

Delft University of Technology

Assessing the Optimality of Decentralized Inspection and Maintenance Policies for
Stochastically Degrading Engineering Systems

Bhustali, Prateek; Andriotis, Charalampos P.

DOI
10.1007/978-3-031-74650-5_13
Publication date
2025
Document Version
Final published version
Published in
Artificial Intelligence and Machine Learning

Citation (APA)
Bhustali, P., & Andriotis, C. P. (2025). Assessing the Optimality of Decentralized Inspection and
Maintenance Policies for Stochastically Degrading Engineering Systems. In F. A. Oliehoek, M. Kok, & S.
Verwer (Eds.), Artificial Intelligence and Machine Learning: 35th Benelux Conference, BNAIC/Benelearn
2023, Delft, The Netherlands, November 8–10, 2023, Revised Selected Papers (pp. 236-254).
(Communications in Computer and Information Science; Vol. 2187 CCIS). Springer.
https://doi.org/10.1007/978-3-031-74650-5_13
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-74650-5_13
https://doi.org/10.1007/978-3-031-74650-5_13

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Assessing the Optimality of Decentralized
Inspection and Maintenance Policies for
Stochastically Degrading Engineering

Systems

Prateek Bhustali(B) and Charalampos P. Andriotis

Faculty of Architecture and the Built Environment, TU Delft, Delft, The Netherlands
{P.Bhustali,C.Andriotis}@tudelft.nl

Abstract. Long-term inspection and maintenance (I&M) planning, a
multi-stage stochastic optimization problem, can be efficiently formu-
lated as a partially observable Markov decision process (POMDP). How-
ever, within this context, single-agent approaches do not scale well for
large multi-component systems since the joint state, action and observa-
tion spaces grow exponentially with the number of components. To alle-
viate this curse of dimensionality, cooperative decentralized approaches,
known as decentralized POMDPs, are often adopted and solved using
multi-agent deep reinforcement learning (MADRL) algorithms. This
paper examines the centralization vs. decentralization performance of
MADRL formulations in I&M planning of multi-component systems.
Towards this, we set up a comprehensive computational experimental
program focused on k-out-of-n system configurations, a common and
broadly applicable archetype of deteriorating engineering systems, to
highlight the manifestations of MADRL strengths and pathologies when
optimizing global returns under varying decentralization relaxations.

Keywords: Inspection and maintenance planning · Decentralized
partially observable Markov decision processes · Multi-agent deep
reinforcement learning · Actor-critic methods · Stochastic deterioration

1 Introduction

Inspection and maintenance (I&M) planning of deteriorating engineering sys-
tems, such as bridges, roads, aircraft, etc., is an optimization problem of seeking a
policy that minimizes the expected life-cycle cost over a given time horizon. The
problem is particularly challenging for engineering systems with multiple het-
erogeneous components that exhibit distinct system-level and component-level
behaviours because the space of possible policies is intractably large. To make the
problem tractable, risk-based and condition-based approaches use heuristics to
confine the policy space over which the objective is minimized [12,44]. Although
these methods provide fast and explainable policies, it is well understood that
they can be far from optimal [4,32].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
F. A. Oliehoek et al. (Eds.): BNAIC/Benelearn 2023, CCIS 2187, pp. 236–254, 2025.
https://doi.org/10.1007/978-3-031-74650-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-74650-5_13&domain=pdf
http://orcid.org/0009-0000-6027-8571
http://orcid.org/0000-0002-0140-5021
https://doi.org/10.1007/978-3-031-74650-5_13

Optimality of Decentralized I&M Policies 237

Alternatively, since I&M is a problem of decision-making under uncer-
tainty, several works leverage the partially observable Markov decision process
(POMDP) framework to model the environment and state uncertainties inherent
to real-world systems [7,8,24,26,29,32]. This enables us to leverage single-agent
deep reinforcement learning (SADRL) algorithms, which unlike heuristics, access
the entire policy space. They also circumvent many complexity limitations of tra-
ditional Bellman backup operator-based POMDP solvers [37,38] when applied
to I&M planning problems [6,33].

Although, in theory, neural networks can tackle arbitrarily high-dimensional
spaces, SADRL approaches do not scale well under practical computational con-
straints because the joint space of states, observations and action spaces grow
exponentially with the number of agents. A natural way to address this is to
decentralize the problem by assigning an agent to each component or subsystem,
thus articulating the problem as a cooperative multi-agent task. This relaxation
is an extension of the single-agent POMDP to multi-agent systems and is for-
mally known as a decentralized POMDP (Dec-POMDP) [3,30,31]. Likewise, we
can move from SADRL to multi-agent deep reinforcement learning (MADRL)
to solve the Dec-POMDP.

On the one hand, decentralization in reinforcement learning is key to address-
ing scalability. On the other hand, it can introduce certain side effects, such as
environment non-stationarity, equilibrium selection, multi-agent credit assign-
ment, and other issues, which encumber the learning task and may hinder con-
vergence to optimal policies [11,14,27]. These can become potentially predomi-
nant in I&M settings due to strong global reward signals, risk costs, and other
dependencies common in the mathematical description of deteriorating engineer-
ing systems. It, therefore, remains to be understood how the various multi-agent
learning pathologies manifest in various I&M planning settings.

In this work, we focus on understanding the optimality characteristics of
the three major MADRL paradigms: centralized training with centralized exe-
cution (CTCE), centralized training with decentralized execution (CTDE) and
decentralized training with decentralized execution (DTDE) in the context of
I&M planning. Specifically, we study this through the lens of a 5-component
k-out-of-n system, a common and broadly applicable archetype of deteriorating
engineering systems, modelled as a (Dec-)POMDP. This allows us to conduct
extensive numerical experiments with several MADRL architectures. Finally, we
obtain empirical insights on the performance of decentralized algorithms, which
can ultimately impede the convergence of MADRL algorithms to global optima.

2 Related Work

Some recent works in the maintenance planning context have leveraged the Dec-
POMDP framework to tackle the component multiplicity challenge. Andriotis
& Papakonstantinou exploit the independence of agent actions and factorize the
policy network output agent-wise, effectively converting the Dec-POMDP into
a multi-agent POMDP (MPOMDP) [4,5] (similar to [18]). Although action fac-
torization curbs the exponential growth of the policy network output to linear in

238 P. Bhustali and C. P. Andriotis

the number of agents, the policy input space can still grow exponentially, unless
dependencies are properly broken down into likewise factorized representations
[4,5,28].

CTDE and DTDE are two practical paradigms for solving Dec-POMDPs,
which try to address this challenge [2,17,31,42]. Various CTDE approaches such
as COMA [13], QMIX [36], FACMAC [35], VDN [39] have been proposed that
can address the credit assignment problem. Leroy et al. extensively compare the
performance of various CTDE approaches in the maintenance planning context
for k-out-of-n systems with varying n and demonstrate empirically the limita-
tions of current CTDE algorithms in a large system with more than n = 50
components [23].

