of different options and employed appropriate
relaxations and constraints to facilitate the optimisation solver, while a
parallel version of the optimisation algorithm was also used. Through
the proposed approach, they managed to reduce the computational
effort by 49 % using relaxations, in a superstructure that included 28
structural, integer combinations.

In all the previous works systematic approaches were presented for
he design of advanced ORC configurations, which were implemented
or one fluid. In the approaches reported below superstructures were
mployed where both the fluid and the final ORC configuration are
elected from a set of available options.

Kermani et al. [201] proposed a superstructure that enables the
selection of multiple different pressure levels, the addition of all the
basic components of an ORC system at each level and the type of fluid
that is used, out of a number of options. The problem again was solved
at two levels, where a GA was used externally and mixed-integer linear
programming (MILP) internally. Contrary to the previous works, it
appears that the GA handled mainly the continuous variables, whereas
the discrete variables were handled by the MILP. SOO and MOO
formulations were further tested with different objective functions.

Bao et al. [202] proposed a superstructure for a three-stage con-
densation ORC that used the LNG cold energy. The working fluid was
plit into three streams after the expansion and was condensed at three
emperature levels. After that, the fluid streams could be compressed in
arallel pumps (parallel arrangement) prior to being mixed and enter-
ng the evaporator. Another alternative was to compress two streams
n parallel and then mix them with the third stream and compress
he final stream (partial parallel arrangement). The final alternative

was to compress the first stream, then mix it with the second stream,
ompress the output and then mix this with the third stream and
ompress it (serial arrangement). Similarly, the superstructure could
nclude parallel, partial parallel, and serial expansion. In the first case,
he evaporator outlet was split and expanded using three turbines. In
he partial parallel arrangement, the fluid was first expanded in one
urbine and was then split into three streams that flowed in the partial
arallel arrangement of the condensers. In the serial arrangement, after
xpanding all the fluid in one turbine, it was divided into two streams,
ne of them flowing in the first condenser, whereas the other was
xpanded in another turbine and was further divided into two streams

prior to entering the two final condensers. The superstructure included
nine structural options, which were represented by three ternary, dis-
crete variables for the different configurations of the expansion and the
compression processes. Each working fluid, out of 12 options, was also
 binary variable. This superstructure was also optimised using GA.

Lin et al. [214] combined the HEATSEP representation of Tof-
ollo [196] to select pure fluids and mixtures out of a set of pre-specified

options. They used a similar solution approach to most of the previous
studies, where an external evolutionary algorithm handled the discrete
nd binary structural and fluid option variables, whereas the ORC

simulation was performed through an internal deterministic algorithm.
he proposed work was implemented in a two-stage condensation ORC
for LNG cold energy exploitation.

20 
3.3.3. Integration of heat sources
The heat that is provided to the ORC may come from various

systems that have different flows, operate at different temperatures
or pressures and that simultaneously serve different purposes in an
industrial or other site. The exchange of energy among such systems
nd the ORC needs to result from a design approach that is able to
ystematically capture and exploit all the interactions. In this section,

we consider studies in which the heat source is integrated through
systematic approaches with the ORC in order to improve the overall
system performance. Often such approaches enable the design of a
heat-recovery network which can be integrated with simpler or more-
complex ORC configurations. Hipólito-Valencia et al. [203] proposed
 superstructure-based approach for the design of the utility network

that is used in a regenerative ORC (Fig. 13). The work was extended by
ipólito-Valencia et al. [227] in cases of inter-plant heat integration of

utility networks, to serve either individual or shared regenerative ORCs.
The work was further extended by Lira-Barragán [205] in the design of
tri-generation systems. In this case, the utility superstructure was used
to design a network that simultaneously served an ORC, a steam RC,
and an absorption-refrigeration system.

Similarly to the previous study, Chen et al. [204] employed a
superstructure to design a utility network. The first stage included the
design of the utility network structure, and the second stage involved
the design of the ORC for this structure.

Soffiato et al. [215] developed an algorithm that used the HEATSEP
representation of Toffollo [196] and comprised three stages. The heat
composite curves of the boiler-heat source were first calculated for a
given set of design variables for the ORC, the latter was simulated, and
the algorithm calculated the cold composite curves at the condenser.
The mass flow rate of the working fluid was increased until the mini-
mum temperature difference was reached at the boiler-heat source and
condenser-cold sink sides. The net work output of the ORC was then
generated, and the algorithm continued until a value for the working-
fluid flow rate was found that violated the heat-transfer feasibility
constraints at the hot and cold sides. The algorithm was implemented
separately for each ORC configuration and fluid.

Yu et al. [206] further proposed an approach for the simultaneous
esign of the utility network and of the ORC operating conditions and
quipment sizes. A major contribution was the use of the mathematical
ormulation of the pinch-based model of Duran and Grossmann [228],

where the use of fixed temperature intervals is avoided in the design
f the utility network.

Elsido et al. [207] proposed an optimisation approach for the design
of complex ORC configurations and the corresponding utility network.
The work was based on the generic superstructure of Elsido et al. [229].
The superstructure could capture multi-pressure cycles with turbine
bleeding, saturated, superheated, reheated, or regenerative options,
combined heat and power cycles, condensing and non-condensing tur-
bines, import and export of liquid or vapour streams, subcooling of
the evaporator inlet, deaerators or desuperheaters, etc. The work was
focused on the efficient solution of the challenging MINLP formulation
through a decomposition approach that included outer-approximation
linearisation, McCormick relaxations, and adaptive piecewise lineari-
sation of the cost functions. The problem was essentially decomposed
into an MILP master and an NLP subproblem.

Marechal and Kalitventzeff [208] developed an approach based on
xergy composite curves for exploiting the external heat and cooling

utilities while designing an optimum ORC. The exergy curves allowed
the targeting of the mechanical production potential from a set of
heat-source streams. In the first stage, an MILP problem was solved to
identify the temperature levels of the external utilities that minimised
the exergy losses. Based on these temperature levels, the second stage
included the design of ORC configurations together with the identifica-
tion of the desired working fluid from a list of pre-determined options,
with the aim again to minimise the exergy losses. In the third stage,

an MILP problem was further solved to minimise the cost of the ORC
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Fig. 13. Superstructure for optimum design of utility network in a simple ORC with recuperator.
Source: Reprinted with permission from Hipólito-Valencia et al. [203].
© 2013 Elsevier.
system from the list of options available from Stage 2. The approach
essentially enabled the gradual addition of constraints in the exergy
composite curves of a process.

Stijepovic et al. [195] proposed the integration of multiple heat
sources of different temperatures into a superstructure, which can
enable the simultaneous design of multiple cycles that share the heat-
extraction section and the cooling utility, the design of the hot-utility
network, and the selection (number and type) of the working fluid. The
approach was based on the mathematical representation of the utility
requirements through pinch analysis tools and the use of optimisation.
A key finding was that when a dual (or higher) ORC cascade is the
optimum solution, each one of them may operate with a different
working fluid.

Scaccabarozzi et al. [211,212] presented an optimisation-based ap-
proach, where the concentration of different binary mixtures of pre-
specified composition was optimised simultaneously with the cycle and
the heat source. The ORC system was used to recover heat from an
internal combustion engine. The PGS-COM evolutionary algorithm was
used to maximise the cycle power output and efficiency. PGS-COM
is a derivative-free algorithm for non-smooth constrained black-box
models. For each set of design variables that was generated by the
algorithm, the ORC model determined the stream temperatures. The
21 
working-fluid mass flow rate was then optimised to maximise the heat
recovery from the heat source. The heat cascade methodology was used
for this purpose in the form of a linear programme [230], where the
ORC system flows and the mass flow rates of the external utilities were
used as optimisation variables. The execution of the PGS-COM was
repeated five times to assess the quality of the optimum solution.

3.3.4. Key observations
The reviewed studies indicate that there are multiple ORC config-

urations that need to be considered prior to selecting the one that
exhibits the optimum system performance. Approaches that enable
the automated generation of such structures during optimisation are
very important because the optimum results are highly dependent on
both the employed working fluid and the availability of heat and
cooling utilities. The approaches that integrate the design of the utility
network and of the ORC structure indicate that it is also important
to recover the heat and cooling resources within optimum networks.
The consideration of working-fluid selection as part of the integration
of ORC systems with multiple heat-source streams or heat-exchanger
networks has been very limited to date, and only small sets of pre-
defined fluids have been considered in ORC integration studies. The
studies in which limited fluid-selection options are considered as part
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of ORC design and system integration serve as a demonstration of
he importance of integrated approaches to simultaneous cycle design,
ntegration, and fluid selection. Similarly, while promising results have
een reported in early studies, the simultaneous selection and design of
orking-fluid mixtures in heat-recovery-network design have received

ittle attention to date.
Such approaches and their extensions to consider working-fluid de-

sign for both single fluids and mixtures constitute a promising direction
for future research. However, as the optimisation problem is extended
from the simultaneous selection of fluids and design of ORC structures
to one that also requires the design of the corresponding heat-exchanger
etworks, the complexities incurred by the optimisation algorithms
urther increase. Huster et al. [200] and Elsido et al. [207] discussed
he challenges in the development of efficient deterministic algorithms
or global optimisation of such systems. Approaches that include meta-
euristics to handle the discrete variables and deterministic algorithms
o handle the continuous variables have been quite popular, as shown
n the Appendix (Table A.2). In such cases, it is important to perform
ifferent executions and fine-tune the algorithmic parameters in order
o be able to assess the quality of the solutions.

Other than considering advanced and efficient optimisation algo-
rithms, it is also important to exploit insights that are provided by the
phase behaviour of the fluids to avoid examining options (e.g., working
fluid candidates or ORC structural options) that may have detrimental
effects on the ORC costs. For example, the shape of the temperature-
entropy curves changes for different working fluids, resulting in their
classification as wet, dry or isentropic. Györke et al. [104] noted
that based on these fluid types different ORC structures or equipment

ay be necessary to avoid the appearance of liquid or of superheated
vapour in the expander outlet. The former increases the equipment
maintenance costs, whereas the latter increases the cooling utility costs.
They further showed that this classification is not sufficient to predict
the phase of the fluid after expansion and proposed up to 32 poten-
tial categories to ensure that all potential fluid phase outcomes can
be attained. In combination with this classification approach, Györke
et al. [231] developed a rule of thumb, based on a correlation related
o molar isochoric specific heat capacity of saturated vapour states, to

identify dry or isentropic fluids out of a database of 74 options. Imre
and Groniewsky [232] applied the new classification to identify such
luids out of 30 options and mainly for cryogenic applications, within
ifferent upper and lower expansion temperature limits. The proposed
pproach was also extended to selection of working fluids for trilateral
lash cycles [232]. Groniewsky et al. [233] extended the proposed

approach to account for different expander efficiencies and source–
sink temperatures that may be relevant for cryogenic, geothermal and
industrial waste-heat recovery applications. The authors also developed
a software that may select a working fluid from a database of 69 options
or different temperature ranges. Such an approach may be integrated
n ORC optimisation, introducing additional constraints and criteria to
educe the optimisation effort and to result in highly performing fluids
nd ORC systems.

Overall, there is a trend to formulate increasingly larger design
problems to include a growing number of options in terms of cycle
design, cycle integration with heat sources, and working-fluid selection,
as well as more-detailed equipment models in single, comprehensive
optimisation models that become increasingly challenging to solve.
Research into problem-decomposition schemes, similar to the CAMPD
problem decomposition using MOO CAMD [217,234,235], may be a
romising direction for future research to enable the effective solution

of the envisaged larger problems.
An important issue here is the reliability and reproducibility of the

attained results. As the complexity of the ORC configurations increases
or as new fluids are proposed through computational approaches,
experimental validation is not easy because experimental data generally
exist for simpler configurations (Lecompte et al. [80] and well-known
working fluids, such as commercially available refrigerants [236,237].
22 
Park et al. [236] indicate that experimental ORC layouts include mainly
basic cycle configurations where different expanders or working fluids
are tested. More complex experimental layouts are less frequent and
include the use of ORCs in trigeneration systems [238] or the testing
of multiple expanders in parallel [239]. The experimental testing of
more advanced systems is clearly a key direction for future work.
However, the motivation for building and testing experimental rigs of
more advanced systems should come from optimisation studies that
rove their economic and environmental benefits, as the capital costs
ay often make them unappealing.

In view of the lack of experimental data, as a minimum requirement,
alidations should be presented with experimental data of reference
luids for simpler models that are used as the basis for the development
f more complex configurations. Additionally, all the details and data

used in the model equations should always be presented so that the
models may be reproduced. For design results that indicate improved
performance through more complex configurations or fluids for which
experimental data are not available, insights should always be provided
regarding the key driving forces that enable performance improve-
ments. An additional feature that could enhance the reliability of the
attained results is the consideration of uncertainty in various models,
parameters and correlations that are used. As discussed in Section 3.4.3
and 3.5, uncertainty significantly affects the attained results and the
ranking of the fluids. By using systematic methods to address it during
working fluid selection and ORC design, the results will become more
robust and likelier to closely match experimental outcomes.

3.4. Fluid selection and rigorous equipment models

ORC performance improvements may be attained by designs that
focus on expander or heat-exchanger internals such as blade and pipe
geometries, to name but a few. The effects of the working fluids on
such designs are very pronounced, but the highly detailed models that
re needed result in challenging design problems. There are several
tudies in which such challenges have been addressed. Key features of
he reviewed studies are summarised in Table 3 and presented in more
etail in Tables A.3 (for expanders) and A.4 (for heat exchangers) in

the Appendix, where additional information is presented regarding the
odelling approaches and assumptions.

3.4.1. Expanders
The expansion stage is absolutely critical in the achieved perfor-

mance of the ORC system. A variety of expansion devices can be
employed in ORC systems, such as turbines (with radial and axial
onfigurations being the most-common options), positive-displacement
quipment (with scroll, screw, piston, and rotary vane expanders as
ossible and common alternatives), and ejectors [282]. The conver-

sion of the potential energy (associated with the total pressure) of
the working fluid upstream of the expander into either rotational or
linear displacement work, depending on the expander type (positive-
displacement or turbomachine) is closely related to the properties of
the working fluid. Therefore, the design of the expander should be
arefully considered with respect to the features and characteristics of
he working fluid. A series of recent studies incorporating investigations
f the interactions of working fluids with the expander design, the oper-
ting conditions prevailing in the expander, and the achieved expander
fficiency in combination with the overall ORC system thermodynamic
nd economic performance are critically reviewed with the summary of
heir approaches and conclusions shown in the Appendix (Table A.3).

Yue et al. [283] presented a model where the internal geometric
turbine and heat-exchanger features were considered. An axial flow tur-
bine was modelled considering rotor, blade, and nozzle characteristics.
Plate evaporator and condenser heat exchangers were also modelled
considering plate dimensions, distances, numbers, and materials of
construction, to name but a few. An important observation was that
a zeotropic isobutane–isopentane mixture exhibited optimum thermal
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Table 3
Overview of key features presented in Section 3.4 (details available in Tables A.3 and A.4, in the Appendix).
Work context Categories Reference (s)

Scope of work with
respect to component

Pure fluid selection [129,180,225,240–262]

Mixture selection [162,163,169,171,263–269]

Consideration of pure and mixed fluids in selection [155,161,270–272]

Molecular design
Pure fluids [98,273–276]

Mixtures [277,278]

Expander type

Radial [240–246,248,249,270,271,
273,279,280]

Axial [247,263]

Both [245]

Cycle investigation
scope (expander model
cases)

Off-design cycle operation studies [240,242,246,249,263,270,
271,279]

Nominal cycle operation studies [241,243–
245,247,248,273,280]

Boiler type

Tube-based (mostly shell-and-tube, with some fin-and tube cases) [98,155,156,161,162,169,171,
251–253,255,260,262,265–
267,272,274,275,277,278,281]

Plate-based [250,254,256–258,276]

Other [163,255,259,261,269]

Condenser type

Tube-based [98,155,161,162,169–
171,198,250,251,255,258,264–
268,272,274,275,277,278,281]

Plate-based [252–254,256,257,276]

Other [163,180,259–261]

Boiler and condenser
model types

Steady-state [98,180,250–258,264,272,274,
275,277,278,281]

Dynamic [259–262,265–269]
O
p
a
f
f
p

d
w
e

performance at compositions that did not exhibit the maximum tem-
erature glide. Thus, proper accounting for equipment–working-fluid
nteractions is crucial, and purely thermodynamic design guidelines
ead to suboptimal performance.

Song et al. [279] pointed out that failure to accurately estimate the
turbine efficiency in ORC simulation calculations may lead to erroneous
results regarding the assessment of the performance of various working
fluids. In their work, a one-dimensional turbine-efficiency model was
integrated within the thermodynamic ORC model for the evaluation of
six working fluids. A breakdown into friction and leakage-related losses
for a wide range of operating conditions for each working fluid enabled
a reliable rank ordering of the investigated working fluids, in which
R123 exhibited the highest overall efficiency.

Fiaschi et al. [242] focused on the radial-turbine design for two
blade configurations and the accurate estimation of the losses for each
pecific design. The effect of key design parameters such as blade

height, flow and load coefficients, and isentropic degree of expansion
on the geometric features of the expander were calculated for six single-
component fluids. An explicit mapping of working-fluid and radial-
turbine expander design and operating conditions was then derived. In
addition, a thorough analysis of the contribution of each loss factor in
the overall losses was performed for each working fluid under consid-
eration. Off-design studies for the two blade geometries were carried
out, examining the influence of corrected rotational speed on the gen-
erated power. Fluids with higher average density and lower volumetric
expansion, such as R134a and R1234yf, showed superior performance
in terms of expander efficiency under nominal operating conditions.

Rahbar et al. [243,244] aimed at the optimisation of a small radial
xpander for ORC applications. Non-ideal gas behaviour was coupled
ith a mean-line model for the expander. A GA was employed [243]

or the maximisation of the expander efficiency by calculation of a set
of operating (e.g., rotational speed, load and flow coefficient, degree
f superheating and so forth) and geometric (e.g., rotor exit flow
ngle, nozzle inlet to exit radii, rotor exit to inlet radii and so forth)

haracteristics. An optimised expander tailored for the selected working

23 
fluid could increase its efficiency by a maximum of 14.7 %, with R152a
resulting in the highest expander efficiency among the investigated
working fluids. R123a and R236ea achieved the smallest expander size.

White and Sayma [240] investigated 18 single components as work-
ing fluids in a 10 kWe system using a thermodynamic model for the

RC and a simplified radial expander model. The optimisation ap-
roach used an aggregate objective function with multiple terms aiming
t obtaining the optimal sizing of the ORC system equipment. Overall,
luids R1234ze and R142b demonstrated the best performance, as re-
lected in the objective function value, while exhibiting a condensation
ressure below 3 bar.

Bekiloğlu et al. [241] screened 28 hydrocarbons based on their per-
formance on two objective functions: the total heat-exchanger area and
the maximum performance factor. Both objective functions considered
implicitly the economic cost for equipment purchase and installation
costs. A larger maximum performance factor indicated higher power
generation from a smaller turbine. An iterative radial-inflow turbine
design procedure was employed that determined the geometric features
of the turbine in order to achieve operation within a desired regime and
maintain the power losses due to friction and irregular flow patterns
contributing to pressure losses within an acceptable level. Therefore,
the direct impact of the working-fluid properties and behaviour was
taken into account.

Meroni et al. [247] investigated the employment of multi-stage
axial expanders for the evaluation of 11 working fluids. A sequence
of optimisation steps that considered multiple expander stages was
incorporated into the design procedure. For a conventional expander
esign, the ideal turbine was characterised by a two-stage configuration
ith supersonic converging nozzles and post-expansion. For a more
xtreme expander design, the ideal obtained choice was a single-

staged supersonic converging–diverging nozzle with an achieved Mach
number up to 2.

Lampe et al. [273] presented a holistic approach for the optimal
selection of working fluids in ORC systems by considering a CAMD
approach using group contribution and the PC-SAFT EoS to provide
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the thermodynamic properties. A 1-D radial-expander model was in-
corporated into the design and the performance simulation of the
ORC system for each working fluid that was generated by CAMD.

he optimisation framework offered an integrated approach that can
evaluate in a systematic way the interactions among the working-fluid
properties, the thermodynamic features of the overall ORC, and the
aerodynamic conditions of the expander for a very large set of fluids.

Bahadormanesh et al. [280] investigated the impact of mechanical
ibrations in the radial expander on the optimal ORC design con-
idering four pure organic refrigerants. The MOO approach that was
mployed considered the thermal efficiency of the cycle and the per-

formance of the radial expander with respect to its size. The developed
ension and vibrations in the radial expanders were explicitly consid-
red in the optimisation problem as constraints, and their impact on
he optimal solution was thoroughly explored. The trade-offs between
hermal efficiency and expander size enabled the calculation of superior
xpander-design solutions.

Han et al. [249] and Li et al. [246] investigated the selection of
working fluids under both constant and variable turbine efficiencies.
Turbine efficiency may change due to variations in the operating
conditions induced by hot-source temperature drifting. To this end,
a turbine model accounting for losses due to friction, leakage, and
other peripheral turbine features is absolutely necessary. Energy losses
based on the relative velocity ratio and, subsequently, the geometric
configuration of the turbine was estimated. Han et al. [249] consid-
red exergy and thermal efficiency in addition to the cost per kW,

whereas Li et al. [246] assessed exergy efficiency and total system cost,
both within a MOO framework. Optimal working-fluid selection was
nfluenced by the employed turbine-efficiency model. However, more-
ealistic conditions were considered with the variable turbine-efficiency
pproach. Han et al. [249] showed that cyclic and aromatic hydrocar-

bons were superior to chained hydrocarbons in performance, whereas
Li et al. [246] identified highly performing fluorohydrocarbons. Peng
t al. [263] compared the off-design performance of an ORC with a
ranscritical CO2 power cycle in single-stage axial turbines. Mean-line
odel and velocity triangles were used for the geometric design of the

axial turbines and the estimation of the off-design expander efficiency.
he CO2 power cycle exhibited a higher efficiency and improved ability
o cope with the off-design operation.

In one of the limited number of studies that involve a detailed
ulti-dimensional expander model, Gad-el-Hak et al. [270] employed

a numerical model that solved the Reynolds-averaged Navier–Stokes
equations coupled with the k-𝜔 turbulence model and a non-ideal EoS
or the prediction of the thermodynamic properties. A relationship
etween isentropic efficiency and blade speed ratio was derived from
he numerical implementation of the experimentally validated radial
xpander model. Zeotropic mixtures of R600a/R245fa at some con-

centrations showed an improvement in the efficiency in the range of
.15 % to 1.6 %. Off-design operation increased the incidence losses in
he expander due to irregular incidence angles in the rotor. However,
he performance can be corrected to design levels by proper adjustment
f the nozzle guide geometry. Wang et al. [271], through a similar
pproach, compared the performance of R245fa and an R245fa/R134a
ixture in a radial expander by a set of rigorous CFD simulations

nd parametric sensitivity. Higher power output by more than 9 % and
sentropic efficiency by about 2.5 % were achieved with a lower mass

flow rate for the zeotropic mixture.
On a similar track, Jubori et al. [245] implemented rigorous sim-

ulation for the performance assessment of five organic fluids in low
temperature (< 100 ℃) ORC systems. The investigation was performed
for an axial and a radial inflow expander. It was shown that the
key operating and design parameters that have a strong impact on
he expander performance are the rotational speed, the expansion
atio in the cycle, the associated mass flow rate, and the expander
ize. A thermodynamic model and a mean-line model allowed the

rovision of the geometric characteristics of the turbine, whereas a c

24 
CFD model enabled an accurate expander-performance prediction for a
ide range of the operational regime. Isopentane exhibited the highest
fficiency, and in general, the axial turbine was smaller in size than

the radial-inflow turbine. Jubori et al. [248] extended the work to
include MOO in the design of the expander. CFD simulations were
sed in conjunction with a design space-filling technique to develop
 response surface that acted as the surrogate model for the expander
ystem. Nozzle and rotor-blade geometry, as defined by blade angle
nd blade-thickness distributions, were optimised for isopentane and
245fa based on efficiency and aerodynamic performance criteria. An

mpressive enhancement of more than 10 % in the overall efficiency of
he expander was observed for both fluids. The optimal expander design
as subsequently incorporated into the overall ORC system design.

As the model detail for the expander increases, the complexity of
the optimisation problem becomes prohibitive from the computational
point of view. The latter is more pronounced when working-fluid
selection decisions are to be determined. An approach to tackle such
a burden is the employment of simplified mathematical models that,
however, encompass the fundamental relations and interactions be-
tween the key operating conditions and the performance indicators of
the ORC system for accuracy in predictions. Neural networks and other
data-driven modelling techniques that act as surrogate models have
been widely utilised in the optimisation of ORC systems [180,248,284,
285]. For example, Palagi et al. [284] considered the development of a
neural-network model that, apart from the thermodynamic ORC model,
included a detailed model for an in-flow radial expander. Different
architectures were tested, including a shallow network with 20, 50 and
100 neurons in the hidden layer and a deep network with two hidden
layers, 30 neurons in the first layer and 10 in the second. The deep
network exhibited the lowest error in all the used training sets. The
neural-network model greatly facilitated the computational effort for
the optimisation. The approach was implemented for one working fluid.
Kim et al. [286] also developed a neural-network model for an in-flow
radial expander. The model was fitted using experimental data. A deep
network was used with two hidden layers. Different numbers of nodes
per layer were tested, ranging between 10 and 30. The highest accuracy
was attained when the first layer included 30 nodes and the second 10.
A single fluid was used here too. The use of such surrogate models for
the assessment of working fluids would require the development of as
many training data sets as the number of fluids under consideration. Of
critical importance is the accuracy of the developed data-based model,

hich depended on the quality of the training data set.

3.4.2. Heat exchangers
The heat-exchanger sizes are strongly dependent on working-fluid

properties, e.g., critical pressure, molecular weight, thermal conductiv-
ity, density, and the heat capacity [147]. The cost of heat exchangers in
an ORC is a significant part of the cycle capital cost, and this is reflected
in the proposed use of the ratio of ORC heat exchanger (HEX) area
to ORC net power to produce an economic performance metric [287].
Bernal-Lara and Flores-Tlacuahuac [171] show that this cost may be
p to 60%–70% of the total capital cost (with the rest being mainly

from the turbine) for low thermal efficiencies of 1%–2%, respectively. It
decreases to 45% for a thermal efficiency of 10%, with the contribution
f the turbine capital cost exceeding 50%. The modelling of HEXs as
art of ORC design has therefore received considerable attention. Both
hell-and-tube, as well as plate HEXs, have been modelled in ORC
tudies. Key features of the HEX models used in different publications
re shown in the Appendix (Table A.4).

