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We analyse the low-frequency dynamics of a high-Reynolds-number impinging shock-
wave/turbulent boundary-layer interaction (SWBLI) with strong mean-flow separation.
The flow configuration for our grid-converged large-eddy simulations (LES) reproduces
recent experiments for the interaction of a Mach 3 turbulent boundary layer with an
impinging shock that nominally deflects the incoming flow by 19.6○. The Reynolds
number based on the incoming boundary layer thickness of Reδ0 ≈ 203 ⋅ 103 is considerably
higher than in previous LES studies. The very long integration time of 3805 δ0/U0

allows for an accurate analysis of low-frequency unsteady effects. Experimental wall-
pressure measurements are in good agreement with the LES data. Both datasets exhibit
the distinct plateau within the separated-flow region of a strong SWBLI. The filtered
three-dimensional flow field shows clear evidence of counter-rotating streamwise vortices
originating in the proximity of the bubble apex. Contrary to previous numerical re-
sults on compression ramp configurations, these Görtler-like vortices are not fixed at a
specific spanwise position, but rather undergo a slow motion coupled to the separation-
bubble dynamics. Consistent with experimental data, power spectral densities (PSD) of
wall-pressure probes exhibit a broadband and very energetic low-frequency component
associated with the separation-shock unsteadiness. Sparsity-promoting dynamic mode
decompositions (SPDMD) for both spanwise-averaged data and wall-plane snapshots
yield a classical and well-known low-frequency breathing mode of the separation bubble,
as well as a medium-frequency shedding mode responsible for reflected and reattach-
ment shock corrugation. SPDMD of the two-dimensional skin-friction coefficient further
identify streamwise streaks at low frequencies that cause large-scale flapping of the
reattachment line. The PSD and SPDMD results of our impinging SWBLI support the
theory that an intrinsic mechanism of the interaction zone is responsible for the low-
frequency unsteadiness, in which Görtler-like vortices might be seen as a continuous
(coherent) forcing for strong SWBLI.
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1. Introduction

Shock-wave/turbulent boundary-layer interactions (SWBLI) occur in a wide range
of practical flow devices, such as supersonic air intakes, turbomachine cascades, over-
expanded nozzles and high-speed aerodynamic applications in general, and are often
critical for the system performance. Although SWBLI have been an active research field
for more than sixty years (Dolling 2001), there are still many open questions, in particular
regarding unsteady effects of interactions where the adverse pressure gradient imposed
by the shock leads to boundary-layer separation. Such interactions form a complex
dynamical system with a broad range of temporal and spatial scales. Unsteady pressure
and friction forces may couple to resonant frequencies of the structure and may result
in failure due to fatigue (Dolling 2001; Délery & Dussauge 2009). Of particular interest
is the low-frequency unsteadiness of the reflected shock observed in SWBLI with mean
boundary-layer separation. This phenomenon occurs at frequencies typically one to two
orders of magnitude lower than the characteristic frequency of the integral scales within
the incoming turbulent boundary layer U0/δ0, where U0 is the free stream velocity and
δ0 the upstream 99 % velocity-based boundary-layer thickness. While experiments and
numerical investigations for canonical SWBLI (e.g., compression ramp, impinging oblique
shock, blunt fin, forward-facing step) unanimously confirm the existence of broadband
low-frequency shock motions, the precise mechanism that explains the separation in time
scales remains unknown. Since the first high-frequency measurements by Kistler (1964),
the mechanism responsible for low-frequency large-scale shock oscillations has been the
main research focus with the outcome of theories typically categorised as upstream or
downstream mechanisms (see also the recent review paper by Clemens & Narayanaswamy
(2014) for a summary).

Upstream-mechanisms link the source of unsteadiness to flow phenomena or events in
the upstream turbulent boundary layer (TBL). Experimentally, Andreopoulos & Muck
(1987) were one of the first who found a direct correlation between bursting events of
the incoming TBL and shock motions for their Mach 3 compression ramp flow. Similarly,
Erengil & Dolling (1993) observed a direct response of the reflected shock to upstream
pressure fluctuations, which however results in a high-frequency smaller-scale jitter
motion that could not explain the large-scale low-frequency oscillations. Adams (2000)
performed a direct numerical simulation (DNS) of a Mach 3 compression ramp flow and
found the bursting frequency being very close to the shock-crossing frequency, supporting
the earlier experimental findings of Andreopoulos & Muck (1987). Ünalmis & Dolling
(1994) proposed that a low-frequency thickening/thinning of the upstream TBL causes
an upstream/downstream motion of the shock. Later, Beresh et al. (2002) and Hou et al.
(2003) used particle image velocimetry (PIV) and verified that the upstream conditionally
averaged velocity profiles were fuller when the shock foot was downstream (and vice
versa). Using time-resolved PIV on a streamwise-spanwise plane and applying Taylor’s
hypothesis, Ganapathisubramani et al. (2009) found low-velocity fluid upstream of their
compression-ramp flow that remained coherent for about 50 boundary-layer thicknesses.
The authors found a strong correlation between these so-called superstructures and an
instantaneous separation line surrogate. Based on the length of such a structure λ = 50 δ0
and U0, the authors propose that the superstructure-induced low frequency scales on
U0/2λ. Since this value is of the order of O(0.01U0/δ0) which is typically found for the
shock motion, they conclude that the passage of these superstructures is responsible
for the low-frequency unsteadiness in their interaction. Contrary, Wu & Mart́ın (2008)
did not find any significant low-frequency correlation between the true separation point
(defined through the zero skin-friction coefficient) and upstream turbulent structures for
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their DNS of a Mach 2.9 compression ramp configuration. Only when using a similar
instantaneous separation surrogate as that of Ganapathisubramani et al. (2009) the
authors were able to detect significant correlations, demonstrating the uncertainty of
such methods when applied to experimental measurements. At the same time the authors
found a high-frequency/small-amplitude spanwise wrinkling of the shock being correlated
with the mass flux in the incoming TBL. Applying tomographic PIV to a Mach 2.1
impinging SWBLI, Humble et al. (2009) further observed that the passage of upstream
coherent structures results in a spanwise wrinkling of the shock foot.

Theories of the second category relate the separation shock motion to mechanisms
originating downstream of it, thus basically connecting the dynamics of the separation
bubble to unsteady shock movements. This idea traces back to early experimental
findings of Dolling & Erengil (1991) and Thomas et al. (1994) for compression ramp
configurations, and more recent investigations by Dupont et al. (2006) for impinging
SWBLI. These studies showed that wall-pressure fluctuations measured close to the shock
foot and near reattachment are correlated at frequencies connected to the separation-
shock motion. The measured phase shift indicates that the separation bubble expands
and contracts periodically. Similarly, based on conditionally averaged PIV velocity fields
for small and large bubbles, Piponniau et al. (2009) found that the position of the
reflected shock is located more downstream and upstream, respectively. They proposed
a self-sustaining mechanism to explain the low-frequency shock motions based on fluid
entrainment by the shear layer generated downstream of the reflected shock above the
closed separation bubble. A similar entrainment/recharge mechanism consisting of a
feedback loop between the separation bubble, the detached shear layer and the shock
system is proposed by Wu & Mart́ın (2008). Pirozzoli & Grasso (2006) conducted a
short-duration DNS of a Mach 2.25 impinging SWBLI and proposed an acoustic feedback
mechanism as a possible driver of low-frequency unsteadiness. They assume that shear-
layer vortices interacting with the incident-shock tip generate acoustic disturbances
that propagate upstream through the subsonic layer while subsequently inducing an
oscillatory motion of the separation point, similar to Rossiter modes in cavity flows.
Touber & Sandham (2009) performed large-eddy simulations (LES) of the impinging
SWBLI experiment by Dupont et al. (2006) for a weak deflection angle of 8○. Their
linear stability analysis of the mean flow revealed a two-dimensional, zero-frequency,
globally unstable mode which could be linked to the low-frequency unsteadiness. Further,
the authors detected upstream-travelling acoustic waves within the separation bubble,
confirming the possibility of the acoustic feedback mechanism proposed by Pirozzoli &
Grasso (2006). Starting from the Navier-Stokes equations and incorporating LES results,
Touber & Sandham (2011) derived a stochastic ordinary differential equation for the
shock-foot low-frequency motions, whose final form was found to be mathematically
equivalent to the one postulated by Plotkin (1975). They further argued that the low-
frequency unsteadiness is an intrinsic low-pass filter due to the interaction and not
necessarily an imposed property due to upstream or downstream forcing. However, some
coherent or incoherent (white-noise) forcing must be present at low frequency for the
system to manifest low-frequency shock oscillations.

Based on conflicting observations in many studies with respect to the source of low-
frequency shock motions, Clemens & Narayanaswamy (2009) and Souverein et al. (2010)
argued that both mechanisms (upstream and downstream) are probably always present,
with a weighting function depending on the state of the SWBLI. For interactions with a
separation length smaller or equal to 2 δ0, the shock unsteadiness is highly correlated with
upstream TBL fluctuations, while stronger interactions are most probably dominated
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by downstream mechanisms inherent to the shock/bubble system itself (Clemens &
Narayanaswamy 2014).

Numerical investigations (DNS, LES) for impinging SWBLI that reached sufficiently
long integration times, suitable for addressing the low-frequency unsteadiness, are rare
in the literature. DNS results by Pirozzoli & Grasso (2006) covered an integration time
of only 25 δ0/U0. Priebe et al. (2009) studied the case of a Mach 2.9 impinging SWBLI
at a Reynolds number of Reδ0 ≈ 38 ⋅ 103 and deflection angle of 12○ by means of DNS,
matching experimental flow conditions of Bookey et al. (2005). Their simulation covers
approximately 800 δ0/U0 and addressed low-frequency aspects of the interaction. How-
ever, a direct comparison with experimental unsteady measurements is missing. Touber
& Sandham (2009) were probably among the first to publish a successful comparison
between their long-time (104 δ0/U0) narrow-domain LES results and experimental data
with respect to the unsteady shock motion. Further LES studies for impinging SWBLI
with a focus on low-frequency aspects of the interaction have been published thereafter
(Pirozzoli et al. 2010; Hadjadj 2012; Agostini et al. 2012; Aubard et al. 2013; Morgan
et al. 2013; Pasquariello et al. 2014; Nichols et al. 2016). All of these studies, however,
predominantly focused on weak interactions (with respect to the absence of a distinct
pressure plateau within the separated flow) and/or low Reynolds numbers being typically
below Reδ0 ≈ 60 ⋅ 103. High-Reynolds-number compression corner experiments (Dolling
& Murphy 1983; Dolling & Or 1985) have shown that the wall-pressure signal near the
separation shock foot is highly intermittent and basically reflects the inviscid pressure
jump across the oscillating shock. For low-Reynolds-number studies, the reflected shock
foot does not penetrate as deeply into the TBL as it does in the high-Reynolds-number
case. Increased viscous effects diffuse the separation shock foot into a compression
fan, which in turn results in a broader range of frequencies with attenuated shock
intermittency (Ringuette et al. 2009). This behaviour is well documented for compression
corner flows, but has not been addressed so far in numerical studies for impinging SWBLI.

