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Review ofH∞ Static Output Feedback Controller Synthesis
Methods for Fighter Aircraft Control

A.D.P. Schoon∗ and S. Theodoulis†

Delft University of Technology, Delft, The Netherlands

To gain more insight into the performance of state-of-the-art Static Output Feedback
(SOF) controller synthesis methods forH∞-control, quantitative comparisons are made between
Lyapunov methods and well-known established non-smooth optimization methods, i.e. hinfstruct
and HIFOO. Three methods were deemed to be the most promising to compete and were bundled
into one toolbox named SOFHi. The algorithms were extended to incorporate structured SOF
and a variant of SOFHi was proposed to significantly improve upon the computational efficiency
of the original implementation. Extensive comparisons show that SOFHi was able to compete
with the established non-smooth methods and even able to significantly outperform one of them.
Lastly, an elaborate flight control benchmark example is given to showcase the effectiveness
of the algorithms, which involves the design of a gain-scheduled normal acceleration Control
Augmentation System (CAS) for the F-16 Fighting Falcon.

I. Nomenclature

Latin Description Unit
𝐴 state matrix
𝑎𝑛 normal acceleration [𝑔]
𝐵𝑢 control input matrix
𝐵𝑤 exogenous input matrix
𝐶𝑦 measured output matrix
𝐶𝑧 performance output matrix
𝐷𝑦𝑢 input to measured output
𝐷𝑦𝑤 exogenous input to measured output
𝐷𝑧𝑢 input to performance output
𝐷𝑧𝑤 exogenous input to performance output
𝑒 tracking error [𝑔]
𝑒ref model-matching error [𝑔]
𝐹 feedforward function
𝐹, 𝑍 slack variable matrices
𝐺 aircraft model
𝐾 gain matrix
𝑚 mass [kg]
𝑀 model-matching sensitivity function
𝑁 local minimum evaluation
𝑃,𝑄 Lyapunov matrices
𝑞 pitch rate [rad/s]

𝑆 sensitivity function
𝑇 complementary sensitivity function
𝑇𝑐1 constant matrix to build 𝑇𝑦
𝑇ref reference model
𝑇𝑦 coordinate transformation matrix
𝑇𝑧𝑤 exogenous input to evaluated output
𝑢 input vector
𝑤 exogenous input vector
𝑊 weighting filter
𝑥 state vector
𝑋COG center of gravity position [m]
𝑦 measured output vector
𝑧 evaluated output vector
𝔎,ℭ,𝔏 sets of gain matrices
Greek Description Unit
𝑛/𝛼 load factor per angle of attack [𝑔/rad]
𝛾 H∞ performance index [-]
𝜖 integrated control error 𝑔·s
𝜁sp short period damping ratio [-]
𝜔sp short period natural frequency [rad/s]
𝜔BW bandwidth [rad/s]
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II. Introduction

The problem of Static Output Feedback (SOF) controller synthesis is well-known, and has garnered a lot of attention
from the field of research in recent decades. It is a challenging problem, which is why it is still an open problem to

this day. The challenge lies in the fact that the problem is a Bilinear Matrix Inequality due to terms containing a product
between decision variables, which makes the problem non-convex by nature and it becomes non-smooth when using
the problem formulation in the space of controller parameters [1]. It is shown in [2] that these problems are generally
NP-hard to solve.

Solutions to the SOF problem can be categorized in three main groups: BMI solvers, Lyapunov methods, and
non-Lyapunov methods. BMI solvers that try to solve BMI’s directly are heavily dependent on initial conditions, and
even then, most often do not find solutions [3]. This paper will therefore only investigate the latter two groups of
methods. Examples of Lyapunov methods include iterative Linear Matrix Inequality (LMI) methods [4–8], iterative
rank minimization methods [9–11], and direct search methods [12–14]. Most often, iterative LMI (ILMI) methods aim
to render the original BMI into a convex LMI by fixing one of the decision variable matrices inside terms containing
a product between two decision variable matrices. The LMI problem can then be described as a Semi-Definite
Programming (SDP) optimization problem, which can be solved efficiently by interior point optimizers, as described
in [15, Section 1.4.4]; examples of such optimizers are MOSEK or SDPT3. A disadvantage of iterative Lyapunov
methods is that their computational performance is limited by the large amount of decision variables in their problem
formulation when compared to non-Lyapunov methods. In contrast, direct search methods are non-iterative and are thus
more numerically tractable. However, they mostly describe sufficient conditions and are generally more conservative
due to additional assumptions made about the plant to make the problem convex. Iterative methods are often derived
from these sufficient conditions though, to make the method less conservative by optimizing parts of the conditions in
an iterative manner. For example, [16] is based on conditions in [12], and similarly, [17] is based on conditions in [13]∗.

Examples of non-Lyapunov methods are the non-smooth optimization methods hinfstruct and HIFOO, which
are described in [18, 19], respectively. A disadvantage of these methods is that they cannot guarantee robustness to
uncertainties in the plant, at least not in the same way as the Lyapunov methods can [3]. Furthermore, they do not allow
for much flexibility and transparency in their approach as they rely on rather sophisticated theoretical tools (non-smooth
optimization), without much control interpretation in said approach. They are, however, extremely efficient and provide
exceptional performance in terms of performance index 𝛾, and have therefore grown into the most well-established
methods. For example, hinfstruct has been implemented in MATLAB’s Robust Control Toolbox.

Further extensive comparisons of the aforementioned group of methods can be found in [3, 20]. However, these
papers compared the methods mostly qualitatively, explaining the different advantages and disadvantages of each
method. Decisive conclusions on the competitiveness of the methods could be drawn with more confidence when these
conclusions are accompanied by quantitative results to support their claims. There is thus a clear gap to exploit in
research, which is defined to be a lack in assessment of the competitiveness of Lyapunov-based SOF algorithms to the
well-established non-smooth optimization methods.

The main contribution of this paper is two-fold. The first aspect is the investigation and implementation of Lyapunov-
based SOF synthesis methods that could potentially compete with the well-established non-smooth optimization methods
hinfstruct and HIFOO. In particular, three Lyapunov methods were deemed most promising; these are T-K iteration
described in [16, 21], and two S-variable approaches described in [22, Section 6.3]. These methods are bundled
into a toolbox, which will be called SOFHi for the remainder of the paper. Besides comparing these algorithms
to the non-smooth methods, they will also be used to design a gain-scheduled flight controller for the longitudinal
dynamics of the F-16 Fighting Falcon. The second aspect of the contribution is the presentation of a variant to the
original implementation of the algorithms, which aims to significantly improve the original implementation in terms of
computational efficiency. This variant will be called SOFHiEVO for the remainder of the paper.

The paper is organized as follows. In section III, the SOF problem for 𝐻∞ performance is described, after which the
SOF algorithms that try to tackle this problem are presented and elaborated on in section IV. The results of comparing
the algorithms are shown in section V and lastly, an elaborate flight control example is given in section VI to showcase
the effectiveness of SOFHi.
Notation: 𝑋⊤ for a matrix 𝑋 denotes the transpose, Sym {𝑋} denotes 𝑋 + 𝑋⊤, 𝑋⊥ denotes the orthogonal complement,
𝑋+ denotes the Moore-Penrose pseudo-inverse, | |𝑋 | |∞ denotes the 𝐻∞-norm of 𝑋 , and lastly, * denotes the symmetric
term in a block matrix.

∗The conditions in [17] are also made less conservative by considering a triangular part of the Lyapunov matrix, instead of a diagonal structure.
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III.H∞ Static Output Feedback Problem
Consider the following state-space system,

¤𝑥 = 𝐴𝑥 + 𝐵𝑤𝑤 + 𝐵𝑢𝑢
𝑧 = 𝐶𝑧𝑥 + 𝐷𝑧𝑤𝑤 + 𝐷𝑧𝑢𝑢
𝑦 = 𝐶𝑦𝑦 + 𝐷𝑦𝑤𝑤 + 𝐷𝑦𝑢𝑢

(1)

where the dependence on time is neglected (e.g. 𝑦 ← 𝑦(𝑡)), 𝑥 ∈ R𝑛 is the state vector, 𝑤 ∈ R𝑞 the exogenous input
vector, 𝑢 ∈ R𝑟 the input vector, 𝑧 ∈ R𝑝 the evaluated output vector, and 𝑦 ∈ R𝑙 the measured output vector. Without
loss of generality, it is assumed that the input and output matrices are of full rank (rank(𝐵𝑢) = 𝑟 and rank(𝐶𝑦) = 𝑙,
respectively).

The SOF problem defines the control input to be related to the measured output as

𝑢 = 𝐾𝑦, (2)

where 𝐾 is the SOF gain matrix. Applying Eq. (2) to the system in Eqs. (1) leads to the following closed-loop system:

¤𝑥 = 𝐴𝑐𝑙𝑥 + 𝐵𝑤𝑤
𝑧 = 𝐶𝑐𝑙𝑥 + 𝐷𝑧𝑤𝑤

(3)

where
𝐴𝑐𝑙 = 𝐴 + 𝐵𝑢𝐾𝐶𝑦 , 𝐶𝑐𝑙 = 𝐶𝑧 + 𝐷𝑧𝑢𝐾𝐶𝑦 (4)

In [23], it was shown that the system in Eqs. (3) is internally stable and theH∞-norm of the transfer function from 𝑤 to
𝑧 is smaller than a positive scalar 𝛾 (i.e. ∥𝑇𝑧𝑤 ∥∞ < 𝛾) if and only if there exist a positive-definite matrix 𝑃 ∈ S𝑛 and a
controller matrix 𝐾 ∈ R𝑟×𝑙 , such that 

Sym {𝐴𝑐𝑙𝑃} ∗ ∗
𝐶𝑐𝑙𝑃 −𝛾𝐼 ∗
𝐵⊤𝑤 𝐷⊤𝑧𝑤 −𝛾𝐼

 < 0 (5)

Eq. (5) is a BMI due to the product between the decision variables 𝑃 and 𝐾, which makes the optimization problem
non-convex. The following section will cover algorithms that try to tackle this problem.

