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SUMMARY

Power system operation is increasingly reliant on Information and Communication Tech-
nologies (ICTs), which are essential for enhancing the resilience, reliability, and security
of the future electricity supply. The advancement of ICTs has tightly integrated power
grids with communication networks, giving rise to Cyber-Physical power Systems (CPS).
However, this growing digitalization also increases system complexity, heightens vulnera-
bility to cyber attacks, and alters traditional operational patterns. Consequently, this trend
underscores the critical need for continued exploration and innovation in CPS to address
emerging challenges. In this context, the availability of reliable test cyber-physical systems
is crucial. The test CPS models must enable realistic analyses without exposing sensitive
information about critical infrastructures, allowing researchers to thoroughly investigate
newly introduced vulnerabilities and ensure the reliability and cyber security of CPS. To
this end, we are motivated to have the following research focus: the synthetic network
generation and vulnerability assessment of cyber-physical power systems.

Synthetic Network Generation: The rising demand for advanced research on cyber-
physical power systems compels the creation of realistic and reliable test systems. However,
the national security concerns prevent the public sharing of real Critical Infrastructure (CI)
data, including the real CPS models. As a solution, synthetic networks aim at generating
realistic projections of real-world networks while concealing the actual, sensitive system
models and data, e.g., CPS topologies, characteristics, and operational parameters, and
maintaining similar overall characteristics as the real cyber-physical systems.

CPS Vulnerability Assessment: Due to the rapid integration of cyber and physical
infrastructures, modern power systems are becoming more efficient while also exhibiting
increased vulnerabilities. This emerging risk was starkly demonstrated by the three major
cyber attacks on the Ukrainian power grid in 2015, 2016, and 2022, underscoring the crit-
ical need for enhanced security measures in this landscape. The evolving communication
infrastructures have significantly altered the propagation mechanisms of cascading failures
in CPS. These changes present novel challenges in ensuring a safe system operation. Con-
sequently, it is imperative to thoroughly investigate the new cascading mechanisms and
pinpoint the critical components of CPS, which will enable the implementation of timely
mitigation strategies, thereby enhancing the overall security and resilience of CPS.

Based on the discussion above, this thesis proposes novel methods for synthetic net-
work generation and vulnerability assessment of cyber-physical power systems using com-
plex network theory, graph neural networks and data mining techniques. The generated
synthetic CPS models and datasets preserve the complex network features and statistical
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properties of the real CPS. The proposed CPS vulnerability assessment method identifies
the critical components to increase CPS resiliency. It is conducted on both real and synthetic
CPS models. The results are statistically similar. The generated synthetic CPS models and
datasets can be freely shared with the research community without disclosing the confiden-
tial CPS, while adversaries cannot reverse engineer it. The major contributions of this thesis
are elaborated as follows.

From the perspective of synthetic networks, this thesis proposes three different gener-
ators to accurately generate synthetic CPS by utilizing real CPS models and data with vary-
ing levels of availability and completeness. First, a two-stage generative model is proposed
to generate synthetic communication topologies of large-scale CPS based on the existing
power grids. It reproduces the existing communication network design process and is capa-
ble of generating statistically realistic networks. The proposed method is implemented to
create a realistic, large-scale synthetic CPS for the interconnected power grids in continen-
tal Europe. Then, to generate synthetic networks for both cyber and physical system layers,
a scalable generative model, namely Graph-CPS, is proposed to generate a synthetic CPS
topology. This method is capable of reflecting realistic network feature distributions while
ensuring the confidentiality of the real CPS models and data. Graph-CPS can learn and re-
produce various complex network parameters, not only across different network types but
also across varying network sizes. This method paves the way for a deeper understanding
of CPS characteristics, offering valuable insights into CPS structures and network parame-
ter configurations. In the end, a hybrid generator, namely SibGen, is proposed to generate
the digital sibling of the real CPS. The core idea behind digital siblings lies in balancing
the fidelity of synthetic models with the need for data confidentiality, ensuring that over-
all system behaviours are accurately captured without compromising sensitive information.
Moreover, SibGen not only learns the topological features of CPS but also effectively cap-
tures the operational characteristics. This dual capability allows research to be conducted
on the generated digital sibling to closely mirror real-world scenarios, making the research
findings more practical and convincing.

From the perspective of CPS vulnerability assessment, this thesis systematically eval-
uates and identifies the vulnerabilities of CPS considering time-varying operational states,
with an emphasis on the correlation between CPS components. In this thesis, two types
of correlations—manifest and latent—are defined to better reveal the cascading mechanism
in CPS. These correlations are used to investigate both apparent and potential cascading
relationships between CPS components. By jointly analysing manifest and latent correla-
tions, this thesis introduces a critical components identification model, i.e., GraphCCI. This
model effectively captures the cascading failure characteristics across various operational
states and generates a weighted cascading graph database for graph data mining. Once fre-
quent cascading sub-graphs are identified, the proposed Node Criticality Index (NC-Index)
is used to accurately pinpoint critical CPS components, enhancing the overall system’s se-
curity and resilience.

The ultimate goal of this thesis is to advance the development of CPS while safeguard-
ing its security. This thesis offers realistic and reliable synthetic networks for research while
ensuring the confidentiality of real system models and data. Additionally, the proposed vul-
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nerability assessment methods effectively reveal cyber-physical cascading mechanisms and
accurately identify critical CPS components. These findings provide valuable insights for
the continued development of CPS and help ensure the safety of system operations.





SAMENVATTING

De werking van energiesystemen is steeds meer afhankelijk van Informatie- en Commu-
nicatietechnologieën (ICT), die essentieel zijn voor het verbeteren van de veerkracht, be-
trouwbaarheid en veiligheid van de toekomstige elektriciteitsvoorziening. De vooruitgang
van ICT heeft stroomnetwerken nauw geı̈ntegreerd met communicatienetwerken, wat heeft
geleid tot Cyber-Physical Power Systems (CPS). Echter, deze toenemende digitalisering
vergroot ook de systeemcomplexiteit, verhoogt de kwetsbaarheid voor cyberaanvallen, en
verandert traditionele operationele patronen. Hierdoor wordt de dringende noodzaak bena-
drukt voor voortdurende verkenning en innovatie binnen CPS om nieuwe uitdagingen het
hoofd te bieden. In dit kader is de beschikbaarheid van betrouwbare test cyber-fysische sys-
temen cruciaal. De test-CPS-modellen moeten realistische analyses mogelijk maken zonder
gevoelige informatie over kritieke infrastructuren bloot te geven, zodat onderzoekers nieuw
geı̈ntroduceerde kwetsbaarheden grondig kunnen onderzoeken en de betrouwbaarheid en
cyberveiligheid van CPS kunnen waarborgen. Om deze reden zijn wij gemotiveerd om
ons te richten op de volgende onderzoeksthema’s: de synthetische netwerkopwekking en
kwetsbaarheidsanalyse van cyber-fysische energiesystemen.

Synthetische Netwerkopwekking: De toenemende vraag naar geavanceerd onderzoek
naar cyber-fysische energiesystemen vereist de creatie van realistische en betrouwbare test-
systemen. Nationale veiligheidskwesties voorkomen echter dat echte gegevens van kritieke
infrastructuren (CI), inclusief de echte CPS-modellen, openbaar worden gedeeld. Als op-
lossing richten synthetische netwerken zich op het creëren van realistische projecties van
netwerken in de echte wereld, terwijl ze de werkelijke, gevoelige systeemmodellen en ge-
gevens, zoals CPS-topologieën, kenmerken en operationele parameters, verhullen en ver-
gelijkbare algemene kenmerken behouden als de echte cyber-fysische systemen.

CPS Kwetsbaarheidsanalyse: Door de snelle integratie van cyber- en fysieke infra-
structuren worden moderne energiesystemen efficiënter maar ook kwetsbaarder. Dit opko-
mende risico werd duidelijk aangetoond door de drie grote cyberaanvallen op het Oekraı̈ense
elektriciteitsnet in 2015, 2016 en 2022, wat de kritische noodzaak van verbeterde veilig-
heidsmaatregelen in deze omgeving benadrukte. De evoluerende communicatie-infrastructuren
hebben de verspreidingsmechanismen van cascade-uitval in CPS aanzienlijk veranderd.
Deze veranderingen vormen nieuwe uitdagingen voor een veilige systeemwerking. Het
is daarom noodzakelijk om de nieuwe cascade-mechanismen grondig te onderzoeken en
de kritieke componenten van CPS te identificeren, waardoor tijdige mitigeringsstrategieën
kunnen worden geı̈mplementeerd en de algehele beveiliging en veerkracht van CPS kunnen
worden verbeterd.
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XIV SAMENVATTING

Gebaseerd op bovenstaande discussie, stelt deze scriptie nieuwe methoden voor voor
synthetische netwerkopwekking en kwetsbaarheidsanalyse van cyber-fysische energiesys-
temen met behulp van complexe netwerktheorie, grafneuronale netwerken en data mining-
technieken. De gegenereerde synthetische CPS-modellen en datasets behouden de kenmer-
ken van complexe netwerken en statistische eigenschappen van de echte CPS. De voorge-
stelde CPS-kwetsbaarheidsanalyse-methode identificeert de kritieke componenten om de
veerkracht van CPS te vergroten. Deze analyse wordt uitgevoerd op zowel echte als synthe-
tische CPS-modellen. De resultaten zijn statistisch vergelijkbaar. De gegenereerde synthe-
tische CPS-modellen en datasets kunnen vrij worden gedeeld met de onderzoeksgemeen-
schap zonder de vertrouwelijkheid van de CPS prijs te geven, en vijanden kunnen deze
niet omgekeerd-engineeren. De belangrijkste bijdragen van deze scriptie worden hieronder
nader toegelicht.

Vanuit het perspectief van synthetische netwerken stelt deze scriptie drie verschillende
generatoren voor om nauwkeurig synthetische CPS te genereren door gebruik te maken van
echte CPS-modellen en -gegevens met verschillende niveaus van beschikbaarheid en volle-
digheid. Ten eerste wordt een tweefasen-generatiemodel voorgesteld om synthetische com-
municatietopologieën van grootschalige CPS te genereren op basis van bestaande stroom-
netwerken. Het reproduceert het bestaande ontwerpproces van communicatienetwerken en
kan statistisch realistische netwerken genereren. De voorgestelde methode wordt toege-
past om een realistisch, grootschalig synthetisch CPS te creëren voor de onderling verbon-
den stroomnetwerken in continentaal Europa. Vervolgens wordt een schaalbaar generatief
model, Graph-CPS, voorgesteld om synthetische netwerken voor zowel de cyber- als fysi-
sche systeemlagen te genereren. Deze methode is in staat om realistische netwerkfunctie-
distributies te weerspiegelen terwijl de vertrouwelijkheid van de echte CPS-modellen en
-gegevens wordt gewaarborgd. Graph-CPS kan verschillende parameters van complexe
netwerken leren en reproduceren, niet alleen over verschillende typen netwerken, maar ook
over verschillende netwerkafmetingen. Deze methode biedt een dieper inzicht in CPS-
kenmerken en netwerkparameterconfiguraties. Tot slot wordt een hybride generator, Sib-
Gen, voorgesteld om de digitale tegenhanger van de echte CPS te genereren. Het kernidee
achter digitale tegenhangers is het evenwicht tussen de betrouwbaarheid van synthetische
modellen en de noodzaak van gegevensvertrouwelijkheid, zodat het algehele systeemge-
drag nauwkeurig wordt vastgelegd zonder gevoelige informatie prijs te geven. Bovendien
leert SibGen niet alleen de topologische kenmerken van CPS, maar vangt het ook effectief
de operationele kenmerken op. Deze dubbele capaciteit maakt het mogelijk om onderzoek
uit te voeren op de gegenereerde digitale tegenhanger, zodat deze dicht bij realistische sce-
nario’s komt en de onderzoeksresultaten praktischer en overtuigender maakt.

Vanuit het perspectief van CPS-kwetsbaarheidsanalyse evalueert deze scriptie syste-
matisch en identificeert zij de kwetsbaarheden van CPS, rekening houdend met tijdsafhan-
kelijke operationele toestanden, met nadruk op de correlatie tussen CPS-componenten. In
deze scriptie worden twee soorten correlaties—manifeste en latente—gedefinieerd om het
cascade-mechanisme in CPS beter te onthullen. Deze correlaties worden gebruikt om zowel
de duidelijke als de potentiële cascaderelaties tussen CPS-componenten te onderzoeken.
Door manifeste en latente correlaties gezamenlijk te analyseren, introduceert deze scriptie
een model voor kritieke componentenidentificatie, GraphCCI. Dit model legt effectief de
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kenmerken van cascade-uitval vast over verschillende operationele toestanden en genereert
een gewogen cascade-grafiekdatabase voor grafiekdata mining. Zodra frequente cascade-
subgrafieken zijn geı̈dentificeerd, wordt de voorgestelde Node Criticality Index (NC-Index)
gebruikt om nauwkeurig kritieke CPS-componenten te identificeren, waardoor de algehele
systeembeveiliging en veerkracht worden verbeterd.

Het uiteindelijke doel van deze scriptie is het bevorderen van de ontwikkeling van CPS
met behoud van de veiligheid. Deze scriptie biedt realistische en betrouwbare synthetische
netwerken voor onderzoek en waarborgt de vertrouwelijkheid van echte systeemmodellen
en -gegevens. Bovendien onthullen de voorgestelde kwetsbaarheidsanalyse-methoden ef-
fectief cyber-fysische cascade-mechanismen en identificeren ze nauwkeurig kritieke CPS-
componenten. Deze bevindingen bieden waardevolle inzichten voor de voortdurende ont-
wikkeling van CPS en helpen de veiligheid van systeemwerking te waarborgen.
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2 1. INTRODUCTION

1.1. BACKGROUND AND MOTIVATION

T he power system operation is increasingly dependent on Information and
Communication Technologies (ICTs), which ensure the resilience, reliability, and

security in electricity supply of the future power grid. It can be envisioned that
on top of the power system infrastructure reside integrated layers of ICTs, which
form an interdependent and complex Cyber-Physical power System (CPS). Such drastic
transformation brings evolutionary changes and challenges to modern power systems.
From an adversarial perspective, such integration introduces new vulnerabilities to the
CPS, which can be exploited to conduct cyber-physical attacks. From the standpoint
of power system operation, the integration of cyber and physical systems changes the
operational mechanisms of the CPS. It not only alters the inherent topological structure
of the CPS but also changes the patterns of how cascading failures propagate within the
system. Consequently, the scale and depth of fault propagation are likely to be greatly
aggravated. This situation has already manifested in the real world. CPS disruptions can
cause equipment damage, financial loss and even a loss of lives.

Numerous cyber-physical events [1], [2], [3], [4], [5], [6], [7], [8], [9] have
been reported in Critical Infrastructures (CIs). We summarize the major cyber-physical
events with large social impact since 2000 as in Figure 1.1. One representative event
highlighting the impact of power grid and communication network coupling is the
blackout in Italy on September 28, 2003 [1], [2]. It started with the shutdown of a
substation, which led to the failure of nodes in the communication network. Cascading
failures were triggered in both the cyber and physical system layers of the Italian power
grid, resulting in over C120 million in financial losses and affecting around 56 million
people.

From the perspective of cyber security, in 2015 and 2016, the Ukraine power grid
suffered two serious cyber attacks which led to large-scale power outages [6], [7]. In
2015, hackers intruded into the ICT systems of three distribution system operators. Seven
110 kV and twenty-three 35 kV substations were disconnected from the power grid for
hours. The cyber attacks in Ukraine are the first publicly acknowledged incidents to
result in power outages that affected 225,000 customers. The hackers shut down power
by using phishing emails, BlackEnergy3, virtual private network and credential theft,
network and host discovery, and Operational Technology (OT) hijack. Attackers opened
circuit breakers to cause power outages and used KillDisk to damage the OT system, i.e.,
Supervisory Control and Data Acquisition (SCADA) system. Subsequently, in 2016, the
attacks were focused on the SCADA system at transmission level targeting a single 330
kV substation. This led to a power outage in the distribution system where 200 MW of
load was unsupplied. The real-world events highlight the urgent need to strengthen the
systematic security of CPS. With evolving communication infrastructures, the operational
mechanisms of CPS have changed, introducing new challenges to ensuring safe system
functionality. As a result, it is critical to analyze these new characteristics and pinpoint
critical CPS components to deepen our understanding to CPS and thereby enhancing
system security. To this end, effective vulnerability assessment methods are needed to
accurately identify newly emerging cyber-physical system vulnerabilities. It is essential
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4 1. INTRODUCTION

to thoroughly analyze the operational behavior of CPS and evaluate system loopholes to
achieve efficient pre-attack defense and post-attack mitigation.

Conducting research on cyber-physical systems requires realistic models and data.
However, real CPS models and data are highly confidential due to national security
concerns. If real CPS data were made publicly available, adversaries could initiate
accurate and effective attacks, leading to catastrophic consequences. The current literature
on developing synthetic networks is mainly focused on the physical power system [10],
[11], [12], [13], [14], [15], while how to generate a realistic synthetic cyber-physical
system is rarely investigated. Therefore, the effective synthetic CPS generative models
are desirable. First, a qualified generative model should conceals all sensitive input
information—such as system topology and parameter configurations—while maintaining
similar topological characteristics and operational features as the real CPS. Moreover,
the generated synthetic CPS should be able to providing realistic feedback to researchers
while developing CPS-related methods. That is, the synthetic CPS should exhibit similar
performances and behaviors as the real systems when these methods are implemented.

Motivated by the circumstances described above, the research objective of this
thesis is as follows.

Generate synthetic CPS with realistic topology and operation models, and
systematically evaluate CPS vulnerabilities under time-varying operational states.

The generated synthetic CPS models and datasets retain the complex network
characteristics and statistical properties of real CPS. The proposed vulnerability
assessment method effectively identifies critical components to enhance CPS resilience.
This assessment is performed on both real and synthetic CPS models, yielding
statistically similar results. The generated synthetic CPS models and datasets can be
freely shared with the research community without disclosing the confidential CPS,
while adversaries cannot reverse-engineer it. The key philosophy behind this dissertation
lies in filling the gaps in the availability, completness and confidentiality of CPS models
and data while enabling a comprehensive analysis of CPS behaviour, ultimately fostering
deeper insights into CPS characteristics and mechanisms.

1.2. CHALLENGES AND RESEARCH QUESTIONS
In this section, the challenges and research questions are elaborated as follows.

From the perspective of synthetic CPS, there are three major challenges:

(1) Model and data availability. The availability of real CPS data is the first
challenge, which is not only the basis of synthetic network generation, but also the key
to validating the generated synthetic networks.

(2) Model and data confidentiality. Closely related to the first challenge, ensuring
the security of real CPS information is also demanding. It is essential to guarantee that
adversaries cannot reverse-engineer the synthetic networks to obtain the real CPS data.
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(3) Synthetic network validation. It is challenging to validate the generation quality
of the synthetic network. On one hand, the network data of a CPS is high-dimensional
and the difference quantification of two high-dimensional datasets is difficult. On the
other hand, the network validation is not only about validating the generated parameters
that can be directly observed, e.g., network topology, system parameters, but also about
validating the overall system performance, e.g., communication process, power flow
results. Note that minor parameter changes, even if they pass parameter validations, can
result in completely different overall system performance.

From the perspective of vulnerability assessment, the challenges are two-fold:

(1) Varied operational states. The current vulnerability assessment methods focus
on evaluating the CPS vulnerability at a single time instant, which may lead to a biased
assessment result when the operational state is changing. However, evaluating systematic
vulnerabilities under various operational states can be computationally expensive.

(2) System interaction mechanisms. The integration of cyber and physical system
layers introduces intricate interactions between components, making it difficult to analyze
and quantify their correlations. This is particularly challenging as understanding these
correlations is critical for identifying the most vulnerable components in CPS.

Based on the discussion and analysis above, the research questions that are answered
in this thesis are elaborated as follows:

Q1: How can we accurately generate synthetic CPS topologies by utilizing
CPS models and data with varying levels of completeness while ensuring data
confidentiality? Furthermore, how can we effectively and thoroughly validate these
generated topologies?

Due to national security concerns, detailed CPS information cannot be publicly
disclosed, i.e., power grid models, communication network architectures, and data.
Usually, researchers need Non-Disclosure Agreements (NDAs) to access the CPS models
and data of system operators for specific research purposes. As a result, the quality
and completeness of available CPS data can vary significantly. Therefore, it is crucial
to develop methodologies that can handle different levels of data completeness. For
instance, if communication network data is missing, it should be possible to generate
realistic synthetic communication networks based on existing power grid data. Besides,
ensuring the data security of real CPS information is also a significant challenge. It
is crucial to guarantee that adversaries cannot decipher the synthetic networks and
reverse-engineer them to extract the underlying real CPS data. From the perspective
of result validation, given that Q1 mainly focuses on the topological aspects of CPS,
the complex network theory parameters are suitable options to thoroughly describe the
network characteristics, e.g., node degree distribution, betweenness distribution, average
shortest path length, etc. The current topology generation methods are capable of
generating networks with specified characteristics, e.g., scale-free property, small-world
property, etc. However, they often fail to produce networks that exhibit consistent
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characteristics across multiple parameters. For example, the Chung-Lu algorithm [16]
generates a scale-free network with a given average node degree, while it does not apply
any constraints to other parameter distributions such as the betweenness distribution.
When evaluating a synthetic network topology, it is essential to ensure that the generated
network closely mirrors the real one across a comprehensive set of characteristics, which
is also the core problem we need to solve in Q1.

Q2: How can we effectively generate digital siblings with fully integrated
operational models for both cyber and physical system layers? How can we
accurately capture and learn the intricate characteristics of real system patterns,
enabling synthetic networks to behave similarly to real systems?

To answer Q2, it is essential to understand the differences between digital siblings
and digital twins. Digital twins focus on absolute consistency with real networks,
while digital siblings aim to capture only the global characteristics of the target system.
Metaphorically, digital siblings share the same ”DNA” as digital twins but exhibit
different traits. This distinction is essential for safeguarding the authenticity of Critical
Infrastructure (CI) data. As shown in Figure 1.2, a qualified synthetic network should
serve as an alternative test system and this synthetic system exhibits similar performance
and behavior as the real system without disclosing any real system information. Such
synthetic networks are capable of bridging the gap of CPS data shortage as well as
accelerating the development of CPS. However, a significant challenge in this endeavor
is the accurate representation of the interaction dynamics between CPS components, as
real-world systems exhibit complex behaviours that are not easily replicated. Besides,
the system characteristics of cyber and physical layers are quite different in terms of
system modelling and components interactions. Therefore, a multi-faceted approach is
required.

Figure 1.2 Schematic Diagram of Synthetic CPS Generation

In this background, leveraging Graph Neural Network (GNN) algorithms [17], [18] to
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analyse the real CPS data and generate synthetic models becomes a promising approach.
The GNN is capable of learning the underlying patterns and dependencies within graph
data. These models are particularly effective in capturing the intricate relationships in
graph-based systems, i.e., CPS, enabling the generation of digital siblings that closely
resemble real-world networks. The core challenge of implementing GNN lies in ensuring
that the digital siblings not only replicate the structural aspects of the real systems
but also accurately reflect their operational behaviours under diverse conditions. By
focusing on the detailed interaction patterns and validating the models through rigorous
testing, we can develop digital siblings that behave in a manner similar to real systems,
providing a reliable foundation for research and analysis.

Q3: How to systematically define and analyze the complex interdependencies
between cyber and physical layers? How to efficiently evaluate and identify the
vulnerability of CPS considering time-varying operational states?