The purpose of the current study is to extend the available numerical database for
high-Reynolds-number impinging SWBLI by a case with strong flow separation from
wall-resolved long-time integrated LES. We adopt the experimental flow configuration
of Daub et al. (2015), where the incoming TBL (Ma = 3, Reδ0 ≈ 200 ⋅ 103) interacts
with an oblique shock that is strong enough to cause a very large separation bubble
with a length of 15.5 δ0. The long integration time of 3805 δ0/U0 allows us to analyse
low-frequency aspects of the interaction in detail. A spectral analysis of wall-pressure
probes serves as a starting point and provides the dominant frequencies involved in the
interaction. Further, a modal decomposition of the flow by dynamic mode decomposition
(DMD) (Rowley et al. 2009; Schmid 2010) is used to relate global flow phenomena to
frequencies identified by the (local) wall-pressure spectra. Similar DMD studies can be
found in the literature based on spanwise-averaged snapshots (Pirozzoli et al. 2010; Grilli
et al. 2012; Nichols et al. 2016). We adopt this methodology in a first step, and discuss
similarities / differences. Subsequently we investigate three-dimensional effects based
on snapshots of the two-dimensional skin-friction coefficient. The article is organised as
follows: In §2 we provide details of the numerical approach, describe the experimental
flow configuration and discuss numerical details for the LES. The main results of this
study are summarised in §3. A grid- and spanwise domain-sensitivity study is presented
in §3.1, together with a validation of the incoming TBL. The mean flow field and a first
comparison with experimental wall-pressure measurements is presented in §3.2. Three-
dimensional modulations of the nominally two-dimensional interaction will be highlighted
in the same section. A spectral analysis of wall-pressure probes is presented in §3.3 and
compared with unsteady experimental measurements by Daub et al. (2015). Furthermore,
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high-Reynolds-number effects with respect to the intermittent character of the interaction
are analysed. A detailed DMD analysis is provided in §3.4, giving access to the flow
organisation of dominant low- and medium-frequency modes. Finally, we summarise our
results and discuss the physical origin of the low-frequency unsteadiness in §4.

2. Numerical approach and flow configuration

2.1. Governing equations and numerical approach

We solve the three-dimensional compressible Navier-Stokes equations in conservative
form on Cartesian grids

∂tU +∇ ⋅F (U) −∇ ⋅D (U) = 0 , (2.1)

with the state vector U = [ρ, ρu1, ρu2, ρu3,E] consisting of density ρ, momentum ρui
and total energy E. In the above equation the total flux is split into an inviscid part
F = [f1, f2, f3]T following

fi (U) = [uiρ, uiρu1 + δi1p, uiρu2 + δi2p, uiρu3 + δi3p, ui (E + p)]T , (2.2)

and a viscous contribution D = [d1,d2,d3]T following

di (U) = [0, τi1, τi2, τi3, ukτik − qi]T , (2.3)

where ui is the velocity vector and τij the viscous stress tensor, which according to the
Stokes hypothesis for a Newtonian fluid is

τij = µ (∂jui + ∂iuj − 2/3 δij∂kuk) . (2.4)

The heat flux qi due to conduction follows from the Fourier law

qi = −κ∂iT . (2.5)

We model air as a perfect gas with a specific-heat ratio of γ = 1.4 and a specific gas
constant of R = 287.05 J/ (kgK). Pressure p and temperature T are determined by the
ideal-gas equation of state

p = ρRT , (2.6)

and the definition of total energy E

E = p

γ − 1
+ 1

2
ρuiui . (2.7)

Temperature dependence of dynamic viscosity µ and thermal conductivity κ is modelled
through Sutherland’s law and constant Prandtl number,

µ = µref Tref +C
T +C ( T

Tref
)1.5

, (2.8)

κ = γR(γ − 1)Pr
µ , (2.9)

with Pr = 0.72, Tref = 293.15K, C = 122K and µref = 18.21 ⋅ 10−6 Pa s.
The compressible Navier-Stokes equations are solved using the Adaptive Local Decon-

volution Method (ALDM) for the discretisation of the convective fluxes (Hickel et al.
(2006, 2014)). ALDM is a nonlinear finite volume method that provides a physically
consistent subgrid scale (SGS) turbulence model for implicit large-eddy simulations
(LES). Employing a shock sensor based on the sensor functional of Ducros et al. (1999)
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Figure 1: Schematic of the experimental and numerical setup. An instantaneous numerical
schlieren image is included.

to detect discontinuities and switch on the shock-dissipation mechanism, ALDM can
capture shock waves, while smooth waves and turbulence are propagated accurately
without excessive numerical dissipation (Hickel et al. 2014). Although the physically
consistent implicit turbulence model (based on the Eddy Damped Quasi Normal Marko-
vian (EDQNM) theory (Lesieur et al. 2005)) implies a 2nd-order truncation error, ALDM
provides a similar spectral resolution of linear waves (modified wavenumber) as 6th-order
central difference schemes. The interested reader is referred to Hickel et al. (2014) for a
detailed validation based on canonical shock-turbulence cases and a modified wavenumber
analysis. The viscous flux is discretised using a 2nd-order central difference scheme, and
the 3rd-order Runge-Kutta scheme of Gottlieb & Shu (1998) is used for time integration.
This numerical method has been successfully applied to a wide range of LES involving
shock-turbulence interaction, ranging from canonical test cases (Hickel et al. 2014) to
SWBLI at a compression-expansion ramp (Grilli et al. 2012, 2013), flow control of SWBLI
on a flat plate (Pasquariello et al. 2014), shock train in a divergent nozzle (Quaatz et al.
2014) and transition analysis between regular and irregular shock patterns of SWBLI
(Matheis & Hickel 2015).

2.2. Experimental and numerical setup

The flow configuration for the present study has been adopted from recent experiments
conducted by Daub et al. (2015), a schematic of which is shown in figure 1. The test
facility is a blow-down wind-tunnel with a continuously adjustable nozzle, enabling
a Mach number range of Ma = [0.5,4.5], and a closed test section of 0.6 × 0.6 m. A
wedge is mounted on a shaft and deflects the incoming flow by ϑ = 19.6○, resulting in
a steady incident shock that interacts with a spatially developing flat plate turbulent
boundary layer (TBL). For fluid-structure interaction (FSI) experiments, the baseplate
can be optionally equipped with an elastic panel and the shock-generator may be pitched,
inducing a time-varying load on the panel (Daub et al. 2016). The shock generator as well
as the baseplate span the wind-tunnel width. The wide test-section together with the full-
span model (shock-generator and baseplate) lead to a nearly two-dimensional SWBLI,
which is demonstrated in Daub et al. (2015). They show that the streamwise wall-pressure
evolution measured at the centreline and 90 mm off-centre coincide (see figure 5 in the
respective publication). The TBL is tripped close to the leading edge of the baseplate by
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Ma T0 p0 U0 ϑ δ0 θ0 Reδ0 Reθ0

3.0 273.7K 582 kPa 594m/s 19.6 ○ 4.0mm 0.28mm 203 ⋅ 103 14 ⋅ 103

Table 1: Main flow parameters.

a 5mm wide strip of F150-macrogrits with mean diameter of 60µm. Figure 1 includes an
instantaneous numerical schlieren image obtained from the LES. The adverse pressure
gradient imposed by the incident shock is sufficient to cause strong flow separation. Note
that the incident shock is curved due to the interaction with the characteristics emanating
from the centred Prandtl-Meyer expansion (PME). This interaction results from the short
wedge length w, which was a deliberate experimental design to facilitate actuation in FSI
experiments employing the wedge as fast-pitching shock generator (Daub et al. 2016).
The theoretical incident-shock path is also shown to reflect the degree of shock-curvature
and to further indicate the nominal inviscid impingement location ximp = 0.311m.

Main flow parameters for the LES are summarised in table 1 and are set in accordance
with the reference experiment. The flat plate TBL is characterised by a free stream
Mach number of Ma = 3, a stagnation temperature of T0 = 273.7K and a stagnation
pressure of p0 = 582 kPa. Note that the stagnation conditions differ slightly from the ones
reported in Daub et al. (2015) since the values summarised in table 1 refer to the specific
SWBLI experimental realisation with wedge angle ϑ = 19.6○ and resulting shock angle
β = 37.3○, while in the referred publication an ensemble average over multiple runs is
reported. The TBL thickness, based on 99% of the free stream velocity U0, is estimated
to be δ0 = 4mm at the LES domain inlet. The compressible momentum thickness is
θ0 = 0.28mm. The Reynolds number based on the incoming boundary-layer thickness is
Reδ0 = U0δ0/ν0 = 203 ⋅ 103, where ν0 is the free stream kinematic viscosity. Based on the
compressible momentum thickness the Reynolds number is Reθ0 = U0θ0/ν0 = 14 ⋅ 103.
The wedge width is w = 21.75 δ0 and the channel height to wedge width ratio equals
g+ = g/w = 1.8, see also figure 1. For a given shock-generator position the non-dimensional
quantity g+ implicitly determines the relative impingement position of the first PME
characteristic on the baseplate with respect to ximp, a quantity often referred to when
dealing with transition studies between regular and irregular SWBLI (Naidoo & Skews
2011; Matheis & Hickel 2015).

The experimental database includes mean and unsteady wall-pressure measurements
within the interaction region. The former are realised through 48 Pressure Systems,
Inc. (PSI) pressure ports placed at the xy-centreplane and 90mm off-centre, while
fluctuating wall-pressure measurements are collected through 10 high-speed Kulite Semi-
conductor, Inc. (Model XCQ-062) pressure transducers placed at the xy-centreplane. The
natural frequency of the sensors is 240 kHz. Data acquisition is performed with a National
Instruments 24-bit bridge module PXIe 4331 at a sampling rate of 100 kHz, thus limiting
the frequency response of the unsteady measurements to about 50 kHz. Please refer to
Daub et al. (2015) for a more detailed discussion on applied measurement techniques.

2.3. Boundary conditions, grid distribution and numerical parameters

The LES domain in the xy-plane is shown in figure 1 and covers a rectangular box
with dimensions Lx = 50 δ0 in the streamwise and Ly = 20 δ0 in the wall-normal direction.
The spanwise width is varied in conjunction with a domain-sensitivity study (see table
3 and §3.1) and covers Lz = [2.25,4.5,9] δ0. At the domain inlet a digital filter based
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boundary condition is used (Klein et al. 2003), for which first and second order statistical
moments have been prescribed through a precursor zero-pressure gradient temporal
boundary-layer simulation with target TBL thickness of δ0 and otherwise same flow
conditions as the SWBLI simulations. The digital filter technique is particularly suitable
for the present studies as it does not generate spurious correlations of the inflow data,
a drawback exhibited by recycling-rescaling techniques (Stolz & Adams 2003). The only
delicate requirement when using synthetic turbulence generators is to specify realistic
integral length scales for all three velocity components and coordinate directions to avoid
laminarisation issues (Touber & Sandham 2009). The digital filter technique induces a
spatial transient downstream of the inflow which depends on the chosen integral length
scales and additionally constraints the streamwise domain extent. By inspecting mean
and root-mean-square (rms) profiles we found that a transient distance of approximately
10 δ0 is sufficient. Similar values can be found in the literature for supersonic TBL, e.g.
Grilli et al. (2013) report a transient length of 8 δ0 for their LES of a compression-
expansion ramp configuration and Wang et al. (2015) find a transient length of 12 δ0 for
their sidewall-included three-dimensional SWBLI studies.

