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Abstract: Vegetation indices, especially the normalized difference vegetation index (NDVI),
are widely used in urban vegetation assessments. However, estimating the vegetation
abundance in urban scenes using the NDVI has constraints due to the complex spectral
signature related to the urban structure, materials and other factors compared to natural
ground surfaces. This paper employs the 3D discrete anisotropic radiative transfer (DART)
model to simulate the spectro-directional reflectance of synthetic urban scenes with various
urban geometries and building materials using a flux-tracking method under shaded and
sunlit conditions. The NDVI is calculated using the spectral radiance in the red (0.6545 µm)
and near-infrared bands (0.865 µm). The effects of the urban material heterogeneity and
3D structure on the NDVI, and the performance of three NDVI-based fractional vegetation
cover (FVC) inversion algorithms, are evaluated. The results show that the effects of the
building material heterogeneity on the NDVI are negligible under sunlit conditions but
not negligible under shaded conditions. The NDVI value of building components within
synthetic scenes is approximately zero. The shaded road exhibits a higher NDVI value in
comparison to the illuminated road because of scattering from adjacent pixels. In order to
correct the effects of scattering caused by building geometry, the reflectance of the Landsat
8/OLI image is corrected using the sky view factor (SVF) and then used to calculate the
FVC. Jilin-1 satellite images with high spatial resolution (0.5 m) are used to extract the
vegetation cover and then aggregated to 30 m spatial resolution to calculate the FVC for
validation. The results show that the RMSE is up to 0.050 after correction, while the RMSE is
0.169 before correction. This study makes a contribution to the understanding of the effects
of the urban 3D structure and material reflectance on the NDVI and provides insights into
the retrieval of the FVC in different urban scenes.
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1. Introduction
Monitoring urban green space is important since the existence of green space in urban

areas provides multiple biophysical, aesthetic, environment and socioeconomic benefits [1].
For pure pixels, the identification of urban vegetation is based on land use classification
using different spatial resolution remote-sensing and GIS data [2,3]. Urban areas are highly
heterogeneous, however, and the radiometric data provided by space-borne sensors capture
mixed pixels in most cases. The combination of the 3D structure of urban space with the
spectral heterogeneity of urban objects leads to the complex spectro-directional signatures
of the observed targets, even when observing pure pixels. The retrieval of a pixel signature
must account for multiple scattering by surrounding urban facets.

For mixed pixels, spectral unmixing is a useful method, but the spectral signatures
of pure component objects must be known [4–6]. Additionally, using vegetation indices
to estimate the vegetation fractional abundance has been widely investigated in remote-
sensing research, especially the use of the NDVI [7,8]. The vegetation fraction is generally
written as a linear or non-linear function of the NDVI [7]. The NDVI is widely used in
urban climate and environment research as an indicator of urban vegetation abundance for,
e.g., emissivity estimation [9–11], or as an indicator of vegetation cooling [12].

Theoretically, an ideal vegetation index should only be sensitive to vegetative cover
and insensitive to other factors, e.g., background spectral radiance, illumination and view
directions, and surface geometry [13,14]. The NDVI is sensitive to the background spectral
radiance when used to characterize mixed surface targets [14]. Urban surface properties
vary and the spectral signatures are very different from those of natural surfaces [15].
Additionally, urban areas have very complex geometry. The interaction between buildings
and vegetation also changes the spectro-directional signal observed by remote sensing,
with an impact on the retrieved vegetation indices in urban areas.

The accurate quantification of urban vegetation cover is a fundamental component
of urban ecosystem assessment and sustainable planning. Previous studies have con-
centrated on FVC estimation for land use types such as forests, agricultural lands and
grasslands [16–18], and sometimes, semi-arid areas and heterogeneous ecological sys-
tems after fire were also explored [19,20]. However, there is a paucity of knowledge and
methodological development on urban FVC estimation. Air-borne remote-sensing data
are useful [21], and their finer resolution facilitates the identification of urban vegetation.
However, their global application is also hindered by limitations in spatial and temporal
coverage, high costs, and processing complexities. Recently, the development of FVC
estimation methods based on space-borne remote-sensing data predominantly employs
machine learning and multi-source data fusion. Song et al. [22] proposed a generic FVC
estimation process that is capable of jointly utilizing multiple satellite data. This process
improves the spatio-temporal resolution of FVC products. Jia et al. [23] employed radiative
transfer models to simulate the GF-1 WFV canopy reflectance and FVC values and trained
backpropagation neural networks with these synthetic samples. The algorithm was vali-
dated as being effective (R2 = 0.790, RMSE = 0.073), but these methods are generic and have
not been developed specifically for urban areas. Urban-object-based mixture analysis was
performed by Cai et al. [24], which differs from traditional pixel-based mixture analysis,
resulting in a higher urban FVC estimation accuracy (R2 = 0.92, RMSE = 0.0956). Several
studies used the NDVI to capture the urban vegetation cover condition [25,26], but the
complex urban geometry in compact urban areas affects the solar radiation and radiative
transfer, i.e., it modifies the inherent spectro-directional signature of the observed targets,
including the red and near-infrared reflectance applied to obtain the NDVI. However, previ-
ous studies have not elucidated the manner in which the urban 3D geometry and building
materials affect the NDVI of mixed pixels. The applicability of multiple NDVI-based FVC
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estimation algorithms for diverse urban contexts has yet to be assessed, which is crucial to
improve the urban FVC estimation accuracy.

