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SUMMARY

This thesis studies the field of operator algebras, non-commutative functional analysis
and rigidity theory. We study structural properties of C*-algebras and von Neumann
algebras, with a focus on the latter. These mathematical structures were introduced
by von Neumann in [Neu30] motivated by the need for a non-commutative framework
to describe quantum systems. The theory was further developed by Murray and von
Neumann in several papers: [MN36], [MN37], [Neu39], [Neu40], [MN43], [Neu43] and
[Neu49]. Nowadays, the study of these operator algebras forms its own field in mathe-
matics. Over the years effort has been made in trying to classify von Neumann algebras.
Many structural properties of von Neumann algebras have been introduced and stud-
ied. In this thesis we study such properties including: absence of Cartan subalgebras,
primeness, the (weak-∗) CCAP, the Akemann-Ostrand property and strong solidity. Fur-
thermore we study operator estimates for commutators.

For a discrete group G we study the group von Neumann algebra L (G). The aim is to
establish connections between the group G and its von Neumann algebra L (G). In par-
ticular, we study rigidity theory, which concerns the question what information of G can
be retrieved from L (G). We are particularly interested in Coxeter groups. Such a group
W can be seen as an abstract reflection group. For a Coxeter group W we will not only
study the group von Neumann algebra L (W ), but also its q-deformations: Nq(W ) called
Hecke-von Neumann algebras. The focus is on Coxeter groups that are right-angled.
These Coxeter groups naturally decompose as graph product W = ∗v,ΓWv of the groups
Wv = Z/2Z. The construction of graph products of groups was introduced by Green in
[Gre90] as a generalization of both direct sums G1 ⊕G2 and free products G1 ∗G2. Later
graph products have also been defined in the setting of C*-algebras and von Neumann
algebras in [Mło04] and [CF17]. In this setting graph products generalize both tensor
products and free products. This notion of graph products interacts nicely with the no-
tion for groups since L (∗v,ΓGv ) =∗v,ΓL (Gv ). In the case of right-angled Coxeter groups,
a similar decomposition holds true for Hecke-von Neumann algebras.

This thesis consists of 7 chapters, including the introduction (Chapter 1) and the pre-
liminaries (Chapter 2). In Chapter 3 we perform calculations in graph products that
we need in later chapters. In Chapter 4 the study is focused on (right-angled) Coxeter
groups, their group von Neumann algebra L (W ) and Hecke-von Neumann algebras
Nq(W ). For these von Neumann algebras we study when they are strongly solid and
when they posses the Akemann-Ostrand property (AO)+. Strong solidity is a strength-
ened version of Ozawa’s property solidity [Oza04] and can be seen as a strong indecom-
posability property. Indeed, this property implies that the von Neumann algebra does
not decompose as tensor product M = M1⊗M2 (primeness) nor as a group measure
space M = L∞(0,1)⋊G (absence of Cartan). Using quantum Markov semigroups and the

xi



xii SUMMARY

non-commutative Riesz transform we prove new strong solidity results for right-angled
Hecke-algebras.

In Chapter 5 we study strong solidity for general graph products MΓ = ∗v,Γ(Mv ,τv )
of von Neumann algebras. We use Popa’s intertwining-by-bimodule theory to obtain a
full characterization of strong solidity for graph products. In particular, we complete the
characterization for right-angled Hecke-algebra. For right-angled Coxeter groups this
provides a simple characterization of when the group von Neumann algebra is strongly
solid. We also study other aspects of graph products. Indeed, we give sufficient con-
ditions for the (reduced) graph product to be nuclear. Moreover we fully characterize
primeness and free indecomposability for graph products. We also study rigidity theory
for graph products. The aim is to retrieve the graph Γ and the vertex von Neumann al-
gebras (Mv )v∈Γ from the von Neumann algebra MΓ. We introduce in this thesis a class
CVertex of von Neumann algebras and a class of graphs that we call rigid and show that
from MΓ =∗v,Γ(Mv ,τv ) we can retrieve the rigid graph Γ and the vertex von Neumann al-
gebras Mv ∈CVertex up to amplification. In particular, we obtain unique prime factoriza-
tion and unique free product decompositions for new classes of von Neumann algebras.
We also show that, without imposing strong conditions on the vertex von Neumann al-
gebras Mv , it is possible to retrieve the radius of the graph Γ, up to a constant, from the
graph product MΓ.

In Chapter 6 we study approximation properties for graph products. For a group
G , approximation properties assert that we can approximate the constant function 1G

pointwise by nice functions mk : G → C. Likewise, for an operator algebra M , approx-
imation properties assert that we can approximate the identity map IdM pointwise by
nice maps θk : M → M . For reduced graph products of C*-algebras we study the com-
pletely contractive approximation property (CCAP). Similar, for graph products of von
Neumann algebras we study the weak-∗ CCAP. These approximation properties are the
operator algebraic counterparts of weak amenability with constant 1. We study stability
of these properties under graph products and extend results from [Rec17] and [RX06].

