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Modeling Asymmetric Blade Damage in Quadrotors through
System Identification Techniques

B. Saify∗ and Dr.ir. C.C. de Visser †

TU Delft Faculty of Aerospace Engineering Kluyverweg 1, Delft, South Holland, 2629HS

As quadrotors continue to become more popular for personal and commercial use, improving
their safety is essential, especially in impaired operating states. With (asymmetric) blade damage
(ABD) being a potentially dangerous type of impairment, it is beneficial to understand how it
affects the dynamic behavior of a quadrotor. This research examines the effects of blade damage
on the dynamic model of a quadrotor through system identification techniques. Time scale
separation is used to split the low-frequency aerodynamic behavior and high-frequency (HF)
dynamics. Aerodynamic models are identified using stepwise regression, and a novel approach
for modeling HF dynamics –relying purely on onboard sensors– using spectral analysis and
simplex B-splines has been developed. A majority of the aerodynamic models surpass 𝑅2 values
of 0.95, and the HF models exceed 𝑅2 values of 0.90. The findings provide new insights and
implications for diagnosing ABD in quadrotors.

I. Nomenclature

F𝐼 = inertial frame
F𝐵 = body frame
𝒑𝑰 = quadrotor inertial position vector
𝒗𝑩 = quadrotor body frame velocity vector
𝒒 = quadrotor attitude vector
𝝎𝒃 = quadrotor angular velocity vector in the body frame
𝑢, 𝑣, 𝑤 = forward, lateral, and vertical velocity components in the body frame respectively
𝜙, 𝜃, 𝜓 = roll, pitch, and yaw angles respectively
𝑝, 𝑞, 𝑟 = roll, pitch, and yaw rates respectively
𝑭𝑩 = external force vector in the body frame
𝑴𝑩 = external moment vector in the body frame
𝑹𝑰𝑩 = transformation matrix from body to inertial frame
𝑲𝑰𝑩 = matrix which maps body frame angular rates 𝝎𝒃 to inertial attitude rates ¤𝒒
Ω𝑖 = rotational speed of rotor 𝑖
𝑇 = thrust
𝑣𝑖 = induced velocity
𝒚 = observation vector
𝜽 = parameter vector
𝑨 = regressor matrix
𝐹𝑥,𝑦,𝑧 = aerodynamic force components in the body frame
𝑀𝑥,𝑦,𝑧 = aerodynamic moment components in the body frame
𝜇𝑥,𝑦,𝑧 = advance ratios

II. Introduction

Quadrotors are one of the most popular unmanned aerial vehicle (UAV) configurations in use, owing to their
simplicity and versatility [1]. With these systems starting to gain traction in the commercial sector, safe operability

has come under scrutiny. This is corroborated by the vast amount of research focused on improving the safety and
∗PhD Candidate, Faculty of Aerospace Engineering, Aerospace Structures and Materials, TU Delft, b.saify@tudelft.nl
†Associate Professor, Faculty of Aerospace Engineering Control&Simulation, TU Delft

1

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Ja
nu

ar
y 

7,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

5-
00

08
 

 AIAA SCITECH 2025 Forum 

 6-10 January 2025, Orlando, FL 

 10.2514/6.2025-0008 

 Copyright © 2025 by Burhanuddin Saify, Coen de Visser. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 

 AIAA SciTech Forum 

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2025-0008&domain=pdf&date_stamp=2025-01-03


reliability of these systems. Key areas of research include safe control algorithms in the event of system impairments
[2–4], diagnosis of faults [5, 6], aerodynamic modeling [7–9] and safe flight envelope prediction [10].

Several fault scenarios can inflict quadrotors, with actuator faults being one of the most commonly researched due to
the high impact of such faults on controllability. Actuator faults in quadrotors are split into two sub-categories; motor
failures, and physical damage to the propeller blades. Control of quadrotors subject to complete motor failures has been
treated thoroughly [2–4]. The diagnosis of partial losses in rotor effectiveness has also been researched [5, 11, 12]. The
latter fault condition is characterized by physical damage to the propeller blades while the motor driving the damaged
propeller remains in good health. Physical blade damage has also received considerable attention in the literature both
in terms of robust control [13–15], as well as fault diagnosis [16–18].

Physical propeller damage is one of the important modes of structural failure which can adversely affect a quadrotor
and is the focus of this paper. Physical damage on a single propeller is divided into two categories; symmetrical and
asymmetrical. The former is characterized by equal extent and type of damage to each propeller blade. Naturally,
asymmetric damage is characterized by different levels of damage to each propeller blade. It can be argued that
asymmetric damage is worth investigating more than symmetric damage purely from the point of view that such a fault
condition is more likely to occur, which is also confirmed to some qualitative extent through the experiments of Brown
et al. [19].

Several approaches to the diagnosis of (a)symmetric blade damage have been proposed in literature [17, 18, 20–22].
Most approaches for diagnosing blade damage rely on data gathered using an Inertial Measurement Unit (IMU), a
ubiquitous sensor found on quadrotors because it is essential for state estimation and control. The most common
approaches to ABD diagnosis involve transforming the time-series IMU data to the frequency domain. This of course
makes intuitive sense because the circular –and therefore periodic– motion of the propeller blades results in salient
features in the frequency domain. Many methods use features extracted directly from the time domain [18] or frequency
domain [17, 23] to train neural-network-based classifiers. Notably, Brown et al. [19] thoroughly examine a slew of
potential sensors for blade damage diagnosis such as thermal measurements of the electronic speed controllers (ESC),
accelerometer measurements, current sensors, and battery voltage to name a few. However, they determined that the
accelerometer is one of the best options for ABD diagnosis.

While several works focus on the diagnosis of ABD, no example was found where the effects of blade damage are
modeled through system identification techniques. Neither the effects on the aerodynamics nor the high-frequency
effects of ABD on quadrotors are thoroughly studied through data-driven analysis. This paper aims to bridge this gap in
knowledge. This is achieved by performing experiments with quadrotor platforms subject to ABD at varying levels. Data
gathered from these experiments is used to build aerodynamic models and hybrid mass-aerodynamic high-frequency
models to capture the effects of ABD. The aim of these models is twofold; for one they allow for accurate simulations
and therefore model-based prediction of safe flight envelopes of quadrotors afflicted with blade damage, and to examine
the effects of varying locations and levels of blade damage on aerodynamic model parameters as well as the parameters
of the models of the high-frequency phenomenon caused by mass and aerodynamic imbalances.

The paper outline is as follows. Fundamentals of the quadrotor platform are introduced in Sec. III, the methodology
for experimentation, and modeling are outlined in Sec. IV and the results are presented in Sec. V. Section VI provides a
discussion of the findings, limitations, and potential of the methodology, followed by a conclusion in Sec. VII.

III. Quadrotor Fundamentals

A. First Principles Model
The kinematics and simplified dynamics of a quadrotor are introduced based on first principles and simple relations

for propulsive force and moments. A quadrotor is 6 degree-of-freedom (DOF) system, in that it can control its position
and attitude in 3D space. Two reference frames are used when defining the equations of motion of a quadrotor; the
inertial frame and the body-fixed reference frame. The inertial frame F𝐼 is aligned with respect to the Earth such that the
𝑥𝑦 plane is parallel to the ground, and the 𝑥𝑧 plane contains the Earth’s axis of rotation. The Earth is assumed locally flat
and non-rotating (which is quite common for quadrotor analysis) resulting in the inertial frame being chosen arbitrarily
as long as the 𝑧-axis is perpendicular to, and points into, the ground. The body frame F𝐵 is defined as depicted in Fig. 1
and is centered at the center of gravity of the quadrotor.

Let 𝒑𝐼 = [ 𝑥 𝑦 𝑧 ]𝑇 and 𝒗𝐵 = [ 𝑢 𝑣 𝑤 ]𝑇 represent the inertial position and body frame velocities of a quadrotor
respectively. Similarly, let 𝒒 = [ 𝜙 𝜃 𝜓 ]𝑇 and 𝝎𝐵 = [ 𝑝 𝑞 𝑟 ]𝑇 represent the attitude of the quadrotor and angular
rates in the body frame respectively. Note that the attitude vector 𝒒 essentially describes the orientation of F𝐵 with

2

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Ja
nu

ar
y 

7,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

5-
00

08
 



Fig. 1 Representation of a quadrotor body frame and rotation directions of rotors [24]

respect to F𝐼 using Euler angles 𝜙, 𝜃, and 𝜓 to represent roll, pitch, and yaw respectively. The matrix 𝑹𝑰𝑩 describes
the transformation from the body frame velocities to the inertial velocities using the Euler angles. Similarly, 𝑲𝑰𝑩

kinematically relates body angular rates to inertial attitude rates. Constructions for these matrices can be found in [25].
With the aforementioned quantities defined, the equations of motion (EOM) of the quadrotor –split into the linear

and rotational EOM– can be formally introduced. Linear motion is described by Eq. (1) and Eq. (2) while rotational
motion is described by Eq. (3) and Eq. (4). The terms 𝑭𝐵 and 𝑴𝑩 represent the external forces and moments acting on
the quadrotor in F𝐵 respectively which are influenced by the effects of gravity, propulsion, and aerodynamics. This
simple model excludes the gyroscopic effects of the spinning rotors, and these effects are not included for the remainder
of the paper because their contribution was found to be negligible compared to the aerodynamic moments.

¤𝒑𝐼 = 𝑹𝐼𝐵𝒗𝐵 (1)

¤𝒗𝐵 =
1
𝑚
𝑭𝐵 + 𝝎𝐵 × 𝒗𝐵 (2)

¤𝒒 = 𝑲 𝐼𝐵𝝎𝐵 (3)

¤𝝎𝐵 = 𝑰−1 (𝑴𝐵 − 𝝎𝐵 × 𝑰𝝎𝐵) (4)

A simple model is added to the first principles model to account for the thrust force and propulsive control moments
created by the 4 rotors. Equation (5) describes the propulsive thrust generated as a result of the rotational speed Ω𝑖

of each rotor, and Eq. (6) describes the propulsive moments on each axis in F𝐵 as a function of rotor speeds and the
geometry of the quadrotor (see Fig. 1 for rotor numbering, rotation direction, and geometrical definitions of parameters
𝑙 and 𝑏). The parameters 𝜅0 and 𝜏0 are the thrust and torque constants of the propeller respectively.

𝑭𝐵,𝑝 =


0
0

−𝜅0
∑
Ω2

𝑖

 (5)

𝑴𝐵,𝑝 =



𝑏𝜅0 ((Ω2
1 +Ω2

2) − (Ω2
3 +Ω2

4))

𝑙𝜅0 ((Ω2
2 +Ω2

4) − (Ω2
1 +Ω2

3))

−𝜏0
∑
Ω2

𝑖
sign(Ω𝑖)


(6)

B. Extensions to the Quadrotor Model
The simple quadrotor model is only applicable around the hovering flight condition and fails to capture quadrotor

behavior in high-speed flight. Therefore, it has been extended in the literature by borrowing from helicopter theory
[9, 26]. These extensions describe the aerodynamic forces and moments generated by a quadrotor in moderate to
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high-speed flight. The most important effects are identified to be thrust variance, blade flapping, and induced drag
[9, 25–28].

Thrust variance describes the dependence of thrust (of a single rotor) on the incoming flow velocity 𝑉 and angle of
attack 𝛼 of the rotor plane with respect to the incoming flow. The thrust equation can be derived from both momentum
theory and blade element theory to yield Eq. 7 and Eq. 8 respectively where 𝐴 is rotor disk area, 𝑎 the blade airfoil
lift-slope, 𝑏 the number of blades, 𝑐 the chord, 𝑅 the rotor radius, 𝜔 the propeller rotational speed, and 𝜃 the blade pitch
angle. These relations were used by Sun et al. [7, 29] to inform candidate model regressor choices for quadrotor model
identification.

𝑇 = 2𝜌𝐴𝑣𝑖
√︃
𝑉2 + 2𝑉𝑣𝑖 sin𝛼 + 𝑣2

𝑖
(7)

𝑇 =
𝜌𝑎𝑏𝑐𝜔2𝑅3

2

(
𝜃

3
+ 𝑉2 cos2 𝛼𝜃

2𝜔2𝑅2 + 𝑉 sin𝛼 + 𝑣

2𝜔𝑅

)
(8)

Blade flapping is another important phenomenon that affects quadrotors in translational flight and is not accounted
for by the first principles model. Blade flapping occurs when the velocity field at a blade changes as a function of the
azimuth angle of the blade, for example in forward flight where the advancing blade experiences a higher velocity
than the retreating blade. The imbalance in the velocity field induces forces that cause the rotor plane, and thus the
thrust vector, to tilt such that it is no longer perpendicular to the actuator (motor) axis. This effect has been analyzed
thoroughly in helicopter literature [30] and has been adopted to explain quadrotor body forces that occur in the 𝑥𝑦

plane. The tilting of the thrust vector also induces aerodynamic pitching moments depending on how far the c.g. of the
quadrotor is from the plane containing the 4 rotors.