Heberle and Brüggemann [155] investigated a layout with a pre-
heater and evaporator, where the aim was to calculate the surface area.
All the geometric parameters of the HEXs were pre-specified. Wang
et al. [156] investigated a layout with three zones in the evaporator
nd two zones in the condenser, with the aim of determining their
urface area. Details were not disclosed, but the employed heat-transfer
oefficient correlation indicates that a shell-and-tube type HEX was



C.N. Markides et al.

h
e

t

p

c

a
w

m

F

a

a
t

t
t
p
a
t

i
s
m

a
a
m

u
u
m
D
e
T
b
d

p

e

(
w
t

c

t
v
r
s
s
b

M
t

i
a
r

m

r
a

o

Progress in Energy and Combustion Science 107 (2025) 101201 
assumed. Each HEX was discretised in 30 finite elements to calculate
eat transfer under the assumption of constant properties at each
lement. Andreasen et al. [161] provided more details about the heat

exchangers, where the shell-and-tube geometry (including angles of
ubes in their relative positioning) was used to calculate their surface

area and pressure drops. Discretisation in 30 control volumes was
erformed in this case, too.

Oyewunmi and Markides [162] developed a model of shell-and-tube
HEXs with two zones in the boiler and the condenser. Heat-transfer
orrelations were considered, with 100 segments of the variable size

used for each HEX. The calculations included pre-specified geometric
parameters and correlations for turbulent flow boiling of the mixtures.
Noriega Sanchez et al. [163] used the logarithmic-mean temperature
pproach to determine the conductance and mentioned that the HEX
ere discretised to perform the heat balances.

Among the researchers who included the determination of both the
mixture composition and concentration in their studies, few performed
HEX calculations. Satanphol et al. [169] used HEX models from ASPEN
Plus, assuming constant heat-transfer coefficients. Lee and Mitsos [170]

odelled rigorously only the condenser, due to the needs of their
application on LNG cold-energy recovery. They used 100 segments
in the problem with the GA solver and 19 segments in the final
subproblem of the NLP formulation (cf., Section 3.1). Bernal-Lara and
lores-Tlacuahuac [171] calculated the surface area of the HEX, using

correlations in the shell and tube sides for the heat transfer and pressure
drops, for pre-specified geometric characteristics.

Studies are further reviewed that include the selection of pure fluids,
with a focus on cases where geometrical characteristics of the HEX
nd their types are accounted for. Lecompte et al. [250] evaluated

different pure fluids in an approach where the optimum part-load
and year-round operation of the ORC were determined in a step-wise
procedure. Pierobon et al. [251] presented a work where fluids from
 pre-specified set were used as options in an optimisation algorithm
hat optimised the ORC and the geometric features of the HEX simulta-

neously. An MOO GA algorithm was used where 20 fluids were design
options, together with the condenser outlet pressure and pinch point,
he recuperator pinch point, the minimum temperature difference of
he economiser and the vaporiser, the turbine inlet pressure, the su-
erheating temperature difference and the target velocities in the tube
nd shell sides of the HEX. These velocities were determined by using
he outer tube diameter, pitch, and baffle spacing as design variables in

a separate, simplex direct-search algorithm that provided an optimum
result for every vector of the ORC operating variables that was handled
by the GA.

Tian et al. [264] investigated the performance of a few mixtures
n a dual-loop ORC, where the geometric features of the employed
hell-and-tube HEX were pre-determined. The number of tubes was
anipulated in the parametric investigations in order to satisfy the

pressure-drop constraint. Di Battista et al. [252] used a shell-and-tube
HEX for the boiler, a plate-and-frame HEX for the recuperator, and
 plate-and-tube HEX for the condenser. The latter was the same as
 conventional car radiator. The plate-and-frame HEX enabled low
inimum temperature approaches in smaller dimensions.

In Li et al. [281], the key feature was the method for the eval-
ation of the pressure drop. The calculated HEX pressure drop was
sed to iteratively update the cycle calculations until a threshold was
et in the pressure-drop predictions between consecutive iterations.
ifferent shell cross-sectional area sizes were also investigated. Huster
t al. [180] developed an ANN for fluid–ORC system optimisation.
he ANN was derived from a full-scale model where the moving
oundary model (MBM) was used for the HEX, whose length was a
esign variable.

While the above studies included geometric features of the HEX as
design variables, in several studies fixed HEX geometries were used. Le
et al. [272] considered a shell-and-tube HEX, including equations to
redict fouling. The discretisation of the HEXs in the case of two-phase
25 
flows indicated that 50 segments were sufficient, as larger numbers
up to 350 segments improved the predictions by less than 1 %. Yang
t al. [253] investigated a dual-loop ORC with few pure fluids. A fin-

and-tube type HEX was selected to recover heat from high-temperature
flue gases, whereas plate HEXs were proposed for the intercooler,
condenser, preheater, and second evaporator.

Wang et al. [254] used plate HEXs for all the heat-transfer processes.
Rosset et al. [255] used HEX models in six ORC configurations to
exploit engine waste heat, with all using an air-cooled condenser and
a regenerator. The configurations included single-source heat using the
engine coolant, single-source heat using exhaust gases, dual-source heat
with series evaporators, dual-source heat, dual-regeneration with series
evaporators, dual-source heat with parallel evaporators and dual-source
heat, dual-pressure with parallel evaporators.

Jankowski and co-workers [256,257] proposed the use of plate
HEXs, considering discretisation of 1000 finite elements in the two-
phase regions. Bianchi et al. [258] used the moving-boundary model
MBM) for the HEX. In this case, the HEX had only three zones,
hose limits were determined spatially by the phase-change features of

he fluid.
The above studies refer to steady-state simulations; few of them

ontain explicit mention of the use of an MBM. This model is mainly
used for dynamic modelling, but the division of the fluid flow in control
volumes that equal the number of states (e.g., subcooled, two-phase,
and superheated-vapour) corresponds to a moving-boundary approach
in steady-state [180]. The difference with the dynamic implementa-
tion of this model is that the size of the control volumes varies in
time during transient operation, following the saturated-liquid and the
saturated-vapour boundaries [288]. Another model that is used for
dynamic HEX modelling is the finite-volume model (FVM). This consists
in discretising the HEX volume into a number of equal and constant
control volumes [288].

Grelet et al. [259] employed the FVM, where the HEX representa-
ion was based on discretisation into a number of longitudinal lumped
olumes of equal length. In each volume, there were three zones; one
epresenting the fluid state in the internal pipe, one representing the
tate of the metal of the pipe wall, and a final one representing the fluid
tate in the external pipe. Therefore, discretisation was implemented
oth horizontally and vertically.

Shu et al. [260], Wang et al. [261] and Chen et al. [268] employed
the MBM in fluid-assessment studies. Cai et al. [269] compared the

BM and the FVM based on results from an experimental rig for a mix-
ure at different concentrations. The authors noted that five ordinary

differential equations need to be solved at each volume in the FVM,
ndicating that the need for multiple segments would increase the size
nd complexity of the simulations compared to the MBM, which only
equires three segments. Both models matched the transient experimen-

tal results in the evaporator sufficiently, but the MBM simulation could
not continue in cases where the superheated state disappeared during
the experiment.

Zarogiannis and co-workers [265–267] further employed the FVM
for the boiler and condenser. The surface areas of the HEX were
design variables, together with other cycle parameters, in a challenging

ixture-selection and optimum-ORC control problem. Pili et al. [262]
employed the MBM for the boiler and considered several geomet-
ic parameters as design variables for the dynamic ORC performance
ssessment of pure fluids (see Table A.4, in the Appendix).

3.4.3. Key observations
Expander modelling is of paramount importance for the prediction

f the overall ORC efficiency and performance. Working-fluid ther-
modynamic properties influence the conditions in the expander for
a given set of geometric configurations. The proper adjustment of
such configurations for optimal operation can be achieved through a
combination of empirical strategies and systematic optimisation pro-

cedures. Since expander performance can significantly deteriorate at
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off-design operating points, it is necessary that an optimisation pro-
edure takes into consideration both the range of possible operating
onditions and the frequency that such conditions will occur during
he life span of the system. In this way, a robust expander performance
an be achieved without the extra costs of overdesign. Truly, 3-D
omputational models offer good accuracy in expander-performance
redictions, but the computational burden that is associated with such
odels is large, and their use in optimisation studies is prohibitive.
owever, 3-D expander models can provide a simulation test-bed for

he generation of numerous datasets for various working fluids and
eometric configurations that will enable the development of surrogate
odels for reliable performance predictions. The key challenges are the
etermination of the degree of model resolution for 3-D simulations
o obtain accurate performance predictions, preferably validated in
xperimental test rigs, and the generation of sufficiently large data sets
or the development of high-fidelity surrogate models.

In the case of HEX modelling, the MBM has been mentioned in both
ynamic and steady-state simulations. The FVM has been used in dy-
amic simulations but has not been mentioned explicitly in steady-state

simulations, although the discretisation rationale was similar to that of
the dynamic implementation of the FVM. Xu et al. [289] noted that the
computational effort of the MBM is lower because the model equations
are solved only in three segments (e.g., preheating, evaporation, and
uperheating in the boiler), whereas multiple segments are used in the

FVM model. The downside of the MBM is that numerical challenges
appear when one or more fluids in a mixture disappear from one of the
phases or when different phases (e.g., vapour or liquid) or states (e.g.,
superheated fluid) disappear. Such problems were also reported by Cai
et al. [269], who further compared predictions from the MBM and
the FVM with experimental data and observed insignificant differences
in both cases, despite the fact that the MBM is a lumped model. The
number of segments selected in the FVM affects the attained accuracy.
Xu et al. [289] reported errors that decrease from 10.5 % to 0.9 %, as
he number of segments increases from five to 30.

In ORCs, system simulations rely on phase-equilibrium calculations
hat involve significant numerical challenges due to the appearance and
isappearance of phases and states, especially as the number of mixture

components and segments increases. In principle, the identification of
a stable phase requires the global minimisation of the state function
of interest, e.g., of the Gibbs free energy. Such functions are usually
nonconvex, and the identification of local minima results in states of
metastable equilibrium, whereas the use of global optimisation incurs
significant computational effort. To this end, advanced algorithms have
been developed to address such issues, such as the Helmholtz free
Energy Lagrangian Dual (HELD) algorithm [290] or the algorithm
f Mitsos and Barton [291] that is also based on Lagrange duality.
hese algorithms are worth considering as a means of reducing the
omputational effort and of evaluating phase stability, formation of
zeotropes, the appearance of minimum or maximum flash points, etc.,
n ORC fluid selection and system design.

The two types of HEX that dominate the current literature are the
hell-and-tube HEX and the plate HEX. The latter are more compact

and enable better heat transfer at the expense of higher pressure
drops [252]. This results in the need for higher pressure on the working-
fluid side, higher backpressure on the heat-source side, and thus addi-
tional losses and costs if heat is to be extracted from flue gases; they
re also susceptible to problems when used at higher temperatures or
lows with particulates (e.g., internal-combustion engines). Di Battista
t al. [252] noted that shell-and-tube HEXs enable a reasonable trade-
ff between heat-transfer efficiency and pressure drop, while their costs
re lower and their design is simpler. Different HEX types have also
een proposed, such as the shell-and-louvered fin mini-tubes [292],

the shell-and-tube HEX with plate baffles [293], the corrugated tube
EX with twisted tape inserts [294] or the tube-in-tube HEX with metal

foam structures [295]. All these HEX types are worth investigating in
he context of different fluids and ORC configurations.
26 
The results attained by HEX models are affected by the use of differ-
nt heat transfer correlations. Zhang et al. [296] investigated the effects

of 8 two-phase heat transfer correlations, including 4 flow boiling and 4
flow condensation ones, in the operating, economic and environmental
ORC performance. At design conditions they found that for different
flow condensation correlations the relative difference between the
maximum predicted condenser plate length and the minimum one is
up to 103%, whereas different flow boiling correlations do not affect
significantly the size of the evaporator. Under off-design conditions,
they found that the net power output exhibits a relative difference of
1.1% for 4 different flow boiling correlations. Examining all combi-
nations of the flow boiling and combination condensation correlations
they reported that the relative difference of the electricity production
cost is up to 11.2%, whereas the environmental performance, measured
in total tons of CO2 equivalents, changes by less than 1%. Deviations
of similar ranges, due to the use of different heat transfer coefficients
in the evaporator, were also reported by Calise et al. [297]. They
dditionally observed that for higher heat transfer areas the deviations

are lower. These findings indicate clearly that the choice of the heat
transfer coefficient incurs significant uncertainty and that systematic
methods are necessary to address it, as discussed in the next section.
If this uncertainty is not considered, then rankings of working fluids

ay change significantly depending on the choice of the heat transfer
correlation or of other parameters with uncertainty, affecting especially
those fluids that exhibit close performance and behaviour.

3.5. Uncertainty quantification approaches

In some studies on fluid selection sensitivity analysis has been em-
loyed to determine how certain cycle performance indicators change

when different fluids are considered or when some cycle operating pa-
rameters change [19,298]. This is important as the performance of the
fluids and the cycle may be affected by uncertainty in experimentally
attained property values, in the underlying property- and process-
rediction models, or by operating variability. The quantification of
his uncertainty requires the use of approaches that can account si-
ultaneously for the uncertain realisations of multiple parameters and

ystematically assess their effects on different performance indicators.
One such approach was presented by Papadopoulos et al. [141]

to assess the effects of property uncertainties in the thermal and ex-
ergetic ORC efficiency, considering a set of mixtures that was identi-
fied as Pareto-optimum in computer-aided molecular-mixture design.
The method included non-linear sensitivity analysis based on first-
derivative information, where multiple parameter variations were prop-
agated through the cycle model to determine their simultaneous effects
on multiple performance indicators. Essentially, the proposed method
quantified the sensitivity of the cycle performance indicators under
changes in the multi-parametric space and determined the property
parameters where the smallest variations incurred the highest perfor-
mance changes. The results indicated that the performance of certain
mixtures was sensitive to changes in property values such as the critical
temperature and pressure, and the boiling point. Mixtures were also
identified for which both the thermal and exergetic ORC predictions
were robust, as they were not affected significantly by changes in the
omponent property parameters. The approach was recently extended

[299] by incorporating second-derivative information in the analysis
and testing the robustness in the predictions of different EoS and
activity-coefficient models under variability in property parameters.
Sensitivity analysis based on second derivatives is vital in optimisation,
as models that give rise to process state and performance profiles that
are very non-linear may be avoided. The approach was implemented
in a vapour absorption refrigeration cycle and can be easily tested
in ORCs.

Frutiger and co-workers [300,301] developed an advanced, Monte
Carlo-based approach for uncertainty quantification and selection of
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ORC working fluids. 1965 pure working fluids were initially investi-
gated with respect to their performance in an ORC model. In the first
stage, two ORC operating parameters were sampled from a uniform dis-
tribution using the Latin-hypercube method. Each fluid was simulated
for each pair of sampled parameters, and the ones that satisfied specific
ORC operating constraints were selected. The process variables giving
the highest net power output were then selected for each selected
working fluid. In the second stage, 400 samples were drawn from a
normal distribution using a Latin hypercube for each one of the eight
fluid parameters. Each sample was then simulated through the ORC
at the optimal operating parameter values identified in the previous
stage. The fluids were then rank-ordered based on their net power
output, with their 95 % confidence interval. The work showed that
the ranking of fluids differed significantly when property uncertainty
was considered.

The above uncertainty propagation approach was extended to in-
estigate the sensitivity of the Soave–Redlich–Kwong (SRK) [302] and

PC-SAFT [303] EoS, when they are used in ORC simulations [304].
Uncertainties were quantified for the critical temperature and pressure,
and for the acentric factor in SRK, for the segment diameter, the
chain length, and the energy parameters in PC-SAFT and the Aly-Lee,
ideal-gas heat-capacity coefficients [305]. The uncertain distributions
of these parameters were then propagated through the ORC model. It
was then observed that the departure functions of these EoS dominated
the total uncertainties in the ORC performance predictions and that SRK
incurred lower uncertainty in the simulation output.

Frutiger et al. [306] further evaluated the Monte Carlo sampling and
he Morris screening techniques to estimate the effects of different fluid

parameters in ORC power output. Uncertainties in critical temperature
nd pressure, acentric factor, molecular weight, and the Aly-Lee, ideal-
as heat-capacity coefficients were propagated through the ORC model
sing the Peng–Robinson [307] EoS. It was observed that the Morris

screening technique was more reliable, as it did not require the assump-
tion of a linearisable model, as in the case of Monte Carlo. However,
Morris screening did not account for correlation and interdependencies
of the fluid parameters, which need to be filtered out. It was found that
the critical temperature and pressure and the acentric factor incurred
higher changes in the ORC net power output than the other investi-
gated parameters. Hence it is important to have accurate values for
these parameters.

Santos-Rodriguez et al. [308] addressed the mixture selection and
RC design problem under uncertainty through a stochastic optimi-

sation framework. Using a set of four pre-specified pure fluids, the
goal was to determine the optimum number and concentration of the
mixtures, together with the optimum ORC operating characteristics.
The first stage addressed the perfect information problem, where the
effects of the heat-source temperature on the mixture composition
and concentration and on the cycle efficiency were determined. This
provided parameter sensitivity information and a target of ideal perfor-
mance. The stochastic optimisation problem was solved in the second
stage, where the optimum mixture was found that maximised the
mean cycle efficiency over a desired heat-source temperature range.
The approach employed risk measures in the form of the variance
and the conditional value-at-risk in the formulation of the stochastic
optimisation problem to facilitate the optimisation search across the
uncertain realisations. The results indicated that different mixtures
could be identified depending on the considered uncertain parameters.

Observations that are similar to the above last statement were
made in several of the reviewed works. Uncertainty may occur in
the employed thermodynamic or process models (e.g., in parameters
such as fluid properties, transfer coefficients, etc.). The consideration of
uncertainty during fluid selection is important, but the need to evaluate
multiple uncertain realisations increases the computational effort. It is
therefore important to be able to identify the parameters that incur
the highest changes in the ORC performance indicators and avoid the

ones that exhibit low sensitivity to changes. The latter would increase
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the computational effort without any significant effect on the attained
esults. When uncertainty is represented through continuous distribu-
ions, the choice of the distribution sampling method is important.
niform sampling is needed to ensure efficient representation of the
ontinuous distributions and to avoid oversampling some distribution
reas at the expense of others. There are various sampling methods,
uch as Latin hypercube (LatHS), Hammersley sequence (HSS), and

Sobol sampling (SS) [309]. A recent study [309] on the use of such
ethods in optimisation under uncertainty of various linear and non-

inear objective functions indicated that HSS performs best for up to 40
ncertain variables, SS for up to 100 variables, LatHS-SS for over 100
ariables and LatHS-HSS for up to 250 variables.

The impact of using different heat transfer correlations has been
learly highlighted in the previous section, however the underlying
ncertainties have not been accounted for in ORC optimisation sys-
ematically. The different approaches outlined above may enable the
dentification of both the heat transfer correlations and even specific

terms included in each one of them, that incur the highest impacts
in multiple ORC performance indicator simultaneously. This could
greatly help identify which correlations or which correlation terms
need to be improved through further experiments, as well as the
areas of the parameter space in which such experiments need to take
place. Furthermore, through some of the reported methods, the existing
correlations may be used simultaneously during ORC optimisation to
identify optimum system conditions and working fluids in view of the
uncertainty in such correlations.

3.6. Fluid selection and ORC off-design assessment

The key features of approaches pertaining to the use of advanced
echniques for off-design ORC performance assessment considering dif-

ferent fluids are summarised in Table A.5, in Appendix. Deviation
from the design point in an ORC system can result from the effects of
disturbances affecting the system (e.g., drifting in the hot- and cold-
source stream temperatures and flow rates, fouling in the evaporator
and condenser, and so forth), and output power level changes. The
direct result is a quick deterioration of the overall efficiency of the
system. A control system aims to maintain the efficiency at the high-
est possible level for the operating set of conditions. Working-fluid
properties are influenced by the changes in the operating conditions.
Depending on the sensitivity of the fluid properties to such changes, the
peed of response of the control system is affected despite the employed
ontrol algorithm and its tuning [310]. Lu et al. [311] exploited this

fact and proposed a concentration adjustment to the working fluid, a
mixture of R245fa and R113, whenever the ORC system was in off-
design operating regime. In this way, the temperature glide could be

anipulated by altering the proportion of the most volatile to the least
olatile components in the mixture so that the overall efficiency is
aintained within the acceptable range.

Mavrou et al. [312,313] selected four novel and one conventional
luid mixture that exhibited high steady-state performance from the
rior work of Mavrou et al. [314,315], to investigate their operabil-

ity performance under the influence of disturbances. A systematic
approach was used, where numerous disturbances were propagated
simultaneously through a non-linear, equilibrium solar ORC model
to investigate their impacts on multiple performance indicators. The
overall design goal was to minimise a sensitivity index, expressed in the
orm of a control performance index that minimised the distance of the
ontrolled variables (e.g. work output) from the desired operating set-
oint and the use of resources to bring the system back to its set-point.
he authors did not consider dynamic models but highlighted in a
ystematic way, by considering a series of steady-state simulations, the
mportance of considering variability as part of working-fluid selection.

Chatzopoulou et al. [316] employed an approach that combined an
optimisation algorithm with part-load operation. Initially, the authors
addressed the optimum sizing of the components of an ORC under
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steady-state operation. Subsequently, they optimised the operating con-
ditions of the cycle, for the identified optimum cycle size, for a series of
heat-source conditions. An interesting feature was how the simulation
of the expanders was handled. The operating points generated by the
optimiser at each iteration were introduced in expander maps to calcu-
late updated isentropic efficiencies and mass flow rates. The iterations
ontinued until the expander outputs matched those of the energy and
ass balances.

Pang et al. [317] investigated the long-term operation of a 3 kW
RC under different control strategies for the pump head and, subse-
uently, the mass flow rate of the working fluid. They further developed
 simulation model that could act as a platform for the determination
f the optimal operational policies under off-design conditions. R245fa,
123, and their mixtures were systematically evaluated with a mixture
chieving the highest system efficiency of 5.14 %.

Pili et al. [262] designed an ORC system for waste-heat recovery
ith an application for heavy-duty trucks that considered working-

luid interactions for a wide range of operating conditions. A dynamic
odel for the ORC with an incorporated control system consisted of

ne proportional-integral (PI) controller for the mass flow rate in the
ump and one proportional controller for the exhaust by-pass valve
n the evaporator. The time-averaged power generation of the ORC

system was the criterion that was related to the off-design operation
nd closely linked to the controller performance. Toluene, followed
y ethanol, exhibited the highest power generated, but the cost of the
equired installation of a vacuum system should be taken into account.

Zarogiannis [267] and Zarogiannis et al. [265,266] investigated the
impact of different working fluids on the control system performance
in an ORC system. A model predictive control (MPC) approach was
eveloped to maintain the power output at the desired level. Dynamic
odels were utilised for the heat exchangers and pseudo-steady-state
odels for the pump and the expander in the ORC system. Novel

nd conventional hydrocarbon- and halogenated hydrocarbon-based
ixtures were considered within an integrated framework featuring an
RC system model and a model predictive controller. Variation in the
ot source streams was considered in the system where the employed
PC aimed to maintain the evaporator temperature at the desired level

nd achieve the maximum work in the expander. The simultaneous
roblem of working-mixture selection and ORC design under open
nd closed loop conditions was solved using the SA algorithm. It was
roposed to deal with the design decisions through comprehensive
riteria, which ensure the full inclusion of the underlying interactions
imultaneously instead of the sequential design of individual parts of
he cycle. The results provided significant insights into the behaviour
f the ORC system under closed-loop conditions in view of different

working media. For example, it was observed that the effort of the
controller to compensate for the imposed disturbances is higher when
the employed working fluid is sensitive to disturbances. A working fluid
that is more resilient (less sensitive to disturbances) would be able to
absorb disturbances of wider ranges without requiring significant effort
from the underlying controller.

The integration of ORC design with the dynamic performance under
losed-loop conditions for various working fluids and a wide range of

operational conditions and disturbance scenarios is still at the initial
stage of development. Even though expander and heat-exchanger mod-
els can capture the impact of off-design operation, the control system
can alleviate such impact with the proper adjustment of the ORC system
peration mode. Clearly, the effort of the control system to manipulate
ystem operation depends on the ability of the equipment to accommo-

date the required corrective actions and the potential of the working
fluid to absorb the effects of undesired deviations and favour high
efficiency. The in-depth analysis of design decisions, as represented by
equipment capacity, cycle configuration, and working-fluid selection,
in accordance with the achievable dynamic performance has not yet
been fully explored. For instance, the impact of the degree of over-
esign in equipment size on the ability of the system to quickly and
28 
effectively compensate for disturbances needs to be carefully estimated
in terms of cost for the design and economic benefit from minimising
he time of operation away from the economic optimum. Optimisation-
ased controllers clearly provide insights into cycle operation in a

direct link to the economics of the ORC system and could offer the
olution to the outlined challenges.

4. Working-fluid property prediction

As discussed in the Introduction, the working fluid is an integral ele-
ent of an ORC system, with a controlling role in determining its tech-

nical and thermodynamic performance. A key factor in ORC design is
therefore the ability to provide accurate and reliable predictions of the
thermophysical properties of the working fluid in conditions relevant
to ORC operation, such as the changes in specific enthalpy and entropy
undergone by the working fluid through each process in the overall
cycle, as well its viscosity and thermal conductivity at each stage.

4.1. Empirical, highly accurate physical property models and their limita-
ions

Highly accurate, empirical EoS have been developed for well-
measured pure substances [318,319] and a small set of mixtures [320].
These models usually provide the most accurate representation of a
pecies’ physical properties if such a model exists for the substance
f interest. Models of this class rely on the availability of sufficient
xperimental data and are not predictive in nature. Among the array
f well-measured substances, it is possible to screen for ORC working
luids, whereas a wider design space of substances cannot be analysed.

Further, highly accurate EoS can be used to unambiguously (concerning
he static properties) determine the thermodynamic behaviour of a
onsidered pure substance. In that sense, such models serve as a
eference to assess other predictive models.