This study is based on numerical experiments with the discrete anisotropic radiative
transfer (DART) model to construct urban simulation scenes with varying geometrical and
material features, which allows us to explore the relationship between the 3D geometry
and material reflectance and the NDVI of mixed pixels. The DART model is one of the
most comprehensive physically based 3D models of Earth–atmosphere radiative transfer,
covering the spectral domain from ultraviolet to thermal infrared wavelengths. It simulates
the optical 3D radiative budget (RB) and can be applied to calculate the optical signals
captured by proximal, aerial, and satellite imaging spectroradiometers and laser scanners
for any urban and/or natural landscapes and for any experimental and instrumental con-
figurations [27]. The DART model has been validated through a series of RAMI (RAdiation
transfer Model Intercomparison) experiments [28–32], and its forward simulation of vegeta-
tion reflectance has also been rigorously verified by real measurements [33]. Zhen et al. [34]
have conducted an extensive evaluation of the DART model’s calibration accuracy for the
iterative inversion of shortwave satellite images, elucidating its potential as an instrumental
tool for obtaining spectral signature maps of urban materials. This means the DART model
can handle the shortwave radiative transfer in urban areas. The red and near-infrared
bands employed to calculate the key variable (i.e., NDVI) in our study are encompassed
within the shortwave spectral domain. Likewise, the utility of the DART model has been
substantiated across scientific realms, and its iterative enhancements and extensive applica-
tions have been demonstrated in detail by Gastellu-Etchegorry et al. [35]. These include the
development of remote-sensing inversion techniques and the design of satellite sensors
and novel vegetation indices. Yan et al. [36] used DART to model the longwave radiation in
a complex-relief terrain. Zhang et al. [16] used DART to model the urban radiative transfer
to retrieve the effective emissivity. Dissegna et al. [37] devised an innovative approach
to produce detailed modeling of the mean radiant temperature (Tmrt) spatial distribution
using the DART model. The effectiveness of this methodology was substantiated through a
case study in Singapore, a tropical city, where the DART-modeled Tmrt was compared with
field-estimated values. This means the DART model can handle the radiative transfer in
any terrain; therefore, it is a promising candidate for developing and enhancing inversion
methods in urban areas with vegetation and buildings. In this study, the research questions
are as follows. (1) How does the urban geometry and materials affect the NDVI in urban
areas? (2) How should the NDVI be applied to estimate the vegetation fractional abundance
in urban areas?

Section 2 describes the model used in this study, the simulation setup for the scenes,
and the formulas used. Section 3 presents a compilation and analysis of the experimental
results, assessing the effects of different factors on the NDVI and FVC, as well as the model
validation. Comments on the results are articulated in Section 4 and conclusions will be
presented in Section 5.

2. Materials and Methods
2.1. DART Model

Since its development in 1992, the DART model (https://dart.omp.eu, accessed on
15 October 2024) has been one of the most comprehensive and accurate radiative transfer
models for simulating the 3D radiation budget [38]. The DART model comprises three
principal modules: DART-FT, DART-RC, and DART-Lux [35]. The DART-FT module was
selected for our study, which uses a flux tracking (FT) method to track radiation in a finite
number of directions in a voxelized scene (i.e., discrete coordinate method) [8]. The 3D
scene elements in this module are comprised of a voxel array (e.g., vegetation, atmosphere)

https://dart.omp.eu
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and facets (e.g., roads, roofs, walls). These elements possess specific optical properties
(i.e., reflectance and transmittance), and an SQL database of the spectral properties of ele-
ments exists in the DART model.

The graphical user interface (GUI) enables users to define the input parameters
(e.g., atmospheric properties, scene properties, sun position, sensor view direction) and
anticipated output results (e.g., images, radiative budget, lidar waveform). Subsequently,
remote-sensing indices (e.g., NDVI) can be calculated based on the output results.

2.1.1. Input Parameters

The setting of the DART parameters in our numerical experiments is presented in
Table 1. To simulate the radiative transfer from the top of the atmosphere to the bottom
of the atmosphere, an irradiance spectral database called “Solar_constant” is employed
to characterize the atmospheric properties. We determine the “sun position” by setting
the temporal parameters, and two distinct types of sun angle were considered for all the
scenes: (1) scenes with a shadow condition: the temporal parameter was set at 10:00 am on
the 22nd of June (local solar time), while the solar elevation angle was 56.07◦ (Figure 1b);
and (2) scenes under a sunlit condition: the temporal parameter was set at 12:00 pm on the
same date, while the solar elevation angle was 83.5◦ (Figure 1c).

Table 1. The DART model’s input parameters.

Module Value

Atmosphere Property
Irradiance Spectral Database Solar_constant

Irradiance Table TOASolar_THKUR
Irradiance Model irradiance

Scene Property Location Latitude: 23◦25′48′′N, Longitude: 113◦15′36′′E
Size Scene size: 40 m × 50 m, Cell size: 0.5 m × 0.5 m × 0.5 m

Sun Position
Shadow Condition Elevation: 56.07◦, Azimuth: 82.41◦

Sunlit Condition Elevation: 83.5◦, Azimuth: 88.67◦

Sensor View Direction View Angle Elevation: 90◦

Spectral Band Red Band Central wavelength: 0.6545 µm
Spectral bandwidth: 0.037 µm

Near-infrared Band Central wavelength: 0.865 µm
Spectral bandwidth: 0.028 µm
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Our aim is to construct a remote-sensing observation model that can be practically
applied, and the sensor view direction of the Landsat series satellites is nearly vertical.
Thus, only data from the nadir view direction will be analyzed in this study. All the facets
and voxel array reflectance properties are assumed to be Lambertian (Table 1).

The reflectance in the red and near-infrared bands was simulated using the DART
model for three types of scenes: mixed scenes, vegetation-only scenes, and building-only
scenes (Figure 2). The central wavelengths and widths of the red and near-infrared bands
are referenced to Landsat 8/OLI (Table 1). Each scene has a constant parameter setting.
The road material is designated as “loam_sandy_brown_bright_clean_smooth_arizona” for
both the mixed and building-only scenes, and “sandy_loam_brown” for the vegetation-only
scenes. A single building orientation and the DART model’s “repeated” mode are set to
generate an infinite repetition of the actual cityscape model, thus avoiding unnecessary
complications of urban scenes. The buildings in the actual scene are simplified into four
regular rectangles of equal size, and the vegetation is simplified into a uniform type and
morphology, with all the buildings and vegetation distributed evenly and symmetrically
throughout the scene.