Figure 1.3 Research Framework of Vulnerability Assessment for CPS

From the perspective of cyber-physical interdependency, two critical aspects should
be addressed: structural and operational interdependencies. Structural interdependency
focuses on investigating how the cyber and physical layers are physically interconnected
and how such coupling methods will influence network performance. On the other hand,
the operational interdependency refers to the operational interactions between cyber and
physical system layer, which are related to the operational status of CPS. With respect to
the well-defined cyber-physical interdependencies, we thoroughly analyze and evaluate
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the CPS vulnerabilities as presented in Figure 1.3. Figure 1.3 answers the second
part of Q3 from a data-driven perspective. By utilizing the historical data, the fault
propagation paths and cascading failure chains can be obtained for the construction of
vulnerability graphs. Furthermore, data mining techniques are adopted to identify the
frequent cascading failure patterns and critical components. Then, by using limited
resources, the identified vulnerabilities are well defended to achieve efficient pre-attack
defense and post-attack mitigation.

1.3. ORIGINAL CONTRIBUTIONS
By answering the proposed research questions in Section 1.2, the major contributions

of this thesis are summarized as follows:

• A two-stage generative model is proposed to generate large-scale synthetic
communication topologies for CPSs. The proposed method circumvents the dilemma
of CPS data availability by reproducing the typical design process of communication
networks. The method is implemented to generate a synthetic CPS for the interconnected
power grids in continental Europe, which is statistically validated by comparing the
results with 18 realistic communication networks for power grids. The proposed
method pioneers the synthetic CPS modelling and forms a solid foundation for further
investigations to reveal invaluable characteristics, patterns, and mechanisms of CPSs.

• A GNN-based generative model, namely Graph-CPS, is proposed to generate a
synthetic CPS topology with realistic network feature distribution. Graph-CPS captures
not only complex network metrics but also intrinsic attributes of nodes and edges.
Experimental results demonstrate that Graph-CPS accurately models various network
types and scales, making it highly scalable. This work marks a significant advancement
in adding more complexities to synthetic CPS models, contributing to enhanced system
security and the protection of sensitive information.

• A hybrid generator, namely SibGen, is proposed to create a digital sibling of real
CPS by generating both topological and operational models. The digital sibling produced
by SibGen mirrors the fundamental topological characteristics and operational behavior
of the real CPS, while exhibiting distinct structural and operational configurations,
thereby ensuring the protection of sensitive CPS data. In case study, five different
metrics are utilized to validated the synthetic CPS from both topological and operational
perspectives. By simultaneously implementing the proposed GraphCCI on the synthetic
CPS and the real CPS, it is proved that the generated synthetic CPS can be utilized as
alternative test systems and exhibit similar characteristics as the real networks.

• A graph data mining-based critical components identification model named
GraphCCI is proposed to evaluates the criticality of CPS components under time-varying
operational states. The key innovation of GraphCCI lies in its shift from static
vulnerability assessments to a dynamic, data-driven approach that more effectively
captures the intricate interdependencies and evolving risks within cyber-physical systems.
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To provide a comprehensive analysis of CPS vulnerabilities, GraphCCI introduces the
concepts of manifest and latent correlations among components, enabling a deeper
exploration of their interrelations. The case study reveals that there are limited numbers
of critical components. Once these components are properly defended, the overall system
security will be significantly enhanced.

1.4. OUTLINE OF THE THESIS
The thesis outline is illustrated in Figure 1.4. Chapter 2 and Chapter 3 develop

the synthetic CPS generation methodologies based on CPS data with varying levels
of completeness and availability. More specifically, Chapter 2 proposes a two-stage
generative model that generates large-scale synthetic communication topologies for
interconnected power grids, i.e., continental European power systems, based on the
existing power systems. In Chapter 3, a scalable generative model is proposed using
graph neural networks, namely Graph-CPS, to generate a synthetic CPS topology with
realistic network features distribution while ensuring the confidentiality of the input data
and models. Then, a hybrid generator, namely SibGen, is proposed to generate the
complete synthetic CPS including the topological and operational models of both cyber
and physical system layers. Chapter 4 proposes CPS vulnerability assessment methods
from the perspectives of Sequential Data Mining (SDM) [19] and Graph Data Mining
[20]. First, the SDM algorithm is used to mine the historical cascading failure chain
database and analyze the frequent cascading patterns. Then, a weighted cascading graph
database is constructed employing graph data mining algorithms to identify the frequent
subgraphs containing thorough component correlations. At last, a critical components
identification model named GraphCCI is proposed to identify the vulnerabilities of CPS.
Chapter 5 concludes the thesis and discusses the future research.

The remainder of this thesis is organized as follows:

Chapter 2 This chapter addresses Q1 by proposing a two-stage generative model for
generating synthetic communication topologies of large-scale CPS based on the existing
power grids. It reproduces the existing communication network design process. The
method generates statistically realistic networks. The proposed method is implemented
to create a realistic, large-scale synthetic CPS for the interconnected power grids in
continental Europe. In this chapter, we identify the CPS as a triple interdependent
network consisting of Physical Communication Network (PCN), Logical Communication
Network (LCN), and Physical Power System (PPS). The first stage is the PCN generator.
The initial topology of the PCN is sequentially generated. Redundancy is added by
jointly considering network congestion and connectivity. This approach is aimed at
increasing the network’s resilience, thereby rendering the generated PCN more aligned
with realistic scenarios. The second stage is the LCN generator. The decentralized
communication structure is utilized. A Communication Hub (CH) index is defined
considering both communication traffic volume and node criticality to identify the
optimal communication hubs for the LCN.



1

10 1. INTRODUCTION

Figure 1.4 Thesis Outline

Chapter 3 This chapter aims to answer Q2 and generate synthetic networks for
both cyber and physical system layers. Different from chapter 2, this chapter addresses
the scenario where real CPS data is available, e.g., network topologies and operational
parameters. Graph neural networks are employed to capture the characteristics of the
real networks and generate corresponding synthetic networks. The contributions of this
chapter are two-fold: firstly, a scalable generative model, i.e., Graph-CPS, is proposed
to generate a synthetic CPS topology with realistic network feature distribution. This
model is capable of learning different complex network parameters as well as capturing
the distribution of different network features of the input networks. Secondly, a hybrid
generator, i.e., SibGen, is proposed to generate the digital sibling of the real CPS.
SibGen generates both the topological and operational models of the input network. In
SibGen, two effective training strategies are proposed, i.e., dual graph training and prior
knowledge-constrained training. In the case study, seven different metrics are evaluated
to compare the real CPS and generated synthetic network. The comparison results prove
that SibGen is capable of learning the global characteristics of the input network from
both topological and operational perspectives.

Chapter 4 This chapter solves the problem defined in Q3. In this chapter, a
novel cascading failure model is proposed considering the interaction between the cyber
and physical system layers for every single time instant. Based on quasi-dynamic
simulations, a database of cascading failure chains is generated. This contains various
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operating conditions. Sequential mining algorithms are used to identify the frequent
sequential cascading patterns. Vulnerability indices are constructed based on complex
network theory to evaluate the importance of components in the cascading failure process
and identify the critical components in CPS. Furthermore, two correlations are defined,
i.e., manifest and latent correlations, to better reveal the CPS cascading mechanism
and comprehensively investigate the apparent and potential correlations between CPS
components. Then, A set of definitions are proposed to map the historical cascading
failure datasets into weighted cascading graphs, and construct the weighted cascading
graph database for graph data mining to thoroughly capture the cascading features of
CPS. By jointly considering the manifest and latent correlations and the graph data
mining results, a model is proposed for the critical components identification, i.e.,
GraphCCI.

Chapter 5 This chapter presents the major conclusions of this thesis and provide
promising topics for future research.
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GENERATING LARGE-SCALE

SYNTHETIC COMMUNICATION
TOPOLOGIES FOR

CYBER-PHYSICAL POWER
SYSTEMS

Synthetic networks aim at generating realistic projections of real-world networks while
concealing the actual system information. Researchers have mainly explored methods
to create synthetic power systems. However, with the rapid power grid digitalization,
new methods are needed for synthetic communication networks of CPS. In this chapter,
a two-stage generative model is generated for generating synthetic communication
topologies of large-scale CPS based on the existing power grids. It reproduces the
existing communication network design process and is capable of generating statistically
realistic networks. The proposed method is implemented to create a realistic, large-scale
synthetic CPS for the interconnected power grids in continental Europe. The method
is validated by comparing the generated communication network with 18 realistic
communication network topologies with different system sizes. The experimental results
validate the scalability and effectiveness of the generative model.

The content of this chapter has been published in: Yigu Liu, Alexandru Ştefanov, Peter Palensky.
“Generating Large-Scale Synthetic Communication Topologies for Cyber-Physical Power Systems”. IEEE
Transactions on Industrial Informatics. Early Access, DOI: 10.1109/TII.2024.3438232
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2.1. INTRODUCTION

W ith the increasing digitalization of power grids, the Cyber-Physical power Systems
(CPS) are extensively studied [21], [22], [23]. However, given the national security

concerns, detailed information about CPS cannot be publicly disclosed, i.e., power grid
models, communication network architectures, and operational data. Also, standard test
systems for CPS are missing in the current literature. Under such background, synthetic
networks emerge as a promising method to generate fictitious but realistic projections of
power grids and communication networks. A synthetic CPS avoids revealing sensitive
network models and data while providing reliable test networks for research.

In recent years, researchers explored methods to mainly generate synthetic power
systems. Reference [10] developed a synthetic DC power flow model for the continental
power grids in Europe based on available public data. References [11], [12], [13], [14],
[15] conducted research on large-scale synthetic power systems. In [11], the authors
generate and validate the synthetic power systems topology from the perspective of
complex network theory. In [12], a learning-based method is proposed to generate
synthetic power grids, which are evaluated by considering power flows and vulnerability
against failures. In [13], [14], [15], the synthetic network cases are extended with
generator cost data and dynamic models for economic and transient stability studies. One
can observe that the current literature on developing synthetic networks is mainly focused
on the physical power system. How to generate a large-scale synthetic cyber-physical
system is rarely investigated because of two reasons: (i) lack of real CPS data for
model validation, i.e., system parameters and structural topologies, and (ii) increased
computational complexity in generating large-scale CPS models. With the fast power
grid digitalization, the power system is now tightly coupled with the cyber infrastructure
in an unprecedented way. This makes the industrial communication networks, i.e.,
operational technologies, indispensable for power system operation. Therefore, we
are motivated to investigate how to generate a synthetic CPS based on the results of
synthetic power systems.

In CPS-related literature, most test cases are restricted to the standard IEEE
test systems [24], [25], [26]. Reference [24] proposes a framework to model the
cyber-physical system dependencies and assess the vulnerabilities of a CPS with eight
remote terminal units. Reference [25] uses IEEE 39-bus and China’s Guangdong 500-kV
system to model the CPS and analyze cascading failures considering the interactions
between cyber and physical layers. Reference [26] analyzes the fault propagation
mechanism of cyber-physical systems for IEEE 118-bus and 300-bus systems. Currently,
there is no standard CPS test system. All CPS-related test systems are generated based
on the subjective assumptions of researchers, which may lead to biased experimental
results. Besides, the dimensions of such test systems are far from the actual size of a
real cyber-physical system, which leads to the following question. Are the experimental
results obtained by using small-scale systems applicable to real, large-scale systems?
The answer is debatable. Therefore, to serve as a better study case, a large-scale
synthetic CPS model is surely desirable.
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Ideally, the generated synthetic networks should have consistent characteristics with
the original systems, i.e., size and structural features. Based on [10], [11], [12], [13],
[14], [15], [24], the general process of generating synthetic power systems is: (i) collect
public data, e.g., resident and geographic information; (ii) generate synthetic power
grids based on available public data; and (iii) compare the synthetic networks with the
actual power systems or standard test systems in terms of power flow results or complex
network features. Given the fact that the actual communication network architectures
and data are highly confidential, it is difficult to compare the characteristics of generated
synthetic networks and real CPS. Also, it is worth mentioning that the major difference
between the synthetic network generation and communication network design is that the
synthetic network focuses on mirroring the realism of existing communication networks
closely rather than pursuing optimal operational performance of the network. Therefore,
to generate the synthetic communication network, the existing communication network
design process is replicated, generating statistically realistic communication topologies.
Otherwise, it might lead to significant deviations from realism.

Based on the discussion above, in this chapter, a two-stage generative model is
proposed to generate realistic, large-scale synthetic cyber-physical systems based on
the existing power grids. For a given power grid, the typical communication system
design process is reproduced to generate synthetic communication topologies consisting
of physical and logical communication networks for large-scale CPS assuming that the
actual cyber system is designed to be functional in terms of network performance.
The proposed method is implemented to generate the synthetic CPS model of the
interconnected power grids in continental Europe, which is statistically validated by
comparing the results with 18 realistic communication networks for power grids. It
is worth mentioning that the historical evolution of the CPS is not considered in this
chapter. To the best knowledge of the authors, this research is pioneering the generation
of large-scale, synthetic CPS. The main contributions of this paper are summarized as
follows:

1) A two-stage model is proposed for generating realistic, large-scale synthetic
communication topologies for CPS based on existing power grids. The CPS is identified
as a triple interdependent network consisting of Physical Communication Network
(PCN), Logical Communication Network (LCN), and Physical Power System (PPS).

2) The first stage is the PCN generator, the initial topology of the PCN is
sequentially generated and then more redundancies are added by jointly considering
network congestion and connectivity. This approach is aimed at increasing the network’s
resilience, thereby rendering the generated PCN more aligned with realistic scenarios.

3) The second stage is the LCN generator, decentralized communication structure
is utilized and a Communication Hub (CH) index is defined considering both
communication traffic volume and node criticality to identify the optimal communication
hubs for the LCN.
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2.2. FRAMEWORK: GENERATING A TRIPLE

INTERDEPENDENT CYBER-PHYSICAL SYSTEM
Typically, researchers consider that the cyber-physical system comprises of two

interdependent layers, i.e., physical power grid and communication network infrastructure.
However, the current literature overlooks the fact that the cyber system is also an
interdependent network [27], [28], consisting of physical and logical communications.
These cyber system interdependencies are essential for the overall operation of CPS. In
this research, the cyber-physical system is considered a triple interdependent network as
represented in Figure 2.1. It consists of the physical communication network, logical
communication network, and physical power system. The complex interdependencies
among the three layers are defined in the framework for generating a large-scale synthetic
CPS.

2.2.1. THE THREE INTERDEPENDENT NETWORKS IN CPS
Physical communication network: At the PCN layer, each node is an Optical

Cross-Connect (OXC) router or Synchronous Digital Hierarchy (SDH) device installed
in a substation. The edges in PCN are the physical communication media such as
Digital Power Line Carrier (DPLC), Optical Power Ground Wire (OPGW), Broadband
Power Line (BPL), wireless communication, and satellite communication [29]. Note that
the DPLC and OPGW are frequently used in power systems due to the low operational
costs. Furthermore, they do not require additional authorization from third parties.
Normally, when a data packet is transmitted to a PCN node it either passes through the
node without stopping or outputs from the optical domain to the local clients.

Logical communication network: The logical communication layer represents the
interactions between PCN nodes. The LCN topology is pre-determined to satisfy the
system operation requirements. Each node in the logical communication network is
an IP router, which corresponds to a node in the physical communication network,
e.g., OXC router. The nodes in the logical communication network are connected
by logical links. It is worth mentioning that the logical communication network is
a virtual network configured by CPS designers. In the communication process, a
logical link may pass through multiple nodes in the physical communication network
for a successful information delivery. For example, nodes V1 and V4 in the logical
communication network are adjacent as represented in Figure 2.1. However, in the
physical communication network, the traffic between OXC1 and OXC4 will pass through
node OXC2 and OXC3. Note that in this chapter, wired networks are considered, in
particular Wavelength-Division Multiplexing (WDM) optical networks, when generating
the LCN, because large scale wireless communication networks are usually not used in
typical CPS. Also, in this chapter, only static routing is considered. The dynamic routing
is beyond the scope of this chapter.

Physical power system: This chapter focuses on the 380-400 kV high voltage
transmission network. Therefore, each node in the physical power system is a substation
while the transmission lines and transformers between substations represent the edges.
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Figure 2.1 Three Interdependent Networks in CPS.

2.2.2. COMPLEX INTERDEPENDENCIES AMONG CPS LAYERS
As shown in Figure 2.1, there are two types of interdependencies in CPS, i.e., LCN

and PCN interdependency (LC-PC), and PCN and PPS interdependency (PC-PP).

LC-PC Interdependency: The interdependency between logical and physical
communication networks is essential for efficiently delivering control commands to
actuators in the power grid and reporting operational data to Control Centers (CCs). The
congested or invalid edges and nodes in the physical communication network impact
the operational cost of data transmission, which is decided by the topology of the
logical communication network. Meanwhile, the topology of the logical communication
network also has a significant impact on the operational performance of the physical
communication network. To thoroughly describe the LC-PC interdependency, we denote
the LCN and PCN as GL(V ,EL) and GP (V ,EP ), respectively, where V ,EL,EP are

Lu =

{
1, if u ∈ EL

0, otherwise
(2.1)

Lur =

{
1, if u passes through r

0, otherwise
(2.2)

Lur ≤ Lu, ∀u ∈ EL, r ∈ EP (2.3)
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∑
r∈Θo(n)

Lur −
∑

r∈Θi(n)

Lur =


1, if O(u) = n

− 1, if D(u) = n

0, otherwise
(2.4)

∑
u∈EL

Lur ≤Wr, ∀r ∈ EP (2.5)

where u is a logical link in the LCN, r is a physical link in the PCN. Lu is the logical
link variable and Lur is the logical link routing variable. (2.3) indicates the mapping
relationship between logical and physical links. (2.4) reveals the continuity of the logical
links over the physical links, where Θo(n) and Θi(n) are the set of physical links
outgoing and entering node n ∈ V , O(u) and D(u) are the origin and destination nodes
of logical link u. Given that the number of wavelengths of each physical link is limited,
(2.5) indicates that the sum of the logical link routing variables over r is constrained by
Wr, the upper bound for the number of wavelengths on the corresponding optical fiber.

Figure 2.2 The Substation Communication Hybrid Architecture (NPR: Numerical
Protection Relay, MU: Merging Unit, PU: Process Unit).

PC-PP Interdependency: Based on the interconnection of the cyber and physical
nodes, the PC-PP interdependency is divided into “one-to-one”, “one-to-multiple”, and
“multiple-to-multiple” correspondences [30]. However, in a real-world scenario, the
PC-PP interdependency is more complex. Figure 2.2 shows the state-of-the-art substation
communication architecture deployed in industry [31]. In the hybrid architecture of
the substation communication, the Numerical Protection Relays (NPRs), Merging Units
(MUs), and Process Units (PUs) send or receive data on a Local Area Network (LAN)
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within the substation. They communicate with the control centers through Wide Area
Networks (WANs) via the routing gateways in the substations. In this chapter, each
substation is associated with a physical communication node, i.e., gateway. Considering
the relay communication nodes [30] in WAN, we define the PC-PP interdependency as
“partially one-to-one” correspondence. Each substation node is exclusively associated
with a communication node, i.e., routing gateway, while not all cyber nodes are
connected with the substation nodes.

It is worth mentioning that the interdependency between the LCN and PPS is
achieved through the PCN. That is, the measurement data of PPS are uploaded to the
PCN. Then, the data packet follows the pre-determined routing path defined in the LCN
and is delivered to the control center. The control center will make the optimal decision
based on the collected data and send the commands back to the PPS using the same
method. In the Figure 2.5 of section 2.4.1, we present more detailed illustrations to
explain this concept.

2.2.3. TWO-STAGE GENERATIVE MODEL FOR LARGE-SCALE
SYNTHETIC CPS

Generally, the design of a network topology includes the following steps: (i) initial
topology design, (ii) increase redundancy to enhance the network resilience, and (iii)
routing configuration [27]. In this chapter, we follow these sequential steps. The
two-stage generative model proposed in this chapter is presented in Figure 2.3. Note
we divide the large-scale network into multiple small-scale subnetworks and denote a
subnetwork as a communication area [29]. As indicated in [32], the communication area
is segmented based on the geographic locations, that is, for each communication area,
one should allocate NC substations that are geographically next to each other. Reference
[32] pointed out that the NC normally scales from 4 to 12. Therefore, by following the
segmentation method in [32], the stage I and II in Figure 2.3 are implemented on each
communication area. Besides, the following assumptions are used: (i) The topology
of the power system is known. Therefore, the goal of this research is to generate
the logical communication network, physical communication network, and the complex
interdependencies in CPS. (ii) The historical evolution of CPS is not considered. (iii)
Only wired communication networks are considered.

2.3. PCN GENERATOR: GENERATING THE PHYSICAL

COMMUNICATION NETWORK
2.3.1. GENERATING THE INITIAL TOPOLOGY OF PCN

The initial PCN topology is generated by considering the construction costs and
network connectivity.

1) Construction cost. In [29], the authors consider two types of costs for generating
a communication network, i.e., passive and active costs. The passive costs are attributed
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Figure 2.3 The Diagram of Two-Stage Generative Model.

to passive components in the fiber optical network, which mainly depend on the length
of the communication medium. Active costs are determined by the number of network
switches and routers installed in the system. According to Figure 2.2, the active costs
are determined by the number of substations. However, the number of substations is
fixed because we generate the synthetic CPS based on the existing power grids. This
indicates that we only need to consider the passive cost in our chapter, i.e., total length
of communication links.

2) Connectivity. Generally, optimization models can be used to obtain the initial
physical communication network topology with minimum construction cost. However,
we need to ensure that the PCN remains a connected graph. Furthermore, we also need
to make sure that the physical communication network topology remains connected in
each communication area.

It is noted that the PCN is tightly coupled with power grids, and their topologies
are highly similar [33]. Therefore, we take the substation nodes in the power grids and
collect the distance data between different substations for the generation of the initial



2.3. PCN GENERATOR: GENERATING THE PHYSICAL COMMUNICATION NETWORK

2

21

PCN topology. Based on the discussion above, to satisfy the construction cost and
network connectivity requirements, the minimum spanning tree [34] is used to compute
the initial topology of the physical communication network. It generates a subgraph
of a connected, edge-weighted undirected graph that connects all the vertices together,
without any cycles and with the minimum total edge weight. In this chapter, the edge
weight is set as the length of the distance between any two substations.

2.3.2. REM: INCREASING NETWORK REDUNDANCY TO ENSURE
RESILIENCE

The initial topology of the physical communication network only satisfies the basic
requirements for network design. In a real industrial scenario, communication network
redundancy is needed to deal with contingencies. It provides backup communication
paths for data transfer. Changing the design of the PCN topology improves the
communication network performance such as network stability, connectivity, and
congestion issues. Therefore, the eigenvalue of Laplacian matrix and betweenness
distribution are considered to increase PCN network redundancy.

Eigenvalue of Laplacian matrix: According to [27], the network connectivity is
related to the second smallest eigenvalue of the corresponding Laplacian matrix. For a
PCN GF = (VC ,EF ), where VC = {VC |C = 1, 2, 3...} is the set of PCN nodes and
EF = {Ef | f = 1, 2, 3...} is the set of PCN edges. We denote the Laplacian matrix of
GF as M = [MCC′ ]n×n, where C and C ′ are the identifiers of nodes, and for the
element MCC′ in M ,

MCC′ =


∑n

C′′=1 A(VC , VC′′), if C = C ′

−1 if C ̸= C ′, VC and VC′ are connected
0 if C ̸= C ′, VC and VC′ are not connected

(2.6)

λ2 = min {λ (M)−min {λ (M)}} (2.7)

where C ′′ is the identifier of the neighbor node of VC ,
∑n

C′′=1 A(VC , VC′′) represents
the node degree of VC . λ(M) is the set of eigenvalues of M . The second smallest
eigenvalue of M is denoted as λ2, which is highly related to the performance of the
communication system, such as network stability and connectivity. A larger λ2 indicates
better system performance. Therefore, the objective is to maximize λ2 when adding
communication edges to increase redundancy.