IV. Static Output Feedback Algorithms
The conditions provided in this section for 𝐻∞ SOF are derived from the BMI in Eq. (5) and provide sufficient

conditions for said BMI. The algorithms described in this section then utilize these conditions to monotonically decrease
𝛾 by alternatively fixing decision variables to render the BMI conditions as an LMI, the latter of which is convex by
nature and easy to solve using interior point methods, such as MOSEK or SDPT3 [15, Section 1.4.4].

Three algorithms were found to be most promising, namely T-K iteration [16, 21], and two S-variable approaches
described in [22, 24]. For full details on the theorems and corresponding proofs, the reader is referred to the
aforementioned literature, but the main procedures of the algorithms will nevertheless be described in this section.

A. T-K Iteration
It was explained before that ILMI methods often use sufficient conditions derived in other direct search methods,

and then opt to reduce conservatism by optimizing parts of the conditions for 𝐻∞ performance. T-K iteration is no
exception and is based on the following conditions.

Lemma 4.1 from [16]: The closed-loop system in Eqs. (3) is internally stable and ∥𝑇𝑧𝑤 ∥∞ < 𝛾 if there exist a
positive-definite matrix 𝑃 ∈ S𝑛++ and control gain matrix 𝐾 ∈ R𝑟×𝑙 s.t.


Sym

{
( �̄� + �̄�𝑢𝐾�̄�𝑦)𝑃

}
∗ ∗

(�̄�𝑧 + 𝐷𝑧𝑢𝐾�̄�𝑦)𝑃 −𝛾𝐼 ∗
�̄�⊤𝑤 𝐷⊤𝑧𝑤 −𝛾𝐼

 < 0, (6)
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where

�̄� = 𝑇𝑦𝐴𝑇
−1
𝑦 , �̄�𝑤 = 𝑇𝑦𝐵𝑤 , �̄�𝑢 = 𝑇𝑦𝐵𝑢

�̄�𝑧𝑇
−1
𝑦 = 𝐶𝑧𝑇

−1
𝑦 �̄�𝑦 = 𝐶𝑦𝑇

−1
𝑦 = [𝐼𝑙 0]

and 𝑇𝑦 is a non-singular matrix such that 𝐶𝑦𝑇−1
𝑦 = [𝐼𝑙 0]

Lemma 4.2 from [25]: The closed-loop system in Eqs. (3) is internally stable and ∥𝑇𝑧𝑤 ∥∞ < 𝛾 if there exist a

positive-definite matrix 𝑃𝑑 =

[
𝑃1 0
0 𝑃2

]
with 𝑃1 ∈ S𝑙++, 𝑃2 ∈ S(𝑛−𝑙)×(𝑛−𝑙)++ , and matrix 𝑌 ∈ R𝑟×𝑙 s.t.


Sym

{
�̄�𝑃𝑑 + �̄�𝑢𝑌�̄�𝑦

}
∗ ∗

�̄�𝑧𝑃𝑑 + 𝐷𝑧𝑢𝑌�̄�𝑦 −𝛾𝐼 ∗
�̄�⊤𝑤 𝐷⊤𝑧𝑤 −𝛾𝐼

 < 0 (7)

where �̄� ,�̄�𝑢, �̄�𝑤 , �̄�𝑧 , and �̄�𝑦 are defined in Lemma 4.1. When Eq. (7) holds, the optimal H∞ SOF controller gain
matrix can be obtained through:

𝐾 = 𝑌𝑃−1
1

The conditions described in Lemma’s 4.1 and 4.2 are generally conservative, due to the fact that the Coordinate
Transformation Matrix (CTM) 𝑇𝑦 is chosen to be a constant value in [26] (i.e. 𝑇𝑦 = [𝐶⊤𝑦 𝐶⊥𝑦 ]⊤). T-K iteration opts to
reduce this conservatism by using a parametrisation form of 𝑇𝑦 to perform a coordinate transformation on the original
system. This form is given by

𝑇−1
𝑦 =

[
𝐶+𝑦 + 𝐶⊥𝑦 𝑇𝑐1 𝐶⊥𝑦

]
(8)

Using this form allows one to optimize the CTM through 𝑇𝑐1, which ultimately reduces conservatism of Eqs. (6). The
first step of this optimization is to find an initial 𝑇𝑐1 to ensure feasibility of Eqs. (7), which is done as follows: first,
an initial stabilizing SOF gain matrix 𝐾 is obtained through Cone Complementarity Linearization (CCL)†, which is
described in [11]. Second, Eqs. (6) are solved using 𝐾 to obtain 𝑃, after which an initial CTM 𝑇𝑐1 = 𝑃21𝑃

−1
11 can now

be obtained. This process of finding an initial 𝑇𝑐1 is described below [16].

Part 1 of T-K iteration from [16]:
1) Check if (𝐴, 𝐵𝑢) is stabilizable. If it is not, stop. If it is, continue to step 2).
2) Randomly generate 𝑃0 and 𝑄0 from a uniform distribution𝑈 ∼ (0, 1).
3) Obtain a stabilizing 𝐾 through CCL(𝑃0, 𝑄0).
4) Use 𝑇−1

𝑦 = [𝐶+𝑦 𝐶⊥𝑦 ] to solve the following SDP problem with a fixed 𝐾:

min
𝑃
𝛾 s.t. Eqs. (6).

An initial 𝑇𝑐1 = 𝑃21𝑃
−1
11 is found, stop.

The second step, as mentioned above, is to optimize the choice of 𝑇𝑐1 in an iterative procedure to reduce conservatism
of the solution and reach a locally optimal solution.

Part 2 of T-K iteration from [16]:
1) Set 𝑘 = 0 and 𝑇 (0)

𝑐1 as the initial 𝑇𝑐1 produced by Part 1 of T-K iteration.
2) Use 𝑇−1

𝑦 = [𝐶+𝑦 + 𝐶⊥𝑦 𝑇
(𝑘 )
𝑐1 𝐶⊥𝑦 ] to solve the following SDP problem:

min
𝑃1 ,𝑃2 ,𝑌

𝛾1 s.t. Eqs. (7).

Calculate 𝐾 = 𝑌𝑃−1
1 .

†The algorithm is not recalled here for practical purposes, the reader is referred to [11] for more details on CCL.
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3) Use 𝑇−1
𝑦 = [𝐶+𝑦 + 𝐶⊥𝑦 𝑇

(𝑘 )
𝑐1 𝐶⊥𝑦 ] and the obtained 𝐾 to solve the following SDP problem:

min
𝑃
𝛾2 s.t. Eqs. (6).

Calculate 𝑁 = 𝑃−1
11 𝑃12.

4) Let 𝜖 << 1 be the prescribed tolerance. If | |𝑁 | | < 𝜖 , | |𝛾1 − 𝛾2 | | < 𝜖 , or 𝑘 > 𝑘max, a given maximum iteration
number, 𝐾 is a locally optimalH∞ SOF gain matrix, stop. Otherwise, set 𝑇 (𝑘+1)

𝑐1 ← 𝑇
(𝑘 )
𝑐1 + 𝑁

⊤ and 𝑘 ← 𝑘 + 1,
and go to 2).

The procedure of fixing decision variables to render the BMI conditions into LMI conditions is a common theme among
ILMI methods. In fact, the two algorithms described in subsection IV.B will use this philosophy as well.

Remark 1: When the variable 𝑁 = 𝑃−1
11 𝑃12 approaches zero, the algorithm has approached a local solution as the CTM

has converged by then. 𝑁 thus serves as an evaluation index of the obtained minimum, which is a rare feature among
ILMI methods, that almost always provide no conclusive characterisation of the local minimum and just stop when no
better solution is found.
Remark 2: T-K iteration is extended in SOFHi to incorporate structured SOF. A zero-nonzero structure of 𝐾SOF can be
imposed through the SDP variable 𝑌 in Lemma 4.2, while keeping 𝑃1 proportional to the identity matrix.
Remark 3: 𝐾 = 𝑌𝑃−1

1 in Lemma 4.2 is replaced in SOFHi by 𝐾 = 𝑌𝑃+1 when 𝑃1 is singular or near-singular, to
avoid inaccuracies in the results. Singularity is checked through the condition number 𝜅(𝑃1) = | |𝑃1 | | · | |𝑃−1

1 | |. When
𝜅(𝑃1) → ∞, 𝑃1 is considered singular. Ultimately, this increases the robustness of the algorithm in at least obtaining an
adequate result.

B. S-variable Approaches
This section describes two approaches that aim to render variations to Eq. (5) as LMI’s, by alternatively fixing

the decision variables in the conditions. The name of the S-variable methods lends itself from the use of slack
variables in the Lyapunov conditions forH∞ SOF performance. By introducing slack variables in the conditions, a new
parametrization form can be constructed, where the Lyapunov matrix 𝑃 is de-coupled from the other SDP variables.
This de-coupling allows one to optimize over 𝑃 with less constraints and consequently less conservatism in the solution.
This section describes two approaches that stem from this philosophy, but which are based on different parametrizations.
The difference lies in that Approach I is based on an initial state-feedback gain, whereas Approach II is based on an
initial SOF gain. The parametrizations on which Approaches I and II are based, respectively, are given as follows [22,
Section 6.3.3]:

Lemma 4.3 from [22, Section 6.3.3]: The H∞ optimal SOF gain is given by 𝐾 = −𝐹−1𝑍 , where the triplet
(𝑃∞, 𝑍, 𝐹) ∈ S𝑛++ × R𝑟×𝑙 × R𝑟×𝑟 is the global optimal solution of the following non-convex optimization problem:

min
𝑃∞ ,𝑍,𝐹,𝐾𝑆𝐹∞ ,𝐾𝑤∞

𝛾2 s.t.