Remote Sens. 2025, 17, x FOR PEER REVIEW 5 of 25 
 

 

Figure 1. Scene schematic: (a) urban scene with building height (H), street width (W), roof area (Si) 
and total horizontal area (S); (b) urban scene with sunlight under shadow conditions; and (c) urban 
scene with sunlight under sunlit conditions. 

 

Figure 2. Three types of scenes created in the DART model are shown schematically: (a) mixed 
scene; (b) vegetation-only scene; and (c) building-only scene. 

Table 1. The DART model’s input parameters. 

Module Value 

Atmosphere Property 
Irradiance Spectral Database Solar_constant 

Irradiance Table TOASolar_THKUR 
Irradiance Model irradiance 

Scene Property 
Location Latitude: 23°25′48″N, Longitude: 113°15′36″E  

Size Scene size: 40 m × 50 m, Cell size: 0.5 m × 0.5 m × 0.5 m 

Sun Position 
Shadow Condition Elevation: 56.07°, Azimuth: 82.41° 
Sunlit Condition Elevation: 83.5°, Azimuth: 88.67° 

Sensor View Direction View Angle Elevation: 90° 

Spectral Band 
Red Band 

Central wavelength: 0.6545 µm 
Spectral bandwidth: 0.037 µm 

Near-infrared Band Central wavelength: 0.865 µm 
Spectral bandwidth: 0.028 µm 

Zhang et al. [39] analyzed the reflectance of over 30 building materials from the AS-
TER Spectral Library (https://speclib.jpl.nasa.gov, accessed on 15 October 2024) and found 
that material reflectance in the range from 0.1 to 0.5 is closer to reality. We sampled 0.3, 
0.6, 0.9, 1.0, 1.2, and 1.5 times the material reflectance (RstdW) of “brick_cement_yel-
low_new” in the DART model’s SQL database, thus encompassing a range of material 
reflectance between approximately 0.1 and 0.5 (Table 2). To study the impact of building 
materials on the NDVI and to take into account urban space’s greater variability, two 
types of buildings are identified:  

(1) Heterogeneous buildings (Rwall ≠ Rroof): walls and roofs are made of different materi-
als, the roof material is always designated as “roof_tile_ceramic_red_new”, while the 
wall facet reflectance (Rwall) is set to 0.3, 0.6, 0.9, 1.0, 1.2 or 1.5 times the RstdW, respec-
tively. 

(2) Homogeneous buildings (Rwall = Rroof): the materials of the wall and roof are always 
the same, and the material reflectance is 0.3, 0.6, 0.9, 1.0, 1.2 or 1.5 times the RstdW, 
respectively. 

  

Figure 2. Three types of scenes created in the DART model are shown schematically: (a) mixed scene;
(b) vegetation-only scene; and (c) building-only scene.

Zhang et al. [39] analyzed the reflectance of over 30 building materials from the ASTER
Spectral Library (https://speclib.jpl.nasa.gov, accessed on 15 October 2024) and found that
material reflectance in the range from 0.1 to 0.5 is closer to reality. We sampled 0.3, 0.6,
0.9, 1.0, 1.2, and 1.5 times the material reflectance (RstdW) of “brick_cement_yellow_new”
in the DART model’s SQL database, thus encompassing a range of material reflectance
between approximately 0.1 and 0.5 (Table 2). To study the impact of building materials on
the NDVI and to take into account urban space’s greater variability, two types of buildings
are identified:

(1) Heterogeneous buildings (Rwall ̸= Rroof): walls and roofs are made of different materials,
the roof material is always designated as “roof_tile_ceramic_red_new”, while the wall
facet reflectance (Rwall) is set to 0.3, 0.6, 0.9, 1.0, 1.2 or 1.5 times the RstdW, respectively.

(2) Homogeneous buildings (Rwall = Rroof): the materials of the wall and roof are al-
ways the same, and the material reflectance is 0.3, 0.6, 0.9, 1.0, 1.2 or 1.5 times the
RstdW, respectively.

https://speclib.jpl.nasa.gov


Remote Sens. 2025, 17, 143 6 of 23

Table 2. Reflectance in the red and near-infrared bands corresponds to different Rwalls.

Band 0.3 RstdW 0.6 RstdW 0.9 RstdW 1.0 RstdW 1.2 RstdW 1.5 RstdW

Red (0.636 µm–0.673 µm) 0.0999 0.1999 0.2998 0.3331 0.3997 0.4997
NIR (0.851 µm–0.879 µm) 0.1000 0.2000 0.3001 0.3334 0.4001 0.5001

To study the impact of urban geometry on the NDVI, two variables were selected:
(1) the building height to street width ratio (H/W); and (2) the roof area index (λp)
(Figure 1a):

λp =
∑n

i=1 Si

S
(1)

The numerator represents the sum of the roof areas and the denominator is the scene’s
total horizontal area.

Stewart and Oke et al. [40] established the range of values for each indicator across
diverse local climate zone categories through rigorous validation in several cities. Our
geometric parameter values encompass the range of indicators for the majority of urban
local climate zones. A total of 25 geometric 3D simulation scenes are constructed with H/W
of 0.75, 1, 1.5, 3, and 4, and λp of 0.1, 0.1875, 0.3, 0.4375, and 0.6, respectively (Figure A1).

The vegetation parameters are presented in Table 3. Given that a high building density
also constrains the urban greening area, with the area of 40 m × 50 m for all the scenes
(Table 1) and the maximum value of λp being 0.6 (Table 4), the upper limit of the FVC was
set at 0.3, divided into equal segments by 0.05.

Table 3. The DART model’s vegetation parameters.

Module Scenes With Vegetation

FVC 0.1/0.15/0.2/0.25/0.3

Leaf Area Index 0.30/0.45/0.60/0.75/0.90

Vegetation Type Leaf type: grass_rye
Trunk type: bark_deciduous

Tree
Height below crown: 2.5 m

Diameter below crown: 0.166 m
Height within the tree crown: 1.5 m

Tree Crown

Crown shape: ellipsoid
Crown height: 3.5 m

First axis: 1.663 m
Second axis: 1.663 m

Table 4. The DART model’s building parameters.