Betweenness distribution: reference [32] indicates that the network betweenness
has substantial effects on the network congestion. Normally, data packets in the cyber
layer are transmitted through the shortest path between any two arbitrary nodes. This
makes the node betweenness an effective index to quantify the data volume that each
node processes. Therefore, the betweenness distribution in the physical communication
network is adopted to evaluate network congestion. The more uneven the betweenness
distribution, the easier the system can be congested. If the betweenness is unevenly
distributed, it means a small number of communication nodes will frequently be on
the communication paths. Meanwhile, the communication capacity of a node is
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limited, making network congestion easier to happen. In this chapter, we employ the
Gini coefficient to quantify the betweenness distribution. The calculation of the node
betweenness B(VC) and the Gini coefficient Gini are shown in equations (2.8)-(2.9):

B (VC) =
∑

VC ,VC′ ,VC′′∈VC ,C ̸=C′ ̸=C′′

NC′C′′ (VC)

NC′C′′
(2.8)

Gini =
1

2n2u

n∑
C=1

n∑
C′=1

|B (VC)−B (VC′)| (2.9)

where NC′C′′(VC) is the number of all shortest paths between node V ′
C and V ′′

C that go
through VC . NC′C′′ is the number of all shortest paths between node V ′

C . C ′, C ′′ are
the identifiers of node V ′

C and V ′′
C . u is the average betweenness of all nodes in the

physical communication network. A large Gini represents the uneven distribution of
betweenness, therefore, our goal is to minimize the Gini of PCN.

Figure 2.4 Generating Candidate Edges for Increasing the Redundancy for a Communi-
cation Area.

A trade-off between λ2 and Gini occurs when adding new communication edges to
increase the communication network connectivity and redundancy. Ideally, a complete
graph is desirable from the perspective of system performance. However, the construction
cost of network is constrained by the budget of the network design. Therefore, we
assume the number of added edges is subjected to construction cost and should satisfy
the following condition:

Nadd = χNk, 0 < χ < 1 (2.10)

where Nadd is the number of added redundancy edges. Nk is the number of initial
edges in communication area k. χ is the redundancy coefficient of Nk subjected to
the pre-determined budget. For each communication area, the number of added edges
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should not exceed a certain portion of the number of initial edges. Subsequently, we
propose the Redundancy Enhancement Metric (REM) and denote it as Er to determine
how to add Nadd redundant edges to increase the network performance.

Er = αλ2 − βGini (2.11)

α+ β = 1, 0 < α < 1, 0 < β < 1 (2.12)

where α and β are the weighted factors for λ2 and Gini, respectively. Based on all the
constraints and parameters proposed above, we generate the candidate edges for each
node in each communication area as shown in Figure 2.4. Taking node 2 as example, we
generate the candidate edges, i.e., green dotted lines, by connecting the target node and
its neighbor nodes whose shortest path length to the target node is SP . By traversing
all the nodes in the communication area, the candidate set CS is obtained. Then based
on (2.10)-(2.12), one can calculate the Er of all possible combination. The combination
with the highest Er value contains the edges that are suitable for increasing network
redundancy. Note that the process mentioned above will only be implemented on a
communication area, where the number of nodes is limited [35]. Thus, the computational
cost is acceptable and will not be exponentially increased even if we generate large-scale
networks. More details about the computational efficiency are discussed in Section 2.5.
The algorithm of adding new network redundancy is presented in Algorithm 2.1, where
SP (VC , VC′) is the shortest path length between V ′

C and V ′′
C , CS combination is the set

of all combinations of edges in CS , and VCA(k) = {..., VC , ...} is the set of nodes in
communication area k.

Algorithm 2.1: Adding Redundancy for Communication Area
Input:

Initial topology of the physical communication network
Parameters: SP , χ, α, β

Output:

Optimal candidate edge set: Cs optimal

Step 1 Cs optimal ← ∅, Cs ← ∅
Step 2 For VC ∈ VCA(k) do
Step 3 Cs ← all VC′ that satisfy SP (VC , VC′) = SP

Step 4 End For
Step 5 Employ equation (2.10) to calculate Nadd

Step 6 Cs combination ← all combinations (Cs, Nadd)
Step 7 For combination in Cs combination do
Step 8 Employ equation (2.11) to calculate Er

Step 9 End For
Step 10 Cs optimal ← combination with highest Er
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2.4. LCN GENERATOR: GENERATING THE LOGICAL

COMMUNICATION NETWORK
2.4.1. CHOOSE OPTIMAL CHS FOR EACH COMMUNICATION AREA

Generally, there are two types of communication architectures for power systems,
i.e., centralized and decentralized architectures as shown in Figure 2.5. In a
centralized architecture, power system measurements are encapsulated into data packets
in substations using various standards, e.g., C37.118, IEC 104, and DNP 3, and
are communicated directly to a control center. After data processing, appropriate
control commands are communicated to the controlled power elements in substations.
In a decentralized architecture, data packets also follow the same standards, but the
communication structure is different. First, the communication system is divided into
multiple communication areas. Each area has a communication hub to gather all
measurement data from substations. The communication hubs communicate with the
control center. The control commands follow the same routing from the control center to
the controlled power elements in substations. Compared with centralized communication,
the decentralized architecture has a better performance in terms of time delays even
with lower network bandwidths [36]. Furthermore, the decentralized communication
architecture presents higher reliability with the same construction cost [29]. Therefore,
in this chapter, we adopt the decentralized communication architecture as illustrated in
Figure 2.5.

Figure 2.5 Centralized Communication Structure (Left) and Decentralized Communica-
tion Structure (Right) [36].

To choose the optimal location for communication hubs, we consider both the
overall traffic volume and the importance of the corresponding power nodes of
substations. On the one hand, the logical topology of logical communication network
directly influences the traffic volume, which makes the location of communication
hubs crucial to the performance of the communication network. On the other hand,
given that the communication hubs directly communicate with the control center, it is
desirable to connect the communication hubs with the critical substations. This ensures
that anomalous behaviors and contingencies are directly and effectively monitored to
maximize communication system reliability. Note that the power plant communication
nodes directly communicate with the control center because the power generation data is
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crucial to power system operation. Based on the considerations above, we propose the
CH index IC to identify the optimal CHs.

IC =

∑m
C′=1A(VP , VP ′)∑|VC |−1

C′=1 hC′ × pCC′

(2.13)

where m is the number of substations in communication area k, hC′ is the number of
hops required for the determined communication, pCC′ is the size of transmitted data
packet. We use the node degree A(VP , VP ′) to quantify the importance level of a
substation in PPS. A node with higher degree indicates that once the node is removed,
it will pose serious impact on more nodes in CPS. Therefore, the response time delay
can be reduced if direct monitoring and control are implemented to those nodes and
thus systematic security can be increased. For the consideration of the traffic volume,
IC depends on the number of required communication hops and the data packet size
[36]. Note that the communication hops between two nodes are decided by the topology
of the physical communication network. By calculating IC for each substation VC , the
corresponding substation with the largest IC is identified as the optimal communication
hub. Note that in this chapter, the communication hub identification only considers the
communication traffic under static routing, which assumes the system is under normal
operation. In case of contingencies, optimal dynamic routing strategies can be considered
to increase the overall system resilience. However, the dynamic routing is beyond the
scope of this chapter, which can be considered as a future study.

2.4.2. LCN TOPOLOGY AMONG CHS AND CCS
After the optimal communication hubs are identified in each communication area,

the logical topology of all substation nodes is determined, i.e., each substation in the area
has a direct logic link to the communication hub as shown in Figure 2.5. Therefore, the
remainder of the logical communication network topology consists of the (i) topology
between communication hubs and control centers, and (ii) topology between control
centers.

The topology between CHs and CCs: in a real-world scenario, backup control
centers [32] are extensively deployed to increase system reliability. Therefore, each
communication hub needs to send data packets to both control centers. Note that the
difference between them is that in the most of the operational states, main control
centers have high priority to take the actions while the backup control centers work
as a redundancy to enhance the resilience of systems in case of emergency. The
communication between CHs and control centers is mostly done through WANs. The
WAN topology is beyond the scope of this chapter. Therefore, we assume that each
communication hub has at least one reliable and cost-efficient path to communicate with
the control centers. Generally, the communication topologies between the CHs and CCs
have two categories, i.e., double-star and mesh topology. Reference [25] conducted
a comparison between these two categories on IEEE 39-bus system and China’s
Guangdong 500-kV system, and the experimental results prove that the double-star
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topology has lower probability of catastrophic failures than with the mesh topology.
This is because the double-star topology is capable of maintaining its functionality even
when part of the communication nodes fails. Combining all the facts and discussion
above, the topology between communication hubs and control centers are modelled as
double-star topology. The double star topology is normally a scale-free network, whose
degree distribution has the power-law distribution characteristics and can be written as
in (2.14) [37].

p (A(Vl, Vl′)) ∝ [A(Vl, Vl′)]
−r′ (2.14)

where r′ is a constant and satisfies r′ > 1. Vl, Vl′ are the nodes in LCN. (2.14)
indicates that there is a small number of critical nodes in the network, and the
systematic connectivity is dramatically decreased once those nodes are removed. The
current literature suggests that the double-star topology has a better communication
performance in terms of transmission ability and network congestion compared with the
mesh topology [32]. On the other hand, the double-star topology is highly vulnerable
to cyber-attacks if adversaries have enough system information, e.g., system topology
and operational data. However, given that system information is highly confidential,
the double-star topology is more suitable than the mesh topology. The preferential
attachment algorithm is adopted to generate the double-star topology between CHs and
CCs [25].

The topology between CCs: the communication among control centers is defined
by the Inter-Control Center Communications Protocol (ICCP), which is specified
world-wide by utilities to provide the services for data exchange, monitoring, and
control. The ICCP bilateral tables define the data exchange between two control
centers. Normally, all control centers have reliable and efficient communications with
their neighboring control centers. Based on the facts above, all control centers are
logically reachable by other control centers as long as all power grids are interconnected.
Therefore, the LCN topology for control centers is a full connection graph, i.e., each
control center is logically connected with other control centers through WANs. It is
worth mentioning that the full connection graph in this section represents that in the
logical communication network, all control centers are logically accessible rather than
physically connected.

2.5. CASE STUDY
In this section, we implement the proposed methods to generate the synthetic

CPS for the interconnected power grids in continental Europe. The parameters for the
simulation are α = 0.5, β = 0.5, χ = 0.3, SP = 3. The methods are coded in Python
and simulations are run on a computer equipped with an Intel i7-8750H CPU at 2.2 GHz
and 16 GB RAM.
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2.5.1. GENERATED SYNTHETIC CPS FOR CONTINENTAL EUROPE
The methods proposed in Figure 2.3 are used to generate a large-scale, synthetic

CPS based on open-source data from the ENTSO-E website [38]. It provides the 380-400
kV transmission system topologies of the interconnected power grids in continental
Europe. The generation results are shown in Figure 2.6 and Figure 2.7 give a clearer
demonstration of the LCN and PCN of the French power system. Detailed information
about the number of nodes and edges in both physical and logical communication
networks is given in Table 2.1. For the clarity of Figure 2.6 and 2.7, although generated
in the LCNs, we do not represent the topology between cyber substation nodes and
communication hubs, as well as the direct connection between power plants and control
centers. The code and generated models are available online [39].

At the physical communication networks layer, we divide the substations into
different communication areas. For each area, we randomly allocate substations based
on their geographic location and then identify the optimal communication hub. Based
on [32], NC is set as a random number between 4 to 12. However, in several small
countries, e.g., Albania, Croatia, Slovenia, and Macedonia, the number of substations is
not enough for initiating multiple communication areas. Therefore, we consider that the
substations in these countries directly communicate with the control centers, similar to
the communication hubs in other larger countries.

At the logical communication networks layer, we decide the number of control
centers in each country based on [32]. Typically, a country only has one Transmission
System Operator (TSO), i.e., one main and backup control centers. However, in Germany
and Austria, multiple TSOs exist. Therefore, the communication hubs are divided equally
based on the number of TSOs in the country and their geographic location. Besides, all
main control centers and backup control centers are logically connected to each other.

2.5.2. STATISTICAL ANALYSIS AND VALIDATION OF GENERATION
RESULTS

In this part, we use realistic communication network data of power grids to
verify the generation results of our proposed method. In Table 2.2, we collect 18
communication networks for power grids with different system sizes from the current
literature. They are categorized into small, medium, and large size systems comprising of
7, 6, and 5 communication networks, respectively. Based on these networks, we compute
complex network parameters in terms of the number of nodes and edges, average node
degree, average shortest path length, network diameter, and network density. For each
parameter we calculate the range based on the given realistic communication network.
Note that these complex network parameters depict the global features of the target
networks. Therefore, the local network features are not discussed in this chapter.

To verify the effectiveness and scalability of the proposed method, we implement it
to power systems with different system sizes scaling from 14 to 289 node systems. The
generation results are shown in Table 2.3. One can observe that all complex network
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Table 2.1: The History of Cyber-Physical Events

Countries No. of nodes
in PCN

No. of edges
in PCN

No. of nodes
in LCN

No. of edges
in LCN

Albania 6 7 8 17
Austria 31 37 35 39

Belgium 38 50 40 47
BiH 11 13 136 28

Bulgaria 23 32 25 29
Croatia 9 10 11 24
Czechia 44 69 46 56
Denmark 31 42 33 40
France 176 268 178 223

FYROM 9 10 11 24
Germany 289 355 297 373
Greece 31 45 33 38

Hungary 26 38 28 33
Italy 150 230 152 191

Montenegro 8 9 10 22
Poland 59 93 61 78

Portugal 41 60 43 50
Romania 51 77 53 63

Serbia 28 37 30 37
Slovakia 27 38 29 34
Slovenia 9 11 11 24

Spain 179 299 181 234
Switzerland 41 62 43 52
Netherlands 35 48 37 44

*The communication relay nodes are not included in the number of PCN nodes and LCN nodes.

Table 2.2: Statistics of Realistic Communication Networks in the Literature
Small Size Syst.
[25], [40], [41],

[42]

Medium Size
Syst. [32], [40],

[43]

Large Size
Syst. [44], [40],

[43]
Overall

N (18, 49) (103, 182) (236, 404) (18, 404)
L (29, 98) (124, 232) (357, 608) (29, 608)
⟨k⟩ (2.833, 4) (2.551, 3.546) (2.119, 3.01) (2.119, 4)
⟨l⟩ (2.433, 3.681) (3.169, 6.697) (6.721, 11.67) (2.433, 11.67)
d (5, 8) (12, 15) (22, 28) (5, 28)
D (0.933, 2)

N : number of nodes, L: number of edges, ⟨k⟩: average node degree, ⟨l⟩: average shortest path length, d:
network diameter, D: network density, D = L/N .
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Figure 2.6 Generated Synthetic CPS for Continental Europe.

(a) LCN (b) PCN (c) PPS

Figure 2.7 Generated Synthetic CPS for France.

theory parameters of the generated communication networks with the proposed method
are within the parameter ranges given in Table 2.2. Statistically speaking, in Table 2.2,
the average node degree decreases when the system size increases, while the average
shortest path length and network diameter increase when the system size increases.
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Table 2.3: Statistics of Generated Communication Networks
Small Size Syst. Medium Size Syst. Large Size Syst.

IEEE 14-bus IEEE 39-bus IEEE 118-bus France Germany
N 14 39 118 176 289
L 26 67 204 268 355
⟨k⟩ 3.714 3.648 3.458 3.045 2.456
⟨l⟩ 2.078 3.836 6.159 7.706 11.547
d 4 7 14 18 28
D 1.857 1.718 1.729 1.522 1.228

Comparing with Table 2.3, similar patterns can be observed. By comparing each
parameter, one can observe that in the case of IEEE 14-bus, the average shortest path
length is slightly out of the given range. This is because in Table 2.1, the given system
size is from 18 to 49, while 14-bus system is smaller than 18-node system. Based on
our former discussion of average shortest path length, the result of IEEE 14-bus system
still follows the same pattern. Based on the discussion above, the effectiveness of the
proposed method is verified. The case study on systems with different sizes also shows
that our method has excellent performance on scalability.

2.5.3. EVALUATING TIME EFFICIENCY OF PROPOSED METHODS
In this part, we evaluate the time efficiency of the proposed methods. Figure 2.8

presents the time cost of generating large-scale, synthetic cyber-physical systems. France
and The Netherlands are selected to evaluate the performance of the proposed methods
on different power system sizes. The time cost consists of two parts as shown in
equation (2.15).

Ttotal = TPCN + TLCN (2.15)

where Ttotal is the total time cost of proposed method, TPCN is the run time of the stage
I proposed in Section 2.3, and TLCN is the run time of stage II as shown in Section 2.4.

The algorithm complexity of TPCN is O(n!) and the algorithm complexity of TLCN

is O(n). Although the complexity of TPCN is high, the input size, i.e., number of PCN
nodes in each communication area, is limited according to [32]. Therefore, the time cost
of the proposed method will not be exponentially increased even when the input size
increases. Furthermore, we present the time cost of generating synthetic communication
topology for France and the Netherlands to further prove the scalability of the proposed
methods. In Figure 2.8, the left axis represents the number of substations in each area,
and the sub axis on the right represents the cumulative time cost. We can observe
that as the area size increases, the time cost also increases, but the increment is at an
acceptable level. As discussed in part A of this section, the size of each communication
area is limited, which determines that the final time cost of each area will not exceed
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(a) France

(b) The Netherlands

Figure 2.8 Generation Time of France and The Netherlands.

the maximum time cost as shown in Figure 2.8. Typically, when generative models
are applied to large-scale networks, the computational cost grows exponentially with the
increase of system size. However, in this chapter, the cost problem is addressed by
applying the decentralized communication structure. The proposed generative model
adopts the idea of divide and conquer rather than generating the entire network in one
batch. Therefore, Figure 2.8 proves that the proposed methods are suitable for generating
large-scale, synthetic CPS in a time-efficient manner.

2.5.4. PERFORMANCE COMPARISON AND EVALUATION
In this part, we compare the proposed method with the traditional algorithms in the

literature. In Figure 2.9, we present the generation results of two traditional generative
algorithms with various network sizes, i.e., Chung-Lu and Havel-Hakimi algorithms
[16]. Also, the complex network parameters are presented in Table 2.4. By observing
the generated networks, one can notice that the network connectivity is the major issue
of the traditional methods. As the network size increases, more isolated networks show
up. For Chung-Lu algorithm, all the isolated parts are discrete nodes. This phenomenon
is caused because the Chung-Lu algorithm generates a network based on the given
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distribution of node degrees. The larger the network size, the more difficult it is to
guarantee the network connectivity while keeping the given distribution. Therefore, the
scalability of this method is limited. The Havel-Hakimi algorithm also has the same
issue as in Chung-Lu algorithm. The difference is there is no single isolated node
because the Havel-Hakimi algorithm generates the network based on the given degree.
For communication networks, the overall network connectivity is the first priority,
because it provides an alternative communication path when the system is suffering from
contingencies. Compared with the proposed methods, the Chung-Lu and Havel-Hakimi
algorithms also fail to generate networks with realistic parameters distribution as shown
in Table 2.4. The comparison above proves the good performance of the proposed
method.

Figure 2.9 Comparison with traditional generative algorithms in the literature.

In the following evaluation, Table 2.5 showcases the network parameters of the
Netherlands synthetic networks with varying communication area sizes. As noted in
[32], NC , the number of substations within each communication area, ranges from 4 to
12. To examine the impact of communication area segmentation size on the accuracy of
generation results, we have segmented this range into four distinct categories, as detailed
in Table 2.5. One can observe that as the NC increases, the network average node
degree and network density decreases while the average shortest path length increases.
Compared with the data of small size systems in Table 2.2, only when NC is at the
range of 4 to 6, all parameters fit to the listed range. Therefore, when NC is at the range
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of 4 to 6, the generated network has the most realistic network parameters.

Table 2.4: Statistics of Generated Communication Networks
IEEE 39-Bus System (39 nodes) France (176 nodes) Germany (289 nodes)
Chung-

Lu
Havel-
Hakimi

Proposed
method

Chung-
Lu

Havel-
Hakimi

Proposed
method

Chung-
Lu

Havel-
Hakimi

Proposed
method

N 39 39 39 176 176 176 289 289 289
L 86 113 67 486 493 268 820 796 355
⟨k⟩ 4.3 5.795 3.648 5.254 5.602 3.045 5.39 5.509 2.456
⟨l⟩ N/A N/A 3.836 N/A N/A 7.706 N/A N/A 11.547
d N/A N/A 7 N/A N/A 18 N/A N/A 28
D 2.205 2.897 1.718 2.761 2.801 1.522 2.837 2.754 1.228

Table 2.5: Statistics of Generated Communication Networks for the Netherlands
NC 4-6 6-8 8-10 10-12
N 35 35 35 35
L 58 55 52 52
⟨k⟩ 3.314 3.142 2.971 2.972
⟨l⟩ 3.615 4.159 4.661 4.642
d 7 10 7 10
D 1.657 1.571 1.486 1.486

2.6. CONCLUSION
This chapter focuses on generating large-scale synthetic communication topologies

for CPSs. The proposed method circumvents the dilemma of CPS data availability by
reproducing the typical design process of communication networks. It generates synthetic
topologies consisting of physical and logical communication networks for large-scale
CPS. The method is implemented to generate a synthetic CPS for the interconnected
power grids in continental Europe, which is statistically validated by comparing the
results with 18 realistic communication networks for power grids. Furthermore, the
experimental results demonstrate its scalability and computational time efficiency. This
research pioneers the synthetic CPS modelling and forms a solid foundation for further
investigations to reveal invaluable characteristics, patterns, and mechanisms of CPSs.
Note that this chapter focuses on generating the communication topologies based on
existing power grids, which is the first and critical step of generating complete synthetic
CPS. In the next chapter, more complexity will be added to synthetic CPS, e.g.,
information and power flow models.
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GNN-BASED GENERATIVE

MODELS FOR GENERATING
DIGITAL SIBLINGS FOR

CYBER-PHYSICAL POWER
SYSTEMS

This chapter aims at generating digital siblings for both cyber and physical layers.
Different from chapter 2, this chapter addresses the scenario where the real CPS
model and data, such as network topologies and operational parameters, are available.
Graph Neural Networks are employed to capture the characteristics of the real networks
and generate corresponding synthetic networks. A scalable generative model, called
Graph-CPS, is introduced to create synthetic CPS topologies that maintain realistic
network feature distributions. Additionally, a hybrid generator, named SibGen, is
proposed to generate a digital sibling of the real CPS. SibGen is capable of producing
both topological and operational models based on the input network. Both methods have
been carefully implemented and validated through extensive experimental simulations.
The results demonstrate that Graph-CPS is not only scalable but also accurate in
preserving the essential characteristics of input networks, regardless of the network type
or size. Moreover, SibGen effectively captures the global characteristics of the input
network from both topological and operational perspectives.

Parts of this chapter have been published in: Yigu Liu, Haiwei Xie, Alfan Presekal, Alexandru Ştefanov,
Peter Palensky. “A GNN-Based Generative Model for Generating Synthetic Cyber-Physical Power
System”. IEEE Transactions on Smart Grid, vol. 14, no. 6, pp. 4968-4971, 2023.
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3.1. INTRODUCTION

W ith the increasing digitalization of modern power grids, the operation characteristics
of the Cyber-Physical power System (CPS) have significantly changed. To

accurately analyze the new system behavior, reliable models are needed for CPS
research. The models should have consistent network characteristics with the real CPS to
ensure the accuracy of simulation results. Meanwhile, the models should avoid revealing
any sensitive system information that may be exploited by the adversaries, e.g., system
topology, network features. To this end, synthetic networks, which can comprehensively
mimic the characteristics of actual networks, became the answer to this concern. Based
on the current literature, all the possible network generation methods is divided into
three categories and analyze the pros and cons of each category.