4.2. Models based on empirical group-contribution (GC) approaches

The philosophy of GC approaches is a simple one: properties of
a substance are obtainable as a sum of contributions from appropri-
ately designated chemical (functional) groups that together constitute
the molecules of which the substance is comprised. GC methods are
more successful for some physical properties and less so for others,
which is caused by missing information of how functional groups are
connected to one another. Both intra-molecular energies and inter-
molecular energies (or the appropriate partition sums) suffer from the
lack of detail on connectivity and proximity. For example, the effect of
intra-molecular hydrogen bonding on the considered physical property
cannot be properly predicted with a GC method. Making a distinction
between a possibly incomplete description of intra-molecular energies
and of inter-molecular energies rationalises why GC methods are rather
successful for ideal-gas properties that only suffer from shortcomings in
the representation of intra-molecular contributions but not by lack of
effective inter-molecular detail.

An excellent summary of empirical GC methods is provided in the
book of Poling et al. [321]; we note that an updated edition [322] of
this classic text has recently been published. Another more-recent per-
spective on GC methods, in general, has been provided by Gani [323].
Lydersen [324] developed a successful GC method to estimate criti-
cal properties in the 1950s; his approach was later extended in the
1980s by Joback and Reid [64,325] to estimate a variety of pure-
component thermodynamic properties, including (of particular impor-
tance in the context of ORC modelling) the critical pressure and tem-
perature, the normal boiling temperature, the enthalpy of vaporisation
(at the normal boiling point), and the temperature-dependent ideal-
gas heat capacity, 𝑐0𝑝 (𝑇 ). In spite of their age, the Joback and Reid
correlations remain especially popular; for example, they are incorpo-

326] and
rated in process-modelling software such as ASPEN PLUS [
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gPROMS [327]. They were adopted, together with the Riedel corre-
ation [328] for saturation (or vapour) pressure, in the ORC CAMD

work of Palma-Flores et al. [329]; these authors proposed a simul-
aneous product and process design method for waste-heat recovery
sing novel organic fluids, using ‘‘Rankine-like’’ cycles. They were also
dopted by Lukawski et al. [330] in their development of molecular-
roperty methods for assessing ORC efficiency. The early correlative
pproaches of this type (often referred to as first-order GC methods)

were refined by Marrero-Morejón, Gani and co-workers [143,331,332]
o incorporate isomerism and proximity effects through the introduc-

tion of secondary groups. For example, Lukawski et al. [330] found the
second-order GC critical-temperature correlation of Marrero-Morejón
and Pardillo-Fontdevila [332] to be more reliable than the first-order
Joback and Reid correlation for cases where experimental values of
normal boiling temperature were not available; more recently, Fanxiao
et al. [333] found that the Marrero–Pardillo method provided for more-
accurate exergy efficiency predictions of ORC systems (also reporting
that PC-SAFT [144,303] (discussed below) performed better than ei-
ther). Among the second-order approaches, the method of Constantinou
and Gani [331] has become popular; this allows for the calculation of
ormal boiling point and melting point, critical pressure and temper-

ature, and standard enthalpy of vaporisation at 298 K (among other
pure-component thermodynamic properties). The approach has been
used, for example, in the studies of Papadopoulos and co-workers [98,
100,141,314,315,334–337]. In 2017, an extensive review of GC meth-
ods in the context of pure working fluids for thermodynamic cycles
was undertaken by Su et al. [338]. These authors considered in turn
hermodynamic (boiling temperature, critical properties, freezing tem-
erature, enthalpy of vaporisation, isobaric heat capacity, density, and
apour pressure) and transport (viscosity and thermal conductivity)
roperties of interest, providing a near-comprehensive listing of GC
ethods available for each at the time of publication although, per-
aps reflecting their relative infancy at the time, GC SAFT approaches
ere largely overlooked. These authors also discussed environmental,
hysicochemical and economic properties.

A weakness of empirical GC approaches is that their quality is
constrained by the amount and quality of experimental data available
or parameter refinement at the time of their development; any sort of
xtrapolation of their use, either in the context of their application to
luids not represented among the original data sets, or for predicting
roperties at thermodynamic conditions not considered during group
evelopment, is ill-advised; this could lead to inconsistencies in the

treatment of different candidate working-fluid molecules, whereby care
s required to ensure the selection of the most-appropriate correlations.
oling et al. provide useful comparisons for this purpose in relation
o GC methods available at the turn of the millennium. In this con-

text, we note that the contributions for the Joback and Reid 𝑐0𝑝 (𝑇 )
orrelation were developed for temperatures from ambient to 1000 K,

which should suffice for most ORC applications, but this range should
be kept in mind should the low temperature of the cycle be below
mbient. Recently, a statistical-mechanics-based alternative [339] has

been proposed that retains better performance outside this temperature
range, as well as providing a significant improvement in the case
of halogenated compounds, for which the Joback and Reid approach
uffers reduced accuracy [321,339].

GC approaches have also been developed for mixtures, initially
ocusing on activity coefficients in liquid mixtures. Indeed, perhaps

the most important GC method historically is the well-known univer-
al functional activity coefficient (UNIFAC) approach [65,340,341],

that, together with its modifications, has been firmly established for
many years.

4.3. Activity-coefficient models and cubic equations of state

Activity-coefficient models — in particular, local-composition activit
oefficient models, exemplified by the Wilson [342], non-random two-

liquid (NRTL) [343], the universal quasichemical (UNIQUAC) [344,
29 
345] models, and the GC variants, the analytical solution of groups
(ASOG) model [346] and UNIFAC [65,340,341] – represent a route to
thermodynamic properties of liquid mixtures that can be successfully
applied in the case of working fluids. A useful discussion of the
approach and its strengths and weaknesses (particularly in comparison
to the use of EoS) has been provided in Chapters 5 and 6 of the book
of Kontogeorgis and Folas [347]. The NRTL model has been employed
for working-fluid modelling in the context of ORCs or related cycle
evices [348–352] while UNIFAC has been used by Thierry et al. [278]

in their work on simultaneous optimal design of multi-stage ORCs and
working-fluid mixtures. However, in general, the approach has not been

idely adopted in connection to ORCs and related systems.
In the context of CAMD, UNIFAC represents the most relevant of this

class of model due to its GC nature allied to the substantial database of
vailable parameters. Indeed, the feasibility of adopting GC approaches
uch as this rests on the availability of numerous adjustable parameters,

which are obtained by adjustment (‘‘fitting’’) using experimental data.
lthough, by now, the database of parameters available for UNIFAC

is extensive, parameters for a particular group may nevertheless be
unavailable, in which case the approach cannot be used — this is a
problem that has its analogue in most GC approaches, including GC EoS
see below). We note, however, that recently, the challenge of missing
NIFAC parameters has been approached through the application of
atrix-completion methods to predict the missing parameters [353].

The quantum-mechanical conductor-like screening (COSMO) meth-
ods, further developed by Klamt for describing real solvents (COSMO-
RS) [354–356] offer a predictive alternative to activity coefficient
models for the calculation of liquid thermodynamic properties. De-
spite their foundation in quantum mechanics, these methods possess
adjustable parameters for size, short-ranged hydrogen-bonding ener-
gies, and element-specific van der Waals energies. COSMO-RS has
been adopted in working-fluid screening for ORCs [148,216,357] and
CAMD for chemical-engineering problems [358]. The more-transparent
COSMO segment activity-coefficient model (COSMO-SAC) [359] has
een adopted in ORC modelling [360] but, so far as we are aware, not
et in a CAMD context. Recently, an open-source implementation [361]

of three versions [359,362,363] of COSMO-SAC has been made avail-
able by Bell and co-workers, together with an excellent exposition of
the approach [364], which will make it a convenient option for use in
future research.

In a recent ground-breaking enterprise, Winter and co-workers [365,
366] have introduced further predictive power to activity-coefficient
methods for binary mixtures through the so-called SMILES-to-Property
Transformer (SPT)–NRTL [366] approach, a transformer-based machine
learning model to predict concentration-dependent thermodynamically
consistent binary activity coefficients and their corresponding NRTL pa-
rameters, based solely on simplified molecular-input line-entry system
(SMILES) codes. (SMILES [367–369] refers to a systematic procedure
for translating the molecular structure of a compound into a string of
symbols that is easily interpretable in a computer code.) These authors
ntroduced a pre-training step on synthetic property data sampled from
OSMO-RS and a second, fine-tuning step, training on experimental
ata. They have provided NRTL parameters for 100 000 000 mixtures
ith more than 10 000 unique molecules, and have demonstrated

uperior performance from SPT–NRTL compared with COSMO-RS and
NIFAC in most examples considered. There is clear potential for this
pproach in the design of binary-mixture working fluids for ORCs.

A drawback with the activity-coefficient or COSMO-based approa-
hes is that one is obliged to adopt, in tandem, a different approach
o obtain vapour-phase properties; care must therefore be exercised to
nsure thermodynamic consistency. Typically, a cubic EoS is employed.
or example, Thierry et al. adopted the SRK EoS [302] (for pure
omponents) and the predictive-SRK (PSRK) [370] (for mixtures) to-
ether with UNIFAC; in the investigations of Preißinger and co-workers
148,216,357] the COSMO-RS theory was combined with a generalised

Patel–Teja equation [371], while Xu et al. chose the Peng–Robinson
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EoS [307] in their study with COSMO-SAC. We note that this type of
ombined approach is becoming more accessible to researchers outside
he field of fluid-thermodynamic modelling with the emergence in re-
ent times of open-source software, such as FeOs [372], that of Bell and
o-workers [361,364,373], Phasepy [374], and Clapeyron.jl [375,376],

wherein the Wilson, NRTL, UNIFAC and COSMO-SAC approaches, as
well as a wide variety of EoS (both cubic and SAFT) have all been
implemented and can be straightforwardly combined.

GC activity-coefficient methods such as UNIFAC, as well as the
COSMO approaches, are well suited to a CAMD framework, however
this may not be true of the equation (or equations) of state with which
hey are paired. For the approach to be completely versatile these EoS
hould also be amenable to application within a GC strategy.

Within the framework of EoS modelling of fluids, GC approaches
volved initially in relation to mixture calculations using cubic EoS
hrough so-called EoS/𝐺𝐸 mixing rules. The link to GC approaches was
hrough the incorporation, within the mixing rules, of activity coeffi-
ients that could, for example, be obtained from a GC approach, such as
NIFAC. The first of the EoS/𝐺𝐸 mixing rules was developed by Huron
nd Vidal [377]. Improved EoS/𝐺𝐸 mixing rules were later introduced

by various researchers, including Michelsen and co-workers [378–380],
and Wong and Sandler [381]; the PSRK EoS [370] is an example that
falls into this category. Later, adopting a slightly different philosophy,
a GC approach was introduced that enables the prediction of the binary
interaction (or ‘‘𝑘𝑖𝑗 ’’) parameter used in mixture combining rules to
characterise the unlike (cross) attractive EoS parameter [382,383].
Each of these two strategies confers predictive power on cubic EoS that
had hitherto been largely correlative, thereby allowing for their use in
the design of working-fluid mixtures.

More recently, GC approaches have been applied to pure-component
modelling with cubic EoS in the context of ORC modelling. The use of
standard cubic EoS such as SRK [302] or Peng–Robinson [307] requires
prior knowledge of the critical temperature, 𝑇c, and pressure, 𝑝c, (to
evaluate the EoS parameters 𝑎 and 𝑏), and the acentric factor, 𝜔 (for
he evaluation of the 𝛼 function)). GC methods are available for each

of these and, by extension, can be used collectively for cubic EoS. For
example, Chen et al. [384] recently applied the Peng–Robinson and
he volume-translated Peng–Robinson (VTPR) [385] EoS in a CAMD

study pertaining to ORC working fluids. Following Peng et al. [386]
hese authors used the GC methods of Su et al. [387] for 𝑇c, 𝑝c, 𝜔

and 𝑐0𝑝 , together with the GC method of Nannoola et al. [388] for the
critical volume, 𝑉c, which is required in addition for the VTPR EoS. The
pproach was tested on four commonly used working fluids, R245fa,
600a, R601a and R1234ze(E); in terms of the predicted thermody-

namic properties it was observed that, although the deviations (from
REFPROP [389] data) were higher than those obtained when using the
Peng–Robinson and VTPR EoS parameterised in the conventional way,
hey were nevertheless within acceptable limits.

4.4. Statistical associating fluid theory (SAFT)

In essence, when adopting a traditional cubic EoS, one is assuming
that the fluid molecule can be adequately represented as a sphere
(in particular, of a hard spherical core surrounded by a region of
attraction); there is recognition neither of asymmetry in molecular
shape nor of polarity in the underlying molecular model. A consequence
of the former is that cubic EoS are not well suited for modelling large,
highly non-spherical molecules; this may not be a concern since such
molecules are unlikely to be encountered in the context of working
fluids for ORCs. The neglect of polarity, however, is of more sig-
nificance; in particular, no account is taken of the possible impact
of intermolecular association (often important in the case of polar
molecules, which are commonly encountered in working-fluid design).
Thus, when adopting cubic EoS within CAMD, the relative success of
the strategy is dependent on the nature of molecules designed; in this

sense, cubic EoS are not naturally well suited for CAMD. By contrast, a

30 
conventional SAFT EoS is more versatile; the adoption of a molecular
model comprising instead a chain of spherical segments allows better
recognition of molecular shape. The segments, which interact with each
other via a pair potential (such as Lennard-Jones, or Mie), can also be
furnished with ‘‘sticky sites’’ (sometimes described as ‘‘intermolecular
velcro’’), thereby accounting for association interactions, such as hydro-
gen bonding. Moreover, the EoS parameters each have a clear physical
meaning in relation to this molecular model; this is a key feature in
CAMD, facilitating searches in molecular parameter space.

The Helmholtz free energy of the fluid is expressed as a sum of
contributions, each arising from different features of the underlying

olecular model, making the SAFT approach highly adaptable, as is
eflected in the number of versions that have become available since the
irst SAFT equation [66,67] was introduced by Gubbins and co-workers,

including soft-SAFT [390], SAFT-VR [391,392], PC-SAFT [144,303]
and SAFT-VR Mie [145]. (We note that implementations of all the

ajor SAFT versions are available open-source, together with coded
lgorithms for their use [372,375,376]). The inclusion of extra contri-

butions in the free-energy expression has allowed the development of
SAFT EoS for fluids of polar molecules [393–405], and of electrolyte
olutions [406–418]. The extra versatility of SAFT, compared to cubic

EoSs, comes at the price of greater computational expense. The majority
of the increased computational cost comes from the evaluation of the
association contribution, which includes numerical calculations (of the
bonding volume and degree of association). In addition to the extra
omputational cost, a greater burden is placed on the numerical solvers
hen solving, for example, for fluid-phase equilibrium, so that robust

olvers are required.
The first contribution to the free energy in any SAFT equation is the

deal free energy, 𝐴IDEAL. However, strictly speaking, the evaluation of
his contribution is not made using the SAFT theory, which provides
nly the residual (or non-ideal) part of the free energy; this subtlety is
ften overlooked or misunderstood. In practice, the ideal contribution
s usually ‘‘backed out’’ from the ideal-gas heat capacity, whereby the
ser is required to choose the source of 𝑐0𝑝 appropriate to the problem
t hand — just as one would when using, for example, a cubic EoS;
ypically the Joback and Reid [64] correlation is adopted. (In some

commercial software in which SAFT is implemented, the ideal contribu-
tion is hardwired; this may have contributed to the confusion over its
role in the theory.) The relative importance of the ideal contribution
to the whole free energy can be high, even in the liquid phase. This
can be assessed by comparing the ideal-gas and total heat capacities;
for example, at ambient conditions the ratio 𝑐0𝑝∕𝑐𝑝 for water is ∼ 45%.
The significance of the ideal contribution has been discussed in some
depth by Walker and Haslam [339], and is illustrated in Fig. 14, using
n-butane as an example fluid. The calculated (𝑝, 𝑇 ) fluid phase diagram
f n-butane is presented as a colour map depicting the ratio 𝑐0𝑝∕𝑐𝑝;
alculations were performed using (in this case) SAFT-𝛾 Mie [79] (the

GC analogue of SAFT-VR Mie [145]), incorporating the 𝑐0𝑝 model of
Walker and Haslam [339]. One can see that the ideal contribution
is dominant throughout much of the phase diagram, exceeding the
esidual contribution even throughout much of the liquid region. This

emphasises the need for, at the least, an awareness of the characteristics
and range of applicability of the adopted correlation for 𝑐0𝑝 .

In the context of the current article, an important consequence
of the adaptability of the SAFT approach is that SAFT equations are
more suitable for CAMD modelling than, for example, their classical
ubic counterparts. Bardow and co-workers [20,51,55,276,277,419–

428] have exploited this in their pioneering CAMD work on ORC
systems using PC-SAFT [144,303] (probably the most popular among
the widely-used versions of SAFT), adapting the approach taken in re-
lated earlier work [57] on integrated solvent and process design. These
authors showed that, by treating the PC-SAFT molecular parameters as
continuous, they can be optimised together with other process param-
eters, searching for the optimal hypothetical working fluid (and corre-
sponding ORC cycle). These parameters are mapped onto a database
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Fig. 14. Pressure–temperature colour map of the ratios between the ideal isobaric
heat capacity and the total heat capacity of n-butane, as calculated using SAFT-𝛾 Mie,
incorporating the 𝑐0𝑝 model of Walker and Haslam [339]. The black curve corresponds
to the calculated saturation (vapour-pressure) curve, terminating at the critical point,
represented by the black filled circle. ‘‘L’’ and ‘‘V’’ denote the liquid and vapour phases
(respectively).
Source: Adapted from Ref. [339].

of parameters representing real fluids using an approximation of the
process-based objective function to identify the best candidate working
fluid. In subsequent work, the MINLP is solved using a GC approach
both for the EoS and for transport coefficients [274,277,424,427,428].
Among other versions of SAFT, SAFT-VR Mie [145] has also found
considerable use in the context of modelling ORC systems [18,89,193,
316,429–439]. Through the use of the highly adaptable Mie potential
to represent the interaction between monomer segments, allied to
greater sophistication in the statistical–mechanical foundation of the
theory, this particular version of SAFT [145] was developed to provide
improved descriptions of second-derivative properties, such as heat
capacity and Joule–Thomson coefficient – properties that are highly
relevant in the context of working fluids for ORCs and related devices
– while retaining the all-round excellent description of traditionally
targeted properties, such as fluid phase equilibrium and densities.

4.5. Group-contribution SAFT approaches

Conventional SAFT EoS such as SAFT-VR Mie and PC-SAFT –
notwithstanding their innovative use in CAMD – are not, of them-
selves, GC equations. However, GC adaptions of these and other SAFT
variants have been published; for a recent review see Shaahmadi
et al. [440]. In some of these publications (Refs. [68,69,72,441–443]
for PC-SAFT; Ref. [71] for original SAFT [67] and SAFT-VR [391]), GC
approaches are introduced to characterise the (identical) segments of
the homonuclear chain comprising the model molecule, after the fashion
of a GC-based mixing rule for the molecular parameters [444]; the
fluid properties are then evaluated using the existing SAFT theory. By
contrast to these homonuclear approaches, in the GC-SAFT-VR [78], hs-
PC-SAFT [444] and SAFT-𝛾 [76,77,79] approaches, the GC concept is
embedded within the SAFT formalism itself. A more-detailed molecular
model is incorporated, wherein different types of monomeric segments
are used to represent the individual chemical functional groups making
up a molecule; the model molecule is, therefore, heteronuclear. A
systematic comparison of a homonuclear GC PC-SAFT approach and a
heteronuclear GC model showed that the heteronuclear leads to better
correlation results [445]. Moreover, the retention of the functional-
group information in the molecular model allows for the prediction
of thermodynamic properties of mixtures based on pure-component
31 
data alone [77–79,446], which can be an advantage. Markides and co-
workers have pioneered the use of this class of GC-SAFT EoS in the
context of ORCs or related systems, [146,275,447–451] adopting SAFT-
𝛾 Mie. As the GC analogue of SAFT-VR Mie, SAFT-𝛾 Mie is particularly
well suited for use in this setting. Recently, Rehner et al. [452] have
been the first to use a heterosegmented GC PC-SAFT implementa-
tion [444] as the property-prediction model in a CAMPD application,
highlighting the design of an ORC system as a case study. In another
recent study, Rehner et al. [453] proposed a GC method for binary-
interaction parameters for the homo- and heteronuclear GC methods for
PC-SAFT. This advancement holds promise for enhancing the accuracy
of mixture modelling in ORC CAMPD applications relying on PC-SAFT.

4.6. Equations of state informed by machine learning

Although a relatively new field, machine-learning (ML) techniques
are already impacting thermodynamic-property prediction and have
been applied to equations of state to improve their predictive power.
For example, Chaparro and Müller [454] have developed an ML EoS
by training a neural network on molecular-dynamics simulation data.
In recent years, notable advancements have been made in leverag-
ing ML techniques to predict EoS parameters. For example, Biswas
et al. [455] presented a graph neural network that outputs the critical
point and the acentric factor of a fluid, thereby providing a method to
parameterise many types of cubic EoS. In pioneering endeavours, deep
neural networks have been integrated to predict pure-component pa-
rameters of PC-SAFT, utilising either group counts [456] or extended-
connectivity fingerprints [457] as inputs. In a comprehensive study,
Felton et al. [458] evaluated various model architectures, with random
forests emerging as the most accurate in predicting vapour pressures
and liquid densities. However, these models encounter two primary
limitations: firstly, the models are trained solely on pure-component
parameters, failing to capture the sensitivity of the PC-SAFT model
itself; secondly, the training of the models relies on existing databases
of pure-component parameters, limiting applicability to molecules with
adequate experimental data for parameter regression. To address these
challenges, Winter et al. [459] recently embedded the PC-SAFT EoS
directly into the training process of a transformer model. By doing
so, the authors could train their SPT model directly on experimental
vapour-pressure and liquid-density data, thereby capturing the PC-
SAFT sensitivity on model parameters. The resulting SPTPC−SAFT model
demonstrates remarkable performance, enabling the prediction of pure-
component parameters from SMILES codes with an average percentage
deviation of 13.5 % for vapour pressures and 3 % for liquid densities.
Given the necessity of SMILES codes for model input, integrating
the SPTPC−SAFT model into CAMPD for ORC systems would require a
derivative-free optimisation algorithm (for details, see Section 5.2).

4.7. Prediction of transport coefficients

Transport coefficients, such as viscosity, thermal conductivity, or
diffusion coefficients, play a significant role in determining ORC equip-
ment dimensions, and thus the cost of the ORC system. Any mean-
ingful objective function thus relies on sufficiently accurate estimates
of transport coefficients [274]. GC models were developed for shear
viscosity [64] and for thermal conductivity [460], although limited to
liquid phases or to vapour phases [461]. Transport coefficients, like
the viscosity 𝜂(𝑇 , 𝑝) are functions of state variables temperature and
pressure, or temperature and density. Models for transport coefficients
are thus often based on input from thermal EoS, such as friction
theory [462] or free-volume theory [463]. For constructing predictive
models, the most successful approach is excess entropy scaling proposed
by Rosenfeld [464,465]. The approach is suitable for viscosity, thermal
conductivity, and self-diffusion coefficients and is very simple to imple-
ment. In view of this it is perhaps surprising that it was neglected for
a number of years before being taken up by Novak [466–470] and by
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Fig. 15. Left: Logarithm of dimensionless shear viscosity 𝜂∗ for methane, CO2, and n-decane as a function of 𝑠res∕R. The curves represent cubic polynomials that correlate the
experimental data [485] (symbols). The temperature and pressure ranges of the data are 91–450 K and 0.1–700 bar for methane, 219–500 K and 5.6–2600 bar for CO2, and
289–709 K and 0.07–3000 bar for decane. Right: Viscosity of n-decane as a function of pressure for several isotherms. Experimental values [485] (symbols) and results of entropy
scaling (curves) using the cubic polynomial from the diagram to the left. The symbol colour represents the model error for each data point.
Gross and co-workers [471–476]; subsequently the approach has been
championed by Bell and co-workers [477–484].

Excess entropy scaling is based on the observation that transport
coefficients, made dimensionless with a suitable reference value, are,
to an excellent approximation, univariate functions only of residual (or
excess) entropy 𝑠r es, with 𝑠r es(𝑇 , 𝜌, 𝑥) = 𝑠(𝑇 , 𝜌, 𝑥) − 𝑠ig(𝑇 , 𝜌, 𝑥), where
𝑠ig is the entropy of an ideal gas. In Fig. 15, the principle of excess
entropy scaling is illustrated for three substances (methane, CO2, and
n-decane). The left diagram gives experimental viscosity data 𝜂 made
dimensionless using a Chapman–Enskog equation, 𝜂∗ = 𝜂∕𝜂CE, covering
a wide range of temperature and pressure. Simple Ansatz functions,
such as low-order polynomials, can be used to correlate the logarithm
of the scaled transport properties with residual entropy. The red curve
of the left diagram (corresponding to n-decane) leads to the predictions
(red curves) on the right diagram by back converting 𝜂 = 𝜂∗ ⋅ 𝜂CE.

Models for the shear viscosity [467,469] and self-diffusion coef-
ficients [466] were proposed by Novak using the PC-SAFT EoS for
the residual entropy 𝑠r es. Lötgering-Lin and Gross [471] developed a
predictive GC method based on entropy scaling and PC-SAFT. For 100
pure species, the mean absolute relative deviation is about 5% for the
entire fluid phase (i.e., for vapour and liquid states); for three chemical
families, the deviations are higher, reaching about 10%. Water is
represented with deviations of 3.1%. In a subsequent study on mixtures,
Lötgering-Lin et al. [472] determined a mixing rule from results of
molecular simulations and applied the mixture model in a completely
predictive manner to viscosities of real mixtures. For 566 mixtures
(34,500 experimental data points), they obtained relative mean de-
viations of, on average, 6% for mixtures without hydrogen-bonding
species. Deviations exceeded 10% for mixtures with hydrogen-bonding,
indicating that such mixtures require an adjusted binary-interaction
parameter (‘‘𝑘𝑖𝑗 ’’) for improved results.

Thermal conductivity was studied by Hopp and Gross by param-
eterising pure substances individually [473] but also by a predictive
GC method [475]. Both studies showed good agreement with experi-
mental data for thermal conductivity, even for substances with strong
hydrogen-bonds such as water and alcohols. Hopp et al. [474] proposed
a model for the self-diffusion coefficients of pure substances. In prac-
tical applications, of course, one is interested in binary diffusion coef-
ficients, say Maxwell–Stefan diffusion coefficients. Several approaches
exist for estimating binary diffusion coefficients from self-diffusion
coefficients [321,476,486].