Linear extrapolation of all flow variables is used at the outlet and the flat plate is
modelled as adiabatic no-slip wall. Spanwise periodicity is enforced, which is a legitimate
assumption for the present flow configuration as discussed in §2.2. Confinement effects as
extensively studied by Bermejo-Moreno et al. (2014) are not expected to be relevant for
the SWBLI under investigation. As shown in figure 1 the LES domain does not include
the shock-generator. We rather chose the domain height in such a way that the first
characteristic from the PME does not intersect the incident shock, thus requiring x0 <
x1. We neglect the boundary layer on the wedge surface and analytically prescribe the
aerodynamic and thermodynamic states upstream of the incident shock (0), downstream
of the incident shock and upstream of the PME (1) and within the PME (i) in terms
of Riemann invariants. The incident shock is introduced by imposing a jump of the flow
variables at x0 that satisfies the Rankine-Hugoniot relations for the shock angle β = 37.3○.
The locations x0 and x1 with respect to the xy coordinate system can be calculated from

x0 = xexp − cosϑ ⋅w + yexp −Ly + sinϑ ⋅w
tanβ

x1 = xexp + yexp −Ly
tan (µ1 + ϑ)

, (2.10)

where (xexp, yexp) = (0.149,0.157)m denotes the location of the PME, and µ1 is the
Mach angle in flow region (1). For the present configuration we obtain x0 = 0.206m and
x1 = 0.215m, thus resulting in a gap of 2.25 δ0 between the incident shock and the first
characteristic of the PME on the top boundary patch.

In order to derive the flow states for an individual grid point xi within the PME
region, it is useful to introduce an additional coordinate system x̂ŷ which is aligned
with the wedge surface and has its origin at (xexp, yexp). Each grid point on the top
boundary patch can be associated to an individual Mach line inside the PME, which
itself is characterised by the angle ηi. One can find the solution on the Mach line (i)
by considering an imaginary wall at an angle ϑi for which the Mach line (i) defines the
trailing edge characteristic of this auxiliary PME. The Mach number on ray (i) can be
explicitly calculated from

Mai =
√

1 + γ + 1

γ − 1
⋅ tan2 zi , (2.11)
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Grid G1 G1
z G2 G2

x

Domain size
Lx ×Ly ×Lz in δ0 50 × 20 × 4.5 50 × 20 × 4.5 50 × 20 × 4.5 50 × 20 × 4.5

Grid parameters
Nx ×Ny ×Nz 880 × 328 × 315 880 × 328 × 630 1760 × 328 × 630 3520 × 328 × 630
∆x+ ×∆y+min ×∆z+ 78 × 0.9 × 19.6 78 × 0.9 × 9.8 39 × 0.9 × 9.8 19.5 × 0.9 × 9.8
βy 3.56 3.56 3.56 3.56

Runtime & statistics
TU0/δ0 (FTT) 446 (9) 446 (9) 446 (9)/3805 (76) 446 (9)
∆tU0/δ0 ⋅ 103 0.84 0.83 0.83 0.82
sampling rate every 20∆t every 20∆t every 20∆t every 20∆t

Table 2: Numerical parameters for the grid-sensitivity study.

where zi replaces ηi by means of

zi = (γ − 1

γ + 1
)0.5 ⋅ (ν(1) + π/2 − ηi) , 0 ≤ zi ≤ π/2 . (2.12)

Herein ν(1) denotes the Prandtl-Meyer function for the known flow state (1) which in its
general form is given by

ν(●) =
√

γ + 1

γ − 1
⋅ tan−1

√
γ − 1

γ + 1
(Ma2

(●)
− 1) − tan−1

√
Ma2

(●)
− 1 . (2.13)

Once the Mach number Mai has been calculated, the state vector U at xi is obtained
by considering the flow state (1), the local flow angle with respect to the xy coordinate
system (ϑ − µi − ηi) and isentropic relations. An auxiliary two-dimensional Reynolds-
averaged Navier-Stokes (RANS) simulation including the shock-generator has been used
to verify the boundary condition as well as the assumption of neglecting the boundary-
layer growth on the wedge surface. By comparing the streamwise evolution of flow
variables at a specific wall-normal distance we found that the boundary-layer growth
and its influence on the trailing edge PME can be neglected.

Table 2 summarises simulation parameters for the computations that have been per-
formed for a grid-sensitivity study. In total four different grid resolutions were considered.
For all configurations the streamwise and spanwise directions are uniformly discretised,
whereas a hyperbolic grid stretching is applied in the wall-normal direction following

yj = Ly ⋅ tanh(βy(j − 1)
Ny − 1

) / tanh(βy). (2.14)

Herein, j is the grid point index and βy is a stretching factor which is the same for all
configurations studied (see table 2). The number of cells in wall-normal direction Ny is
the same for all cases and chosen in such a way that in combination with a given βy at
least 10 cells reside within the streamwise Reynolds normal stress peak of the incoming
TBL and at the same time guarantees a grid resolution in wall units of ∆y+min < 1 for
the first wall-cell.

The incoming TBL thickness δ0 is discretised with 162 cells. Non-dimensionalisation
is performed with respect to the inner length scale l+ = νw/uτ measured at a reference

plane 12.5 δ0 downstream of the LES inflow, where uτ = √
τw/ρw is the friction velocity
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Domain D1 D2 D3

Domain size
Lx ×Ly ×Lz in δ0 50 × 20 × 2.25 50 × 20 × 4.5 50 × 20 × 9

Grid parameters
Nx ×Ny ×Nz 1760 × 328 × 315 1760 × 328 × 630 1760 × 328 × 1260
∆x+ ×∆y+min ×∆z+ 39 × 0.9 × 9.8 39 × 0.9 × 9.8 39 × 0.9 × 9.8
βy 3.56 3.56 3.56

Runtime & statistics
TU0/δ0 (FTT) 446 (9) 446 (9)/3805 (76) 446 (9)
∆tU0/δ0 ⋅ 103 0.84 0.83 0.82
sampling rate every 20∆t every 20∆t every 20∆t

Table 3: Numerical parameters for the domain-sensitivity study.

and τw = µw ∂u
∂y

∣
w

is the wall shear stress. The coarsest grid configuration G1 results in

a streamwise and spanwise resolution of ∆x+ = 78 and ∆z+ = 19.6, respectively. For G1z
the number of cells in spanwise direction Nz is doubled, resulting in ∆z+ = 9.8. For grid
level G2, both x and z resolution are halved simultaneously when compared to G1, thus
leading to ∆x+ = 39 and ∆z+ = 9.8. Finally, the number of cells in streamwise direction
Nx is doubled for G2x which leads to ∆x+ = 19.5. A total amount of 90.9, 181.8, 363.6 and
727.3 million cells is used for G1, G1z , G2 and G2x, respectively. Statistics were gathered
by averaging instantaneous three-dimensional snapshots of the flow every 20 steps (both
in time and spanwise direction if not stated otherwise), excluding an initial transient of
approximately 594 δ0/U0 (or 11 flow-through times, FTT). After this transient we collect
samples for a time period of 446 δ0/U0 for the grid-sensitivity study. It will be shown in
§3.1 that grid configuration G2 is sufficient to capture accurately the interaction zone.
For corroborations of the low-frequency analysis this case has been additionally run for a
much longer time period of 3805 δ0/U0 (or 76 FTT). Besides investigating the sensitivity
of statistical results with respect to the grid resolution, we perform a domain sensitivity
study in the spanwise direction based on G2, see table 3. The reference span of Lz = 4.5 δ0
(D2) is halved (D1) and doubled (D3), resulting in three domain configurations Di.
3. Results

3.1. Grid- and domain-sensitivity study

A sensitivity study with respect to the chosen grid resolution as well as the spanwise
domain extent is provided in the following. We start with the grid-sensitivity study for
which table 2 summarises the main parameters. Figure 2(a)/(b) gives a comparison of
time- and spanwise-averaged skin-friction coefficient ⟨Cf ⟩ and wall-pressure evolution⟨pw⟩/p∞. Comparing the coarsest grid resolution G1 (∆x+ = 78, ∆y+min = 0.9, ∆z+ =
19.6) with the next level G1z (refinement in spanwise direction) one can state that
the overall wall-pressure evolution coincides, while larger deviations can be observed
in the post-interaction region for the skin-friction coefficient. Mean separation and
reattachment locations (defined through ⟨Cf ⟩ = 0) and thus the resulting separation
length Lsep remain unaltered. Note that the pressure strongly decreases in the relaxation
zone due to the influence of the PME, resulting in a significantly higher skin-friction
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Figure 2: Grid-sensitivity study with respect to (a) skin-friction coefficient and (b) wall-
pressure evolution. Reported quantities are time- and spanwise-averaged. ( ) G1,
( ) G1z , ( ) G2, ( ) G2x, ( ) G2 averaged over 446 δ0/U0, ( ) inviscid
interaction. The plateau pressure prediction according to Zukoski (1967) is also shown.
See table 2 for reference.

level than for the incoming TBL. The inviscid wall-pressure evolution (dotted line
in figure 2(a)) clearly deviates from the step-wise pressure signal characteristic of a
canonical inviscid shock-reflection without PME. Characteristics emanating from the
centred expansion in the current SWBLI already influence the incident shock (see
shock-curvature in figure 1), shifting the nominal inviscid shock impingement location
downstream to (x − ximp)/δ0 = 2.35. Note that the wall-pressure in the post-interaction
zone for (x − ximp)/δ0 > 20 asymptotically reaches the inviscid solution. The next grid
level G2 differs from the previous one G1z in the number of cells in streamwise direction,
resulting in a grid resolution of ∆x+ = 39, ∆y+min = 0.9 and ∆z+ = 9.8 in streamwise,
wall-normal and spanwise direction, respectively. A strong effect is found for the skin
friction and wall-pressure, which is related to a significant change in separation length
(relative increase of 14.8% compared to G1z ) and probably caused by the slightly different
development of synthetic turbulence in the upstream TBL (see also the discussion related
to Reynolds stresses in figure 4(b)). Note that the location of reattachment remains the
same, while the mean separation point moves upstream.

Having identified an influence on the results by the streamwise resolution, we doubled
the number of cells in this direction, which results in grid configuration G2x (∆x+ = 9.8)
with a total number of 727.3 million cells. Both the mean wall-pressure and skin friction
now do not show significant changes any more. Note that we also include results onG2 for the same integration time of 446 δ0/U0 as for the remaining grid resolutions (see
grey bullets ( ) in Figure 2(a)/(b)). The results suggest that the number of samples
used in this study are sufficient to consider the results to be statistically converged
with respect to the skin friction and wall-pressure. Touber & Sandham (2009) also
investigated the sensitivity of their results to the grid resolution by refining the grid
in each coordinate direction separately. They did not find significant dependencies of
the size of the separation bubble with respect to the chosen grid resolution. While our
results may imply a different conclusion it must be noted that their reference grid has a
similar resolution expressed in wall-units (∆x+ = 40.6, ∆y+min = 1.6, ∆z+ = 13.5) as our
configuration G2, for which we have identified that a further refinement does not change
the overall results.
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Figure 3: Domain-sensitivity study with respect to (a) skin-friction coefficient and (b)
wall-pressure evolution. Reported quantities are time- and spanwise-averaged. ( )D1, ( ) D2, ( ) D3. See table 3 for reference.

To further address the effect of grid resolution, we analyse the prediction of the
plateau pressure by applying the free interaction concept. Carrière et al. (1969) report
a generalised correlation function F̃ independent of Mach and Reynolds number. It
accounts for non-uniformities in the incoming outer flow as well as for wall curvature
effects and is especially suited for SWBLI featuring strong streamline curvature in the
free interaction zone (Matheis & Hickel 2015). While the pressure plateau value is aroundF̃p = 6.4 on G1 and G1z , we find a value of F̃p = 6.0 for the grid configurations G2 and G2x.
The latter value is in perfect agreement with Erdos & Pallone (1963) who proposed a value
of 6.0 for the pressure plateau in turbulent flow. Figure 2(b) includes the plateau pressure
prediction by Zukoski (1967). The prediction again matches the numerical results on grid
levels G2 and G2x, suggesting that the Reynolds number in our studies (Reδ0 ≈ 2 ⋅ 105) is
high enough such that the plateau pressure ratio essentially depends on the upstream
Mach number.