Complex network-based methods: Represented by Barabasi-Albert [45] and
Erdos-Renyi [46] models, the generative algorithms in this category are capable of
generating networks that satisfy given requirements, e.g., scale free property, small world
property. Besides, the complex network parameters [47] of the generated synthetic
network, e.g., degree [37], [48], closeness [49], betweenness [50], [51], etc., can
be customized. However, these algorithms have two major limitations: (a) Network
connectivity. These algorithms have unsatisfying performance on generating connected
network while only focusing on the global complex network parameter distribution [16],
which is not acceptable in generating synthetic CPS. (b) Incapability of generating
operational models. The complex network-based methods only focus on the topological
aspects while it fails to generate the operational models, e.g., power flow models,
information flow models.

Open source data-based methods: This category utilizes the open source data,
e.g., population distribution, historical electricity consumption, geographical information,
etc., to plan the locations of synthetic nodes. Then, the network edges are arranged
based on various assumptions, e.g., construction cost [52], power flow convergence [53],
etc. This category is capable of generating both topological and operational models of
synthetic networks, as well as guaranteeing the reasonable parameter distribution to a
certain extent. However, it completely ignores the real-world networks and the generated
synthetic networks may have different system behaviors compared to the real networks.
Therefore, the conducted experiments on these synthetic networks may lead to biased
results.

Machine learning-based methods: Enabled by the development of graph neural
networks [54], [55], [56], [57], [58], this category trains the machine learning models
and learns the characteristics distribution of the input real-world networks. Then, based
on the learned knowledge, the generative models output the realistic projection of the
input network, which maintains the similar system characteristics while concealing all
the sensitive information of the real networks. There are two major challenges in this
category: (1) Access to the real network data. Due to national security concerns, the real
data of CPS is highly confidential and thus inaccessible. (2) Data security. Although
Machine learning-based methods can generate synthetic networks with altered topology



3.2. A GNN-BASED GENERATIVE MODEL FOR GENERATING SYNTHETIC
CYBER-PHYSICAL POWER SYSTEM TOPOLOGY

3

37

and system parameters, we need to make sure that no sensitive data can be obtained by
reverse engineering.

In this chapter, we aim at generating synthetic networks for both cyber and physical
layers. Different from chapter 2, this chapter addresses the scenario where real CPS
data, such as network topologies and operational parameters, is accessible. Graph Neural
Networks are employed to capture the characteristics of the real networks and generate
corresponding synthetic networks. The contributions of this chapter are listed as follows:

(1) A scalable generative model, namely Graph-CPS, is proposed to generate a
synthetic CPS topology with realistic network feature distribution. This model is capable
of learning different complex network parameters as well as capturing the distribution
of different network features of the input networks. In case study, the Graph-CPS is
implemented on various sizes of network scaling from 18 nodes to 1225 nodes. The
experimental results prove that the Graph-CPS is scalable and accurate to preserve the
characteristics of input networks with not only different network types but also different
network sizes.

(2) A hybrid generator, namely SibGen, is proposed to generate the digital sibling
of the real CPS. SibGen can generate both topological and operational models of the
input network. In SibGen, two effective training strategies are proposed, i.e., dural
graph training and prior knowledge-constrained training. In case study, five different
metrics are evaluated to compare the real CPS and the generated synthetic network. The
comparison results prove that the SibGen is capable of learning the global characteristics
of the input network from both topological and operational perspectives.

3.2. A GNN-BASED GENERATIVE MODEL FOR

GENERATING SYNTHETIC CYBER-PHYSICAL POWER

SYSTEM TOPOLOGY

(a) (b)

Figure 3.1 Illustration of Networks with Same Topological Parameter Distribution but
with Different Network Features.

The current research of synthetic networks mainly focuses on the power grids, the
corresponding research on cyber aspects are insufficient [53], [11]. Besides, the common
philosophy in the literature is to generate a statistically realistic network in terms of
complex network parameters, e.g., degree distribution, average path length [53], [11], etc.
Such consideration, although it captures the system characteristics to a certain extent,
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neglects the inherent system attributes of the nodes and edges such as the bandwidth of
communication links and capacity of transmission lines in the CPS. Taking Figure 3.1
as an example, although the networks in (a) and (b) have the same topology, the edge
attributes are different. Consequently, one can obtain different results if they run power
or information flow models on two networks.

Based on the discussion above, we propose a scalable generative model, namely
Graph-CPS, to generate a synthetic CPS topology with realistic network feature
distribution. This model is capable of learning different complex network parameters as
well as capturing the distribution of different network features of the input networks. The
experimental results in thoroughly prove the effectiveness and scalability of Graph-CPS.
It can accurately capture the characteristics of input networks with not only different
network types, but also different network sizes. To the best knowledge of the authors,
our paper is a pioneer work of its kind in generating synthetic topologies for CPS.

3.2.1. TOPOLOGICAL MODELING OF CYBER-PHYSICAL POWER
SYSTEM

Figure 3.2 Illustration of the “Partially One-to-one” Interdependency of CPS.

As shown in Figure 3.2, we model the cyber-physical power system as
an interdependent network consisting of two layers, i.e., communication network
GC(VC ,EC) and power system GP(VP ,EP ), where VC = {..., VC , ...}, |VC | = m,
VP = {..., VP , ...}, |VP | = n are the cyber/physical substation node sets of the two
layers and EC = {..., EC , ...}, |EC | = h, EP = {..., EP , ...}, |EP | = k are the
communication/transmission edge sets of GC and GP.

According to [53], the interdependencies of CPS can be divided into “one-to-one”,
“one-to-multiple”, and “multiple-to-multiple” correspondences. In this chapter, we
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follow the typical substation communication structure from [31]. That is, the Numerical
Protection Relays (NPRs), Merging Units (MUs), and Process Units (PUs) communicate
through a Local Area Network (LAN) within the substation. They access the control
centers through Wide Area Networks (WANs) via the routing gateways in the substations
and relay communication nodes. Therefore, the CPS interdependency is defined as
“partially one-to-one” interdependency, i.e., each physical substation node is associated
with a cyber substation node, i.e., routing gateway, while not all cyber nodes are
connected with the physical substation nodes.

3.2.2. GRAPH-CPS: GENERATING SYNTHETIC TOPOLOGY OF
CYBER-PHYSICAL POWER SYSTEMS

For an input network G = {A,X,E}, A is the adjacent matrix of the
network, X = {(xt, xi)|t, i = 1, 2, 3, ...} is the node attribute set of all nodes, and
E = {ej |j = 1, 2, 3, ...} is the edge attribute set of all edges. xt represents the node
types. In this chapter, we consider three different node types in the power system,
i.e., generator load, and zero injection node, and the corresponding xt = −1, 1, 0,
respectively. In the communication model, we consider all nodes are substation routers.
xi is the node feature of node i while ej is the edge feature of edge j. Note that one
can perform different types of node/edge features to serve different research goals. In
this chapter, we use capacity centrality to quantify the feature of the nodes in both the
communication network and power system, as shown in (3.1).

xi =
∑
j∈Ni

ej (3.1)

where Ni is the neighbor edge set of node i, and ej is defined as the capacity of the
edge, e.g., transmission line capacity in power system and bandwidth of communication
links in cyber layer. To comprehensively capture the global network features, we covert
the node attribute vector X into a probability distribution V (x). When comparing the
network feature distribution of the two different networks, we use the Kullback-Leibler
divergence to quantify the difference between the two different probability distributions
as shown in (3.2).

KL(V (x̂) ∥V (x)) = −
∑

V (x̂) log
V (x)

V (x̂)
(3.2)

As shown in Figure 3.3, the Graph-CPS consists of three modules, i.e.,
Recurrent Neural Network (RNN), Variational Autoencoder (VAE), and Network Feature
Reconstruction (NFR). The RNN and VAE modules generate the synthetic CPS topology
and network features, separately. Then, the NFR module integrates the generated
data and forms the new synthetic network. The RNN module, leveraging the strong
sequential modeling capabilities of GraphRNN, recurrently and cooperatively generates
the synthetic network topology at both the node and edge levels. GraphRNN can generate
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Figure 3.3 Framework of Graph-CPS.

graphs with various topological properties such as different sizes, degree distributions,
clustering coefficients, etc. Besides, GraphRNN is capable of accurately capturing both
global and local graph properties [17]. Meanwhile, the VAE module employs VAE’s
powerful probabilistic modeling and latent space representation to generate diverse and
realistic network features [18]. The RNN module sequentially and recurrently generates
the synthetic network topology by cooperatively using two RNNs, i.e., node level RNN
and edge level RNN. Both of the RNNs consist of state-transition function and an output
function as in (3.3)-(3.4).

ho = ftrans(ho−1, S
π
o−1) (3.3)

θo = fout(ho) (3.4)

where ho encodes the generated graph of current time step, and Sπ
o−1 is the adjacency

vector for the o − 1 nodes of last time step. θo indicates the distribution of binary
adjacency vector for node o. ftrans and fout can be arbitrary neural networks. For more
details of RNN modeling, readers are referred to [17]. As in Figure 3.3, the output of
RNN module is the synthetic topology Â.

The encoder of VAE module takes A and X as inputs, and it uses a two-layer
Graph Convolutional Network (GCN) to project the inputs into the latent space Z, which
is expressed in (3.5).
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qϕ(Z|X,A) =
∏N

r=1
qϕ(Zr|X,A) (3.5)

For the detailed definition of the two-layer GCN, readers are referred to [18]. The
latent space Z is regularized by a simplistic isotropic Gaussian prior P (Z) = N(0, I).
The decoder is also a two-layer GCN which takes Z and Avoe as inputs. Avoe is the
result of the inner-product [18] sampling from Z. Then, the generated node attribute X̂
is calculated as shown in (3.6)-(3.7).

Pθ

(
X̂|Avae,Z

)
=

∏N

i=1
Pθ (x̂i, x̂t|Avae,Z) (3.6)

Pθ (x̂i, x̂t|Avae,Z) = N
(
x̂i, x̂t|µi, diag(σ2

i )
)

(3.7)

where µ = GCNµ(Avae,Z) is the matrix of mean vectors µi and similarly
logσ = GCNσ(Avae,Z). The GCN in the decoder is defined as GCN(Avae,Z) =

A
′

vaeReLU(A
′

vaeXW0)W1, where W0 and W1 are the trained parameters.
ReLU(·) = max(0, ·) and A

′

vae = D−1/2AvaeD
−1/2 is the symmetrically normalized

adjacency matrix. D is the degree matrix of Avae.

The goal of the proposed method is to generate synthetic networks with consistent
network feature distribution to the input graph. Therefore, during the training process,
we consider the equation (3.2) and minimize the variational upper bound L as shown in
equation (3.8).

L = Eqϕ(Z|X,A)

[
− logPθ

(Avae|Z)
]
+KL [qϕ(Z|X,A)∥P (Z)] +KL [V (x̂) ∥V (x)]

(3.8)

After the RNN and VAE modules, Â and X̂ are obtained. In the NFR module,
we use Algorithm 3.1 to map node attribute obtained. In the NFR module, we use
Algorithm 3.1 to map node attribute X̂ toÂ and reconstruct the edge attribute Ê. Note
that when mapping X̂ to Â, we assume that the nodes with higher degree have higher
node attribute. In Algorithm 3.1, VC/VP is the node set for cyber layer and physical
layer. N0

i is the neighbor edge set of node x̂i whose êj = 0 and Re(x̂i) is the remaining
node attribute of x̂i that is not assigned to any edge yet. Initially, Re(x̂i) = x̂i.

Based on [17], [18] and Figure 3.3, one can derive that both GraphRNN and
GraphVAE use an encoder to learn a distribution Pmodel(G) based on the input data,
which is stored in the latent space. Then, the decoder will interpret Pmodel(G) by
sampling from the latent space and generate the output graphs, where the sampling is
random but constrained by Pmodel(G). Therefore, if one wants to back solve from the
output and obtain the exact real input data, at least the following information is needed:
(1) exact sampling probabilities used by our method to generate the synthetic network,
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(2) exact learned parameters of the encoder, and (3) learned distribution. Note that for
condition (1), each generation is an independent event with different random probabilities
and thus is inaccessible. Also, conditions (2) and (3) are unfeasible without condition
(1). Although the adversaries may use brute force to back solve from the output data,
it is still unfeasible to back solve the model because: (i) in CPS minor differences in
network topology and node/edge attributes leads to different power flow results, and (ii)
the adversaries do not know the real CPS. It means they have no reference and cannot
control the difference between their back solving results and real CPS, which leads back
to issue (i). Therefore, to the best knowledge of the authors, it is unlikely to back solve
the generation process with only knowing the generated synthetic network.

Algorithm 3.1: Network feature reconstruction module

Input: Generated adjacent matrix Â and node attributes X̂

Output: Ĝ = {Â, X̂, Ê}

Step 1 Ê ← 0
Step 2 Sort X̂ in descending order
Step 3 Sort VC/VP in degree descending order based on Â
Step 4 Assign X̂ to VC/VP

Step 5 Locate the node x̂i with the smallest degree
Step 6 For j ∈ N0

i do:
Step 7 êj = Re(x̂i)/|N0

i |
Step 8 Update Re(x̂i)
Step 9 End For
Step 10 Repeat Step 5-8 until all êj > 0

Step 11 Return Ĝ = {Â, X̂, Ê}

3.2.3. IMPLEMENTATION AND EVALUATION OF GRAPH-CPS
In this Section, we implement the proposed Graph-CPS on three power systems

and three power grid communication networks to demonstrate and assess the model
effectiveness and scalability. For physical layer, we used the IEEE 39-bus standard
test system, Italian and German transmission systems (380kV- 400kV), the European
continental power grids [38]. For cyber layer, we use the communication network for
Jiangsu province power grids in China [41] and two validated communication networks
for IEEE 39-bus, 118-bus system, respectively [44], [43]. The size of the networks
mentioned above were scaled from 18 nodes to 1225 nodes and the networks contain
both IEEE standard test systems and the real systems.

Table 3.1 provides the statistical comparison between real and synthetic CPS.
From the topological perspective, we evaluate the quality of the generated synthetic
network based on multiple complex network parameters, i.e., average node degree,
average shortest path length, network diameter, network density, average and maximum
node betweenness. These parameters reflect the global structural characteristics of a
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network. From the perspective of network features, we evaluate the generation quality
by comparing the mean value and the variance of the normalized generated features.
Based on Table 3.1, one can observe that all generated parameters have small differences
compared with the original networks. Therefore, it is proved that the Graph-CPS is
scalable and accurate to preserve the characteristics of input networks with not only
different network types, i.e., power and communication networks, but also different
network sizes.

(a)

(b)

Figure 3.4 (a) Generated Synthetic Power Topology for IEEE 39-bus System, (b)
Generated Synthetic Communication Network.

Figure 3.5 Generated Synthetic CPS for IEEE 39-bus System.
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(a)

(b)

Figure 3.6 (a) Comparison of Node Feature for IEEE 39-Bus System, (b) Comparison
of Node Feature for IEEE 39-Bus Communication System.

To better present the generation results, we give a more detailed study case for IEEE
39-bus system and its communication model. The generation results are given as shown
in Figure 3.4. Then, we form the interdependency for the synthetic CPS by following
the “degree-to-degree” principle in [25] as shown in Figure 3.5. In Figure 3.4(a), the
numbers of load, generator, and zero injection nodes are 15, 10, 14, respectively. In
IEEE 39-bus system, the numbers are 17, 10, 12, which have the close distribution
of node type. Besides, in Figure 3.4(b), the synthetic communication network has a
clear tree structure as the input communication networks does, and it proves that our
method can effectively learn the global structure characteristics of the input network.
Moreover, we compare and visualize the generated node features as shown in Figure
3.6. In Figure 3.6(a), the mean value (normalized) of the node features in IEEE 39-bus
system is 0.239, while in synthetic result the value is 0.287. In Figure 3.6(b), the mean
value (normalized) of the node features in real communication model is 0.418, while in
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synthetic result the value is 0.436. Meanwhile, the difference of the variances for two
networks are 0.008 and 0.003, respectively. Therefore, it proves that the Graph-CPS can
generate realistic synthetic network features. Therefore, the experimental results prove
that Graph-CPS is capable of capturing both the different topological statistics and the
network feature distribution of the original networks.

3.3. SIBGEN: A HYBRID GENERATOR FOR GENERATING

THE DIGITAL SIBLING OF CYBER-PHYSICAL POWER

SYSTEM
The rising demand for advanced research on CPS compels the creation of realistic

and reliable test systems. However, the national security concerns prevent the public
sharing of real Critical Infrastructure (CI) data and models, including the CPS data.
Therefore, it is desirable to have a realistic projection of the real system, which
conceals the sensitive system model and data, e.g., system topologies and parameter
configurations, while maintaining the similar global characteristics as the real systems.
To this end, the concept of Digital Siblings (DSs) is proposed as a potential and
promising solution.

Similar to Digital Twins (DTs) [59], DSs serve as virtual representations of physical
systems that reflect their real-world counterparts in a digital environment. However, the
primary distinction between DSs and DTs lies in their objectives: while DTs strive
for absolute consistency with the real network, DSs focus on capturing the overall
characteristics of the target system. Metaphorically, DSs share the same ”genetic
materials” as DTs but display different ”traits”, which are critical for safeguarding the
confidentiality of CPS models and data. Given this background, developing an effective
and reliable generative model to create realistic DSs without exposing real CPS models
and data is of paramount importance.

As discussed in 3.1, existing generative models commonly used to create synthetic
networks for real-world systems can be classified into three categories, i.e., complex
network-based methods, open access data-based methods, and machine learning-based
methods. However, both complex network-based and open access data-based methods
fail to comprehensively reflect the operational and behavioral characteristics of real
CPS. While complex network-based methods primarily focus on topology, open-source
data-based methods rely on external assumptions, leading to potential deviations from the
actual system behavior. To overcome these limitations, machine learning-based methods
have emerged as a promising solution. By learning the characteristic distributions
of real-world systems, these methods can generate DSs that accurately represent
real-world CPS characteristics while preserving data confidentiality. However, how to
comprehensively and accurately learn the CPS characteristics and output realistic DS are
challenging: (1) Heterogeneous graph learning [60]. In graph theory, the CPS can be
interpreted as a heterogeneous graph that contains diverse types of nodes and edges.
This diversity makes it challenging to define a unified approach for message passing or
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feature aggregation across the graph during the learning process. (2) Inductive learning
[61]. To preserve the data confidentiality of CPS, we need to transform the real system
topology and parameters into a new shape based on the learned network information.
This is an inductive learning process, which poses great challenges to learn the complex
and high-dimensional representations of the input CPS.

Based on the discussion above, Graph Recurrent Neural Networks (GraphRNN)
[17] and Graph Attention Networks (GATs) [62] become promising approaches to
address the proposed question. From the perspective of topology generation, GraphRNN
can generate graphs with various topological properties such as different sizes, degree
distributions, clustering coefficients, etc. Besides, GraphRNN is capable of accurately
capturing both global and local graph property [17]. From the perspective of operational
parameters generation, GATs successfully address the two challenges mentioned above.
By leveraging attention mechanisms [63], GATs can handle situations where different
nodes or edges in the graph have varying levels of influence, making it well-suited for
heterogeneous graphs. Besides, the multihead attention strategy [62] in GATs enhances
its representation ability and thus increases the model performance on understanding the
complex input data. Furthermore, unlike traditional graph embedding methods that rely
on predefined global structures (e.g., adjacency matrices), GATs operate with local node
features and neighborhood information, making it more suitable for inductive learning
tasks. Therefore, in this paper, A hybrid generator, namely SibGen, is proposed to create
a digital sibling of real CPS by generating both topological and operational models. The
main contributions of this section are summarized as follows:

1. This section proposes SibGen, a hybrid digital sibling generator built upon
GraphRNN and GAT. SibGen generates digital siblings that replicate the topological
characteristics and operational behaviors of real CPS, while exhibiting distinct structural
and operational configurations, thereby ensuring the protection of sensitive CPS data.

2. To address the edge feature generation limitation in existing models, the concept
of dual graph is introduced to enable SibGen to generate synthetic attributes for both
nodes and edges, thereby capturing CPS characteristics in a more comprehensive manner.

3. To effectively incorporate physical constraints of CPS into the generation
process, the prior knowledge-constrained training strategy is proposed to enhance the
realism and reliability of the digital sibling’s topological and operational representations.

4. To thoroughly evaluate the similarities between the input real CPS and the
generated digital sibling, 7 metrics are implemented to evaluate both cyber and physical
systems from the both the topological and operational perspectives.

3.3.1. THE INTERDEPENDENT GRAPH MODEL OF CYBER-PHYSICAL
POWER SYSTEM

In Section 3.2.3, the CPS modelling only considers the topological aspects of the
system. However, a complete synthetic CPS requires not only the topology information
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but also the operational models of each subnetwork. Therefore, in this chapter, the
cyber-physical power system is mapped into an interdependent graph consisting of two
heterogeneous subnetworks, i.e., communication network and power system, each of
which is denoted as Gu = (Vu,Eu,vua, eua), where Vu represents the node set of
Gu, Eu represents the edge set of Gu, vua represents the node attributes of Vu.
The sub-index u ∈ {p, c} represents the power system or communication network,
respectively. The detailed system models of the two subnetworks are given as follows.

Communication Network: Vc = {Vctrl,Vcn}, |Vc| = Nvc, where Vctrl, Vcn

represent the control centers and communication nodes, respectively. Nvc is the number
of communication nodes. Ec = {..., Ec, ...}, |Ec| = Nec, where Ec is the communication
link and Nec is the number of communication links. Besides, vca = {Pc} includes
the node processing capacity Pc while eca = {b,L} contains the bandwidth b and the
communication media latency L.

Power System: Vp = {Vpg,Vpz,Vpl}, |Vp| = Nvp, where Vpg , Vpz , Vpl represent
the sets of generator, zero injection, and load nodes, respectively. Nvp is the number of
nodes in the power system. Ep = {..., Ep, ...}, |Ep| = Nep, where Ep is the branch and
Nep is the number of branches. Nep is the number of edges in power system. Besides,
vpa = {Pd,Pg} includes the active power demand Pd, and active power output Pg

while epa = {X,Cp} contains the reactance X and branch capacitance Cp.

Based on the discussion above, the cyber-physical power system is denoted
as ℑ = (Gc,Gp,ψ), where ψ represents the mapping relationship between the
communication network and power system. In this chapter, we employ the “partially
one-to-one” mapping relationship as described in references [52].

3.3.2. OPERATIONAL MODELS OF CYBER AND PHYSICAL SYSTEM
LAYERS

In this section, the operational models are introduced, which are implemented in
both the cyber and physical system layers. For the communication network, the OT
communication network model is used based on our previous work in [64] as represented
in Figure 3.7. For the power system, the DC power flow model is implemented.