An extensive empirical comparison of the CTDE and DTDE paradigms in
cooperative settings has been carried out on standard MARDL environments by
Papoudakis et al. to benchmark the efficacy of MADRL algorithms in practice
[34]. Lyu et al. provide a theoretical and empirical study on the effectiveness of
centralized and decentralized critics and show that both critics have the same
policy gradient in expectation. However, the variance in centralized critics is at
least as much as their decentralized counterparts. They empirically demonstrate
the performance of the CTDE and DTDE paradigms in several environments
to highlight shortcomings of training under centralized critics [25]. Guillaume
et al. were among the first to compare all MADRL paradigms to solve Dec-
POMDPs [9]. They empirically compare CTCE, CTDE and DTDE paradigms
on benchmark problems and use RNN-based policy networks, among others, to
encode the action-observation history.

In this work, we also compare all MADRL paradigms in the context of I&M
planning, emphasizing on k-out-of-n deteriorating systems. However, unlike [9],
we encode action-observation histories using beliefs over component states. We
do this for three reasons: transition and observation models are often available in
this context; belief-based policies are more explainable than RNN-based agents
that learn to encode action-observation histories, which is particularly important
in risk-sensitive settings; and learning stability is improved as training directly on
the belief space is more robust to environment noise. The goal is to understand
the strengths and shortcomings of MADRL approaches, specifically when solving
real-world I&M planning problems.

3 Background

3.1 Dec-POMDPs

We decentralize the I&M planning problem for a multi-component system by
assigning an agent to each component and requiring the agents to coopera-
tively minimize the inspection and maintenance cost over the system’s lifetime.
The objective can be extended to include risk thresholds, minimum component
health states, budget constraints, etc. [5]. This decentralized cooperative multi-
agent setting is formally called a Dec-POMDP [30,31], defined by the tuple
〈M, S,A, T, C,O,Ω, tH , γ〉, where M := {1, . . . , M} is the set of agents, S is

Optimality of Decentralized I&M Policies 239

the state space, A = ×Am is the joint action space, T : S × A × S → [0, 1] is
the transition model, C : S ×A → R is the system cost model, O = ×Om is the
joint observation space, Ω : O × S × A → [0, 1] is the observation model, tH is
the time horizon, and γ ∈ [0, 1) is the discount factor.

The solution to the Dec-POMDP is an optimal joint policy, π∗, that mini-
mizes the expected sum of discounted costs:

π∗ = arg min
π

Ea∼π

[
tH−1∑
t=0

γtct

∣∣π
]

(1)

where ct ∈ C(st,at) is the cost following the joint action at ∈ A prescribed
by the joint policy π = 〈π1, . . . , πM 〉 in state st. The policy π can be stochas-
tic, mapping the agent’s action-observation history to a probability distribution
over actions, or deterministic, mapping the agent’s observation history to agents’
actions. It is known that every Dec-POMDP has at least one optimal determin-
istic joint policy [31].

In several I&M planning scenarios, the system components deteriorate inde-
pendently, enabling a factorization of the state space, S = ×Sm, transition
model, Tm : Sm×Am×Sm → [0, 1] and observation model, Ωm : Sm×Am×Om →
[0, 1] making it a Dec-POMDP with transition and observation independence
[15,21]. In scenarios where components are correlated or dependent, they can be
transformed into independent representations through proper reconstruction of
the underlying dynamic Bayesian network [28].

The deterioration models are often available or learnable offline, which
enables us to maintain beliefs over the states of each agent [4,19,45]. When
an inspection action is taken, we use the observation om to update the belief
over a component’s state s′

m using the Bayes’ rule:

bm,t+1(s′
m) =

Ωm(om|s′
m, am) · ∑

sm∈Sm
Tm(s′

m|sm, am)bm,t(sm)∑
s′
m∈Sm

Ωm(om|s′
m, am)

∑
sm∈Sm

Tm(s′
m|sm, am)bm,t(sm)

(2)

An agent’s policy, typically tied to a specific component, maps component beliefs
to actions πm : Bm → Am.

3.2 Baseline Performance

We establish baseline performance using the classical time-periodic inspections
with condition-based maintenance (TPI-CBM) approach as in [5,16,24]. In this
strategy, we inspect components at fixed time intervals (Δtinsp) and, at the
inspection step, take maintenance actions based on observations (oinsp), denoted
by a sub-policy π̂(oinsp).

π∗
TC(Δt∗insp, π̂∗(oinsp)) = arg min

Δtinsp,π̂(oinsp)

Ea∼πTC

[
tH−1∑
t=0

γtct|πTC

]
(3)

Intuitively, we formulate the inspection and maintenance planning problem
as a combinatorial optimization problem by evaluating the objective defined in

240 P. Bhustali and C. P. Andriotis

Table 1. Single- and multi-agent DRL architectures studied in this work.

Paradigm
Mathematical

Framework
Algorithm Observation Action Critic Actor

CTCE

POMDP JAC (SADRL)

Joint

Joint

Centralized

Shared

MPOMDP
DCMAC Factored Shared

DDMAC Factored Separate

CTDE

Dec-POMDP

IACC
Independent

Independent
Centralized

Separate

IACC-PS Independent Shared

DTDE
IAC

Independent
Independent

Decentralized
Separate

IAC-PS Independent Shared

Eq.(3) for each policy πTC(Δtinsp, π̂(oinsp)) using Monte Carlo rollouts. Addi-
tionally, failed components are immediately repaired, enabling the strategy to
retrogress to simple corrective maintenance when necessary.

3.3 Multi-agent Deep Reinforcement Learning (MADRL)

In this work, we study the 7 variants of MADRL as listed in Table 1. In all of
them, we employ an off-policy actor-critic approach as in ACER [41] for sample
efficiency. Following standard nomenclature [17], we categorize these algorithms
based on information available during training and execution, as explained below
and summarized in Table 1.

Centralized Training with Centralized Execution (CTCE). This paradigm essen-
tially converts the Dec-POMDP either into a single-agent POMDP to directly
learn the mapping between the joint belief space and joint action space or a multi-
agent POMDP (MPOMDP) to learn the mapping between the joint belief space
and the agent-wise factored action space. Although the single-agent POMDP
approaches are not scalable, they theoretically encompass global optima in their
solution space. MPOMDP solutions relax the requirement for joint action spaces
and can be seen as a semi-CTCE paradigm that can approximate well the
POMDP solution space under mild conditions. Specifically, we consider three
actor-critic algorithmic approaches:

– Joint actor-critic (JAC), where the actor learns the joint stochastic policy
π(a|b; θ), mapping the joint beliefs to joint actions, and the critic learns the
value function V π (b;φ) under that policy.

– Deep centralized multi-agent actor-critic (DCMAC), where we exploit
the factorizable nature of the joint action space and learn a policy for each
agent that maps the joint belief to agents’ actions, π = 〈π(am|b; θ)〉M

m=1, and
a centralized critic V π (b;φ) guides each agent as in [4,18].