Parameters Scenes With Building

Building Material Heterogeneous building (Rwall ̸= Rroof) Rroof, Rwall = 0.3/0.6/0.9/1.0/1.2/1.5 RstdW
Homogeneous building (Rwall = Rroof) Rwall = Rroof = 0.3/0.6/0.9/1.0/1.2/1.5 RstdW

Building Geometry H/W 0.75/1.0/1.5/3.0/4.0
λp 0.1/0.1875/0.3/0.4375/0.6

2.1.2. Output Parameters

The DART model generates reflectance in the red and near-infrared bands. The NDVI
is calculated using Equation (2):

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(2)

ρNIR, ρRed are the nadir reflectance in the near-infrared and red bands, respectively.
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2.2. Retrieval of FVC

This study evaluated the impact of the urban structure on FVC estimates using the
NDVI and selected three methods for this purpose.

A classical FVC calculation method was proposed by Gutman and Ignatov et al. [41]
(Equation (3)):

FVC_1 =
NDVImean − NDVImin
NDVImax − NDVImin

(3)

In this study, we focused on calculating the FVCs for mixed scenes, with each scene
comprising a specific number of cells (Table 1). To calculate the FVC for a specific mixed
scene, NDVImean represents the mean NDVI for all the cells within the mixed scene,
NDVImax represents the maximum NDVI for a vegetation-only scene cell, while NDVImin

represents the minimum NDVI for a building-only scene cell. Figure 2 shows a scene
schematic of the three types of scenes (i.e., mixed scene, vegetation-only scene, and building-
only scene).

Additionally, two semi-empirical relationships proposed by Frederic et al. [42]
(Equation (4)) and Carlson and Ripley et al. [43] (Equation (5)) were applied:

FVC_2 = 1 −
(

NDVImax − NDVImean

NDVImax − NDVImin

)0.6175
(4)

FVC_3 =

(
NDVImean − NDVImin
NDVImax − NDVImin

)2
(5)

The accuracy of FVC estimates using these three methods was evaluated using the
difference (difFVC) between the FVC estimates and the FVCtrue defined by the scene design
(Table 2):

di f FVC = FVC − FVCtrue (6)

FVC is calculated using Equations (3)–(5). The derived difFVCs (difFVC_1, difFVC_2,
difFVC_3) are represented by the absolute values of the corresponding difFVCs, which are
designated as |difFVC_1|, |difFVC_2|, and |difFVC_3| (Section 3.3).

The root mean square error (RMSE) and bias (BIAS) were also used to assess the FVC
estimation accuracy.

RMSE =

√√√√ 1
N

N

∑
i=1

(FVCtrue − FVCi)
2 (7)

BIAS =
1
N

N

∑
i=1

(FVCi − FVCtrue) (8)

2.3. Correction Model for NDVI in Urban Areas

Taking into account the multiple scattering within urban pixels, a new method was
constructed to calculate the urban vegetation cover. According to [44], on page 56, the sky
view factor (SVF) can be employed to characterize the urban geometry, thereby facilitating
the parameterization of the impact of urban geometry on radiative transfer. The reflectance
of pixel(i) can be written as follows:

α(i) =
α(i)′ ∗ SVF(i)

1 − α(i)′ ∗ [1 − SVF(i)]
(9)

α(i) represents the reflectance in the red and near-infrared bands from satellite data.
α(i)′ denotes the corrected reflectance in the aforementioned bands and is calculated by
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Equation (9). SVF(i) is the scene-averaged SVF calculated from the urban digital surface
model (DSM) using a toolbox [45].

2.4. Model Validation

We chose Hong Kong’s Kowloon Peninsula as the study area to validate the estimated
FVC based on the corrected reflectance using Equation (9). The effectiveness of the correc-
tion was evaluated by introducing the “true FVC” and comparing the RMSE (Equation (7))
and BIAS (Equation (8)) of the “original FVC” and “modified FVC” (Section 3.4). The three
key FVCs were calculated as follows:

(1) True FVC: the L3C class image product with a spatial resolution of 0.78 m from Jilin-
1 (https://www.jl1mall.com/, accessed on 15 October 2024) on 10 May 2020 was
selected for analysis. The FVC values were calculated and aggregated to 30 m.

(2) Original FVC: the Level2 Tier1 class image product with a spatial resolution of 30 m
from Landsat 8 (https://earthexplorer.usgs.gov, accessed on 15 October 2024) on
17 May 2020 was used as the source data for calculating the original FVC values.

(3) Modified FVC: The SVF was calculated using DSM datasets (https://portal.csdi.
gov.hk/geoportal/?lang=en&datasetId=cedd_rcd_1629267205233_87895, accessed on
15 October 2024) with a spatial resolution of 0.5 m in 2020 and resampled to 30 m. The
reflectance in the red and near-infrared bands of the Landsat 8 image was corrected
using Equation (9), after which the modified FVC values could be calculated.

3. Results
To study the effects of urban geometry on the NDVI, the NDVImean of the vegetation-

only scenes with different FVCs was used as a reference (Table 5).

Table 5. NDVImean of vegetation-only scenes with different FVCs.

FVC NDVImean

0.10 0.301
0.15 0.352
0.20 0.398
0.25 0.441
0.30 0.477

3.1. Effects of Urban Geometry on NDVI

To investigate the effects of H/W and λp on the NDVI, we computed the mean
values of the NDVImean for scenes with different H/W and λp but with the same material
reflectance. Given the similar NDVI patterns observed in urban scenes with varying FVCs,
only the NDVImean with FVCs of 0.1 and 0.3 are presented in Figure 3.