Communication Network: the OT communication network in a cyber-physical
power system is used to monitor and control the physical processes of the power grid
in real-time. The OT communication network is critical for ensuring the reliability
of power system operation. As shown in Figure 3.7, the access layer between the
OT communication network and power system are the Intelligent Electronic Devices
(IEDs), comprising of Numerical Protection Relays (NPRs), Merging Units (MUs),
and Process Unit (PUs). These devices are used for the monitoring, protection, and
control of the power grid. The bidirectional communication between IEDs and control
center is achieved through the substation switches, gateway, and Wide Area Networks
(WANs), where the Centralized Control and Protection systems (CPC) are implemented
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Figure 3.7 The Architecture of OT Communication Network Model.
(PMU: phasor measurement unit, HMI: human machine interface, CPC: centralized protection and control,

NPR: numerical protection relay, MU: merging unit, PU: process unit)

to facilitate the system operation. Eventually, all the collected measurements and data
are processed and analyzed in the control center. System operators send from the control
center command and control messages to the substations. In the OT communication
network, the wide area communications are simulated between substations and control
centers. The communication links possess inherent attributes that reflect the real
communication infrastructure, including factors such as latency and bandwidth capacity.
The communication link design is determined upon the most optimal media available,
utilizing fiber optics with a bandwidth range of 1-5 Gbps and a latency of 0.5ms per 100
km [65]. The proposed model incorporates Transmission Control Protocol (TCP) and
User Datagram Protocol (UDP) for transmitting information over a wide area network.
TCP and UDP serve as transport protocols for transmitting measurement and control
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data in power grid OT communication networks [66]. Then, the network performance is
evaluated by using the Round-Trip Time (RTT) Rtt and packet loss rate η, which are
calculated by the equations (3.9)-(3.10).

Rtt =
∑
c∈p

Lc +
∑
c∈p

Ds

bc
+ tp + tq (3.9)

η =

Te∑
t=t0

Ni∑
i=1

Li (t) +
Te∑

t=t0

Nj∑
j=1

Lj (t)

Te∑
t=t0

Ni∑
i=1

φt
i +

Te∑
t=t0

Nj∑
j=1

φt
j

(3.10)

where Rtt contains the propagation latency
∑

c∈p Lc, transmission delay
∑

c∈p Ds/bc ,
processing delay tp and queuing delay tq . Lc is the latency of a communication link Ec,
p is the set of communication links on a communication path. Ds is the size of the data
packet, bc is the bandwidth of a communication link Ec. Li(t) is the number of lost
data packets of node i at t, φt

i is the data packet generated by node i at t, Te is the total
communication time.

Power System: In this chapter, we implement the DC power flow model [67] in the
power system, which calculates the bus voltage angles θ, by using the known active
power injection Pinj and susceptance B. It can be calculated as in (3.11).

θ = −B−1Pinj (3.11)

Then, using the calculated θ, one can traverse all the branches in the power system
and use equation (3.12) to calculate the active power flow for each branch.

Pmn =
θm − θn
Xmn

(3.12)

In this section, the generated synthetic power system model is validated by
comparing it with the input network. To thoroughly analyze the similarity of two
networks, the topological and operational features are jointly considered from five
perspectives, i.e., distribution of normalized node power injections P

′

inj(Vp) [68],
distribution of node vulnerability features I(Vp) [69], node distance degrees D(Vp) [70],
node capacity degrees B(Vp), and N-1 contingency analysis. The calculations of six
metrics are given as follows.

P
′

inj (Vp) =
Pinj (Vp)

SB
(3.13)
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I (Vp) = 1−
(Nvp − kp)Wavg

(
G

′

u (Vp)
)

NvpWavg (Gu)
(3.14)

Wavg(Gu) =
1

Nvp (Nvp − 1)

∑
i ̸=j∈Vp

Xij (3.15)

D (Vp) =
∑

Ep∈n
Xij (3.16)

B (Vp) = max

(∑
Ep∈n+

Cp,
∑

Ep∈n−
Cp

)
(3.17)

where SB is the system base power, G
′

u(Vp) is the cohesion graph [69] of node Vp,
Wavg(Gu) is the weighted average path length, kp is the number of neighbour nodes of
Vp (including Vp). Xij ∈ X , Cp ∈ Cp. n = {n+,n−} is the set of neighbour edges
of Vp, where n+ is the set of neighbour edges flowing into Vp and n− is the set of
neighbour edges flowing out of Vp. The P

′

inj(Vp) reflects the importance of node Vp in
electricity transmission. Wavg(Gu) reflects the transmission performance and efficiency
of a power grid. Reference [69] suggests that when the Wavg(Gu) decreases, the system
becomes more vulnerable to cascading failures. Based on Wavg(Gu), I(Vp) indicates the
importance of a node when the system experiences cascading failures. D(Vp) and B(Vp)
reflect the power flow transmission capabilities of nodes from the perspectives of branch
reactance, branch capacitance and power flow directions, respectively. Furthermore, the
synthetic model is also validated from the perspective of N-1 contingency analysis. Each
power system branch is removed and the power flow variance is observed over each
branch. Then, the average power flow variance Apfv of the system is used to indicate
the importance of the branch, as shown in (3.18):

Apfv (Ep) =

∑
Ep−{Ep} △ Pf

|Ep − {Ep}|
(3.18)

where △ Pf is the power flow variance cause by the removal of branch Ep.

3.3.3. THE ARCHITECTURE OF SIBGEN
The proposed framework of SibGen is illustrated in Figure 3.8. SibGen consists

of two modules, i.e., Graph Recurrent Neural Network (GraphRNN) module and
Graph Attention Networks (GAT) module. The objective of SibGen is to learn the
characteristics of the input graph data Gu = (Vu,Eu,vua, eua), and output the realistic
synthetic network Ĝu = (V̂u, Êu, v̂ua, êua). In GraphRNN module, the GraphRNN
algorithm is employed [17] to generate the synthetic topology of CPS, where the new
nodes and edges are alternately generated based on the learned characteristics of input
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graph. In GAT module, a novel bi-level GAT model embedded with prior constraints is
proposed to generate the network attributes for both nodes and edges, where the concept
of dual graph is defined to facilitate the training process, and the multihead masked
attention mechanism is implemented.

GraphRNN module: The GraphRNN module is defined as a deep autoregressive
model and follows the essential philosophy of the Recurrent Neural Network (RNN). It
sequentially generates the new network topology by alternately using node-level RNN
and edge-level RNN as shown in Figure 3.8. The GraphRNN module is defined as in
equations (3.19)-(3.23).

Sπ = fs(Gu, π) =
{
Sπ
1 , . . . , S

π
o , . . . , S

π
|Vu|

}
(3.19)

Gu = fG(S
π) (3.20)

p (Gu) =
∑

Sπ
p(Sπ)

∏
[fG(S

π) = Gu] (3.21)

p (Sπ) =
∏|Vu|+1

o=1
p
(
Sπ
o | Sπ

1 , . . . , S
π
o−1

)
(3.22)

p (Sπ
o | Sπ

<o) =
∏o−1

l=1
p
(
Sπ
o,l | Sπ

o,<l, S
π
<o

)
(3.23)

where Sπ represents the sequence of graph Gu, fs(∗) and fG(∗) represents the mapping
relationships between the given graph Gu and its corresponding sequence Sπ , and π is
the given node ordering. We denote Π as the set of all |Vu|! possible node permutations.
Sπ
<o is the set of sequences that the node identifier is less than o, and Sπ

o,<l is the
set of sequences that the edge identifier is less than l. For a given undirected input
graph Gu = (Vu,Eu,vua, eua), one can use equation (3.19) and (3.20) to map it into
a specific sequence Sπ with a given node ordering π. Then, according to equation
(3.21), the likelihood of a graph Gu is represented by the likelihood of the sequence.
Equation (3.22) and (3.23) represent the node-level and edge level RNN, respectively.
Combining the process above, one can learn the characteristics of the input graph
Gu and sequentially generate the synthetic topology Ĝu = (V̂u, Êu). Compared with
traditional graph topology generation algorithms, GraphRNN is proved to have better
performance on the graph statistics in terms of degrees, clustering coefficients and orbit
counts [71]. Besides, thorough Maximum Mean Discrepancy (MMD) evaluations are
conducted on various datasets, and it proves that GraphRNN achieves 80% decrease of
MMD on average compared with traditional baselines and 90% decrease of MMD on
average compared with deep learning baselines [17].
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Figure 3.8 SibGen Framework.
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Graph attention network module: the graph attention network (GAT) module first
trains on the input data Gu and then generates the synthetic node and edge attributes
based on the generated synthetic topology Ĝu from the GraphRNN module. In the single
graph attention layer, the input is a node attribute vector set h =

{−→
h1, ...,

−→
hk, ...,

−→
hN

}
,

and the output is the synthetic node attribute vector set h′ =
{−→
h′
1, ...,

−→
h′
k, ...,

−→
h′
N

}
. The

detailed process is presented as in equations (3.24)-(3.27).

ℓkl = a
(
W
−→
hk,W

−→
hl

)
(3.24)

∂kl = softmaxl (ℓkl) =
exp (ℓkl)∑

m∈Nk
exp (ℓkm)

(3.25)

∂kl =
exp

(
LeakyReLU

(−→a T
[
W
−→
hk ∥W

−→
hl

]))
∑

m∈Nk
exp

(
LeakyReLU

(−→a T
[
W
−→
hk ∥W

−→
hm

])) (3.26)

−→
h′
k = σ

(∑
l∈Nk

∂klW
−→
hl

)
(3.27)

where
−→
hk ∈ RF ,

−→
h′
k ∈ RF ′

, and F represents the dimension of the feature vector. a is a
single-layer feedforward neural network and is defined as RF ×RF ′ → R, W ∈ RF ′×F

is a weight matrix shared by all
−→
hk. ℓkl represents the importance of node l to k,

i.e., attention coefficients. ∂kl represents the normalized ℓkl. −→a
T ∈ R2F ′

is a weight
vector to parametrize a. Nk is the neighbour set of nodes k. T is the transposition
and || is the concatenation operation. σ is a nonlinearity. Equation (3.24) describes
the process of self-attention mechanism [63], which transforms the input features into
higher-level features and computes the attention coefficient. In (3.25), the softmax
function [72] is used to normalize the ℓkl so that the attention coefficients of different
nodes are comparable. Meanwhile, the LeakyReLU nonlinearity is employed as the
activation function. As shown in Figure 3.8, the GAT module distributes the attention of
each node only to its neighbour nodes rather than all the nodes in the graph, which is
denoted as masked attention mechanism [62]. Then, by aggregating all the calculated
information, the synthetic attributes are generated. The implementation of the masked
attention mechanism enables the model to focus on the neighbour nodes rather than the
nodes with a long distance, which helps the model to learn better about the topological
information of graph.

3.3.4. OPERATIONAL MODEL GENERATION BASED ON DUAL GRAPH
AND PRIOR KNOWLEDGE-CONSTRAINED TRAINING

Dual Graph: Despite that the GAT algorithm can effectively generate the synthetic
network attributes, it can only process the node attributes while fails to also generate the
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synthetic attributes for edges. To address this issue, the dual graph strategy is proposed
to transform the input network topology as well as the network attributes into a dual
graph for training while maintaining the same network information. The concept of dual
graph is given as follows.

Definition 1 (Dual Graph): For a given graph Gu, the relationship between
Gu and its dual graph GD

u is denoted as Gu∢GD
u , where each element of

GD
u = (V D

u ,ED
u ,vDua, e

D
ua) satisfies:

V D
u = {..., Eu, ...} , Eu ∈ Eu (3.28)

ED
u = {..., Vu, ...} , Vu ∈ Vu (3.29)

vDua (Eu) ∈ vDua, vDua (Eu) = eua (Eu) (3.30)

eDua(Vu) ∈ eDua, eDua(Vu) = vua (Vu) (3.31)

where eua(Eu) ∈ Eu and vua(Vu) ∈ Vu. It is noted that for two arbitrary nodes in GD
u ,

if their corresponding edges in Gu are connected to the same node, we add an edge
between these two nodes in GD

u . In Figure 3.8, a detailed example is given to describe
the process.

Prior knowledge-constrained training: When generating synthetic attributes for
the dual graphs, the generation results must adhere to specific requirements to ensure
compliance with the physical rules of cyber-physical power systems. For example, if a
node Vp ∈ Vpz is a zero injection node, it suggests that the corresponding node attributes
Pd and Pg are 0. Similarly, other node types also have different constraints. Therefore,
the GAT structure is modified. A training strategy is proposed embedded with prior
knowledge constraints. Assume h̃ is the output of the GAT layer, and h′ is the adjusted
output after the constraints are implemented. The relationship between h̃ and h′ is given
as in (3.32).

h′ = fcons(h̃) (3.32)

where fcons(∗) represents the different constraint operation. As discussed above, the Pd

and Pg are set to 0 for zero injection nodes. For generator nodes, only Pd is set to 0.
For load nodes, only the Pg is set to 0. During training, the loss function L is typically
defined as the error between the predicted output and true attributes. In this paper, the
Mean Squared Error (MSE) is used as the loss function:
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L =
1

N

∑N

k=1

∥∥∥−→h′
k −
−→
hk

∥∥∥2 =
1

N

∑N

k=1

∥∥∥∥fcons (−→h̃k

)
−
−→
hk

∥∥∥∥2 (3.33)

Given that the model is trained based on the gradient descent algorithm, the
introduction of changes the gradient calculation as shown in (3.34).

∂L

∂W
=

∂L

∂
−→
h′
k

· ∂
−→
h′
k

∂
−→
h̃k

· ∂
−→
h̃k

∂W
=

∑
x=d,g

 ∂L

∂
−→
h′
k(Px)

· ∂
−→
h′
k(Px)

∂
−→
h̃k(Px)

· ∂
−→
h̃k(Px)

∂W

 (3.34)

where ∂
−→
h′
k/∂
−→
h̃k captures the influence of the constraint operations on the gradient.

When any value of Pd and Pg are set to 0, the corresponding ∂
−→
h′
k(Px)/∂

−→
h̃k(Px) is 0. It

indicates that the model stops learning and updating the corresponding parameters while
it does not interfere the learning and updating the items that are not set to 0. Besides, to
improve the fitting ability of the model, we use the multi-head attention strategy [62], as
shown in Figure 3.8 and equation (3.35).

−→
h′
k =∥Mm=1 σ

(∑
l∈Nk

∂m
klW

m−→hl

)
(3.35)

where || represents the concatenation operation, ∂m
kl represents the calculation results of

Wm with the m-th head. According to [62], the multihead attention strategy enhances
the expression capability of the models. It enables GAT to simultaneously focus on
the different aspects of input data so that the data characteristics can be better and
thoroughly captured.

3.3.5. IMPLEMENTATION AND EVALUATION OF SIBGEN
In this section, the proposed SibGen is implemented on the IEEE 39-bus system and

its validated OT communication network in [44]. The interdependency between cyber
and physical system layers follows the principle of “degree-to-degree” [25]. The methods
are coded in Python and power system simulations are run on a computer equipped with
an Intel i7-8750H CPU at 2.2 GHz and 16 GB RAM. The OT communication network
simulations are performed using Mininet, which runs on Ubuntu 22.04, RAM 64 GB,
Intel(R) Xeon(R) W-2123 CPU 3.60GHz.

In this part, the generated synthetic power system is validated by comparing it
with the input network. To thoroughly analyze the similarity of two networks, the
topological and operational features are jointly considered based on the five metrics
mentioned in section 3.3.2. Furthermore, the model performance is also evaluated
with different attention strategy combinations, i.e., Non-Strategy (NS), Only Masked
Attention (OMA), only Multihead Attention (MA), and Masked Attention combined with
Multihead Attention (MAMA). The comparison of relative errors (using IEEE 39-bus
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system as baseline) on the five metrics are given in Table 3.2. The comparison results
of the metrics distribution are given in Figure 3.9. To better describe the comparison
results, the Jensen-Shannon (JS) divergence is used to quantify the difference between
the two different probability distributions as shown in equation (3.2). From an overall
perspective, the MAMA strategy outperforms other combinations on both relative error
and JS divergence. In Table 3.2, the average relative error of MAMA on different
metrics is on average 33.9% less than the other three strategies. In Figure 3.9, the
MAMA strategy generates the synthetic network with similar metrics distribution as the
input network while maintaining acceptable differences, which satisfies the requirements
of a digital sibling.

Table 3.2: Statistics Comparison between Generated Results and IEEE 39 Bus System
Relative
Error

Node Power
Injection

Node Vulnerability
Feature

N-1
Contingency

Node Distance
Degree

Node Capacity
Degree

Average Relative
Error

MA 0,264103 0,209016 0,615955 0,682464 0,172535 0,388815
MAMA 0,196154 0,241803 0,164391 0,696682 0,084507 0,276708

NS 0,244872 0,122951 0,503682 0,71564 0,18662 0,354753
OMA 0,242308 0,278689 1,370014 0,725118 0,200704 0,563367

(a)

The OT simulations are performed using Mininet, which implements operating-
system-level virtualization. Mininet is a network emulator primarily utilized for the
purpose of testing computer networks [73]. It facilitates the creation of virtual networks
on a computer and enables test network structures without having physical devices.
Mininet runs the simulation on Ubuntu 22.04, RAM 64 GB, Intel(R) Xeon(R) W-2123
CPU 3.60GHz. Mininet provides features to set the bandwidth link between nodes. This
mechanism allows the simulation to implement link bandwidth variations for the real and
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(b)

(c)
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(d)

(e)

Figure 3.9 Comparison Between IEEE 39-bus System and Synthetic Network. (a) Node
Power Injection, (b) Node Vulnerability Feature, (c) N-1 Contingency, (d)
Node Distance Degree, (e) Node Capacity Degree
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synthetic network scenarios. The Mininet topologies are derived from real and synthetic
networks, including substations, wide area networks, and control centers.

Figure 3.10 Packet Losses Comparison between Real and Synthetic Networks with
Variation in Traffic Intensities.

The OT traffic is simulated using the OT communication network topologies
implemented in Mininet. The OT network traffic originates from the nodes within
the Mininet network, which have been customized to simulate the functionalities of
IEDs, MUs, RTUs, and the control center. In this experiment, the simulated traffic is
implemented using UDP, which carries the payloads of power system measurements
and control commands between substations and the control center. In order to evaluate
the performance of the OT communication network under various traffic loads, a
range of traffic rates are simulated, which are transmitted from substations to the
control center, ranging from one to one million packets per second. The network
performance is examined by measuring the average RTT and packet losses under varying
traffic intensities. Figures 3.10 and 3.11 show the comparison of packet losses and
average RTT between the real and synthetic networks. Similar to the synthetic power
system, both figures demonstrate that the original communication network and synthetic
communication network possess similar characteristics while maintaining acceptable
discrepancy. In Figure 3.10, both the real and synthetic networks maintain a low packet
loss rate at lower traffic levels, which indicates that both network configurations are
effective at handling traffic with a minimal packet loss. Besides, both networks exhibit an
overall trend of gradually increasing packet loss rates as the traffic increases. As traffic
reaches a certain threshold, i.e., around 10ˆ4 packets per second, the packet loss rates for
both networks start to rise significantly, demonstrating a common challenge in managing
large data flows. Figure 3.11 also reflects similar patterns for both real and synthetic



3.4. CONCLUSION

3

61

Figure 3.11 Average RTT Comparison between Real and Synthetic Networks with
Variation in Traffic Intensities.

communication networks. The shaded areas representing the Standard Deviation (SD)
for both real and synthetic networks illustrate the variability in RTT measurements. Both
networks exhibit increasing variability as traffic rates increase, suggesting a common
increase in unpredictability of network performance under higher traffic loads.

3.4. CONCLUSION
In this chapter, we assume that both the cyber and physical system data are

available. In section 3.2, we propose a scalable generative model, namely Graph-CPS,
to generate a synthetic CPS topology with realistic network feature distribution. This
model is capable of learning different complex network parameters as well as capturing
the distribution of different network features of the input networks. In experimental
results, we implement the proposed Graph-CPS on three power systems and three power
grid communication networks to demonstrate and assess the model effectiveness and
scalability. The size of the networks mentioned above were scaled from 18 nodes to
1225 nodes and the networks contain both IEEE standard test systems and the real
systems. The validation results thoroughly prove that Graph-CPS can accurately capture
the characteristics of input networks with not only different network types, but also
different network sizes.

In section 3.3, we clarify the differences between the definitions of digital twins
and digital siblings. To capture the intricate system behaviors from the high-dimensional
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CPS data, we propose a hybrid generator, namely SibGen, to generate the digital
sibling of the real CPS. SibGen can generate both topological and operational models
of the input network. In SibGen, two effective training strategies are proposed, i.e.,
dural graph training and prior knowledge-constrained training. The dural graph training
strategy solves the problem that the current generation model can only process the
node attributes while fails to also generate the synthetic attributes for edges. The prior
knowledge-constrained training injects the physical constraints of CPS to make the
generation results more realistic. In case study, five different metrics are evaluated to
compare the real CPS and the generated synthetic network. The comparison results
prove that the SibGen is capable of learning the global characteristics of the input
network from both topological and operational perspectives.



4
VULNERABILITY ASSESSMENT
FOR CYBER-PHYSICAL POWER

SYSTEMS CONSIDERING
TIME-VARYING OPERATIONAL

STATES

Cyber security risks are emerging in CPS due to the increasing integration of cyber
and physical infrastructures. Critical component identification is a crucial task for
the mitigation and prevention of catastrophic blackouts. While efforts have been
made to study the vulnerability features of power systems under the occurrence of a
single, discrete disturbance or failure at a specific time instant, this chapter focuses on
identifying the critical components of the cyber-physical system considering time-varying
operational states. To this end, this chapter investigate the CPS vulnerability features
from the perspectives of manifest and latent component correlations, providing an
in-depth analysis to reveal the cascading mechanisms in CPS.

Parts of this chapter have been published in:
1. Yigu Liu, Alexandru Ştefanov, Ioannis Semertzis, Peter Palensky. “GraphCCI: Critical Components

Identification for Enhancing Security of Cyber-Physical Power Systems”. IEEE Transactions on
Industrial Cyber-Physical Systems. , vol. 2, pp. 340-349, 2024.

2. Yigu Liu, Ioannis Semertzis, Alexandru Ştefanov, Peter Palensky. “Critical components
identification for cyber-physical power systems considering time-varying operational states”. 9th
Workshop on Modeling and Simulation of Cyber-Physical Energy Systems, MSCPES 2021, Held as part
of the Cyber-Physical Systems and Internet-of-Things Week, Proceedings, Nashville, TN, USA, 2021.
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4.1. INTRODUCTION

D ue to the rapid integration of cyber and physical infrastructures, modern power
systems are becoming more efficient while also exhibiting increased vulnerabilities.

This emerging risk was starkly demonstrated by the three major cyber attacks on the
Ukrainian power grid in 2015, 2016, and 2022 [6], [7], [74], underscoring the critical
need for enhanced security measures in this landscape. The evolving communication
infrastructures have significantly altered the propagation mechanisms of cascading
failures in the Cyber-Physical power Systems (CPS) [75]. These changes present novel
challenges in ensuring safe system operation. Consequently, it is imperative to thoroughly
investigate the new cascading mechanisms and pinpoint the critical components of CPS,
which will enable the implementation of timely mitigation strategies, thereby enhancing
the overall security and resilience of CPS.

As an interdependent network, the functionality of CPS can be interrupted by
various means of adversaries targeting any of the coupled network. In order to
investigate the detailed mechanism of how CPS is corrupted, it is beneficial to divide
the invalidation scenarios of CPS into different categories. In this chapter, we classify
the cause of cyber-physical contingencies into two major groups based on the original
source, namely cyber-originated contingencies and physical-originated contingencies,
which are shown as in Figure 4.1.