𝑁∞ (𝑃∞) + Sym



𝐾⊤
𝑆𝐹∞

𝐾⊤𝑤∞
−𝐼


[
𝑍𝐶𝑦 𝑍𝐷𝑦𝑤 𝐹

] < 0,
(9)

where

𝑁∞ (𝑃∞) =
[
𝐼 0 0
𝐴 𝐵𝑤 𝐵𝑢

]⊤ [
0 𝑃∞
𝑃∞ 0

] [
𝐼 0 0
𝐴 𝐵𝑤 𝐵𝑢

]
+
[
𝐶𝑧 𝐷𝑧𝑤 𝐷𝑧𝑢

0 𝐼 0

]⊤ [
𝐼 0
0 −𝛾2𝐼

] [
𝐶𝑧 𝐷𝑧𝑤 𝐷𝑧𝑢

0 𝐼 0

]
(10)
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Lemma 4.4 from [22, Section 6.3.3]: Given the quadruple (𝑃∞, 𝐾1, 𝐾2, 𝐹) ∈ S𝑛++ × R𝑛×𝑟 × R𝑞×𝑟 × R𝑟×𝑟 , the optimal
H∞ SOF gain matrix 𝐾 = 𝐾𝑆𝑂𝐹 is the global optimal solution to the following non-convex optimization problem:

min
𝑃∞ ,𝐾1 ,𝐾2 ,𝐹,𝐾𝑆𝑂𝐹

𝛾2 s.t.

𝑁∞ (𝑃∞) + Sym



𝐾1

𝐾2

𝐹


[
𝐾𝑆𝑂𝐹𝐶𝑦 𝐾𝑆𝑂𝐹𝐷𝑦𝑤 −𝐼

] < 0
(11)

with 𝑁∞ (𝑃∞) defined in Eq. (10).

Eqs. (9) and (11) are BMI due to the product terms between the different SDP variables. Approaches I and II are both
coordinate-descent cross-decomposition algorithms, which means that SDP variables are alternatively fixed to render
the BMI’s into LMI’s, while monotonically decreasing the performance value 𝛾.

1. S-variable Approach I
The first approach needs an initial guess of the SDP variables 𝐾𝑆𝐹∞ and 𝐾𝑤∞ in Eqs. (9) before it starts iterating.

These can be chosen at random, but a good guess for the BMI in Eqs. (9) can be found by assuming full-information
feedback:

Lemma 4.5 from [22, Section 6.3.3]: Given the quadruple (𝑋∞, 𝑅,𝑌 , 𝐾𝑤) ∈ S𝑛++ × R𝑟×𝑛 × R𝑟×𝑛 × R𝑟×𝑛, solve the
following SDP problem:

min
𝑋∞ ,𝑅,𝑌 ,𝐾𝑤

𝛾2 s.t.
Sym{𝐴𝑋∞ + 𝐵𝑢𝑌 } ∗ ∗
(𝐵𝑤 + 𝐵𝑢𝐾𝑤)⊤ −𝛾2𝐼 ∗
(𝐶𝑧 + 𝐷𝑧𝑢𝑅) (𝐷𝑧𝑤 + 𝐷𝑧𝑢𝐾𝑤) −𝐼

 < 0

𝐾𝑆𝐹∞ = 𝑌𝑋−1
∞

𝐾𝑤∞ = 𝐾𝑤

(12)

where 𝐶𝑦 = [𝐼 0]⊤ and 𝐷𝑦𝑤 = [0 𝐼]⊤.

In [22, Section 6.3], 𝐾𝑆𝐹∞ and 𝐾𝑤∞ are used as a good initial guess for the subsequent coordinate-descent algorithm. A
Hit-and-Run (H.R.) algorithm‡ in [24] is applied to generate a set of state-feedback gains based on the initial guess
𝐾𝑆𝐹∞ . By using several initial guesses, instead of only 𝐾𝑆𝐹∞ , better results were obtained, since the results of the
algorithms are heavily dependent on their initial conditions. Thus, having many initial guesses instead of just one,
increases the likelihood of converging to a local solution.

Approach I from [22, Chapter 6]:
1) Solve the following SDP problem:

min
𝑋∞ ,𝑅,𝑌 ,𝐾𝑤

𝛾2 s.t. Eqs. (12)

Let the solutions be 𝐾𝑆𝐹∞ and 𝐾𝑤∞
2) Choose 𝑘max as a positive integer and apply H.R.(𝐾𝑆𝐹∞ ) to generate 𝔎𝑆𝐹:

𝔎SF =

{
𝐾
(1)
SF , 𝐾

(2)
SF , ..., 𝐾

(𝑘max )
SF ∈ R𝑟×𝑛 : 𝜆(𝐴 + 𝐵𝑢𝐾SF) ∈ C−−

}
,

where 𝐾 (1)SF := 𝐾𝑆𝐹∞

‡H.R. is able to construct a set of gains of any size, starting from one gain, using a randomized approach. This method is found to be very
efficient in generating many stabilizing SOF gains. For practical purposes, the reader is referred to [24] for the full description of the algorithm.
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3) Set 𝑘 = 1 and choose 𝐾 (1)
𝑆𝐹
∈ 𝔎𝑆𝐹 .

4) For fixed 𝐾 (𝑘 )SF and 𝐾 (𝑘 )𝑤∞ , solve the following SDP problem:

min
𝑃∞ ,𝑍,𝐹

𝛾2
1 s.t. Eqs. (9)

Let the solutions be 𝑍 (𝑘 ) = 𝑍 , 𝐹 (𝑘 ) = 𝐹.
5) For fixed 𝑍 (𝑘 ) and 𝐹 (𝑘 ) , solve the following SDP problem:

min
𝑃∞ ,𝐾

𝛾2
2 s.t. Eqs. (9)

Let the solutions be 𝐾 (𝑘 ) = 𝐾 .
6) Let 𝜖 << 1 be the prescribed tolerance. If

𝛾 (𝑘 )1 − 𝛾 (𝑘 )2

 < 𝜖 , stop, the algorithm has converged. Else if

𝑘 = 𝑘𝑚𝑎𝑥 , stop, the maximum amount of iterations has been reached. Set 𝐾SOF = 𝐾
(𝑘 )
SOF. Else, 𝑘 ← 𝑘 + 1 and go

to step 4.

A similar procedure to T-K iteration can be observed, where SDP variables are alternatively fixed to render BMI’s into
LMI’s. This procedure can also be observed in the subsequent section.

2. S-variable Approach II
The general procedure for Approach II of the S-variable methods is of similar nature to that of Approach I, where

both algorithms are of the coordinate-descent cross-decomposition type. However, where Approach I is based on an
initial 𝐾SF ∈ 𝔎SF, Approach II is in fact based on a stabilizing 𝐾SOF ∈ 𝔎SOF, where 𝔎SOF of size 𝑗max is defined by

𝔎SOF =

{
𝐾
(1)
SOF, 𝐾

(2)
SOF, ..., 𝐾

( 𝑗max )
SOF ∈ R𝑟×𝑙 : 𝜆(𝐴 + 𝐵𝑢𝐾SOF𝐶𝑦) ∈ C−−

}
(13)

Approach II uses the following lemma from [22, Section 6.2] to obtain 𝐾SOF from an initial 𝐾SF:

Lemma 4.5 from [22, Chapter 6]: There exists 𝐾SOF ∈ 𝔎SOF for the closed-loop system in Eqs. (3) if and only if there
exist a stabilizing state-feedback matrix 𝐾SF ∈ 𝔎SF, a matrix 𝑃 ∈ S𝑛++, and matrices 𝐹 ∈ R𝑟×𝑟 , 𝑍 ∈ R𝑟×𝑙 , s.t.

Trace(𝑃) > 0

𝑀 (𝑃) + Sym

{[
𝐼

−𝐾⊤SF

] [
𝐹 𝑍𝐶𝑦

]}
< 0

(14)

where 𝑀 (𝑃) =
[
𝐵⊤𝑢 0
𝐴⊤ 𝐼

] [
0 𝑃

𝑃 0

] [
𝐵𝑢 𝐴

0 𝐼

]
and 𝐾SOF = 𝐹−1𝑍 .

Approach II can then be described as follows, where steps 1) to 4) generate a set of SOF gains and steps 5) to 8) deal
with obtaining the optimum SOF gain from the set of gains.

Approach II from [22, Chapter 6]:
1) Choose 𝑘max and generate 𝔎𝑆𝐹 of size 𝑘max, in a similar way to Approach I using H.R..
2) Let 𝑘 = 1.
3) Choose a 𝐾 (𝑘 )

𝑆𝐹
∈ 𝔎𝑆𝐹 and solve the following SDP problem with a fixed 𝐾 (𝑘 )

𝑆𝐹
:

min
𝑃,𝐹,𝑍

Trace(𝑃) s.t. Eqs. (14).