In Chapter 7 we deviate from the main topic of this thesis and study commutators
estimates. We extend the operator estimates from [BS12b], [BS12a] and [BHS23] for self-
adjoint elements to normal elements in factors. More precisely, for a normal element a
in a factor M we show the existence of a unitary u ∈ M that satisfies a nice operator esti-
mate for the commutator [a,u] := au−ua. In particular, for finite factors this provides a
lower estimate on the L1-norm of the form

p
3min

z∈C
∥a − z1M∥L1(M ,τ) ≤ ∥[a,u]∥L1(M ,τ).

We then use this result to obtain sharp estimates on the norm ∥δa∥M→L1(M ,τ) of the
derivation δa : M → L1(M ,τ) given by δa(x) = [a, x].



1
INTRODUCTION

The main topics of this thesis include: von Neumann algebras, Coxeter groups, graph
products, approximation properties, rigidity theory and commutator estimates. We dis-
cuss these topics in Sections 1.1 to 1.5 at the level of a general mathematical audience.
In Section 1.6, we present the main results obtained in this thesis and give an overview
of the content of the individual chapters.

1.1. VON NEUMANN ALGEBRAS
In 1929, John von Neumann initiated the study of rings of operators, [Neu30]. These
rings of operators, now known as von Neumann algebras, are of main interest in this the-
sis. By definition a von Neumann algebra M is a certain nice subalgebra of the space of
bounded operators B(H ) on a complex Hilbert space H . While the main focus is on von
Neumann algebras, we also study the related notion of C*-algebras. These operator alge-
bras posses rich algebraic and topological structures. Indeed, for a,b ∈ M and c ∈C there
are the algebraic operations of scalar multiplication ca, addition a+b, multiplication ab,
and the operation of taking adjoints a∗. Furthermore, these algebras are equipped with
several topologies, including: the norm topology, the strong operator topology (SOT),
the weak operator topology (WOT), the σ-weak topology and many more. What makes
C*-algebras and von Neumann algebras most interesting is their non-commutative na-
ture. This is to say that ab is generally unequal to ba for a,b ∈ M . Such non-commutative
behaviour naturally occurs in quantum physics, where the order in which one performs
measurements is of interest. As an example, the operators x and p corresponding to
measuring position and momentum respectively, satisfy the commutation relation

xp −px =−iħ.

This accounts for the Heisenberg uncertainty that one can not know both the exact po-
sition and exact velocity of a particle at the same time. The motivation to introduce
C*-algebras/von Neumann algebras also came from the need for a non-commutative
mathematical framework to describe quantum systems. However, the theory has slightly

1



2 1. INTRODUCTION

deviated from the physical theory and in this thesis we will purely study the mathemat-
ical structures of C*-algebras and von Neumann algebras. Although all von Neumann
algebras are in fact C*-algebras, the two structures are studied from different angles. The
theory of C*-algebras is often thought of as non-commutative topology, while the study of
von Neumann algebras is thought of as non-commutative measure theory. This accounts
for the fact that every commutative C*-algebra can be described as C0(X ) for some topo-
logical space X , while every commutative von Neumann algebra is of the form L∞(Ω,µ)
for some measure space (Ω,µ). Of interest are those von Neumann algebras that are very
far away from the commutative setting (factors) and the non-commutative analogue of
integrals (traces).

FACTORS AND TRACIAL VON NEUMANN ALGEBRAS
The most important von Neumann algebras are those that are factors. Factors can be
thought of as building blocks for general von Neumann algebras since any von Neumann
algebra M decomposes as a direct sum or direct integral of factors, see [Neu49]. Murray
and von Neumann [MN36] and Connes [Con73] classified factors precisely into one of
the following types:

In (n ∈N), I∞, II1, II∞, IIIλ (0 ≤λ≤ 1). (1.1)

The simplest examples of factors are the spaces Matn(C) of n ×n matrices. These von
Neumann algebras form precisely the factors of type In for n ≥ 1. Of interest for these
spaces is the matrix trace Trn : Matn(C) → C, which for a matrix A is defined as the
sum of its diagonal entries. Recall for matrices A,B that Trn(AB) = Trn(B A) and that
Trn(A∗A) ≥ 0, with strict inequality when A is non-zero. Interestingly, for projections
P ∈ Matn(C) the trace satisfies Trn(P ) = dimRange(P ), and thus Trn can be thought of as
measuring the dimension.