The flap angle 𝛽 of a blade is defined as a function of the azimuth Ψ using Eq. 9 where 𝑎0 is the coning angle 𝑎1𝑠
and 𝑏1𝑠 are the tilt angles of the rotor plane orthogonal to, and along the in-plane velocity vector of the rotor. These
angles can be calculated using Eq. 10 and Eq. 11 [27]. The values of parameters A and B are determined by the physical
characteristics of the propeller. With the known thrust and tilt of the rotor plane due to flapping, the thrust vector can be
projected into the 𝑥𝑦 body plane of the quadrotor to predict drag forces and resultant moments. In addition to moments
caused by in-plane drag-like forces at the rotor, the stiffness of the rotor blades also induces moments directly at the
rotor axis. This moment is computed using Eq. 12 [27].

𝛽 = 𝑎0 − 𝑎1𝑠 cosΨ + 𝑏1𝑠 sinΨ (9)

𝑎1𝑠 =

��𝑽 𝑝

��
Ω𝑅

𝐴1𝑐 +
1
Ω
𝐵2𝑝 − 1

Ω
𝐵1𝑞 (10)

𝑏1𝑠 = −
��𝑽 𝑝

��
Ω𝑅

𝐴1𝑠 +
1
Ω
𝐵1𝑝 − 1

Ω
𝐵2𝑞 (11)

𝑀𝑏𝑠 = 𝑘𝛽𝑎1𝑠 (12)

IV. Modeling Methodology
The presence of ABD is assumed to show effects in two separable frequency regions; the low-frequency region, and

the high-frequency region. Damaged propellers experience a loss in thrust capability due to a decrease in blade surface
area, which subsequently impacts the dynamic ability of the quadrotor. This loss of thrust affects the low frequency
(<60 Hz) dynamic behavior of the quadrotor such as the ability to produce control moments, and accelerations in the 𝑧

body axis.
The high-frequency effects of asymmetric damage are caused by imbalances in the mass, and aerodynamic forces

acting on the damaged propeller. These effects are dominant in the frequency range of the motor rotational speed,
which is roughly an order of magnitude higher than the dynamics of the quadrotor as a whole. For example, the hover
frequencies of the propellers on the chosen experimental platforms are in the range of 280 Hz to 350 Hz and can go
up to 550 Hz at the maximum throttle setting, which is much higher than the cut-off frequency of the slow-speed
quadrotor dynamics when no blade damage is present. This assumption is further solidified by Sun et al. [31] who
use a cut-off frequency of only 20 Hz for identifying aerodynamic models for a quadrotor comparable in size and
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Table 1 Damage location abbreviations

Damage location Front Back Right Left
Abbrevitaion F B R L

mass to the experimental quadrotor platforms used in this research. Using the assumption of time-scale separation, the
low-frequency aerodynamic effects, and high-frequency mass-aerodynamic imbalance effects occurring due to ABD are
modeled separately.

This section outlines the techniques used to model the aerodynamic models, and high-frequency dynamics models
for quadrotors with ABD. The damage cases tested in this research are defined in Sec. IV.A. The experimental platforms
used for the research are presented, and practical considerations are discussed in Sec. IV.B. The methodology utilized
to construct the low-frequency aerodynamic models and high-frequency models is explained in Sec. IV.C and IV.D
respectively.

A. Damage Scenarios

1. Damage Case Definitions
Figure 2 shows propellers artificially inflicted with asymmetric damage. The damage is introduced as a straight cut

along the blade chord (at each radial location). The damage level is defined as the missing blade span as a percentage of
propeller radius. Only damage to a single blade was tested. Additionally, both the Beetle and Geyser use the same type
of propeller.

Fig. 2 Damage cases tested (left to right): Healthy - 10% - 15% - 20% - 25% - 30% - 40%

Damage scenarios are described with respect to the damage level, and which propeller on the quadrotor is inflicted.
The nomenclature ’level”location’ is used to describe these damage scenarios. The location is a composition of
abbreviations listed in Table 1 while level is the extent of the damage.

The location for a damage scenario where a single propeller is damaged is defined by combining the longitudinal
location followed by the lateral location. For example, damage to the front-right propeller is defined by location identifier
’FR’. If there are two propellers damaged on the same side, then the location identifier is simply the abbreviation of that
side. For example, ’F’ would be the identifier for both front propellers being simultaneously damaged.

The level is simply the percentage damage of the propeller(s). For example, 30% damage to the front-right propeller
is represented as 30FR, while 30% damage to both front propellers is represented by 30F. It must be noted here that the
nomenclature scheme defined here does not account for simultaneous damage to more than two propellers, damage to
non-adjacent propeller pairs, or damage scenarios where adjacent propellers have different levels of damage. While these
damage scenarios are possible, they are qualitatively assumed less likely, especially ones where diagonally opposite
propellers are damaged. In addition to reducing the experimental costs, the aforementioned reasons are cited for the
choice of tested damage scenarios.

2. Damage Cases Tested
The damage cases covered by the aerodynamic models and HF models of the Beetle quadrotor are listed in Table 2

and 3 respectively. Damage cases with simultaneous damage to two propellers are not covered by the HF models of the
Beetle, while they are included in the aerodynamic models. The reason for this is further elaborated on in Sec. VI. The
aerodynamic models for the various damage cases are constructed both for hovering flights, as well as flights with a
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mean airspeed of 8 m/s to capture high-speed effects.
Table 4 shows the cases covered by the HF models of the Geyser drone. These cases are much more sparsely covered

when compared to the HF models of the Beetle. The reason for this is that the Geyser drone was treated as a secondary
platform to apply the HF modeling methodology which gave very good results on the Beetle. The aerodynamic models
of the Geyser were not identified because it was only used to test the HF modeling approach and how it generalizes to
different quadrotors.

Table 2 Damage scenarios tested
for Beetle aerodynamic modeling

10 20 30
F

FL
BL
BR

Table 3 Damage scenarios tested
for Beetle HF modeling

10 15 20 25 30
FL
FR
BL
BR

Table 4 Damage scenarios tested
for Geyser HF modeling

10 20 30 40
FL
FR
BL
BR

B. Experimental Platform and Practical Considerations

1. Platform and Facilities
Two quadrotors were used for experimentation shown in Fig. 3a and 3b with their respective code names. These

quadrotors are built using off-the-shelf hobby (kits and parts) and use open source flight control software Betaflight ∗.
The inertia properties of the Beetle quadrotor are presented in Table 5. The inertia properties of the Geyser are not
presented because these were not required for HF model identification however they are in the same order of magnitude
as the Beetle.

The experimental flights were conducted in the Open Jet Facility† and the CyberZoo‡. The former is a large
low-speed wind tunnel that can produce steady wind at up to 35 [m/s] and features a nozzle with dimensions 2.85 x
2.85 m. The latter is a large caged arena used for testing robotic systems. These facilities are found at the Aerospace
Engineering Faculty of the TU Delft. Both facilities feature an optical motion capture (mo-cap) system ’Optitrack’ §

which was used as an external data source to provide accurate measurements of the pose of the quadrotors. Looking at
Fig. 3a, the special reflective tape used by the Optitrack system to track the quadrotor can be seen pasted at various
locations around the frame.

2. Practical Limitations
One of the key practical limitations was the difficulty in gathering the required sensor data. Construction of the

aerodynamic models requires high-frequency sampling of the rotational speeds of each of the motors while modeling the
high-frequency effects requires high-rate raw (unfiltered) data from the IMU. Betaflight is capable of logging high-rate
motor speed data, raw accelerometer data, or raw gyroscope data simultaneously because of the inherent limitations of
the firmware. However, concurrent logging of all three of these sources of data is required to simultaneously gather data
for low-frequency and high-frequency modeling.

∗https://github.com/betaflight/betaflight
†https://www.tudelft.nl/lr/organisatie/afdelingen/flow-physics-and-technology/facilities/low-speed-wind-

tunnels/open-jet-facility
‡https://tudelftroboticsinstitute.nl/labs/cyber-zoo
§https://optitrack.com/

Table 5 Inertia properties of the Beetle (including battery)

Mass [kg] Moment of Inertia [kg m2]
𝐼𝑥𝑥 𝐼𝑦𝑦 𝐼𝑧𝑧

3.770E-01 8.998E-04 9.158E-04 1.467E-03
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Alternatively to Betaflight, PX4 ¶ was compatible with the flight controllers used in both experimental quadrotors
and provided the capability to log all required on-board data simultaneously. However, the motor speeds are measured
in PX4 via the telemetry line connecting the ESC to the flight control board unlike Betaflight which uses the more
advanced "bidirectional DShot". Therefore, the logging rate of motor speeds in PX4 is limited to 32 Hz while Betaflight
can log motor speeds at up to 2 kHz.

Due to the unique data collection limitations of each of the flight firmware, a compromise was made. Data for
low-frequency aerodynamic modeling was gathered using Betaflight, while that for high-frequency modeling was
gathered using PX4. This is possible because these models are assumed, and observed to be, separable in the frequency
domain as was explained earlier. One disadvantage to this approach is of course that double the flights have to be
performed, however, this was a manageable limitation.

Another practical limitation comes from the fact that flying with ABD causes severe vibrations which tend to saturate
the IMU, and also can cause the motors to fail over time. It was found that blade damage at or above 40% causes enough
clipping in the accelerometer, that the attitude estimate gets biased over time, making the quadrotor very difficult to
fly in angle mode. Motor failures were also observed to be more frequent at higher than 30% damage for the Beetle
quadrotor. For these reasons, the highest used in the experimental flights was 30% for the Beetle, while the Geyser
–having a higher mass, and better motors– could be reliably flown at 40% damage.

The clipping in the IMU also means that accelerations of the quadrotor caused by low-frequency aerodynamic forces
–which we are trying to model– can not be measured accurately. Even at lower damage levels, where clipping is not
present, the filtering of accelerometer data performed by Betaflight results in erroneous spikes in the accelerometer
measurements. To resolve this, the pose measurements obtained from the Optitrack system were used to compute the
accelerations in the body frame. Due to the exceptional position accuracy of the Optitrack system (< 1mm) and low
measurement noise, double time-differentiation of the position measurements using a 2𝑛𝑑 order Savitzky-Golay filter
[32] gives accurate acceleration estimates. Surprisingly, the accelerations derived from Optitrack position measurements
show similar noise performance as IMU measurements. An advantage of using Optitrack-derived accelerations is
that no filtering takes place. We however still cannot rely on these acceleration measurements for high-frequency
modeling because the sampling frequency of 120 Hz is not nearly as high as the 8 kHz sampling rate of the IMU, and
the oscillations in position and attitude resulting from the high-frequency forces and moments result in pose changes
which cannot be detected by Optitrack system. Thus, the Optitrack system is used to measure the accelerations which
are then used to build the low-frequency aerodynamic models while IMU-derived accelerations are used for modeling
the high-frequency behavior.

Unlike the accelerometer, the gyroscope is much more resilient against the vibrations caused by ABD. The limits of
the gyroscopes on both the Beetle and Geyser are 2400 𝑜/s, while the oscillations caused by the worst-case vibrations
are not more than around 400 deg/s in magnitude. Therefore, the flight controller, and standard PID-based flight control
algorithms of Betaflight and PX4 are able to accurately control the angular rates around all three body axes of the
quadrotor. The lack of clipping in the gyroscope also meant that the moments acting on the quadrotor body could be
recovered directly unlike the accelerations which were derived from the Optitrack pose measurements. The moments
𝑴𝐵 acting on the quadrotor are derived using Eq. 4 where ¤𝝎𝐵 is computed through numerical differentiation of the
measured angular rates using a 2𝑛𝑑 order Savitzky-Golay filter.

C. Aerodynamic Model Identification with Stepwise Regression

1. State estimation
In order to build accurate models, the states that are used as dependent variables are estimated. This is done using a

Extended Kalman Filter (EKF) [33]. As explained in Sec. IV.B, the accelerations of the quadrotor are measured using
the external mo-cap system because of severe vibration-induced clipping of the on-board accelerometers rendering
these measurements unusable. Similarly, velocity is also reconstructed from the Optitrack position measurements. This
results in all measurements in terms of linear dynamics (Eq 1 and 2) coming from a single source. This essentially
means that the measurements must be taken as ground truth, and no state estimation is performed here. This is assumed
reasonable because of the exceptional position measurement performance of the Optitrack system.

Unlike linear accelerations and velocities, the angular rates and attitude can both be measured through independent
sources of data. The IMU provides angular rate data, while the attitude is measured with the Optitrack system. These

¶https://github.com/PX4/PX4-Autopilot
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(a) Beetle (b) Geyser

Fig. 3 The quadrotor platforms used for collecting experimental data.

sources of data are fused together using rotational kinematics (Eq. 3). The measurement model for all three attitude
angles and angular rates assumes additive white Gaussian noise, the statistics of which were determined through analysis
of stationary IMU and Optitrack measurements.

2. Parameter estimation
Aerodynamic models were identified using the stepwise regression (SWR) technique [32] which was earlier used by

Sun et al. [29]. A global linear-in-the-parameters polynomial model of the from shown in Eq. 13 is used to model
the dependent variable 𝒚 ∈ R𝑛 as a combinations of regressors 𝐴 = [ 1 𝝃1 𝝃2 . . . 𝝃𝒑 ] ∈ R𝑛×𝑝 with model
parameters 𝜽 ∈ R𝑝 and residuals 𝝐 ∈ R𝑛. The optimal parameters using an Ordinary Least Squares estimator 𝜽 are
computed using Eq. 14.