Finally, we investigate the sensitivity of statistical results to the domain width. In
total three configurations based on the grid resolution G2 have been considered. The
reference span of Lz = 4.5 δ0 (D2) is halved for D1 (Lz = 2.25 δ0) and doubled for D3

(Lz = 9 δ0), see table 3 for simulation parameters and figure 3 for corresponding results.
While the small span LES (D1) reveals a slightly smaller separation bubble (downstream
and upstream shift of the separation and reattachment location, respectively) and a
different skin-friction recovery, the results for the reference span (D2) and the large span
(D3) are nearly undistinguishable.

In figure 4, we report the van Driest transformed mean velocity profile as well as the
rms of Reynolds stresses in Morkovin scaling for all grid resolutions and evaluated at
the streamwise location (x−ximp)/δ0 = −15.25, which corresponds to a friction Reynolds
number of Reτ = ρwuτδ/µw = 1523. The figure also includes incompressible DNS data
of Schlatter & Örlü (2010) at their highest available friction Reynolds number of Reτ =
1271. The inner layer and log-law region are in good agreement with the logarithmic
law of the wall (with κ = 0.41 and C = 5.2) and the DNS data, with small differences
recognisable in the wake region. The strength of the wake component increases with
increasing momentum thickness Reynolds number and remains nearly constant above
a value of approximately 6000 (Coles 1962; Smits & Dussauge 2006; Gatski & Bonnet
2009). For the incompressible DNS data a momentum thickness Reynolds number of 4061
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Figure 4: (a) Van Driest transformed mean velocity profile and (b) rms of Reynolds

stresses with density scaling ξ = √⟨ρ⟩/⟨ρw⟩ for all grid resolutions at Reτ = 1523 and(x − ximp)/δ0 = −15.25: ( ) G1, ( ) G1z , ( ) G2, ( ) G2x. See table

2 for reference. (⊙) Incompressible DNS data adopted from Schlatter & Örlü (2010) at
Reτ = 1271.
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Figure 5: Incompressible skin-friction distribution. ( ) Present LES (G2), ( )
Blasius, ( ) Kármán-Schoenherr (both adopted from Hopkins & Inouye (1971)),
( ) Smits et al. (1983), (⊡) Pirozzoli & Bernardini (2011), (⊙) Komminaho &
Skote (2002), (△) Schlatter & Örlü (2010), (▽) Simens et al. (2009), (D) Pirozzoli et al.
(2004), (×) Maeder et al. (2001), (+) Guarini et al. (2000), (◇) Coles (1953) (CAT5301,
from Fernholz & Finley (1977))

is reported. In order to compare with incompressible data we compute Reθi = µ0

µw
Reθ =

ρ∞θU0/µw = 6500, explaining the higher wake velocity observed in figure 4(a) for the
present LES. The streamwise Reynolds stress on grid levels G1 and G1z , see figure 4(b),
shows a significant overestimation of the peak value situated around y+ ≈ 10.5 when
compared to the DNS data. On grid level G2 the agreement with the reference data is
very good, both in the inner and log layer. Further improvement within the log layer
is obtained with G2x for the streamwise Reynolds stress. Note that the friction Reynolds
number Reτ for the reference DNS is slightly lower, resulting in an earlier drop of the
rms profiles at the wake region.

Finally we compare the skin-friction evolution obtained by the LES on grid level G2
with well established correlations for incompressible flows, reference data from DNS and
experimental data at different Mach numbers. A direct comparison with incompressible
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Figure 6: (a) Instantaneous contours of temperature in the xy midplane together with
isolines indicating mean ( ) and instantaneous ( ) reversed flow. (b) Time- and
spanwise-averaged contours of temperature. The shock system is visualised by isolines
of pressure gradient magnitude ∣∇p∣ δ0/p∞ = {1.08,3.28}. ( ) ⟨δ⟩, ( ) ⟨Ma⟩ = 1,
( ) ⟨u⟩ = 0.

data is possible after applying the van Driest II transformation to the compressible results
(van Driest 1956). Figure 5 shows the incompressible skin-friction coefficient ⟨Cfi⟩ as a
function of Reθi . Our present LES results agree well with the incompressible relations
of Smits et al. (1983), Blasius and Kármán-Schoenherr (both adopted from Hopkins &
Inouye (1971)), and available high-Reynolds-number data of Fernholz & Finley (1977).

The above grid- and domain-sensitivity study has shown that the grid resolution G2
with a reference span of Lz = 4.5 δ0 properly resolves the incoming TBL and accurately
predicts the interaction region. Small improvements of the streamwise Reynolds stress
prediction within the log-layer are possible by further increasing the streamwise grid
resolution (G2x). However, the interaction region is unaffected by further refinement and
thus we are confident that the grid resolution G2 is sufficiently fine. The analyses in the
following are based on G2.

3.2. Instantaneous and mean flow organisation

A first impression of the flow field is provided in figure 6, where we show both
instantaneous and mean contours of temperature. Isolines in figure 6(a) indicate the
instantaneous and mean reversed flow (defined through u/u∞ = 0 and ⟨u⟩/u∞ = 0,
respectively). Additional isolines in figure 6(b) represent the shock system, the sonic line
and the boundary-layer edge, where the latter is defined through an isovalue of mean
spanwise vorticity ⟨ωz⟩ that gives the same boundary-layer thickness as the velocity-
valued definition upstream of the interaction. Clearly, the adverse pressure gradient
imposed by the incident shock is strong enough to cause a large flow separation and a
separation shock originating well ahead of the inviscid impingement location. Note that
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Figure 7: (a) Skin-friction and (b) wall-pressure evolution: ( ) Present LES
(averaged in time and spanwise direction; spanwise min and max values of the
time-averaged data are indicated by the grey shaded area for the long integration
time of 3805 δ0/U0 and by dots for the short integration time of 446 δ0/U0), ( )
experimental static pressure measurements and (D) mean experimental unsteady pressure
measurements from Daub et al. (2015). Error-bar indications are only rough experimental
estimates due to Willems (2016).

ximp is related to the theoretical location at which a straight incident shock would impinge
on the flat plate in the absence of a centred PME, thus neglecting shock curvature effects.
The separation shock intersects the incident shock well outside the TBL, indicating the
strong character of the interaction. Délery & Marvin (1986) further characterised a strong
interaction through the presence of three inflection points in the wall-pressure evolution,
which are associated with the separation, the onset of reattachment and the reattachment
compression. For even stronger interactions with an extended separated flow, a noticeable
pressure plateau develops, as is the case for the present study (see figure 2(b)/(c)). The
separation shock foot penetrates deeply into the incoming TBL, a phenomenon being
associated with the high Reynolds number of the flow (Loginov et al. 2006; Ringuette
et al. 2009). As will be discussed later in §3.3, this feature causes a stronger footprint on
the fluctuating wall-pressure signal as compared to SWBLI at lower Reynolds number
and same Mach number (Adams 2000; Pasquariello et al. 2014; Nichols et al. 2016). In
the same figure the formation of a detached turbulent shear layer originating from the
separation shock is visible and contains the separated-flow area. Compression waves are
formed along with the reattachment process, which finally coalesce into the reattachment
shock. The instantaneous separation bubble is strongly perturbed near the initial part of
the interaction zone, probably being related to fluid entrainment through the shear layer
vortices in this region (Piponniau et al. 2009). The TBL grows significantly across the
interaction, reaching a maximum of approximately 3 δ0 in the vicinity of the separation
bubble apex, see figure 6(b). The subsequent PME reduces the TBL thickness, which
settles down to a value of 2 δ0 downstream of the interaction.

The mean separation length is determined from the skin-friction distribution shown
in figure 7(a) and results in Lsep = 15.5 δ0. Mean separation xs and reattachment xr
locations are indicated by vertical dashed lines and located at (x − ximp)/δ0 = −11.25 δ0
and 4.25 δ0, respectively. Priebe & Mart́ın (2012) found in their compression corner results
that the separation is not uniformly strong in the sense that the skin-friction coefficient
varies within the separated flow region. More precisely, their skin friction distribution
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Figure 8: Time- and spanwise-averaged Reynolds normal stress components. The shock
system is visualised by isolines of pressure gradient magnitude ∣∇p∣ δ0/p∞ = {1.08,3.28}.
( ) δ, ( ) ⟨Ma⟩ = 1, ( ) ⟨u⟩ = 0, ( ) dividing streamline yds. A star (☀)
indicates the location of maximum contour level. Eight discrete contour levels are shown
by dashed lines.

(see figure 4(a) in their publication) reveals a less strong separated flow approximately
1/3Lsep downstream of the mean separation location, resulting in a local ⟨Cf ⟩ maximum.
They related this behaviour to collapse events of the separation bubble during the low-
frequency unsteadiness and found a positive skin-friction coefficient in this region for
conditional averages of collapsing bubbles. Our results, however, show a rather uniformly
strong separation over a streamwise length of approximately 2/3Lsep, which is probably
related to the intensity of the present SWBLI. The pressure distribution reported in
Priebe & Mart́ın (2012) does not exhibit a pressure plateau and the overall separation
length of 3 δ0 is considerably smaller compared to our results. Furthermore, Clemens
& Narayanaswamy (2014) have shown by a simple scaling analysis that the upstream
momentum fluctuations may be large enough to provoke a bubble collapse in case of
weakly separated flows but not for strong separations.

The grey shaded area in figure 7(a) indicates three-dimensional structures in the
nominally two-dimensional interaction by considering spanwise min and max values of
the time-averaged data (3805 δ0/U0). In the incoming TBL, a very low spanwise variation
of ⟨Cf ⟩ is found, indicating statistical convergence. Two regions can be identified where
evidence of stationary or slowly evolving three-dimensional flow structures exists: in
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the proximity of the mean separation location at −11.25 < (x − ximp)/δ0 < −7.5 and
downstream of the inviscid impingement location at (x−ximp)/δ0 > 0. Note that we also
include results of the short duration LES (the dotted lines correspond to an integration
time of 446 δ0/U0). Our results imply that a significant spanwise modulation of the flow is
present close to the separation and reattachment location. The underlying flow structures
provoking this variation are unsteady in nature, as the time-averaged spanwise min and
max values reduce with longer integration times. Time scales associated to such flow
phenomena are considerably longer than the characteristic time scale of the incoming
TBL (δ0/U0), since spanwise variations are still visible for the long duration LES close
to the separation and reattachment locations but vanish upstream of the interaction. We
will provide support for this assumption in the course of this section and later in §3.4.

A similar analysis has been conducted by Loginov et al. (2006) for their LES of a
compression corner flow. Their results cover an integration time of 703 δ0/U0, possibly
explaining the strong spanwise variation of ±2.4 ⋅ 10−4 found in their incoming TBL.
Note that our short time LES shows a significantly lower variation of ±5.0 ⋅ 10−5. They
found two pairs of possibly steady counter-rotating streamwise vortices originating in
the proximity of the compression corner and termed them Görtler-like vortices, bearing
similarities with the instability mechanism found experimentally for laminar boundary
layers developing on sufficiently concave surfaces (Görtler 1941; Floryan 1991). We
will resume this discussion later in this section and show that a similar mechanism
exists for the current SWBLI. Figure 7(b) shows the wall-pressure distribution for
both LES and experiment. Similar to the findings of Loginov et al. (2006), a less
strong spanwise variation is observed for the wall-pressure. Experimental uncertainties
have been estimated taking into account the accuracy of the sensors, uncertainties in
wind-tunnel flow conditions (total pressure, Mach number) and geometric uncertainties
(alignment of the shock generator and the baseplate), see Willems (2016). Both datasets
are in good agreement, with a relative error with respect to the maximum pressure of⟨pmax,LES⟩/⟨pmax,exp⟩− 1 = −0.029. For demonstration, the mean wall-pressure obtained
through unsteady pressure measurements is shown for an upstream position and close to
the separation location.