Let the solution be 𝐾 (𝑘 )SOF = −𝐹−1𝑍 . If 𝐾 (𝑘 )SOF ∈ 𝔎SOF, 𝐾SOF = 𝐾
(𝑘 )
SOF and continue to step 4). Else, if 𝑘 = 𝑘max,

stop, the algorithm was not able to find a stabilizing 𝐾SOF. Else, 𝑘 ← 𝑘 + 1 and repeat step 3).
4) Choose 𝑗max and apply H.R.(𝐾SOF) to generate 𝔎SOF of size 𝑗max defined in Eq. 13, where 𝐾 (1)SOF := 𝐾SOF.
5) Let 𝑗 = 1.
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6) For fixed 𝐾 ( 𝑗 )SOF = 𝐾SOF, solve the following SDP optimization problem:

min
𝑃∞ ,𝐾1 ,𝐾2 ,𝐹

𝛾2
1 s.t. Eqs. (11)

Let the solutions be 𝐾 ( 𝑗 )1 = 𝐾1, 𝐾 ( 𝑗 )2 = 𝐾2, and 𝐹 ( 𝑗 ) = 𝐹.
7) For fixed 𝐾 ( 𝑗 )1 , 𝐾 ( 𝑗 )2 , and 𝐹 ( 𝑗 ) , solve the following SDP optimization problem:

min
𝑃∞ ,𝐾SOF

𝛾2
2 s.t. Eqs. (11)

Let the solution be 𝐾 ( 𝑗 )SOF = 𝐾SOF.
8) Let 𝜖 << 1 be the prescribed tolerance. If

𝛾 ( 𝑗 )1 − 𝛾 ( 𝑗 )2

 < 𝜖 , stop, the algorithm has converged. Set 𝐾 = 𝐾
( 𝑗 )
SOF.

Else, if 𝑗 = 𝑗max, stop, the maximum number of iterations has been reached. Else, 𝑗 ← 𝑗 + 1 and go to step 6).
Remark 1: Approaches I and II are, like most iterative LMI methods, heavily dependent on their initial conditions.
Unfortunately, there exists no dead-point criterion for the local minima, as was the case for T-K iteration with 𝑁 , the
algorithm just stops whenever 𝛾 has converged.
Remark 2: Approaches I and II are easily extended in SOFHi to incorporate structured SOF. A zero-nonzero structure
of 𝐾SOF can be imposed through 𝑍 in Lemma 4.3 (keeping 𝐹 proportional to the identity matrix), and directly through
𝐾SOF in Lemma 4.4.
Remark 3: 𝐾 = −𝐹−1𝑍 in Lemma 4.3 is replaced in SOFHi by 𝐾 = −𝐹+𝑍 when 𝐹 is singular or near-singular, to avoid
inaccurate results. Singularity is checked through the condition number 𝜅(𝐹) = | |𝐹 | | · | |𝐹−1 | |. When 𝜅(𝐹) → ∞, 𝐹 is
considered singular. Ultimately, this increases the robustness of the algorithm in at least obtaining an adequate result.

C. SOFHiEVO
The algorithms described in subsection IV.A-IV.B are implemented and bundled into one toolbox named SOFHi. A

downside that is intrinsic to Lyapunov methods is their lack of computational efficiency when compared to non-smooth
optimization methods, since the latter do not have Lyapunov matrices in their problem formulation. Let 𝑛 be the
number of states, 𝑟 the number of inputs, and 𝑙 the number of outputs. Lyapunov methods are then of computational
complexity 𝑂 (𝑛2), while non-Lyapunov methods are of complexity 𝑂 (𝑟 · 𝑙), the latter of which is generally much
smaller. Consequently, this leads to non-smooth methods being more computationally efficient than Lyapunov methods,
even more so for systems that include many states.

Additionally, the methods in SOFHi are prone to converge to a local plateau, since they are probabilistic by nature
and highly dependent on the initial conditions: the initial CTM 𝑇𝑦 for T-K iteration and the initial stabilizing gain
matrices for the S-variable approaches. To reduce conservatism and likely improve the solution to a local optimum,
multiple runs starting from different initial conditions are beneficial, which ultimately increases the likelihood of the
algorithms to converge to- or near a local optimum. However, the need to run multiple times from different initial points
emphasizes the need for more computational efficiency in the Lyapunov methods, since the required computational
power is directly proportional to the amount of runs performed.

For those reasons, SOFHiEVO is introduced in this paper to serve as an additional "fast setting" for SOFHi. It is based
on the idea of filtering out unfavorable runs early and proceeding with the set of promising runs, which is a subset of the
original set of runs. The concept is visualized in Fig. 1, where the three parameters of SOFHiEVO are shown, namely
the number of starts 𝑁starts, the number of samples 𝑁samples, and the number of candidates 𝑁candidates. The idea is to start
from multiple random initial conditions, evaluate 𝛾 of each run after 𝑁samples, and discard the unfavorable runs, except
for the candidates, i.e. the runs that are optimized further. Let 𝔏 be the set of gains at the iteration index 𝑘 that is equal
to 𝑁samples:

𝔏 =

{
𝐾 (1) , 𝐾 (2) , ..., 𝐾 (𝑁starts ) : 𝑘 = 𝑁samples

}
(15)

The set of candidates is then described as ℭ ⊆ 𝔏:

ℭ =

{
𝐾 (1) , 𝐾 (2) , ..., 𝐾 (𝑁candidates ) : 𝑁candidates < 𝑁starts

}
, (16)

where 𝐾 ∈ ℭ are the gain matrices that lead to the set with lowest 𝛾’s of size 𝑁candidates. ℭ then serves as the new set
of initial gains which is optimized further. The motivation for using SOFHiEVO and its computational efficiency with
respect to SOFHi will become apparent from the results in section V.
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Fig. 1 Visualization of the solution space for a fictional case to explain the sampling phase in SOFHiEVO, where
the gain matrix 𝐾 is assumed to be the only decision variable and is a single scalar gain to be able to have a
two-dimensional visualization of the optimization procedure. The following user-defined settings are emphasized:
in this example, 𝑁starts = 5 and 𝑁candidates = 3, meaning that 2 of the 5 runs are discarded after 𝑁samples iterations,
based on the fact that their corresponding performance indices (𝛾4 and 𝛾5) are worse than (𝛾1, 𝛾2, and 𝛾3). The
runs corresponding to (𝛾1, 𝛾2, 𝛾3) are then iterated further until convergence.

V. Results
This section will cover the results from implementing the SOF algorithms described in section IV. The algorithms

are applied on 54 low-medium sized benchmark models from the Compleib library in [27]. Comparisons are made
between SOFHi, SOFHiEVO, and the two most well-established fixed-structure synthesis algorithms that optimize the
H∞-norm of the complete block, these algorithms are HIFOO and hinfstruct. The latter comparisons are made only
on 𝛾, not on computational times, since the Lyapunov methods are limited by the amount of decision variables in the
problem formulation, as explained in subsection IV.C, and further improvements could be made by writing in Fortran.

Quad-core computations in the subsequent sections have been performed on hardware with the following specifica-
tions:

Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz 2.81 GHz
16.0 GB RAM

A. SOFHi comparison
A full overview of the benchmark models and results can be found in Table 9 and Table 10. A summary of the

comparisons between standard SOFHi, hinfstruct, and HIFOO is presented in Table 2, though. It can be seen that SOFHi
outperforms HIFOO in terms of performance index 𝛾, where the difference becomes more apparent when considering a
margin of significance. When comparing SOFHi to hinfstruct, however, hinfstruct can be seen to outperform SOFHi
when no margin of significance is considered. When a margin is considered, however, the results are very similar and
SOFHi is able to slightly outperform hinfstruct.

Table 2 Summary for both 30 and 100 starts. Results represent the % of times, from all the 54 example models,
method 𝐴 has a more optimal 𝛾 than 𝐵. When a margin of e.g. 1% is included, the results are considered equal
when 0.99𝛾(𝐵) < 𝛾(𝐴) < 1.01𝛾(𝐵). Superior results are placed in bold.

30 starts 100 starts

SOFHi HIFOO SOFHi hinfstruct SOFHi HIFOO SOFHi hinfstruct
No margin 64.81% 33.33% 40.74% 53.70% 62.96% 35.19% 44.44% 51.85%
Margin = 1% 14.81% 0.00% 9.26% 0.00% 12.96% 0.00% 9.26% 1.85%
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B. SOFHiEVO comparison
The comparison between SOFHi and SOFHiEVO in terms of performance index 𝛾 is presented in Table 3. It can be

seen that even for significantly less candidates than the number of starts of SOFHi, SOFHiEVO is able to outperform
SOFHi and uses less computational time. The most extreme case is emphasized, when SOFHiEVO and SOFHi have the
same 𝑁starts and SOFHiEVO only proceeds with 8 of the original 30 starts after 30 sample iterations. It is expected that
SOFHi will outperform SOFHiEVO, since SOFHiEVO discards 22 runs, without the added benefit of starting out with
more runs. The difference is marginal though, highlighting the motivation for creating SOFHiEVO: the loss in accuracy
after discarding the unfavorable runs is marginal, and more often than not, the optimal run is present among the number
of candidates, given that 𝑁samples and 𝑁candidates are chosen appropriately.

Table 3 Comparisons between SOFHiEVO and SOFHi on computational performance and 𝛾. Parameters are
denoted as "(𝑁starts, 𝑁samples, 𝑁candidates)" for SOFHiEVO and as "𝑁starts" for SOFHi. Relative computational
time denotes the time it takes for SOFHiEVO to compute for all 54 benchmark models relative to SOFHi, e.g.
100% means it has taken exactly the same amount of (real) time as SOFHi. Further results represent the % of
times, from all the 54 example models, method 𝐴 has a more optimal 𝛾 than method 𝐵. When a margin of e.g.
1% is included, the results are considered equal when 0.99𝛾(𝐵) < 𝛾(𝐴) < 1.01𝛾(𝐵).