Cyber-Originated Contingencies: Cyber-originated contingencies are solely caused
by the failures or errors from cyber layer [76]. The main cause of cyber-originated
contingencies is cyber attacks, which are better concealed and less noticeable compared
with traditional physical causes of contingencies. Cyber attacks are conducted at
the cyber system layer, which impact the functionalities of ICT devices and OT
systems. As shown in 4.1, we consider cyber-based and network-based contingencies
in this category. The cyber-based contingency refers to the attacks launched from
only cyber layer. Code and command manipulations are considered the main attack
in this category, which sabotage the functionalities of software and firmware of the
system based on adversary’s purpose. Malware injection injects worm or virus to
the systems. The two blackouts of Ukrainian power grids in 2015 and 2016 are the
typical real-life examples of malware injection. Other cyber-based contingencies include
password cracking, supply chain attacks and database manipulation, etc. Another kind
of cyber-originated contingency is network-based contingency, which are constructed
through the virtual network access without affecting the software or the firmware of the
system nor the physical communication links [76]. False data injection attacks utilize
the network information and manipulate the uploaded measurement data of power grids
and misleading the operator to conduct wrong actions. Man-in-the-middle attacks insert
a controllable computer into the communication network to access and control traffic or
change the transmitted data. Denial-of-service attacks temporarily or indefinitely disrupt
OT services. Other network-based contingencies include packet sniffing, rogue node, etc.

Physical-Originated Contingencies: In physical-originated contingencies, main
causes can be classified into three aspects: random failure, natural hazards, and
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Figure 4.1 The Taxonomy of Cyber-Physical Contingencies
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intentional attacks. For random failure, it affects all similar components with the same
probability distribution, that is, other factors (e.g., location of nodes) have no impact on
the probability of failure. On the other hand, intentional attacks usually attack the CPS
with a clear target, from the perspective of attackers, they will investigate the system
information (e.g., system topology, parameter configuration) and attack the weakest
points to maximize the overall impact on CPS. Besides, natural hazards, e.g., hurricanes,
snowstorm, and earthquakes, will also damage the operational status of CPS, especially
considering the contingency of perturbing the critical components in system.

In recent years, growing attention has been paid to the system resilience of
CPS, with an emphasis on extreme events, e.g., severe weather [77], [78], and cyber
attacks [79],[80]. Vulnerability assessment plays a crucial role in enhancing the overall
system resilience. It offers crucial insights to system operators during decision-making,
particularly when defensive resources for the system are limited. Vulnerability
assessment usually includes the different steps [81]: (1) System representation,
which defines the structural, logical, and functional interdependencies among system
components. (2) System mathematical modeling, which quantifies the performance
indicators based on various assumptions (e.g., different attack mechanisms, different
systematic interdependencies, different research objectives). (3) Model solving, which
explores the system behavior under different operational and accidental conditions.
Furthermore, in [82], authors propose that the problem of vulnerability assessment can
be considered from three levels: system, scenarios, and access points.

System: the system level vulnerability assessment refers to determine the critical
components based on the inherent system property (e.g., equipment location, device
function, carried load). For example, in [83], authors propose a new centrality index
based on the maximum flow from generator to load to identify the critical components
in system.

Scenarios: the scenario level vulnerability assessment captures the inherent
mechanism (e.g., fault propagation mechanism, system levels at each time instant)
of system under disturbance (e.g., malicious attacks, natural hazard). It reflects the
system vulnerability during the process of different system operation scenarios. More
specifically, efforts have been made to rank the priority of components based on the
consequence of its loss (e.g., load loss [26], unsupplied energy [84]). Researchers
[85], [86] also pay attention to the existing defensive strategies embedded in system
and evaluate the effectiveness of defense. Besides, in [87], authors propose a novel
framework CPIndex to calculate the security level of system at each time instant.

Access points: access points refer to the system vulnerability that can be exploited
by adversaries, such as common vulnerabilities and exposures (CVEs) [88] and accessible
external equipment.

Researchers have developed various methods to evaluate the vulnerability of CPS,
and these methods have different research background regarding different objectives. In
this chapter, we divide all the methods into two categories: topology-based methods and
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operation-based methods. In the following content, we will present detailed discussion
about the two categories, respectively.

Topology-based Methods: The topology-based methods focus on investigating the
system vulnerability purely based on the topological structure of CPS. During this
process, complex network theory (CNT) [81] is frequently adopted to analyze the
intricate relationships among large number of nodes. CNT abstracts different components
in complex systems into nodes or vertices, which are interconnected by links or edges. In
cyber-physical power system, nodes or vertices can be generators, transformers, routers,
operation centers, etc. Meanwhile, links or edges can be communication media, power
transmission lines, or the interdependency between cyber and physical layers. In general,
CNT uses metrics and indices (e.g., degree [37], [48], closeness [49], betweenness [50],
[51]) to capture the importance of a node in system.

Operation-based Methods: Topology-based methods naturally neglect the hetero-
geneity of nodes in both cyber and physical layer and focus only on the structure of
interdependent network. Consequently, the inherent physical mechanisms (e.g., load
redistribution, routing protocols) of both layers will be ignored, which may result in
unrealistic conclusions. To this end, researchers start to jointly consider the operational
mechanisms of cyber and physical layer during the process of vulnerability assessment.
In power system, the extensively concerned operational mechanism is power flow, which
calculate the steady-state solutions of power grid [81]. Besides, when considering the
vulnerability assessment on the cyber side, researchers have various assumptions. From
the perspective of information transmission, simple communication system is always
considered [89], [90], [91], [92], in which information packets are transmitted through
an end-to-end network. Once failures occur on the path, the transmission process is
immediately considered interrupted. Furthermore, with respect to detailed operational
conditions in cyber system, transmission errors and delays are considered in information
transmission model [93]. The detailed approaches adopted to solve the problems in
this category are two fold, i.e., model-based approaches and machine learning-based
approaches. On the one hand, the model-based methods consider the system operation
models, e.g., power and information flow models, and evaluate the criticality of each
component based on the system operational data, e.g., stability analysis [94], [95],
[96], historical cascading failure data [97], [98], [99]. On the other hand, machine
learning-based methods tend to train and learn the system features from the historical
data, e.g., cascading failure data [100], [101], [102], where graph neural networks [101],
reinforcement learning [103], [104], and data mining algorithms [79] are used to extract
the system features and identify the vulnerable CPS components.
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As shown in table 4.1, the representative papers in the domain of CPS vulnerability
assessment are listed. Among these methods, 52.9% of all methods adopt the
one-to-one coupling method to model CPS, and the percentages of one-to-multiple
and multiple-to-multiple coupling method are 23.5% and 23.6%, respectively. From
the perspective of interdependency, 41.2% of the methods focus on analyzing the
operational interdependency and the structural methods are about 58.8%. Besides, this
chapter also concerns about whether researchers take the heterogeneity of nodes in CPS
into consideration and 23.5% investigate the impact on CPS of node heterogeneity.
Considering the system size of case study, current literature conducts the methods on
both small- and large-scale systems. Regarding the detailed methods in vulnerability
assessment, the most frequently used methods in topology-based methods is percolation
theory, while for the operation-based methods, AC and DC power flow models are
frequently considered. The current literature has yielded fruitful results in identifying
critical CPS components, yet each methodological category has notable limitations,
which are two-fold. On the one hand, The existing work only evaluates the CPS at a
single time instant. However, we argue that this may not always be the case. Instead
of considering CPS disturbances or failures as single-occurrence events, in this chapter
we treat them as a set of sequential discrete events. Disturbances and failures can occur
at any time instant during CPS operation over a certain time period. Meanwhile, the
operational states, e.g., loads and power flows, are constantly varying in time. Under
such assumption, the vulnerability features generated by the existing static methods,
which aim at a particular time instant may not be applicable to time-varying CPS
operational states. To this end, a fundamentally new approach is needed to systematically
capture the vulnerability characteristics and identify the most critical CPS components of
whole operation time period to develop effective and economic mitigation strategies. On
the other hand, topology-based methods partially unravel network structural features but
overlook the complexity models [53] and heterogeneity [30] inherent in CPS as industrial
systems, potentially skewing identification results. The operation-based methods
consider CPS’s operational facets, analyzing historical data to discern inter-component
correlations. However, these methods typically extract correlations solely from the
known data. Although some works consider different operational states, no historical
data can cover all possible system conditions and capture all possible correlations
between components. In these two categories, commonly employed statistical methods,
like machine learning algorithms and graph theory indices, are limited to quantifying
correlations presented in the historical data. This process overlooks latent correlations
under unrepresented operational states, introducing significant bias in identifying critical
components. Therefore, this chapter also aims to introduce a methodology that not only
analyzes apparent component correlations but also quantifies latent ones, ensuring more
accurate and realistic identification outcomes.

To address the issues above, in this chapter we made the following contributions:

(1) we propose a novel cascading failure model considering the interaction between
cyber and physical layers for every single time instant. Based on quasi-dynamic
simulations, we generate a database of cascading failure chains. This contains various
operating conditions. We adopt the sequential mining algorithms to identify the frequent
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sequential cascading patterns. Vulnerability indices are constructed based on complex
network theory to evaluate the importance of components in the cascading failure process
and identify the critical components in CPS.

(2) We define two correlations, i.e., manifest and latent correlations, to better reveal
the cascading mechanism of CPS and comprehensively investigate the apparent and
potential correlations between CPS components.

(3) We propose a set of definitions to map the historical cascading failures datasets
into weighted cascading graphs, and then construct the weighted cascading graph
database for graph data mining to thoroughly capture the cascading features of CPS.
By jointly considering the manifest and latent correlations and the graph data mining
results, we propose a critical components identification model named GraphCCI.

4.2. CRITICAL COMPONENTS IDENTIFICATION FOR

CYBER-PHYSICAL POWER SYSTEMS CONSIDERING

TIME-VARYING OPERATIONAL STATES
4.2.1. SYSTEM VULNERABILITY CONSIDERING TIME-VARYING

OPERATIONAL STATES
In previous discussion, we argue that the current vulnerability assessment methods

may not be applicable or even feasible when considering the change of CPS operational
status. As shown in Figure 4.2, in a real-world scenario, the operational states of CPS
are constantly changing, which means the system will react to failures or disturbances
differently at various time instants. More concretely, the cyber-physical system may
show different cascading failure patterns under time-varying operational states, which
will directly change the vulnerability features. In this context, we first model a failure,
e.g., line tripping, in CPS to trigger the cascading failures at a specific time instant, e.g.,
t2, t4, t6 or as represented in Figure 4.2. To thoroughly investigate the vulnerability
characteristics of CPS at a specific time instant, we consider that any component in the
cyber-physical system may fail, and we generate possible cascading failure chains for all
components. These cascading failure chains contain the detailed vulnerability features of
CPS at the time instant. By combining cascading failure chains of all-time instants, a
cascading failure chain database is generated, which captures the intricate relationships
among components and reveals the fault propagation mechanism of CPS under different
operating conditions. For instance, for a certain time interval [t1, tu], suppose the
cascading failure chain set includes XCF (t1) at t2, XCF (t2) at t2,..., XCF (tu) at tu,
then the cascading failure chain database can be presented as:

XD = {XCF (tu) |1 ≤ u ≤ U } (4.1)

The definition of XCF (tu) can be found in (4.9). At last, we intend to employ
sequential data mining algorithms to mine the cascading failure database and identify
the critical components of CPS. Generally, the sequential data mining algorithms return
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the patterns that are frequently shown in the database. For cyber-physical systems, if
a cascading failure pattern frequently appears in XD, it means that the corresponding
components play a critical role in the cascading process. If such critical components are
reinforced and cyber secure, the system resilience will be greatly improved.

Figure 4.2 The Time-varying Operational States of CPS.

4.2.2. MODELING OF CPS AND CASCADING FAILURES
In this Section, we investigate CPS modeling from both topological and operational

perspective. We model the cascading failures at each time instant to show how CPS
will react to disturbances under different operating conditions. Then, by collecting the
cascading failure chains at each time instant, a database is generated to further reveal
the systematic vulnerability features of the cyber-physical system.

In this section, we abstract the CPS into an interdependent network, in which
nodes and edges are used to represent the cyber-physical system components and
interconnections among them, respectively.

Physical Layer: the generators, substations and loads are considered as physical
nodes, while the transmission lines and transformers are considered as physical edges.
Consequently, we can directly map a power grid into an undirected and unweighted
graph based on its own topology.

Cyber Layer: the SCADA system in the control center and station control systems
in substations are abstracted into cyber nodes, while their communication links are
considered as cyber edges. It is worth mentioning that for the cyber layer we only
consider the influence of the cyber layer topology on the physical layer operation. In
this research, we do not consider the detailed communication mechanisms, e.g., routing
protocols. Typically, the communication networks for power grids are implemented
as double-star or mesh networks [35], [32] From the perspective of complex network
theory, double-star networks are scale-free networks [45]. The control centers are
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considered hub nodes with higher degrees in the system. If one of these nodes fail,
the cyber-physical system will suffer severe consequence. The double star networks are
sensitive to intentional cyber-physical attacks, but resilient to random failures. On the
other hand, mesh networks, as opposite to double-star networks, show the feature of
small-world [118], which indicates that mesh networks have a broader degree distribution
and are more vulnerable to random failures. Generally, a broader degree distribution
increases the robustness of complex networks. However, when cyber and physical layers
are coupled to form an interdependent network, a broader degree distribution increases
the vulnerability of the interdependent networks to random failures [119]. Meanwhile,
the research of Ye et al. [25] also shows that power grids coupled with double-star
communication network have a lower probability of catastrophic failures than with mesh
networks. Therefore, in this section, we adopt the double-star network to model the
topology of the cyber system.

Structural Interdependency: in this section, we consider the interdependence
between cyber and physical layers as a “one-to-one” correspondence [119]. The
number of nodes in the cyber layer is the same as in the physical layer, and
a cyber node is exclusively interconnected with a physical node. Parshani et al.
[116] defines the interdependency of networks as intersimilarity from a topology
perspective and investigates the robustness of interdependent networks under different
intersimilarities. The results show that for scale-free networks, the interdependency
should be “degree-to-degree”, which means that the node with the highest degree in
the cyber layer should be interconnected with the node with the highest degree in the
physical layer.

Failures such as protection maloperation or loss of communications may trigger
cascading effects in the cyber-physical system. Furthermore, when power grids are
tightly coupled with communication infrastructures, the extent of fault propagation in
CPS may be significantly increased considering the complex interdependencies between
the cyber and physical layers. For example, one disturbance in one network may
simultaneously have an influence within the network and on its interdependent networks.
In this subsection, we present the simulation process of generating the cascading failure
chains for every time instant used to generate the cascading failure chain database.

When the power system is congested, system operators redispatch generation or
even shed load to ensure that the power grid is securely and economically operated.
Therefore, an optimal DC power flow model represented by equations (4.2) – (4.7)
is used to minimize the load shedding when disturbances occur in the cyber-physical
system.

min
∑
y∈D

Wy |py − Pdy| (4.2)

F = AP (4.3)
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n∑
x=1

px = 0 (4.4)

Pdy ≤ py ≤ 0, y ∈D (4.5)

Pmin
gx ≤ px ≤ Pmax

gx , x ∈ G (4.6)

−Fmax
l ≤ Fl ≤ Fmax

l , Ll ∈ L (4.7)

where G and D are the set of generators and loads, respectively, Wy is the cost
of load shedding, L = {Ll |l = 1, 2, ..., Nl } is the set of branches in the power grid
and P = [p1, p2, ..., pk, ...]

T is the vector of power node injections. Equation (4.3)
represents the DC power flow equation. A is the nodal admittance matrix and
F = [F1, F2, ..., Fl, ...] is the vector of branch power flows. py represents the load of
node y. Pdy represents the rated load at node y. px represents the output power of
generator x. Pmax

gx and Pmin
gx are the upper and lower limits of the output power of

generator x, respectively. Fmax
l is the transmission capacity of the l-th branch.

Ye et al. [25] propose an interaction model and analyses the system performance
under both intentional attacks and random failures. Dong et al. [120] propose a
probabilistic failure model to simulate the cascading process between cyber and physical
layers. Based on these works, an interactive model is used to capture the main features
of both cyber and physical layers and give a rough approximation to describe the
interdependency between the two layers, which is presented as follows.

Cascading failures in the same layer: we consider that cascading failures in power
grids are mainly caused by load redistribution when branches are disconnected and by
hidden failures. Due to a hidden failure [121], the outage of branch Ll may cause the
failure of its neighbors with a low probability P1. When a branch is overloaded due
to system load redistribution, we assume that the branch will be disconnected with a
probability P2. We do not consider the mutual influence among cyber nodes, i.e., the
failure of a cyber node will only influence the data communication and will not cause a
failure of other cyber nodes.

The impact of disturbances in the cyber layer to the physical layer: we consider
that the cyber nodes are directly coupled with the physical nodes of power grids. When
a cyber node is out of service, the control center loses the remote monitoring and
control capabilities of the physical node and all corresponding branches in the substation.
Consequently, when these branches are overloaded, they will operate in an insecure state
and will be eventually disconnected by system protection after a period of time. On the
other hand, a failed cyber node may be on the communication path between the control



4

74 4. VULNERABILITY ASSESSMENT FOR CYBER-PHYSICAL POWER SYSTEMS
CONSIDERING TIME-VARYING OPERATIONAL STATES

center and another cyber node. Under such circumstances, we consider that the control
center also loses the monitoring and control capabilities of the associated physical nodes.

In this section, we investigate systematic cyber-physical system vulnerabilities.
Therefore, we include various cascading failure scenarios by assuming that each
component is possible to fail at every time instant. More specifically, we trip all the
branches one by one to collect all possible cascading failure chains at every time instant.
Then, by repeating the same process, the cascading failure chains are combined to
generate the cascading failure chain database as shown in Figure 4.2. The detailed
simulation process of one single time instant is presented in Figure 4.3. A disconnected
branch is removed from the power grid topology. The updated topology is represented
by Nreal. Furthermore, we consider Ncontrol to be a subset of Nreal for which the system
operator still has monitoring and control capabilities. The branches connected to the
physical nodes affected by the failure of their corresponding cyber nodes are removed
from Ncontrol. We consider that the cyber nodes are vulnerable to cyber attacks and some
will fail due to malicious attacks or other contingencies in each iteration. The cyber
nodes will be removed with a small probability P3.

The cascading failure process at time instant tU starts by disconnecting branch
Ll and scanning for cyber and hidden failures. The Nreal and Ncontrol CPS topologies
are updated. The DC power flow is first calculated based on the updated Nreal. If
there are overloaded branches, we calculate the optimal DC power flow based on the
updated Ncontrol. The results of the optimal DC power flow give the power injections
for the physical nodes in Ncontrol. The redispatch of generation with minimum load
shedding costs is implemented using Nreal. We calculate load redistribution based on
the new power injections and previously available measurements for the physical nodes
affected by the failure of their cyber nodes. The overloaded branches are disconnected
with their corresponding probabilities. It is worth mentioning that a branch may be
disconnected based on local measurements by protection relays and control commands
from the control center. When a branch is overloaded, system operators will adjust the
generation or initiate load shedding. If the overload is not mitigated, the branch will be
tripped by overload protection. Therefore, in our section, we assume that when a branch
is overloaded, it is tripped by local protection with a probability P2. The process is
repeated until there are no further overloaded branches. The cascading failure chain is
exported to the database.

It is worth mentioning that the simulation process illustrated in Figure 4.3 is used to
generate the cascading failure chain XLl

CF (tu) initiated by the disconnection of branch
Ll at tu. To thoroughly capture the vulnerability features of CPS and generate the
cascading failure chain XCF (tu) at tu, this simulation should be conducted for every
branch in L. This can be represented by equations (4.8) and (4.9).

XLl

CF (tu) = ρ (C1, C2, . . . , Cn) , Ck ∈ C = VC ∪L (4.8)
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Figure 4.3 Simulation Process of Cascading Failures.

XCF (tu) =
{
XLl

CF (tu) |Ll ∈ L
}

(4.9)

where ρ (C1, C2, . . . , Cn) = C1 → C2 →, . . . ,→ Cn. VC = {vg |g = 0, 1, 2, ..., Ng }
represents the set of cyber nodes at the cyber layer. The cascading failure chain database
XD can be generated based on equations (4.1) and (4.9).

4.2.3. CRITICAL COMPONENTS IDENTIFICATION FROM A DATA
MINING PERSPECTIVE

In this section, we take advantage of the fact that XLl

CF (tu) can be viewed as a
sequence for data mining and employ the PrefixSpan sequential data mining algorithm
to capture the most frequent cascading failure sequence, i.e., CPS vulnerable sequence.
Based on the identified patterns, we propose a vulnerability metric to further quantify
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the vulnerability of each component in the cyber-physical system. For a cyber-physical
system, the cascading failure chain database can be very large, in which some cascading
failure patterns may show up repeatedly. We use the frequency of these patterns to
quantify the vulnerability of each CPS component. The cascading failure patterns are
defined as candidate sequences waiting to be evaluated whether they are vulnerable
sequences or not.

Definition 4.1 (Candidate Sequence): Based on the definition of XLl

CF (tu), if there
exists {Cj1, Cj2, . . . , Cjz} ⊆ {C1, C2, . . . , Cn}, a sequence α=ρ (Cj1, Cj2, . . . , Cjz) is
called a subsequence of a cascading failure chain XLl

CF (tu), which can be denoted as
α ▷XLl

CF (tu).

Definition 4.2 (Vulnerability Degree): For a candidate sequence α=ρ (Cj1, Cj2, . . . , Cjz),
the vulnerability degree is defined as:

VD (α)= |{ρ | (ρ ∈XD) ∧ (α ▷ ρ)} | (4.10)

Based on the definitions above, PrefixSpan can be adopted to identify the vulnerable
sequence with higher vulnerability degrees. The details of PrefixSpan are reported in
[19]. Based on the vulnerable sequences identified above, in this part, we propose a
vulnerability metric to further quantify the vulnerability of each CPS component. As
discussed in Section 4.2.2, for each cascading failure chain XLl

CF (tu), the components
highly positioned in the chain result in high vulnerabilities. Therefore, we propose a
metric named total sequential vulnerability to identify the critical components in the
cyber-physical system.

Definition 4.3 (Total Sequential Vulnerability): For a vulnerable sequence
βm=ρ (..., Ci, ...), the sequential vulnerability Sβm

(Ci) of component Ci in βm is
defined as:

Sβm (Ci) = Nβm − δβm (Ci) + 1 (4.11)

where Nβm
is the number of components in βm and δβm

(Ci) is the order of Ci in βm.
Based on equation (4.11), by combining the sequential vulnerability of component Ci in
all M vulnerable sequences containing Ci, the total sequential vulnerability of Ci can
be represented as:

S (Ci) =

M∑
m=1

Sβm
(Ci) (4.12)
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4.2.4. CASE STUDY
In this section, we conduct experiments on IEEE 39-bus and IEEE RTS-96 models

to evaluate the effectiveness of the proposed method. Their cyber-physical systems and
the proposed method are implemented in Python. The probabilities for the simulation of
cascading failure chains are set as follows: P1 = 0.05, P2 = 0.95, P3 = 0.01.

As discussed in Section 4.2.2, we use a scale-free network to simulate the cyber
layer. Based on the Barabási–Albert (BA) model [45], Figure 4.4 shows the generated
cyber topologies of IEEE 39-bus and IEEE RTS-96 system, respectively.

(a)

(b)

Figure 4.4 Cyber Layer Topology: (a) IEEE 39-Bus System, (b) IEEE RTS-96 Bus
System.

The method proposed in Section 4.2.2 is used to generate the vulnerable sequences
of IEEE 39-bus and IEEE RTS-96 system. For IEEE RTS-96 system, we use the peak
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(a) (b)

Figure 4.5 Vulnerable Sequence Identification: (a) IEEE 39-Bus System, (b) IEEE
RTS-96 Bus System. (The cyber nodes are represented with blue, while the
power system branches are represented with red.)

loads of each week for a 52-week load profile to simulate the time-varying operational
states of CPS. For IEEE 39-bus system, we change the load proportionally in each
simulation over 52 weeks. In the final database, there are 1901 cascading failure chains
for IEEE 39-bus system and 6479 cascading failure chains for IEEE RTS-96 system.
Figure 4.5 shows all the vulnerable sequences identified for the two test systems.
Furthermore, based on equations (4.11)-(4.12), the total sequential vulnerabilities are
calculated to quantify the vulnerabilities of CPS components in the test systems. Table
4.2 and 4.3 show the top 5 components in both cyber and physical layers with the
highest total sequential vulnerabilities.