The effect of the SWBLI on the normal Reynolds stress components is analysed in fig-
ure 8. In each figure, we again indicate the shock system, boundary-layer thickness, sonic
line and reverse flow region by individual isolines. Additionally, the grey isoline indicates
the dividing streamline defined by the set of points yds (x) for which ∫ yds0 ⟨ρu⟩dy = 0.
The region of highest Reynolds stress is indicated by a star and eight contour levels
are superimposed by dashed lines. A high level of streamwise Reynolds stress ⟨u′u′⟩
is found along the detached shear layer with its maximum located at the separation
shock foot, see figure 8(a). The strong convex streamline curvature near the bubble apex
considerably damps the Reynolds stresses (see Smits & Dussauge 2006, e.g.). A similar
observation was made by Sandham (2016). A second branch of increased ⟨u′u′⟩ is found in
the proximity of the reattachment location but located farther away from the wall. Shear
layer vortices in this region are convected downstream with the flow and interact with
the reattachment compression, possibly explaining this local maximum of streamwise
Reynolds stress. For the wall-normal Reynolds stress component ⟨v′v′⟩, see figure 8(b),
increased levels are found along the separation and reattachment shocks and are directly
associated to their unsteady motion. The spanwise Reynolds stress component ⟨w′w′⟩
shares some similarities with the streamwise component, but one remarkable difference
is observed: In the proximity of reattachment, where the dividing streamline shows a
high level of concave curvature, another area of increased Reynolds stress is observed
with its maximum located approximately 3 δ0 downstream and attached to the wall.
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Figure 9: Instantaneous visualisation of the reversed flow and the Görtler-like vortices at
two uncorrelated times. Translucent isosurface of streamwise velocity u = 0 (blue) and
isosurfaces of streamwise vorticity ωx = ±0.4U0/δ0 (white/black) are shown.

This region of increased spanwise Reynolds stress covers 3.5 < (x − ximp)/δ0 < 12.5. To
the authors’ knowledge, no such phenomenon has been previously reported for impinging
SWBLI. Similarities with the compression corner results of Loginov et al. (2006) discussed
previously suggest that a similar centrifugal instability plays a role for the current
SWBLI, which would explain the increased spanwise Reynolds stress found in figure 8(c).
Furthermore, the PME centred at the bubble apex, the dividing streamline and the
downstream recompression correspond to a two-dimensional supersonic backward-facing
step flow, for which streamwise vortices have been found experimentally in laminar,
transitional and turbulent flows over a large range of Mach numbers (Ginoux 1971).

In figure 9, we show the instantaneous structure of the flow at two uncorrelated time
instants. The blue isosurface indicates the reverse flow region (u = 0), while the white
and black isosurfaces correspond to a positive and negative value of streamwise vorticity
(ωx = ±0.4U0/δ0). As other authors already pointed out (Loginov et al. 2006; Grilli et al.
2013), the circulation of the Görtler-like vortices found in their compression corner studies
is rather small, which makes it difficult to extract them from background turbulent
structures. For visualisation purposes we apply both a temporal and spatial filter on
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Figure 10: Numerical oil paint imitation together with mean skin-friction contours.
Thick solid lines indicate time-averaged separation and reattachment locations defined
by ⟨Cf ⟩ = 0. Contour cut-off level is ⟨Cf ⟩ = 2 ⋅10−3. Time-integration covers (a) 446 δ0/U0

and (b) 3805 δ0/U0.

three-dimensional snapshots of the flow. Temporal filtering is accomplished by a simple
moving-average filter. Although the roll-off capabilities and the frequency response for
such a filter are very poor, the noise suppression in the time-domain is excellent. The
LES database consists of ns = 7614 three-dimensional snapshots recorded at a sampling
interval of ∆ts = 0.5 δ0/U0. We select a filter width of nf = 51 snapshots for the moving-
average frame. Subsequently, a top-hat filter is applied to the temporally averaged data
with a constant filter width in streamwise and spanwise direction equal to ∆xf = 0.22 δ0
and ∆zf = 0.07 δ0, while in wall-normal direction the filter width is spanned by four
computational cells.

The following qualitative observations can be made from figure 9(a)/(b): Two pairs of
counter-rotating streamwise vortices develop in the reattachment region. These Görtler-
like vortices are not fixed at a specific spanwise position, contrary to the results of
Loginov et al. (2006). Note that the inflow boundary condition in their LES contained
low-amplitude steady structures, which may lock the spanwise position of the stream-
wise vortices, similar to model imperfections in experimental configurations (Floryan
1991). Another aspect is their short integration time, which might not capture low-
frequency modulations of such flow structures. In accordance with experimental obser-
vations (Görtler 1941; Floryan 1991; Schülein & Trofimov 2011) as well as numerical
findings (Loginov et al. 2006; Grilli et al. 2013), the spanwise width of each vortex pair
is approximately 2 δ0. The spanwise width of our computational domain of Lz = 4.5 δ0 in
combination with periodic boundary conditions allows flow structures with a spanwise
wavelength of at most 4.5 δ0 to be captured. We investigated the wavelength on our
large-span configuration D3 with Lz = 9 δ0 and found the same width of about 2 δ0
for a vortex pair. The effect of the streamwise vortices on the separated flow is clearly
visible in figure 9(b): Vortex-induced upwash decreases the shear stress at this specific
spanwise location and directly influences the reattachment position by shifting it further
downstream. Indeed, at z/δ0 ≈ −0.4 such a flow configuration can be observed. Vortex-
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Figure 11: (a) Curvature parameter δ/R and (b) Görtler number GT evaluated along
a mean-flow streamline passing through (x − ximp)/δ0 = −15 and y/δ0 = 0.75. ( )
stability limits according to Smits & Dussauge (2006) and Görtler (1941).

induced downwash (z/δ0 ≈ 1) increases the local shear stress and subsequently shifts the
reattachment position further upstream. The above findings suggest a direct coupling
between the separated flow dynamics and the streamwise vortices. As pointed out by
Floryan (1991), such vortices in turbulent flow have no spanwise preference position
and thus meander in time. Steady non-uniformities, e.g., when small vortex generators
are placed in the settling chamber of a wind tunnel, might induce a preferred lateral
position around which the spanwise motion occurs. In case that the level of unsteady
disturbances of the oncoming flow is large compared to that of the steady disturbances,
however, no preferred spanwise position can be observed for Görtler-like vortices (Kottke
1988; Floryan 1991). An animation of figure 9 reveals that the streamwise vortices tend
to meander in lateral direction. At the same time the vortices appear and disappear,
coalesce and separate in an apparently random manner. Consequently, the effect of the
Görtler-like vortices on the mean spanwise flow modulation diminishes with increasing
averaging time. This is also evident when looking at figure 10, where we show a numerical
oil flow visualisation together with mean skin-friction contours evaluated for the wall-
plane. While figure 10(a) is obtained for the short-duration LES, figure 10(b) includes
a large number of low-frequency oscillations of the separation bubble. Characteristic
node and saddle points close to the reattachment location can be observed for the
former. Convergence and divergence lines associated to regions of vortex-induced upwash
and downwash indicate a strong spanwise modulation of the flow for the time-frame
considered. While figure 10(a) might suggest a system of steady streamwise vortices to
be present, the results for the long-run LES clearly suggest the streamwise vortices to
be unsteady. Node and saddle points as well as convergence and divergence lines appear
suppressed in figure 10(b), indicating a less strong spanwise modulation of the mean flow
with increasing averaging time.

Figure 11 analyses the curvature parameter δ/R and the Görtler number GT for a
mean-flow streamline passing through (x − ximp)/δ0 = −15 and y/δ0 = 0.75. According to
Loginov et al. (2006) and Smits & Dussauge (2006), the Görtler number for a compressible
turbulent flow may be defined as

GT = θ

0.018δ1

√
θ∣R∣ ⋅ sgn(R) . (3.1)

Therein δ1, θ and R denote the displacement thickness, the momentum thickness and the
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Figure 12: (a) Numerical and (b) experimental wall-pressure signal near the separation
shock foot. The numerical probe is located at mean separation xs, low-pass filtered
with a FIR filter (cut-off Strouhal number of Stδ = 0.33, filter order of 900) and
subsequently projected on the experimental time axis via linear interpolation. Locations
of the experimental and numerical pressure probe are indicated in figure 7. (c) Weighted
power spectral density f ⋅ P(f) for the raw pressure signals without low-pass filtering.
Experimental data from Daub et al. (2015) with ( ) Tseg = 374Lsep/U0 (nseg = 130)
and ( ) Tseg = 51Lsep/U0 (nseg = 973). ( ) LES with Tseg = 51Lsep/U0

(nseg = 12).

streamline curvature radius of the mean flow, respectively. Note that we have modified
the above expression to indicate convex and concave curvature. Smits & Dussauge (2006)
report a lower limit for the curvature parameter above which longitudinal vortices are
expected to develop, being δ/R ≈ 0.03 for a Ma = 3 flow. In laminar flow the critical
Görtler number is GT = 0.58 (Görtler 1941). Both limits are significantly exceeded within
a short region close to the separation point as well as within a long region at reattachment
(see filled patterns in Fig. 11(a)/(b)). Although it is unclear whether such stability
criteria hold also for turbulent flow, the high values within the reattachment region,
which last over a significantly long streamwise distance of 11 δ0, indicate a centrifugal
instability to be a plausible mechanism for the generation of Görtler-like vortices.
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3.3. Spectral analysis

The unsteadiness of the present SWBLI is studied in this section by means of spectral
analysis. For this purpose, 1230 equally spaced wall-pressure probes have been placed in
streamwise direction along the midplane of the computational domain. The probes span
the region −17.74 < (x−ximp)/δ0 < 17.18 and are sampled at a frequency of approximately
fs = 60U0/δ0, which corresponds to 8.9 MHz. Figure 12(a)/(b) compares a section of the
experimental wall-pressure measurement (Daub et al. 2015) with the LES signal. Both
signals have been evaluated near the separation shock foot, i.e. the experimental location
is given by the unsteady pressure transducer indicated in figure 7(b), whereas the LES
signal has been extracted at the mean separation location xs. As mentioned in section
§2.2, the cut-off frequency of the experimental measurements is 50 kHz (0.33U0/δ0).
Consequently, scales in the incoming TBL, whose characteristic frequency is of the order
U0/δ0, are under-sampled. In order to mimic the experimental cut-off effect, we low-pass
filter the LES signal with a finite impulse rate (FIR) filter of order 900 and a −6 dB
cut-off Strouhal number of Stδ = 0.33. Subsequently, the filtered signal is projected on
the experimental time axis via linear interpolation. Qualitative similarities between
both datasets can be observed in terms of intermittency, occurring time scales and wall-
pressure amplitudes. In contrast to previous low-Reynolds numerical studies (Adams
2000; Touber & Sandham 2009; Priebe & Mart́ın 2012; Pasquariello et al. 2014), our
filtered signal shows the well-known intermittent character typically observed in high-
Reynolds number experiments, that is, the wall-pressure jumps from the incoming TBL
value to that behind the separation shock and back again. This effect is attributed to
the high Reynolds number of the flow as shown experimentally by Dolling & Murphy
(1983) and Dolling & Or (1985). At lower Reynolds number the separation shock does not
penetrate as far into the TBL as it does at high Reynolds number. In fact, the separation
shock is diffused by increased viscous effects when approaching the wall. Since its motion
is no longer associated to a single, well-defined shock wave, its intermittency is attenuated
(Adams 2000; Ringuette et al. 2009).