SOFHiEVO SOFHi SOFHiEVO SOFHi SOFHiEVO SOFHi SOFHiEVO SOFHi
Parameters (250, 50, 16) 30 (150, 50, 16) 30 (300, 20, 8) 30 (30, 30, 8) 30
Rel. comp. time 93.29% - 60.45% - 48.07% - 22.76% -
No Margin 62.96% 31.48% 57.41% 37.04% 55.56% 40.74% 42.59% 53.70%
Margin = 1% 3.70% 0.00% 3.70% 0.00% 1.85% 0.00% 3.70% 1.85%

The results of SOFHiEVO when compared to HIFOO and hinfstruct are presented in Table 4. It can be seen that
SOFHiEVO scores significantly better than HIFOO, with and without a margin. Compared to hinfstruct, it can be seen
that SOFHiEVO is able to outperform with and without a margin for the (250, 50, 16) run where a gradual decrease in
results can be observed when choosing runs with faster computational times, relative to SOFHi. Even then, SOFHiEVO
is at least competitive to hinfstruct, slightly outperforming when a significance margin is included.

Table 4 Comparison between SOFHiEVO, HIFOO, and hinfstruct on 𝛾. Parameters are denoted as
"(𝑁starts, 𝑁samples, 𝑁candidates)" for SOFHiEVO and as "𝑁starts" for HIFOO and hinfstruct. Furthermore, re-
sults represent the % of times, from all the 54 example models, method 𝐴 has a more optimal 𝛾 than 𝐵. When a
margin of e.g. 1% is included, the results are considered equal when 0.99𝛾(𝐵) < 𝛾(𝐴) < 1.01𝛾(𝐵). Superior
results are placed in bold.

SOFHiEVO HIFOO SOFHiEVO HIFOO SOFHiEVO HIFOO
Parameters (250, 50, 16) 30 (150, 50, 16) 30 (300, 20, 8) 30
No Margin 70.37% 27.78% 68.52% 29.63% 59.26% 38.89%
Margin = 1% 14.81% 0.00% 14.81% 0.00% 14.81% 0.00%

SOFHiEVO hinfstruct SOFHiEVO hinfstruct SOFHiEVO hinfstruct
Parameters (250, 50, 16) 30 (150, 50, 16) 30 (300, 20, 8) 30
No Margin 51.85% 44.44% 48.15% 48.15% 42.59% 55.56%
Margin = 1% 9.26% 1.85% 9.26% 0.00% 9.26% 1.85%

Remark: It is important to acknowledge that the comparisons in Table 3 and Table 4 are akin to "comparing apples to
pears", since SOFHiEVO has many more starts than 30. However, most of these runs are discarded after the sampling
phase and SOFHiEVO ends up with much less runs, i.e. the candidates. The point of this comparison is merely to show
that within the same time-frame of the original algorithms (see "Rel. comp. time." in Table 3), SOFHiEVO is able to be
more competitive to HIFOO and hinfstruct than the original algorithms in SOFHi were, to the point that SOFHiEVO is
even able to outperform hinfstruct for one of its runs. It is thus shown that the original algorithms were improved upon.
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Remark 2: The percentages in Table 3 and Table 4 do not always add up to 100% for "No Margin", since some results
are exactly equal up to MATLAB’s numerical precision.

C. Structured SOF
In section IV, it was described that the algorithms in SOFHi are easily extended to structured SOF, where a

zero-nonzero structure is imposed on 𝐾SOF. The effectiveness of this is assessed by comparing SOFHi to other research
on structured SOF described in [13, 14, 17, 28–30], and to HIFOO and hinfstruct. The algorithms are applied on the
example given in [13], and the results of this are shown in Table 5. It can be seen that SOFHi is able to obtain solutions
with less conservatism than other methods when imposing different zero-nonzero structures on 𝐾SOF. Furthermore, in
terms of computational times, SOFHi is able to be at least competitive to the other algorithms.

Table 5 Structured SOF results on 𝛾. (MD1-MS5) are respectively described in [13, 14, 17, 28–30]. Their
results on this example are extracted from [17].

Full structure Tri-diagonal structure Diagonal structure
Algorithm 𝛾 (time) 𝛾 (time ) 𝛾 (time)

MD1 1.2084 (0.015s) 1.2358 (0.013s) 1.2859 (0.01s)
MS1 1.0543 (11s) 1.2223 (5.9s) 1.2759 (5.3s)
MS2 0.7891 (6.2s) 0.8856 (5.9s) 0.8933 (5.3s)
MS3 0.8411 (17s) 0.9338 (15s) 0.9680 (12s)
MS4 0.7720 (2.3s) 0.7730 (2.1s) 0.8400 (2.1s)
MS5 0.7689 (1.9s) 0.7841 (1.8s) 0.8925 (1.8s)

HIFOO 0.7357 (0.85s) 0.7416 (2.5s) 0.8221 (16s)
hinfstruct 0.7357 (0.49s) 0.7493 (0.47s) 0.8032 (0.33s)

T-K iteration 0.7356 (1.6s) 0.7712 (1.7s) 1.0239 (1.5s)
S-variable App. I 0.7357 (2.1s) 0.7424 (2.5s) 0.7993 (1.6s)
S-variable App. II 0.7357 (1.8s) 0.7411 (1.5s) 0.7992 (2.3s)

VI. F-16 Example
To showcase the effectiveness of SOFHi in tuningH∞ SOF controllers, a classical PI-controller with an inner-loop

pitch-rate feedback is designed for a normal acceleration Control Augmentation System (CAS) for the F-16 Fighting
Falcon. The non-linear equations of motion stem from [31], and the aerodynamic model is taken from [32, p. 714-723].

A Two-Degree-of-Freedom (2-DoF) approach is implemented, where the first stage is based on a classical Four-Block
design, similar to [33, Section 5.1]. Furthermore in the second stage, a second-order feedforward function 𝐹 is tuned
using an additional H∞-block. The full configuration of the 2-DoF design can be seen in Fig. 2, where 𝐹 is added
outside the loop to improve the transient time response without affecting the robustness and disturbance rejection
characteristics of the Four-Block design. Furthermore, the proportional part of the PI-controller is chosen to be in the
feedback path. This is done to reduce the effect of proportional kicks on the output and control input, which occur in
presence of step reference input [34, Section II.F]. This ultimately favors soft-starts and smooth responses in tracking
applications.
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Fig. 2 2-DoF design for the normal acceleration CAS. 𝐺 denotes the Linear Time Invariant (LTI) plant, which
originates from trimming and linearizing the non-linear model around each flight point. 𝑊𝑖 denotes the weighting
functions that shape the closed-loop sensitivity functions. (𝐾𝑖 , 𝐾𝑝 , 𝐾𝑞) are the SOF gains in the Four-Block
design. For the second stage in the 2-DoF design, 𝐹 denotes the feedforward transfer function, and 𝑇ref denotes
the reference model that is to be followed.

A. Design Objectives
One can formulate design objectives in terms of the closed-loop sensitivity functions, which describe the desired

performance and robustness of the closed-loop system. An overview of the sensitivity functions in Fig. 2 can be found
in Table 6. The design objectives to the sensitivity functions in the frequency domain for this 2-DoF design are as
follows [35].

• To attenuate output disturbance signals at the plant output and to reduce the steady-state tracking error, �̄�(𝑆𝑎𝑛 ) is
to be minimized, where 𝑆𝑎𝑛 is the output sensitivity function of the normal acceleration loop 𝑎𝑛.

• To attenuate control input, �̄�(𝐾𝑆𝑎𝑛 ) is desired to be minimized, where 𝐾 is the controller block. Additionally,
high-frequency measurement noise at the plant input is to be attenuated through 𝐾𝑆𝑎𝑛 .

• To attenuate input disturbance signals at the plant output, �̄�(𝑆𝑎𝑛𝐺) is to be minimized, where 𝐺 is the plant.
• To attenuate high-frequency unmodelled dynamics at the plant input, �̄�(𝑇𝑖) is to be minimized, where 𝑇𝑖 is the

complementary input sensitivity function.
• In the second stage of the 2-DoF design, to accurately follow the reference model 𝑇ref, �̄�(𝑀) is to be minimized,

where 𝑀 is the model-matching sensitivity.
• In the second stage of the 2-DoF design, to limit the actuator effort from pilot input, �̄�(𝐾𝑆𝑎𝑛𝐹) is to be minimized.

Table 6 Overview of the closed-loop sensitivity functions in Fig. 2.

From To
𝑒 𝑎𝑛 𝑢𝑐 𝑒ref

𝑤1 𝑆𝑎𝑛𝐹 𝑇𝑎𝑛𝐹 𝐾𝑆𝑎𝑛𝐹 𝑀

𝑟 𝑆𝑎𝑛 𝑇𝑎𝑛 𝐾𝑆𝑎𝑛 −𝑇𝑎𝑛
𝑑𝑖 −𝑆𝑎𝑛𝐺 𝑆𝑎𝑛𝐺 𝑇𝑖 −𝑆𝑎𝑛𝐺

It is not possible to minimize all the sensitivity functions above over all frequencies. Luckily, the design objectives
stated above are relevant over different frequency ranges, so one can therefore use weighting functions (𝑊1,𝑊2,𝑊3, and
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𝑊4 in Fig. 2) to shape the closed-loop sensitivity functions, in order to meet the design objectives to the best of its
abilities§. This often involves certain trade-offs between performance and robustness. Other requirements are stated as
follows, which stem from [32, 36, 37].

• The closed-loop system shall be internally stable.
• The overshoot of the normal acceleration time responses shall not exceed 10% [37].
• The settling times of the normal acceleration time responses shall not exceed 3 [s] [37].
• The damping ratio of the normal acceleration time responses shall be at least 0.3 [-] [36, 37].
• The control actuator deflections [deg] and deflection rates [deg/s] shall not exceed the physical limits, i.e. 25 deg

and 60 deg/s, respectively [32].
• The minimum gain and phase margins shall be at least 6 [dB] and 40 [deg], respectively [36].
• The Control Anticipation Parameter (CAP) requirements shall be met [36].