– Deep decentralized multi-agent actor-critic (DDMAC): Like
DCMAC, we exploit the factorizable action space but employ independent
networks for each agent mapping the joint belief to component action,
π = 〈π(am|b; θm)〉M

m=1, and a centralized critic V π (b;φ) guides each agent as

Optimality of Decentralized I&M Policies 241

introduced in [5]. This approach aims to model policy distributions indepen-
dently, thus alleviating potential training complexities stemming from param-
eter sharing in the centralized paradigm.

Centralized Training with Decentralized Execution (CTDE). This paradigm
assumes that the agents may have access to centralized information signals, such
as joint observations, joint actions and critic gradients, only during training but
act independently based on local observations during execution/inference. We
consider two information accessibility scenarios:

– Independent actor centralized critic (IACC), where each agent only has
access to its own component’s beliefs and learns the local stochastic policy
πm(am|bm; θm) guided by a centralized critic V π (b;φ).

– IACC with parameter sharing (IACC-PS): A special case of IACC
where agents share the same policy network π(am|bm,m; θ) but the beliefs
are indexed (using one-hot encoding) to enable the network to learn distinct
policies.

Decentralized Training with Decentralized Execution (DTDE). Agents only have
access to local information during training and execution and never have access
to centralized information as in the previous cases. We consider two cases:

– Independent actor-critic (IAC), where each agent learns a stochastic
policy mapping its belief to actions πm(am|bm; θm) and is guided by a decen-
tralized critic V πm(bm;φm).

– IAC with parameter sharing (IAC-PS), where agents share both policy
networks π(am|bm,m; θ) and critic networks V π(bm,m;φ) but the beliefs are
indexed (using one-hot encoding) to enable distinct outputs.

Generally, the parameter-sharing approach can be extended to agents with
heterogeneous action space cardinalities [40]. Several works have empirically
demonstrated the benefits of parameter sharing in environments with homoge-
neous agents (in terms of observations and actions) [13,18,43]. However, Chris-
tianos et al. demonstrate empirically that these benefits are environment-specific,
and such parameter sharing can become detrimental in certain environments [10].
Therefore, we study both variants in this work.

Decentralization presents several challenges due to the presence of other
agents that impede convergence to optimal policies. From the perspective of
a single agent, the presence of other agents affects [2,14,27]:

– Transitions: The environment is perceived as non-stationary by one agent due
to the actions of other agents;

– Rewards: Reward received due to joint actions must be disentangled to iden-
tify an individual agent’s contribution (known as multi-agent credit assign-
ment problem), and exploratory actions by agents obfuscate the reward signal
(also known as alter-exploration issue);

242 P. Bhustali and C. P. Andriotis

– Agent policy: Action selection must be coordinated when multiple optimal
joint policies exist (referred to as equilibria selection). Agents can converge
to a sub-optimal equilibrium because miscoordination due to unilateral devi-
ation from an optimal equilibrium has lower gains/higher penalties than uni-
lateral deviation from the sub-optimal equilibria. In such cases, a sub-optimal
equilibrium is said to shadow the optimal equilibrium.

4 Experimental Setup

4.1 Environment: k-out-of-n System

This work studies the optimality characteristics of MADRL approaches, focusing
on a k-out-of-n system with heterogeneous components. The k-out-of-n:G (G:
good) is a common archetype of deteriorating systems in which the system is
functional when at least k out of its n components are working and, therefore,
n ≥ k. The system has two notable special cases, namely k = n, a series system,
and k = 1, representing a parallel component configuration. Examples of such
systems include road networks, transmitters in communication networks, human
kidneys, etc. [20,22].

We consider a system with n = 5 components and assign an agent to each
component, thus M = n. The state space of each component (Sm) describes
its range of health states, Sm := {s1 = no-damage, s2 = minor-damage, s3 =
major-damage, s4 = failure} and similarly the component-wise actions are given
by Am := {a1 = do-nothing, a2 = repair, a3 = inspect}. Each component m has
a unique and stationary deterioration model T d

m, the natural deterioration of the
environment (e.g. ageing due to corrosion, fatigue or other stressors):

Td
1⎡

⎢⎢⎣
0.82 0.13 0.05 0
0 0.87 0.09 0.04
0 0 0.91 0.09
0 0 0 1

⎤
⎥⎥⎦

Td
2⎡

⎢⎢⎣
0.72 0.19 0.09 0
0 0.78 0.18 0.04
0 0 0.85 0.15
0 0 0 1

⎤
⎥⎥⎦

Td
3⎡

⎢⎢⎣
0.79 0.17 0.04 0
0 0.85 0.09 0.06
0 0 0.91 0.09
0 0 0 1

⎤
⎥⎥⎦

Td
4⎡

⎢⎢⎣
0.8 0.12 0.08 0
0 0.83 0.12 0.05
0 0 0.89 0.11
0 0 0 1

⎤
⎥⎥⎦

Td
5⎡

⎢⎢⎣
0.88 0.12 0 0
0 0.9 0.1 0
0 0 0.93 0.07
0 0 0 1

⎤
⎥⎥⎦

The above synthetic transition models capture the main characteristics of a
deterioration model, namely, they are upper-triangular (component state cannot
be improved without repair) and unit-mass at the terminal state (failure is an
absorbing state).

The repair action restores the component back to state s1, but this action
only succeeds with a probability rm and the transition model corresponding to
this action is given by:

Optimality of Decentralized I&M Policies 243

T r
m(s′

m|sm, repair) :=

⎡
⎢⎢⎣

1 0 0 0
rm 1 − rm 0 0
rm 0 1 − rm 0
rm 0 0 1 − rm

⎤
⎥⎥⎦ (4)

where rm is the repair accuracy of agent m, reflecting the uncertainty in the
duration the action requires to be completed, or other. We use the following
value of rm for each of the m components 1, 0.9, 0.95, 0.85, 0.8, respectively. The
chance of unsuccessful repair actions aims to capture the inevitable human error
during maintenance activities in practice.

We summarize the transition model for a component as follows:

Tm :=

{
T d

m, if a = do-nothing or a = inspect
T r

m × T d
m, if a = repair

(5)

The cost model is divided into component-level costs (repair and inspection
costs) and system-level costs. For each component m, the repair costs crepair

m are
30, 90, 80, 250, 350, respectively, and inspections costs cinspect

m are 20, 40, 25, 50,
100, respectively. System failure leads to a penalty cfailure equal to 3 times the
sum of component repair costs. The cost model can be summarized as follows:

C(s, a) = 1failure(s) · cfailure +
M∑

m=1

1a2(am) · crepair
m + 1a3(am) · cinspect

m (6)

where 1y(x) denotes the indicator function, taking a value of 1 if x=y, and
0 otherwise. This penalty necessitates the agents to cooperatively coordinate
maintenance actions to ensure global system functionality.

Each component has a unique observation model Ωm through which the
respective agent obtains imperfect observations of its true state when the inspec-
tion action is chosen and is given as follows:

Ωm :=

⎡
⎢⎢⎣

pm 1 − pm 0 0
(1−pm)

2 pm
(1−pm)

2 0
0 1 − pm pm 0
0 0 0 1

⎤
⎥⎥⎦ (7)

where pm describes the observation accuracy of component m for the inspec-
tion action and takes values of 0.8, 0.85, 0.9, 0.95, and 0.8 for the five agents.
Component failure, however, is assumed to be self-announcing, i.e. information
about failed components is noise and cost-free. The objective is to minimize the
operation cycle cost of the system over tH = 50 with γ = 0.99.