It is evident that buildings cause the NDVImean to be underestimated compared to
the NDVImean for vegetation-only scenes (Figure 3). All the curved lines have a lower
NDVImean than the one corresponding to the NDVImean with the same FVC in Table 5.
Figure 3 illustrates that shadows intensify the impact of urban geometry on the NDVI, with
greater vegetation cover exhibiting a heightened degree of influence from urban geometry.
A significant negative correlation is observed between the λp and the NDVI, regardless
of the sunlight condition. However, the relationship between the H/W and the NDVI is
found to be significantly affected by the sunlight conditions. Under sunlit conditions, the
H/W and NDVI are almost independent, whereas with shadow conditions, the effects of
the H/W on the NDVI are also related to the λp and FVC. When λp = 0.1 and 0.1875, the
impact of the H/W on the NDVI was minimal. When λp = 0.3, 0.4375, and 0.6, there is a
negative correlation between the H/W and the NDVI, with this correlation increasing in

https://www.jl1mall.com/
https://earthexplorer.usgs.gov
https://portal.csdi.gov.hk/geoportal/?lang=en&datasetId=cedd_rcd_1629267205233_87895
https://portal.csdi.gov.hk/geoportal/?lang=en&datasetId=cedd_rcd_1629267205233_87895
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line with the FVC. Thus, the NDVI may be underestimated to a greater extent in urban
areas with high vegetation cover and high building density.
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scenes (Table 5).

Likewise, with the same FVC, the NDVImean under shadow conditions is mostly higher
than that under sunlit conditions, and it is closer to the red straight line for the scenes with
shadow conditions than for the scenes under sunlit conditions (Figure 3). Generally, the
NDVI with shadow conditions is higher than that under sunlit conditions. This may be
because the fraction of diffuse solar irradiance reflected by adjacent pixels is a large fraction
of the total irradiance onto the observed pixel under shadow conditions. The reflectance of
both vegetation and buildings in the red band is lower than that in the NIR band. Thus,
the scattered radiance and irradiance in the red bands is lower than in the NIR band. This
makes the NDVI under shadow conditions higher than under sunlit conditions. With the
increase of the H/W, the SVF decreases and reduces the NIR radiance reflected to the sky.
This makes the NDVI decrease with the H/W. Thus, when the H/W, λp, and FVC are all
high, the reduced radiance within pixels due to scattering and absorption is higher than
the added radiance from adjacent pixels. Then, the NDVImean under shadow conditions is
lower than that under sunlit conditions (Figure 3b,d).
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3.2. Effects of Building Materials on NDVI

To investigate the effects of building materials on the NDVI, the NDVImean of scenes
with the same H/W, λp, and materials reflectance are presented in Figures 4 and 5.
Table 2 illustrates the reflectance of different Rwalls in the red and near-infrared bands. The
characteristics of homogeneous and heterogeneous buildings are explained in Section 2.1.1.
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Figure 5. NDVI changes with building density and building height when building materials are
heterogeneous: (a) with shadow conditions and FVC = 0.1; (b) under sunlit conditions and FVC = 0.1;
(c) with shadow conditions and FVC = 0.2; (d) under sunlit conditions and FVC = 0.2; (e) with shadow
conditions and FVC = 0.3; and (f) under sunlit conditions and FVC = 0.3.
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Figure 4 displays the NDVImean values for mixed scenes with homogeneous buildings,
wherein a notable negative correlation is observed between the NDVImean and the Rwall.
Specifically, for scenes under shadow conditions (Figure 4a,c,e), when the building density
is low (λp = 0.1, 0.1875), the NDVI is almost unaffected by the H/W and shows a highly
overlapping scatter. In contrast, when the building density is high (λp = 0.3, 0.4375, 0.6),
there is a negative correlation between the NDVI and both the H/W and Rwall. Moreover,
when Rwall = 0.3RstdW, the negative correlation between the NDVImean and the building
density (i.e., λp) gradually diminishes with the increase of the FVC, and their correlation
even becomes positive when FVC = 0.3 (Figure 4).

Figure 5 illustrates that for scenes with heterogeneous buildings, both the NDVImean

and Rwall are weakly positively correlated. This positive correlation remains relatively
consistent as the FVC increases. However, this positive correlation is marginally weaker
in scenes under sunlit conditions than in scenes with shadow conditions. Only two obser-
vation times were considered for mixed scenes. This correlation is also likely to increase
further if the observation time corresponds to a smaller solar elevation angle (i.e., a larger
shaded area). However, at least in unshaded scenes, the effects of building materials on the
NDVI are essentially negligible when the wall and roof materials are heterogeneous.

When both the scene geometry and vegetation components are the same, the NDVImean

of a mixed scene with heterogeneous buildings is not always greater than the NDVImean

of a mixed scene with homogeneous buildings. Heterogeneous buildings, however,
cause the range of variation of the NDVI with the geometry to be significantly reduced
(Figures 4 and 5). This suggests that heterogeneous buildings weaken the effects of geome-
try on the NDVI. Additionally, the difference in the NDVImean between heterogeneous and
homogeneous buildings becomes more pronounced as the λp increases. This is because a
high building density increases the scattering within pixels; thus, the effects of material
heterogeneity within pixels on the NDVI are higher.

3.3. Accuracy of Three FVC Estimation Methods

Figure 6 illustrates the FVC difference (difFVC) between the predefined FVC (FVCtrue)
and the FVC retrieved with the three algorithms (Equations (3)–(5)) for four types of scenes:

(a) Homogeneous building under shadow conditions (Rwall = Rroof, 10:00 am)
(b) Homogeneous building under sunlit conditions (Rwall = Rroof, 12:00 pm)
(c) Heterogeneous building under shadow conditions (Rwall ̸= Rroof, 10:00 am)
(d) Heterogeneous building under sunlit conditions (Rwall ̸= Rroof, 12:00 pm)
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The findings indicate that Equation (3) gave the least accurate estimates of the FVC,
with the FVC typically exceeding the FVCtrue. The impact of the building material het-
erogeneity on the FVC estimation accuracy is inconsequential under sunlit conditions.
Under shadow conditions, the difFVC_1 for heterogeneous buildings is predominantly
concentrated between 0.1 and 0.2, whereas the difFVC_1 for homogeneous buildings ex-
hibits greater dispersion. Likewise, the FVC estimation accuracy for scenes under shadow
conditions is markedly inferior to that for scenes under sunlit conditions, indicating that
shadows result in a considerable overestimation of the FVC (Figure 6a).