B.H∞ SOF Design
This section describes the two design stages for a 2-DoF design. The first stage tunes the feedback gains, whereas

the second stage tunes the parameters of the feedforward function 𝐹.

1. First Stage of the 2-DoF Design
The first stage of the 2-DoF design aims at providing disturbance rejection and robustness to the system. From the

design objectives defined in subsection VI.A and Fig. 2, the transfer function from the exogenous inputs to the evaluated
outputs 𝑇𝑧𝑤 is described by: [

𝑧1

𝑧2

]
=

[
𝑊1 0
0 𝑊2

] [
𝑆𝑎𝑛 −𝑆𝑎𝑛𝐺
𝐾𝑆𝑎𝑛 −𝑇𝑖

] [
1 0
0 𝑊3

] [
𝑤1

𝑤2

]
(17)

TheH∞-performance function to which the SOF algorithms in section IV are applied can now be defined as:

∥𝑇𝑧𝑤 ∥∞ =


[
𝑊1𝑆𝑎𝑛 𝑊1𝑆𝑎𝑛𝐺𝑊3

𝑊2𝐾𝑆𝑎𝑛 𝑊2𝑇𝑖𝑊3

]
∞
< 𝛾1 (18)

Eq. 18 is tuned using SOFHi to obtain the feedback gains.

2. Second Stage of the 2-DoF Design
The second stage aims at improving the transient response by tuning the second-order feedforward function 𝐹, in

order for the output of the model to follow a reference model 𝑇ref, with 𝑇ref being defined as:

𝑇ref =
𝜔2

sp,ref

𝑠2 + 2𝜁sp,ref𝜔sp,ref𝑠 + 𝜔2
sp,ref

, (19)

where 𝜔sp,ref and 𝜁sp,ref are the desired natural frequency and damping ratio of the short period dynamics, respectively.
𝑇𝑧𝑤 is now the transfer function from 𝑤1 → [𝑧2 𝑧3]⊤ and so ∥𝑇𝑧𝑤 ∥∞ becomes

∥𝑇𝑧𝑤 ∥∞ =


[
𝑊2𝐾𝑆𝑎𝑛𝐹

𝑊4𝑀

]
∞
< 𝛾2, (20)

where the bandwidth of 𝑊2 is now set to a higher value than for the first stage to allow for more transient tracking
performance. The parameters of the transfer function 𝐹 are then tuned using hinfstruct instead of SOFHi, since the
matrices 𝐵𝑢 and 𝐶𝑦 are not of full rank in that case, which is an assumption made by the algorithms in SOFHi.

§These weighting functions must be stable and proper due to assumptions made about the generalized plant [35, Page 98].
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C. Gain-Scheduling
Flight dynamics change significantly with varying Mach and altitude through dynamic pressure. To make the

designed CAS more adaptable to variations in speeds and altitudes, 27 flight points are designed throughout the flight
envelope, between which the controller parameters are linearly interpolated. The shape of the flight envelope is based
on [37], where 15 flight points are added to the original 12 in the aforementioned literature to make the design grid
more dense, and ultimately make the controller perform better in between the original 12 flight points. The 2-DoF
design procedure described in subsection VI.B is applied around all the design points shown in Fig. 3a.

The (sub)-optimalH∞-norm of each flight point is presented in Table 7. The consequent gain surfaces can be seen
in Figs. 3b-3d, where it can be seen that gains with higher magnitude are observed at lower speeds and higher altitudes;
the system needs more actuator effort at these points in the flight envelope to meet the design objectives described in
subsection VI.A.

Table 7 H∞ norms for each flight point in both stages of the 2-DoF design.

(a) 𝛾1 [-] in Eq. 18 of the first stage in the 2-DoF design.

ℎ [m]
Mach [-] 0.4 0.5 0.6 0.7 0.8 0.9

1000 1.08 1.18 1.23 1.07
2500 1.15 1.20 1.08
4000 1.16 1.17 1.23
5000 1.11 1.15 1.19 1.16
6000 1.13 1.18 1.10
7250 1.11 1.17 1.11
8500 1.13 1.14 1.07
10000 1.14 1.13 1.06 1.08

(b) 𝛾2 [-] in Eq. 20 of the second stage in the 2-DoF design.

ℎ [m]
Mach [-] 0.4 0.5 0.6 0.7 0.8 0.9

1000 1.03 1.09 1.07 1.04
2500 1.06 1.04 1.02
4000 1.06 1.02 1.08
5000 1.07 1.03 1.08 1.06
6000 1.03 1.10 1.09
7250 1.03 1.10 1.02
8500 1.06 1.09 1.04
10000 1.06 1.11 1.08 1.06

D. Linear Analysis
Now that the gain surfaces have been tuned in subsection VI.B and subsection VI.C, the closed-loop system can be

analyzed in both frequency- and time-domain. This will be done in the subsequent subsections.

1. Sensitivity Functions
The six most relevant sensitivity functions to assess the frequency-domain characteristics of the closed-loop system

are shown in Fig. 4 for the first stage in the 2-DoF design. To attenuate input- and output disturbances acting on both
the plant input and output, 𝑆𝑎𝑛 , 𝑆𝑎𝑛𝐺, and 𝑆𝑖 are minimized at low frequencies. Furthermore, it can be seen that the
𝐾𝑆𝑎𝑛 , 𝑇𝑎𝑛 , and 𝑇𝑖 have adequate roll-off at higher frequencies to attenuate the higher frequency measurement noise and
unmodelled dynamics at the plant input.

The sensitivity functions of the second stage in the 2-DoF design are shown in Fig. 5. In Fig. 5a, it can be seen
that 𝐾𝑆𝑎𝑛𝐹 has a higher peak than 𝐾𝑆𝑎𝑛 in the mid-frequency range, which is due to the addition of the feedforward
function 𝐹, which leads to the controlled system requiring more control effort in this frequency range. Furthermore, the
function 𝑀 in Fig. 5b is seen to be small at lower frequencies to reduce the error between the reference model and the
output of the system at lower- to mid-frequencies. A clear trade-off takes place, where the peak of 𝑀 is limited as much
as possible in the mid-frequency range, while minimizing 𝐾𝑆𝑎𝑛𝐹, i.e. the required control effort from pilot input.

2. Stability Margins
Classical stability margins can give an optimistic perspective of the stability margins, since they do not take into

account simultaneous gain and phase. To assess the stability of the closed-loop system more conservatively, the Nichols
plots of each flight point including the worse-case exclusion region are shown in Fig. 6 at plant input and output. The
smallest disk margin can be seen in Fig. 6b and consists of a 10 [dB] gain margin and 56 [deg] phase margin. The
minimum requirements of 6 [dB] and 40 [deg], as defined in subsection VI.A, are thus considered to be met.
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(a) Flight envelope including its design points. (b) 𝐾𝑖 [deg/(𝑔 · 𝑠)] gain surface.

(c) 𝐾𝑝 [deg/𝑔] gain surface. (d) 𝐾𝑞 [s] gain surface.

Fig. 3 Gain-scheduling results: Flight envelope and the gain surfaces, tuned by SOFHi.

3. Linear Simulations
To assess the performance in controlling the normal acceleration output, time-domain simulations were performed

on linear models around each of the 27 flight points in Fig. 3a. These are presented in Fig. 7. The results show good
reference tracking and disturbance rejection, with no steady-state error, very small percentages in overshoot and a
settling time under the required 3 seconds.

The specific values for the response parameters are presented in Table 8. In Table 8b, it can be seen that the damping
ratios of the short-period dynamics are all above the minimum requirement of 0.3 [-] set in subsection VI.A. Furthermore,
the settling times in Table 8c and the percentages overshoot in Table 8e meet the requirements of respectively 3 seconds
and 10% for all of the flight points.

4. Handling Qualities
Handling qualities are analyzed to assess the short-period dynamics of the controlled system. To do this, first a

Low-Order Equivalent System (LOES) is fit to the Higher-Order System (HOS). Since the LOES is a second-order
transfer function, this allows to extract important short-period characteristics such as the natural frequency, damping
ratio and time constant. Ultimately, this allows one to obtain the longitudinal handling qualities, which are assessed
through the Control Anticipation Parameter (CAP) [38], one of the design requirements defined in subsection VI.A.

The result of this is visualized in Fig. 8. It can be seen that the gain-scheduled controller meets the requirements for
CAP. Naturally, there is a clear trade-off between improving CAP requirements and reducing control effort, so care was
taken to ensure as little control effort as possible, while still meeting the CAP requirements.
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(a) Singular value plot of 𝑆𝑎𝑛 . (b) Singular value plot of 𝑆𝑖 .

(c) Singular value plot of 𝑇𝑎𝑛 . (d) Singular value plot of 𝑇𝑖 .

(e) Singular value plot of 𝑆𝑎𝑛𝐺. (f) Singular value plot of 𝐾𝑆𝑎𝑛 .

Fig. 4 Sensitivity functions of the first stage in the 2-DoF design described in subsection VI.B.
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(a) Singular value plot of 𝐾𝑆𝑎𝑛𝐹. (b) Singular value plot of 𝑀 .

Fig. 5 Singular values of the sensitivity functions of the second stage in the 2-DoF design described in
subsection VI.B.

(a) At plant input. (b) At plant output.

Fig. 6 Nichols plots of all flight points [blue] at both plant input as well as normal acceleration output. Exclusion
region [red] is based on the worst-case disk margin of all the flight points.
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Fig. 7 Linear simulations of all the flight points including an input disturbance of 0.2 [deg] at 5 seconds and an
output disturbance of 0.2 [𝑔] at 10 seconds.

(a) CAP requirement. (b) Damping ratio requirement.

Fig. 8 Level 1 CAP requirements for Category A flight phases based on [38]. Dots indicate the result for each of
the 27 flight points. Green indicates that the dot is within the desired region.
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Table 8 Linear response characteristics for all designed flight points.