A more quantitative comparison of both signals is given in figure 12(c), where we show
the weighted power spectral density (PSD) of the two signals. Note that the LES signal is
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Figure 14: (a) Band-limited root mean square of wall-pressure fluctuations. ( )
LES data obtained by integrating the PSD for StLsep < 1, ( ) Experimental data from
Daub et al. (2015) obtained by integrating the PSD for StLsep < 1 and (D) by integrating
the PSD for 0.014 < StLsep < 1. (b) Band-limited (StLsep < 1) relative root mean square
of wall-pressure fluctuations for the present LES. (▲) indicate locations which will be
discussed in conjunction with figure 15.

not low-pass filtered for this comparison, thus retaining the high-frequency TBL content.
Welch’s algorithm with Hamming windows is used to estimate the PSD. For the LES
signal (black solid line), a total number of nseg = 12 segments is used with 65 % overlap.
These parameters lead to a segment length of approximately 783 δ0/U0 (51Lsep/U0). For
the available experimental signal two segmentation configurations have been used. The
grey solid line reflects a total number of nseg = 130 segments with 65 % overlap. This
leads to an individual window length of 5797 δ0/U0 (374Lsep/U0) and should resolve
all expected low-frequency dynamics properly. The parameters for the grey dashed line
are chosen in such a way that the individual segment length is the same as for the
LES, leading to a total number of nseg = 973 segments. The good qualitative agreement
between both signals observed in figure 12(a)/(b) is also confirmed by their spectra. Both
spectra indicate the presence of a dominant low-frequency peak around a non-dimensional
frequency of StLsep = fLsep/U0 ≈ 0.04. This value agrees well with experimental studies
for different flow geometries and upstream conditions by Dussauge et al. (2006), who
found that the unsteadiness occurs at frequencies centred about StLsep = 0.02 − 0.05.
While the peak amplitude for the shock unsteadiness is captured very well by the
LES, we observe a lower energy level for frequencies below the low-frequency peak. We
have computed the PSD for a reduced number of segments nseg in order to allow for
increased low-frequency resolution. We find that the energy content of the LES signal
at frequencies below StLsep < 0.04 essentially is unaffected. We believe that the observed
discrepancies may be caused by sidewall effects in the experiment which mainly show up
at low frequencies. The LES data shows an additional bump centred around fδ0/U0 ≈ 1,
associated to the most energetic scales of the TBL. The experimental cut-off frequency
of 0.33U0/δ0 excludes this range from the experimental data.

The wall-pressure spectrum for all numerical probes is shown in figure 13. Mean
separation and reattachment locations are indicated by vertical dashed lines. Note that no
energetically significant low-frequency content is apparent in the upstream TBL, proving
the suitability of the digital filter technique. In accordance with previous numerical
(Touber & Sandham 2009; Priebe & Mart́ın 2012; Grilli et al. 2012) and experimental
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(Thomas et al. 1994; Dupont et al. 2006) studies, the broadband peak associated with
energetic scales in the incoming TBL shifts towards significantly lower frequencies close
to the mean separation location and moves back again to higher frequencies downstream
of the interaction. Within the rear part of the separation bubble so-called medium-
frequencies around StLsep ≈ 0.5 develop, which are probably related to shear-layer
vortices convected over the recirculation (Dupont et al. 2006). While the low-frequency
activity is concentrated around the mean separation location, another significant level of
unsteadiness is found slightly upstream and at frequencies around 0.1U0/Lsep. Associated
time scales of approximately 10Lsep/U0 can be found in the wall-pressure signal, see
figure 12(a)/(b), and are related to the intermittent character of the separation shock
as will be shown in figure 15.

The streamwise variation in rms wall-pressure fluctuations is shown in figure 14. The
distributions are obtained by integrating the power spectra over a given frequency range

⟨p′p′⟩ ∣f1−f2 = ∫ f2

f1
P(f) df . (3.2)

We focus on the low-frequency contributions of pressure fluctuations and thus select
f2 = 1U0/Lsep, see also figure 12(c). At the same time this value is sufficiently far
away from the experimental cut-off frequency of 5.2U0/Lsep, hence avoiding aliasing
effects. The lower limit f1 is chosen to be the smallest resolved frequency, individually
selected for experiment (filled bullets) and LES (solid line). The overall agreement within
the separated flow region and after reattachment is satisfactory, while the peak value
associated with the separation shock motion is underestimated by the LES. This effect
can be attributed to the longer sampling time for the experiment, thus resolving much
lower frequencies that contribute to the overall energy level. In fact, when restricting the
integration of the experimental data to the same lower value f1 as for the LES (open
symbols in figure 14(a)), the peak rms value reproduces the numerical result without
affecting the other measurement locations.

Similarly to experimental observations (Dolling & Murphy 1983; Dolling & Or 1985;
Selig et al. 1989), the high Reynolds number of the flow leads to a distinct rms peak
centred around xs. Directly downstream a plateau region develops, followed by a contin-
uous increase in pressure fluctuations until a second maximum is reached. Note that the
second maximum is located 2.4 δ0 downstream of the mean reattachment location. This
position apparently coincides with the reattaching shear layer, see figure 6(a), for which
a characteristic frequency of the reattaching large-scale vortices is usually found around
0.5U0/Lsep (Dupont et al. 2006). In figure 14(b) we further investigate the band-limited
low-frequency contribution of pressure fluctuations to the total fluctuation energy for the
present LES. In the incoming TBL approximately 10 % of the total rms of wall-pressure
fluctuations reside in the lower frequency range of f < 1U0/Lsep. A similar value has been
found experimentally by Thomas et al. (1994). When approaching the mean separation
point, almost the complete (95 %) pressure-fluctuation intensity is associated to such
low frequencies. Thomas et al. (1994) investigated experimentally a compression corner
flow at a free stream Mach number of 1.5 and a Reynolds number of Reδ ≈ 178 ⋅ 103.
They found, that the fraction of fluctuation intensity that is associated with separation
shock oscillation increases with increasing ramp angle. For their largest ramp angle of
12○ a ratio of 55 % is reported, which is significantly lower than our value and possibly
related to the considerably lower Mach number and weaker interaction in their study.
Close to reattachment the low-frequency contribution is still responsible for 55 % of the
total wall-pressure fluctuation intensity and composed of a superposition of separation
bubble dynamics and reattaching shear-layer vortices convected downstream.
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Figure 15: Wall-pressure signals (left) and corresponding normalised probability density
distributions (right) evaluated at (x−ximp)/δ = {−17.74,−11.66,−11.34,4.25,6.61,17.18}.
Refer to the text and figure 14 for a physical interpretation of the wall-pressure positions.
The mean wall-pressure is indicated by a horizontal dashed line. Arrows together with
vertical bars indicate the mean wall-pressure and its standard deviation. Values of
skewness α3 and flatness α4 coefficients and a Gaussian distribution are included for
reference.

The intermittent character of the wall-pressure is further analysed in figure 15. On the
left we show the normalised wall-pressure evolution for six different streamwise locations.
On the right the corresponding normalised probability density functions (PDF) computed
from 228681 samples grouped into 478 bins, together with a standard Gaussian distribu-
tion are shown. The individual positions are indicated in the rms plot of wall-pressure
fluctuations, see figure 14. From top to bottom they refer to the undisturbed TBL,
the onset of interaction, the location of maximum wall-pressure fluctuation intensity,
the mean reattachment position, the reattaching shear layer and the post-interaction
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Figure 16: (a) Streamwise intermittency distribution γi(x). The mean separation location
xs is indicated. (D) highlight 1% and 99% intermittency boundaries and define the
intermittent lengthscale Li = 1.2 δ0. (b) Skewness coefficient α3 as a function of
intermittency γi. ( ) LES. Symbols represent experimental data from Dolling &
Or (1985) for a compression ramp flow at a Mach number of Ma = 2.9 and a Reynolds
number of Reδ0 = 1.43 ⋅ 106 with wedge angles (⧫) ϑ = 12○ (attached flow), ( ) ϑ = 16○

(incipient separation), (▲) ϑ = 20○ (separated flow) and (∎) ϑ = 24○ (separated flow).

location. The incoming TBL signal is effectively Gaussian, which is also reflected by the
skewness α3 and flatness α4 coefficients.

The next probe is located 0.41 δ0 upstream of the mean separation location at a pressure
level of ⟨pw⟩/⟨pw,0⟩ = 1.07. The signal is strongly intermittent. This is also confirmed by
the associated PDF which is highly skewed and has a single mode at −0.5σpw , thus
reflecting the probability of finding pressures in the range of the incoming TBL. Close to
the mean separation location, at a pressure level of ⟨pw⟩/⟨pw,0⟩ = 1.27, the signal is still
intermittent. Its PDF is highly left-skewed with tendencies to develop a bimodal shape
whose centres are located around ±1σpw . These two pressure probes have been evaluated
at a very similar pressure ratio as done by Dolling & Murphy (1983). The reported wall-
pressure signals and PDF qualitatively agree with experimental observations by Dolling
& Murphy (1983) (see figure 6 in the respective publication) and Dolling & Or (1985) (see
figure 3 in their publication), which again confirms the high-Reynolds-number character
of the present SWBLI. The bimodal character is more pronounced in their studies, which
is probably because of the even higher Reynolds number of Reδ0 = 1.43 ⋅ 106 in their
experiment. At the mean reattachment position the signal is slightly left-skewed, see also
Adams (2000). Wall-pressure fluctuations increase for the next downstream probe, which
is located in the proximity of the reattaching shear layer. At the same time the skewness
coefficient increases. Further downstream the signal has returned to an almost Gaussian
shape with relaxed pressure fluctuations.

In figure 16(a) we show the intermittency factor γi(x). According to Dolling & Or
(1985) it is defined as

γi =
t2∫

t1

{ 1 , pw > ⟨pw,0⟩ + 3σpw,0

0 , else
dt

t2 − t1 , (3.3)

which describes the fraction of time that the wall-pressure is above the threshold value
defined by the undisturbed incoming TBL. A high intermittency level of γi(xs) = 0.84
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is found at the mean separation location. Based on the 1 % and 99 % intermittency
boundaries we can derive an intermittent lengthscale of Li = 1.2 δ0. For comparison,
Loginov et al. (2006) reported a value of γi(xs) = 0.88 and Li = 1.3 δ0. According to
Dolling & Or (1985), higher order moments such as α3 are only a function of γi and do
not depend on the flow geometry. Their compression corner results at Reδ0 = 1.43⋅106 and
four different ramp angles are shown in figure 16(b). The overall correlation is satisfactory
and our LES results (solid line) support the experimental findings. Dolling & Or (1985)
also analysed data for a different flow geometry (blunt fin) and a variety of Reynolds
numbers. These results generally support the free interaction concept and suggest a
Reynolds number dependency for the peak value of α3.

3.4. Dynamic Mode Decomposition

The previous section addressed the unsteady character of the interaction by means
of local flow diagnostics. The aim of the following modal analysis is to relate global
flow phenomena to the frequencies found in §3.3. We will start with a two-dimensional
Dynamic Mode Decomposition (DMD) in terms of spanwise-averaged snapshots. This is
motivated by the successful application of the DMD method to similar SWBLI problems
by Pirozzoli et al. (2010), Grilli et al. (2012), Tu (2013) and Nichols et al. (2016), the
analysis of low-pass filtered and spanwise-averaged flow-fields by Priebe & Mart́ın (2012)
and the global stability analysis by Touber & Sandham (2009). Three-dimensional effects
are however present for the current study as already shown in the previous sections.
Therefore we will subsequently apply the DMD to snapshots of the two-dimensional skin-
friction data, which will enable us to conclude whether three-dimensional modulations
of the separated flow region are present.