In this thesis we mostly encounter von Neumann algebras M of type II1, which con-
trary to matrix algebras are of infinite dimension. For these algebras there exist a linear
map τ : M →Cwhich for a,b ∈ M satisfies

1. τ(1M ) = 1

2. τ(ab) = τ(ba)

3. τ(a∗a) ≥ 0 with strict inequality when a is non-zero.

The map τ, called a trace, is analogous to the normalized matrix trace trn := 1
n Trn but

with one important difference. Namely, the trace trn(P ) of a projection P ∈ Matn(C) lies
in the discrete set {0, 1

n , . . . , n−1
n ,1}, while the trace τ(p) of a projection p ∈ M can be any

value in the interval [0,1]. This means that von Neumann algebras of type II1 have a sort
of continuous dimension function which makes them interesting to study.

We convey that, while for n ≥ 1 there is only one factor of type In , there are many
different (i.e. non-isomorphic) factors of type II1. Indeed, already Murray and von Neu-
mann distinguished two different II1-factors [MN43], and later Mcduff showed the ex-
istence of uncountably many different II1-factors, [McD69a; McD69b]. The question
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remains how to classify all II1-factors. A full classification is far beyond reach. How-
ever, over the years many properties for von Neumann algebras have been introduced
and studied. A recurring theme in this thesis is that we want to characterize what von
Neumann algebras posses a given property. The properties we study, and which will
be discussed later in this introduction, include: the weak-∗ CCAP, primeness, absence
of Cartan subalgebra, the Akemann-Ostrand property (AO), solidity and strong solid-
ity. Furthermore, for a von Neumann algebra M we study unique prime factorizations,
unique free product decompositions and unique graph product decompositions inside
a given class C . We mostly study these properties and decompositions for von Neumann
algebras arising from graph products or arising from discrete groups.

THE GROUP VON NEUMANN ALGEBRA
There are different ways for constructing examples of von Neumann algebras. One that
dates back to Murray and von Neumann is the construction of the group von Neumann
algebra [MN36]. The group von Neumann algebra L (G) can be constructed for a lo-
cally compact group G . Examples of locally compact groups include the integers Z, the
torus T = {z ∈ C : |z| = 1}, the real numbers R and the general linear group GLn(R),
each equipped with their natural topology. In this thesis we only encounter discrete
groups, i.e. groups equipped with the discrete topology. For a discrete group G the group
von Neumann algebra is constructed as follows. For s ∈ G define the linear operator
λs : ℓ2(G) → ℓ2(G) by

(λs g )(t ) = g (s−1t ).

The group von Neumann algebra L (G) ⊆ B(ℓ2(G)) is defined as the closure in the
strong operator topology of the linear span of the operators {λg }g∈G , i.e.

L (G) := Span{λs : s ∈G}
SOT

.

We note that, in a similar fashion, the reduced group C*-algebra C∗
r (G) ⊆ B(ℓ2(G)) is de-

fined as the norm-closure of the linear span of {λg }g∈G . We also note that for count-
able discrete groups G the group von Neumann algebra L (G) in fact possesses a normal
faithful trace τ given by

τ(x) = 〈xδe ,δe〉 (1.2)

where δe denotes the dirac delta function corresponding to the unit element e of G .

It was shown by Connes in [Con75] that not every von Neumann algebras can be
constructed from a group. However, group von Neumann algebras do provide many
interesting examples. Moreover, the construction connects the study of von Neumann
algebras to the study of groups. One of the most fundamental questions in the theory go-
ing back to von Neumann is to study relations between the group G and the group von
Neumann algebra L (G). Some properties of the group are known to carry over to the
von Neumann algebra. For example a group G is finite if and only if the von Neumann
algebra L (G) is finite-dimensional. Another example is that a group G is abelian if and
only if the von Neumann algebra L (G) is commutative. Yet another example is that G is
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infinite-conjugacy class (icc) if and only if L (G) is a factor of type II1. Some other group
properties that have a von Neumann algebraic counterpart include: amenability, weak
amenability, the Haagerup property and property (T). One might hope that all informa-
tion of the group G can be retrieved from its von Neumann algebra. Generally, this is
not the case. In [Con76] Connes showed that the group von Neumann algebras L (G) of
amenable, infinite-conjugacy class, groups are all isomorphic. Thus information is lost.
The question what information of the group G can be retrieved from its von Neumann
algebra is part of rigidity theory and is one of the main interests in this thesis.

Rigidity theory in more generality concerns the question what properties of an object
can be retrieved when passing to another object. Several rigidity results were obtained by
Connes in [Con80] and [CJ85] for icc property (T) groups. Moreover, Connes conjectured
in [Con82] that these groups satisfy a very strong rigidity property called W∗-superrigid.
This property asserts for a discrete group G that if L (G) ≃ L (H) for any other discrete
group H , then G ≃ H . Some groups, such as the lamplighter group L = (Z/2Z) ≀Z, have
been shown to satisfy this property, see [IPV13; CDD23b]. Moreover, [Chi+23] obtained
the first examples of icc property (T) groups that are W∗-superrigid. However, Connes
rigidity conjecture still remains open.