Table 4.2: Vulnerable Components of IEEE 39-Bus System Sorted by Total Sequential
Vulnerability
Branches in Physical Layer Nodes in Cyber Layer

Ranking ID of Branches S (Ci) Ranking ID of Nodes S (Ci)
1 2 50 1 3 5
2 15 24 2 16 4
3 1 5 3 11 3
4 35 4 4 15 3
5 23 4 5 8 3

From the perspective of degree distribution, in Figure 4.5(a), the components with
the highest degree are branches 2, 15 and 29. This ranking is different from the ranking
of total sequential vulnerability. This is because the total sequential vulnerability also
considers the position of components in a vulnerable sequence. When a component
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Table 4.3: Vulnerable Components of IEEE RTS-96 System Sorted by Total Sequential
Vulnerability
Branches in Physical Layer Nodes in Cyber Layer

Ranking ID of Branches S (Ci) Ranking ID of Nodes S (Ci)
1 18 93 1 27 3
2 20 64 2 5 2
3 16 25 3 18 1
4 26 23 4 21 1
5 17 17 5 20 1

frequently appears at the start position of a sequence, it means this component has a
more significant impact on other components in the system. If the cyber-physical security
of such components can be strengthened, then the scale of cascading failures will be
reduced and thus the system will be more resilient. It is worth mentioning that although
the degree distribution and total sequential vulnerability of power nodes are much higher
than the ones of the cyber nodes, they are equally important for cyber-physical systems.

On the other hand, as shown in Table 4.2 and 4.3, we can observe that the span of
S (Ci) is quite large, which means, taking IEEE 39-bus system as an example, branch
2 is more vulnerable than branch 23, and by extension, other branches ranked behind
branch 23 in the system. Such results indicate that for cyber-physical systems, there is a
limited number of critical components, which must be reinforced and cyber secure. In
our case, Table 4.2 and 4.3 give the top 5 critical components in both cyber and physical
layers of the IEEE 39-bus and IEEE RTS-96 systems.

4.3. GRAPHCCI: CRITICAL COMPONENTS

IDENTIFICATION FOR ENHANCING SECURITY OF

CYBER-PHYSICAL POWER SYSTEMS
Based on the cascading models in Section 4.2, we expand the CPS cascading

modeling details to further investigate the interactions between CPS components.
This section proposes a graph data mining-based critical components identification
model named GraphCCI, which evaluates the criticality of CPS components from the
perspectives of manifest and latent correlations. First, we abstract the cascading failure
data under different operational states into a weighted cascading graph database. Then,
the TKG algorithm is adopted to identify the frequent subgraphs in the constructed
graph database. Meanwhile, the definition of CC-Graph is proposed to model the
overall cascading features based on the graph mining results. Finally, the NC-Index is
proposed to evaluate the criticality of each CPS component. Our case study reveals
that the cyber-physical system shows different cascading features under different system
conditions. Verifications on the IEEE 39-bus test system demonstrate the effectiveness
of our method. The identification results can provide an important reference to enhance
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CPS security and prevent cascading failures and even a blackout.

4.3.1. CYBER-PHYSICAL CASCADING MODEL CONSIDERING
TIME-VARYING OPERATIONAL STATES

In power systems, cascading failures can be described as a rapid, uncontrolled
sequence of power equipment disconnections from the power grid, which may result
in a blackout. In general, the fundamental idea of generating cascading failure
datasets in power systems is based on simulations with existing cascading models [25],
[101]. In cyber-physical power systems, the cascading process described above is
further influenced by the cyber-physical interactions. The cyber-physical interplay can
amplify the cascading effects. For instance, cyber attacks, e.g., false data injection and
distributed denial of service, can misguide the decision-making in the control center
and pose a significant threat to power system operation. Furthermore, a power system
outage can disrupt communication networks affecting the power grid monitoring and
control capabilities, which can further destabilize the CPS. In this section, we adopt
the cyber-physical cascade model developed in our previous work [101]. Note that to
use the methodology proposed in this section for analyzing the cyber-physical cascading
mechanism, the cascade data can also be generated based on other cyber-physical system
models in the literature. The cyber-physical cascading failures chain CCF can be
represented as in (4.13).

CCF = ⟨C1⟩ → ⟨C2⟩ → ⟨C3⟩ → . . . ⟨Ci⟩ → . . . ⟨Cn⟩ (4.13)

where Ci = {Ci1, Ci2, ..., Cik, ...Cim} represents a set of components in CPS and the
element Cik can be either a cyber or physical component. The transmission lines
represent the physical components, while the Supervisory Control and Data Acquisition
(SCADA) system in the control center, communication network components, and the
protection, automation and control systems in substations are abstracted into cyber
components. {Ci1, Ci2, ..., Cik, ...Cim} indicates that after the removal of prefixed
components ⟨Ci−1⟩, multiple components can be disabled simultaneously. In general,
a cascading failure chain as (4.13) contains information about components correlation
and transitivity. (i) Components correlation: in (4.13), the relationship between ⟨C1⟩
and ⟨C2⟩ can be considered as the causality correlation, which indicates that the failure
of the components in ⟨C2⟩ is caused by the removal of all components in ⟨C1⟩. (ii)
Transitivity: in [80], the transitivity of a cascading failure chain is defined as: if there
exist ⟨{C11}⟩ → ⟨{C21, C22}⟩ → ⟨{C31}⟩, the components C11 and C31 are correlated
even if the failure of C31 is not directly cause by C11. Note that if the correlations
⟨{C11}⟩ → ⟨{C21, C22}⟩ and ⟨{C21, C22}⟩ → ⟨{C31}⟩ originate from two different
cascading failure chains, the transitivity property cannot be used directly. We will further
discuss this issue in Definition 4.6.

In this section, we further investigate the correlations among CPS components.
Based on the cascading failure data, in the following content, we construct the cascading
graph database and mine the frequent subgraph to further reveal the cascading mechanism
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of CPS. By utilizing the cascading model in [101], we generate N cascading chains at
a given operational state as in (4.13) and construct a weighted cascading graph. The
definitions and detailed generation process are as follows.

Definition 4.4 (Manifest Correlation): For two given CPS components Cik ∈ Ci

and Cjk ∈ Cj , if Ci and Cj are in the same cascading failure chain, then we define
the correlation between Cik and Cjk as manifest correlation, and it is denoted as
Cik → Cjk.

Definition 4.5 (Latent Correlation): For three given CPS components Cik ∈ Ci,
Cjk ∈ Cj and Clk ∈ Cl, if it satisfies Cik → Cjk, Cjk → Clk and Ci is not in the same
cascading failure chain with Cl, then we define the correlation between Cik and Clk as
latent correlation, and it is denoted as Cik ⇒ Clk.

Example 4.1. Let two cyber-physical cascading failure chains both with the length
of 3 be C

(1)
CF = ⟨{C11}⟩ → ⟨{C21, C22}⟩ → ⟨{C31}⟩ and C

(2)
CF = ⟨{C21, C22}⟩ →

⟨{C31}⟩ → ⟨{C41}⟩, where C
(1)
CF and C

(2)
CF are generated under the same system

condition. In this example, C11 and C31 have the manifest correlation. C11 and C41

have the latent correlation.

Definition 4.6 (Transitivity of Cascading Correlation): We define the symbol ▷ to
indicate the cascading correlation between any two components Cik and Cjk, and it is
denoted as:

R (Cik, Cjk) = Cik ▷ Cjk (4.14)

Note that Cik ▷ Cjk indicates that Cik and Cjk either satisfy Cik → Cjk

or Cik ⇒ Clk. Then, the transitivity of cascading correlation is defined as
if ∃ C1k, C2k, C3k, ..., Cik, ...Cnk satisfy C1k ▷ C2k, C2k ▷ C3k, ..., Cik ▷ C(i+1)k, ...,
C(n−1)k ▷ Cnk, then

R (C1k, C2k, C3k, ..., Cik, ..., Cnk) = C1k ▷ C2k ▷ C3k... ▷ Cik... ▷ Cnk (4.15)

Note that once (4.15) is satisfied, there is a transitivity property between any two
components in (4.15).

Definition 4.7 (Mapping a Cascading Chain into a Graph): We define a mapping op-
erator F : R

(
C

(i)
CF

)
7→ G

(i)
CF , and G(i)

CF = F
(
R
(
C

(i)
CF

))
=

〈
V

(i)
CF ,E

(i)
CF ,w

(i),ϕ
(i)
w

〉
is a directed graph, where V (i)

CF is the set of vertices in G(i)
CF and is mapped from all

the components in C
(i)
CF , w(i) is the weight set of all edges mapped by the mapping

relationship ϕ(i)
w .
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Based on definitions 4.4-4.7, one can map a cascading failure chain C
(i)
CF into a

directed and weighted graph. Note that in definition 4.4, the weights of all edges are set
to 1 by default because for one cascading failure chain, each component can only be
removed once, and the weights of edges represent the frequency of the corresponding
correlation in the cascading data. To thoroughly evaluate the importance of each
component in the system, one can construct N cyber-physical cascading failure chains,
i.e., C

(1)
CF , C

(2)
CF , ..., C

(N)
CF . Then, based on definitions 4.4-4.7, we can construct N

directed graphs, i.e., G(1)
CF ,G

(2)
CF , ...,G

(N)
CF . Furthermore, these graphs can be combined

to generate a weighted cascading graph GCF (tx) for a single operational state tx as
follows:

GCF (tx) =
〈
V

(tx)
CF ,E

(tx)
CF ,w(tx),ϕ

(tx)

w

〉
(4.16)

V
(tx)
CF =

N⋃
i=1

V
(i)
CF (4.17)

E
(tx)
CF =

N⋃
i=1

E
(i)
CF (4.18)

w(tx) =
{
w

E
(tx)
CF

∣∣∣wE
(tx)
CF

= f(E
(tx)
CF )

}
(4.19)

where f(E
(tx)
CF ) is the frequency of edge E

(tx)
CF among G

(1)
CF ,G

(2)
CF , ...,G

(N)
CF . By

following definitions 4.4-4.7 and equations (4.14)-(4.19), the cascading correlations are
captured and emerged into the weighted cascading graph. The transitivity of cascading
correlations is also converted into the connectivity of components. If there exists a
path between two vertices in the weighted cascading graph, it indicates that there is a
manifest or latent correlation between the two components. In Algorithm 4.1, we present
the detailed generation process of the weighted cascading graph.

The cascading characteristics captured in GCF (tx) contain only the system
information under one specific operational state, which fail to capture the overall
cascading features of CPS under different operational states [79], [101]. For example,
the critical components identified under a specific operational state may not apply to
other operational states. Therefore, to capture the overall cascading characteristics, we
define a weighted cascading graph database that contains the cascading characteristics
under different time-varying operational states. As in Figure 4.6, for a certain time
interval [t0, tu], the weighted cascading graph database GD can be represented as:

GD = {GCF (tx) | t0 ≤ tx ≤ tu } (4.20)
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Algorithm 4.1: Generation of weighted cascading graph
Input:

C
(1)
CF , C

(2)
CF , ..., C

(N)
CF at tx

Output:

Optimal candidate edge set: GCF (tx)

Step 1 V
(tx)
CF ← ∅, E(tx)

CF ← ∅
Step 2 For each C

(i)
CF do

Step 3 Convert C(i)
CF into G(i)

CF based on definition 4.4-4.7
Step 4 End For
Step 5 For each G(i)

CF do
Step 6 V

(tx)
CF ← V

(i)
CF ∪ V

(tx)
CF

Step 7 E
(tx)
CF ← E

(i)
CF ∪E

(tx)
CF

Step 8 End For
Step 9 Employ equation (4.19) to calculate w(tx)

Step 10 Return GCF (tx)

Figure 4.6 The Framework of GraphCCI.

In this section, we propose a model for critical components identification, i.e.,
GraphCCI. As represented in Figure 4.6, we first collect the cascading failure data under
different operational state. Then, by adopting the methods proposed in Section 4.3.1, we
map the cascading information into a weighted cascading graph database. Note that to
increase the accuracy of the critical component evaluation results, one should simulate
different operational states as much as possible so that GD can comprehensively cover
the cascading failures information. The next step is to utilize graph data mining
algorithms to identify the critical subgraphs. In this section, we focus on the frequency
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aspect of subgraphs and adopt the TKG algorithm [122] to identify the top-K frequent
subgraphs from GD. Then, by using the proposed NC-Index, we identify the critical
CPS components and enhance the security level of CPS.

4.3.2. GRAPH MINING-BASED CRITICAL COMPONENT EVALUATION
To better reveal the cascading characteristics of CPS, we adopt graph data mining

algorithms to mine the frequent subgraphs in the weighted cascading graph database
constructed in Section 4.3.1. The definitions of graph data mining are given as follows:

Definition 4.8 (Cascading Subgraphs): For a given cascading graph GCF (tx) =〈
V

(tx)
CF ,E

(tx)
CF ,w(tx),ϕ

(tx)
w

〉
, if there exists a graph g

(i)
CF =

〈
v
(i)
CF , e

(i)
CF ,wg

(i),ϕ
(i)
gw

〉
that satisfies v(i)CF ⊆ V

(tx)
CF , e(i)CF ⊆ E

(tx)
CF , wg

(i) ⊆ w(tx), ϕ(i)
gw ⊆ ϕ

(tx)
w , then g(i)CF is a

subgraph of GCF (tx), which is denoted as g(i)CF ⊆ GCF (tx).

Definition 4.9 (Frequent Cascading Subgraphs): For a given weighted cascading
graph database GD and a subgraph g(i)CF ⊆ GCF (tx), the support (occurrence frequency)
of g(i)CF is calculated by (4.21):

sup(g
(i)
CF ) =

∣∣∣{GCF (tx)
∣∣∣ GCF (tx) ∈ GD ∩ g(i)CF ⊆ GCF (tx)

}∣∣∣ (4.21)

If sup(g
(i)
CF ) is greater than a user-defined minimum threshold minsup, then g(i)CF

is considered a frequent cascading subgraphs, and is denoted as g(i)f .

In general, graph data mining algorithms require a user-defined minsup to
determine whether a subgraph is frequent or not. However, how to set an appropriate
minsup is challenging. If the is too high, few or even no subgraphs can be discovered.
If the minsup is too low, plenty of useless subgraphs will be included in the results
and thus decrease the accuracy of identifying critical components for CPS. Therefore,
to address the mentioned issue, we adopted a Top-K structure [123]. For a user-defined
K ≥ 1 and a graph database GD, the Top-K graph mining problem is to find a set
Fg =

{
g
(i)
f | g

(i)
f =

〈
v
(i)
f , e

(i)
f ,wf

(i),ϕ
(i)
fw

〉}
consists of K subgraphs that their support

is greater or equal to that of any other subgraphs not in Fg . There is a fundamental
distinction between the minsup and Top-K approaches. Compared with the Top-K
method, the minsup approach does not prioritize the results according to the frequency
of subgraphs. As a result, modifying the minsup parameter might result in the omission
of important information. However, in Top-K method, adjusting the K value ensures the
consistent retrieval of the top K most frequent subgraphs, irrespective of the adjustments.
That is, the most critical components are always prioritized. Note that K is a parameter
defined by the user, which should be set with consideration to the defensive capabilities
of the CPS operator. This means that the CPS operator must select K by considering
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the number of critical components that can be simultaneously defended or enhanced. In
Section 4.3.3, a thorough analysis of how to determine an appropriate value for K are
presented.

In this section, we adopt the TKG algorithm [122] to mine the Top-K frequent
cascading subgraphs from the constructed database GD. The critical questions that need
to be answered during the graph data mining process are how to effectively traverse all
the possible subgraphs and how to efficiently calculate the support of each subgraph. To
do so, we utilize the rightmost path extension strategy [20] to traverse the target graphs
without missing any nodes and edges. Then, the canonical Depth-First Search (DFS)
code [122] is used to represent the graphs in a unified format so that it can significantly
facilitate the mining process. The reason we employ DFS rather than Breadth-First
Search (BFS) is that BFS is less efficient than DFS when traversing the graph data and
generating subgraph candidates [122]. In [20], the authors thoroughly compared the
DFS and BFS strategies, focusing on two classic algorithms: FSG (which uses a BFS
strategy) [124] and gSpan (which uses a DFS strategy) [20]. The test dataset comprises
340 different graphs, each containing an average of 27 nodes and 28 edges, with the
largest graph containing 214 nodes and 214 edges. The experimental results indicate
that gSpan using DFS consumes significantly less computational memory and achieves a
better performance, i.e., 15 to 100 times, than FSG using BFS. Therefore, we choose
DFS over BFS in our method. Also, this is the reason why we choose the rightmost path
extension strategy because it can avoid using BFS and it allows to explore the search
space while avoiding generating extra candidates.

Figure 4.7 The Rightmost Path Extension Strategy.

Rightmost path extension strategy: This strategy follows the principle of depth-first
search, and it is implemented over a graph using a recursive stack. In this stack, nodes
are used as the basis for an extension, and the currently processed node is called the
rightmost node. In general, there are two types of extensions: forward extensions
and backward extensions, where forward extensions are used to form an edge to visit
new nodes and backward extensions are the opposite. Note that this strategy always
implements backward extensions before forward extensions to avoid missing edges.
Figure 4.7 gives an example of how the rightmost path extension traverses a graph.
Assuming that we start from node V1, one can randomly choose from its neighbors V2

and V3 for the next extension. Taking V2 as an example, V4 is next to be visited. Then,
because V4 does not have other neighbors, the strategy will go back to V2 and visit
V3. At this moment, V3 has two available neighbors, i.e., V1 and V5. Given that the
extension between V3 and V1 is the backward extension, the rightmost path strategy will
visit V1 first and then V5. The eventual visiting order of the edges is E12, E24, E23,
E31 and E35.
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Canonical DFS: the depth-first search of a graph is defined as a sequence of the
extended edges, sorted in the depth-first search order. Continuing the previous example
of Figure 4.7, the sequence of E12, E24, E23, E31 and E35 is the DFS of the graph.
To make sure that each graph and subgraphs in the database can be represented by only
a specific DFS during the mining process, the total order of extended edges is used
to unify the expression of each graph. For the definition of total order of extended
edges, readers are referred to [122] for details. For a graph, the DFS with the smallest
total order of extended edges is the canonical DFS. Algorithm 4.2 presents how TKG
mines the Top-K frequent cascading subgraphs from the constructed database GD,
where RightMostPathExtension(*) and isCanonical(*) represent the strategy and method
implementation for the corresponding targets as discussed. Note that all the components
included in QK are considered as critical CPS components, and they are denoted as
Cc = v

(1)
f ∪ v

(2)
f ... ∪ v(i)f ... ∪ v(K)

f .

Algorithm 4.2: Mining top-k frequent subgraphs
Input:

GD

K
QK : For storing the current top-k frequent subgraphs
QC : For storing candidate subgraphs for next extension

Output:

The set of frequent subgraphs: Gf =
{
g
(i)
f | i = 1, 2, ...

}
Step 1 minsup = 1
Step 2 While QC is not empty do
Step 3 g ← the subgraph with the highest support in QC

Step 4 ϵ← RightMostPathExtension(g)
Step 5 For extension ∈ ϵ do
Step 6 g′ ← g ∪ extension
Step 7 If sup(g′) ≥ minsup and isCanonical(g′)
Step 8 QK ← g′

Step 9 If |QK | > K

Step 10 minsup = min(sup(g
(i)
CF ))

Step 11 End
Step 12 QC ← g′

Step 13 End
Step 14 End
Step 15 End
Step 16 Return QK

In this part, we quantify the correlations between the identified critical components
to further evaluate the criticality of each component from the perspectives of manifest
and latent correlations as defined in Section 4.3.1. For the convenience of calculation,
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we merge all the identified frequent subgraphs in Fg into a Cascading Characteristics
Graph (CC-Graph).

Definition 4.10 (CC-Graph): For a given frequent subgraph set Fg the corresponding
CC-Graph is defined as in (4.22)-(4.25):

GCC = ⟨VCC ,ECC ,wCC ,ϕCC⟩ (4.22)

VCC =

I⋃
i=1

v
(i)
f (4.23)

ECC =

I⋃
i=1

e
(i)
f (4.24)

w(tx) = {wECC
| wECC

= f(ECC)} (4.25)

The definition of CC-Graph is similar to the definition of GCF (tx). Note that
GCC is not necessarily a connected graph. In GCC , all the edges represent the
manifest correlations among the identified critical components. To quantify the manifest
correlations, we define the manifest correlation coefficient as in Definition 4.11.

Definition 4.11 (Manifest Correlation Coefficient): For an edge ep = (vq, vr) ∈ ECC ,
the manifest correlation coefficient is defined as in (4.26)-(4.28):

CCF (tx) =
{
R
(
C

(1)
CF (tx), C

(2)
CF (tx), ..., C

(N)
CF (tx)

)}
(4.26)

CD = {CCF (tx) | t0 ≤ tx ≤ tu } (4.27)

MCep (CD) =
|{CCF (tx) | ∃ vq → vr }|
|{CCF (tx) | vq ∈ CCF (tx)}|

(4.28)

By calculating the manifest correlation for all edges in GCC , the CC-Graph is
updated to GCC =

〈
VCC ,ECC ,wCCMC

T ,ϕCC

〉
, where MC

T are the sets of MCep

for all edges and they share the same mapping relationship ϕCC as for wCC . Then,
to thoroughly investigate the cascading characteristics of CPS, we evaluate the latent
correlations among the identified critical components. Figure 4.8(a) is an example of a
CC-graph, where the blue edges represent the manifest correlations. For the nodes that
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are not directly connected, they may or may not have latent correlations, as demonstrated
in the green edges in Figure 4.8(b). To examine the latent correlation features, we extend
GCC to a full connection graph G

′

CC =
〈
VCC ,E

′

CC ,wCCMC
T ⊕LC

T ,ϕ
′

CC

〉
, where

LC
T =

{
LCeq| eq ∈ E

′

CC

}
, and the latent correlation coefficient of the extended edges

are calculated by (4.29).

(a) (b)

Figure 4.8 (a) Example of CC-Graph. (b) Latent Correlation Calculation.

Definition 4.12 (Latent Correlation Coefficient): For an edge eq = (vq, vr) ∈ E
′

CC ,
the latent correlation coefficient LCeq is defined as in (4.29):

LCeq =
|{GCF (tx) | ∃ vq ⇒ vr }|

|GD|
(4.29)

Based on the extended CC-Graph, we propose the node criticality index to quantify
the importance of each identified critical component. The definition of NC-index is
given as follows.

Definition 4.13 (NC-Index): For a critical component vq ∈ VCC , the NC-index of vq
is denoted as NCq , and is calculated by (4.30):

NCq =
∑
Ey

MCey +
∑
Ey

LCey (4.30)

where Ey = {e1, e2, ...ey, ..., eY } consists of all the edges that are connected to vq
including the extended edges. For each critical component, NCq evaluates its criticality
considering both its manifest and latent correlations. The higher the NCq value, the
more important the component is for enhancing CPS security.

4.3.3. CASE STUDY
In this section, we implement the proposed methodology to the IEEE 39-bus test

system. The modeling details and cyber-physical cascading model can be found in our
previous work [101], which contains 78 nodes in total. In this section, we simulate the
cascading model for 54 weeks and collect 2,483 cascading chains. For each week, we
construct a weighted cascading graph to form the graph database. The simulations are
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conducted in Python running on a laptop, which is equipped with an Intel i7-8750H
CPU @ 2.2 GHz and 16 GB RAM.