4.2 MADRL Algorithms and Baselines

For brevity, we only describe the algorithm for JAC in detail in Appendix 1.
The same off-policy features are used for all seven multi-agent approaches. All
MADRL algorithms hyperparameters are tuned on the 4-out-of-5 setting, and the

244 P. Bhustali and C. P. Andriotis

Table 2. Comparison of the best performance observed for each algorithm (with ±
indicating the 95% confidence interval when evaluating the optimization objective (1)
with 10,000 MC rollouts. Bold indicates best in the respective k-out-of-n setting.

1-out-of-5 2-out-of-5 3-out-of-5 4-out-of-5 5-out-of-5

Baseline TPI-CBM 1485.74 (±8.43) 1498.8 (±8.62) 1654.19 (±14.11) 3998.41 (±43.51) 19728.42 (±95.45)

CTCE

JAC 365.51 (±10.90) 735.96 (±13.59) 1686.41 (±18.56) 3413.96 (±33.88) 12595.17 (±67.70)

DCMAC 363.64 (±10.96) 735.56 (±14.08) 1789.00 (±21.25) 3396.92 (±32.64) 12509.88 (±66.73)

DDMAC 364.10 (±10.67) 732.62 (±13.49) 1858.60 (±24.16) 3384.11 (±32.95) 12764.02 (±67.13)

CTDE
IACC 298.01 (±7.96) 820.21 (±13.80) 1600.01 (±15.00) 3460.20 (±35.57) 12685.70 (±66.53)

IACC-PS 285.64 (±7.99) 833.55 (±10.28) 1578.24 (±14.88) 3421.71 (±35.39) 12543.43 (±69.51)

DTDE
IAC 563.99 (±21.91) 1422.94 (±18.13) 1603.05 (±14.76) 3421.37 (±32.43) 13291.65 (±73.41)

IAC-PS 296.57 (±8.42) 850.90 (±16.11) 1646.18 (±14.46) 3395.78 (±34.13) 13370.26 (±76.00)

best-performing ones are reported in Table 4 (see appendix). We use these tuned
hyperparameters and train ten instances of each agent with random seeds on all
k-out-of-n settings. To pick the best policy, we evaluate the agent periodically
every 4,000 training episodes using 10,000 Monte Carlo rollouts. A large number
of rollouts is needed due to the high variance of expected discounted cost Eq.
(1), as also highlighted in [23].

For the TPI-CBM heuristic, the policy space has tH×(|Sm|−2) = 50×3 = 150
policies, assuming policy uniformity over components. We subtract 2 since the
initial and final states’ actions are fixed, i.e., do-nothing and repair, respectively.
However, if we were to allow different component-wise policies, the search would
grow to 1505 = 7.5 × 1010, rendering the combinatorial optimization of Eq. (3)
intractable since evaluating the objective requires a large number of Monte Carlo
evaluations. Therefore, we optimize the heuristic, assuming the same policy for
all components and find an optimum over the smaller search space of 150 policies.

All code and experimental data are publicly available: https://github.com/
omniscientoctopus/optimality-of-decentralization

5 Results and Discussion

We summarize the performance of the MADRL algorithms in all k-out-of-n
settings using box plots and the test performance of agents during training in
Fig. 1. Additionally, we report the best performance observed for each algorithm
in Table 2. For a more detailed comparison, we report mean performance with
95% confidence intervals over ten random seeds in Table 3 in the appendix. To
enable a concise performance comparison of the paradigms, we aggregate the
results across settings using mean, interquartile mean (IQM) and median in Fig. 2
as demonstrated by Agarwal et al. in [1]. Before aggregating the performance,
we normalize the results with the respective baselines in each setting.

CTCE: Figure 1 shows that JAC, DCMAC, and DDMAC are all able to con-
sistently outperform the heuristic in most settings, and the equivalence of their
individual aggregate performance is shown in Fig. 2, where the confidence inter-
vals have a significant overlap. However, in the 3-out-of-5 setting, while their best
instance remains competitive, we observe discrepancies in their performance, as
reported in Table 2. Sub-optimalities in the CTCE paradigm have been previ-
ously reported by Bono et al. and have been attributed to the difficult exploration

https://github.com/omniscientoctopus/optimality-of-decentralization
https://github.com/omniscientoctopus/optimality-of-decentralization

Optimality of Decentralized I&M Policies 245

(x
h)

h
(x

h)
h

20

10

1

0
--0.5

1-out-of-5 (= parallel system configuration)

2-out-of-5

20
10

1

0
-0.5

20

10

1

0
-0.5

3-out-of-5

20

10

1

0

-0.5

4-out-of-5

5-out-of-5 (= series system configuration)

0 20K 40K 60K 80K 100K
Episode

JAC DCMAC DDMAC IACC IACC-PS IAC IAC-PS
Algorithms

(x
h) h

(x
h)

h
(x

h)
h

No
rm

al
ize

d
co

st
:

No
rm

al
ize

d
co

st
:

No
rm

al
ize

d
co

st
:

No
rm

al
ize

d
co

st
:

No
rm

al
ize

d
co

st
:

20

10

1

0

-0.5

Fig. 1. Performance of CTCE, CTDE and DTDE algorithms in different k-out-of-n
settings, normalized w.r.t. the heursitic (h) (lower is better). Left: Performance of the
algorithms evaluated every 4,000 episodes during training, using 10,000 rollouts. The
curve for each algorithm is aggregated over ten training instances. The bold line and the
shaded region indicate the median and interquartile range respectively. Right: Each
box plot summarizes the performance of the best policies across ten training instances,
where the box represents the interquartile range and circles denote the outliers.

246 P. Bhustali and C. P. Andriotis

Comparison of MADRL algorithms (lower is be�er)

IAC

IAC-PS

Mean Median IQM

IACC-PS

IACC

DDMAC

DCMAC

JAC

0.0 0.8 1.6 0.0 0.8 1.6 2.40.0

normalized cost: (h: heuristic baseline)h
h

x
0.4 0.8

()

Fig. 2. Aggregate performance over the different k-out-of-n settings: mean, median
and interquartile mean (IQM) (lower is better). Results for individual settings are
normalized with respective heuristic baselines. Vertical lines indicate point estimates,
and bands show 95% confidence intervals.

problem imposed by the joint state and action spaces [9]. We concur with this
observation, especially because, unlike [9], we encode action-observation histo-
ries using beliefs and thus eliminating any additional complexities arising due to
alternate approximations. The observed discrepancy cannot be merely an arti-
fact of low neural network representational capacity as long as the same network
architecture performs well in other settings. Another observation underpinning
this claim is the best-performing training instance (random seed) of the IACC,
IACC-PS and IAC algorithms, reported in Table 2, that are able to surpass the
performance of CTCE algorithms and prove the existence of better policies.