In summary, entropy scaling has shown to be powerful in devis-
ing predictive models for transport coefficients. The ability to predict
transport coefficients allows for a rough sizing and cost estimation of
key process equipment, which in turn is a requirement for economic
objective functions for process and working-fluid optimisation [274,
277,428].
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4.8. Other properties

Other important working-fluid properties include environmental
properties (ODP, GWP, flammability, and toxicity) physicochemical
properties (molecular weight, stability against thermal decomposition,
and chemical compatibility (with engine materials and, for example,
with lubricating oil)); although not strictly fluid properties, both avail-
ability and cost may also be considered relevant in this context. The
simplest approach is to exclude such properties from the CAMD itself,
taking account of them instead in a post-processing step. For example,
in a CAMD study for the selection of working fluids for refrigeration
cycles, Essa and Mohamed [487] considered only fundamental thermo-
dynamic criteria in the CAMD itself, considering the other properties in
a subsequent step after generating a list of candidate molecules. How-
ever, GC methods are nevertheless available for all of these quantities,
as discussed by Su et al. [338] in relation to pure (single-component)
working fluids.

The flammability of mixtures has been discussed in Section 3.2.3,
where it is noted that the prediction of this property requires vapour–
liquid equilibrium calculations. For the flammability of pure com-
ponents there are several GC methods that are either based on the
prediction of the flash point [488] or on the calculation of upper and
lower flammability limits [489–492]. The latter properties may be cal-
culated by accounting for the oxidation reaction of generic formulas of
organic compounds and for molecular characteristics such as the length
of the carbon skeleton, the type of bonds in the molecule and others.

For ODP and GWP of pure components, there are GC methods
available [338,488], although these are not comprehensive for all
compounds. For example, GC methods are available for ODP of one-
and two-carbon HFCs and HCFCs [493], and for one- and two-carbon
CFCs [494]; the more-recent method of Al et al. [495] is applicable to
CFCs, HCFCs, and haloalkanes. GC methods for predicting GWPs [495–
497] are applicable to a somewhat wider range of species, although still
focused on refrigerants and related fluids. In this context, we mention
also GC methods for radiative efficiency [498,499], upon which the
GWP is based.

In Section 3.2.3, we have mentioned the existence of holistic sus-
tainability assessment frameworks that have been used in both CAMD
[100] and CAMPD [188]. The first framework takes a cradle-to-gate
approach, whereby the sustainability features of the fluids are calcu-
lated for both fluid production and fluid use. The calculations for the
fluid use are based on pure-component properties, without accounting
for the fluid quantities that are necessary and that may eventually vary
the impacts of the fluids. In this context, the sustainability performance
of the fluids is summarised into environmental, health, and safety
scores which are calculated by various properties. The environmen-
tal score includes water- and air-mediated effects, accumulation into
organisms and degradation in the environment of the chemicals. The
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health impacts are associated with chronic toxicity, whereas the safety
impacts are calculated from the mobility, fire potential, and acute
toxicity of the chemicals. The sustainability performance during fluid
production is used to assess the impacts of the production stage of
the fluids and considers its cumulative energy demand, GWP, and eco-
indicator 99 (EI99), which includes 11 properties that are associated
with the environmental impact. The environmental impacts of chemical
production were predicted from an ANN in this work [500], but they
an also be predicted through a GC model [501], or machine-learning-

based models [502]. A key feature of this work is a systematic approach
to deal with data gaps in property models. In the absence of data, a data
mining approach is used which deploys on-line similarity assessment
against molecules whose properties are available or can be predicted
through the employed models.

A cradle-to-grave approach for sustainability assessment in CAMPD
has been demonstrated by Fleitmann et al. [188], in the so-called

OSMO-susCAMPD framework. The authors demonstrate the approach
or the integrated design of benign solvents and hybrid extraction–
istillation processes. To capture the environmental impacts of solvent
roduction, the authors integrate a predictive life-cycle-assessment
LCA) framework based on Kleinekorte et al. [502,503] into the COSMO
AMPD framework, previously published by Scheffczyk et al. [504].

The predictive LCA framework is based on an ANN using molecular
descriptors such as structure information or thermodynamic properties
calculated from COSMO-RS. The environmental impacts of the solvent
use are calculated using life-cycle inventory data directly obtained from
the employed process model. The end-of-life of the solvent is modelled
using an aggregated process model from the literature for wastewater
treatment. The work highlights the importance of cradle-to-grave life
cycle assessment in CAMPD for the design of environmentally be-
nign fluids, as simplified cradle-to-gate or economic assessments alone
can lead to suboptimal fluid selections. While the authors apply the
COSMO-susCAMPD framework for a chemical-engineering application,
the approach can be easily transferred to the design of working fluids
for organic Rankine cycles.

In recent years, significant efforts have been observed for the pre-
diction of various such properties through machine learning (ML) ap-
proaches. In typical GC methods, the property prediction model and the
number of model parameters are fixed, whereas the latter are regressed
through an appropriate algorithm. In GC-ML models, the number of
arameters and the model structure are not fixed a priori [505]. There

are various important properties that may be predicted through such
methods, including toxicity, bioconcentration factor, auto-ignition tem-
erature, photochemical oxidation potential, and others [506]. Purely
L-based models have also been developed for the prediction of the

product carbon footprint of chemicals such as FineChem 2 [507],
which has evolved from the ANN (FineChem) developed by Wernet
et al. [500], or APPROPRIATE [502], which is based on Gaussian
process regression combined with an encoder–decoder neural network.

5. Computer-aided molecular and process design for organic Rank-
ine cycles

CAMPD for organic Rankine cycles aims to identify an optimal
working fluid (or mixture) jointly with the corresponding ORC system
that optimise an objective for a given ORC application. An optimal
combination of working fluid and ORC system can be identified by
directly linking ORC optimisation to a CAMD formulation. CAMD for-
mulations allow for the in silico design of novel working fluids [134].
For this purpose, molecular building blocks are combined to molecular
structures while still fulfilling chemical constraints. Thereby, a large
molecular design space can be considered to select optimal working
fluids. The link between a CAMD formulation and the ORC system
model is most commonly established using GC approaches. In GC
approaches, each functional group has a contribution to a certain
 o
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physical property or parameters used as input of a thermodynamic-
roperty model (cf., Section 4). By linking the ORC system optimisation
o CAMD, working fluids can be chosen as a degree of freedom of
he ORC system optimisation and designed simultaneously to the ORC
onditions considering an objective function of the ORC system. Such
n integrated design thus leads to an optimal combination of working
luid and ORC system for the considered design space (see Fig. 16).

5.1. General CAMPD problem formulation

The origins of CAMPD can be traced back to chemical-engineering
problems, e.g., aiming to identify optimal solvents for separation pro-
cesses [508]. CAMPD problems are usually nonlinear due to the process
nd thermodynamic property models. Moreover, CAMPD problems gen-
rally include discrete degrees of freedom, e.g., binary variables, to

represent the molecular structure and the cycle configuration. Thus,
mathematically, CAMPD problems can be formulated as mixed-integer
onlinear programmes [508]. A general MINLP problem formulation

for CAMPD of pure molecules is given in Problem (1):

min
𝑥,𝑦

(𝑓1(𝑥, 𝑦), 𝑓2(𝑥, 𝑦),… , 𝑓k (𝑥, 𝑦))T

s.t. ℎ(𝑥, 𝑦) = 0
𝑔(𝑥, 𝑦) ≤ 0 (1)
𝑘(𝑦) ≤ 0

𝑥lb ≤ 𝑥 ≤ 𝑥ub ∈ Rn × Zm

𝑦lb ≤ 𝑦 ≤ 𝑦ub ∈ Zl.

The CAMPD model minimises a set of objective functions 𝑓𝑖 of
an ORC system. These objective functions are commonly either ther-
modynamic objectives, e.g., the ORC thermal efficiency or net power
output, or thermo-economic objectives, e.g., specific investment cost
or net present value. The objective functions depend on the cycle and
equipment variables 𝑥 and the molecular structure of the working fluid
. The cycle and equipment variables 𝑥 can be continuous variables

(e.g., pressure levels or the degree of superheating after evaporation)
or discrete variables (e.g., the number of turbine stages or binaries de-
scribing the ORC configuration). The objective functions are minimised
subject to equality constraints ℎ and inequality constraints 𝑔 and 𝑘. The
quality constraints ℎ represent the cycle and equipment models (e.g.,
nergy balances of the processes or sizing/costing correlations of the
quipment) and the property model of the working fluid. The inequality
onstraints 𝑔 represent design or operational limitations that ensure the
easibility of the application (e.g., pressure limits or minimal approach
emperatures) and limitations on molecular properties ensuring com-
liance with regulations or technical restrictions (e.g., flammability or
oxicity of the working fluid). The inequality constraints 𝑘 represent the
AMD formulation and provide the structural feasibility of the working

luid during the molecular design, e.g.. For example, the octet rule
revents open bonds in molecular structures, while specific equations
nsure the correct number of functional groups for ring structures or
ouble bonds (for details, see Refs. [509,510]). The CAMPD problem
n Problem (1) generally includes continuous and discrete degrees

of freedom of the cycle processes and equipment 𝑥 and the discrete
degrees of freedom of the molecular structure of the working fluid 𝑦.

Solving the MINLP optimisation problem (Problem (1)) results in
the optimal working fluid jointly with the optimal ORC system. Ranking
he most-promising working fluids is usually beneficial to account
or model uncertainties. Moreover, such a ranking enables assessing
roperties not captured within the integrated design due to miss-
ng predictive models (e.g., chemical or thermal stability). The most-
romising working fluids can be ranked by solving the MINLP re-
eatedly, considering additional constraints. The so-called integer-cut
onstraints prevent finding molecular structures identified in previous

511,512].
ptimisations [
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Fig. 16. Schematic of a traditional ORC design study (left) and an integrated design of ORC systems and working fluids (right).
Source: Adapted from White et al. [447].
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The integrated design problem can be extended to mixtures. For
this purpose, models for the cycle processes, equipment, and ther-
modynamic properties must accurately capture the mixture behaviour
within the ORC processes. The design of mixtures can be enabled by
 computer-aided mixture and blend design (CAMbD) formulation. In
 CAMbD formulation, each mixture component is represented by its
olecular structure, and constraints ensure the structural feasibility

f each molecular structure [139]. Furthermore, inequality constraints
can be added to the design problem to break the symmetry of the
molecular design space and prevent the design of identical molecular
structures of the components. Those inequality constraints avoid local
optima and reduce redundancy, leading to more efficient optimisation
by preventing the search algorithm from getting stuck in symmetric,
equivalent solutions. The integrated design of mixtures can choose the
number of components in the mixture, the molecular structure of each
component, and the concentration of each component in the mixture as
degrees of freedom of the integrated design problem (cf., Section 3.1).
However, the integrated design of mixtures increases the complexity
and is thus more challenging to solve.

The tremendous molecular design space of possible working flu-
ids [513] makes solving the MINLP of the integrated design challenging
in practice. The challenge of the MINLP is tackled by systematic design
methods [134,337]. The developed systematic design methods can be
istinguished according to the assessment criteria used to reflect the
ctual ORC performance (i.e., the objective functions 𝑓𝑖 in Problem (1)):

(1) Molecular-design problems based on simplified performance in-
dicators using physical-property targets (Section 5.1.1); and

(2) Integrated molecular and process design problems using thermo-
dynamic or thermo-economic objectives (Section 5.1.2).

The following discussion in this section is focused on CAMPD so-
ution strategies for ORC systems. An overview of these strategies is
iven in Table 4. For a detailed overview of CAMPD solution strategies

for energy and chemical engineering problems, the reader is referred
to the review of Papadopoulos et al. [134].

5.1.1. Molecular design
Molecular-design problems aim to reduce the model complexity of

he CAMPD problem by first reducing the molecular design space based
 e
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on physical-property targets, whereas the resulting small, pre-selected
set of working fluids is then optimised regarding ORC system perfor-
mance. The pre-selection step employs a CAMD formulation in a single-
or multi-objective optimisation, using one or more physical-property
targets as the objective function. These property targets, crucial for
maximising ORC system performance, must be defined using expert
knowledge and tailored to specific applications, e.g., by accounting
for heat source and sink temperatures. Subsequently, the identified
working fluids are evaluated in detailed ORC system optimisations.
In contrast to traditional working-fluid selection (cf., Section 3.1),

olecular-design problems typically consider a larger molecular de-
ign space in the initial fluid pre-selection. Since process information
s not required in the molecular-design problem of the pre-selection

step, he working-fluid design can be separated from the ORC system
design. Consequently, Problem (1) is simplified to the molecular-design
problem by neglecting the ORC processes and equipment equality and
inequality constraints and degrees of freedom. As a result, the CAMPD
roblem is transformed into a simplified CAMD problem. The molecular

properties are typically calculated from the molecular structure of the
working fluid using GC approaches (cf., Section 4).

In early work, Papadopoulos et al. [98] proposed a CAMD method
or ORC working-fluid design, which combines a CAMD formulation
ith GC approaches for pure-component molecular-property predic-

ion. A multi-objective molecular-design problem is solved in the first
tep to capture the trade-off among several target properties. In this
roblem formulation, five objective functions are considered to asso-
iate the generated molecular structures with cycle process targets: the
ensity, latent heat of vaporisation, and thermal conductivity of the
orking fluid are maximised, and the liquid heat capacity and viscosity
f the working fluid are minimised. Simultaneously, constraints are
onsidered on the melting-point temperature and critical temperature.
he multi-objective molecular-design problem results in a set of Pareto-
ptimal molecules. In the subsequent step, these molecules are assessed
n ORC system simulations, also considering safety and environmental
olecular properties. The computational effort is reduced by identi-

ying molecular clusters from the Pareto-optimal working fluids. In
he last step, the most-promising working fluids are selected from
ach cluster and assessed in a detailed ORC system optimisation. The
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Table 4
Overview of CAMD and CAMPD methods proposed for the integrated design of working fluids for organic Rankine cycles.
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proposed method identifies both conventional and novel working fluids
outperforming working fluids proposed in the literature. Thus, the work
highlights the advantages of CAMD for ORC working-fluid design. The
multi-objective CAMD formulation is used to avoid the assumption
that any particular pure-component property captures the ORC process
performance drivers better than another. The considered properties are
reasonable in terms of reflecting typical working-fluid requirements in
the ORC, but they are not exhaustive, and the possibility of considering
additional properties may not be excluded.

Palma-Flores et al. [137] analysed suitable physical-property targets
to design working fluids for ORCs. Based on guidelines and rules for
working-fluid selection, the authors defined four objective functions
for the CAMD problem as combinations of molecular properties of the
working fluid, i.e., the enthalpy of vaporisation and the liquid heat
capacity of the working fluid, and the Gibbs energy of formation of
the ideal gas. The four objective functions are considered in individual
single-objective molecular-design problems. Subsequently, the identi-
fied working fluids are assessed in detailed process optimisations for
three cycle configurations. From the optimisations, the authors con-
cluded that the most-promising working fluids can be identified for the
considered ORC applications by minimising the liquid heat capacity of
the working fluids because the heat duty in the evaporator is decreased.

Due to uncertainties in property prediction, Andrés-Martínez and
lores-Tlacuahuac [514] extended the work by an uncertainty analysis

and a robust formulation of the linear constraints. Thereby, GC model
uncertainties are considered during working-fluid design. The frame-
work identifies working fluids that are robust against uncertainties
in property prediction and different from those identified without
considering GC model uncertainties.

The use of simplified cycle indicators based on physical-property
argets enables the fast, straightforward, and robust design of molecular

structures without the need for detailed modelling. The thermodynamic-
property models that could be used to predict the desired physical
properties may range from empirical models to robust EoS, such as
AFT (cf. Section 4). The molecular-design approaches described above

result in promising working fluids compared to the traditional working-
fluid selection, as shown by their subsequent performance assessment
through ORC system simulations or in comparison with third-party
investigations [148]. However, optimal target properties are typically
ase-specific, and defining proper physical-property targets thus re-
uires experience with the investigated system and its specifications,
hich is often missing or unreliable. For example, the critical tem-
erature of the working fluid should align with the maximum cycle

temperature, which is influenced by the heat source temperature, to
nsure the cycle operates in subcritical or supercritical conditions [98].

Typically, the rules and guidelines from the traditional working-fluid
selection (cf., Section 3.1) are used to define the physical property
argets. However, knowing a priori which molecular property represents
he ORC performance of a specific application most accurately in a
ingle- or multi-objective optimisation is impossible. For chemical-
ngineering applications, Kossack et al. [515] have shown in early work
hat a single-objective CAMD approach may result in a different optimal
olution than a CAMPD approach using a process-based objective.

MOO formulations allow the capture of multiple physical-property
targets and their trade-offs simultaneously, reducing the probabil-
ity of excluding promising working fluids. However, even for MOO,
it is challenging to know a priori how many and which physical
properties precisely would capture the working-fluid behaviour in
the ORC sufficiently. Considering different sets of objective functions
or Pareto-approximation algorithms may affect the generated Pareto
fronts, leading to the inclusion or omission of working fluids. More-
over, different pressures and temperatures are observed in the cycle
depending on the working fluid. Such varying cycle conditions may not
be captured by considering solely pure-component physical properties.
These challenges can be tackled in an integrated CAMPD formulation
considering an objective function that captures all trade-offs. Using an
36 
ORC system model in a CAMPD formulation considers all necessary
ycle processes and conditions, as well as heat transfer, and other
henomena in the ORC equipment while evaluating the working fluids
sing thermodynamic and/or sizing and economic indicators. In this
ontext, CAMPD approaches may result in different optimal working
luids than CAMD approaches based solely on physical properties.

5.1.2. Integrated molecular and process design
The previously presented shortcomings of approaches based on

molecular-property indicators can be overcome by considering ORC
ystem-related objective functions for working-fluid design [48,337].

Thus, a substantial effort has been made in the last decade to solve
he integrated molecular and process design problem as formulated in
roblem (1). ORC system-related objective functions assess the perfor-

mance of a working fluid within an ORC system and thus need reliable
knowledge of the thermodynamic behaviour of the working fluid. The
thermodynamic behaviour of a molecule can be estimated using predic-
tive thermodynamic-property models (cf., Section 4). Thermodynamic-
property models link information on the molecular structure to the
hermodynamic properties of a molecule. The thermodynamic prop-
rties can be used for ORC modelling, yielding ORC system-related
bjective functions. The employed thermodynamic-property model de-
ines which model can be used and, thus, the objective function(s) and
onstraints of Problem (1). For example, a thermodynamic-equilibrium
odel enables the development of an ORC model based on phase

quilibrium, mass, and energy balances, while additional models for
transport properties are required for the sizing (and, if considering
economic indicators, also the costing) of the equipment.

Integrated thermodynamic design with steady-state operation
A basic thermodynamic ORC model based on equilibrium thermody-

amics requires equilibrium properties of the working fluid (e.g., den-
sities, enthalpies, or entropies) and, thus, a thermodynamic-property

odel (cf., Section 4). In CAMPD for ORCs, most commonly, an EoS
is used as the thermodynamic-property model combined with GC ap-
roaches to calculate the parameters representing a working fluid in

the EoS from its molecular structure. A thermodynamic ORC model
nables the consideration of thermodynamic objective functions (e.g.,
he ORC net power output or thermal efficiency) and constraints (e.g.,
imits on the pressure levels). Due to its simplicity, the first systematic
esign methods developed to solve the CAMPD problem for ORCs were
ocused on a thermodynamic ORC model.

In 2014 and 2015, Lampe et al. [51,419] proposed the so-called
ontinuous-molecular targeting — computer-aided molecular design
CoMT-CAMD) approach for ORCs, which decomposes the integrated
esign problem in two subproblems (cf., Fig. 17). The idea of the CoMT-

CAMD approach originates from the work of Bardow et al. [57] on
solvent selection for separation processes. Initially, the discrete fluid
parameters are relaxed, representing the working fluid in the used
thermodynamic-property model; here, the PC-SAFT EoS was adopted.
The continuous molecular representation enables the identification of
favourable working-fluid properties, so-called targets, by optimising
the molecular parameters within an ORC optimisation. In a second
step, real working fluids are identified with performance closest to the
arget either based on screening a database [51] or designing working
luids using CAMD [419,425] and homosegmented GC approach of PC-
AFT [445]. Importantly, the objective function in this second step

approximates the objective used in the targeting step and does not
simply aim to identify real working fluids with parameters closest to the
target, as sometimes misinterpreted in the literature. The distance in
parameter space depends on scaling and does not capture the different
impacts of different properties on the objective. A detailed descrip-
tion of the solution strategy of the CoMT-CAMD method is given in
Section 5.2.

Another decomposition method based on a continuous molecular
representation has been proposed by Roskosch and Atakan [516] for
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Fig. 17. CoMT-CAMD methodology proposed by Lampe et al. [419]: The continuous-
olecular targeting defines the target for the CAMD optimisation.
ource: Reprinted with permission from Lampe et al. [419].

2015 Elsevier.

refrigerant design for compression heat pumps and applied to ORC
working-fluid design [517], using the Peng–Robinson EoS [307]. The
working fluids are characterised by their critical temperature and pres-
sure, the acentric factor, and parameters of a correlation of the ideal-gas
heat capacity. These discrete fluid parameters are initially treated as
continuous within ORC optimisation. Subsequently, real working fluids
are identified by screening a database using an approximation of the
objective function around the hypothetical, optimal working fluid as
an assessment criterion.

Decomposing the integrated design problem into smaller subprob-
ems allows for a computationally efficient solution while still high-
ighting the benefits of system-related assessment criteria. However,
he decomposition can introduce inaccuracies, which do not guarantee
lobal optimal solutions [134].

The shortcomings of decomposition methods can be tackled by
directly solving the integrated design problem in a single step. Such
a direct solution to the integrated design problem has been supported
n the past years by improved MINLP solvers and numerical techniques.
alma-Flores et al. [329] have presented the earliest work to our knowl-
dge, which solves the MINLP problem of the integrated design of the
RC systems and working fluids in a single step. The study builds upon

heir earlier work on molecular design [137] but now directly links a
hermodynamic model of the ORC to the GC approaches used to predict
hermodynamic properties and the CAMD formulation. A numerical
olver from the literature is used to solve the MINLP considering three
ycle configurations (see Section 5.2). The authors highlight that the

integrated CAMPD identifies better working fluids than a molecular
design based on simplified indicators using physical-property targets.
37 
Su et al. [488] similarly use simple GC approaches for property
prediction in their working-fluid design method. However, the authors
solve the integrated design problem using a generate-and-test strategy,
which can only be solved efficiently for a small molecular design space
(cf., Section 5.2.1).

Simple GC approaches are fast and straightforward for thermody
amic-property prediction but lack a consistent thermodynamic basis
nd, thus, accuracy. The accuracy of property prediction can be im-
roved by using a thermodynamic-property model like an EoS (cf.,
ection 4). Cignitti et al. [518] proposed a CAMPD method for the

integrated design of ORCs and working fluids using the SRK EoS [302]
and GC approaches for the parameters representing a molecule in the
EoS. The MINLP is solved using an MINLP solver from the literature.
The authors compare the results to traditional working-fluid selection
and a decomposed molecular design and demonstrate the advantages of
the integrated design in both the performance of the identified working
fluids and the computational efficiency of the approach.

Due to the uncertainty in property prediction, Frutiger et al. [519]
extended the work of Cignitti et al. [518] by a Monte Carlo-based
uncertainty analysis and analysed the impact of property uncertainties
on the identified ranking of the best working fluids. The proposed
method determines a ranking of promising working fluids jointly with
a probability distribution, indicating how likely a working fluid is to
be the best solution depending on the chosen uncertainties. The prob-
ability distribution supports a reliable selection of working fluids and
reduces the risk of suboptimal solutions due to property uncertainties.
The results highlight the need for accurate property prediction models
within an integrated design framework.

In general, cubic EoS are simple and reliable. However, they are
nown for limited model accuracy for mixtures with non-ideal fluid
ehaviour, e.g., polar mixtures [347]. Thus, for mixture modelling,

cubic EoS are often combined with 𝐺𝐸 models requiring an assessment
of thermodynamic consistency (cf., Section 4).

The impact of property uncertainties on the ranking can be reduced
by using an EoS based on SAFT, which has strong predictive power
for liquid, vapour, and supercritical phases even for mixtures with
non-ideal behaviour (cf., Section 4.4). In one of the earliest direct
integrated design methods, Schilling et al. [424] used the PC-SAFT
EoS [144] and the corresponding homosegmented GC approach [445]
as the thermodynamic-property model. The method is based on Lampe
t al. [419] but directly integrates the CAMD formulation into the ini-

tial targeting stage, enabling the solution of the MINLP in an integrated
ptimisation. A commercial MINLP solver based on outer approxima-
ion (cf., Fig. 18 (a)) is used to solve the integrated design problem.

The MINLP solver initially relaxes the discrete molecular degrees of
freedom as in the continuous-molecular targeting framework [419] (see
ection 5.2).

The method is thus called 1-stage CoMT-CAMD. The authors showed
hat an integrated solution of the MINLP improves the robustness and
uality of the results compared to the decomposition-based CoMT-
AMD method of Lampe et al. [419]. The work thus highlights the
dvantages of a fully integrated solution. The authors integrated the
-stage CoMT-CAMD method into the commercial software gPROMS
rocessBuilder [327]. Recently, the two-stage CoMT-CAMD approach

has also been integrated into the in-house simulator of BASF SE [520].
Both integrations enable using model libraries and, thus, a straight-
forward and efficient definition of the ORC system and the overall
integrated design problem [423]. Besides the integrated design of work-
ing fluids and ORCs, 1-stage CoMT-CAMD has also been successfully
applied to the integrated design of refrigerants and compression heat
umps by Neumaier et al. [521] and refrigerants and adsorption chillers

by Mayer et al. [522]. The homo-segmented GC method of PC-SAFT
was also used by Wang et al. [523]. The authors solved the CAMPD
problem using a generate-and-test strategy (cf., Section 5.2.1) and were
thus limited to small molecular design space for efficient computation.
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Fig. 18. (a) A standard outer-approximation algorithm and (b) the modified outer approximation algorithm proposed by Bowskill et al. [450] reinforced with feasibility tests. Red
dotted sections correspond to algorithm modifications due to the introduction of feasibility tests.
Source: Reprinted with permission from Bowskill et al. [450].