𝒚 = 𝐴𝜽 + 𝝐 (13)

𝜽 =

(
𝐴𝑇 𝐴

)−1
𝐴𝑇 𝒚 (14)

The SWR approach, in addition to determining the optimal model parameters, also determines the set of regressors
that best describe the dependent variable. The regressors are added and removed from a pool of regressors in a step-wise
manner until a stopping criterion is met. An example of a candidate regressor pool of independent variables 𝑥1, 𝑥2, and
𝑥3 to model dependent variable 𝑦 is shown in Eq. 15 where 𝑃2

1 (𝑥1, 𝑥3) represents all second-order polynomials in 𝑥1
and 𝑥3 and 𝑃2 (𝑥1, 𝑥2) [1 𝑥3] represent all polynomials in 𝑥1 and 𝑥2 multiplied by 1 or 𝑥2

3

𝑦 = 𝑃2
1 (𝑥1, 𝑥3) + 𝑃2 (𝑥1, 𝑥2) [1 𝑥2

3] (15)

The SWR procedure is described next. First, the model is initialized with a bias vector 𝐴 = [1 1 ... 1]𝑇 . Then, the
following algorithmic loop is entered:

1) The optimal OLS parameters are estimated using Eq. 14 and the residuals 𝜖 for this model are computed.
2) Each regressor 𝝃𝒊 in the remaining pool of regressors is made orthogonal to the current model using Eq. 16.

𝝀𝒊 = 𝝃𝒊 − 𝐴

(
𝐴𝑇 𝐴

)−1
𝐴𝑇 𝒚 (16)
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3) The orthogonalized regressor 𝝀 𝒋 with the highest correlation to the model residuals is found, and the corresponding
regressor 𝝃 𝒋 is added to the model (A), and removed from the candidate pool.

4) The model regressors in A are statistically evaluated through an F test. Given q regressors in the current model,
the partial F-ratio for the 𝑘𝑡ℎ regressor is calculated using Equation 17 where 𝑠2 is the variance of the fit error
computed using Equation 18 for N data points.

𝐹0 =
𝑆𝑆𝑅 (𝜽𝑞) − 𝑆𝑆𝑅 (𝜽𝑞−𝑘)

𝑠2 (17)

𝑠2 =
𝜖𝑇𝜖

𝑁 − 𝑞 − 1
(18)

𝑆𝑆𝑅 (𝜽𝑞) is the regression sum of squares for the current model, and 𝑆𝑆𝑅 (𝜽𝑞−𝑘) is the same but with regressor 𝜉𝑘
removed from the model. The 𝑆𝑆𝑅 value is computed using Equation 19 where �̄� is the mean of the observation
vector.

𝑆𝑆𝑅 = 𝜽
𝑇
𝐴𝑇 𝒚 − 𝑁 �̄� (19)

If the regressor with the smallest 𝐹0 value has an F score below a constant threshold 𝐹𝑜𝑢𝑡 , then that regressor is
removed. The algorithm stops if the regressor removed is the same as the one added in that loop. We use an 𝐹𝑜𝑢𝑡
threshold of 4 as was done by Sun et al. [7]

5) A stopping criteria based on the Predict Square Error (PSE) (Eq. 20) is used to terminate the algorithm. The first
term in this equation is the model residual mean squared error, and the second term penalizes model redundancy
where 𝑞 is the number of regressors in the current model. Over-fitting leads to an increase in the PSE at which
point the SWR algorithm is terminated.

𝑃𝑆𝐸 =
1
𝑁
𝜖𝑇𝜖 + 𝜎2

𝑚𝑎𝑥

𝑞

𝑁
(20)

3. Flight Test Maneuvers
The system-identification test flights were flown manually. However, to ensure that the data gathered for all damage

cases are similar, a set of identical pre-planned maneuvers was flown for each damage case. While the exact flight path
followed during each maneuver cannot be kept consistent through this approach, the excitation of all forces and moments
can be generated to cover similar envelopes.

The longitudinal flight and lateral flight maneuvers were kept largely separated by design, which means that forces
and moments in the x and y body axes were seldom excited simultaneously. This was mainly because of difficulties in
flying such maneuvers manually. This results in the ’+’ shape of the plot showing the kernel density estimates of the
distribution of (𝐹𝑥 , 𝐹𝑦) and (𝑀𝑥 , 𝑀𝑦) in Fig. 4 and Fig. 5 respectively.

Fig. 4 Kernel density estimates of the force distri-
butions in the xy body plane

Fig. 5 Kernel density estimates of the moment
distributions in the xy body plane
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(a) Hovering (b) High-speed

Fig. 6 Example trajectories of system identification test flights for hovering (left) and high-speed flight (right)

Figure 6a and Fig. 6b show examples of the spatial trajectories followed for a flight without wind, and at a wind
speed of 8 m/s respectively. The system identification flight maneuvers, consisting of fast pitch, roll, and throttle inputs,
as well as slow (sustained) pitch, roll, and throttle inputs, are visible in the figures. While yaw maneuvers were tried for
hovering flights, it was difficult to manually excite the yawing moments, which also led to poor yawing moment models.
In high-speed flight, only fast roll maneuvers were possible to execute while staying within the wind stream, and yawing
maneuvers were not performed.

4. Model Candidates
With the goal of creating models for all three body forces, and all three body moments using SWR, first a set of

candidate regressors is chosen. These sets include various measured states, such as body velocities, angular rates,
attitude, as well as control inputs which are derived from measured motor speeds. The choice of candidate regressors
is also influenced by the theoretical equations for thrust, and additional effects explained in Sec. III.B. A limit of 3
added regressors was imposed for all models because it was found that after this point, regressors become increasingly
complex while offering insignificant improvements to model performance.

𝐹𝑥 = 𝑋0 + 𝑋1𝑢

+ 𝑃3 (𝑢, 𝑤)
[
1, 𝜔𝑡𝑜𝑡 , 𝑞, 𝑢𝑞 , sin(𝜃), cos(𝜃)

]
+ 𝑃2 (𝜇𝑥 , 𝜇𝑧)

[
1, 𝜔𝑡𝑜𝑡 , 𝑞, 𝑢𝑞 , sin(𝜃), cos(𝜃)

]
+ 𝑃2 (𝑞) [1, 𝜔𝑡𝑜𝑡 ]
+ 𝑃2 (𝑢𝑞 ) [1, sin(𝜃), cos(𝜃), 𝜔𝑡𝑜𝑡 ]
+ 𝑃2 (𝜔𝑡𝑜𝑡 ) [sin(𝜃)]

(21)

𝐹𝑦 = 𝑌0 + 𝑌1𝑣

+ 𝑃3 (𝑣, 𝑤)
[
1, 𝜔𝑡𝑜𝑡 , 𝑝, 𝑢𝑝 , sin(𝜙), cos(𝜙)

]
+ 𝑃2 (𝜇𝑦 , 𝜇𝑧

) [
1, 𝜔𝑡𝑜𝑡 , 𝑝, 𝑢𝑝 , sin(𝜙), cos(𝜙)

]
+ 𝑃2 (𝑝) [1, 𝜔𝑡𝑜𝑡 ]
+ 𝑃2 (𝑢𝑝

)
[1, sin(𝜙), cos(𝜙), 𝜔𝑡𝑜𝑡 ]

+ 𝑃2 (𝜔𝑡𝑜𝑡 ) [sin(𝜙)]

(22)
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𝐹𝑧 = 𝑍0 + 𝑍1𝑤

+ 𝑃3 (|𝑢 |, |𝑣 |, 𝑤)
[
1, 𝜔𝑡𝑜𝑡 , |𝑝 |, |𝑞 |, |𝑢𝑝 |, |𝑢𝑞 |

]
+ 𝑃2 (|𝜇𝑥 |, |𝜇𝑦 |, 𝜇𝑧

) [
1, 𝜔𝑡𝑜𝑡 , |𝑝 |, |𝑞 |, |𝑢𝑝 |, |𝑢𝑞 |

]
+ 𝑃2 (𝜔𝑡𝑜𝑡 ) [1]
+ 𝑃2 (|𝑝 |, |𝑞 |, |𝑟 |) [1, 𝜔𝑡𝑜𝑡 ]

(23)

Equations 21, 22, and 23 show the model candidate structures for the x, y, and z body axis forces respectively.
Equations 24, 25, and 26 show the model candidates for the x, y, and z body moments respectively. Note that coupling
between 𝐹𝑥 and 𝐹𝑦 was largely eliminated while choosing these regressor sets because the flight test maneuvers were
largely uncoupled in the longitudinal and lateral directions. The regressor 𝜔𝑡𝑜𝑡 is defined as the sum of the rotor speeds,
and the input roll, pitch, and yaw control moments –𝑢𝑝 , 𝑢𝑞 and 𝑢𝑟– are defined according to the respective axis-specific
rotor speed combinations defined in 6. The advance ratios, 𝜇𝑥,𝑦,𝑧 , are added to capture the effects of thrust variance as
well as blade flapping.

While the attitude angles are not necessarily a good regressor choice from a physical sense, they are found to improve
model performance significantly, likely because these angles encode information about relative flow angles with respect
to the rotors of the quadrotor. It is important to point out here that while the chosen model candidates are influenced by
analytical models of the underlying physical phenomena, they do not necessarily capture cause-effect relationships, but
rather also model correlations that describe reality from a phenomenological perspective. Nevertheless, when applied to
quadrotors (and other aerospace systems), these models can still offer a reliable means to make predictions, even if the
underlying physics is not exactly captured.

𝑀𝑥 = 𝐿0 + 𝐿1𝑝 + 𝐿2𝑢𝑝

+ 𝑃3 ( |𝑢 |, 𝑣, 𝑤)
[
1, 𝜔𝑡𝑜𝑡 , 𝑝, |𝑟 |, 𝑢𝑝 , |𝑢𝑟 |, sin(𝜙), cos(𝜙)

]
+ 𝑃2 ( |𝜇𝑥 |, 𝜇𝑦 , 𝜇𝑧

) [
1, 𝜔𝑡𝑜𝑡 , 𝑝, |𝑟 |, 𝑢𝑝 , |𝑢𝑟 |, sin(𝜙), cos(𝜙)

]
+ 𝑃2 (𝑝, |𝑞 |, |𝑟 |) [1, 𝜔𝑡𝑜𝑡 , sin(𝜙), cos(𝜙)]
+ 𝑃2 (𝑢𝑝 , |𝑢𝑞 |, |𝑢𝑟 |

)
[1, sin(𝜙), cos(𝜙), 𝜔𝑡𝑜𝑡 ]

+ 𝑃2 (𝜔𝑡𝑜𝑡 ) [sin(𝜙), cos(𝜙)]

(24)

𝑀𝑦 = 𝑀0 + 𝑀1𝑞 + 𝑀2𝑢𝑞

+ 𝑃3 (𝑢, |𝑣 |, 𝑤)
[
1, 𝜔𝑡𝑜𝑡 , 𝑞, |𝑟 |, 𝑢𝑞 , |𝑢𝑟 |, sin(𝜃), cos(𝜃)

]
+ 𝑃2 (𝜇𝑥 , |𝜇𝑦 |, 𝜇𝑧

) [
1, 𝜔𝑡𝑜𝑡 , 𝑞, |𝑟 |, 𝑢𝑞 , |𝑢𝑟 |, sin(𝜃), cos(𝜃)

]
+ 𝑃2 (|𝑝 |, 𝑞, |𝑟 |) [1, 𝜔𝑡𝑜𝑡 , sin(𝜃), cos(𝜃)]
+ 𝑃2 (𝑢𝑞 , |𝑢𝑝 |, |𝑢𝑟 |

)
[1, sin(𝜃), cos(𝜃), 𝜔𝑡𝑜𝑡 ]

+ 𝑃2 (𝜔𝑡𝑜𝑡 ) [sin(𝜃), cos(𝜃)]

(25)

𝑀𝑧 = 𝑁0 + 𝑁1𝑟 + 𝑁2𝑢𝑟

+ 𝑃3 ( |𝑢 |, |𝑣 |, 𝑤)
[
1, 𝜔𝑡𝑜𝑡 , |𝑝 |, |𝑞 |, |𝑟 |, 𝑢𝑝 , |𝑢𝑞 |, |𝑢𝑟 |, sin(𝜃), cos(𝜃), sin(𝜙), cos(𝜙)

]
+ 𝑃2 ( |𝜇𝑥 |, |𝜇𝑦 |, 𝜇𝑧

) [
1, 𝜔𝑡𝑜𝑡 , |𝑝 |, |𝑞 |, |𝑟 |, 𝑢𝑝 , |𝑢𝑞 |, |𝑢𝑟 |, sin(𝜃), cos(𝜃), sin(𝜙), cos(𝜙)

]
+ 𝑃2 ( |𝑝 |, |𝑞 |, 𝑟) [1, 𝜔𝑡𝑜𝑡 ]
+ 𝑃2 ( |𝑢𝑞 |, |𝑢𝑝 |, 𝑢𝑟

)
[1, 𝜔𝑡𝑜𝑡 ]

+ 𝑃2 (𝜔𝑡𝑜𝑡 ) [sin(𝜃), cos(𝜃), sin(𝜙), cos(𝜙)]

(26)

5. Model Simplification
Rather unsurprisingly, SWR often finds a different set of regressors (for each force and moment model) for different

damage cases. However, these regressors tend to often be spurious and offer almost insignificant model improvement.
Additionally, two regressors that are highly correlated may be picked somewhat randomly from one damage case to
another.
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To gain a better understanding of the variation of model parameters with the extent of blade damage, simplifications
were made to the models found through SWR. In this way, the polynomial models for all damage cases have the same
set of regressors, and only the parameter values for these regressors change for different damage cases.