CTDE: Both IACC and IACC-PS exhibit performance equivalent to CTCE
algorithms in the 5-out-of-5 setting, but begin to exhibit variability as we move
towards the 1-out-of-5 setting as shown in Fig. 1. However, surprisingly, the best
training instances of IACC and IACC-PS algorithms outperform JAC, the best
CTCE training instance, in the 3-out-of-5 setting by about 7%. We examine this
closely by comparing the histogram of returns from 10,00 rollouts for the IACC-
PS and JAC policies in Fig. 5 and contrast it with the corrective repair heuristic
policy. We clearly observe how the environment under JAC policy is slightly
more likely to witness at least one system failure. Additionally, we also plot
individual rollouts under these polices in Figs. 3 and 4, respectively. In most time
steps, the IACC-PS policy chooses corrective repair actions, however, it is able
to marginally outperform the corrective repair heuristic by avoiding costly repair
actions closer to the end of the life-cycle, such as for component 4 after t = 40.
In contrast, the JAC agent chooses to monitor component 3 via inspections,
and chooses a combination of predictive and corrective repair actions to keep

Optimality of Decentralized I&M Policies 247

Fig. 3. Sample rollout of the best JAC policy in the 3-out-of-5 setting. The JAC agent
chooses to monitor component 3 via inspections, and uses a combination of predictive
and corrective repair actions to keep the system functional.

Fig. 4. Sample rollout of the best IACC-PS policy in the 3-out-of-5 setting. In most
time steps, the agents choose simple corrective repair actions, however, they are able to
marginally outperform the corrective replace heuristic policy by avoiding costly repair
actions closer to the end of the life-cycle. We observe this for component 4 after t = 40,
where the agent chooses do-nothing despite component failure.

the system functional. A possible explanation is that this component combines
aggressive deterioration and low inspection to repair cost ratio.

DTDE: In terms of aggregate performance, fully decentralized algorithms are
outperformed by both CTCE and CTDE algorithms, as shown in Fig. 2. Sim-
ilar to CTDE algorithms, DTDE algorithms exhibit increasing variability in
performance as we move from the 5-out-of-5 setting to the 1-out-of-5 setting,
i.e. towards environments requiring more coordination among agents, as shown
in Fig. 1. However, the performance of DTDE algorithms is more adversely

248 P. Bhustali and C. P. Andriotis

Histogram of discounted costs over 10,000 rollouts: 3-out-of-5 setting

1200

1000

800

600

400

200

0
0 2000 4000 6000 8000 10000

Discounted episodic costs

system failures: 0

system failures: 1

system failures: 2

Fig. 5. Histograms of the discounted episodic costs of the best performing training
instances (as highlighted in Table 2) in the 3-out-of-5 setting compared against a cor-
rective repair heuristic policy over 10,000 environment rollouts. The modes in the his-
tograms correspond to episodes in which system failures occur. Note that the IACC-
PS policy closely resembles the corrective repair policy, but is marginally better as
explained in Fig. 4.

Fig. 6. Sample rollout of an outlier IAC policy in the 1-out-of-5 setting (indicated with
† in Fig. 1), where the agents succumb to multi-agent learning pathologies, resulting
in a poor policy. Agents 1,3,4,5 choose do-nothing actions even during system failure,
and only agent 2 takes necessary repair actions. (Color figure online)

Optimality of Decentralized I&M Policies 249

impacted as the need for cooperation in the environment increases. We illus-
trate this using a sample rollout of an outlier policy in the 1-out-of-5 setting
(indicated with † in Fig. 1) in Fig. 6. Although the best performing instance
is able to outperform the heuristic, this training instance succumbs to multi-
agent learning pathologies and results in a poor policy. The performance of the
parameter-sharing variants show similar variability, but can sometimes stum-
ble into good policies, as reported in Table 2 for the 1-out-of-5, 4-out-of-5 and
5-out-of-5 settings.

Overall, as we move from the 5-out-of-5 setting to the 1-out-of-5 setting,
environments demand more coordination among agents. In Fig. 2, we observe
a clear trend: CTCE algorithms are unaffected by coordination requirements
and thus show little variability in aggregate performance. In contrast, DTDE
algorithms show large variability highlighting their susceptibility to multi-agent
learning pathologies. CTDE algorithms are able to mitigate these and foster
coordination among agents, thus performing better than their DTDE counter-
parts. Lastly, in Fig. 2, we also observe that the performance of the parameter
sharing variants is comparable to their independent counterparts, in addition to
being significantly more computationally efficient to train.

6 Conclusions

Multi-agent deep reinforcement learning provides a scalable approach to opti-
mal inspection and maintenance (I&M) planning for multi-component systems.
In this work, we study the three major multi-agent learning paradigms, i.e., cen-
tralized training with centralized execution (CTCE), centralized training with
decentralized execution (CTDE) and decentralized training with decentralized
execution (DTDE), through the lens of a k-out-of-5 system to investigate their
efficacy and limitations in I&M planning. Our key conclusions are listed below:

– While CTCE methods are shown to be superior overall, they also remain
susceptible to sub-optimal policies due to exploration challenges induced by
the joint state/action spaces. More importantly, the large joint spaces hinder
scalability of these algorithms in real-world I&M problems.

– CTDE and DTDE approaches, although more scalable, face challenges stem-
ming from decentralization, such as the emergence of non-stationary environ-
ments, multi-agent credit assignment issues, shadowed equilibria, etc. Vanilla
CTDE approaches are observed to mitigate these pathologies and consistently
outperform their decentralized counterparts. However, due to the large vari-
ability in performance, DTDE algorithms are sometimes still able to converge
to competitive policies.

– The overall performance of parameter-sharing variants in both CTDE and
DTDE paradigms is comparable to their independent counterparts, despite
heterogeneity in system components in terms of costs, deterioration char-
acteristics, and action effects. Additionally, parameter-sharing variants are
significantly more computationally efficient to train.

250 P. Bhustali and C. P. Andriotis

– Finally, with increasing number of redundant components in the system, more
cooperation among agents is needed to maximally exploit these redundancies.
As such, environments with redundant system components can serve as a good
benchmark to test agent cooperation in the context of I&M planning.

We aim to continue this line of work and study more rigorously the influence
of component connectivity configurations in deteriorating engineering systems,
such as series-parallel systems, and homogeneity/heterogeneity of system com-
ponents on policy learning.

Acknowledgements. This material is based upon work supported by the TU Delft
AI Labs program. The authors gratefully acknowledge this support.

A Appendix

Table 3. Mean performance of the algorithms aggregated over ten training instances
(random seeds) with ± indicating the 95% confidence interval. Bold indicates best in
the respective k-out-of-n setting.