© 2020 Royal Society of Chemistry.
In addition to PC-SAFT, a powerful SAFT-based fluid model is the
predictive SAFT-𝛾 Mie group-contribution EoS [79,145], used by White
et al. [447] for integrated ORC design. The authors reduced the com-
putational complexity within the proposed framework by decomposing
the molecular design space and solving individual MINLP optimisations
for n-alkanes, methyl alkanes, 1-alkenes, and 2-alkenes. The developed
integrated design method has been applied for industrially relevant
ORC waste-heat-recovery applications. Beyond integrated thermody-
namic design, the authors discussed the identified working fluids in
detail regarding their relevant characteristics within an ORC system,
considering a simple model of a radial turbine [447] and sizing models
for the heat exchangers and their thermo-economic performance using
cost correlation for the equipment [146]. The work underlines the
good performance of SAFT-based thermodynamic-property models for
integrated molecular and power-cycle design frameworks.

However, increasing model complexity increases the computational
time and the possibility that algorithms fail for diverse design spaces.
One of the main challenges for a robust algorithm is working fluids
tested during the optimisation (either real or hypothetical working
fluids), which are infeasible for the considered ORC system due to a
mismatch between the physical properties and the process constraints
(e.g., the saturation temperatures within the given pressure range is
higher than the ORC heat-source temperature).

Therefore, Bowskill et al. [450] proposed an integrated design
framework for ORCs based on the SAFT-𝛾 Mie GC EoS, which extends
an outer-approximation algorithm with a physical domain reduction
by feasibility tests (cf., Fig. 18(b)). The work is based on the CAMPD
framework developed by Gopinath et al. [60] for the integrated design
of solvents and separation processes. The feasibility tests of physical
properties before the ORC optimisation reduce the execution of infea-
sible evaluations. Thus, the framework enables a faster and more robust
integrated design and allows consideration of a more extensive and
diverse molecular design space (i.e., functional groups for branched
alkanes, alkenes, ethers, esters, carboxylic acids, and 1-alcohols).
38 
The CAMD formulations typically used in CAMPD methods for ORCs
describe the molecular structures by the number of occurrences of a
certain molecular group within the molecular structure. Such CAMD
formulations are efficient and can be used with gradient-based opti-
misation if a proper thermodynamic-property model is used. However,
the underlying molecular representation also has two disadvantages for
CAMPD: (1) isomers cannot be distinguished; and (2) the CAMPD meth-
ods are limited to thermodynamic-property models that depend on the
group counts solely (e.g., classical GC methods). These disadvantages
can be overcome by more-advanced CAMPD formulations. Recently,
Rehner et al. [452] proposed a graph-based molecular representation,
the so-called molecule superstructure, an approach inspired by the
superstructures developed for flowsheet optimisation in chemical and
energy engineering. The graph-based molecule superstructure includes
the full connectivity information of the molecular groups and can thus
distinguish between isomers. Moreover, the proposed molecule super-
structure can be relaxed and thus be used within gradient-based opti-
misation algorithms. Due to the additional information on the group
connectivity, higher-fidelity thermodynamic-property models can be
used within CAMPD, as, for example, demonstrated by the authors for
the hetero-segmented PC-SAFT EoS [445].

Equipment sizing, costing and integrated thermo-economic design
Thermodynamic process and cycle models based on equilibrium

thermodynamics enable an efficient integrated design of working fluids
based on thermodynamic objectives. However, thermodynamic models
neglect equipment sizing (and costing) and thus have some shortcom-
ings, which can lead to suboptimal solutions:

(1) Fluid-dependent parameters are usually fixed, e.g., the isen-
tropic turbine efficiency, neglecting significant impacts of fluid
behaviour on overall operation and performance [524] (cf.;
Section 3.4);
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(2) The practical implementation of the optimum designs introduces
additional design degrees of freedom and constraints of the
equipment that could change significantly the anticipated ther-
modynamic and economic performance of the ORC system and
fluid [273]; and

(3) Thermodynamic models do not ensure economically competitive
ORC systems.

Thus, the integrated design of ORC systems and working fluids
hould include equipment sizing and costing to capture all relevant

system-wide trade-offs. Sizing the equipment often requires additional
thermophysical properties like transport properties (e.g., viscosity or
hermal conductivity) and thus the integration of proper property
odels (cf., Section 4.7). Lampe et al. [273] captured the impact of

he working fluid on the ORC turbine by integrating a model of a one-
tage radial inflow turbine into the 1-stage CoMT-CAMD framework
eveloped by Schilling et al. [424]. The model enables the calculation
f fluid-dependent isentropic turbine efficiencies and crucial turbine
esign parameters, e.g., blade heights, Mach numbers, and rotational
peeds, limited within the integrated design. The authors showed that
imiting turbine design parameters can strongly influence the ranking of
he best working fluids, and that neglecting the turbine sizing can lead
o infeasible turbine geometries for the identified optimal fluids and
orresponding process settings. Thus, the study of Lampe et al. [273]
ighlights the need for capturing equipment behaviour within the
orking-fluid design.

Schilling et al. [274] extended the 1-stage CoMT-CAMD frame-
work [424] by equipment models for sizing heat exchangers. The
equipment models capture the heat transfer for single-phase, evap-
oration, and condensation. For this purpose, the authors integrated
advanced models for calculating viscosity [471] and thermal conduc-
tivity [475] of molecules into the framework. These recently developed
models for transport properties are based on the PC-SAFT EoS and
ntropy scaling (cf., Section 4.7). Thus, equilibrium and transport

properties are modelled consistently within the integrated design. The
equipment sizing enables the calculation of the cost of the purchased
equipment using costing correlations and, therefore, the investment
cost of the ORC. Thereby, a thermo-economic objective function can be
onsidered for the integrated design (e.g., the specific investment cost
r the net present value of the ORC). The authors demonstrated that the

optimal working fluid identified using a thermo-economic objective can
differ from that identified using a thermodynamic objective. Similarly,
van Kleef et al. [275] integrated a thermo-economic assessment into
he framework developed by White et al. [146,447]. For this purpose,

the authors used GC approaches for transport properties (cf., Sec-
tion 4.7). Moreover, equipment models for sizing the heat exchangers
and costing are directly linked to their integrated design framework.
The trade-off between thermodynamic and thermo-economic perfor-
mance was analysed using MOO. The authors investigated the impact
f the ORC heat-source temperature on the working fluid ranking

and identify novel working fluids for ORC applications. Both Schilling
et al. [274] and van Kleef et al. [275] highlighted the need for in-
tegrated equipment sizing and a thermo-economic assessment for the
integrated design of working fluids and ORC systems. However, in-
tegrating equipment sizing and cost estimation models into CAMPD
problems can introduce considerable uncertainties, primarily due to
cost estimations [525]. These uncertainties can worsen the accuracy
of the objective function and constraints, potentially leading to less re-
iable optimisation results. A key aspect is whether these uncertainties
esult in systematic errors across all working fluids, keeping the ranking
nchanged, or if they vary based on the specific working fluid and
onsequently can change the ranking. The impact of these uncertainties
n the working fluid ranking must be carefully assessed to ensure
hat the thermo-economic design remains robust despite the inherent

uncertainties in cost estimations.
The integrated design methods discussed so far allow for the inte-

grated ORC and working-fluid design for a fixed ORC configuration.
39 
This limit was overcome by Schilling et al. [428], who integrated
a superstructure of the ORC system into the 1-stage CoMT-CAMD
framework [274]. Thereby, the authors can design the ORC system
imultaneously with the working fluid. The superstructure of the ORC

system consists of optional internal heat regeneration, turbine bleeding,
and reheating. The optimisation algorithm can choose these options
by additional discrete degrees of freedom. The whole framework is
integrated into the software gPROMS ProcessBuilder [327]. Thereby,
the superstructure of the ORC configuration can be defined straight-
forwardly using equipment model libraries. The framework identifies
the thermo-economically optimal working fluid jointly with the optimal
ORC configuration, cycle settings, and equipment sizes. The authors
showed that the optimal working fluid and cycle configuration depends
on the chosen objective function. The work highlights the impact of the
ORC configuration on the working-fluid selection. In recent work, Till-
manns et al. [526] applied the 1-stage CoMT-CAMD framework to the
ntegrated thermo-economic design of an ORC-based pumped-thermal
lectricity storage (PTES) system. The authors designed the working

fluid for an ORC and the refrigerant for a heat pump simultaneously, to
obtain an optimal interaction between the ORC and heat pump within
the PTES system. The work used the gPROMS ProcessBuilder [327]
implementation of 1-stage CoMT-CAMD and corresponding equipment
model libraries. The authors demonstrated the possibility of integrating
CAMPD for ORCs in the design of larger background systems involving
several thermodynamic cycles with a molecular degree of freedom.

Integrated design for off-design operation
The solution methods discussed so far focus on designing optimal

working fluids for ORC systems with steady-state operation or a nomi-
nal operating point. However, heat sources can be transient, and thus,
ORC systems have to be operated at varying off-design conditions.

ecause the heat source strongly impacts working-fluid selection [48],
fluids selected for a fixed heat source can be suboptimal if the real
eat-source behaviour is transient [312,527]. Thus, identifying optimal
orking fluids for off-design operation needs an integrated design that

an capture the transient behaviour. In general, off-design operation
an be captured using dynamic models. Considering dynamic models
or integrated design leads to a computer-aided molecular process and
ontrol design (CAMPCD) problem [134]. Mathematically, CAMPCD
roblems can be formulated as mixed-integer optimal control problems

(MIOCPs), which are challenging to solve.
Schilling et al. [427] captured the transient behaviour of the heat

source by considering multiple operating points in the so-called 1-stage
continuous-molecular targeting-computer-aided molecular and multi-
operating process design (1-stage CoMT-CAM2PD). Thereby, solving
challenging optimal control problems is prevented. The authors de-
scribed the transient heat-source behaviour by a time series of the
steady-state heat-source settings (i.e., heat-source temperature and
mass flow rate). From this time series, operating points were se-
lected for the integrated design based on time-series aggregation tech-
niques [528]. The framework assumes quasi-steady-state operation and
identifies the working fluids with optimal thermodynamic properties in
the given range of off-design operations. The authors showed that work-
ing fluids identified considering multiple operating points outperform
those identified with only a single nominal operating point.

While quasi-steady-state models are efficient and robust for working-
fluid selection in early design stages, they do not capture the inertia
nd dynamic response of ORC systems. Thus, quasi-steady-state models

cannot be used to find an optimal match of working fluid and ORC
control strategy [529]. The heat source up to the ORC system is not
always steady state, but is in fluctuation, especially the engine heat
source, which exhibits a rapid fluctuation with a fluctuation period
on the second-minute level [262,530]. The off-design performance of
different working fluids is not the same, so it is necessary to study
the design of working fluids in ORC in transient states. Therefore,
Tillmanns et al. [276] directly integrated dynamic models for the
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ORC equipment into the two-stage CoMT-CAMD method proposed
by Lampe et al. [419]. The integration transforms the initial NLP
relaxation problem (i.e., the continuous-molecular targeting) into an
ptimal control problem (OCP). The entire problem is implemented

into the software Modelica [531] and solved using the commercial
OCP solver MUSCOD-II [532]. MUSCOD-II is a robust multiple-shooting
OCP solver that efficiently handles complex dynamic systems by solving
ime intervals simultaneously. In order to have a better symbolisation,
 sine was used to represent the transient state of the heat source,

which is a commonly used method [533,534]. As a result of the OCP, a
ypothetical, optimal working fluid is identified with the corresponding
ptimal ORC settings and control strategy. In the second stage, real
orking fluids are identified using CAMD according to the previous
oMT-CAMD method. The authors highlighted the advantages of inte-
rating dynamic ORC modelling and integrated working fluid and ORC
esign for applications with a strong impact of the transient behaviour.
ue to the challenges of dynamic system operation, the developed
ethod relies on a decomposition strategy and is limited to a small
olecular design space. Moreover, both methods developed for an

ntegrated design with transient ORC behaviour only consider the ther-
odynamic performance of the cycle, neglecting the equipment cost.
evertheless, the proposed methods underline the need for capturing

ransient behaviour for selecting working fluids for ORC systems within
n integrated design framework.

5.1.3. Integrated mixture and process design problem
The systematic design methods discussed in Section 5.1.2 focus

n the integrated design of ORCs and pure working fluids. However,
orking-fluid mixtures can have favourable properties for ORCs due to

the temperature-glide during evaporation and condensation [21]. As for
ure components, finding an optimal combination of a working-fluid
ixture and ORC requires an objective function related to the wider

ORC system within the design. The problem formulation in Problem (1)
an be extended to design working-fluid mixtures. For this purpose, the

following requirements have to be considered:

(1) A thermodynamic-property model is needed to predict mixture
behaviour (see Section 4);

(2) The process and equipment-sizing/costing models have to be
extended for mixtures. For example, appropriate models need
to capture the temperature-glide of evaporation and conden-
sation, and the equipment-sizing models need to capture the
heat-transfer behaviour of mixtures;

(3) A computer-aided mixture and blend design (CAMbD) formula-
tion is required to design all mixture components. Due to the
molecular and combinatorial complexity, the design space of
CAMbD formulation is much larger than for the design of pure
working fluids;

(4) A powerful solution algorithm is needed to handle the increased
number of discrete degrees of freedom and constraints and the
nonlinearity of mixture behaviour.

Systematic solution methods have been developed, fulfilling the
equirements to tackle the integrated design of working-fluid mixtures
nd ORC systems.

Papadopoulos et al. [141] linked a CAMbD formulation to a ther-
odynamic ORC model. The thermodynamic-property model is a cubic

EoS combined with GC approaches. In the presented integrated two-
step approach, the authors first applied the chemical feasibility con-
straints only to the first component of the working-fluid mixture but
elaxed the feasibility constraints for the second component. The opti-
al first component was then identified in the first step using MOO and

ixed in the second step to identify the corresponding optimal second
omponent. The authors performed a post-design, nonlinear sensitivity
nalysis of the employed thermodynamic property and cycle models
n selected mixtures. The analysis considers the simultaneous effects
f multiple different fluid properties on multiple ORC performance
40 
indicators. The results indicate that some mixtures are more robust
n property-value changes than others. Furthermore, it appears more
mportant to have reliable predictions for the boiling points of the

mixture components compared to their critical properties.
In recent work, Schilling et al. [277] extended the 1-stage CoMT-

CAMD framework [274] for the integrated design of working-fluid
mixtures and ORC systems, so-called 1-stage continuous-molecular
targeting-computer-aided mixture and blend design (1-stage CoMT-
CAM𝑏D). Following their approach for pure components, the authors
use the PC-SAFT EoS as thermodynamic property model, which is
uitable for accurate prediction of mixture behaviour, even for working-

fluid mixtures with non-ideal behaviour (see Section 4 for details).
Moreover, PC-SAFT has been proven suitable for designing working-
fluid mixtures based on molecular relaxation [535]. PC-SAFT is used
to calculate the equilibrium and transport properties of working-fluid
mixtures in a thermodynamically consistent way. The authors inte-
grated a CAMbD formulation that allows the design of the molecular
structure of two mixture components and the mixture composition
as degrees of freedom of the optimisation. Moreover, the CAMbD
ormulation incorporates inequality constraints to break the symmetry
f the molecular design space and ensure that identical molecular
tructures are not selected for both components. Specifically, the au-
hors found that the most effective approach is to apply inequality
onstraints on the pure component parameters of PC-SAFT, which
uccessfully breaks symmetry in the molecular design space. The model
f the ORC system captures the temperature-glide of the working
luid mixture during evaporation and condensation. Moreover, the
RC system model includes heat-exchanger sizing for working-fluid
ixtures. Thereby, a thermodynamic and thermo-economic design of
orking-fluid mixtures is enabled. The authors applied their integrated
ixture design framework for various ORC heat source and sink speci-

ications demonstrating the strong impact of the ORC specifications on
he optimal mixture. The results show a lower potential of improve-

ment for working-fluid mixtures designed using a thermo-economic
objective (i.e., the specific investment cost) than for working-fluid
mixtures designed using a thermodynamic objective (i.e., the net power
output). Rehner et al. [536] recently extended their CAMPD frame-
work, originally based on molecule superstructures [452], to design

orking-fluid mixtures. This framework employs a graph-based molec-
lar representation for both components, allowing the use of the

accurate heterosegmented GC method of PC-SAFT [445], along with
a recent GC method for binary interaction parameters [453], making
it particularly well-suited for designing working-fluid mixtures. Over-
all, all discussed frameworks for ORC mixture design highlight the
otential of a systematic, integrated design of working-fluid mixtures
or ORCs.

5.2. Solution strategies

Due to the challenging nature of solving MINLP problems, computer-
aided molecular design is not straightforward for the integrated design
of molecules and processes. Thus, various systematic methods have
been developed and applied for the integrated design of working
fluids for organic Rankine cycles. Besides the employed ORC models
and thermodynamic-property models, these systematic design methods
differ in the employed solution strategy and algorithm.

The solution strategy and algorithm strongly depend on the em-
loyed thermodynamic-property and thermodynamic system model.
or example, efficient gradient-based optimisation strategies require
he calculation of analytical or numerical derivatives. Such derivatives,
n turn, need a molecular description and thermodynamic-property
odel, allowing for a continuous molecular representation. A con-

tinuous molecular representation and, thus, a gradient-based optimi-
ation is typically enabled by GC approaches and EoS. In contrast,

quantum-mechanical calculations rely on a discrete molecular repre-
sentation and require derivative-free optimisation strategies like meta-

537]. Thus, a proper solution strategy and algorithm must
heuristics [
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be chosen carefully to find suitable solutions for the integrated design
of working fluids and ORC systems. In this section, we give a short
overview of possible solution strategies. For a detailed overview of
solution strategies, the reader is referred to the comprehensive review
on CAMPD from Papadopoulos et al. [134].

5.2.1. Generate-and-test
The generate-and-test approach is the most intuitive and straightfor-

ward but computationally less efficient solution strategy for integrated
esign problems. Here, all molecular structures fulfilling the structural
nd property constraints of a CAMD formulation are generated ini-
ially and subsequently enumerated in process optimisation [56]. This

strategy is comparable to screening a pre-defined database, but the
employed molecule database is generated using CAMD. A generate-
and-test strategy for designing working fluids for ORCs has been em-
ployed, e.g., by Su et al. [488]. Since all structurally feasible molecular
tructures are assessed in enumerative ORC optimisations, a generate-
nd-test approach ensures finding the globally optimal working fluid
f the considered design space. However, generate-and-test approaches
re typically only applied if the molecular design space is small due
o the high computational demand of the process optimisations during
he enumerative search. The size of the molecular design space can be
ssessed by the initial generation of all feasible molecular structures,
hich is typically much more efficient than the subsequent process
ptimisation of each structure.

5.2.2. Decomposition methods
Decomposition methods aim to reduce the problem complexity

of the integrated design by decomposing the problem into several
smaller subproblems. The smaller subproblems can be solved more
uickly and efficiently. Decomposition methods can be separated into:
1) molecular-design problems (see Section 5.1.1); and (2) molecular-

targeting problems (see Section 5.1.2). Decomposition-based molecular-
design problems initially reduce the molecular design space by consid-
ring low-resolution performance indicators and constraints based on
hysical properties to avoid needing a more detailed thermodynamic

model of the ORC system that typically requires more demanding com-
putations. If the reduced molecular design space is small, enumerative
process optimisations can be performed, or the reduced MINLP can
be solved. The size of the molecular design space can be assessed by
enerating all feasible molecular structures. Alternatively, molecular-
lustering techniques can be employed to reduce the molecular design
pace further [98].

In contrast, decomposition-based molecular-targeting problems ad-
ress the CAMPD problem by identifying favourable ORC system-

related target properties. For this purpose, the discrete molecule pa-
rameters representing a working fluid in the thermodynamic-property
model are typically relaxed, i.e., treated as continuous variables, and
optimised simultaneously with the ORC degrees of freedom consid-
ering an appropriate objective function [51,276,419,517]. For this
urpose, a thermodynamic-property model is required allowing for
 continuous molecular representation, e.g., GC approaches that tar-
et pure-component properties or an EoS. The relaxation of discrete
olecule parameters transforms the MINLP of the integrated design

nto an NLP, which can be solved efficiently using gradient-based
LP solvers. The relaxed MINLP results in a hypothetical molecular

tructure of the so-called target with optimal performance within the
onsidered molecular design space. The target serves as the lower

bound of the optimisation problem. A convex hull and proper bounds
of the molecule parameters are typically required to ensure the tar-
get’s similarity to real molecular structures. In the second step, real
molecules are identified with similar performance as the target. To
ensure similar performance, real molecules are assessed considering
n approximation of the objective function and constraints, e.g., by a
irst- or second-order Taylor approximation around the target. Thereby,

rade-offs can be considered, which are not captured if solely molecule
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parameters closest to the target are sought. Real molecular structures
can be identified by a database screening [51,517] or CAMD [276,419].
CAMD, combined with a second-order Taylor approximation of the
bjective and constraints, can be solved as a mixed-integer quadratic
roblem (MIQP) using standard deterministic MIQP solvers.

5.2.3. Metaheuristic optimisation methods
Metaheuristics are optimisation strategies based on direct heuristic

(biased random) searches to generate and test iteratively sampling
points within the design space [538]. Unlike deterministic methods,
metaheuristics typically do not require derivatives, making them suit-
able for thermodynamic-property models that use discrete molecular
representations. Due to their systematically guided search approach,
metaheuristics only need to explore a small fraction of the design space,
which is computationally more efficient than exhaustive generate-and-
est approaches that enumerate all options. However, finding glob-
lly optimal solutions is not guaranteed. Furthermore, defining proper
topping criteria can be challenging in ensuring a sufficiently good
olution.

For instance, Papadopoulos et al. [98], used simulated annealing
(SA) [539] to design working fluids for ORCs. The SA algorithm mimics
the annealing process from metallurgy, where the solution ‘‘tempera-
ture’’ serves as the control parameter of the process. This ‘‘temperature’’
ontrol parameter is gradually reduced, allowing the system to escape

local optima but still approach a global optimum. Another example
is the genetic algorithm (GA) NSGA-II [540] employed by van Kleef
et al. [275], where potential solutions are treated as individuals in a
population. These solutions evolve over iterations through selection,
crossover, and mutation inspired by natural selection.

5.2.4. Deterministic optimisation methods
Deterministic optimisation follows a rigorous mathematical ap-

roach, leading to a replicable solution. Typically, deterministic op-
imisation methods decompose the MINLP into smaller subproblems of
he MINLP [541]. For this purpose, strategies from mathematical pro-
ramming are employed, e.g., linear or quadratic approximations of the
bjective and constraints or relaxing or fixing variables or constraints.
rossmann and Kravanja [541] give an overview of deterministic

solution strategies for solving MINLPs. These strategies commonly rely
on calculating gradients, and sometimes also the Hessian, of the model
variables. Thus, an ORC model and thermodynamic-property model are
required, which allow for the calculation of analytical or numerical
derivatives. Compared to metaheuristics, deterministic optimisation
methods typically converge faster, offering a more efficient path to
solving optimisation problems. For the integrated design of ORC sys-
tems and working fluids, deterministic solution methods have been
successfully employed, such as those based on outer-approximation
formulations [542] combined with equality relaxation [137,146,273,
274,277,423,424,428,447], branch-and-bound algorithms [137,329],
or branch-and-cut algorithms [518]. These studies have demonstrated
he effectiveness of deterministic solution methods in providing high-
recision results, particularly when accurate gradients are available.
owever, a key insight is that while these approaches offer speed and
recision, they are limited by their reliance on derivative informa-
ion and may struggle with highly non-linear or discontinuous design
paces, potentially leading to only locally optimal solutions [277,424].

Deterministic optimisation algorithms, particularly global optimisa-
tion solvers, can rely on model equations given in their explicit form.
Explicit model equations can be typically implemented for GC ap-
proaches and classical EoS, such as cubic EoS. However, more-advanced
and accurate thermodynamic-property models like SAFT-based EoS are
more demanding and typically evaluated in an external code to ensure
table computation. The external code typically provides a black-box
odel to the solver. If parts of the model are given in external code,

n optimisation algorithm is required that can handle black-box mod-

elling. However, black-box capable optimisation algorithms usually
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only ensure a locally optimal solution. A multi-start procedure can
e employed to account for locally optimal solutions, or a ranking
f the most-promising candidates can be calculated using integer-cut
onstraints. Despite the potential challenge with black-box models,
he ability of deterministic methods to systematically handle complex
esign problems with well-defined mathematical models makes them
ighly valuable for CAMPD problems.

5.2.5. Multi-objective design methods
Optimisation strategies usually enable the consideration of a single

bjective function. However, considering multiple objective functions
s often desired for integrated molecular and process design problems
e.g., the net power output of an ORC system, and its associated
otal capital investment). For this purpose, MOO strategies have been
eveloped. The result of MOO is a Pareto front of optimal solutions.
or CAMPD problems, the Pareto front can consist of several promis-
ng working fluids (cf., Fig. 19). It is recommended to choose non-

aggregated objective functions for MOO, i.e., objective functions that
do not compromise a trade-off, to maximise the information content of
the result [543].

Most commonly, MOO strategies transform the problem into sev-
ral SOO problems. The most intuitive and straightforward approach
or MOO is a linear scalarisation of the objective function, i.e., the

weighting sum of all objective functions [544]. The Pareto front can
be generated by repeating the integrated design problem with vary-
ing weighting factors. Other MOO strategies are, e.g., the normalised
normal constraint method [545], the epsilon-constraint method [546]
r interactive multi-objective methods combining sandwiching and
yperboxing [547], which enable tailoring a Pareto front in the desired

region and are suited for non-convex objectives. For example, the
normalised normal constraint method has been applied in CAMPD for
ORCs by Schilling et al. [274,424].

Due to its efficiency, another popular approach for multi-objective
ptimisation in CAMPD problems for ORCs is the stochastic non-

dominated sorting genetic algorithm II (NSGA-II) [540]. The evolution-
ry NSGA-II algorithm employs a non-dominated sorting approach that
lassifies solutions into different Pareto fronts based on dominance. The

algorithm has been applied to CAMPD for ORC, e.g., by van Kleef et
at. [275].