From the graph database perspective, Figures 4.9(a) and 4.9(b) present the
frequencies of cyber-physical components in the database. The frequencies reflect the
extent to which the components contribute to the cascading process. At the cyber system
layer, the 5 most critical cyber components are nodes 3, 6, 12, 1, and 19, while at the
physical system layer the 5 most critical components are branches 12, 22, 16, 20, and 7.
To analyse the constructed weighted graph database, we adopt the average node degree
and average node betweenness to describe the graph features of the graph database. The
average node degree defines the average amount of nodes connected to a selected node,
and it reflects the connectivity of the graph. A high average node degree means that the
information or resource can be exchanged in a more efficient manner. On the other hand,
the average node betweenness in a graph reflects the extent to which nodes act as bridges
in the transmission of information or resources. This metric measures the importance
of each node as an intermediary on the shortest paths connecting other pairs of nodes
within the network, on average. The results of the graph feature are given in Figures
4.9(c) and 4.9(d). By analyse the results, one can observe that the weighted cascading
graphs under different operational states exhibit distinctly different characteristics. In
Figure 4.9(c), the average node degree scales from 1.143 (operational state 7) to 6.119
(operational state 19), while in Figure 4.9(d), the highest value (0.045309) is 278 times
bigger than the smallest value (0.000255). Such significant variation further proves our
argument in the Introduction that the experimental results under one single operational
state may not be applicable under different system statuses.

Then, we present the construction results of CC-Graph using the methodology
proposed in Section 4.2.2. During the implementation process of the TKG algorithm,
we investigate the impact of different K values on the number of identified critical
components. In Figure 4.10, as the K value increases, the number of critical components
increases along with it. However, the increasing rate has a visible decrease at K=40. On
the other hand, in Figure 4.11, we present the relationship between K value and the
structural entropy [125] of CC-Graph. The structural entropy Eentropy(GCC) is used to
quantify the information amount contained in each CC-Graph that is constructed based
on a given K value, and it can be calculated by following equation (4.31):

Eentropy(GCC) = −
I∑

i=1

(
Pd(v

(i)
f )× log2Pd(v

(i)
f )

)
(4.31)

where Pd(v
(i)
f ) is the probability distribution of the degree of node v(i)f . When the

structural entropy of a graph is higher, it indicates that the graph is more complex and
contains more information. In our case, it is desirable to analyze the CC-Graph with the
highest structural entropy, because it means that the corresponding CC-Graph contains
the most thorough information of components correlation. In Figure 4.11, one can
observe that the Eentropy(GCC) quickly increases when K is small and is eventually
stabilized. This process indicates that as the K increases, the CC-Graph contains more
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(a)

(b)

(c)
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(d)

Figure 4.9 (a) Frequency of Cyber Nodes in Graph Database (b) Frequency of Physical
Branches in Graph Database. (c) Average Node Degree of Weighted
Cascading Graphs (d) Average Node Betweenness of Weighted Cascading
Graphs

information of component correlation. Also, when the K increases beyond a certain
point, the increase of K will not add new information to the CC-Graph and only causes
small changes to the Eentropy(GCC). Therefore, when K value is too low, some
critical components correlation information may be missed in the CC-Graph. On the
other hand, when K value is too high, it does not add new and useful information to
the CC-Graph while it also increases the cost of defending critical components. Based
on the discussion above, the optimal K value is determined when the corresponding
Eentropy(GCC) reaches the maximum. In Figure 4.11, the optimal K is 40.

Figure 4.12 presents the generated CC-Graph when K=40. In this graph, there are
in total 21 critical cyber nodes and 38 critical physical branches. For each pair of nodes
that are directly connected, apparent manifest correlations exist. For each pair of nodes
that are indirectly connected but have an accessible path, latent correlations exist. Note
that the latent correlations in Figure 4.12 only consider the mined frequent cascading
subgraphs. They frequently appear in the graph database, and it does not prove that
there are no latent correlations between those node pairs having no accessible path. For
example, node 1 and node 24 on the top of the CC-Graph are not directly or indirectly
connected, but there is still a possible latent correlation between them. From a global
perspective, the CC-Graph in Figure 4.11 is not a connected graph, and the node degree
of each node is not high (the maximum value is 3). It indicates that the range of the
frequent cascading patterns is not extensive. However, by observing the marked area,
this is a comparatively large connected graph, which indicates that if any node in this
area fails, it may cause a severe impact on the system operation. In the next part, we
will further quantify the criticality of each node in Figure 4.12 by using the proposed



4

92 4. VULNERABILITY ASSESSMENT FOR CYBER-PHYSICAL POWER SYSTEMS
CONSIDERING TIME-VARYING OPERATIONAL STATES

Figure 4.10 The Number of Identified Critical Components under Different K.

Figure 4.11 The Relationship between K Value and the Structural Entropy of CC-Graph.

NC-Index.

In Figure 4.13 and Table 4.4, we present the calculation results of all the indices we
proposed in Section 4.2.2. In Figure 4.13(a), we only consider the manifest correlation.
The ranking results of the manifest correlation coefficients are decided by two factors,
i.e., the evident support in the historical data and the node degree of the nodes in the
CC-Graph. Figure 4.13(a) also proves this point and the nodes with a higher degree are
comparatively more critical than the other low-degree nodes. Also, the results indicate
that the most high-ranked components are in the largest subgraph. This indicates that
these nodes have tighter connections with the other nodes and a wider range to propagate
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Figure 4.12 Constructed CC-Graph when K=40.

(a)

the failures. The detailed ranking information is given in Table 4.4. In Figure 4.13(b),
we jointly consider the manifest correlations and latent correlations. Compared with
Figure 4.13(a), the most critical components are still mainly distributed in the largest
subgraph. However, part of the critical components from the largest subgraph rank
lower, while some components from smaller subgraphs rank higher. This is because the
latent correlation considers the global relationships among components, and it quantifies
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(b)

Figure 4.13 (a) CC-Graph with Only Manifest Correlation Coefficients (b) CC-Graph
with NC-Index

the risk of indirectly triggering a cascading failure.

Table 4.4: Ranking of Critical Components Considering Different Indices

Ranking Considering only manifest
correlation coefficient Considering NC-Index

1 8 (physical) 12 (physical)
2 12 (physical) 8 (physical)
3 6 (physical) 25 (physical)
4 20 (physical) 1 (physical)
5 103 (cyber) 105 (cyber)
6 15 (physical) 9 (physical)
7 125 (cyber) 15 (physical)
8 102 (cyber) 111 (cyber)
9 9 (physical) 5 (physical)
10 19 (physical) 20 (physical)

In this part, we compare the proposed method with the existing literature to prove
its effectiveness. We compare the performance of methods from two aspects: load loss
and network efficiency. For the load loss, we implement each method to identify the
top-5 critical components for the CPS of IEEE 39-bus system as explained in [101].
Then, we traverse the possible combination of those components and disconnect them
to observe the load loss after the cascading failures. For each method, we record
the highest load loss. Similarly, we use the same approach to calculate the network
efficiency of each remaining network after the cascading failures. It is worth mentioning
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that unlike load loss, the network efficiency only indicates the topological features of the
network, and it quantifies the network connectivity.

We compare the proposed method with reference [101] and [126], where [101]
considered the cascading failure data and identified the critical components based on
the proposed index while [126] evaluated the nodes importance for power system from
the perspective of centrality measures. In Figure 4.14, we present the comparison
results. From the perspective of load loss, one can observe that the removal of the
critical components indentified by the proposed method can cause a much higher load
loss, while there is no load loss in the results of [126]. The reason behind the results
is that reference [126] neglects the node heterogeneity of CPS and only consider the
topological aspects of networks. In real industrial scenarios, we place greater emphasis
on factors that can directly lead to security issues and financial losses, such as load loss.
Besides, by analyzing the network efficiency results, one can observe that there is a clear
decrease in all three methods compared with the initial network. However, by combining
the results of load loss and network efficiency, the critical components identified by our
method can cause more catastrophic cascading failures by inflicting a comparable degree
of damage on the network. The comparison results effectively confirm the precision of
our method in identifying critical components compared with the existing literature.

Figure 4.14 The Comparison Results.

4.3.4. SYSTEM BEHAVIOR COMPARISONS BETWEEN GENERATED
DIGITAL SIBLING AND THE REAL SYSTEM
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Figure 4.15 System Behavior Comparisons between Digital Siblings and Real Systems

The ultimate goal of a digital sibling is to enable researchers to develop practical
algorithms and methodologies for CPS while ensuring the confidentiality of real models
and data. In this section, we apply the proposed GraphCCI on both the generated digital
sibling, as described in Section 3.3, and its corresponding real system, i.e., the IEEE
39-bus system. As shown in Figure 4.15, we compare the vulnerability assessment results
of these two systems to prove that the results are statistically similar. This similarity
allows researchers to conduct practical, realistic research while the confidentiality of the
real systems are well preserved.

Figure 4.16 Manifest Correlation of Cyber-Physical Components in CC-Graph (IEEE
39-Bus System)
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Figure 4.17 Manifest Correlation of Cyber-Physical Components in CC-Graph (Digital
Sibling)

Figure 4.18 Vulnerability Characteristics Comparison

In Figure 4.16 and Figure 4.17, the manifest correlations [127] of CPS components
are visualized. From the results of the two diagrams, the distribution of the manifest
correlation in both exhibits similar characteristics, indicating that only a small number of
key manifest correlation in the system have extremely high probability weights. That is,
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there is a limited number of critical components in the system that have high probability
to propagate the cascading failures. Moreover, in Figure 4.18, the vulnerability
parameters, i.e., NC-Index [127], of the top 50 critical CPS components identified by
GraphCCI are compared. On average, the difference in vulnerability assessment results
between the synthetic CPS (digital sibling) and IEEE 39-bus system is 8.12%. More
specifically, in the highest ranking critical components, the difference of NC-Index is
even lower than the average, indicating the similar vulnerability characteristics of the
synthetic CPS and real CPS. Overall, it is demonstrated that to test the proposed methods
and investigate the systematic characteristics of CPS, one can implement the proposed
methods on the synthetic networks generated by SibGen, thereby fully preserving the
confidentiality of real system models and data.

4.4. CONCLUSION
This chapter investigates the vulnerability assessment methods for CPS. It identifies

the research gap that the existing work only evaluates the CPS at a single time instant
while fails to capture the CPS vulnerability characteristics under time-varying operational
states. Furthermore, to thoroughly investigate the vulnerability features of CPS, we
propose the definition of manifest and latent correlations of CPS components.

From the perspective of manifest correlations, we model the cascading failures
considering the interaction of cyber and physical layers. By combining cascading
failure chains of all-time instants, a cascading failure chain database is generated. This
captures the intricate manifest relationships among components and reveals the fault
propagation mechanism of CPS under different operating conditions. The sequential data
mining algorithms are adopted to identify the vulnerable sequences. The total sequential
vulnerability metric is proposed to quantify the vulnerabilities of CPS components. The
simulation results show that there is only a limited number of critical CPS components.
The resilience of the cyber-physical system can be greatly improved if these critical
components are reinforced and cyber secured.

From the perspective of latent correlations, we propose a graph data mining-based
critical components identification model named GraphCCI, which jointly evaluates the
criticality of CPS components from the perspectives of manifest and latent correlations.
First, we abstract the cascading failure data under different operational states into
a weighted cascading graph database which captures both the latent and manifest
correlations of CPS components. Then, the TKG algorithm is adopted to identify
the frequent subgraphs in the constructed graph database. Meanwhile, the definition
of CC-Graph is proposed to model the overall cascading features based on the graph
mining results. Finally, the NC-Index is proposed to evaluate the criticality of each
CPS component. Our case study reveals that the cyber-physical system shows different
cascading features under different system conditions. Verifications on the IEEE 39-bus
test system demonstrate the effectiveness of our method. The identification results can
provide an important reference to enhance CPS security and prevent cascading failures
and even a blackout.
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5.1. CONCLUSIONS

T his dissertation focuses on the synthetic network generation and vulnerability
assessment of CPS. With the rapid power grid digitization, substantial research is

essential to address its emerging CPS challenges. This thesis responds to the growing
need for reliable CPS test systems, as real CPS models and data are highly confidential
due to national security concerns. The synthetic networks generated in this thesis
allow researchers to test newly developed methods and obtain feedback comparable to
that from real CPS, facilitating innovation without compromising security. First, this
thesis highlights methods for generating and validating synthetic networks under varying
levels of data completeness and availability while ensuring the confidentiality of the real
CPS data and models. Then, it also evaluates the vulnerability characteristics of CPS
under time-varying operational states and conducts in-depth analysis on the correlations
between CPS components. Furthermore, the proposed vulnerability assessment method is
implemented on both the generated synthetic CPS and the real system. The comparison
results prove that the synthetic CPS can be utilized as alternative test system and exhibits
similar characteristics as the real network. The main contributions of this dissertation are
the development of three generative models tailored to different implementation scenarios
and two methods for identifying critical components using data-driven techniques. The
proposed algorithms and models are rigorously validated through extensive simulation
experiments. Overall, this dissertation offers realistic test systems for CPS researchers,
thoroughly analyses and quantifies the correlations between cyber-physical components,
and reveals CPS vulnerability characteristics under varying operational states. The
detailed research outputs are listed below:

Implementation of a large-scale synthetic topology generation method for
continental Europe (Q1):

Chapter 2 addresses the challenge of incomplete CPS data, where only power
system data is available. To overcome this, a two-stage generative model is proposed,
enabling the creation of realistic, large-scale synthetic CPS based on existing power
grids. The generated synthetic networks are thoroughly validated using complex network
parameters, which is a powerful tool to quantitatively compare the difference between
the synthetic networks and the real networks. It can comprehensively capture the
characteristics of a cyber-physical power system from both topological and operational
perspectives. Furthermore, the proposed method addresses the connectivity issues
commonly found in existing literature. This work marks a pioneering step in synthetic
CPS modelling, establishing a robust foundation for future research aimed at uncovering
critical characteristics, patterns, and mechanisms inherent to cyber-physical systems.

Scalable generative model for generating synthetic CPS with realistic network
features (Q2):

The first half of Chapter 3 assumes the availability of both cyber and physical
system data and introduces Graph-CPS, a scalable generative model designed to generate
synthetic CPS topologies. This method accurately reflects realistic network feature
distributions while ensuring the confidentiality of the real models and data. Graph-CPS
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is capable of learning and reproducing various complex network parameters, capturing
the distributions of different network features from input networks. Validation results
demonstrate that Graph-CPS can accurately capture the characteristics of input networks,
not only across different network types but also across varying network sizes. The
guiding philosophy of this approach lies in its ability to generalize across diverse network
configurations, ensuring that synthetic topologies retain the inherent complexity and
scalability of real CPS networks. This method paves the way for a deeper understanding
of CPS behaviour, offering valuable insights into CPS structures and network parameter
configurations.

Digital sibling generator for CPS (Q2)

Chapter 3 focuses on generating both topological and operational models for CPS,
assuming that complete CPS data is available. To capture complex system behaviors
from high-dimensional CPS data, a hybrid generator, SibGen, is introduced to create
a digital sibling of the real CPS. A key distinction is made between the concepts
of digital twins and digital siblings, highlighting their fundamental differences. The
core idea behind digital siblings lies in balancing the fidelity of synthetic models with
the need for data confidentiality. SibGen not only learns the topological features of
CPS but also effectively captures the operational characteristics. Besides, SibGen is
capable of delivering alternative synthetic test systems. The digital siblings replicate
the characteristics of the real systems without disclosing any real information. This
dual capability allows research conducted on the generated digital sibling to closely
mirror real-world scenarios, making the research findings more practical and convincing.
By enabling studies that are more aligned with actual conditions, SibGen empowers
further research in CPS, laying a solid foundation for the rapid development of CPS
technologies.

CPS vulnerability assessment under time-varying operational states (Q3):

Chapter 4 investigates the vulnerability assessment methods for CPS. It identifies
the research gap that the existing work only evaluates the CPS at a single time instant
while fails to capture the CPS vulnerability characteristics under time-varying operational
states. The goal of chapter 4 is to shift from static vulnerability assessments to dynamic,
data-driven approaches that better capture the intricate interdependencies and evolving
risks within CPS. To provide a more comprehensive analysis to CPS vulnerability, the
concepts of manifest and latent correlations among CPS components are proposed:

Manifest correlations represent the observable relationships between CPS compo-
nents, such as those evident in cascading events. By combining cascading failure
chains over multiple time instants, a cascading failure chain database is constructed,
capturing the complex interdependencies among components. Sequential data mining
algorithms are then applied to identify vulnerable sequences within these chains, and
a total sequential vulnerability metric is introduced to quantify the vulnerabilities of
individual CPS components. Simulation results reveal that only a small subset of
components is critical, and reinforcing these key components can significantly improve
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system resilience.

Latent correlations describe the statistically inferred relationships between CPS
components, which may not be directly observable but are essential for understanding
system behavior. Building on the concepts of both manifest and latent correlations, a
graph data mining-based model, GraphCCI, is introduced to identify critical components
by evaluating both types of correlations. The case study demonstrates that CPS
exhibits distinct cascading behaviors under different operational conditions. Validations
conducted on the IEEE 39-bus test system confirm the effectiveness of this method.
The identification results offer valuable insights for enhancing CPS security, preventing
cascading failures, and mitigating the risk of blackouts.

5.2. FUTURE WORK
Based on the research output of the thesis and the discussion in Section 6.1, the

potential research topics of synthetic CPS and CPS vulnerability assessment are listed as
follows:

Data confidentiality: In Chapter 3, we discussed the data confidentiality issues
when generating synthetic networks based on the real CPS data. Essentially, this is a
trade-off problem between the data confidentiality and the similarity of synthetic and real
systems. Therefore, how to control the difference between the synthetic and real systems
is a promising research topic. Ideally, it is desirable to minimize the differences between
synthetic networks and real systems, especially the overall system behaviors. However,
higher similarity means higher risk to expose the real CPS data. Although the topology
and the parameter configuration of synthetic networks are different from the real ones, it
is still possible for the adversaries to initiate catastrophic attacks based on the overall
system characteristics. For example, if the adversaries learn that the real system is a
mesh network, then they only need to initiate multiple random attacks to achieve high
attack impact. Because the mesh network is resilient to attacks with specific target while
it is vulnerable to multiple random attacks due to its damage to the network connectivity.
Therefore, we need to find a balance point where the real CPS data is well secured and
the synthetic network can still perform as an effective test system.

More complexity models in synthetic networks: In Chapter 2 and 3, we
have successfully generated the power flow and information flow models for CPS.
However, to achieve more accurate simulation results, more complexity models are
required. For example, the power dynamic models, the communication protocols, etc.
On the other hand, more complexity models means higher dimensions of the input
data, which significantly increases the difficulties of generating the realistic synthetic
systems. Currently, the GNN-based generative models are capable of generating similar
parameter distributions. However, the power systems and the communication networks
are sophisticated manufactured systems, and small deviations in the parameter settings
can cause different simulation results. For example, small changes in the load parameters
can result into a different set of power flow solutions. Under such considerations, if more



5.2. FUTURE WORK

5

103

complexity models are included, it is challenging to learn the accurate characteristics of
the high-dimensional real data while maintaining the similar operational behaviors.

Evolution mechanism of CPS vulnerability assessment: In Chapter 4, we clarify
that the CPS vulnerability characteristics changes under different system operating states,
based on which we identify the critical components for CPS. However, the vulnerability
evolution mechanism of the system is still unclear and needs to be further explored.
How do the vulnerability characteristics of a system change over time? Additionally, in
case of contingencies, how will these vulnerability characteristics evolve? In chapter
4, we managed to construct the weighted vulnerability graph for each time instant.
Therefore, it is desirable to analyze the connections between these time-series graph
data and further explore the vulnerability features of CPS. Graph data mining algorithms
are promising to identify the time-related patterns, e.g., periodical patterns, sequential
patterns, etc. Based on the identified time-related patterns, one can analyze the evolution
process of the vulnerability features and further reveal the systematic mechanisms of
CPS.
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[46] P. Erdős and A. Rényi. “On Random Graphs I”. In: Publicationes Mathematicae
Debrecen 6 (1959), pp. 290–297.

[47] S. Boccaletti and et al. “Complex Networks: Structure and Dynamics”. In:
Physics Reports 424.4 (2006), pp. 175–308.

[48] M. A. Klopotek, S. T. Wierzchon, and K. Trojanowski. “Intelligent Information
Processing and Web Mining”. In: Proceedings of the International IIS: IIPWM
06 Conference. Ustron, 2006.

[49] F. Gutierrez and et al. “Vulnerability Analysis of Power Grids Using Modified
Centrality Measures”. In: Discrete Dynamics in Nature and Society 2013 (2013).

[50] E. Bompard, D. Wu, and F. Xue. “Structural Vulnerability of Power Systems: A
Topological Approach”. In: Electric Power Systems Research 81.7 (July 2011),
pp. 1334–1340.

https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509


109

[51] C. Li and et al. “Method for Evaluating the Importance of Power Grid
Nodes Based on PageRank Algorithm”. In: IET Generation, Transmission &
Distribution 8.11 (Nov. 2014), pp. 1843–1847.

[52] Y. Liu, A. Stefanov, and P. Palensky. “Generating Large-Scale Synthetic
Communication Topologies for Cyber-Physical Power Systems”. In: IEEE
Transactions on Industrial Informatics (2024). Early Access. DOI: 10.1109/
TII.2024.3438232.

[53] A. B. Birchfield, T. Xu, K. M. Gegner, K. S. Shetye, and T. J. Overbye. “Grid
Structural Characteristics as Validation Criteria for Synthetic Networks”. In:
IEEE Transactions on Power Systems 32.4 (July 2017), pp. 3258–3265.

[54] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. “Geometric
Deep Learning: Going beyond Euclidean data”. In: IEEE Signal Processing
Magazine 34.4 (July 2017), pp. 18–42. DOI: 10.1109/MSP.2017.2693418.

[55] M. Gori, G. Monfardini, and F. Scarselli. “A New Model for Learning in Graph
Domains”. In: Proceedings of the 2005 IEEE International Joint Conference
on Neural Networks. Vol. 2. Montreal, QC, Canada, 2005, pp. 729–734. DOI:
10.1109/IJCNN.2005.1555942.

[56] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. “The
Graph Neural Network Model”. In: IEEE Transactions on Neural Networks 20.1
(Jan. 2009), pp. 61–80. DOI: 10.1109/TNN.2008.2005605.

[57] K. Ishaque, Z. Salam, M. Amjad, and S. Mekhilef. “An Improved Particle
Swarm Optimization (PSO)–Based MPPT for PV With Reduced Steady-State
Oscillation”. In: IEEE Transactions on Power Electronics 27.8 (Aug. 2012),
pp. 3627–3638. DOI: 10.1109/TPEL.2012.2185713.

[58] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein. “CayleyNets: Graph
Convolutional Neural Networks With Complex Rational Spectral Filters”. In:
IEEE Transactions on Signal Processing 67.1 (Jan. 2019), pp. 97–109. DOI:
10.1109/TSP.2018.2879624.

[59] S. Mihai, M. Yaqoob, D. V. Hung, et al. “Digital Twins: A Survey on
Enabling Technologies, Challenges, Trends and Future Prospects”. In: IEEE
Communications Surveys Tutorials 24.4 (Sept. 2022), pp. 2255–2291.

[60] J. Melton and S. Krishnan. “muxGNN: Multiplex Graph Neural Network for
Heterogeneous Graphs”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 45.9 (Sept. 2023), pp. 11067–11078.

[61] Z. Zhao, H. Zhou, L. Qi, L. Chang, and M. Zhou. “Inductive Representation
Learning via CNN for Partially-Unseen Attributed Networks”. In: IEEE
Transactions on Network Science and Engineering 8.1 (Jan. 2021), pp. 695–706.
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