1-out-of-5 2-out-of-5 3-out-of-5 4-out-of-5 5-out-of-5

Baseline TPI-CBM 1485.74 1498.8 1654.19 3998.41 14780.43

CTCE

JAC 372.46 (±2.51) 1070.24 (±178.81) 2487.57 (±285.79) 3488.80 (±11.30) 12698.22 (±50.20)

DCMAC 377.01 (±5.83) 1146.16 (±162.51) 2774.12 (±256.45) 3451.70 (±9.68) 12642.19 (±56.38)

DDMAC 379.71 (±21.31) 1194.30 (±188.91) 2965.18 (±152.77) 3517.82 (±12.38) 13097.86 (±160.00)

CTDE
IACC 13467.32 (±940.42) 13844.57 (±988.96) 14329.28 (±850.25) 9952.01 (±723.77) 20830.69 (±277.56)

IACC-PS 13311.32 (±1326.17) 13320.42 (±1316.56) 11802.21 (±2468.70) 7449.54 (±1025.22) 17457.71 (±2312.53)

DTDE
IAC 4797.06 (±3042.81) 4892.51 (±2266.34) 3917.98 (±1273.71) 4319.42 (±49.72) 13528.65 (±278.93)

IAC-PS 5442.69 (±3246.56) 7326.18 (±2951.19) 4051.89 (±2519.96) 3632.35 (±86.58) 13505.44 (±131.70)

Table 4. Tuned hyperparameters of the algorithms used to train agents on various
k-out-of-n settings

Paradigm CTCE CTDE DTDE

Algorithm JAC DCMAC DDMAC IACC IACC-PS IAC IAC-PS

Episodes (E) 100,000

Timesteps E × tH = 100, 000 × 50 = 5M

Architecture

Actor [21, 64, 64, 243] [21, 32, 32, 15] [21, 16, 16, 3] x 5 [5, 16, 16, 3] x 5 [10, 32, 32, 3] [5, 16, 16, 3] x 5 [10, 32, 32, 3]

parameters 21,363 2,255 3,375 2,095 1,507 2,095 1,507

Critic [21, 64, 64, 1] [21, 64, 64, 1] [21, 64, 64, 1] [21, 64, 64, 1] [21, 64, 64, 1] [5, 16, 16, 1] x 5 [10, 64, 64, 1]

parameters 5,633 5,633 5,633 5,633 5,633 1,925 4,929

Total # parameters 26,996 7,888 9,008 7,728 7,140 4,020 6,436

learning batch size 64 (timesteps)

optimizer Adam

Actor

initial lr 0.0001 0.0001 0.0001 0.0005 0.0005 0.0001 0.0005

decay factor 0.1

decay episodes 20,000 20,000 20,000 10,000 10,000 25,000 25,000

decay type linear

Critic

initial lr 0.005 0.005 0.001 0.005 0.001 0.001 0.001

decay factor 0.1

decay episodes 20,000 20,000 20,000 10,000 25,000 25,000 25,000

decay type linear

ε-greedy strategy

ε-start 1

ε-end 0.005 0.005 0.005 0.001 0.005 0.001 0.001

decay episodes 20,000 20,000 20,000 10,000 10,000 25,000 25,000

decay type linear

Replay Buffer timesteps 500,000 500,000 500,000 10,000 10,000 10,000 10,000

Optimality of Decentralized I&M Policies 251

As described in the main text, we use the 4-out-of-5 setting for hyperparame-
ter optimization and report the tuned hyperparameters in Table 4. We note that
decentralized agents often exhibit instabilities when using large replay buffers,
thus, their replay buffers are much smaller than their centralized counterparts.
This is because random samples from a large replay buffer can correspond to
policies significantly different from the current policy, forcing agents to modify
their recently learned policy drastically.

Algorithm 1: Joint Actor Critic (JAC)
Initialize: Actor π(a|b; θ), Critic V π (b; φ), Experience Replay buffer D,

exploration scheduler ε, learning rates α0
a, α0

c , learning rate
schedulers ζa, ζc, optimizers ηa, ηc, batch size B, Episodes E, global
time step t′ = 0, exploration probability ε0.

1 for e = 1 to E do
2 b0 = env() // get initial belief

3 for t = 0 to tH − 1 do
4 if explorationstrategy(ε′

t) = random then
5 at ∼ U(A), A is the joint action space
6 else
7 Sample action: (at,pt) = π(bt; θ)

8 Environment step: (bt+1, ct, dt) = env(at) // dt := 1tH−1(t)

9 Store experience: (bt,at, pt,bt+1, rt, dt) ∪ D
10 if t′ > 10 × B then
11 Sample batch from buffer: B = {(bt,at, pt,bt+1, ct, dt)}B

i=1 ∼ D
12 π(a|b; θt+1), V π (b; φt+1) = Train()

13 bt ←− bt+1

14 εt′+1 ←− ε(ε′
t) // update exploration parameter

15 αt′+1
a ←− ζa(αt′

a) // update actor learning rate

16 αt′+1
c ←− ζc(α

t′
c) // update critic learning rate

17 t′ ←− t′ + 1

18 Train():
19 For each sample i in batch,
20 future = sg(V π (b′

i; φ)) · di // stop gradients: sg(·)
21 Advantage: Ai = ci + γ · future − V π (bi; φ) // TD error

22 ρi = log π(ai|bi; θ)

23 Importance sampling weights: wi = sg(π (ai|bi;θ))
pi

24 Clipping weights: wi ←− min(wi, w̄)

25 Actor gradients: gθ = 1
B

∑B

i=1 wi · (∇θρi · Ai)

26 Critic gradients: gφ = 1
B

∑B

i=1 wi · ∇φAi

27 θ′ ←− ηa(gθ, θ, αa)
28 φ′ ←− ηc(gφ, φ, αc)
29 return π(a|b; θ′), V π (b; φ′)

252 P. Bhustali and C. P. Andriotis

For training, we employ a variant of the actor-critic with experience replay
(ACER) algorithm for learning [41] as introduced for I&M in [4,5] and outlined
above. To minimize the variance caused by the importance sampling weights, we
clip the values wi by setting w̄ = 2.

References

1. Agarwal, R., Schwarzer, M., Castro, P.S., Courville, A.C., Bellemare, M.: Deep
reinforcement learning at the edge of the statistical precipice. In: Advances
in Neural Information Processing Systems, vol. 34, pp. 29304–29320. Cur-
ran Associates, Inc. (2021). https://proceedings.neurips.cc/paper/2021/hash/
f514cec81cb148559cf475e7426eed5e-Abstract.html

2. Albrecht, S.V., Christianos, F., Schäfer, L.: Multi-Agent Reinforcement Learning:
Foundations and Modern Approaches. MIT Press, Cambridge (2023)

3. Amato, C., Chowdhary, G., Geramifard, A., Ure, N.K., Kochenderfer, M.J.: Decen-
tralized control of partially observable Markov decision processes. In: 52nd IEEE
Conference on Decision and Control. pp. 2398–2405. IEEE, Firenze (2013). http://
ieeexplore.ieee.org/document/6760239/

4. Andriotis, C.P., Papakonstantinou, K.G.: Managing engineering systems with large
state and action spaces through deep reinforcement learning. Reliab. Eng. Syst. Saf.
191(March), 106483 (2019). https://doi.org/10.1016/j.ress.2019.04.036