A short overview of the DMD is given in the following. DMD is a Koopman-operator
based spectral analysis technique that decomposes the flow field into coherent spatial
structures sharing the same temporal frequency (Rowley et al. 2009; Schmid 2010). It
operates on a discrete sequence of snapshots and can be used to extract a reduced order
representation of the underlying dynamical system. Starting point is a given sequence
of snapshots Vn

1 = {v1,v2, . . . ,vn} ∈ Rm×n sampled at constant time intervals ∆ts,
where each vi is a column vector with m entries (e.g. velocities on the computational
grid). A linear, time-invariant operator is assumed to relate two consecutive snapshots,
that is vi+1 = Avi. The dynamics of the underlying system are determined once the
eigenvalues and eigenvectors of this operator A ∈ Rm×m are found. Note that in case
of a nonlinear system this assumption is equivalent to a linear approximation. The
time-invariant mapping allows to formulate a Krylov sequence of the data of the form
Vn

1 = {v1,Av1,A
2v1, . . . ,A

n−1v1}. In general m is so large that we cannot compute
eigenvalues of A directly, which is why we seek for a low-order representation. A method
that does not require explicit knowledge of A is based on the assumption that we can
express vn as a linear combination of the previous n − 1 linearly independent vectors vi
according to

vn = a1v1 + a2v2 + . . . + an−1vn−1 + r . (3.4)

Following the work of Schmid (2010), the above relation can be applied to the snapshot
sequence to get

AVn−1
1 = Vn

2 = Vn−1
1 S + reT , (3.5)

where e = (0, . . . ,1) ∈ Rn−1. The matrix S ∈ R(n−1)×(n−1) is a companion matrix with the
only unknowns ai. It is a lower-dimensional representation of A and shares a subset of
approximate eigenvalues, which are often referred to as Ritz values (Rowley et al. 2009).
In case of a linear system the residual r vanishes. We will later use (3.4) in our analysis
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to verify whether enough snapshots have been collected. The companion matrix S can be
obtained by solving (3.4) in a least-squares sense. The resulting decomposition in terms of
eigenvalues and eigenvectors of S, however, often produces an ill-conditioned and noise-
sensitive algorithm, which is why Schmid (2010) proposed a more robust implementation
based on a singular value decomposition (SVD) of Vn−1

1 = UΣVT . The SVD of Vn−1
1 in

combination with (3.5) yields the approximate matrix S̃ = UTVn
2VΣ−1 = UTAU, which

is the same result as when the linear operator A is projected onto the proper orthogonal
decomposition (POD) basis implicitly contained in the matrix U. Finally, the individual
DMD modes φi ∈ Cm are obtained by

φi = Uyi , (3.6)

where yi ∈ Cn−1 denotes the ith eigenvector of S̃, that is S̃yi = µiyi with µi ∈ C being
the associated eigenvalue. With the above decomposition it is possible to approximate
experimental or numerical snapshots using a linear combination of the DMD modes

vm ≈ n−1∑
i=1

φiµ
m
i αi, m ∈ {1, . . . , n − 1} , (3.7)

where αi ∈ C can be recognised as the amplitude of the individual DMD mode. In matrix
form we get

Vn−1
1 ≈ [φ1, φ2, ⋯ , φn−1]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

φ

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α1

α2 ⋱
αn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Dα

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 µ1 ⋯ µn−11

1 µ2 ⋯ µn−12⋮ ⋮ ⋱ ⋮
1 µn−1 ⋯ µn−1n−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Vand

. (3.8)

The choice of the DMD amplitudes αi is not unique. Here we follow the strategy by
Jovanović et al. (2014), who proposed to solve the following optimisation problem for the
unknown amplitudes

αopt = arg min
α

∣Vn−1
1 −φDαVand∣2F , (3.9)

where ∣ ⋅ ∣F denotes the Frobenius norm. Resulting amplitudes αopt in combination with
(3.7) optimally approximate the entire data sequence. Note that the above optimisation
problem reduces to the classical first snapshot scaling (Tu & Rowley 2012) for a full-rank
system.

One of the main problems when applying the DMD algorithm is to properly select the
dynamically most important and robust modes of the underlying dataset. The amplitude
of a mode αi might be a good indicator for modes having an almost zero growth rate, but
could be misleading for transient modes associated to large negative growth rates. We
therefore use a more sophisticated and automated mode selection algorithm developed by
Jovanović et al. (2014). Their sparsity-promoting DMD (SPDMD) algorithm augments
the optimisation problem (3.9) by a regularisation term that penalises the `1-norm of the
vector of DMD amplitudes αi

α̃ = arg min
α

∣Vn−1
1 −φDαVand∣2F + γ n−1∑

i=1

∣αi∣ , (3.10)

where γ is a given positive regularisation parameter that for large values enforces a sparse
vector α̃, while for γ = 0 the conventional optimisation problem (3.9) is recovered. When
for a given γ a desired sparsity structure is achieved, the amplitudes for the non-zero
entries of α̃ are adjusted according to (3.9). For algorithmic details on how to effectively
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Figure 17: (a) Normalised DMD residual according to equation (3.4). (b) Contours of
DMD residual for pressure (top) and streamwise velocity (bottom) for n = 7000.
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Figure 18: (a) Spectrum of eigenvalues resulting from the standard DMD algorithm. (b)
Normalised magnitudes of the DMD modes. ( ) indicate a SPDMD subset of Nsub = 13
modes.

solve this convex optimisation problem please refer to Jovanović et al. (2014). Besides
the mode selection algorithm via SPDMD we will also look at the magnitude of a mode∣φi∣, which has been shown to correlate with the spectral behaviour of the underlying
flow field when compared to local measurements (Rowley et al. 2009).

Finally, dynamic information of an individual DMD mode in terms of growth rate
βi and angular frequency ωi are implicitly available through the eigenvalues µi after
applying a logarithmic mapping

λi = lnµi/∆ts → βi =R (λi) = ln ∣µi∣ /∆ts
ωi = I (λi) = arg(µi)/∆ts . (3.11)

Our database for the spanwise-averaged DMD analysis consists of n = 7000 snapshots
of pressure and velocity fields {p, u, v}, equispaced in time with an interval of ∆ts =
0.5 δ0/U0. Only a subdomain of the full computational box is used for the modal analysis,
which covers the region −15.25 < (x − ximp)/δ0 < 19.75 and 0 < y/δ0 < 7.5. We thus focus
on the dynamically interesting interaction region. This leads to a snapshot matrix of
Vn

1 ∈ Rm×n with dimensions m = 968352 and n = 7000. The particular choice of the
number of snapshots for the current analysis is motivated by studying the DMD residual
introduced in equation (3.4). The normalised `2-norm of the residual vector is plotted
over the number of snapshots in figure 17(a). The DMD residual appears sufficiently
saturated after approximately 7000 snapshots. It is thus plausible to assume that enough
snapshots have been gathered to accurately predict the dynamics of the system. We show
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contours of the residual for both the pressure and streamwise velocity in figure 17(b) for
the chosen snapshot set of n = 7000. The above settings lead to a frequency resolution
expressed in Strouhal number of 2.86 ⋅10−4 < Stδ < 1 (4.43 ⋅10−3 < StLsep < 15.5). The high
sampling-rate is motivated by the fact that, besides the low-frequency phenomenon, we
want to accurately resolve the medium-frequency unsteadiness typically found around
frequencies of 0.5U0/Lsep (Dupont et al. 2006). Moreover, as pointed out by Nichols
et al. (2016), the signal-to-noise ratio is significantly increased as we partially resolve
turbulence, having a favourable effect on convergence properties of the DMD algorithm.

In figure 18(a) we show the spectrum of eigenvalues resulting from the standard DMD
algorithm. Since real-valued input data is processed the modes arise as complex conjugate
pairs, which results in a symmetric spectrum. Nearly all eigenvalues reside on the unit
circle ∣µi∣ = 1. This is expected for statistically stationary systems and further indicates
that the snapshot sequence Vn

1 lies on or near an attracting set (Rowley et al. 2009).
The normalised magnitudes of the individual DMD modes ∣φi∣ for positive frequencies
are shown in figure 18(b). To facilitate mode selection, we apply the SPDMD algorithm
of Jovanović et al. (2014). The filled bullets indicate a subset of Nsub = 13 modes that
have been categorised as dynamically important. Note that the SPDMD method does not
simply chose the DMD modes based on their magnitude, but identifies modes having the
strongest influence on the complete snapshot sequence (Jovanović et al. 2014). The DMD
spectrum shares some similarities with the local PSD at the mean separation location
shown in figure 12(c), that is the low-frequency unsteadiness appears as a broadband
bump involving multiple low frequencies. This implies that the unsteadiness is connected
to a global flow phenomenon. In agreement with the spectral analysis of wall-pressure
probes presented in §3.3, one of the low-frequency modes obtained by the DMD algorithm
is located at StLsep = 0.039 and is part of the SPDMD subset. The modes selected by
the SPDMD algorithm can be categorised into two different types as indicated by the
frequency bins I and II in figure 18(b). Modes belonging to the first group (I) describe
a flow modulation that involves the shock system and separation bubble as an entity,
while modes belonging to the second group (II) correspond to shedding motions of the
detached shear layer. We post-processed the SPDMD modes within each single bin and
found that they share similar flow structures, which is why in the following we only select
two representatives out of each region, see the labels φ1, φ2, φ3, and φ4 in figure 18(b).
The associated frequencies are f1 = 0.039U0/Lsep, f2 = 0.114U0/Lsep, f3 = 0.52U0/Lsep
and f4 = 1.087U0/Lsep.

Animations of the mean-flow modulation through the individual modes are available as
a supplement to the online version of this article and should be considered in conjunction
with the following discussions. For a selected mode φi we reconstruct an individual real-
valued flow variable u according to u(x, t) = φm + af ⋅R{αi,optφieiωit + cc}, where φm
denotes the mean mode, cc indicates the contribution of the complex conjugate of φi
and af is an optional amplification factor. We only study the oscillatory component of
each DMD mode and thus neglect the individual growth rate βi, since in the limit of
infinitely many snapshots the growth rate tends towards zero for a nonlinear statistically
stationary system (Pirozzoli et al. 2010). In contrast to the results of Grilli et al. (2012),
where the low-frequency unsteadiness is restricted to a few discrete phase-locked modes,
the DMD spectrum in figure 18(a) shows a large number of contributing modes. Indeed,
increasing the number Nsub for the SPDMD algorithm results in selecting nearly all
modes within the low-frequency bin. Consequently, the contribution of a single mode to
the mean flow field is hardly seen, which is why we chose a suitable magnification factor
af for φi before adding it to the mean mode φm. The supplementary animations show
contours of the pressure gradient magnitude in the range ∣∇p∣ δ0/p∞ = [0,10] at 8 equally
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spaced phase angles, that is ωit = j π/4, j = 0 . . .7. The mean shock system together with
the instantaneous separation bubble are highlighted by black solid lines.

In figures 19 and 20 we show the real and (negative) imaginary part of the selected
DMD modes with contours of pressure and velocity fluctuations, respectively. The tem-
poral mode evolution between the two discrete phase angles ωit = 0 and ωit = π/2 is
equivalent to the real and negative imaginary part when neglecting the individual growth
rate βi. Note that the contour range has been adjusted for best visibility and thus does
not reflect the actual minimum and maximum values.