The exact procedure for picking the fixed regressors was largely heuristic. The general rules-of-thumb are; to keep
the regressors that appear most commonly for all damage scenarios, offer the most significant model improvements, and
are not highly correlated with other regressors. Following these procedures, the models could be simplified without
losing too much performance, but allow for better physical insights into how the impact of a given regressor changes
with blade damage, and if any clear patterns can be found.

D. High-Frequency Model Identification

1. General Approach
The goal of the High-frequency models is to be able to reproduce the IMU signals which are measured by a quadrotor

inflicted with ABD. The base assumption used for constructing the high-frequency models is that the time series of each
IMU measurement can be modeled as a sum of a few sinusoids. This assumption is physically motivated by the fact that
force and moment imbalances created by an asymmetrically damaged propeller will be cyclic in nature, and visual
examination of the measured IMU signals also shows that this is the case (see Fig. 21). Therefore, the model structure
shown in Eq. 27 was chosen, where k is the number of harmonics of the frequency 𝑓 , and 𝑑𝑙 is the damage level of the
propeller. To parameterize this model, the amplitude surface 𝐴𝑛 of the 𝑛𝑡ℎ harmonic is constructed as a function of 𝑓

and 𝑑𝑙 .

𝑦(𝑡) =
𝑘∑︁

𝑛=1
𝐴𝑛 ( 𝑓 , 𝑑𝑙) sin(2𝜋𝑛 𝑓 𝑡) (27)

The amplitude models were built assuming dependence only on the frequency and level of damage. Here, frequency
refers to the rotational speed of the damaged propeller in Hz, and corresponding harmonics. This choice of dependent
variables is again due to physical reasoning. For one, higher levels of damage result in larger mass imbalances as well as
larger asymmetries in the aerodynamic forces and torques generated by the damaged propeller. It is straightforward to
see that the mass imbalance of a damaged propeller induces a net centripetal force vector which oscillates in direction
at the rotational frequency of the rotor. These forces can be quite high even with small mass imbalances because the
propellers of the quadrotor spin at very fast speeds. A first principles approach would be to model the centripetal forces
as scaling with the square of the rotational speed of the propeller, but this ignores various physical interactions that can
be captured through data-driven analysis.

A less obvious high-frequency effect comes from the aerodynamic imbalances of the damaged rotor. For example, in
the presence of ABD, the thrust force is no longer aligned with the rotational axis of the propeller but is offset from this
axis and also rotates around it in sync with the propeller. Due to its movement with respect to the center of gravity of
the quadrotor, the thrust imbalance induces oscillatory pitching and rolling moments around the quadrotor c.g. Similar
to the imbalance in thrust, there is also an in-plane drag force generated perpendicular to the rotation axis with some
offset. The moment arm of this imbalanced drag force also oscillates sinusoidally with respect to the c.g., resulting in
oscillatory yawing moments created around the quadrotor c.g. The spinning drag force vector, similar to the centripetal
forces due to the mass imbalance, also causes oscillatory forces in the 𝑥 and 𝑦 body axes of the quadrotor.

The forces and moments described earlier do not consider the structural frame of the quadrotor, and how this frame
affects the measurements taken at the IMU. The frames of both the Beetle and Geyser quadrotors are largely made of
carbon composites, meaning they are quite stiff. However, no structure is infinitely stiff, and therefore as the oscillatory
forces and torques of the damaged rotor are transmitted through the frame, they get altered due to structural resonance
in the frame. Even the stand-offs that are used to mount the flight controller to the frame of the quadrotor affect the
forces before they are measured by the IMU which is soldered on the flight control board. Clearly, there are complex
interactions with the structural frame of the quadrotor which are very difficult to model from first principles. However,
using a data-driven method, the effects of frame resonance get lumped along with all the other physical interactions that
take place in the presence of ABD.

Finally, another kinematic consideration to keep in mind is that the IMU does not lie exactly at the c.g. of the
quadrotor. This offset means that the IMU does not measure the accelerations of the c.g. of the drone, but rather
the accelerations which are also corrupted by rotational rates and rotational accelerations about the c.g. While this
effect can be analytically corrected, there is no good reason to do so. It is again re-emphasized that the goal of the
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high-frequency models is to accurately inject the lumped effects of oscillatory forces and torques arising due to ABD on
the measurements made by the IMU, not to accurately model the forces and torques themselves. These models can then
facilitate the accurate reproduction of high-frequency effects in simulations of quadrotors with damaged propellers.

The flight maneuvers flown to sufficiently excite the high-frequency phenomenon described above were chosen with
the simple requirement of making sure the damaged propeller goes through a large part of the rotational speed range of
the motor. This essentially means that the maneuvers should be flown such that the full throttle range is covered. This
proved challenging in an indoor environment because of the restricted space for mobility. This problem was overcome
by performing short, yet aggressive successive throttle punches, as well as longer duration throttle pulses with lower
maximum throttle input. In addition to the above, aggressive rolling and pitching maneuvers were also performed to
again ensure that the damaged propeller covers a large part of the rotational speed range of the motor within a single
flight. The cumulative distribution of motor frequencies over all the test flights of the Beetle is shown in Fig. 36.

2. Spectral Analysis
Before identifying a model to predict the amplitudes of sinusoidal oscillations measured by the IMU, the amplitudes

and corresponding frequencies must be estimated from the time-series data of each IMU axis. This can also be
interpreted as the ’state estimation’ step of identifying the high-frequency models.

There are a handful of techniques that can be used to transform signals from the time domain to the frequency
domain. However, for this application, some important constraints must be considered while choosing a method. For
one, the IMU time series signal generated during a flight will be non-stationary, therefore an evolutionary spectrum must
be computed. Another practical constraint is that the sampling times of the IMU are not perfectly constant, which may
pose additional challenges. With these constraints, a spectrogram constructed using the short-time Fourier transform
(STFT) was used. The SciPy implementation of the STFT was used for the analysis presented in this paper [34]. Even
though this technique assumes evenly sampled data, the amount of sampling jitter observed in the experimental data
was not severe enough to significantly impact the results. This was also numerically verified by computing STFTs of
artificially generated sinusoidal signals with greater amounts of jitter than what was observed in the experimental data.
A detailed analysis of the noise and jitter properties of IMU measurements is presented in Appendix A.

Two important parameters of the spectrogram are the window length (𝑛𝑠), and the number of samples (𝑛fft) used to
compute the STFT at each time slice. The window length, in combination with the sampling frequency 𝑓𝑠, sets the
frequency resolution ( 𝑓𝑟 ) of the spectrogram, while (𝑛fft) essentially sets the amount of zero-padding applied to each
time slice of the signal being analyzed. While zero-padding does not surpass the frequency resolution limit, it does
generate more frequency bins in the STFT. The resulting frequencies are no longer orthogonal to each other, however,
which means that two sinusoids with frequency separation within the frequency resolution of the STFT cannot be
resolved perfectly. The IMU signals are comprised mainly of a few dominant sinusoids which are separated by several
multiples of the frequency resolution. Thus, zero-padding allows for better recovery of the properties of the sinusoids
comprising the signal compared to the no-zero-padding case.

To visualize the effect of zero padding, a numerical example is shown in Fig. 7. Here, a 0.02 s long signal ( 𝑓𝑟
= 50 Hz) with a sampling frequency of 4 kHz (N = 80) and comprising of three pure sinusoids was generated. By
zero-padding the signal with 𝑛fft = 2000, an effective frequency resolution of 2 Hz is achieved. It is clear from Fig.
7 that applying zero-padding facilitates interpolation between the frequencies corresponding to the true frequency
resolution. However, this comes at the cost of spurious peaks caused by the fact that the sin functions at the zero-padded
frequencies do not form an orthogonal set. Using a Hann window solves this problem at the expense of broadening the
peaks. Fortunately, this is not a problem for the spectral analysis of IMU signals because these are dominated by a base
sinusoid with a minimum frequency generally above 100 Hz, and its harmonics have frequency separations greater than
or equal to this value.

The values of the parameters 𝑛𝑠 and 𝑛fft are linked to parameters 𝑓𝑟 , 𝑓𝑟𝑒 and the sampling frequency 𝑓𝑠 through Eq.
28 and 29 respectively. The choice of 𝑓𝑟 and 𝑓𝑟𝑒 plays a critical role in determining the quality of the STFT. If the 𝑓𝑟
is chosen to be small, equating to large time windows, the signal may go through a large change in frequency within
the time window resulting in the frequency content being smeared across multiple frequencies. Therefore, the true
frequency-amplitude relationship cannot be recovered. Alternatively, a large value for 𝑓𝑟 , equating to very short time
windows may again be detrimental as there is little information in each window. Since the main factor influencing the
choice of these parameters is how fast the dominant frequencies of the signal change with time, a numerical study was
conducted (described in detail in Appendix B) which resulted in a choice of 60 Hz for 𝑓𝑟 and 2 Hz for 𝑓𝑟𝑒 .
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Fig. 7 Comparison of STFT computed without zero padding (left) to that with zero-padding (right) where the
circular markers show the true underlying frequencies and associated amplitudes of the time-series signal.

𝑛𝑠 = floor
(
𝑓𝑠

𝑓𝑟

)
(28)

𝑛fft = floor
(
𝑓𝑠

𝑓𝑟𝑒

)
(29)

Once the spectrogram of a signal is computed, each slice of the spectrogram is analyzed to find the location of the
peak frequency, its harmonics, and the respective amplitudes of these harmonics. This procedure results in a data set
of frequency-amplitude pairs for all the dominant harmonics of the time signal. Since the base harmonic is expected
to be near the measured motor rotational speed, this frequency is found by locating the highest peak within a certain
frequency range 𝑓range of the motor frequency. The value of 𝑓range is set to 25 Hz, which is heuristically set to ensure
that a large range of frequency around the motor frequency is checked for peaks. With the frequency of the base
harmonic known, the same procedure is repeated for the higher harmonics. Figure 8 shows an example of the spectral
analysis described above applied to the raw roll rate measurements obtained from the Geyser drone. Here the motor
frequency went from around 160 Hz to above 350 Hz in this span of 0.15 seconds, which is visible in the spectrogram.
The detected amplitudes of the base harmonic are shown along with the addition of the amplitudes of the 2nd and 3rd

harmonics, which collectively bound the signal fairly accurately. The significance of the 2nd harmonic is also evident
in this particular set of frequencies. It is important to note here that the harmonics above the first are only computed
for base harmonic frequencies which ensure a frequency separation of at least 3 𝑓𝑟 (180 Hz) because smearing in the
peaks of the STFT results in inaccurate estimates of amplitudes with low separation between sinusoids. Because the
harmonics do not have significant contributions below (roughly) 250 Hz, this is not a major limitation.

3. Simplex B-splines
The final step of the system identification of the HF models is to fit a surface to each of the amplitude-frequency-

damage scattered estimates for each harmonic, of each IMU signal, for all damage locations tested to obtain models
of the form 𝐴𝑛 ( 𝑓 , 𝑑). Because of the highly non-linear local features of these surfaces, Simplex B-splines [35, 36]
are used as the curve-fitting method of choice. Global polynomial models were also tried but did not give satisfactory
results. Here, simplex B-splines are briefly summarised.

Simplex B-splines comprise of basis polynomials, defined locally over simplices 𝑡𝑖 belonging to a triangulation T ,
which are joined together to satisfy some prescribed continuity condition between polynomials of neighboring simplices.
Simplices contain a local coordinate system known as Barycentric coordinates 𝒃 = (𝑏0, ..., 𝑛𝑛) ∈ R𝑛+1 which uniquely
map to point in R𝑛. Given some point 𝒙 inside a simplex with vertices (𝑣0, ..., 𝑣𝑛)where𝑣𝑖 ∈ R𝑛, Eq. 30 relates the
barycentric coordinates to 𝒙. The barycentric coordinates 𝑏𝑖 ≥ 0 if 𝒙 is inside the simplex.

𝒙 =

𝑛∑︁
𝑖=0

𝑏𝑖𝑣𝑖 (30)

The B-form polynomials are defined in barycentric coordinates on a simplex according to Eq. 31 where 𝑐𝜅 are
the B-coefficients of the polynomial set indexed with multi-index 𝜅 = (𝜅0, ..., 𝜅𝑛) ∈ R𝑛 defined such that |𝜅 | = ∑

𝑖 𝜅𝑖 ,
𝜅! =

∏
𝑖 𝜅𝑖 , and 𝒃𝜅 =

∏
𝑖 𝑏

𝜅𝑖
𝑖

[35]. Each permutation of 𝜅 corresponds to a unique B-from polynomial and its
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Fig. 8 A time-snippet of the roll rate (bottom) measured by the Geyser quadrotor for damage case 30FR, and
the spectrogram of this signal showing peak harmonics related to the motor frequency (top).

B-coefficient, and the collective set forms a basis for the space spanned by all B-form polynomials of degree d in n
variables.