(a) Natural frequency 𝜔sp [rad/s].

ℎ [m]
Mach [-] 0.4 0.5 0.6 0.7 0.8 0.9

1000 2.28 2.77 3.23 3.79
2500 2.52 2.92 3.38
4000 2.29 2.65 3.10
5000 2.15 2.49 2.87 3.23
6000 2.46 2.67 3.03
7250 2.12 2.47 2.75
8500 1.93 2.24 2.55
10000 1.75 2.01 2.26 2.54

(b) Damping ratio 𝜁sp [-].

ℎ [m]
Mach [-] 0.4 0.5 0.6 0.7 0.8 0.9

1000 0.47 0.49 0.51 0.54
2500 0.47 0.50 0.52
4000 0.46 0.48 0.51
5000 0.46 0.48 0.49 0.52
6000 0.48 0.49 0.50
7250 0.46 0.48 0.49
8500 0.45 0.47 0.49
10000 0.44 0.46 0.47 0.49

(c) Settling times [s] with a 5% threshold.

ℎ [m]
Mach [-] 0.4 0.5 0.6 0.7 0.8 0.9

1000 2.21 1.85 1.56 1.01
2500 2.03 1.75 1.45
4000 2.21 1.92 1.65
5000 2.34 2.02 1.79 1.57
6000 2.04 1.92 1.69
7250 2.35 2.06 1.85
8500 2.57 2.23 1.98
10000 2.81 2.46 2.22 1.99

(d) Rise times [s] from 10% to 90% of the steady-state value.

ℎ [m]
Mach [-] 0.4 0.5 0.6 0.7 0.8 0.9

1000 1.08 0.88 0.77 0.68
2500 0.96 0.84 0.73
4000 1.04 0.91 0.79
5000 1.11 0.97 0.84 0.75
6000 0.97 0.89 0.79
7250 1.11 0.95 0.86
8500 1.20 1.04 0.92
10000 1.32 1.15 1.03 0.92

(e) Percentages in overshoot.

ℎ [m]
Mach [-] 0.4 0.5 0.6 0.7 0.8 0.9

1000 2.31 2.53 2.22 1.45
2500 2.69 2.54 2.08
4000 2.80 2.70 2.60
5000 2.80 2.65 2.79 2.42
6000 2.93 3.02 2.76
7250 2.85 3.12 2.86
8500 2.94 3.10 2.99
10000 2.91 3.18 3.19 3.15

(f) Bandwidth 𝜔𝐵𝑊 [rad/s] of the loop gain 𝐿𝑎𝑛 .

ℎ [m]
Mach [-] 0.4 0.5 0.6 0.7 0.8 0.9

1000 2.23 2.49 2.78 3.28
2500 2.40 2.68 3.11
4000 2.23 2.58 2.68
5000 2.15 2.49 2.68 3.11
6000 2.36 2.58 3.00
7250 2.27 2.54 2.89
8500 2.11 2.49 2.78
10000 2.03 2.27 2.58 2.78
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E. Non-Linear Simulations
To showcase the robustness of the gain-scheduled controller, Monte-Carlo simulations are performed with varying

uncertain parameters, which are chosen to be the longitudinal position of the center of gravity 𝑋COG and the aircraft
mass 𝑚. Variations in these parameters range in 𝑋COG ± 4.35% and 𝑚 ± 1000 kg, similarly to [37]. The simulations
were performed on the non-linear 6-DoF model from [31, 32] for high-𝑔 maneuvers, for which the results are shown in
Fig. 9. It can be seen that even for very high 𝑔’s, the control effort is small and the response accurately follows the
reference signal. Furthermore, although uncertainties can be seen to have an effect on the response, the controller is still
able to accurately track the reference signal with a gradual degradation in performance for increasing uncertainty. The
6-DoF position and attitude trajectory of the aircraft for the nominal run can be seen in Fig. 10 in the Appendix.

Fig. 9 Monte-Carlo simulations applied on the non-linear model with 50 runs to showcase the robustness of the
controller at high-𝑔’s maneuvers.
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VII. Conclusion
The purpose of this paper was to investigate Lyapunov-based SOF synthesis methods that could potentially compete

with the well-established non-smooth optimization methods, hinfstruct and HIFOO. This would ultimately lead to more
insight into the performance of SOF controller synthesis methods in theH∞ framework.

Three algorithms were deemed most promising, i.e. T-K iteration and two S-variable approaches; these were
implemented and bundled into a toolbox named SOFHi. Results showed that SOFHi was able to significantly
outperform HIFOO in terms of 𝐻∞ performance index. However, comparing SOFHi to hinfstruct showed that hinfstruct
outperformed SOFHi when no significance margin was considered, but SOFHi was able to compete and even slightly
outperform hinfstruct when this margin was in fact considered. It was thus shown that Lyapunov-based methods are
indeed competitive to the non-smooth optimization methods, although the Lyapunov methods are limited by the amount
of decision variables in the Lyapunov matrices, so the methods are mostly applicable to low-medium sized plants. In the
end, the Lyapunov methods serve as an alternative to the well-established non-smooth methods.

Structured SOF was achieved in the implementation and a "fast setting" of SOFHi was proposed, SOFHiEVO, which
was able to significantly improve on SOFHi in terms of computational efficiency. This allows one to start many more
runs from different initial conditions within the same time-frame. Doing this, SOFHiEVO was able to significantly
outperform HIFOO and was able to be competitive to hinfstruct, even outperforming it for one of its runs.

Finally, to showcase the effectiveness of the algorithms, SOFHi was applied to design a robust gain-scheduled
PI-controller for a normal acceleration CAS of the F-16 Fighting Falcon for a large portion of the flight envelope.
Performance was achieved through meeting the handling qualities and robustness to uncertainties was demonstrated
through Monte-Carlo simulations.

VIII. Appendix

Fig. 10 Position and attitude trajectory of the aircraft, based on 6-DoF data from the non-linear model [39].
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Table 9 ∥𝑇𝑧𝑤 (𝑃, 𝐾)∥∞ for 30 random starts applied on benchmark models from the Compleib library. ’X’
denotes either that the algorithm has failed or that the algorithm is not applicable to that model. Superior results
are placed in bold.

Model T-K S-approach I S-approach II SOFHi hinfstruct HIFOO
AC2 1.114893E-01 1.114946E-01 1.114893E-01 1.114893E-01 1.114893E-01 1.114893E-01
AC3 3.429719E+00 3.444490E+00 3.523945E+00 3.429719E+00 3.606264E+00 3.424724E+00
AC5 6.640498E+02 6.610349E+02 6.636103E+02 6.610349E+02 6.644574E+02 6.652504E+02
AC6 4.113974E+00 4.113943E+00 4.113965E+00 4.113943E+00 4.113956E+00 4.113944E+00
AC7 X 6.509075E-02 6.509076E-02 6.509075E-02 6.509066E-02 6.509060E-02
AC8 X 2.005012E+00 2.005012E+00 2.005012E+00 2.005012E+00 2.005012E+00
AC11 2.834266E+00 2.814323E+00 2.827427E+00 2.814323E+00 2.812956E+00 2.831976E+00
AC15 1.516871E+01 1.602499E+01 1.589971E+01 1.516871E+01 1.516871E+01 1.516884E+01
AC17 6.612428E+00 6.612428E+00 6.612428E+00 6.612428E+00 6.612428E+00 6.612428E+00
AC18 1.074842E+01 X 1.069786E+01 1.069786E+01 1.069716E+01 1.255910E+01
HE1 1.538209E-01 1.538620E-01 1.539639E-01 1.538209E-01 1.538209E-01 1.537869E-01
HE2 4.258125E+00 3.936859E+00 3.900153E+00 3.900153E+00 3.896131E+00 3.921615E+00
HE4 2.304968E+01 2.413298E+01 2.283837E+01 2.283837E+01 2.283817E+01 2.283867E+01
HE6 X 1.923842E+02 1.923599E+02 1.923599E+02 1.923531E+02 1.923736E+02
HE7 X 1.923880E+02 1.923882E+02 1.923880E+02 1.923862E+02 1.923913E+02

REA1 8.665937E-01 8.670439E-01 8.656412E-01 8.656412E-01 8.654988E-01 8.665155E-01
REA2 1.149412E+00 1.149488E+00 1.154296E+00 1.149412E+00 1.148838E+00 1.148353E+00
DIS1 4.159406E+00 4.162835E+00 4.160295E+00 4.159406E+00 4.159706E+00 4.163724E+00
DIS2 1.022484E+00 1.040235E+00 1.037782E+00 1.022484E+00 1.054774E+00 1.022421E+00
DIS3 1.062568E+00 1.299316E+00 1.063933E+00 1.062568E+00 1.061249E+00 1.066600E+00