Considering the pressure modulation with respect to the low-frequency mode φ1, a
high level of p′ is found along the separation and reattachment shock. These fluctuations
are out of phase and describe an oscillation of the shock-system as a whole, i.e. a periodic
contraction and expansion of the interaction region. While the separation shock exhibits
a nearly translational motion, a flapping motion is observed for the reattachment shock.
No fluctuations are found along the incident shock above the shock-intersection location,
which remains steady. Similarly to the results of Nichols et al. (2016), velocity fluctuations
(see I(φ1) in figure 20) are mainly concentrated along the separation shock and the
detached shear layer, with minor contributions within the recirculation bubble. Increased
levels of pressure and velocity fluctuations are not visible within the incoming TBL for φ1.
Mode φ2 is associated with a frequency of f2 = 0.114U0/Lsep and shares some similarities
with the former low-frequency mode: High levels of pressure fluctuations are found along
the separation and transmitted incident shock. However, the strength is not uniform
along the former, indicating a change of the shock angle with respect to the free stream
(see also the animation available online). Pressure fluctuations are increased within the
recirculation region close to the bubble apex and probably related to a flapping motion
of the incident-shock tip (see I(φ2) in figure 19), which strongly perturbs the mean
separation bubble in this region.

The medium-frequency mode φ3 and its higher harmonic φ4 have a strong impact on
the reattachment shock in terms of shock wrinkling. This shock wrinkling is clearly seen
from an animation of the snapshot sequence and caused by shear-layer vortices interacting
with the reattachment compression. The modal shapes provide a proof of this observation,
see R(φ3) and R(φ4) in figure 19. Their activity is concentrated along the mean sonic
line and associated to shear-layer vortices convected downstream while simultaneously
inducing eddy Mach waves in the supersonic part of the flow. This finding is consistent
to global linear-stability analysis of impinging SWBLI in the laminar regime by Guiho
et al. (2016). Besides the corrugation of the reattachment shock, Mach wave radiation
induces disturbances along the reflected shock above the shock-intersection location.
Similar results have been found by Agostini et al. (2012) through cross-correlation maps
between the pressure field and time series of the streamwise location of the reflected
shock for their LES studies of incipient, mildly and fully separated SWBLI at Ma = 2.3
and Reδ0 ≈ 60 ⋅103 (see figure 8 in the respective publication). The supplementary online
material further highlights that the modes φ3 and φ4 primarily influence the rear part
of the separation bubble starting from the bubble apex. While the separation point
remains quasi unaltered, the reattachment location is strongly perturbed by the shear-
layer vortices reattaching nearby.

We now move on to the DMD analysis of the skin-friction coefficient {Cf}. The
sampling time interval and frequency resolution is the same as for the former analysis. The
subdomain chosen for the modal decomposition coincides in streamwise direction with the
DMD of spanwise-averaged snapshots, while in spanwise direction we take the full LES
domain extent of −2.25 < z/δ0 < 2.25. As expected, nearly all eigenvalues lie on the unit
circle, see figure 21(a). The normalised mode magnitudes ∣φi∣ are shown in figure 21(b).
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Figure 19: Real and imaginary part of DMD modes showing contours of modal pressure
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mode selection. For clarity, the mean shock system, the mean sonic line and the mean
dividing streamline are superimposed by black solid lines.
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Figure 21: (a) Spectrum of eigenvalues resulting from the standard DMD algorithm. (b)
Normalised magnitudes of the DMD modes. ( ) indicate a SPDMD subset of Nsub = 17
modes.

We again employ the SPDMD algorithm to ease the mode selection process and highlight
a subset of Nsub = 17 modes. The spectrum is similar to the one from the spanwise-
averaged analysis shown in figure 18(b) with respect to the frequencies selected by the
SPDMD within each single frequency bin. However, differences can be observed for the
high-frequency part starting from f > 3U0/Lsep. Since we partially resolve high-frequency
related turbulent structures and do not filter them out through spanwise averaging as
in the former analysis, the spectrum still shows significant energy content in this region.
Note that two modes with the same low frequency of f = 6 ⋅ 10−3U0/Lsep and large
modal norm are visible in the spectrum. We do not, however, pay much attention to
these modes, as they are very close to the minimum resolvable frequency of the snapshot
sequence given by 4.43 ⋅10−3U0/Lsep. Moreover, the SPDMD algorithm does not classify
these modes as being dynamically important, even if we increase the subset size.

Figure 22 shows the real and (negative) imaginary part of four dynamically important
DMD modes with contours of skin-friction perturbation and isolines of mean separation
and reattachment location. The frequencies of the selected modes, f1 = 0.035U0/Lsep,
f2 = 0.12U0/Lsep, f3 = 0.52U0/Lsep and f4 = 1.58U0/Lsep (see also figure 21(b) for
reference), are similar to the ones of the spanwise-averaged DMD analysis. An animation
of each mode superimposed on the mean solution is again available as a supplement to the
online version of this article and should be considered for the following discussion. There,
the instantaneous separation and reattachment locations are highlighted by black solid
lines, whereas the mean lines are shown in the print version. The low-frequency mode
φ1 shows a nearly two-dimensional modulation of the separation shock foot, see I(φ1)
in figure 22, with comparably low activity inside the recirculation zone. Remarkably,
streamwise streaks (generated through Görtler-like vortices) starting slightly upstream
of the mean reattachment location and extending up to the domain end are clearly
visible. A spanwise wavelength of approximately 2 δ0 is found (similar to the spanwise
width of each vortex pair shown in figure 9), from which we conclude to have identified
footprints of Görtler-like vortices. Their impact on the skin friction results in a large-scale
flapping of the reattachment line, superimposed on a breathing motion of the separation
bubble as a whole (see also the animation available online). In the absence of Görtler-like
vortices, the separation bubble would uniformly expand and shrink across the span. The
shape of the second dynamically important mode φ2 is similar to the former. Streamwise
streaks of same wavelength are dominant at this frequency and the separation line moves
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essentially back and forth. The animation reveals a spanwise motion of the streaks, which
provokes a spanwise wrinkling of the reattachment line without significant influence on
its streamwise position.

The medium-frequency mode φ3 (f3 = 0.52U0/Lsep) is connected to large-scale vortices
reattaching downstream of the mean reattachment line, which are subsequently convected
towards the domain outlet. Similarly to the results from the spanwise-averaged DMD
analysis, modes φ3 and φ4 do not considerably affect the separation line but leave a
strong footprint on the reattachment dynamics (see also the animation available online).

4. Summary and Discussion

The present work was motivated by the lack of an analysis of strong impinging
shock-wave/turbulent boundary-layer interactions (SWBLI) with very large mean-flow
separation at high Reynolds number based on well-resolved numerical simulation data.
We have performed wall-resolved large-eddy simulations (LES) for the flow configuration
of a recent experiment (Daub et al. 2015), consisting of a flat plate turbulent boundary
layer (TBL) at Mach number Ma = 3 and Reynolds number Reδ0 = 203 ⋅ 103. The
incoming TBL interacts with a wedge-induced shock wave that deflects the incoming
flow by ϑ = 19.6○ and leads to a strongly separated mean-flow region with a length of
Lsep = 15.5 δ0.

The mean wall-pressure evolution agrees with experimental measurements and exhibits
a distinct pressure plateau representative of a strong SWBLI. Similarly to LES results of
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Loginov et al. (2006) for their compression corner flow, Görtler-like vortices exist in our
configuration. These counter-rotating streamwise vortices develop slightly downstream
of the bubble apex and induce a strong spanwise flow modulation in this region. In our
case, however, these vortices are not locked at a specific spanwise position, but rather
undergo a meandering motion that is coupled to the separation bubble dynamics.

Our well-resolved and long-time integrated LES data enable an accurate analysis of
the low-frequency SWBLI dynamics. Spectral analyses of numerical and experimental
wall-pressure signals near the separation point demonstrate a broadband low-frequency
unsteadiness with a peak amplitude near StLsep = 0.04, consistent with experimental
values found by Dussauge et al. (2006) for different flow geometries and upstream
conditions. High-Reynolds-number effects lead to a distinct peak (global maximum) in
the rms wall-pressure fluctuations centred around the mean separation location with
95 % fluctuation intensity associated to frequencies below 1U0/Lsep. Furthermore, the
wall-pressure signal is strongly intermittent at this location.

Sparsity-promoting dynamic mode decomposition (SPDMD, Jovanović et al. (2014))
has proven effective in identifying robust and dynamically important modes of our
SWBLI when applied to spanwise-averaged snapshots as well as snapshots of the two-
dimensional skin-friction coefficient. Essentially, two types of modes have been found:
Low-frequency modes (StLsep ≈ 0.04) primarily involve the shock system, the separated
shear layer and the separation bubble as an entity, leading to the classical breathing
motion of the recirculating flow together with a forward/backward motion of the shock
system. Medium-frequency modes (StLsep ≈ 0.5) involve shear-layer vortices convected
downstream while simultaneously inducing eddy Mach waves in the supersonic part of
the flow. Shock corrugation, both for the reattachment and reflected shock, is found to
be connected to these frequencies. Low-frequency skin-friction modes include streamwise
streaks downstream of the nominal impingement location, which we have identified as
footprints of Görtler-like vortices. These vortices cause a large-scale flapping of the
reattachment line superimposed on a breathing motion of the separation bubble.

In contrast to experimental observations by Ganapathisubramani et al. (2009) for a
compression corner flow, our modal analysis does not identify any coherent structure of
sufficient length (superstructure) upstream of the interaction that could possibly provoke
the SWBLI unsteadiness. Our turbulent inflow conditions and domain size limit such
structures to a minimum frequency one order of magnitude larger than the observed
characteristic frequencies. The scaling analysis of Clemens & Narayanaswamy (2014)
further shows that an upstream mechanism related to momentum fluctuations in the
incoming TBL is unlikely responsible for the large-scale separation-shock motion in the
present study. Collapse events of the separation bubble as observed by Priebe & Mart́ın
(2012) for their weak compression corner flow have not been found for our strong SWBLI.
Increasing the shock strength and keeping the upstream TBL conditions the same
decreases the natural frequency of the SWBLI system and hence reduces its receptive
frequency band. Upstream mechanisms cannot explain the observed frequencies for our
particular interaction and the quasi-constant Strouhal number found both experimentally
and numerically for a wide range of interaction parameters. Our analyses support a
mechanism proposed by Touber & Sandham (2011) and Grilli et al. (2012), where
the low-frequency unsteadiness is an intrinsic property of the interaction. It may not
be self-sustaining and thus may require a coherent or incoherent forcing (Touber &
Sandham 2011) originating from upstream or within the interaction zone (Sansica et al.
2014). For our strong high-Reynolds-number SWBLI the separation-bubble dynamics
is clearly coupled to unsteady Görtler-like vortices, which might act as a source for
continuous (coherent) forcing of the separation-shock-system dynamics. Interestingly,
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since independently discovered from one another, this is the same conclusion as the
one drawn by Priebe et al. (2016). These authors recently have analysed previous DNS
results of Priebe & Mart́ın (2012) of a Ma = 2.9 compression corner flow using DMD of
spanwise-averaged as well as three-dimensional snapshots. Therein, low-frequency modes
are characterised by streamwise-elongated regions of low and high momentum that the
authors identified as being induced through Görtler-like vortices. Similar to our results,
such vortices are unsteady and move in spanwise direction. While Priebe et al. (2016)
remain in doubt whether the observed dynamics constitute an unusual event due to
a relatively short time duration captured in their DNS (200 δ0/U0), our results with a
much longer time period of 3805 δ0/U0 confirm this assertion. Furthermore, our results
show that unsteady large-scale streamwise structures are also present in strong impinging
SWBLI.
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Görtler, H. 1941 Instabilität laminarer Grenzschichten an konkaven Wänden gegenüber
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