𝑝(𝒃) =
∑︁
|𝜅 |

𝑐𝜅
𝑑!
𝜅!
𝜅 (31)

A continuity order 𝑟 between B-form polynomials of neighboring simplices 𝑡𝑖 and 𝑡 𝑗 are enforced through constraints
on the respective B-coefficients of the two simplices using Eq. 32 where 𝛾 = (𝛾0, ..., 𝛾𝑛) is another multi-index
independent of 𝜅, and 𝑤is the out-of-edge vertex. The continuity conditions for all simplices in the triangulation can be
compiled into matrix form as shown in Eq. 33 where 𝑯 is known as the ’smoothness matrix’ [35].

𝑐
𝑡𝑖
(𝜅0 ,...,𝜅𝑛−1 ,𝑚) =

∑︁
|𝛾 |=𝑚

𝑐
𝑡 𝑗

(𝜅0 ,...,𝜅𝑛−1 ,0)+𝛾𝐵
𝑚
𝛾 (𝑤), 0 ≤ 𝑚 ≤ 𝑟 (32)

𝑯𝒄 = 0 (33)

Given a pair of observations (𝑥𝑖 , 𝑦𝑖) related by some function 𝑓 such that 𝑦𝑖 = 𝑓 (𝑥𝑖) + 𝜖𝑖 where 𝜖𝑖 is a residual
term. Then, the regression model for approximating 𝑓 using a linear combination of B-form polynomials with degree 𝑑

defined over a triangulation of 𝐽 simplices is given by Eq. 34 where 𝑏𝑖 are the barycentric coordinates of 𝑥𝑖 with respect
to simplex 𝑡 𝑗 . This expression can be written in matrix form to include all observations (𝑥𝑖 , 𝑦𝑖) through a data sifting
matrix 𝐷 which ensures that observations are only active within the simplices that contain them, explained in further
detail by de Visser et al. [35]. The final spline-based regression model is then given by Eq. 35 where 𝒀 is the vector of
observations and 𝑿 = 𝑩𝑑𝑫 is the local regression matrix of all observations. Finally, the OLS estimation problem
cost function is formulated as shown in Eq. 36. The equality-constrained OLS parameter estimator 𝒄 using Lagrange
multipliers �̂� is then given by Eq. 37.

𝑦𝑖 =

𝐽∑︁
𝑗=1

∑︁
|𝜅 |=𝑑

𝑐
𝑡 𝑗
𝜅 𝐵

𝑑
𝜅 (𝑏𝑖) + 𝜖𝑖 (34)

𝒀 = 𝑿𝒄 + 𝝐 (35)

𝐽𝑂𝐿𝑆 (c) =
1
2
(Y − Xc)𝑇 (Y − Xc) subject to Hc = 0 (36)

15

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Ja
nu

ar
y 

7,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

5-
00

08
 



[
ĉ
�̂�

]
=

[
X𝑇X H𝑇

H 0

]+
·
[

X𝑇Y
0

]
(37)

Simplex B-splines require the user to define a triangulation, the degree 𝑑, and continuity order 𝑟 . These parameters
are set based on the intuitive physical reasoning of the system being modeled, and certain best practices. In general,
it is advised to start with a few simplices, low polynomial degree, and continuity order, and increase the complexity
henceforth. For the amplitude surfaces presented in this paper, certain important aspects of the data must be considered
when choosing a triangulation, degree, and continuity order. For one, the data are concentrated along the direction
of frequency, while very sparse in the direction of damage level (see Fig. 27a). Secondly, the data is not uniformly
scattered in the 𝑓 − 𝑑𝑙 plane, but rather constrained in linear regions corresponding to each damage level. Because
of these properties, a triangulation that is dense in the direction of 𝑓 but sparse in the direction of 𝑑𝑙 is chosen. An
example is shown in Fig. 27a with 20 equally sized triangles. It is clear to see from the models presented in Sec V.B
that the local nonlinearities in the observed data are present along 𝑓 , which is a further reason for more triangles along
this direction. B-form polynomials with degree 3 and 1st order continuity were used to construct simple models that still
capture the observed nonlinearities in the data.

A point to note is that the high-frequency models include both the blade damage level and frequency as regressors
instead of building 1-dimensional spline models at each damage level separately. Surfaces are fit in the 𝑓 − 𝑑𝑙 plane
rather than curves for each damage level separately so that the amplitude models can facilitate the prediction of HF
behavior at damage levels in between the rows of experimental data. An alternative approach to interpolate between
damage levels would be to construct one-dimensional models as a function of frequency at all damage levels. Then,
the corresponding B-coefficient parameter values of curves at the different damage levels can be interpolated to create
interpolated spline curves. While there is no concrete proof that the applied method is better than this alternative, it
does offer a more natural solution to the problem.

V. Results

A. Aerodynamics Models

1. Stepwise regression Models
Tables 6 and 7 respectively present the model performance metrics of the SWR force and moment models constructed

for the low-speed flight regime. Tables 8 and 9 respectively present the model performance metrics for the force and
moments models identified for the high-speed flight regime. It is evident that all the low-speed force and moment
models give very good performance except for the yawing moment model, which was difficult to excite during the
system-identification test flights. For high-speed flight, all the models perform worse except for 𝑀𝑥 , with 𝐹𝑥 and 𝑀𝑦

particularly worse than the other models. Overall, however, all the models give decent performance and can be used for
simulation purposes. The ratio of training data to test data was 75:25 for all the models. The similarity between the
metrics for the test and the complete set shows that the models do not overfit the data.

To examine whether the SWR models actually capture the effects of blade damage, a ’model confusion matrix’ was
constructed. This matrix is constructed for each force and moment model, for all damage cases. The models for each
damage case are applied to the observed data of all damage cases, and the NRMSE is computed for all combinations.
Each row of the matrix represents the SWR model of the damage case, while the columns represent the training data for
the damage case. With the matrix of NRMSE values computed, the relative NRMSE RNRMSE values of the off-diagonal
elements are computed with respect to the corresponding diagonal elements through Eq. 38. Based on this definition, if
the off-diagonal elements have values above 1, this means that the model from one damage case fits the data of another
damage case better, while values below 1 suggest the opposite.

RNRMSE𝑖 𝑗 =
NRMSE𝑖 𝑗

min
(
NRMSE𝑖𝑖 ,NRMSE 𝑗 𝑗

) (38)

Figures 9 and 10 show the model confusion matrices for the low-speed and high-speed aerodynamic models
respectively. These are computed by averaging (element-wise) the confusion matrices of each force and moment model.
The results show that models applied to off-diagonal elements can have significantly lower NRMSE values, suggesting
that the models for each damage case capture the effects of blade damage on the aerodynamics of the quadrotor. However,
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Table 6 Model performance metrics of aerodynamic force models around hover

𝑭𝒙 𝑭𝒚 𝑭𝒛

Case NRMSE R2 NRMSE R2 NRMSE R2

Full Test Full Test Full Test Full Test Full Test Full Test
Healthy 0.106 0.107 0.989 0.989 0.111 0.109 0.988 0.988 0.081 0.080 0.993 0.994

10F 0.117 0.118 0.986 0.986 0.090 0.090 0.992 0.992 0.077 0.078 0.994 0.994
10BL 0.157 0.157 0.975 0.975 0.087 0.086 0.992 0.993 0.080 0.081 0.994 0.993
10FL 0.113 0.110 0.987 0.988 0.125 0.125 0.984 0.984 0.125 0.125 0.984 0.984
20F 0.129 0.125 0.983 0.984 0.100 0.102 0.990 0.990 0.062 0.062 0.996 0.996

20BL 0.125 0.118 0.984 0.986 0.079 0.078 0.994 0.994 0.065 0.065 0.996 0.996
20BR 0.086 0.083 0.993 0.993 0.100 0.107 0.990 0.989 0.066 0.067 0.996 0.996
20FL 0.118 0.113 0.986 0.987 0.087 0.090 0.992 0.992 0.071 0.071 0.995 0.995
30F 0.083 0.083 0.993 0.993 0.074 0.071 0.995 0.995 0.066 0.067 0.996 0.996

30BL 0.077 0.078 0.994 0.994 0.069 0.072 0.995 0.995 0.063 0.064 0.996 0.996
30FL 0.085 0.084 0.993 0.993 0.073 0.073 0.995 0.995 0.072 0.072 0.995 0.995

Table 7 Model performance metrics of aerodynamic moment models around hover

𝑴𝒙 𝑴𝒚 𝑴𝒛

Case NRMSE R2 NRMSE R2 NRMSE R2

Full Test Full Test Full Test Full Test Full Test Full Test
Healthy 0.170 0.185 0.971 0.966 0.228 0.230 0.948 0.947 0.603 0.595 0.636 0.646

10F 0.120 0.122 0.986 0.985 0.137 0.132 0.981 0.983 0.625 0.624 0.610 0.611
10BL 0.126 0.128 0.984 0.984 0.166 0.168 0.972 0.972 0.620 0.621 0.615 0.614
10FL 0.156 0.156 0.976 0.976 0.167 0.181 0.972 0.967 0.568 0.567 0.678 0.679
20F 0.155 0.149 0.976 0.978 0.160 0.154 0.974 0.976 0.691 0.703 0.522 0.505

20BL 0.208 0.208 0.957 0.957 0.184 0.194 0.966 0.962 0.817 0.728 0.332 0.470
20BR 0.142 0.141 0.980 0.980 0.190 0.175 0.964 0.969 0.733 0.745 0.463 0.445
20FL 0.144 0.146 0.979 0.979 0.143 0.146 0.979 0.979 0.663 0.652 0.561 0.574
30F 0.146 0.145 0.979 0.979 0.180 0.173 0.967 0.970 0.685 0.684 0.53 0.532

30BL 0.195 0.201 0.962 0.960 0.155 0.160 0.976 0.974 0.747 0.746 0.441 0.444
30FL 0.185 0.207 0.966 0.957 0.193 0.195 0.963 0.962 0.670 0.671 0.551 0.550
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Table 8 Model performance metrics of aerodynamic force models in high-speed flight

𝑭𝒙 𝑭𝒚 𝑭𝒛

Case NRMSE R2 NRMSE R2 NRMSE R2

Full Test Full Test Full Test Full Test Full Test Full Test
Healthy 0.205 0.206 0.958 0.957 0.137 0.133 0.981 0.982 0.129 0.131 0.983 0.983

10F 0.252 0.250 0.937 0.937 0.150 0.153 0.978 0.977 0.167 0.164 0.972 0.973
10BL 0.156 0.155 0.976 0.976 0.194 0.198 0.962 0.961 0.141 0.142 0.980 0.980
10FL 0.139 0.140 0.981 0.980 0.162 0.166 0.974 0.972 0.130 0.132 0.983 0.983
20F 0.261 0.260 0.932 0.932 0.140 0.144 0.980 0.979 0.135 0.136 0.982 0.981

20BL 0.250 0.251 0.937 0.937 0.099 0.093 0.990 0.991 0.139 0.140 0.981 0.980
20BR 0.219 0.222 0.952 0.951 0.096 0.096 0.991 0.991 0.134 0.134 0.982 0.982
20FL 0.235 0.236 0.945 0.944 0.198 0.208 0.961 0.957 0.156 0.157 0.976 0.975
30F 0.247 0.247 0.939 0.939 0.106 0.105 0.989 0.989 0.145 0.144 0.979 0.979

30BL 0.284 0.283 0.919 0.920 0.122 0.125 0.985 0.984 0.137 0.135 0.981 0.982
30FL 0.258 0.261 0.934 0.932 0.116 0.117 0.987 0.986 0.145 0.144 0.979 0.979

Table 9 Model performance metrics of aerodynamic moment models in high-speed flight

𝑴𝒙 𝑴𝒚

Case NRMSE R2 NRMSE R2

Full Test Full Test Full Test Full Test
Healthy 0.124 0.128 0.985 0.984 0.279 0.324 0.922 0.895

10F 0.119 0.121 0.986 0.985 0.270 0.235 0.927 0.945
10BL 0.115 0.114 0.987 0.987 0.435 0.427 0.811 0.818
10FL 0.114 0.114 0.987 0.987 0.250 0.215 0.937 0.954
20F 0.122 0.122 0.985 0.985 0.254 0.253 0.935 0.936

20BL 0.126 0.126 0.984 0.984 0.204 0.206 0.958 0.958
20BR 0.195 0.197 0.962 0.961 0.420 0.431 0.824 0.814
20FL 0.105 0.105 0.989 0.989 0.307 0.285 0.906 0.919
30F 0.217 0.232 0.953 0.946 0.528 0.621 0.721 0.614

30BL 0.237 0.225 0.944 0.949 0.449 0.412 0.798 0.830
30FL 0.136 0.126 0.982 0.984 0.316 0.318 0.900 0.899

18

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Ja
nu

ar
y 

7,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

5-
00

08
 



these models cannot be directly compared through parameter values as different regressors were chosen between the
different models through the SWR algorithm.

Fig. 9 Element-wise average of model confusion
matrices for all low-speed aerodynamic models

Fig. 10 Element-wise average of model confusion
matrices for all high-speed aerodynamic models

2. Simplified Fixed-Regressor Models
The simplified models for the low-speed and high-speed flight regimes were built using the regressors listed in

Tables 10 and 11 respectively. These regressors were chosen based on the semi-quantitative procedure described in
Sec. IV.C. The regressor choices are fairly symmetric for the low-speed case because of the symmetry of the flight
maneuvers, evident from the similarities in the 𝐹𝑥 and 𝐹𝑦 , and 𝑀𝑥 and 𝑀𝑦 regressors. The regressors for the high-speed
regime are similar to those for the low-speed regime, except for those for 𝐹𝑥 and 𝑀𝑦 . The 𝐹𝑥 and 𝑀𝑦 models in the
high-speed regime are clearly influenced by the effects of the higher mean airspeed.