5. Andriotis, C.P., Papakonstantinou, K.G.: Deep reinforcement learning driven
inspection and maintenance planning under incomplete information and con-
straints. Reliab. Eng. Syst. Saf. 212(March), 107551 (2021). https://doi.org/10.
1016/j.ress.2021.107551

6. Andriotis, C.P., Papakonstantinou, K.G., Chatzi, E.N.: Value of structural health
information in partially observable stochastic environments. Struct. Saf. 93, 102072
(2021). https://doi.org/10.1016/J.STRUSAFE.2020.102072

7. Arcieri, G., Hoelzl, C., Schwery, O., Straub, D., Papakonstantinou, K.G., Chatzi,
E.: Bridging POMDPs and Bayesian decision making for robust maintenance plan-
ning under model uncertainty: an application to railway systems. Reliab. Eng.
Syst. Saf. 239, 109496 (2023). https://www.sciencedirect.com/science/article/pii/
S0951832023004106

8. Bismut, E., Straub, D.: Optimal adaptive inspection and maintenance planning
for deteriorating structural systems. Reliab. Eng. Syst. Saf. 215, 107891 (2021).
https://www.sciencedirect.com/science/article/pii/S0951832021004063

9. Bono, G., Dibangoye, J.S., Matignon, L., Pereyron, F., Simonin, O.: Cooperative
multi-agent policy gradient. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley,
N., Ifrim, G. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11051, pp. 459–476.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10925-7 28

10. Christianos, F., Papoudakis, G., Rahman, A., Albrecht, S.V.: Scaling multi-agent
reinforcement learning with selective parameter sharing (2021). http://arxiv.org/
abs/2102.07475, arXiv:2102.07475 [cs]

11. Claus, C., Boutilier, C.: The dynamics of reinforcement learning in cooperative
multiagent systems. In: Proceedings of the Fifteenth National/Tenth Conference
on Artificial Intelligence/innovative Applications of Artificial Intelligence, pp. 746–
752. AAAI 1998/IAAI 1998, American Association for Artificial Intelligence, USA
(1998)

https://proceedings.neurips.cc/paper/2021/hash/f514cec81cb148559cf475e7426eed5e-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f514cec81cb148559cf475e7426eed5e-Abstract.html
http://ieeexplore.ieee.org/document/6760239/
http://ieeexplore.ieee.org/document/6760239/
https://doi.org/10.1016/j.ress.2019.04.036
https://doi.org/10.1016/j.ress.2021.107551
https://doi.org/10.1016/j.ress.2021.107551
https://doi.org/10.1016/J.STRUSAFE.2020.102072
https://www.sciencedirect.com/science/article/pii/S0951832023004106
https://www.sciencedirect.com/science/article/pii/S0951832023004106
https://www.sciencedirect.com/science/article/pii/S0951832021004063
https://doi.org/10.1007/978-3-030-10925-7_28
http://arxiv.org/abs/2102.07475
http://arxiv.org/abs/2102.07475
http://arxiv.org/abs/2102.07475

Optimality of Decentralized I&M Policies 253

12. Deodatis, G., Fujimoto, Y., Ito, S., Spencer, J., Itagaki, H.: Non-periodic inspection
by Bayesian method I. Probab. Eng. Mech. 7(4), 191–204 (1992). https://www.
sciencedirect.com/science/article/pii/026689209290023B

13. Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Coun-
terfactual multi-agent policy gradients (2017). http://arxiv.org/abs/1705.08926,
arXiv:1705.08926 [cs]

14. Fulda, N., Ventura, D.: Predicting and preventing coordination problems in coop-
erative Q-learning systems. In: Proceedings of the 20th International Joint Confer-
ence on Artifical Intelligence, pp. 780–785. IJCAI 2007, Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA (2007)

15. Goldman, C.V., Zilberstein, S.: Decentralized control of cooperative systems: cat-
egorization and complexity analysis. J. Artif. Intell. Res. 22, 143–174 (2004).
https://doi.org/10.1613/jair.1427

16. Grall, A., Bérenguer, C., Dieulle, L.: A condition-based maintenance policy for
stochastically deteriorating systems. Reliab. Eng. Syst. Saf. 76(2), 167–180 (2002).
https://doi.org/10.1016/S0951-8320(01)00148-X

17. Gronauer, S., Diepold, K.: Multi-agent deep reinforcement learning: a survey. Artif.
Intell. Rev. 55(2), 895–943 (2022). https://doi.org/10.1007/s10462-021-09996-w

18. Gupta, J.K., Egorov, M., Kochenderfer, M.: Cooperative multi-agent control using
deep reinforcement learning. In: Sukthankar, G., Rodriguez-Aguilar, J.A. (eds.)
AAMAS 2017. LNCS (LNAI), vol. 10642, pp. 66–83. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-71682-4 5

19. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artif. Intell. 101(1–2), 99–134 (1998). https://doi.
org/10.1016/S0004-3702(98)00023-X

20. Kapur, K.C., Pecht, M.: Reliability Engineering, 1st edn. Wiley, Hoboken (2014)
21. Kochenderfer, M.J., Wheeler, T.A., Wray, K.H.: Algorithms for Decision Making.

MIT Press, Cambridge (2022)
22. Kuo, W., Zuo, M.: Optimal Reliability Modeling: Principles and Applica-

tions. Wiley, Hoboken (2003). https://catalogimages.wiley.com/images/db/pdf/
047139761X.07.pdf

23. Leroy, P., Morato, P.G., Pisane, J., Kolios, A., Ernst, D.: IMP-MARL: a suite
of environments for large-scale infrastructure management planning via MARL
(2023), http://arxiv.org/abs/2306.11551, arXiv:2306.11551 [cs, eess] version: 1

24. Luque, J., Straub, D.: Risk-based optimal inspection strategies for structural sys-
tems using dynamic Bayesian networks. Struct. Saf. 76, 68–80(June 2017) (2019).
https://doi.org/10.1016/j.strusafe.2018.08.002

25. Lyu, X., Baisero, A., Xiao, Y., Daley, B., Amato, C.: On centralized critics in multi-
agent reinforcement learning. J. Artif. Intell. Res. 77, 295–354 (2023). https://
www.jair.org/index.php/jair/article/view/14386

26. Madanat, S., Ben-Akiva, M.: Optimal inspection and repair policies for infrastruc-
ture facilities. Transp. Sci. 28(1), 55–62 (1994). https://doi.org/10.1287/trsc.28.1.
55,https://pubsonline.informs.org/doi/10.1287/trsc.28.1.55

27. Matignon, L., Laurent, G.J., Le Fort-Piat, N.: Independent reinforcement learn-
ers in cooperative Markov games: a survey regarding coordination problems.
Knowl. Eng. Rev. 27(1), 1–31 (2012). https://www.cambridge.org/core/product/
identifier/S0269888912000057/type/journal article

28. Morato, P.G., Andriotis, C.P., Papakonstantinou, K.G., Rigo, P.: Inference and
dynamic decision-making for deteriorating systems with probabilistic dependen-
cies through Bayesian networks and deep reinforcement learning. Reliab. Eng.