5.3. Key observations on CAMPD for ORCs

The development of CAMPD solution methods for working-fluid
selection for ORCs has gained considerable progress in the past decade.
ignificant steps could be achieved in all parts of CAMPD problems:

• Thermodynamic-property models have been integrated with
increasingly higher predictive power, starting from simple GC
approaches, progressing with cubic EoS, and finally using SAFT-
based EoS or quantum-mechanical calculations — moreover, ac-
curate models for the working fluid’s transport properties and
even non-conventional properties are incorporated, like safety or
environmental properties;

• ORC system and equipment models have been integrated with
increasing complexity, starting from pure-component molecular
properties that provide indirect links with ORC performance,
progressing with thermodynamic process models, and finally im-
plementing sizing and costing of the equipment, cycle superstruc-
tures, and dynamic component models;

• The molecular design space has been increased, starting from
the integrated design of pure working fluids towards the inte-
grated design of working-fluid mixtures;

• Advanced solution algorithms are developed, starting from prob-
lem decomposition towards a direct solution of integrated design
problem based on deterministic optimisation; and
42 
• Practicability and applicability — while many developed so-
lution algorithms are specific tools enforcing expert knowledge
and experience, the first steps have been taken to achieve a more
user-friendly application for inexperienced users by integrating
CAMPD for ORCs into commercial software.

With these developments, the CAMPD solution methods achieve
high integration and accuracy. Moreover, the developments enable the
onsideration of objective functions and constraints for working-fluid
election relevant for practical application (e.g., economic objectives or
izing constraints for the equipment). Despite the increasing complexity
f the models and the increasing computational cost, the required
omputational time is still reasonable. The integrated design can be
olved in seconds to minutes considering a thermodynamic ORC model
nd GC approaches and/or a cubic EoS [137,518]. Even an integrated

design using PC-SAFT with equipment sizing and costing and cycle
configuration superstructure is still efficient and requires less than
an hour to calculate a ranking of five promising working fluids and
corresponding optimal cycle configurations [428]. However, it should
be noted that time is usually not a limiting factor at the early design
stages, for which an integrated design of working fluids and processes
is most relevant. In general, an integrated design is computationally
much more efficient than a decomposed generate-and-test procedure
of the considered design space [274,277,424,518].

In CAMPD for ORCs, open science is essential for ensuring repro-
ducibility and validation of the assumptions and identified working
fluids. By sharing open-source models, datasets, and CAMPD frame-
works, researchers can replicate studies, validate results, and build
on each other’s work. Open access to thermodynamic models and
CAMPD frameworks ensures that advancements in CAMPD for ORCs
re grounded in validated data.

6. Applications and case studies of ORC systems

The role and development trend of the application of CAMD tech-
niques in ORC system design can be intuitively reflected by an examina-
tion of various case studies across multiple industries. In the more than
a decade of theoretical research on the integration of CAMD methods
into ORC system design, the developed approaches have been applied
to the integrated design of processes and working fluids of ORC systems
with low- and medium-temperature heat sources such as internal-
combustion engine with combined heat and power (ICE-CHP) systems,
industrial waste-heat recovery, geothermal, solar thermal and so on.
It has been shown that CAMPD methods are practical, advanced, and
have good application prospects; the specific application scenarios and
corresponding CAMPD methods are reflected in Table 5 . In this section,
we investigate selected CAMPD case studies in various application
cenarios through enumeration and induction.

6.1. Internal-combustion engine with combined heat and power systems
(ICE-CHP)

When the exhaust gas of an internal-combustion engine is used
s the heat source of the ORC system, its temperature is usually
igher than that of geothermal, biomass energy, and most industrial
aste-heat sources. Simultaneously, the influence of the transient char-
cteristics of the exhaust gas on the design of the ORC system should
e specifically considered.

Cignitti et al. [518] applied a CAMPD approach to an ORC device
for energy recovery from the exhaust gas of a 37 MW marine diesel
engine from MAN Diesel & Turbo for the design of suitable working
fluids. The ORC unit had a regenerator and was designed to take into
account the 75% load point of the diesel engine, where the exhaust
gas inlet temperature was 509 K. The GC prediction method was used
to describe the physical properties of molecules and a simultaneous
design method was proposed: an MINLP problem, to be solved using

the LINGO Global solver on the GAMS platform. The integrated method
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Fig. 19. Examples for Pareto fronts resulting from multi-objective optimisation applied in CAMD for organic Rankine cycles.
Table 5
Case studies of CAMD technology in ORC system design.

Applications Ref. WF type1 ORC optimisation
criteria2

ORC configuration ORC state

ICE-combined
heat and power
system

[518,548] pure 𝑃net Regenerative steady

[148] pure 𝑃net Simple & mass flow splitting steady
[426,427] pure 𝑃net Simple dynamic
[276] pure 𝑃net Simple dynamic

Industrial
waste-heat recovery

[274,422] pure 𝑃net, SIC, TIC Simple steady

[421] pure NPV Simple steady
[277] mix 𝑃net, SIC Simple steady
[428] pure NPV, SIC, 𝑃net Superstructure: simple,

regenerative, turbine bleeding,
and reheating

steady

[450] pure 𝑃net Simple steady

Geothermal and
Biomass

[98,334,
335]

pure 𝑃net, TIC Simple cycle steady

[141,336] mix 𝜂th, 𝜂ex Simple steady
[51,425] pure 𝑃net Simple steady
[420,424] pure 𝑃net Simple steady
[549] pure 𝑃net, 𝜂ex Simple & regenerative steady

Solar thermal [273,423,
424]

pure 𝑃net regenerative steady

Other power
technologies

[55] pure 𝜂th Simple steady

[20,419] pure 𝑃net Simple steady
[550] pure 𝑃net Simple steady
[447,448] pure 𝑃net Simple steady
[146] pure SIC Simple steady
[275] pure 𝑃net, SIC, TIC Simple steady

1 WF: working fluid.

2 𝑃net: net power output; TIC: total investment costs; SIC: specific investment costs; NPV: net present value.
employed in this work is summarised in the workflow shown in Fig. 20.
Considering the three cases of acyclic molecules, alicyclic molecules,
and aromatic molecules, respectively, 2,2,3,3,4,4,5,5-octafluorohexane,
1,1,2,2,3,3,4-heptafluoro-4-(propan-2-yl)cyclobutane and 1,2-difluoro-
6-methylcyclohexa-1,3-diene were judged the three best molecules,
with the net power outputs of 1.21 MW, 1.20 MW, and 1.05 MW.
43 
An analysis of all possible solutions using a decomposition method
justified the results of the simultaneous design method while show-
ing that the ORC performance was significantly correlated with the
condenser and heat-exchanger UA values. Compared to conventional
fluids used in similar ORC applications, such as MM, Toluene, i-
Pentane, n-Pentane, Cyclopentane [551], the globally optimal fluid
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Fig. 20. Integrated design workflow (left) and optimal fluid comparison against conventional fluids used in similar ORC systems (right); workflow and results as presented in
Ref. [518]. The three parameters of 2,2,3,3,4,4,5,5-octafluorohexane are plotted as unit 1, and the corresponding parameters of the conventional working fluid are expressed as
ratios to 2,2,3,3,4,4,5,5-octafluorohexane.
Source: Reprinted with permission from Cignitti et al. [518].

© 2017 Elsevier.
(2,2,3,3,4,4,5,5-octafluorohexane) designed in the case study had the
highest net power output and the lowest degree of superheat. In terms
of pressure ratio, it was only second to hexamethyldisiloxane, as shown
in Fig. 20. High net output power indicates good cycle performance,
and low superheat means improved heat utilisation and reduced heat
exchanger area requirements. High pressure ratios are a disadvantage,
resulting in higher cost and lower performance of the turbine.

Frutiger et al. [548] conducted an uncertainty analysis of the prop-
erties of 15 candidate working fluids obtained using the CAMD method
in the ORC of marine diesel exhaust-heat recovery by Cignitti et al. In
the working-fluid design, the power output values of the CAMD solution
of every working fluid were seen to be close, while the uncertainty
analysis gave a significantly different ranking, providing an additional
standard for the fluid class.

Schwobel et al. [148] designed working fluids for two thermo-
dynamic ORCs for passenger cars and heavy-duty trucks. The first
configuration is suitable for passenger cars without exhaust-gas recir-
culation. However, for the waste-heat recovery of heavy trucks, the
exhaust energy from post-processing and the energy from exhaust-
gas recirculation was considered according to the configuration of
mass flow separation after the pump. To find the best fluids, a high-
throughput screening (HTS) was performed, which covered almost all
known chemical spaces with more than 72 million entries according to
the structures provided in the PubChem database. A set of 3174 po-
tential working fluids was considered for thermodynamic performance
ranking after applying quantum-chemical calculation-based structural
and thermodynamic filtering criteria to more than two million struc-
tures. Computational-chemistry methods were applied to predict all
physicochemical properties of interest via COSMOtherm software (e.g.,
vapour pressure, critical point) and thermodynamic-process simulations
were performed (e.g., net power output) via the fast simulation tool De-
tailSimORC. The state equation, combining the COSMO-RS theory with
the generalised Patel–Teja [371] theory, extended the applicability of
thermodynamic calculations to critical points. This quantum-chemistry-
based COSMO-RS method is neither dependent on specific group con-
tributions nor restricted to specific classes of compounds, enabling the
analysis of millions of compounds in the complete known chemical
space in a fully predictive manner of mass screening. A scheme of the
calculation workflow is presented in Fig. 21. It is interesting to note
that only 12 compounds in the top 100 resulting from this screening
(ranked by thermodynamic properties) were previously classified as
ORC working fluids.

Schilling et al. [427] used CAMD technology to design the working
fluid for an ORC purposed to recover energy from the exhaust gas of
heavy-duty vehicles. The authors proposed the 1-stage CoMT-CAM2PD
algorithm, combining the 1-stage CoMT-CAMD with aggregation tech-
niques, allowing the transient nature of the heat source to be integrated
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in the design. Aggregation technology allows the representation of
multiple operation points, caused by transient heat sources, using a
few characteristic operating points. Subsequent evaluation of identified
working fluids ensured safety and environmental friendliness. The al-
gorithm was applied to the design of an ORC on a heavy-duty vehicle
considering the newly developed VECTO Long Haul Cycle (LHC) as
input; only six aggregated operating points were necessary to represent
the transient exhaust gas. The optimal working fluid was identified as
ethyl formate, which increased the net power output by 30% compared
with the commonly used working fluid, ethanol.

The working conditions of the engine are more variable, espe-
cially for automotive engines. Therefore, it is necessary to conduct
molecular-design research considering dynamic performance for ORCs
of engine waste-heat recovery. Tillmanns et al. [276] proposed an
integrated approach for optimising the ORC processes and working
fluid that considers dynamics. The method is based on the CoMT-CAMD
approach. The result is an OCP yielding the optimal working fluid
and corresponding optimal system control given the dynamic inputs.
Successful application of the approach was demonstrated; in this case,
isobutane was identified as the best stable working fluid for dynamic
applications. In contrast, the integrated design based on steady-state
input (calculated as the average of temperature and mass flow of the
dynamic heat source) failed, overestimating the average net power
output of the top five identified working fluids by up to 30%.

6.2. Industrial waste-heat recovery

Waste heat recovery in plants is an important technology to improve
efficiency and reduce emissions. There are various waste heat sources
in plants, including boiler exhaust gas, reactor waste heat and cooler
waste heat [552]. ORC is more advantageous in low-temperature heat
recovery in plants, which has great potential [553,554]. The variety of
heat sources and application scenarios require the support of the CAMD
method to customise the best working fluid for an ORC.

Schilling et al. [274,422] considered a subcritical, non-regenerated
ORC for waste-heat recovery, where the waste-heat source was waste
water at 150 ℃ and the cooling source was cooled water at 15 ℃. The
authors utilised a consistent thermodynamic model for an integrated
thermo-economic design approach for ORC processes, equipment, and
working fluids. This method is based on the 1-stage CoMT-CAMD
approach, in which the properties of the working fluid are modelled
by the physically-based PC-SAFT EoS. A schematic illustration of the
presented 1-stage CoMT–CAMD approach is shown in Fig. 22.

In this case study, only short-chain alkanes and olefins were iden-
tified. The ideal optimal working fluid was obtained under the relaxed
NLP problem; the specific investment cost SIC = 3058 USD/kW, and
the net power output 𝑃 = 434 kW. The best practical working fluid
net
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Fig. 21. Scheme of the PubChem database screening by COSMOtherm calculations and DetailSimORC.
Source: Reprinted with permission from Schwöbel et al. [148].

© 2016 American Chemical Society.
was identified as propylene, SIC = 3318 USD/kW, 𝑃net = 422 kW. It
was found that the final optimisation results were quite different from
the thermodynamic optimisation results using the net power output as
an objective function (here propane was ranked top; 𝑃net = 589 kW,
SIC = 6097 USD/kW). Multi-objective optimisation was used to more
closely visualise the thermal-economic trade-off between net power
output and total capital investment; the results displayed in Fig. 19(b)
were obtained using multi-objective optimisation. Through this case
study the authors also showed that the predicted specific purchased-
equipment cost and the cost-sharing of purchased-equipment cost show
good accordance with real ORC applications.

Using the above modelling method, ORC systems have been studied
considering the net present value (NPV) as the design goal. For a case in
which the waste-heat source was wastewater at 150 ℃, and the cooling
condition was cooling water at 15 ℃ Schilling et al. [421] obtained
the ideal optimal working fluid under the relaxed NLP problem, with
an NPV of e2.1 million. Next, the five best working fluids were de-
termined, with the best actual working fluid being propylene with an
NPV of e1.8 million and 𝑃net = 489 kW. It was also found that the
final optimisation results were quite different from the thermodynamic
optimisation results wherein the net power output was the objective
function (propane, NPV = e0.55 × 106, 𝑃net = 589 kW).

Later, Schilling et al. [428] combined molecular design and super
structure-based flowsheet design and optimised these simultaneously.
This method was applied to the case of an ORC for waste-heat recovery.
In the system design, regeneration, turbine bleeding, and reheating
were considered as the expansion options of the basic cycle; NPV, SIC,
and 𝑃net were considered as the objective function. At the same time,
the process settings and working fluid were optimised, leading to the
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best combination of these. The accuracy and the great improvement of
the calculation efficiency of the method were verified.

Based on the above-mentioned 1-stage CoMT-CAMD method, con-
sidering again an ORC system for which the waste-heat source was
waste water at 150 ℃ and the cooling by water at 15 ℃, Schilling
et al. [277] extended the integrated design method of circulation
and working fluid to mixed working-fluid design and proposed the 1-
stage CoMT-CAM𝑏D method. The authors considered thermodynamic
and thermo-economic objectives. The most-promising mixtures were
effectively identified, maximising net power output or minimising SICs.
Comparison with the best pure components showed the potential to use
working-fluid mixtures. In particular, for the presented case study, the
net power output could be increased by 7%. In contrast, for thermo-
economic goals, the benefits of mixtures were generally lower com-
pared to pure components. However, if the optimal pure component
had a higher optimal superheat, the mixture could reduce certain in-
vestment costs. In addition, the effects of mixture composition, cooling
medium, and heat source temperature were also analysed.

Bowskill et al. [450] studied an ORC system for typical industrial
waste heat with a heat source temperature of 210 ℃, with a cycle min-
imum and maximum temperature set to 20 ℃ and 200 ℃, respectively.
An algorithm using an outer-approximation (OA) and an augmented
penalty scheme was proposed to calculate the chemical properties of
the ORC working fluid using SAFT-𝛾 Mie [79] and the GC method,
and to enhance the performance of the algorithm, a feasibility test
was embedded in the algorithm to eliminate the infeasible parts of the
search space. The original OA framework and the version reinforced
with feasibility tests proposed in this work are shown in Fig. 18. The
algorithm yielded the top ten fluids, with n-butane ranking first. Using
this model, Bowskill et al. [450] performed calculations for the ORC
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Fig. 22. Schematic illustration of the presented 1-stage CoMT-CAMD approach for the integrated thermo-economic design of the process, equipment, and molecule.
Source: Reprinted with permission from Schilling et al. [274].

© 2017 Royal Society of Chemistry.
application of a 120 ℃ geothermal heat source and a solar heat source
with constant heat flow 𝑄̇ = 1 MW, and obtained the optimal molecules
propane and pent-1,4-diene, respectively, for each case study. Feasibil-
ity tests for the case studies revealed that low-molecular-weight alkanes
(e.g., propane), olefins (e.g., pent-1,4-diene), and molecules containing
ether groups (e.g., methyl ethyl ether) are ideal ORC working fluids.

6.3. Geothermal and biomass

In the geothermal field, the design of working fluids for ORC has
been realised for the first time through the CAMD approach. In 2010,
Papadopoulos et al. [98,334] proposed the use of the CAMD approach
to identify optimal working-fluid candidates for ORCs and conducted
a case study on a representative low-enthalpy geothermal field with
diverse temperature and flow characteristics. Multiple performance
indicators were considered as design objectives in the study; particular
attention was paid to safety and environmental characteristics such
as flammability, toxicity, ODP and GWP. A performance ranking of
molecules was obtained, including traditional and new working fluids.
The most economically efficient molecule was found to be methyl-
formate (R611), which was also favourably evaluated based on the
other properties.

Extending the heat source range to 70–90 ◦C, Papadopoulos et al.
[335] determined various performance characteristics of optimal work-
ing fluids under the variable-heat-source condition. For the first time,
these authors addressed the design of binary working-fluid mixtures for
CAMD-based ORC systems. This CAMD method exploits the beneficial
properties of MOO technology by combining the proposed method
with a nonlinear sensitivity-analysis method to quantify and evaluate
the impact of inherent model uncertainty when selecting the highest-
performing option among the best candidate mixtures obtained at the
CAMD stage.
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Papadopoulos et al. [141,336] illustrated the proposed approach by
considering a case study of ORC power generation based on a 95 ℃
geothermal source at 9 kg/s flow rate, where the involved groups in-
cluded −CH3, >CH2, >CH−, >C<, FCH2O−, −CF3, >CF2, >CF−, with up
to 16 groups allowed in each molecule. In this case, a series of mixtures
were found, and their thermal efficiency and exergetic efficiency were
higher than those of isopentane–isobutane mixtures proposed in the
published literature. The sensitivity to the boiling point and critical
properties of these mixtures was also analysed, indicating that for most
mixtures accurate knowledge of the boiling point temperature is more
important than of their critical properties. Details have been provided
in Section 3.5.

Lampe et al. [51] proposed an overall ORC design framework
that enables simultaneous optimisation of processes and working fluid
based on system performance. The simultaneous optimisation was
achieved by exploiting the molecular nature of the PC-SAFT EoS in the
CoMT-CAMD approach. To predict thermal properties, a quantitative
structure–property relationship (QSPR) for the heat capacity of ideal
gases was proposed that relies on pure-component parameters of PC-
SAFT. The two-step approach for the design of ORCs is shown in
Fig. 17. This approach was applied in the optimisation of a geothermal
ORC. Taking the net power output as the optimisation objective, the
circulating parameters and circulating working fluid parameters were
obtained. According to this, the ten most-promising working fluids
were found from the database containing 200 substances, among which
R227ea was judged the best practical candidate fluid, and it was
observed that the top six working fluids from the real ranking list (used
to assess the method) were all included in the ten working fluids found
using this method.

Schilling et al. [420] applied the single-stage method of integrated
design of ORC processes and working fluid to the case study of inte-
grated design of a geothermal ORC. In this case, taking the net power
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Table 6
Top five working fluids as identified in the study of Tillmans et al [425], with the net
power output 𝑃net as well as the process conditions; 𝑝cond and 𝑝evap are the pressure
levels in the condenser and evaporator (respectively), 𝑚̇WF is the mass flow rate of the
working fluid and 𝛥 𝑇SH is the degree of superheating determined in individual process
optimisations. Adapted from Ref. [425].

Rank Fluid 𝑃net / MW 𝑚̇WF / (kg s−1) 𝑝cond / bar 𝑝evap / bar 𝛥𝑇SH / K

– target 1.95 71.5 7.0 25.5 0
1 (2) Propene 1.48 47.1 11.0 32.0 0
2 (1) Propane 1.50 47.8 9.2 27.4 0
3 (3) Isobutane 1.44 41.4 2.8 9.3 0
4 (4) 1-Butene 1.43 40.0 2.9 9.6 0
5 (5) Propyne 1.41 30.4 8.9 24.1 48.2

The order is according to the ranking of the CAMD step. The sorted rank according to
the results of the individual process optimisations is shown in parentheses.

output as the objective function and considering 16 groups, the 1-stage
ethod identified all the top ten working fluids in the database, and

he computational effort was reduced by 94.1% compared to a single
ptimisation process for all molecular structures in the database.

Tillmanns et al. [425] integrated CoMT-CAMD into the object-
riented modelling language Modelica. Modelica’s existing model li-
rary can be used to model the ORC system. The PC-SAFT state equa-
ion implemented using external functions provided the property pre-
iction of the working fluid. The design method was applied to the
ntegrated design of the ORC processes and working fluid of a geother-
al power station, and the top five working fluids were successfully

dentified; these mainly consisted of short-chain alkanes and olefins, as
hown in Table 6. The computational complexity of the optimisation
rocess is high in this work, and if an uncertainty analysis can be

carried out, it will make the results more informative.
Groniewsky et al. [549] used the Cycle-Tempo thermodynamic-

modelling software to generate different ORC configurations, calling
the FluidProp thermodynamic library and performing calculations with
the PC-SAFT EoS, and implemented the CoMT-CAMD method using the
ptimisation process under MATLAB. Two different geothermal ORC
onfigurations with heat-source temperatures between 80 and 180 ℃
ere investigated using this method: a simple cycle, and a regenerative

ycle. The initial working-fluid search space was established on the
asis of PC-SAFT parameters of 60 real substances in the case. The
esults of CoMT-CAMD were checked against literature values obtained
rom conventional optimisation methods, and a more efficient loop
onfiguration was determined for all 11 temperature terminations.

6.4. Solar thermal

The 1-stage CoMT-CAMD method for the integrated design of the
ORC processes and working fluid proposed by Schilling et al. [423,424]

as also applied to the ORC power generation of solar heat sources.
he ORC structure included a reheater and a fixed solar thermal input
f 𝑄 = 463 kW. Here, nine of the top ten working fluids in limited

design space were identified by the 1-stage CoMT-CAMD method with
integer cutting. Due to the local properties of the solver, the method
missed the fifth-best molecular structure. Compared with the single
process optimisation of all molecular structures in the database, the
computational workload was reduced by 94.4%. The process model
was extended by a detailed model of turbine design to demonstrate
the possibility of modelling process components in a more detailed
way. Compared to the constant turbine efficiency, the efficiency of
the turbine in this study is calculated from the cycle process param-
eters and the properties of the fluid, providing a more accurate and
realistic model. Of course, the calculations are more complex, but the
1-stage CoMT-CAMD methodology presented in this study allows for
the simultaneous design of fluid properties and components.

On this basis, Lampe et al. [273] added the turbine meanline design
procedure. A new design and optimisation method was proposed, which
combines working-fluid selection, thermal cycle design, and prelimi-
ary turbine design. In the same case, the top ten organic working
47 
fluids were obtained, mainly cyclopentane and cyclohexane derivatives,
with alkyl side chains. The working fluid that allowed the maximum
net power output was methylcyclohexane, with net power output 𝑃net
= 101.3 kW. This study demonstrated that in the case of small-scale
ORC systems, turbine design constraints greatly affect the selection of
the best working fluid and the corresponding thermodynamic cycle
parameters.

6.5. Other technologies

Lampe et al. [55] used CoMT-CAMD to avoid complex MINLP prob-
ems, and the working-fluid characteristics were modelled using the
C-SAFT EoS. Using this method, an ORC driven by a waste-heat source
t 360 ℃ was taken as an example to consider the linear siloxane family

with the prospect of high-temperature application, and the thermal
fficiency was taken as the optimisation goal. Based on the optimisation
esults, the best hypothetical working fluid was obtained. The most
uitable real working fluid, octamethyltrisiloxane (MDM), was obtained
hrough a mapping to a list of pure components. Finally, through the
rocess optimisation of each of the working fluids considered, the result
f the mapping step was verified. This was the first time that process
ptimisation was coupled with the selection of the working fluid, and
he process goal was taken as the standard vertebra. Avoiding the use
f targets other than process objectives in pre-selection may exclude
he best fluid from further consideration.

Subsequently, Lampe et al. [20] developed a GC method to predict
the pure-component parameters of PC-SAFT and realised the overall de-
sign of the new working fluid and the best system. The non-regenerative

RC with a waste-heat source at 320 ℃ was taken as a case study, and
nine groups were considered to construct the working fluid. The opti-
mal combination of working fluid and process parameters was obtained
rom the optimisation results, and the net power output of the resulting
ycle is 19.6 MW. The CAMD step identified the actual working fluid
ith similar performance to the optimal fluid through database map-
ing and found the best actual working fluid to be chloroethane, with a

net power output of 17.8 MW, which was only 9% less than that of the
hypothetical) optimal fluid. This is a good idea for optimisation. First
ind a fluid with ideal parameters, then optimise to get a practically
easible molecular structure based on the ideal parameters.

In the previously mentioned studies of Lampe and co-workers, due
to the method of database mapping, the selection can only be made
from known fluids; the actual design of a new fluid is impossible.
ubsequently, Lampe et al. [419] integrated the CAMD method into

the mapping steps of the CoMT-CAMD framework to achieve integrated
process and fluid design. The CAMD method was based on a GC method
for the PC-SAFT parameters (GC PC-SAFT) [445]. By investigating the
case of non-regenerative ORC fluid design with a waste-heat source
at 120 ℃, the top ten working fluids were determined and verified
by comparison to an existing database, demonstrating the general
applicability of this method in the field of ORC working-fluid design.

White et al. [550] used the principle of CAMD to couple the
hermodynamic model of a subcritical and non-regenerative cycle
ith the Peng–Robinson EoS [307] to optimise a subcritical and non-

regenerative ORC to determine the relationship between the best
working fluid and cycle operating conditions. They showed that when
the temperature of the heat source is lower than 300 ℃, the rela-
ionship between the working fluid and cycle operating conditions is
etermined. They observed and verified a linear relationship between

the heat-source temperature, 𝑇H and the optimal critical temperature
for maximum power output (𝑇c = 0.830 𝑇H + 41.27 ℃).

White et al. [447,448] proposed a CAMD-ORC optimisation method
based on the SAFT-𝛾 Mie GC EoS, implementing the model on the
gPROMS platform. This method was used to study the optimal design
of hydrocarbon working fluid in a simple ORC cycle for waste-heat
recovery at three different heat-source temperatures (150 ℃, 250 ℃,
or 350 ℃). In this study, the CAMD-ORC MINLP optimisation model
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Fig. 23. The effect of the number of –CH2– groups on the net power output from the ORC system for the four hydrocarbon families at three different heat-source temperatures;
from left to right: 150 ℃, 250 ℃, 350 ℃.