WEC1 4.055088E+00 4.074383E+00 4.050097E+00 4.050097E+00 4.050014E+00 4.050143E+00
MFP 3.277044E+01 4.273129E+01 3.159155E+01 3.159155E+01 3.158987E+01 3.158987E+01
EB1 X 3.122517E+00 3.122520E+00 3.122517E+00 3.122525E+00 3.122521E+00
EB2 X 2.020041E+00 2.020041E+00 2.020041E+00 2.020102E+00 2.020041E+00
EB3 X 2.057463E+00 2.057463E+00 2.057463E+00 2.057527E+00 2.057463E+00
EB4 X 2.056323E+00 2.056323E+00 2.056323E+00 2.056387E+00 2.056323E+00
PAS 5.232251E-01 1.980016E+01 X 5.232251E-01 X 7.046017E-01
PSM 9.202430E-01 9.202430E-01 9.202430E-01 9.202430E-01 9.202430E-01 9.202430E-01
NN1 1.376257E+01 1.630724E+01 1.438951E+01 1.376257E+01 1.376959E+01 1.382931E+01
NN2 2.221556E+00 2.221556E+00 2.221556E+00 2.221556E+00 2.221583E+00 2.221556E+00
NN4 1.362297E+00 1.360271E+00 1.358669E+00 1.358669E+00 1.358663E+00 1.359066E+00
NN5 2.665445E+02 X X 2.665445E+02 2.665445E+02 2.665445E+02
NN6 5.812074E+03 5.738319E+03 3.688675E+03 3.688675E+03 5.602556E+03 5.602552E+03
NN7 7.410449E+01 7.407439E+01 X 7.407439E+01 7.407568E+01 7.407439E+01
NN8 2.890486E+00 2.891936E+00 2.914111E+00 2.890486E+00 2.884880E+00 2.885378E+00
NN11 X 8.383050E-02 8.335992E-02 8.335992E-02 9.116151E-02 9.261801E-02
NN12 1.618333E+01 1.730641E+01 1.682266E+01 1.618333E+01 1.611875E+01 1.683929E+01
NN13 X 1.405944E+01 1.406420E+01 1.405944E+01 1.405794E+01 1.405795E+01
NN15 9.808961E-02 9.809005E-02 8.322924E+00 9.808961E-02 9.808961E-02 9.809001E-02
NN16 9.555152E-01 9.568741E-01 9.559968E-01 9.555152E-01 9.555567E-01 9.555658E-01
NN17 1.121821E+01 1.121821E+01 1.121821E+01 1.121821E+01 1.121821E+01 1.121821E+01

HF2D10 7.979732E+04 X X 7.979732E+04 7.978836E+04 7.989110E+04
HF2D11 7.689651E+04 X X 7.689651E+04 7.723728E+04 7.700805E+04
HF2D13 1.015485E+05 X X 1.015485E+05 1.015485E+05 1.015485E+05
HF2D14 5.308371E+05 X X 5.308371E+05 5.263977E+05 5.270185E+05
HF2D15 1.749107E+05 X X 1.749107E+05 1.733239E+05 1.749827E+05
HF2D16 4.441442E+05 X X 4.441442E+05 4.441442E+05 4.441442E+05
HF2D17 3.002366E+05 X X 3.002366E+05 3.002366E+05 3.002366E+05
HF2D18 1.196238E+02 1.227614E+02 1.196883E+02 1.196238E+02 1.195602E+02 1.236557E+02
BDT1 2.662119E-01 2.680469E-01 2.662325E-01 2.662119E-01 2.662119E-01 2.662119E-01
TMD X 2.180880E+00 2.157190E+00 2.157190E+00 2.136572E+00 2.523276E+00
FS 8.548169E+04 X X 8.548169E+04 8.551230E+04 X

DLR1 X X 2.779558E+00 2.779558E+00 2.777289E+00 2.777289E+00
ROC7 1.121820E+00 1.117512E+00 1.119708E+00 1.117512E+00 1.120327E+00 1.122203E+00
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Table 10 ∥𝑇𝑧𝑤 (𝑃, 𝐾)∥∞ for 100 random starts applied on benchmark models from the Compleib library. ’X’
denotes either that the algorithm has failed or that the algorithm is not applicable to that model. Superior results
are placed in bold.

Model T-K S-approach I S-approach II SOFHi hinfstruct HIFOO
AC2 1.114893E-01 1.114895E-01 1.114893E-01 1.114893E-01 1.114893E-01 1.114893E-01
AC3 3.417253E+00 3.434777E+00 3.432525E+00 3.417253E+00 3.403622E+00 3.435171E+00
AC5 6.602662E+02 6.616976E+02 6.636129E+02 6.602662E+02 6.640303E+02 6.653228E+02
AC6 4.113973E+00 4.113941E+00 4.113955E+00 4.113941E+00 4.113942E+00 4.113956E+00
AC7 X 6.509075E-02 6.509076E-02 6.509075E-02 6.509060E-02 6.509066E-02
AC8 X 2.005012E+00 2.005012E+00 2.005012E+00 2.005012E+00 2.005012E+00
AC11 2.819620E+00 2.815367E+00 2.826457E+00 2.815367E+00 2.812758E+00 2.826595E+00
AC15 1.516871E+01 1.599973E+01 1.579698E+01 1.516871E+01 1.516871E+01 1.516876E+01
AC17 6.612428E+00 6.612428E+00 6.612428E+00 6.612428E+00 6.612428E+00 6.612428E+00
AC18 1.074677E+01 1.069754E+01 1.069794E+01 1.069754E+01 1.069715E+01 1.191095E+01
HE1 1.538209E-01 1.538620E-01 1.539636E-01 1.538209E-01 1.538209E-01 1.538309E-01
HE2 3.922528E+00 3.904555E+00 3.901241E+00 3.901241E+00 3.895785E+00 3.908621E+00
HE4 2.286146E+01 2.377527E+01 2.283858E+01 2.283858E+01 2.283817E+01 2.283817E+01
HE6 X 1.923592E+02 1.923570E+02 1.923570E+02 1.923529E+02 1.923544E+02
HE7 X 1.923879E+02 1.923882E+02 1.923879E+02 1.923860E+02 1.923902E+02

REA1 8.666032E-01 8.659882E-01 8.657506E-01 8.657506E-01 8.654989E-01 8.660901E-01
REA2 1.148926E+00 1.148471E+00 1.154289E+00 1.148471E+00 1.148223E+00 1.148925E+00
DIS1 4.159374E+00 4.162344E+00 4.160670E+00 4.159374E+00 4.159532E+00 4.159992E+00
DIS2 1.022326E+00 1.022920E+00 1.022776E+00 1.022326E+00 1.054774E+00 1.023024E+00
DIS3 1.063862E+00 1.107925E+00 1.068321E+00 1.063862E+00 1.061295E+00 1.062616E+00

WEC1 4.053096E+00 4.050243E+00 4.050419E+00 4.050243E+00 4.050012E+00 4.050237E+00
MFP 3.167343E+01 3.159272E+01 3.159157E+01 3.159157E+01 3.158987E+01 3.158987E+01
EB1 X 3.122517E+00 3.122520E+00 3.122517E+00 3.122521E+00 3.122525E+00
EB2 X 2.020041E+00 2.020041E+00 2.020041E+00 2.020041E+00 2.020102E+00
EB3 X 2.057463E+00 2.057463E+00 2.057463E+00 2.057463E+00 2.057527E+00
EB4 X 2.056323E+00 2.056323E+00 2.056323E+00 2.056323E+00 2.056387E+00
PAS 5.068844E-01 3.146420E+01 X 5.068844E-01 X 7.965271E-01
PSM 9.202430E-01 9.202430E-01 9.202430E-01 9.202430E-01 9.202430E-01 9.202430E-01
NN1 1.374446E+01 1.383531E+01 1.388575E+01 1.374446E+01 1.377347E+01 1.384751E+01
NN2 2.221556E+00 2.221556E+00 2.221556E+00 2.221556E+00 2.221556E+00 2.221583E+00
NN4 1.362235E+00 1.360414E+00 1.359962E+00 1.359962E+00 1.358776E+00 1.359355E+00
NN5 2.665445E+02 X 2.665445E+02 2.665445E+02 2.665445E+02 2.665445E+02
NN6 5.777714E+03 5.602552E+03 3.688675E+03 3.688675E+03 5.602552E+03 5.602553E+03
NN7 7.411120E+01 7.407439E+01 7.407439E+01 7.407439E+01 7.407439E+01 7.407568E+01
NN8 2.886156E+00 2.887578E+00 2.891828E+00 2.886156E+00 2.884885E+00 2.884980E+00
NN11 X 8.494687E-02 8.329533E-02 8.329533E-02 9.112113E-02 9.298774E-02
NN12 1.573776E+01 X 2.035457E+01 1.573776E+01 1.635851E+01 1.668808E+01
NN13 X 1.405835E+01 1.405809E+01 1.405809E+01 1.405794E+01 1.405795E+01
NN15 9.808961E-02 9.808962E-02 9.809066E-02 9.808961E-02 9.808961E-02 9.808988E-02
NN16 9.552605E-01 9.578570E-01 9.559619E-01 9.552605E-01 9.555631E-01 9.556033E-01
NN17 1.121821E+01 1.121821E+01 1.121821E+01 1.121821E+01 1.121821E+01 1.121821E+01

HF2D10 7.979057E+04 X X 7.979057E+04 7.978000E+04 7.990348E+04
HF2D11 7.689588E+04 X X 7.689588E+04 7.712759E+04 7.702937E+04
HF2D13 1.015485E+05 X X 1.015485E+05 1.015485E+05 1.015485E+05
HF2D14 5.270742E+05 X X 5.270742E+05 5.263977E+05 5.273724E+05
HF2D15 1.749006E+05 X X 1.749006E+05 1.733193E+05 1.737786E+05
HF2D16 4.441442E+05 X X 4.441442E+05 4.441442E+05 4.442765E+05
HF2D17 3.002366E+05 X X 3.002366E+05 3.002366E+05 3.002366E+05
HF2D18 1.196188E+02 1.247764E+02 1.237381E+02 1.196188E+02 1.195597E+02 1.195751E+02
BDT1 2.662119E-01 2.662240E-01 2.662323E-01 2.662119E-01 2.662119E-01 2.662119E-01
TMD X 2.160220E+00 2.150294E+00 2.150294E+00 2.128761E+00 2.294840E+00
FS 8.548154E+04 X X 8.548154E+04 8.548257E+04 X

DLR1 X X 2.777886E+00 2.777886E+00 2.777289E+00 2.777289E+00
ROC7 1.121657E+00 1.116740E+00 1.119300E+00 1.116740E+00 1.120098E+00 1.121316E+00
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