The FVC estimation accuracy based on Equation (4) is the highest, with minimal
differences among the four types of scenes, indicating that the method is more robust and
less susceptible to fluctuations in accuracy due to the diverse urban scenes (Figure 6b).

The FVC estimation accuracy based on Equation (5) is moderate, with the smallest
differences among the four types of scenes and a general underestimation of the FVC.
However, the FVC estimation accuracy for scenes under shadow conditions is slightly
higher than that for scenes under sunlit conditions, and there is minimal difference in the
FVC estimation accuracy for homogeneous and heterogeneous buildings (Figure 6c).

Table 6 demonstrates that FVC_2 performs best (0.060 ≤ RMSE ≤ 0.077,
−0.057 ≤ BIAS ≤ 0.018), with the exception of scenes with heterogeneous buildings un-
der sunlit conditions, where FVC_1 is the best algorithm. There is a minimal difference
in accuracy between FVC_1 (0.074 ≤ RMSE ≤ 0.163, 0.048 ≤ BIAS ≤ 0.148) and FVC_3

(0.095 ≤ RMSE ≤ 0.146, −0.135 ≤ BIAS ≤ −0.074), but the difference in accuracy among
the four types of scenes for FVC_1 is significantly greater.

Table 6. Accuracy of different FVC estimation algorithms.

FVC_1 FVC_2 FVC_3

RMSE 0.128 0.070 0.124
BIAS 0.096 −0.003 −0.104

FVC_1

Rwall = Rroof (10:00 am) Rwall = Rroof (12:00 pm) Rwall ̸= Rroof (10:00 am) Rwall ̸= Rroof (12:00 pm)

RMSE 0.163 0.084 0.162 0.074
BIAS 0.133 0.057 0.148 0.048

FVC_2

Rwall = Rroof (10:00 am) Rwall = Rroof (12:00 pm) Rwall ̸= Rroof (10:00 am) Rwall ̸= Rroof (12:00 pm)

RMSE 0.074 0.073 0.060 0.077
BIAS 0.010 −0.049 0.018 −0.057

FVC_3

Rwall = Rroof (10:00 am) Rwall = Rroof (12:00 pm) Rwall ̸= Rroof (10:00 am) Rwall ̸= Rroof (12:00 pm)

RMSE 0.107 0.141 0.095 0.146
BIAS −0.079 −0.129 −0.074 −0.135

Figure 7 illustrates the absolute value of the difference between the predefined FVCtrue

and the FVC estimates, i.e., the (difFVC_1, difFVC_2, difFVC_3, and |difFVC_1|, |difFVC_2|,
|difFVC_3|) defined in Section 2.2. A smaller |difFVC| indicates a higher FVC estimation
accuracy. The building density of the scenes, from left to right, increases in a sequential
manner across all the intervals with equal H/W. The specific parameters of scenes “S1~S25”
are shown in Figure A1.
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It can be observed that when FVC = 0.1, the estimation accuracies by FVC_1 and
FVC_2 are significantly and positively correlated with the building density. In contrast,
the estimation accuracies by FVC_3 display a negative correlation with the building den-
sity (Figure 7a). When FVC = 0.2, the estimation accuracy by FVC_1 remains positively
correlated with the building density, and the estimation accuracy by FVC_3 continues to
exhibit a negative correlation. However, the relationship between the estimation accuracy
of FVC_2 and the building density is not yet clear when H/W = 0.75. As H/W increases, the
FVC estimation accuracy initially exhibits a positive correlation with the building density,
followed by a negative correlation, with the turning point in this correlation shifting toward
a lower building density. This suggests that the estimation accuracy of FVC_2 for medium
vegetation cover is significantly reduced when both the building height and density are
high (Figure 7b). When FVC = 0.3, the estimation accuracy of both FVC_2 and FVC_3 is
negatively correlated with the building density, and the relationship between the estimation
accuracy of FVC_1 and the building density is analogous to the pattern observed in FVC_2

when FVC = 0.2 (Figure 7c).
The longer boxes indicate that the FVC estimation accuracy is significantly influenced

by the sunlight conditions and building materials, suggesting that the algorithm is unstable
(Figure 7). As the FVC increases, the stability of FVC_1 is shown to be “high FVC > medium
FVC > low FVC”. In contrast, the stability of FVC_2 is relatively constant, while the stability
of FVC_3 is shown to be “low FVC > medium FVC > high FVC”. Additionally, as for the
FVC estimation accuracy (Figure 7), FVC_1 exhibited a trend of “high FVC > medium FVC
> low FVC,” FVC_2 demonstrated a pattern of “medium FVC > low FVC > high FVC”, and
FVC_3 displayed a pattern of “low FVC > medium FVC > high FVC”.

It is therefore proposed that the estimation accuracy of FVC_3 is optimal and stable
when the vegetation cover is low. In the case of medium vegetation cover, the estimation
accuracy of FVC_2 is optimal and stable. However, in situations where the vegetation cover
is high, it is recommended that FVC_2 is used for a low building density (λp < 0.3) and
FVC_1 for a high building density (λp ≥ 0.3).

3.4. Validation

Table 7 and Figure 8 illustrate three FVC algorithms, which collectively demonstrate
a significant improvement in the FVC estimation accuracy through the application of
Equation (9) for correction. The accuracy rankings of the three FVC algorithms in our study
area are as follows: FVC_3, FVC_2, and FVC_1 (Table 7). To validate the results in Section 3.3,
the “true FVC” values (refer to Section 2.4) were classified into four intervals: 0~0.1, 0.1~0.2,
0.2~0.3, and greater than 0.3, respectively (Table 8). Regardless of the algorithm employed
to calculate the “true FVC”, a greater than 50% pixel count within the “true FVC” range
of 0~0.1 indicates low overall vegetation cover in the study area. This is the same as
the simulation results in Section 3.3, “The accuracy of the three algorithms performs as
FVC_3 > FVC_2 > FVC_1 when 0 < FVC ≤ 0.1” (Figure 7a).

Table 7. Accuracy of different FVC estimation algorithms before and after correction using
Equation (9).