https://www.sciencedirect.com/science/article/pii/026689209290023B
https://www.sciencedirect.com/science/article/pii/026689209290023B
http://arxiv.org/abs/1705.08926
http://arxiv.org/abs/1705.08926
https://doi.org/10.1613/jair.1427
https://doi.org/10.1016/S0951-8320(01)00148-X
https://doi.org/10.1007/s10462-021-09996-w
https://doi.org/10.1007/978-3-319-71682-4_5
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1016/S0004-3702(98)00023-X
https://catalogimages.wiley.com/images/db/pdf/047139761X.07.pdf
https://catalogimages.wiley.com/images/db/pdf/047139761X.07.pdf
http://arxiv.org/abs/2306.11551
http://arxiv.org/abs/2306.11551
https://doi.org/10.1016/j.strusafe.2018.08.002
https://www.jair.org/index.php/jair/article/view/14386
https://www.jair.org/index.php/jair/article/view/14386
https://doi.org/10.1287/trsc.28.1.55,
https://doi.org/10.1287/trsc.28.1.55,
https://pubsonline.informs.org/doi/10.1287/trsc.28.1.55
https://www.cambridge.org/core/product/identifier/S0269888912000057/type/journal_article
https://www.cambridge.org/core/product/identifier/S0269888912000057/type/journal_article

254 P. Bhustali and C. P. Andriotis

Syst. Saf. 235, 109144 (2023). https://www.sciencedirect.com/science/article/pii/
S0951832023000595

29. Morato, P.G., Papakonstantinou, K.G., Andriotis, C.P., Nielsen, J.S., Rigo, P.:
Optimal inspection and maintenance planning for deteriorating structural com-
ponents through dynamic Bayesian networks and Markov decision processes.
Struct. Saf. 94(August 2021), 102140 (2022). https://doi.org/10.1016/j.strusafe.
2021.102140

30. Oliehoek, F.A., Amato, C.: A Concise Introduction to Decentralized POMDPs.
SpringerBriefs in Intelligent Systems, Springer, Cham (2016)

31. Oliehoek, F.A., Spaan, M.T.J., Vlassis, N.: Optimal and approximate Q-value func-
tions for decentralized POMDPs. J. Artif. Intell. Res. 32, 289–353 (2008). https://
doi.org/10.1613/jair.2447

32. Papakonstantinou, K.G., Shinozuka, M.: Planning structural inspection and main-
tenance policies via dynamic programming and Markov processes. Part II: POMDP
implementation. Reliab. Engi. Syst. Saf. 130, 214–224 (2014). https://doi.org/10.
1016/j.ress.2014.04.006

33. Papakonstantinou, K.G., Andriotis, C.P., Shinozuka, M.: POMDP and MOMDP
solutions for structural life-cycle cost minimization under partial and mixed observ-
ability. Struct. Infrastruct. Eng. 14(7), 869–882 (2018). https://doi.org/10.1080/
15732479.2018.1439973

34. Papoudakis, G., Christianos, F., Schäfer, L., Albrecht, S.V.: Benchmarking multi-
agent deep reinforcement learning algorithms in cooperative tasks (2021). http://
arxiv.org/abs/2006.07869, arXiv:2006.07869 [cs, stat]

35. Peng, B., et al.: FACMAC: factored multi-agent centralised policy gradients (2021).
http://arxiv.org/abs/2003.06709, arXiv:2003.06709 [cs, stat]

36. Rashid, T., Samvelyan, M., de Witt, C.S., Farquhar, G., Foerster, J., Whiteson, S.:
QMIX: monotonic value function factorisation for deep multi-agent reinforcement
learning (2018). http://arxiv.org/abs/1803.11485, arXiv:1803.11485 [cs, stat]

37. Shani, G., Pineau, J., Kaplow, R.: A survey of point-based POMDP solvers. Auton.
Agent. Multi-Agent Syst. 27, 1–51 (2013). https://doi.org/10.1007/s10458-012-
9200-2

38. Spaan, M.T.J., Vlassis, N.: Perseus: randomized point-based value iteration for
POMDPs. J. Artif. Intell. Res. 24, 195–220 (2005)

39. Sunehag, P., et al.: Value-decomposition networks for cooperative multi-agent
learning (2017). http://arxiv.org/abs/1706.05296

40. Terry, J.K., Grammel, N., Son, S., Black, B.: Parameter sharing for heterogeneous
agents in multi-agent reinforcement learning (2022). http://arxiv.org/abs/2005.
13625

41. Wang, Z., et al.: Sample efficient actor-critic with experience replay (2017). http://
arxiv.org/abs/1611.01224

42. Wong, A., Bäck, T., Kononova, A.V., Plaat, A.: Deep multiagent reinforce-
ment learning: challenges and directions (2022). http://arxiv.org/abs/2106.15691,
arXiv:2106.15691 [cs]

43. Yu, C., et al.: The surprising effectiveness of PPO in cooperative, multi-agent
games (2022). http://arxiv.org/abs/2103.01955, arXiv:2103.01955 [cs]

44. Zhu, B., Frangopol, D.M.: Risk-based approach for optimum maintenance of
bridges under traffic and earthquake loads. J. Struct. Eng. 139(3), 422–434 (2013).
https://doi.org/10.1061/(ASCE)ST.1943-541X.0000671

45. Åström, K.J.: Optimal control of Markov processes with incomplete state informa-
tion. J. Math. Anal. Appl. 10(1), 174–205 (1965). https://doi.org/10.1016/0022-
247X(65)90154-X

https://www.sciencedirect.com/science/article/pii/S0951832023000595
https://www.sciencedirect.com/science/article/pii/S0951832023000595
https://doi.org/10.1016/j.strusafe.2021.102140
https://doi.org/10.1016/j.strusafe.2021.102140
https://doi.org/10.1613/jair.2447
https://doi.org/10.1613/jair.2447
https://doi.org/10.1016/j.ress.2014.04.006
https://doi.org/10.1016/j.ress.2014.04.006
https://doi.org/10.1080/15732479.2018.1439973
https://doi.org/10.1080/15732479.2018.1439973
http://arxiv.org/abs/2006.07869
http://arxiv.org/abs/2006.07869
http://arxiv.org/abs/2006.07869
http://arxiv.org/abs/2003.06709
http://arxiv.org/abs/2003.06709
http://arxiv.org/abs/1803.11485
http://arxiv.org/abs/1803.11485
https://doi.org/10.1007/s10458-012-9200-2
https://doi.org/10.1007/s10458-012-9200-2
http://arxiv.org/abs/1706.05296
http://arxiv.org/abs/2005.13625
http://arxiv.org/abs/2005.13625
http://arxiv.org/abs/1611.01224
http://arxiv.org/abs/1611.01224
http://arxiv.org/abs/2106.15691
http://arxiv.org/abs/2106.15691
http://arxiv.org/abs/2103.01955
http://arxiv.org/abs/2103.01955
https://doi.org/10.1061/(ASCE)ST.1943-541X.0000671
https://doi.org/10.1016/0022-247X(65)90154-X
https://doi.org/10.1016/0022-247X(65)90154-X