Source: Adapted from White et al. [447].
was used to investigate and optimise several different families of
hydrocarbon working fluids, namely n-alkanes, methyl alkanes, 1-
alkenes, and 2-alkenes. The results demonstrated that the theoretical
optimal fluid for maximising power output should have the thermody-
namic properties of maximising evaporation pressure and minimising
superheat. This reduces the latent heat of evaporation and makes a
better heat match between the working fluid and the heat source. As
far as the actual working fluid is concerned, simple molecules such
as propane and propylene were found to be especially suitable for
low-temperature (150 ℃) heat sources, and molecules with double
bonds more suitable for medium-and high-grade heat sources with
temperatures between 250 ℃ and 350 ℃. Specifically, n-propane, 2-
pentene, and 2-hexene were identified as the best working fluids at
three heat-source temperatures, with optimal power output of 35.2 kW,
136.7 kW, and 219.0 kW, as shown in Fig. 23, and thermal efficiency
of 9.7%, 16.9%, and 17.8%, respectively.

On this basis, the thermal economic analysis is incorporated into
the CAMD-ORC framework, and the SIC of the system is taken as the
optimisation objective.[146] In the same case, the working fluids of
the ORC system with the lowest SIC were isoheptane, 2-pentene, and
2-heptene, with a SIC of £5620, £2760, and £2070 per kW, respectively.
The importance of considering thermal economy within the framework
of CAMD-ORC was demonstrated.

van Kleef et al. [275] further carried out multi-objective optimisa-
tion for the above case, taking into account the total investment cost
and net power output, showing the relationship between net power
output and SIC. These authors found that the molecular size of the
optimal working fluid is related to the heat-source temperature. It
was shown that multi-objective optimisation allows designers to choose
work fluids that meet the requirements in a more flexible way.

In these case studies, it was found that different application sce-
narios lead to different optimal working fluids. From low-temperature
wastewater to high-temperature heat sources in nuclear energy, no
single fluid can be adapted to all working conditions, which is one
of the driving forces behind the CAMD-ORC research. CAMD-ORC can
customise the working fluids for various scenarios to guide the design
of experiments as well as the development of related products. Con-
sidering the black-box nature of CAMD, it is necessary for researchers
to provide as much analysis as possible on the cycle performance
enhancement mechanism when designing working fluids to enhance the
credibility and theoretical nature of the design. Providing uncertainty
analysis can make the design results more informative. Based on the
results and analysis of the CAMD-ORC, more focused experimental
testing of application scenarios can be conducted to finalise the design
of the ORC, including the structure and the working fluid.
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7. Challenges, opportunities and outlook of ORC power systems

CAMPD methods for the integrated design of ORC systems and
working fluids have rapidly evolved in the last decade. However,
three main areas of further development of the methodology can be
identified. These concern: (i) the prediction of the thermophysical
properties of working fluids, (ii) the modelling of the system equipment
characteristics both in on- and off-design conditions, as well as during
transients, and (iii) the numerical algorithms and the extension of the
methods to new applications.

7.1. Thermodynamic, transport, and other thermophysical properties

One of the main limitations of current CAMPD methods is that
the working-fluid design space covers principally molecules containing
carbon, hydrogen, and oxygen. A few studies additionally consider
halogenated functional groups [98,141,518,519], given the advanta-
geous thermodynamic properties of halogenated fluids for ORC appli-
cations. The main challenge with this class of fluids is that GC-based
thermodynamic-property models tend to be less accurate due to their
limitations in predicting the molecular dipole moment, especially in the
case of multiple dipolar groups in the molecule. A potential solution
to these limitations is represented by the vector GC method recently
proposed by Hemprich et al. [555]. However, the modelling of halo-
genated substances may remain an academic problem given that these
compounds are toxic or fall into the group of per- and poly-fluoroalkyl
substances (PFAs) whose industrial use may be banned in the near
future due to the health and environmental concerns they pose.

A fluid class which has not been considered in CAMPD for ORC
systems so far is that of siloxanes, in spite of the fact that these
compounds are frequently adopted in ORC gensets, especially for
relatively high-temperature applications. It follows that the CAMPD
solution methods still need the development of a comprehensive set
of functional groups and a corresponding accurate property-prediction
model for all molecular families relevant to ORC systems. This need
is even more critical in the case of ORC systems operating with fluid
mixtures, as current methods for the prediction of binary-interaction
parameters lack sufficient accuracy or are applicable only to a restricted
class of mixtures. On the contrary, the prediction of transport properties
is performed in the more recent CAMPD implementations with high
reliability, thanks to the development of the entropy scaling-based
methods discussed in Section 4.

Besides thermodynamic properties, there are further properties that
are critical for a proper assessment of the suitability of a candidate
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working fluid for a given ORC application, e.g., its flammability, toxic-
ity, environmental impact, and thermal stability. These characteristics
are, generally, assessed a posteriori for the best candidates identi-
fied by the CAMPD method, though there are research works where
some of such properties were concurrently assessed via an automated
procedure while ranking the optimal working fluids, see, e.g., [98].
In principle, the ideal working fluid should be non-flammable, non-
toxic, environmentally friendly, and thermally stable at temperature
levels close to those of the heat sources. Given the expected evolution
in environmental regulations, working fluids that exhibit high GWP
will arguably not be feasible in the near future. Thus, the inclusion
of an upper constraint for this characteristic in the CAMD problem
formulation would be useful to prevent the optimiser from identifying
molecules that are not viable. Regarding flammability and toxicity, one
an, instead, argue that working fluids that are not fully satisfactory
ith respect to these properties can still be attractive [556].

For instance, a flammable working fluid enabling high conversion
erformance can still be the optimal choice. Appropriate measures to
uarantee system safety are, after all, consolidated practice in industry,
s also proven by the extensive use in ORC applications of fluids such
s toluene, cyclopentane, and other hydrocarbons. The additional in-
estment costs that the adoption of a flammable or toxic working fluid
ntails might be, indeed, compensated by the higher energy production
f the plant or by the smaller size of the equipment. Such extra costs
re, however, extremely difficult to estimate in a preliminary design
hase and then accounted for in the CAMD model. The costs may
lso vary significantly based on the plant location. At the same time,
here are applications such as waste-heat recovery from an industrial
rocess, where the use of flammable or toxic working fluid may conflict
ith the environmental and safety regulation to which the industrial
lant is subject. For these applications, the identification of the optimal
orking fluid cannot be performed without a qualitative estimation of

he hazard profile of the molecules.
Predictive models for flammability, toxicity, and environmental

properties of organic chemicals have been developed for decades,
see, e.g., Refs. [505,557] and show good reliability, at least for given
fluid categories and a subset of these indicators. Such models can be
incorporated into the CAMPD methodology to exclude molecules that
do not meet certain targets, such as null ODP and low GWP values
if their molecular representation matches that of the employed CAMD
formulation. In other words, the additional thermo-physical properties
of interest have to be modelled according to the molecular represen-
tation of the working fluid 𝑦 in the optimisation problem (Problem
(1)) of the CAMPD problem (see Section 5.1). The accuracy of the
predictive model is key to ensuring that no molecule is discarded due to
model uncertainties. Alternatively, more-advanced CAMD formulations
can be developed, e.g., molecule superstructures [452], that provide
a higher degree of structural information than state-of-the-art CAMD
ormulations (e.g., group counts of molecular groups). With a higher
egree of structural information in the CAMD model, more-accurate
redictive models for thermo-physical properties can be made available
or CAMPD.

As far as thermal stability is concerned, no predictive models have
been established so far. This is a strong limitation for current CAMD
methods, as thermal stability data are available mainly for those
molecules that are already of common use in the ORC technology.
The potential of CAMD methods in identifying new molecules for
high-temperature ORC systems is then considerably hindered. This
is a knowledge gap that would deserve extensive research efforts in
the future, and that is also of interest for other fields of application,
such as heat-transfer fluids, high-temperature heat pumps, as well as
gas-bearing technology. Predictive models for fluid thermal stability
should not be limited to pure substances, as there is empirical evidence
that mixtures may exhibit higher thermal stability than the single
molecules in the blend at hand. An example is siloxane-based mixtures
used as heat-transfer fluids in solar collectors, which can operate at
temperatures exceeding 400 ◦C [558], while the thermal stability of
pure siloxanes is limited to appreciably lower temperature levels.
49 
7.2. Preliminary design of system and equipment

State-of-the-art CAMPD frameworks for ORC systems enable, nowa-
ays, the integrated optimisation of the thermodynamic cycle config-

uration and the main system equipment. This represents a key ad-
vancement in ORC system design with respect to conventional practice,
where the various design phases are performed sequentially and it-
eratively repeated. The advantage of the integrated design approach
is the possibility of accounting explicitly in the optimisation for the
nterdependency between the thermodynamic cycle parameters and

the cost, performance, as well as design feasibility [273,275,281] of
the various equipment. Due to the trade-off between such quantities,
n a sequential design workflow, possible optimal solutions may be

overlooked, as already recognised by White et al. [447,448]. At the
ame time, the consequence of a decision at one design stage can lead

to challenging problems later on. For instance, the choice of the cycle
maximum temperature and expansion ratio in the case of small power
capacity applications may lead to an unfeasible turbine design, as the
resulting rotational speed is too high or the height of the blade pas-
sages is too small for manufacturing. The implementation of a CAMPD
methodology performing the integrated optimisation of the ORC system
and the preliminary design of its main equipment arguably requires ad-
hoc ORC equipment models. On the one hand, the equipment models
have to be as detailed as possible since approximations can affect the
working-fluid selection. On the other hand, the more detailed equip-
ment models and larger ORC systems are considered in the CAMPD
problem, the more design variables the optimisation algorithm has to
deal with, and the higher the computational cost associated with the
evaluation of the objective functions. Further developments in system
and equipment modelling are envisaged in order to fully exploit the
potential of the CAMPD methodology.

The key equipment for an ORC application essentially are the heat
xchangers, which may belong not only to the working-fluid loop

but also to auxiliary circuits of the plant, the expander, and, to a
lower extent, given the limited size and consumed power, the pump.
In the CAMPD studies targeting the simultaneous optimisation of the
hermodynamic cycle and the related system equipment (see Table 4),
he heat exchangers are typically modelled by assuming a counterflow

configuration and discretising the heat-transfer area in several control
olumes. The discretisation serves to capture the variation of the hot
nd cold stream thermodynamic properties and the consequent change

in the heat-transfer coefficient and friction factor. These models are
analogous to those used in industry for the preliminary design of
heat-transfer equipment, and, as such, they exhibit adequate accuracy
iven the purpose of CAMPD studies. More-complex heat-exchanger
opologies than those considered so far can be simulated with a similar
odelling scheme by relying on the epsilon-NTU method or the cell
ethod described in Ref. [559]. A limitation of the current modelling

approach arguably consists in the fact that the flow configuration and
the surface topology of the heat exchanger are to be chosen a priori.
Consequently, the optimisation has to be repeated if the best heat-
xchanger type is not known for the application of interest. As an

example, think of extended surface heat exchangers where various fin
topologies may be adopted. A solution to this limitation, which anyhow
transcends the sole CAMPD methods, being inherent in heat-exchanger
preliminary design practice, is currently unavailable.

Regarding the expander, this is often of the turbine type in ORC
applications, apart from small power capacity systems. In standard
design practice, the preliminary turbine design is performed based
on the so-called mean-line flow model of the machine [560]. This
model is formulated with a lumped-parameter approach, accounting
for flow quantities only at the inlet and exit of each blade cascade,
regardless of the detailed shape of the blades. In spite of the simple

odelling approach, a mean-line code commonly features a relatively
high computational cost for system simulations due to the various fluid-

dynamic loss mechanisms that are to be considered and the nonlinearity
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of the resulting system of equations. The work of Lampe et al. [273] is,
t present, the sole CAMPD study that included a mean-line code in the

system model to perform preliminary turbine sizing and performance
estimation according to the characteristics of the working fluid. The
ode embeds some simplifications with respect to state-of-the-art mean-
ine models and allows only for radial-inflow turbine configurations.

Though not demonstrated in their work, the authors assumed that the
accuracy of their simplified mean-line code is adequate for working-
fluid selection. A possible solution to prevent excessive simplifications
that deserve future investigation may be offered by current advance-
ments in reduced-order model techniques. A surrogate model of the
turbine can be calibrated based on the results of a validated mean-
line code for various working fluids, in analogy with the procedure
described in Ref. [561] for the case of a centrifugal compressor. In prin-
iple, for efficiency prediction, the surrogate model can even be trained
ased on CFD results, thus enabling high accuracy with extremely low
omputational costs. To ease its integration into a CAMPD framework,
he turbine reduced-order model must feature among the inputs the

same parameters of the adopted EoS or thermodynamic properties rep-
resentative of the working-fluid characteristics that can be calculated
ased on the molecular representation of the working fluid 𝑦 in the

optimisation problem (Problem (1)), such as the molecular complexity
and the isentropic pressure–volume exponent [561]. A similar approach
can also be adopted for the ORC pump. Moreover, the derivation of
validated reduced-order models for the preliminary design of various
turbine configurations, as well as of volumetric machines, may enable
a thorough comparison of the different expander technologies for the
application of interest. Notice that the CAMPD formulation would be
the key enabler of such a comparison, as the traditional working-fluid
selection process would arguably require an unfeasible simulation time
or lead to non-definitive conclusions if the comparison is repeated only
for a limited amount of compounds.

The improvement of the models for preliminary equipment design
can also facilitate the implementation in CAMPD frameworks of more-
accurate costing models for ORC equipment. In this regard, the models
currently in use typically estimate the cost of ORC equipment based
on the value of a single performance indicator. For example, the cost
of an expander is often estimated based on its power output. How-
ever, its cost depends on the size and design complexity, which, in
turn, are related to the characteristics of the working fluid and the
thermodynamic cycle. Single performance indicators do not capture
these dependencies and, thus, might lead to inaccurate cost estima-
tions [562]. Furthermore, the cost of the working fluid should also be
onsidered. Having additional charge in the system has a direct increase
n the investment cost but also indirectly due to possibly more stringent
afety or environmental constraints.

Another research area related to ORC system design that is still
unexplored, except for the work of Schilling et al. [427], is multi-
oint design optimisation. In waste-heat-recovery applications, espe-
ially aboard vehicles or in solar plants, the operating conditions of
he ORC system vary over time. Consequently, the definition of a
ingle design point does not reflect the actual potential of the appli-
ation and may lead to the selection of a suboptimal working fluid,
s demonstrated by Schilling et al. [427]. In analogy with the design

practice of aero-engines, a better strategy is, then, to optimise the ORC
design for several operating conditions that are representative of the
actual operating envelope of the system. A methodology to select a
proper set of quasi-steady-state operating conditions based on the so-
called aggregation techniques is described in Ref. [427]. The main
limitation of this exploratory work is that no preliminary design of
the equipment is performed, thus making the prediction of the ORC
system performance in the various operating conditions arguably ap-
proximate. Proper evaluation of the objective functions in a multi-point
design optimisation problem requires, instead, an ORC model allowing
not only for equipment sizing but also for off-design simulation. The

implementation of an off-design model in a CAMPD framework will w
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require an ad-hoc modelling strategy for the expander, as in system
simulation, the off-design characteristics of an expander are commonly
predicted through pre-calculated or even experimentally-based perfor-
mance maps. Data-driven modelling techniques can provide a compu-
tationally efficient means for accurately predicting such performance
maps based on working-fluid characteristics and the expander design
inputs. On the contrary, for heat exchangers, similar models to those
used for preliminary sizing can be adopted.

Finally, if the variation of the ORC system operating conditions
is too fast to consider a set of quasi-steady-state operating points,
the ORC off-design model is to be replaced by a dynamic model, as
studied in [276]. In this case, the CAMPD formulation includes the set
point of the manipulated variables of the control system. Consequently,
n equivalent optimal control problem is solved in addition to the

optimisation of the thermodynamic process and related equipment. The
current challenge of the methodology is related to the computational
cost associated with dynamic simulation. Notably, the simulation time
must be reduced such that the design space considered in the optimi-
sation or the level of detail of the models for preliminary sizing of the
system equipment can remain similar to those of CAMPD frameworks
for single steady-state design point optimisation. The ideal approach
consists in replacing the dynamic model with an equivalent transfer
unction whose coefficients are expressed as a function of the character-
stics of the working fluid and the system equipment. As an alternative,
f the dynamic requirements of the application are stringent and then
he controllability of the system is of concern, a design approach similar
o that devised in Ref. [563] may be preferable for the CAMPD problem
ormulation. In this work, as the first step of the methodology, the
esign of the ORC system is optimised with respect to two objectives

functions: one accounts for the thermodynamic performance of the
ystem, i.e., the net power output; the second objective function is
nstead representative of the dynamic characteristics of the plant. This
uantity is the total volume of the more bulky equipment of the ORC
odule, namely, the primary heat exchanger and the recuperator. In

he second step, the dynamic performance of the system is assessed by
imulating, in an automated way, critical transients for each design on
he Pareto front and by verifying whether the dynamic requirements of

the application are met or not. A PI (Proportional-Integral) controller
s tuned for each candidate solution by setting the proportional gain

to a value that is proportional to the heat exchangers volume, thus
accounting for the specific characteristics of the selected solution on
the Pareto front while keeping the integral time at a suitable constant
alue. Based on the outcome of these simulations, a final optimal
ystem design of the ORC plant can be selected, knowing that the
quipment design characteristics, in particular the heat exchangers size,

will not hinder the synthesis of the controller.

7.3. Optimisation algorithms and implementation opportunities

One of the key elements of a CAMPD method is the optimisation
algorithm. Possible options considered in the past are derivative-free

etaheuristic algorithms that include mechanisms to avoid locally
ptimum solutions. However, there is a large range of derivative-free
lgorithms other than metaheuristics [177] that are worth explor-

ing, as they may facilitate the future incorporation of high-fidelity
process and equipment models in CAMPD for ORC systems. Indeed,
global gradient-based optimisation algorithms can be exploited for
CAMPD problems if all equations of the models are given in an explicit
form [518,519]. However, explicit formulations of the mathematical
model are often possible only for simple thermodynamic ORC models
and thermodynamic-property models, e.g., GC approaches, or cubic
EoS. More-complex system models are thus usually modelled by im-
licit functions, and local optimisation algorithms have to be used,
ith the consequence that locally optimal solutions may be found by
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the optimiser. A solution to this limitation may be provided by the re-
cent advancements in global optimisation algorithms for implicit func-
tions [564,565] or using embedded machine-learning models [566].
The use of these algorithms for CAMPD deserves future investigations.

Regarding the applications, as shown in Section 6, CAMPD methods
ave already been applied to almost all kinds of processes and energy

sources of economic relevance for ORC technologies. Only novel or
iche applications have not been explored yet, such as ocean thermal

energy conversion, waste-heat recovery aboard aircraft, or propulsion
of satellites. The study of these applications does not require arguably
additional developments in the CAMPD methods. In principle, only the
system model must be adapted. A topic that requires, instead, further
advancements is process integration. In current CAMPD studies on
waste-heat recovery from industrial processes, the characteristics of the
waste-heat source represent an input of the design problem. A more-
efficient solution may be found by redesigning the thermal network
or the process itself from which waste heat is recovered to optimise
the ORC system integration and the overall energy consumption of the
plant. Most of the studies, e.g., Refs. [567,568], which explore this
design problem, make use of pinch analysis to optimally integrate the
ORC system with the multiple heat sources at different temperature
evels of an industrial process. The most advanced methods dealing
ith ORC design and process integration, such as those proposed in
efs. [195,201,202], do not consider a predefined ORC configuration,

but the same ORC system model, also called ORC superstructure. This
model can be used to optimise the plant layout by means of additional
discrete design parameters that can activate or deactivate some flow
connections in the working-fluid loop(s). However, in these works, the
working fluid of the ORC is selected from a small list of predefined
organic compounds. At present, no CAMPD method has been imple-
mented to tackle ORC design and process integration. Only the work
f Schilling et al. [428] considered an ORC superstructure within a
AMPD framework, though the optimiser can choose only between
hree ORC configurations, while the ORC superstructures discussed in
he literature offer multiple options. Further developments in this area
re envisaged in the upcoming years since the choice of the ORC config-
ration impacts the ranking of optimal working fluids, as demonstrated
y Schilling et al. [428]. Another interesting research area for CAMD

methods is robust design. In the field of energy conversion technology,
his involves designing a thermal machine or prime mover, or even one
f their components, while accounting for uncertainty in the model as
ell as in the design specifications. The goal is to minimise the impact
f the various uncertainty sources on the selection of the optimal
olution. The outcome of a robust CAMD procedure would consist of
 ranking of the optimal working fluids based on the chosen figure of

merit along with its uncertainty, which should be fluid-dependent.
Despite the potential of the method, CAMPD is still marginally used

n ORC design practice. The main reasons thereof are: (1) the risks felt
y manufacturers in adopting novel working fluids, especially if limited

experimental data about their thermochemical and thermophysical
properties are available; and (2) the specific expertise needed to set
up the optimisation problem and the system model in current CAMPD
tools, as well as to analyse the results. To facilitate their deployment in
ORC design practice, researchers should ensure that CAMPD methods
can be easily replicated. This can be achieved by thoroughly document-
ing the methods’ workflow or by making the CAMPD tools open source.
Another solution is to implement the developed methods into software
and tools of common use in the industry. In this way, the users can
be guided in the CAMPD problem implementation through a graphical
user interface and a sequential process, as in the case of software for
process simulation. The first step in this direction is represented by the
work of Schilling et al. [423,428], which shows that integrating CAMPD
methods in commercial process flowsheeting software is possible. Just
recently, an integrated molecule and process design approach has also
been integrated into the in-house flowsheet simulator of BASF SE [520].
However, both implementations are so far not commercially available.
51 
Tackling the challenges mentioned above will improve the rele-
vance, reliability, and applicability of CAMPD for ORC systems. How-
ver, it should be noted that aiming for increased model complexity
nd more-accurate models in CAMPD may not always be worthwhile.
s the main aim of CAMPD is the selection of optimal molecules, the
ey requirement for the adopted system and thermodynamic models
s to be accurate enough to properly capture the trends between the
arious molecules with respect to the design objectives. Thus, the
ntegration into CAMPD of more-accurate models and methods is mean-
ngful only if they lead to the selection of different working fluids
ith respect to their less-accurate counterparts. The comparison of the

olutions obtained with new CAMPD implementations against those of
tate-of-the-art methods is thus always crucial for CAMPD research.
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Design variables

Maximum temperature and minimum
temperature in regenerator

Mixture concentrations, cycle pressures,
mass flows, and medium temperatures

Mixture concentration

Evaporating pressure and mixture
concentration

Mixture concentration, pinch
temperatures in condenser, evaporator
and regenerator, expander inlet pressure
and air-cooled condenser area

s Mixture concentration, highest and
lowest cycle operating temperatures

Mixture concentration and re-injection
geothermal fluid temperature are varied

Evaporating pressure, pinch-point
temperature differences in evaporator
and condenser, mass flow rates of
working fluid and cooling source

Mixture concentration, high and low
cycle temperatures

Mixture concentration, evaporator and
condenser temperature, pinch point
temperature difference, degree of
superheating

Mixture concentration, evaporation
bubble point, condensation dew point,
expander inlet temperature and

Turbine inlet pressure, degree of
superheating, condensing temperature at
bubble point, boiler and condenser
pinch point temperature. For condenser
and boiler: inlet tube diameter, number
of tubes, baffle spacing

Evaporator and condenser temperature,
degree of superheating, working fluid
flowrate

(continued on next page)

Progress in Energy and Combustion Science 107 (2025) 101201 

52 
Table A.1
Overview of mixture selection approaches.
Ref. Component features Formulation and objective functions Optimisation algorithm

Pre-specified mixture compositions

[150] 1 ternary mixture and pure
components

SOO- Max net electric efficiency Optimisation with ORCSim+ StanMix

[151] 10 binary, 3 ternary SOO- Max net power output, Generalised reduced gradient method
[569] (NLP)

[152] 4 binary and several pure
component fluids

SOO- Max thermal efficiency Simulated Annealing

[19] 8 binary SOO- Max second law efficiency Generalised Reduced Gradient (GRG)
nonlinear multistart algorithm (NLP)

[153] 10 binary SOO- Min ratio of the specific
investment cost over the effectiveness of
heat recovery

PSO

[154] 6 binary SOO- Max net power output PSO (population up to 40, generation
60)

[155] 12 binary SOO- Max second law efficiency Cycle Tempo internal optimisation
algorithm

[156] 7 binary SOO- Max net power output without or
with leakage, or minimise CO2-eq
emissions

PSO

[157] 6 binary SOO- Max net power output PSO

[158,159] 1 binary mixture MOO- Max exergy efficiency, Min
levelised energy cost

NGSA II

[160] 5 binary MOO- Max exergy efficiency,
expander-specific volume flow ratio

GA (Matlab), population size 60,
generations 100

[161] 2 pure fluids and 1 fully specified
mixture

MOO- Maximise net power output, Min
total cycle cost

GA (Matlab), population size 30,000,
generations 500

[162] 2 binary MOO- Max net work output, Min
equipment cost

Interior point algorithm (NLP), use of
SAFT-VR
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Design variables

Mixture concentration, evaporation
pressure, condensation temperature, and
minimum temperature difference
approach in the evaporator.

VCC evaporator and condenser
temperatures, condenser pinch point
temperature and degree of superheating
and of subcooling, ORC evaporator
degree of superheating and pinch point,
condenser temperature, degree of
subcooling and pinch point, and mass
flowrate

Mixture concentration, condensation and
evaporation pressures, degree of
superheating, regenerator effectiveness,
pinch temperature difference, mass
fraction of fluids

Mixture composition and concentration

Binary mixture composition and
concentration, expander inlet
temperature and pressure and hot fluid
outlet temperature.