FVC_1 FVC_2 FVC_3

Before Correction
RMSE 0.249 0.183 0.169
BIAS 0.205 0.144 0.098

After Correction
RMSE 0.164 0.114 0.087
BIAS 0.119 0.080 0.040
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Table 8. Accuracy of different FVC estimation algorithms before and after correction using
Equation (9) at different “true FVC” intervals.

0 < True FVC ≤ 0.1

FVC_1 FVC_2 FVC_3

Before Correction
RMSE 0.250 0.177 0.142
BIAS 0.216 0.151 0.082

After Correction
RMSE 0.173 0.117 0.080
BIAS 0.139 0.102 0.030

0.1 < True FVC ≤ 0.2 0.1 < True FVC ≤ 0.3

FVC_1 FVC_2 FVC_3

Before Correction
RMSE 0.123 0.073 0.257
BIAS 0.103 0.050 0.229

After Correction
RMSE 0.089 0.050 0.173
BIAS 0.053 0.023 0.130

0.2 < True FVC ≤ 0.3

FVC_1 FVC_2

Before Correction
RMSE 0.104 0.200
BIAS 0.068 0.159

After Correction
RMSE 0.084 0.124
BIAS 0.035 0.105

Given the limited number of pixels with “True FVC” values exceeding 0.3 within the
study area, we only focused on the performance of each FVC estimation algorithm when
0 < “True FVC” ≤ 0.3. The majority of the “True FVC” values of FVC_3 are situated within
the range of 0.1~0.2, and we combined the pixels in the intervals of 0.1~0.2 and 0.2~0.3.
A comparative analysis of these data (Table 8) reveals that the performance of the three FVC
algorithms (Figure 7) and selection recommendations (Section 3.3) is almost the same as our
validation results (Table 8). The application of Equation (9) for correction, followed by the
selection of an appropriate FVC algorithm for the study area based on the aforementioned
recommendations, may be an effective method for retrieving the urban vegetation abundance,
as evidenced by the minimum value of the RMSE being 0.050 (Table 8).

4. Discussion
The NDVI is one of the most widely used vegetation indices for assessing the biophys-

ical and biochemical characteristics of vegetation, such as the fractional vegetation cover
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(FVC), leaf area index (LAI), chlorophyll content, gross primary productivity (GPP), and
fraction of absorbed photosynthetically active radiation (FAPAR) [46]. It is affected by the
background reflectance, solar radiation and observation geometry, since these factors alter
the reflectance, and by the bidirectional reflectance distribution function (BRDF) [46]. The
urban geometry and materials are highly heterogeneous and may also affect the reflectance
in different bands. To address this issue, it is important to consider the effects of the
urban geometry and background reflectance on the NDVI. In our study, we examined the
impact of the urban geometry and background materials on the NDVI and its application
in estimating the vegetation fractional abundance in urban areas. Experiments were carried
out by applying the DART model to a large set of synthetic urban scenes to calculate the
NDVI and FVC separately.

We attempted to interpret the results in Section 3.1 by sampling pixels (Figure 9) and
comparing the NDVI values of the components (Figure 10) within mixed scenes. Figure 9c
shows a schematic of the sampled pixels, which were randomly selected from a mixed
scene. The reflectance in the red and near-infrared bands was taken at 10 am (i.e., shaded)
and 12 pm (i.e., unshaded) for these sampling pixels. The findings indicate that shadows
have a considerable impact on the NDVI, as evidenced by the presence of elevated NDVI
values in the shaded regions. Sunlit areas mainly receive direct solar radiance, while shaded
areas receive diffuse solar radiation from the sky and scattered radiation from adjacent
pixels. Due to the absence of direct solar radiance in shaded areas, the reflectance in the red
and near-infrared bands decreases significantly, the reflectance in the red band decreases
faster (Figure 9a), and the ratio of (ρNIR − ρRed)/(ρNIR + ρRed) increases (Figure 9b). The
variable k in Figure 9b represents the slope of the line connecting each data point with the
origin and the NDVI value of the pixel. A straightforward calculation reveals that for pixels
observed from 12 pm to 10 am, the average ρNIR + ρRed value decreases from 0.597 to 0.139
and the average ρNIR-ρRed value decreases from 0.206 to 0.094 (Figure 9b). The sum value
of the two bands decreases at a faster rate than the difference value. The NDVI values
for pixels at 12 pm range from 0.216 to 0.906, while for pixels at 10 am, they range from
0.288 to 0.921. For shadow areas, the irradiance from adjacent pixels cannot be neglected,
and the NIR band is scattered heavier than the red band, as evidenced by the reflectance in
the near-infrared band being always greater than that in the red band (Figure 9a); thus, the
estimated NDVI in shadow areas under these illumination conditions may be higher. This
means that the NDVI of the pixels in shadow areas is overestimated to some extent.
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Figure 10 provides a more illustrative representation of this phenomenon. In scenes
with shadow conditions, the NDVI is relatively high in the shaded region caused by
buildings (Figure 10a–c). The NDVI of the shaded region at the periphery of the building
complex is found to be higher than that of the shaded region within the building complex,
and the NDVI of vegetation within the shaded region is slightly higher than in the sunlit
vegetation pixels (Figure 10b,c). Irrespective of the time of the day, the NDVI of the building
pixels is approximately zero, whereas the NDVIs of the corresponding pixels in vegetation-
only scenes are markedly higher than that of the building pixels in mixed scenes (Figure 10).
The entire scene is treated as a single pixel, with the signal received by a spectro-radiometer
representing the sum of the component signals within the target pixel. This allows us to
define the mean NDVI of the urban mixed scene as the NDVI of the pixel. This explains
the experimental result (Section 3.1) that for a certain H/W, an elevated building density
(i.e., an expanded area where NDVI is proximate to zero) is associated with a diminished
NDVI, and shadow may reduce the bias of NDVI estimates in urban areas. Our conclusion
was also validated with satellite data provided by Bhang and Lee et al. [47]. A similar
conclusion was obtained with linear spectral mixing models by Jiang et al. [48], despite the
fact that this conclusion was derived from a mixed pixel comprising three components,
i.e., soil, vegetation, and the projection of vegetation on soil. In our scenes, the presence of
buildings is also considered. This further suggests that the presence of shadows increases
the NDVI, both for the mixed pixels consisting of simple soil and vegetation and for mixed
pixels in urban areas.