Figure 11 shows how the model performance metrics differ between the SWR and FR models, for both speed regimes.
Interestingly, the FR models for 𝐹𝑦 , 𝐹𝑧 , and 𝑀𝑥 are virtually as good as the SWR counterparts. The 𝑀𝑦 FR models
for both airspeed regimes are similarly reduced in accuracy, while for 𝐹𝑥 only the high-speed models are significantly
worse. These results suggest that the simplification of the models does not significantly reduce the performance of the
models. It is again highlighted here that the purpose of the simplifications was to obtain models for different cases with
the same set of regressors so that the parameter variations between the damage cases can be compared.

Table 10 Selected regressors for simplified low-speed
models

Model Regressors
𝐹𝑥 𝑢, sin(𝜃)𝜔𝑡𝑜𝑡

𝐹𝑦 𝑣, sin(𝜙)𝜔𝑡𝑜𝑡

𝐹𝑧 𝑤, 𝜔2
𝑡𝑜𝑡

𝑀𝑥 𝑝, 𝑢𝑝 , cos(𝜙)𝑣
𝑀𝑦 𝑞, 𝑢𝑞 , cos(𝜃)𝑢
𝑀𝑧 𝑟 , 𝑢𝑟 , 𝜔𝑡𝑜𝑡𝑢𝑟

Table 11 Selected regressors for simplified high-speed
models

Model Regressors
𝐹𝑥 𝑢, sin(𝜃)𝜇𝑥 , sin(𝜃)𝑢2

𝐹𝑦 𝑣, sin(𝜙)𝜔𝑡𝑜𝑡

𝐹𝑧 𝑤, 𝜔2
𝑡𝑜𝑡

𝑀𝑥 𝑝, 𝑢𝑝 , cos(𝜙)𝑣
𝑀𝑦 𝑞, 𝑢𝑞 , 𝜇𝑧

𝑀𝑧 -

Figures 12-16 plot the variation of parameter values as a function of blade damage extent and location for the various
force and moment models of the low-speed regime. The standard deviations of the parameters are plotted as error bars.
It is evident from these plots that, in general, no simple patterns can be found in the parameter values of most of the
regressors.

Intuitively, the control moment parameters corresponding to regressors 𝑢𝑝 and 𝑢𝑞 for the 𝑀𝑥 and 𝑀𝑦 model
respectively are expected to decrease in magnitude with increasing levels of damage. While this is the case for 𝑀𝑥 , the
decrease in control effectiveness does not follow a logical trend with some model 10% damage showing an increase in
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Fig. 11 Model performance metric comparison between the SWR models and the simplified fixed regressor
(FR) models
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Fig. 12 𝐹𝑥 parameter variations with damage level and location (low-speed regime)

control effectiveness compared to the base models. For example, the control effectiveness remains almost unaffected up
to 20% FL damage. The models for 𝑀𝑦 on the other hand show an increase in pitch control effectiveness with increasing
blade damage which is physically impossible. The bias terms for both 𝑀𝑥 and 𝑀𝑦 do however show consistent patterns.
For example, the 𝑀𝑥 bias for F (front) damage stays around the bias corresponding to no damage, which makes sense
because the damage is symmetric about the 𝑥𝑧 plane. The biases for both left-side damage cases –FL and BL– are in
agreement, while bias for the BR case seems to be reflected about the zero-damage case bias. Similarly, the bias in
𝑀𝑦 is worse for the F damage case compared to the single damage cases, and all the bias decreases or increases in the
expected directions in accordance with the location of the damage.

Lastly, the parameters corresponding to the 𝜔2
𝑡𝑜𝑡 regressor show a clear pattern with respect to the damage level.

There is almost a linear trend, with the F damage case having a higher slope. This makes physical sense, but the question
arises why, from the same data, do the control effectiveness parameters not follow meaningful patterns? This is further
explored in the next subsection.

The parameters of the high-speed regime models largely show the same non-patterns with respect to blade damage
and are therefore omitted for brevity. Interestingly, the 𝑀𝑥 models in the high-speed regime reveal clearer patterns in
the parameters, as shown in Fig. 17 compared to the low-speed models. The regressor 𝑝 has the physical interpretation
of acting as a damping term. The parameters of this regressor do show a much more prominent pattern than the others
(except the bias). Looking at the regressor values, it appears that the roll damping is decreased in the case of front
damage, while it is increased in the case of rear damage in the high-speed regime.

The models built by SWR, and therefore the selected regressors are influenced strongly by the system identification
maneuvers performed and the regime of airspeeds flown. This is evident by the fact that the regressor cos(𝜃)𝑢 selected
for the hovering flight was not selected for any of the high-speed models, which apart from being identified at a much
higher mean airspeed, also lack the slow speed rolling maneuvers which were performed for the hovering case.
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Fig. 13 𝐹𝑦 parameter variations with damage level and location (low-speed regime)
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Fig. 14 𝐹𝑧 parameter variations with damage level and location (low-speed regime)
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Fig. 15 𝑀𝑥 parameter variations with damage level and location (low-speed regime)
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Fig. 16 𝑀𝑦 parameter variations with damage level and location (low-speed regime)
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Fig. 17 𝑀𝑥 parameter variations with damage level and location (high-speed regime)

3. Control Effectiveness Analysis
This section tries to uncover the reason for the sporadic estimates of the control effectiveness parameters of the

pitching and rolling moments described in the previous subsection. Figures 18 and 19 respectively show the low-speed
and high-speed observed forces/moments from training data plotted against the respective primary control effectiveness
regressors. Each plot also shows a simple linear model fit to the respective data.

For the 𝐹𝑧 model of both speed regimes, a linear trend is clearly observed between 𝐹𝑧 and 𝜔2
𝑡𝑜𝑡 with decreased slope

magnitude at higher damage levels. This is in line with expected behavior; the quadrotor should be less effective in
producing thrust when blade damage is present. Conversely, the slope of the (low-speed) 𝑀𝑦 model actually increases
with increasing damage level, which was also the case for the simplified models shown in Fig. 16.

The low-speed 𝑀𝑥 data shows that there are 2 distinct patterns between 𝑢𝑝 and 𝑀𝑥 . For example, the 𝑀𝑥 data
shows dominant linear behavior from -0.15 to 0.15 Nm but there is another region with a lower slope, which is active
on a smaller range of moment values, roughly -0.03 to 0.03 Nm. This additional non-linear effect was found to occur
during the lateral maneuvers while the dominant linear behavior corresponds to the quick roll maneuvers where the
lateral airspeed remains close to zero. In the high-speed test flight, only fast roll maneuvers could be performed so as to
make sure the quadrotor stays within the jet of the wind tunnel. This is also evident by the fact that the high-speed 𝑀𝑥

data shown in Fig. 19 only shows the dominant linear pattern.
Similar to the phenomenon for 𝑀𝑥 , similar features can be seen in the 𝑀𝑦 data. Unlike the 𝑀𝑥 , the pitching moment

could be excited both through fast pitch maneuvers as well as slower longitudinal maneuvers during high-speed flight.
This is clearly evident in Fig. 19 where two distinct linear regions are visible. The presence of these dual patterns results
in the models identified from the data being an unweighted average of both patterns. Since the patterns arise based on
the maneuvers performed, differences in flight maneuvers result in different distributions of data for each maneuver
which eventually impact the control effectiveness parameters. This would also explain why the high-speed 𝑀𝑥 models
shown in 17 show clearer patterns than the other models, only one type of maneuver was flown for this case.

These findings suggest that linear-in-the-parameters models may not be sufficient to model the dynamics of a
quadrotor from a physical perspective. For example, the roll control effectiveness is found to depend on additional
states such as lateral airspeed in a non-linear fashion, while also of course depending on the control input created by the
combination of rotor speeds.

B. High-Frequency Models

1. Spectral Analysis
While the simplex B-spline models are the primary result of the HF models, the frequency-amplitude data gathered

from the spectral analysis of the raw IMU data is interesting to analyze. Here, the results obtained for a variety of
damage cases for both the Beetle and Geyser drones are presented. First, the results for a single damage case are
presented which show the amplitude-frequency relationships of three harmonics for each IMU axis. Then, similar plots
are shown for increasing levels of damage at a single location. Finally, results are shown for the same damage level at all
four damage locations.

Figures 20 and 21 show the 𝑓 − 𝐴 relationships as mean value (solid lines) and 2𝜎 bands (shaded regions) for the
Beetle and Geyser quadrotors respectively. These results are obtained from a single flight with a duration of around 120
seconds. The duration of flights for the remainder of the HF spectral analysis results are derived from flights of similar
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Fig. 18 Control effectiveness comparison plots for low-speed flight data

Fig. 19 Control effectiveness comparison plots for low-speed flight data
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Fig. 20 Amplitude-frequency relationships of the Beetle quadrotor with damage case 30FR

duration.
Since the accelerometer on the Beetle is sampled at 1000 Hz, only the first harmonic is extracted. Another important

point to note is that the accelerometers of both quadrotors have a limit of 16 g ( 160 m/s), yet the estimated amplitudes
tend to surpass this value for the Beetle. This occurs at frequencies close to the Nyquist limit (500 Hz), where the STFT
does start to break down given the very short time windows. This is an inherent limitation and requires the use of IMUs
with higher sampling rates and higher saturation limits. Additionally, as mentioned in Sec. IV.B, high frequencies are
difficult to excite in an indoor environment, which results in fewer data points in these regions, accounting partly for the
noisy data at frequencies above 450 Hz.

Figure 21 shows that the high-frequency region (>450 Hz) for the Geyser drone is less noisy than the Beetle. Unlike
the Beetle, the accelerometer of the Geyser has a logging rate of 8 kHz. Additionally, the higher mass of the Geyser
results in higher hovering RPM, making the full range of frequencies easier to cover through throttle punch maneuvers.
The higher inertia of the Geyser also makes the accelerometer less susceptible to clipping.

It is interesting to note that the harmonics above the base harmonic have a relatively small contribution to the
time-series signal. For the Beetle, the higher harmonics only contribute significantly to the yaw rate, while the Geyser
has the highest contributions in 𝑎𝑧 with noticeable peaks around 300 Hz for the other IMU measurements.

Figure 22 shows that increasing levels of blade damage manifest in clear differences between the 𝑓 − 𝐴 relationships for
all the IMU axes of the Beetle quadrotor. Figure Figure 24 also shows that the location of damage results in different
𝑓 − 𝐴 relationships at the same damage level. In both the figures, there are multiple lines of the same color which
signifies data obtained from completely separate flights with the same damage case, which shows the reproducibility of
the results obtained from the spectral analysis procedure explained in Sec. IV.D. It is interesting to see that the curves at
different damage levels show similar localized features which increase in prominence as the damage level increases.
These effects are likely caused by structural resonance in the airframe and complex aerodynamic interactions.

Figure 23 and 25 show the same effects seen from the corresponding plots for the Beetle quadrotor on the Geyser
quadrotor. However, the mean 𝑓 − 𝐴 curves appear to be noisier for the Geyser, with larger 2𝜎 bands. After a closer
inspection of the raw IMU data, and the frequency and amplitude estimates at each time point, it was found that there
may be a dependence of amplitude on additional states apart from 𝑓 . For example, Fig. 26 shows the roll-rate data
of the Geyser with damage case 30FR. A clear oscillation in the amplitude of the signal is seen which at first looks
independent of the frequency of the signal, but there is a pattern visible of lower amplitudes corresponding to lower
frequencies and vice-versa. This oscillation in frequency is also weakly visible in the STFT plot. These oscillations in
amplitude were also observed on the Beetle but to a much lower extent.

There are two explanations for the high-frequency amplitude oscillation phenomenon. For one, the assumption that
the amplitude is only a function of frequency may still be valid. This suggests that the high-frequency oscillations in
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Fig. 21 Amplitude-frequency relationships of the Geyser quadrotor with damage case 30FR

frequency are caused by fast oscillation in motor RPM values, and the amplitude is directly related to these frequency
oscillations. However, it is difficult to resolve these dynamics with the STFT because the frequency changes very rapidly.
This essentially means that the signal is too non-stationary to capture the frequency and amplitude by analyzing even
small time windows. This is also visible in Fig. 26, where the estimated amplitude does not perfectly conform to the
signal.

Alternatively, there may be hidden states governing this oscillation in signal amplitude. It is important to note that
the flight controller on the Geyser drone is mounted on the airframe via rubber standoffs which include metal inserts for
securing the board with fasteners. The Beetle on the other hand has steel standoffs that are many orders of magnitude
stiffer. It is possible that the high levels of vibration cause non-linear structural effects through the rubber standoffs
which do not occur with the same severity on the Beetle. In either case, even though the high-frequency amplitude and
frequency oscillation of the signal cannot be resolved, the mean 𝑓 − 𝐴 relations are still captured.