Mixture composition and concentration,
number of components in mixture, ORC
operating conditions

nal Mass flowrate of each pure component,
considering 6 components at a time at
each optimisation, evaporator pressure,
condenser pressure and degree of
superheating

Presence of pure component in mixture,
concentration of components in ternary
mixture, condenser pressure

hod Number of components in mixture,
mixture composition, and concentration,
ORC operating conditions and HEX
surface areas
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Table A.1 (continued).
Ref. Component features Formulation and objective functions Optimisation algorithm

Pre-specified mixture compositions

[163] 28 binary MOO- Max net power output and second
law efficiency, Min conductance (UA)

NSGA-II

[164] 12 combinations of pure fluids in
ORC and VCC

MOO- Max second law efficiency, Min
conductance (UA)

GA (Matlab)

[165] 5 binary mixtures and 1 pure MOO- Min conductance (UA), Max net
electrical power and cooling power

NSGA-II, 729 individuals in initial
population

Mixtures from combination of pure components

[166] 11 pure components SOO- Max cycle efficiency Mode Frontier-evolutionary approach

[167] 30 pure and mixed fluids SOO- Max net power output GA (Matlab), population size 100,
generations 500 or 200

[168] 19 pure components SOO- Max absorbed heat, or net power
output, or thermal efficiency, or second
law efficiency, or Min the area of the
temperature profiles between the
working fluid and the heat source or
sink

CONOPT (NLP)

[169] 24 pure components SOO- Max net work output SQP, tear stream approach, two inter
loops used to converge the model
simulation and cooling water flow

[170] 23 pure components SOO- Min area between hot and cold
temperature curves in condenser

GA for MINLP (population 150,
generations 50), BARON for NLP

[171] 10 pure components MOO- Max thermal efficiency, Min total
annualised cost

CONOPT (NLP) with 𝜖-constraint met
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e inlet pressure and temperature (all cycles), split
ns of turbine outlet stream (SRORC, DRORC)

evaporating pressure, ORCLFE: evaporating pressure, ratio
ding liquid to working fluid, ORCSC: rich and weak
n concentration

 pressure: Temperature before the turbine, saturation
rature at the pressure before the turbine, the pressure at
let of the pump, the mass flow of the working fluid, the
rator effectiveness; Double pressure: All of single pressure
e temperature before the second turbine, the saturation
rature at the pressure before the second turbine and the
flow rate through the second turbine. In both cases, for

EX the shell diameter, the tube outside diameter, the
itch, the baffle cut and the distance between the baffles.

d 2nd evaporator pressure, pinch point temperature in
rator 1, degree of superheating in evaporator 1

ng fluid flowrate

ration temperature of HT loop, condensation pressures of
T and LT loops, pinch point temperature of the HT
rator, of the internal HEX and of the LT condenser, mass
n of first component of the HT and LT loops.

e of superheating of HT loop, pinch point temperature
nces in HT and LT loops, condenser temperatures of HT

T loops HT loop pressure factor

er of loops, flowrates of working fluid, saturation
ratures and temperature of the outlet of the heat
tion section for each loop, type of turbine (induction or
sion)

(continued on next page)
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Table A.2
Approaches for systematic fluid selection and ORC process design and/or heat integration.
Ref. Component features Configuration features Formulation and objective

functions
Optimisation algorithm Design

Pre-specified ORC configurations

[189] 6 pure fluids BORC, Single (SRORC) and
dual (DRORC) stage
regenerative ORC

SOO- Max exergy efficiency GA (population 200, generations
2000)

Turbin
fractio

[190] Ammonia-water (both ORCLFE
and ORCSC), CO2-acetone
(ORCSC), pure fluids

Simple ORC, ORC with
liquid-flooded expansion
(ORCLFE), ORC with
solution-circuit (ORCSC),
transcritical conditions were
considered for the ORC and
the ORCLFE

SOO- Max second law
efficiency

Optimisation (Engineering
Equation Solver) performed
separately for different source
temperatures

ORC: 
of floo
solutio

[191] 9 pure fluids Single pressure, recuperated
and double pressure

SOO- Max net present value
or investment cost

CasADi (automatic differentiation)
and WORHP (SQP-interior point
NLP solver)

Single
tempe
the in
recupe
and th
tempe
mass 
each H
tube p

[209] 9 mixtures of up to 5
components with pre-specified
concentrations

Simple ORC, parallel two-stage
ORC, series two-stage ORC

SOO- 1st stage: 1st and 2nd
law criteria; SOO- 2nd stage:
STORC-all fluids parametric
assessment, net power output
and turbine size parameter;
MOO- 3rd stage: STORC and
R32/R125/R134a, net power
output and turbine size
parameter

1st and 2nd stage parametric
simulations, 3rd stage GA
(population 500, generations 600)

1st an
evapo

[192] 14 pure fluids Subcritical, supercritical,
trilateral

SOO-Max work output Golden section search Worki

[213] 5 mixed and 1 single fluid for
HT, 3 mixed and 1 single
fluid for LT

Dual loop MOO- Thermal efficiency,
payback period, annual CO2
emission reduction

NSGA-II (population 120,
generations 1000)

Evapo
the H
evapo
fractio

[193] 2 single fluids for HT loop, 5
fluids for LT loop

Dual loop MOO- Min capital cost, Max
exergy efficiency

GA, ANN for the SOFC-GT-ORC
model

Degre
differe
and L

Design of advanced ORC configurations

[194] 1 pure fluid Generic representation of
multi-pressure ORC, pressure
loops may be added, different
turbine types may be used

SOO- Min exergy loss or Max
work output

New pressure loop added
automatically if it improves the
performance, NLP within each
pressure loop

Numb
tempe
extrac
expan
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 variables

er and interactions of pressure levels, expansion,
ession and heat exchange stages

er of turbines, superheaters, feedwater preheaters stages,
ater pumps

inary variables that activate or de-activate the
stream cryogenic heat exchanger, vapour flash, expansion
apour re-condensation process; 9 continuous variables,
ing 5 for pressure change of pumps and 4 for split
ns of vapour re-condensation

medium and high pressure level, corresponding mass flows
ese levels, superheating at high pressure level, enthalpies
bine and preheater, existence of high pressure level, of
el heating mode, of turbine bleeding, of compression at
m pressure level and of expansion directly to low pressure,
uperator, of high and medium pressure superheater

 variables: pumps, turbines, condensation and evaporation
 working fluid; Continuous variables: pressure and
rature levels

ratures of the three condensation levels, condensation and
sion layout (parallel, partial parallel, serial), working fluid

ng fluid type (single fluids) or mixture composition (from
ecified options) and concentration (for mixtures), binary
 for sharing of compression, heating, expansion and
g processes between two elementary cycles, initial states
pression and expansion process.

(continued on next page)
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Table A.2 (continued).
Ref. Component features Configuration features Formulation and objective

functions
Optimisation algorithm Design

Pre-specified ORC configurations

[196,197] 1 pure fluid [196], 2 pure
fluids [197]

Generic structural
representation with thermal
cuts between expansion and
compression operations
(HEATSEP and SYNTHSEP)

SOO-Max total electrical
power

External level: GA to handle
structural parameters; Internal
level: SQP to handle continuous
operating parameters

Numb
compr

[198,199] 1 pure fluid Generic representation of
ORC, addition of multiple
turbines with reheating and
feedwater preheating

SOO- Max thermal efficiency
[198]; MOO- Max thermal
efficiency, Min cost of
electricity [199]

External level: Evolutionary
algorithm (population 25,
generations 200, Internal level:
NLP (CONOPT3)

Numb
feedw

[210] 1 mixture of pre-specified
composition and concentration

Superstructure for cryogenic
ORC

SOO- Max Annual profit GA (population 200, generations
50

Ten b
multi-
and v
includ
fractio

[200] 1 pure fluid Superstructure with ANN for
fluid property predictions

SOO- Max work output or Min
levelised electricity cost

MAiNGO (parallel version) Low, 
for th
at tur
parall
mediu
of rec

[201] Up to 14 pure organic fluids
(simultaneous fluid selection)

Superstructure SOO- Outer GA Max work
output, Inner MILP Min
operating cost; MOO- Outer
GA Max work output, Min
investment cost, Inner MILP
Min total annualised cost

Outer level GA, Inner level MILP Binary
levels,
tempe

[202] 12 pure fluids (simultaneous
fluid selection)

Superstructure with different
condensation and expansion
options

SOO- Max net power output GA (population 800, generations
100)

Tempe
expan

[214] 12 pure fluids, 9 mixtures
(simultaneous fluid selection)

HEATSEP approach SOO- Max net power output Outer and upper level: GA
(population 20, generations 50,
Lower level: SQP

Worki
pre-sp
option
coolin
of com
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n variables

y network structure, equipment sizes, flowrates etc. (up to
ontinuous and 39 binary variables)

y network structure, equipment sizes, operating
isation of ORC, Stage 1: 295 continuous, 43 binary

bles, Stage 2: 131 continuous 28 binary variables

ration pressure, superheating temperature (simple and
erative), medium and high pressure, corresponding
heating temperatures, split fraction of working fluid, mass
ate of fluid in all layouts)

ariables

ems of up to 475 binary and 1599 continuous variables

 1: Flowrate of external utilities (integer variables) to
y energy requirements of system and corresponding
erature levels; Stage 2: vaporisation and condensation
eratures, minimum liquid preheating and vaporisation heat
working fluid and flowrates (defining a cycle structure);
 3: Select optimum cycle structure from the previous
ns

er and structure of ORC cascades, operating conditions
flowrates, pressures, temperatures) number and types of
ing fluids, quantity and type of cooling utility

enser and turbine inlet pressure, superheat temperature,
re concentration, working fluid mass flowrate and
ates of external utilities
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Table A.2 (continued).
Ref. Component features Configuration features Formulation and objective

functions
Optimisation algorithm Desig

Pre-specified ORC configurations

Heat integration approaches

[203] 3 pure fluids Regenerative ORC,
superstructure for utility
network design

SOO-Min total annualised cost MINLP (CPLEX, CONOPT,
DICOPT)

Utilit
190 c

[204] 3 pure fluids Basic ORC, superstructure for
utility network design

SOO- Stage 1: Min hot and
cold utility, Stage 2: Max
work output

BARON Utilit
optim
varia

[215] 6 pure fluids HEATSEP approach for
boiler-heat source integration
in simple, regenerative and
dual pressure ORC structures

SOO- Max net work output Hybrid algorithm, development of
hot composite curves, SQP for
ORC simulation, development of
cold composite curves

Evapo
regen
super
flowr

[206] 4 pure fluids Superstructure of heat and
cold utility network

SOO- Min total annualise cos NLP (CONOPT) 524 v

[207] 1 pure fluid Generic superstructure for
ORC and utility network

SOO- Min Total annualised
cost

BARON-CPLEX Probl

[208] 2 pure fluids (simultaneous
fluid selection)

Incorporation of basic cycle
components based on exergy
composite curve profiles

SOO-Level 1 and 2: Min
exergy losses, Level 3: Min
cost

MILP Stage
satisf
temp
temp
load, 
Stage
optio

[195] 7 pure fluids (simultaneous
fluid selection, different fluids
may be used simultaneously
in the overall ORC design)

ORC superstructure for design
of multiple power generation
cascades and the
corresponding hot utility heat
exchange network

SOO- Max power generation BARON Numb
(e.g., 
work

[211,212] 36 mixtures Simple ORC, the minimum
number of stages required by
the turbine are also calculated

SOO-Max cycle exergy
efficiency

PGS-COM evolutionary algorithm Cond
mixtu
flowr
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sign method Off-design

 correlations, velocity
ed on fixed isentropic
 and exit velocity ratio.

Yes

 deterministic and empirical
perating regimes inside the
ss and turbine efficiency

No

 detailed modelling of
 losses estimation.

nalysis of loading factor on
ign and velocity triangles

Yes

 velocity triangles; energy
tion; breakdown of losses

Yes

odel with estimation of No

s-Averaged Navier–Stokes
urbulence model

No

ith tension and vibration No

iency turbine model using
gles and simplified models
sses

Yes

iency turbine model using
gles and simplified models
sses

Yes

s-Averaged Navier–Stokes
urbulence model, with
n equation of state for
ic properties prediction

Yes

r model; single and
xpander

No

s-Averaged Navier–Stokes
eng-Robinson

No

s-Averaged Navier–Stokes No

r model with losses
d variable turbine

Yes

r design model; 3-D
al model for performance

Yes

r design model; velocity No
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Table A.3
Summary of ORC working fluid selection studies that incorporate a detailed model for the expander.

Ref. Working fluids Optimisation of operating conditions Expander type Expander de

[240] 17 pure components 1-D steady state model; aggregate
objective function (equipment size,
rotational speed, work generated)

Radial 1-D analysis;
triangles bas
velocity ratio

[241] 28 pure components 1-D steady state model; MOO on heat
exchanger area and maximum
performance factor

Radial 1-D analysis;
models for o
expander; lo
model.

[242] 6 pure components 1-D steady-state; parametric analysis for
design and off-design operating
conditions

Radial 1-D analysis;
expander and
Parametric a
expander des
for 6 WF.

[279] 7 pure components 1-D steady state thermodynamic Radial 1-D analysis;
losses estima
per source

[243,244] 8 pure components Expander optimisation Radial Mean-line m
losses.

[245] 5 pure components 1-D steady state thermodynamic Radial and axial 3-D Reynold
model, k-𝜔 t

[280] 4 pure components 1-D steady-state thermodynamic; MOO Radial 1-D model w
constraints

[246] 5 pure components 1-D thermodynamic Radial Variable effic
velocity trian
for energy lo

[263] 1 zeotropic mixture, CO2 1-D thermodynamic model Axial Variable effic
velocity trian
for energy lo

[270] 6 pure components, 1
zeotropic mixture

Only expander model — parametric
analysis

Radial 3-D Reynold
model, k-𝜔 t
Peng-Robinso
thermodynam

[247] 11 pure components 1-D thermodynamic model Axial 1-D expande
multi-stage e

[245] 2 pure components Only expander model Radial 3-D Reynold
model with P

[248] 2 pure components 1-D thermodynamic with optimal
expander design

Radial 3-D Reynold
model

[249] 6 pure components 1-D thermodynamic model;
multi-objective optimisation

Radial 1-D expande
estimation an
efficiency

[271] 1 pure component and 1
zeotropic mixture

1-D thermodynamic model; Radial 1-D expande
computation
evaluation

[273] CAMPD 1-D thermodynamic; integrated
optimisation of working fluids and ORC
(with expander model)

Radial 1-D expande
triangles
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es Correlations of heat transfer coefficients

g Correlations of heat transfer coefficients,
discretisation

ll, Discretisation, correlations for heat
transfer and pressure drops

le Discretisation, correlations of heat
transfer coefficients

Discretisation

Constant heat transfer coefficients

Discretisation

ass Correlations for heat transfer and
pressure drop

Correlations of heat transfer; Design
variables: number of plates and length
in the evaporator, number of tube rows
and frontal area in the condenser

Correlations for heat transfer and
pressure drop; Design variables:
geometrical features are design variables

nt
ell

Correlations for heat transfer and
pressure drop; Design variable: Number
of tubes (in parametric evaluation)

ss, Correlations for heat transfer, pressure
drop through discretisation of duct
length; Design variables: tube length and
shell diameter in boiler, plate dimension
and number of channels in the
recuperator

Heat transfer correlations, systematic
calculation of pressure drop; Design
variables: different HEX cross-sectional
areas tested

d
,

Moving boundary model; Design
variable: length of heat exchanger

Discretisation, correlations for heat
transfer and pressure drop

Correlations for heat transfer

(continued on next page)
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Table A.4
Key features of heat exchanger modelling approaches.
Ref. Fluid type Boiler Condenser

Steady-state models- cf. Section 3.1

[155] Pure and binary mixtures Shell-and-tube counter flow for
pre-heater and evaporator

Air-cooled, cross-flow with finned tub

[156] Binary mixtures Shell-and-tube, preheating, evaporation
and superheating zones

Shell-and-tube, cooling and condensin
zones

[161] Pure and binary mixture TEMA E type shell-and-tube, one shell,
one tube pass

TEMA E type shell-and-tube, one she
one tube pass

[162] Binary mixtures Shell-and-tube, counter-current, double
pipe, preheater and evaporator

Shell-and-tube, counter-current, doub
pipe, de-superheater and condenser

[163] Binary mixtures Counterflow Counterflow

[169] Mixtures from pure fluids Floating head (tube only) Floating head (shell-and-tube)

[170] Mixtures from pure fluids – Shell-and-tube, only condensation

[171] Mixtures from pure fluids Shell-and tube (one pass shell, two-pass
tubes)

Shell-and tube (one pass shell, two-p
tubes)

Steady-state models — other cases

[250] Pure Plate (pre-heater, evaporator,
superheater)

Finned tube with circular fins

[251] Pure Shell-and-tube Shell-and-tube

[264] Mixtures Shell-and-tube (hexagonal arrangement
tubes in tube side, baffle plates in shell
side)

Shell-and-tube (hexagonal arrangeme
tubes in tube side, baffle plates in sh
side)

[252] Pure Shell-and-tube for preheating,
evaporation and superheating

Plate-and-tube (two rows of single pa
flat tubes, plate fins used for finned
surface)

[281] Pure Shell-and-tube (preheater, evaporator) Shell-and-tube (desuperheater,
condenser)

[180] Pure Single rectangular channels with fixed
channel width and height (pre-heater,
evaporator, superheater)

Single rectangular channels with fixe
channel width and height (pre-heater
evaporator, superheater)

[272] Pure and a mixture Shell-and tube Shell-and tube

[253] Pure Fin-and-tube Plate
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Modelling approach

ent
tion

Heat transfer correlations

w 6 different ORC configurations, 3 zones
for each HEX, tube diameters
determined from fluid flowrate, heat
transfer coefficients

eated Discretisation, heat transfer coefficients

Moving boundary model with variable
heat transfer coefficients

Finite volume model

Moving boundary model

Moving boundary model

Finite volume model; Design variables:
Evaporator and condenser surface areas

Moving boundary model

Moving boundary and finite volume
model

Moving boundary; Design variables: fin
height, tube outer diameter, fin pitch,
tube length and tube spacing.

Aspen HTFS+, steady-state model;
Design variables: Surface areas of
evaporator and condenser

h
S)

Constant overall heat transfer
coefficients, no pressure drop along the
exchangers, steady-state model; Design
variables: Surface areas of evaporator
and condenser

t Discretisation, steady-state model; Design
variables: Surface areas of evaporator
and condenser

r Discretisation, steady-state model; Design
variables: Bulk liquid velocity of
preheating section inlet, bulk liquid
velocity of condensing section outlet

xed 0-D model, constant heat transfer
coefficients

t Discretisation, steady-state model; Design
variables: Surface areas of evaporator
and condenser
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Table A.4 (continued).
Ref. Fluid type Boiler Condenser

Steady-state models- cf. Section 3.1

[254] Pure Plate with counter current arrangement
(boiler includes preheating, evaporation
and superheating)

Plate with counter current arrangem
(boiler includes preheating, evapora
and superheating)

[255] Pure General concentric-tube, counter-flow
model with infinitely thin walls

General concentric-tube, counter-flo
model with infinitely thin walls

[256,257] Pure Plate with preheating, evaporation and
superheating

Plate with condensation and superh
regions

[258] Pure Brazed plate (preheater-evaporator,
superheater)

Shell-and-tube

Dynamic models

[259] Pure Straight pipe in pipe counterflow Straight pipe in pipe counterflow

[260] Pure Finned tube represented as counter flow
straight pipe, preheating, evaporation
and superheating

Steady-state

[261] Pure Preheating, evaporation, superheating Undisclosed

[266,267] Mixtures Shell-and-tube Shell-and-tube

[268] Mixtures Shell-and-tube Shell-and-tube

[269] Mixture Counter-current thimble HEX Counter-current thimble HEX

[262] Pure Fin-and-tube, cross-counter flow —

Molecular design approaches

[98] Pure Shell-and-tube Shell-and-tube

[278] Mixtures Tube and shell heat exchangers, with
split-ring head construction (TEMA S)

Tube and shell heat exchangers, wit
split-ring head construction (TEMA 

[274] Pure Shell-and-tube, counter flow, without
baffles

Shell-and-tube, counter flow, withou
baffles

[275] Pure Counter-current, double-pipe tubular
heat exchangers

Counter-current, double-pipe tubula
heat exchangers

[276] Pure Single-pass plate heat exchangers, fixed
heat transfer area

Single-pass plate heat exchangers, fi
heat transfer area

[277] Mixtures Shell-and-tube, counter flow, without
baffles

Shell-and-tube, counter flow, withou
baffles
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Criterion

ollectors,
ture in storage
e of heat
ctor area,
 tank

Net work output, thermal
efficiency, volume ratio across
turbine, evaporator temperature
glide, irreversibility

 exhaust-gas
aporator exit,
e, heat source
ssure ratio for
tage

Net work output

eas (sizing),
ature
king, heat
 fluid flowrate

Net work output

operating Net work output

operating Net power output and ORC
efficiency

ns Efficiency
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Table A.5
Summary of approaches for off-design cycles assessment considering multiple fluids.

Ref. Fluid type Employed model Approach Varied parameters

[312],[313] 9 conventional and 10 novel
binary mixtures

Equilibrium, steady-state models
for HEX, including solar collectors
and thermal storage, efficiency
models for expander and pump

Non-linear, multiparametric
sensitivity analysis of consecutive
steady-states, based on objective
function represented as control
structure

Mass flowrate of c
minimum tempera
tank, mass flowrat
carrier, total colle
volume of storage

[316] 5 pure fluids Steady-state, moving boundary
HEX model, screw and piston
expander models (lumped mass)

Optimisation algorithm used to
change operating parameters on a
previously optimum sizing design
solution

Working fluid and
temperature at ev
evaporator pressur
mass flowrate, pre
every expansion s

[265–267] 4 novel and 1 conventional,
binary mixture

Dynamic models for HEX,
efficiency models for turbine and
pump

Integrated fluid selection, ORC
sizing optimisation and MPC

Heat exchanger ar
evaporator temper
(disturbance), wor
source and cooling
(manipulated)

[262] 8 pure components Dynamic model, single loop
controllers

Integrated fluid selection, ORC
sizing and controller performance
criterion

Equipment sizing, 
conditions

[311] 1 mixture at variable
concentrations

1-D steady state thermodynamic
model

Concentration adjustment for
working fluid in off-design
operation

Equipment sizing, 
conditions

[317] 2 pure components and their
mixtures

1-D dynamic state model Simulator model based on
experimental test-rigs

Operating conditio
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heat-to-cooling systems.

Dr. Papadopoulos was the first recipient of the presti-
gious Professor Angelino award in the field of ORCs (jointly
with P. Linke and P. Seferlis), and was also awarded the
prestigious John. S. Latsis public benefit foundation research
grant for work in ORCs. He has also received the Collin
McGreavy award from the Institute of Chemical Engineers
(UK), a highly competitive advanced fellowship from the
Institute of State Scholarships Foundation (GR), as well
as best paper (Energies) and front cover awards (Green
Chemistry) for work in ORCs and CAMD.
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Dr. Oyewunmi’s research interests reflect the application
of the principles of thermodynamics, heat transfer, eco-
nomics and process systems engineering to the design and
operations of renewable and non-conventional energy and
power systems. He focuses on the following topics: optimal
system design of non-conventional and renewable power
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and cooling technologies; economic and life cycle analysis
of current and emerging energy technologies; computer-
aided molecular and process design of organic Rankine
cycle systems and other waste-heat recovery technologies;
dynamic behaviour and operational control of energy sys-
tems; and transport processes of multiphase flow in energy
systems. He has been active in organic Rankine cycle (ORC)
research for over 5 years, including the application of the
statistical associating fluid theory (SAFT) to working fluid
and ORC system design. He has authored over 50 original
research articles on ORC systems for waste-heat recovery
and/or combined heat and power (CHP) applications in
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tematic selection of solvent and working media, modelling
for accurate but compact representation of physical and
chemical phenomena, optimal design and interactions with
control system and achieved dynamic performance.
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been active in organic Rankine cycle (ORC) research
through the involvement in working-fluid mixture selection,
the optimal design and the investigation of the working-
fluid interactions with the control system performance. He
has been involved in several projects at the European and
national level utilising CAMD for energy conversion and
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authored several articles including review articles in CAMD
technology in separation and energy conversion systems,
including ORC systems.
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Dr. Schilling has a research interest in the integrated design
of processes and molecules in energy and chemical engineer-
ing, exploring links between predictive thermodynamics,
process modelling, and optimisation in an integrated design
framework with a high level of integration.

Specifically in relation to this review paper, Dr.
Schilling has been working on the computer-aided design of
ORC systems using SAFT-based thermodynamic models for
equilibrium and transport properties for over six years. In
his research, he gained broad experience in integrating the
ORC equipment sizing, e.g., for heat exchangers or turbines,
superstructure-based design, and pure working fluid as
well as mixture design into ORC process optimisation. The
work has been recognised by several scientific awards and
appreciated in research communities for ORC technology,
thermodynamics, and computer-aided process engineering.

Over the last six years, he has published several jour-
nal papers on the integrated design of ORC systems and
participates in 14 conferences on ORC technology and
computer-aided process design.
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Professor Linke is a process systems engineer and his on-
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integrated systems and associated infrastructures. He cur-
rently leads research into innovating process designs with
a focus on methods to support in silico screening and
process synthesis, the efficient use of energy and materials
in industrial clusters and the synthesis of novel materials for
heat-to-power conversion devices, systems and applications.

Professor Linke has been active in organic Rankine cycle
(ORC) research, both experimentally and computationally,
for >15 years, and in the development and application of
computer-aided product and process design or CAM(P)D
approaches for >20 years. He and his co-workers were the
first to propose CAM(P)D approaches for ORC working fluid
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further contributions relating to ORC mixture design, ORC
optimisation for renewable energy applications and ORC
cycle integration considering multiple heat sources.
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Hua Tian is a Professor at the State Key Laboratory of
Engines, with over 12 years’ research experience in engine
waste-heat recovery using ORC or sCO2 power systems.

He developed the CO2-based working-fluid matching
theory of efficient waste-heat recovery and system minia-
turisation. Automotive engine needs system miniaturisation,
which requires efficient recovery of waste heat by working-
fluid matching design in the simple cycle mode, but there
is no effective working-fluid scheme at present. Starting
from the exploration of new working fluids, he discovered
the correlation law between physical property of working
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fluid and cycle efficiency, dynamic response and system
miniaturisation, and put forward a new idea of defining
the physical property of ideal working fluid and actual
working fluid. The matching rule of physical property and
characteristic of CO2-hydrocarbon mixture was explored,
and a new working fluid and its optimisation design method
were put forward to realise the efficient recovery of waste
heat under the miniaturisation system.

He has published more than 110 journal papers that
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chapter and 2 Chinese book chapters. As PI, he has re-
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major research programme supported by the governments
of China and USA. Over the past five years, he received
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‘‘Huoyingdong scholar’’ by Ministry of Education, China
(2019) and the First Prize in Tianjin’s Natural Science
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‘‘basic research on cascade utilisation of waste heat energy
of efficient, energy-saving and low-carbon internal combus-
tion engine’’. He has presided over more than 30 national,
provincial and ministerial level scientific research projects,
including key projects of intergovernmental international
scientific and technological innovation cooperation: ‘‘Sino
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