As illustrated in Figure 10, the NDVIs of the urban mixed pixels are predominantly
influenced by the shaded area and the building area within the pixels. In Section 3.1, at a
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low building density (λp = 0.1, 0.1875), the NDVI values of the mixed scenes observed at
10 am demonstrate an increase with the H/W, whereas those observed at 12 pm exhibit
no correlation with the H/W. This suggests that shadows exert a predominant influence
on the NDVI when buildings are open. At high building densities (λp = 0.3, 0.4375, 0.6),
regardless of the time of day when mixed scenes are observed, the NDVI decreases despite
the fact that the H/W is increasing at this time, which is likely to be due to the reduced
NIR reflectance when the SVF decreases as the H/W increases. Urban FVC estimation
accuracy is inevitably affected by the misestimation of the NDVI in urban mixed pixels
due to shadows and building areas. The systematic study of biomass estimation by means
of vegetation indices conducted by Peddle et al. [49] revealed that the information that
vegetation indices can provide is at the pixel scale, and the use of sub-pixel information
(e.g., the area of shaded regions in a pixel) was found to greatly improve the accuracy
of biomass estimates. Consequently, there may be a promising approach to enhance the
reliability of the NDVI in satellite imagery for applications in urban areas, which entails
the construction of a model that can determine the area of shaded regions and buildings
by utilizing higher spatial resolution building density and height data for a given solar
altitude angle and observation angle. This would then allow for the implementation of
different levels of adjustment to the NDVI in urban areas for high-accuracy inversion of
the FVC.

Interestingly, our findings indicate that the NDVI is affected by the reflectance of
building materials when shadow components are present within a mixed scene comprising
heterogeneous buildings (Section 3.2). Adeline et al. [50] provided compelling evidence
supporting our results by presenting the data of numerical experiments using the radiative
transfer model Amartis v2 [51]. Their scenario was designed to reflect a heterogeneous
and shaded building with walls and a roof, a configuration similar to some of our own
scenario setups. In our scenes, we gave additional consideration to the absence of shadows
and found that the heterogeneous building had essentially negligible effects on the NDVI
under sunlit condition. However, further verification of this observation with data derived
by other models, field measurements, and satellite data is required.

The relationships between the urban geometry and background reflectance and the
NDVI and FVC are proposed in this study. The relationships mentioned in our study
are derived from a simple symmetric urban scene, assuming that the 3D urban geometry
and background reflectance are the main factors controlling the NDVI. Indeed, the urban
geometry within mixed pixels in actual urban scenes is often more complex. This study
considered only one atmospheric condition. However, atmospheric conditions are variable,
and the signals received by the sensors are often mixed with atmospheric effects and signals
from adjacent pixels, which remain to be investigated. Likewise, the magnitudes of the
building heights and densities selected in this paper are based on the general characteristics
of typical urban scenes, with a maximum building height of 40 m. In some special urban
clusters with ultra-high building heights, such as Hong Kong, the building heights generally
exceed 100 m, with very large H/W values, which may necessitate further research.

Despite the limitations of our experiments, our study has yielded valuable conclusions.
By quantifying the geometry and background reflectance of a typical urban area by applying
the DART model, we have explored the general pattern of the NDVI in urban areas and
provided some useful suggestions for addressing the scientific challenge of “how to estimate
FVC using NDVI in urban areas” (Section 3.3). This will assist future research in achieving a
deeper understanding of the impact of the urban 3D environment on red and near-infrared
bands’ reflectance, as well as in the selection of urban FVC inversion methods when using
space-borne multi-spectral data.
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Likewise, we found that the results obtained from the simulation data based on the
DART model overlapped with many previous studies and were also the same as the
satellite data validation results (Section 3.4), which further demonstrated the effectiveness
of the model in simulating urban areas. We also discovered that many conclusions that
are challenging to ascertain from satellite data can be derived from simulated data. The
radiance of the mixed pixels received by a remote-imaging radiometer is influenced by
a multitude of factors, which can distort the relationships between them. However, this
issue can be mitigated to some extent by the use of simulated data, i.e., better controlled
experiments. It can therefore be argued that simulated data are a valuable complement to
satellite data in exploring relationships that are difficult to establish using satellite imagery
only. However, it should be noted that the results obtained through numerical experiments
still require validation through the use of other models, in situ measurements and satellite
data to obtain more rigorous scientific answers.

5. Conclusions
This study simulated various urban scenes using the DART model to investigate

the impact of the urban geometry and background reflectance on the NDVI, and it also
explored how to select a suitable FVC estimation method using the NDVI to estimate
the urban vegetation component abundance when using space-borne multi-spectral data.
Some insightful findings are the following:

(1) When building wall and roof materials are heterogeneous, the effects of material
differences on the NDVI are essentially negligible if there is minimal or no shadow
components within the mixed urban pixels in space-borne satellite images. Conversely,
when shadow components are present, the effects are non-negligible (Section 3.2).

(2) The NDVI of an urban mixed pixel is determined by a combination of the pixel’s in-
ternal shadow components, which increase the NDVI, and the proportion of building
area, which decreases the NDVI (Section 4). To enhance the accuracy of NDVI-based
FVC algorithms, the ideal NDVI exclusively reflects the vegetation component and is
not affected by buildings. When the H/W increases, the NDVI will be underestimated
because of the reduced NIR reflectance caused by multiple scattering and reabsorption
(Section 3.1), which will affect the accuracy of NDVI-based FVC algorithms.

(3) Introducing the SVF to correct the NDVI has proven an effective means of estimating
the urban FVC (Section 3.4). Further improvements in the FVC estimation accuracy
may be achieved by combining this approach with the characteristics of the study
area and the FVC algorithm selection recommendations (Section 3.3).
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