2. Simplex B-spline Models
The surfaces of the simplex B-spline models constructed for the Beetle quadrotor of the amplitudes corresponding

to the first harmonic, for the FR damage case, are presented in Fig. 27. The training data is also shown in these plots but
reduced to the mean value at each frequency bin for each damage level. The spline surfaces go through the training data
and are able to capture all the local non-linearities in the data. Additionally, the regions in between the rows of training
data appear to be qualitatively well interpolated by the spline models. The models for the second harmonic are shown in
Fig. 28. The training data appears nosier in this case but it is also important to notice that the amplitudes of the second
harmonic are much lower in value than that of the first harmonic. The training data is especially noisy in the low and
high-frequency regions. The noise in the low-frequency region is likely caused by leakage of amplitudes estimated for
the first harmonic into the second harmonic, while noise in the high-frequency regions is likely because of fewer data
points in each frequency bin as explained in the previous section.

The performance metrics for the various simplex B-spline models of the Beetle quadrotor are summarised in Table
12 and Table 13 for the accelerometer and gyroscope models respectively. The results are shown calculated on the entire
dataset (Full) as well as the validation set (Test). The data was split randomly into the 80:20 ratio for the training and
validation sets for all the models. Note that because the MPU6000 IMU is limited to 1 kHz, only the first harmonic
models are possible to construct for the Beetle.

From the results, some general conclusions can be drawn. The base harmonic models generally perform significantly
better than those corresponding to higher harmonics. Since the base harmonic is the dominant component, this is not a
very consequential limitation. The performance metrics for the validation data are comparable to those of the complete
dataset, which indicates that the models do not overfit the training data.

It is interesting to note the BL accelerometer models show worse performance than the other damaged locations.

25

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Ja
nu

ar
y 

7,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

5-
00

08
 



0

100

200

a
x
 [ m s2

] Case
Healthy
10FR
20FR
30FR

0

2

p
 [r

ad s
]

0

200

a
y
 [ m s2

]

0

1

2

q 
[r

ad s
]

0 100 200 300 400 500
Frequency [Hz]

0

100

a
z
 [ m s2

]

0 100 200 300 400 500
Frequency [Hz]

0.0

0.5

r 
[r

ad s
]

Fig. 22 Amplitude-frequency relationships of the first harmonic at varying levels of FR damage for the Beetle
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Fig. 23 Amplitude-frequency relationships of the first harmonic at varying levels of FR damage for the Geyser

26

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Ja
nu

ar
y 

7,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

5-
00

08
 



0

100

200

a
x
 [ m s2

]

0

1

2

p
 [r

ad s
]

0

100

200

a
y
 [ m s2

]

0

1

q 
[r

ad s
]

0 100 200 300 400 500
Frequency [Hz]

0

100

a
z
 [ m s2

]

0 100 200 300 400 500
Frequency [Hz]

0.0

0.5

r 
[r

ad s
]

Fig. 24 Amplitude-frequency relationships of the first harmonic at varying locations with 20% damage for the
Beetle
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Fig. 25 Amplitude-frequency relationships of the first harmonic at varying locations with 20% damage for the
Geyser
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Fig. 26 A time-snippet of the roll rate (bottom) measured by the Geyser quadrotor for damage case 30FR, and
the spectrogram of this signal showing peak harmonics related to the motor frequency (top)
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Fig. 27 Spline models of the Beetle for FR damage (Harmonic 1)
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Fig. 28 Spline models of the Beetle for FR damage (Harmonic 2)

Table 12 Model performance metrics for the HF acceleration models of the Beetle quadrotor (h = harmonic)

𝒂𝒙 𝒂𝒚 𝒂𝒛

Case h NRMSE R2 NRMSE R2 NRMSE R2

Full Test Full Test Full Test Full Test Full Test Full Test
FR 1 0.171 0.173 0.971 0.970 0.194 0.191 0.963 0.964 0.239 0.241 0.943 0.942
FL 1 0.285 0.292 0.919 0.915 0.200 0.201 0.960 0.960 0.223 0.219 0.950 0.952
BR 1 0.174 0.173 0.969 0.970 0.220 0.222 0.952 0.951 0.147 0.147 0.979 0.979
BL 1 0.323 0.323 0.895 0.896 0.309 0.302 0.905 0.909 0.189 0.186 0.964 0.966

Looking at the top row of plots in Fig. 29, it appears that noise in the high-frequency regions (>450 Hz) is the probable
cause. The noisy data in the high-frequency region are likely present because of the proximity of these frequencies to
the Nyquist limit (500 Hz). The gyroscope models for the BL case are not always worse than the other damage locations.
The gyroscope data is sampled at 8 kHz, which further suggests that accelerometer model training data is inflicted with
noisy estimates due to proximity to the Nyquist limit.

The performance metrics for the simplex B-spline models of the Geyser quadrotor are summarised in Table 14 and
Table 15 for the accelerometer and gyroscope models respectively. Unlike the Beetle, the 8 kHz sampling rate of the
accelerometer in the ICM42605 IMU facilitates the identification of accelerometer models at harmonics higher than
the base harmonic. Note that models only for the FR location are presented even though Table 4 suggests that all 4
single-damage locations were tested. This is because apart from the FR case, the other cases only cover one damage
level, to qualitatively analyze how the 𝑓 − 𝐴 relationships change based on damage location, at the same damage level,
for the Geyser quadrotor.

On average, the base harmonic models of the Geyser seem to be slightly worse than the Beetle. This is likely because
of the high-frequency amplitude oscillation phenomenon described in the previous section. The models of the higher
harmonics also show significantly worse performance than those of the base harmonics, as was the case with the Beetle.

In addition to creating models for the damage levels for which flight data was gathered, the simplex B-spline models
also facilitate interpolation between the damage levels. To examine how accurately the spline models are capable of
interpolating between damage levels, flight data was gathered for two damage cases: 15BL and 25FL (see Table 3). The
data for these cases were not used to construct the models for the respective damage locations.

Figure 29 shows plots of the training data, spline models, and validation data for the BL damage case of the
Beetle quadrotor. The validation data corresponds to a damage level of 15% and was not used when identifying the
simplex B-spline model. It can be seen from the plot of each model in Fig. 29 that the spline model is actually able to
approximate the data obtained for the 15% damage case quite well for all six models, even capturing the local peaks and
valleys as a function of frequency.
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Table 13 Model performance metrics for the HF angular-rate models of the Beetle quadrotor (h = harmonic)

𝒑 𝒒 𝒓

Case h NRMSE R2 NRMSE R2 NRMSE R2

Full Test Full Test Full Test Full Test Full Test Full Test
1 0.243 0.236 0.941 0.945 0.137 0.134 0.981 0.982 0.180 0.179 0.967 0.968

FR 2 0.525 0.536 0.724 0.712 0.38 0.398 0.855 0.841 0.457 0.475 0.771 0.759
3 0.318 0.317 0.893 0.894 0.391 0.402 0.815 0.819 0.349 0.352 0.877 0.875
1 0.253 0.250 0.936 0.937 0.169 0.168 0.971 0.972 0.365 0.367 0.867 0.866

FL 2 0.495 0.482 0.755 0.767 0.532 0.513 0.718 0.737 0.462 0.464 0.784 0.781
3 0.367 0.368 0.864 0.863 0.389 0.387 0.816 0.815 0.322 0.323 0.882 0.882
1 0.217 0.218 0.953 0.953 0.206 0.204 0.958 0.958 0.176 0.176 0.969 0.969

BR 2 0.286 0.288 0.920 0.918 0.625 0.620 0.615 0.622 0.509 0.519 0.591 0.583
3 0.274 0.272 0.912 0.913 0.172 0.163 0.895 0.896 0.258 0.262 0.929 0.928
1 0.209 0.216 0.956 0.953 0.288 0.287 0.917 0.918 0.305 0.299 0.905 0.909

BL 2 0.455 0.403 0.791 0.837 0.634 0.634 0.594 0.594 0.491 0.470 0.747 0.764
3 0.268 0.271 0.925 0.924 0.245 0.237 0.934 0.937 0.275 0.279 0.924 0.922

Table 14 Model performance metrics for the HF acceleration models of the Geyser quadrotor (h = harmonic)

𝒂𝒙 𝒂𝒚 𝒂𝒛

Case h NRMSE R2 NRMSE R2 NRMSE R2

Full Test Full Test Full Test Full Test Full Test Full Test
1 0.236 0.233 0.945 0.946 0.204 0.210 0.958 0.956 0.336 0.341 0.887 0.884

FR 2 0.327 0.357 0.893 0.873 0.355 0.348 0.874 0.879 0.28 0.29 0.922 0.916
3 0.717 0.723 0.488 0.479 0.359 0.363 0.872 0.870 0.494 0.49 0.756 0.761

Table 15 Model performance metrics for the HF angular-rate models of the Geyser quadrotor (h = harmonic)

𝒑 𝒒 𝒓

Case h NRMSE R2 NRMSE R2 NRMSE R2

Full Test Full Test Full Test Full Test Full Test Full Test
1 0.262 0.270 0.932 0.928 0.233 0.226 0.947 0.950 0.260 0.259 0.934 0.934

FR 2 0.334 0.320 0.889 0.898 0.385 0.424 0.852 0.821 0.313 0.320 0.902 0.898
3 0.509 0.514 0.740 0.735 0.515 0.535 0.736 0.714 0.640 0.658 0.590 0.567
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Fig. 29 Projected spline models of the Beetle for BL damage (Harmonic 1)

Table 16 Interpolation performance of the HF acceleration models

Case h 𝒂𝒙 𝒂𝒚 𝒂𝒛

NRMSE R2 NRMSE R2 NRMSE R2

15Bl 1 0.475 0.774 0.516 0.734 0.291 0.915
25FL 1 0.339 0.885 0.323 0.895 0.297 0.912

Figure 30 shows similar plots as Fig. 29, but for FL damage, with validation data recorded at 25% damage. Again,
the spline models are able to interpolate the 25% damage case quite well. However, roll rate (𝑝) and 𝑎𝑦 models perform
relatively poorly at the higher frequency region. Models for 𝑞 and 𝑟 are particularly accurate.

Tables 16 and 17 respectively show the model performance metrics for the accelerometer and gyroscope models at
both interpolated damage cases. While the error for the interpolated damage levels is higher than that of the damage
levels used for training the model, the models still give a decent approximation. This shows the feasibility of simulating
the HF behavior at several damage levels with HF models built from a discrete set of a few damage levels, which is a
novel finding of this research.

VI. Discussion

A. Aerodynamic Models
While the aerodynamics models identified through SWR show good performance and are able to capture the effects

of different combinations of blade damage and extent, they do not offer a meaningful method of interpolating between
damage levels at a given damage case because of the differences in regressors chosen from one damage case to the next.
The simplified fixed-regressor models identified to remedy this also did not show many meaningful relationships in the
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Fig. 30 Projected spline models of the Beetle for FL damage (Harmonic 1)

Table 17 Interpolation performance of the HF angular-rate models

Case h 𝒑 𝒒 𝒓

NRMSE R2 NRMSE R2 NRMSE R2

1 0.411 0.831 0.547 0.701 0.602 0.638
15BL 2 0.911 0.171 0.999 0.002 0.600 0.640

3 0.330 0.891 0.248 0.938 0.345 0.881
1 0.320 0.897 0.231 0.947 0.572 0.672

25FL 2 0.581 0.662 0.619 0.617 0.474 0.776
3 0.377 0.858 0.661 0.564 0.483 0.767
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Fig. 31 A time-snippet of the yaw rate (bottom) measured by the Beetle quadrotor for damage case 30FR, and
the spectrogram of this signal showing peak harmonics related to the motor frequency (top)

parameter values as a function of blade damage location and level. Exceptions to this were the 𝜔2
𝑡𝑜𝑡 regressor parameters

of the 𝐹𝑧 models, and the biases of the 𝑀𝑥 and 𝑀𝑦 models. However, it must be noted that the bias component of the
moment models merely accounts for the constant offsets in rotor speeds created due to blade damage, and does not
model the actual moments produced when maneuvers are performed.

One major reason for the lack of meaningful variations in model parameters as a function of blade damage was that,
depending on the flight maneuvers performed, the training data can significantly impact the identified model parameters.
Even though the system identification flights were performed manually, the variation between the maneuvers between
flights was tried to be kept at a minimum by following a fixed set of pre-planned maneuvers. However, this clearly
did not prove to be enough, suggesting that the only way to ensure that flight maneuvers are performed in a repeatable
manner is to perform automated test flights, where pose feedback information provided by an external motion capture
system is used to control the attitude and position of a quadrotor. This has been done by Sun et al. [31]. The automation
of flight should also allow for more complicated maneuvers to be flown which better couple the forces and moments,
unlike the largely uncoupled models presented in this paper.

The analysis of the control effectiveness regressors described in Sec. V.A also shows the difficulty of capturing
meaningful physical relationships using linear-in-the-parameters polynomial models. This was especially evident for the
moment control effectiveness regressors 𝑢𝑝 and 𝑢𝑞 for the 𝑀𝑥 and 𝑀𝑦 models respectively.

B. High Frequency Models
One of the base assumptions used when building the HF models is that high-frequency accelerations and angular

rates measured in each axis are comprised of a few sinusoids. Specifically, we further assume that the dominant sinusoid
has a frequency equal to the rotation frequency of the damaged propeller, and only the harmonics of this frequency are
dominant. While this was found to be the case for almost all IMU measurements of both the Beetle and Geyser, the yaw
rate measured on the Beetle shows additional oscillations at sporadic frequencies below the motor frequency shown in
Fig. 31. This generally occurs above around 250 Hz but is most dominant at frequencies above 400 Hz. The limitation
of the HF modeling approach is that these sporadic effects are not captured.

While the spline-based HF models show the possibility of predicting signal amplitudes at damage levels in between
the levels corresponding to the training data, a spacing of 10% damage between the training data may be too high to
accurately reproduce the behavior in between the training damage levels. The spacing between damage levels also
affects the number of test flights required, so a trade-off is required in terms of accuracy and experimental costs.

The phase relationships between the harmonics of each IMU axis, as well as the phase relationships between these
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Fig. 32 Relative phases of the IMU signals of the Geyser, with damage case 30FR, obtained from the STFT of
each respective signal.

axes, are not described by the HF models presented in this paper. This would be a useful addition, whereby phase
relationships are constructed as a function of frequency in a similar manner as was done for the amplitudes in this paper.
Figure 32 shows the phase information extracted from the 30FR damage case of the Geyser. Since the absolute phase
depends on the actual angle made by the damaged rotor with respect to a fixed body reference – an unmeasured quantity–
it is impossible to obtain the absolute phase of each IMU signal. However, at each slice of the STFT, the relative phases
between signals can be computed. In Fig. 32, the phase of 𝑎𝑦 and 𝑎𝑧 is shown relative to that of 𝑎𝑥 , while the phases of
𝑞 and 𝑟 are shown relative to that of 𝑝. Interestingly, there are clear patterns visible in the phase data as a function of
frequency. However, the phase data obtained for damage levels below 30% are not as clear as shown here, and almost
look random at 10% damage even though the IMU signals are sinusoidal for all damage cases. Therefore, before phase
models can be constructed, accurate extraction of phase information should be investigated.

The simplex B-spline models presented in this paper use a fairly simple triangulation which is defined on a rectangular
grid of points. To better cover the complete data space, the convex hull of the data should be used to select the simplex
vertices. In terms of the number of simplices in each direction, the triangulation presented here shows good results and
is recommended to be kept the same for amplitude surface modeling.

The HF models treat frequency as the only independent variable (at a constant damage level). However, there may
be a weak dependence on additional variables that affect the aerodynamic imbalances created by the damaged propeller.
For example, the angle of attack of the rotor plane and airspeed may increase or decrease the effects of the HF forces
and moments caused by aerodynamic imbalances which are not accounted for in the presented models. A few HF model
identification flights were also conducted in the wind tunnel to see the effects of mean flow velocity on the frequency
amplitude curves obtained from spectral analysis. Figure 33 shows the amplitude-frequency relationship for the same
damage case, but flying at different mean airspeed. Note that the multiple curves for the ’0 m/s’ case each correspond
to a unique flight. From these results, it is clear that frequency-amplitude relationships do not change drastically at
different air speeds.

It is important to note here that the variations between the green curves (all corresponding to the same damage case)
in Fig. 33 seem quite large compared to what was shown in Fig. 20 for various damage cases. This is likely because of
minor changes in mass, and mass distribution introduced by changing the battery in between test flights. The wind
tunnel tests were conducted before the model identification flights, the data from which the HF models for the Beetle are
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Fig. 33 First harmonic amplitude-frequency relationships of the Beetle quadrotor at varying wind speed for the
same damage case (20FR)

constructed. For the latter, the battery was taped onto the airframe, and all flights were conducted with the same battery
(recharged without detaching from the quadrotor). Therefore, the HF behavior is found to be very sensitive to even
minor changes in the way the mass is distributed on the airframe. In fact, the variation of the high airspeed curve (red)
in Fig. 33 may also largely be because of the fact that the battery was changed, and not purely because of the effect of
flying at a higher mean airspeed.

While the amplitude-frequency relationships are modeled using simplex B-splines in the presented HF modeling
methodology, an alternative approach would be to compute the frequency response function using pole-zero models.
This has the potential advantage of providing fewer and more physical parameters that describe the local peaks and
valleys observed in the amplitude curves as a function of frequency. However, this would come at the cost of providing a
straightforward way to interpolate between the damage levels, which is a benefit of using the spline-based models.

Finally, the HF models are only constructed for the single damage case. If linearity is assumed, then a damage case
for 2 simultaneously failed rotors can be simulated by adding the respective models corresponding to only one damaged
rotor. The difference in phase between the two rotors in this case can cause constructive or destructive interference
between the forces and moments created by each rotor. In a simulation, the angular positions of the rotors can be
simulated through time integration, and so the dual damage cases can be simulated by simply super-imposing the models
identified for single propeller damage. Clipping, especially in the simulated accelerometer, should be taken into account
when simulating simultaneous damage in this way.

The super-imposition of single damage models would have to be validated through HF model identification of a
quadrotor with simultaneous damage to two or more propellers. However, this presents further challenges. Since the
rotor speeds are generally very close throughout most of the flight, spectral analysis through the STFT-based procedure
described in this paper may not be applicable because the frequency resolution would be too low to differentiate the
nearby frequencies. In this case, probably a single peak frequency corresponding to the dominant propeller can be
extracted from the STFT, however, the amplitude of this peak would lump the influence of each damaged propeller. One
remedy for this would be to fly maneuvers that create differences between rotor speeds such as aggressive pitch, roll, or
yaw combined with simultaneous throttle punch maneuvers to ensure that the effects of imbalances in both propellers
have significant amplitudes and sufficiently distanced frequencies.
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C. Implications for blade damage diagnosis
Based on the aerodynamic models and high-frequency models identified for ABD, some important conclusions

can also be drawn regarding the diagnosis of this damage case. High-frequency models are much more robust to the
maneuvers because the primary dependence is on the (rotational) speed of the damaged rotor, while also being highly
sensitive to the damage level. As shown in Sec. V.B.1, the HF behavior differs based on damage location, at the same
damage level. Bondyra et al. [17] suggest that damage cannot be localized using only a single IMU, however, the results
of this study show that this is not the case. A single IMU is a sensitive enough source of information to differentiate
between the same level of damage at different locations. However, this sensitivity also comes with the disadvantage
that two identically manufactured quadrotors may show significantly different HF model behavior. This also calls into
question the various existing diagnosis methodologies [18, 21, 37] which rely purely on IMU data.

While the aerodynamic models suggest that online identification of these models may not be a good method for
diagnosing damage, certain parameters such as the bias terms of the moment models, as well the parameter for the
𝜔2
𝑡𝑜𝑡 regressor for 𝐹𝑧 offer a useful diagnostic tool which may not be as sensitive to the local variations in structural

properties of the airframe like the HF models. However, these parameters would not provide information about the
asymmetry of the damage, unlike the HF models. It may be possible to harness the strengths of both frequency regimes
to develop a robust blade diagnosis framework that is robust to small changes between airframe properties of different
quadrotors but can still provide accurate estimates of the type of blade damage present on the quadrotor.

VII. Conclusion
This paper explored the process of modeling the effects of asymmetric blade damage on the dynamics of a quadrotor.

It was found that the effects can be largely separated into two frequency ranges, and modeled independently for each
regime. Polynomial models constructed using stepwise regression, which quantify the effects of blade damage on
the aerodynamic forces and moments were analyzed. These models were found to show good performance and were
demonstrated to capture the effects of blade damage. However, the variations of parameter values as a function of
damage extent were sporadic for most model regressors and therefore did not facilitate interpolation between damage
levels, where experimental data is not gathered. A possible way to improve the aerodynamic model interpolatability
would be to perform automated, and therefore more reproducible system identification flights at each damage level.

A novel approach for modeling the high-frequency effects of asymmetric blade damage in the frequency domain
was developed. A simple sinusoidal model structure was found to capture a large part of the high-frequency behavior,
producing accurate models of the HF phenomena, which also facilitated reasonably accurate interpolation of the HF
behavior at damage levels not used for model identification. The HF modeling approach relies purely on onboard
IMU measurements, therefore facilitating online identification. Additionally, with the approach being validated on two
separate quadrotor platforms, the potential for generalization is demonstrated. The findings in terms of HF behavior
also provide insights regarding the diagnosis of blade damage in quadrotors, or similar platforms. Primarily, the
potential strengths and weaknesses of relying purely on IMU sensors as a source of information for diagnosis are
highlighted. Future research should explore the development of robust blade damage diagnosis algorithms that fuse the
high sensitivity capability of the IMU with more robust information provided by certain aerodynamic model terms such
as the bias terms of aerodynamic moments, as well as the 𝜔2

𝑡𝑜𝑡 regressor for 𝐹𝑧 .

Appendix A: IMU properties
This section presents and compares the noise properties of the MPU6000 and ICM42605 IMUs used for gathering

experimental data. Additionally, the sampling jitter properties of both IMUs are also analyzed to examine the validity of
using the STFT for spectral analysis, as it assumes constant sampling times.

Figure 34 shows the noise characteristics of the MPU6000 and ICM62605 IMUs. The distributions are constructed
from 30 seconds of measurement data. While the gyroscopes perform similarly for both, the accelerometer measurements
of the ICM42605 have significantly lower variances than the MPU6000. However, for the purposes of high-frequency
model identification, the signal-to-noise ratio is very high for both IMUs for both accelerometer and gyroscope
measurements. The data Note that the temperature was not recorded, however, the data was gathered under similar
environmental conditions. It is therefore assumed that variation in temperature did not have a significant effect on the
measured noise statistics.

Apart from the measurement noise, some jitter in sampling times was also observed in the raw IMU data for
both the MPU6000 and ICM42605. Here a quantity jitter fraction (𝜙 𝑗) is defined as per Eq. 39, where Δ𝑡𝑡𝑟𝑢𝑒 is the
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Fig. 34 Distributions of stationary noise measurements of the MPU6000 and ICM42605
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Fig. 35 Distributions of jitter fraction for the accelerometer (left) and gyroscope (right) measurements of the
MPU6000 and ICM42605.

required sampling time and Δ𝑡𝑚𝑒𝑎𝑠 is the measured time difference between two consecutive samples. Figure 35 shows
the distributions of 𝑝ℎ𝑖 𝑗 for the accelerometer and gyroscope measurements. The raw IMU data in px4 is logged
independently for the accelerometer and gyroscope, while the axes of both sensors are logged simultaneously. While
there is some amount of sampling jitter, a vast majority of the measurements (>92%) show consistent sampling periods.

𝜙 𝑗 =
Δ𝑡𝑡𝑟𝑢𝑒 − Δ𝑡𝑚𝑒𝑎𝑠

Δ𝑡𝑡𝑟𝑢𝑒
(39)

Appendix B: Optimal STFT parameters based on signal properties
As discussed in the paper, the outputs of the STFT are highly sensitive to the choice parameters 𝑛𝑠 and 𝑛fft, which

are linked to the 𝑓𝑠 , 𝑓𝑟 , and 𝑓𝑟𝑒 via Eq. 28 and 29 respectively. Intuitively, it is appropriate to assume that the choice of
these parameters is influenced by the degree of non-stationarity of the sinusoidal signal to be analyzed, which can be
formally defined as the maximum derivative of the frequency of the sinusoidal signal ¤𝑓𝑚𝑎𝑥 .

For the purpose of building the HF models presented in this paper, the sinusoidal IMU signals are analyzed using
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Fig. 36 Distribution of motor frequencies (left) and their derivative (right) constructed from data gathered
from all Beetle test flights

the STFT. Because the frequency of these signals is directly related to the rotational frequency of the damaged propeller,
it is useful to study the properties of the motor frequencies. Figure 36 shows the distributions of motor frequencies, and
the derivatives of these frequencies, computed from the data of all the test cases presented in Table 3. We see that the
sinusoidal signals measured by the IMU can have changes in frequency at more than 4000 Hz/s, however, very rare. A
value of 2500 Hz/s for ¤𝑓𝑚𝑎𝑥 encompasses a large amount of the observed non-stationarity.

To determine a good choice for the parameters 𝑓𝑟 and 𝑓𝑟𝑒 , a numerical study was conducted. For this, artificial
non-stationary sinusoidal signals are generated using Eq. 41 where the frequency of the signal is given by Eq. 40. The
sampling rate of the test signal is chosen as 4 kHz, with a length of 20k samples, and the maximum 𝑓max and minimum
frequency 𝑓min are chosen to be 1800 Hz and 100 Hz respectively. Then, the test signal is analyzed through the STFT at
several combinations of 𝑓𝑟 and frequency factor 𝜓 𝑓 (Eq. 42). The relative RMSE of the STFT-derived amplitude and
frequency are computed, for each pair of 𝑓𝑟 and 𝜓 𝑓 . Figure 37 shows the result of this process. It is clear from the
results that a naive choice of parameters can lead to a very bad estimate of amplitude especially.

𝑓 (𝑡) = 𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛

2
sin

(
2

¤𝑓𝑚𝑎𝑥

𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛

𝑡

)
+ 𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛

2
(40)

𝑦(𝑡) = sin(2𝜋 𝑓 (𝑡)) (41)

𝜓 𝑓 =
𝑓𝑟𝑒

𝑓𝑟
(42)

While several good options for 𝑓𝑟 and 𝜓 𝑓 are available, values of 60 Hz and 1/30 were chosen for each parameter
respectively. This choice of parameters results in a very low error in both frequency (<2%) and amplitude (<5%)
estimates derived from the STFT. Based on the definition of 𝜓 𝑓 , the chosen effective frequency resolution has a value of
2 Hz.
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