In this thesis we study Coxeter groups. These groups are in some sense opposite
to property (T) groups and are often not W∗-supperrigid. However, we can still obtain
rigidity results for these groups. Moreover, we also study rigidity theory in a broader
sense for graph products.

1.2. COXETER GROUPS AND GRAPH PRODUCTS
The study of group forms a vast field in mathematics. This originated from the study of
solutions of polynomial equations and was formalized by Galois and Cauchy, see [Kle86].
In this thesis we focus on a specific class of (discrete) groups called Coxeter groups. For
such groups W we study their von Neumann algebra L (W ), and more generally their
Hecke-von Neumann algebra Nq(W ). We mostly encounter a specific type of Coxeter
groups called right-angled Coxeter groups. Such groups W naturally decompose as graph
products, as was defined by Green in [Gre90]. In this thesis we also study more general
graph products in the setting of C*-algebras and von Neumann algebras as was intro-
duced in [Mło04] and [CF17].

COXETER GROUPS

In geometry, a finite reflection group is a finite group generated by orthogonal linear
reflections on Rd . Examples of such groups include the dihedral groups Dn of symme-
tries of the regular polygon with n vertices. Finite reflection groups are important for
the classification of Lie groups and Lie algebras and for the classification of regular poly-
topes (see discussion in [Dav08, Appendix B]). We note that finite reflection groups act
isometrically on the unit sphere Sd−1. In a similar fashion, one can study groups gen-
erated by reflections in Euclidean space Ed and in hyperbolic space Hd . As an example,
the cover of this thesis depicts a pattern of turtles in hyperbolic space whose symmetry
group is an infinite group generated by reflections. The study of reflection groups has
led to a classification of regular tessalisations ofSd , Ed andHd , see [Dav08, Appendix B].
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In this thesis we study Coxeter groups which can be seen as abstract reflection groups.
These groups were formally introduced by Tits [Tit13] as a group W universally generated
by a set S subject to relations of the form

(st )ms,t = e for s, t ∈ S (1.3)

where e denotes the group unit, and where ms,t ∈ N∪ {∞} satisfies ms,t = 1 whenever
s = t and ms,t = mt ,s ≥ 2 whenever s ̸= t . Here, ms,t =∞ means that no relation of the
form (st )k = e is imposed for any k ≥ 1. Such a group W is denoted by W = 〈S|M〉 where
M denotes the Coxeter matrix M = (ms,t )s,t∈S . However, we note that a Coxeter group
W may be represented by different pairs S, M , for example through diagram twisting
[Bra+02]. The pair (W ,S) is called a Coxeter system, to emphasise that we fix a generating
set S. In the study of Coxeter groups it is often sufficient to study Coxeter systems that
are irreducible. Indeed, any Coxeter group can be written as a direct sum of irreducible
ones. All finite irreducible Coxeter systems have been classified by Coxeter in [Cox35]
in terms of the Coxeter Matrix (ms,t )s,t∈S . Furthermore, [Cox34] and [Cox35] show that
finite Coxeter groups are precisely the finite reflection groups.

To a Coxeter system (W ,S) one can associate the Cayley graph, which gives rise to the
word length function | · |S : W → Z≥0. Coxeter groups and other discrete groups can be
studied using their Cayley graphs and this has led to interesting notions such as that of
hyperbolic groups. For hyperbolic groups one can construct the Gromov boundary of its
Cayley graph, see [Gro87]. In this thesis we encounter the notion of smallness at infin-
ity (see [BO08]) which requires such boundary to be well-behaved algebraically (Theo-
rem A).

In this thesis we mostly study right-angled Coxeter groups, which are Coxeter groups
of the form W = 〈S|M〉 with ms,t ∈ {1,2,∞} for s, t ∈ S. We note that, since all elements
s, t ∈ S satisfy s2 = t 2 = e, a relation of the form ms,t = 2 simply asserts that s and t
commute. This also explains the name ‘right-angled’ since two orthogonal reflections
commute if and only if they intersect at a right-angle. All information of a right-angled
Coxeter system W = 〈S|M〉 can be encoded in a graph Γ whose vertex set is S and whose
edge set consists of the pairs {s, t } that satisfy ms,t = 2. In fact there is a unique corre-
spondence

Γ←→WΓ

between graphs and right-angled Coxeter groups.

HECKE-ALGEBRAS
For a Coxeter group W one can study the group von Neumann algebra L (W ). More gen-
erally, one can study Hecke-von Neumann algebras associated to W . These are certain
q-deformations of the group von Neumann algebra L (W ) and were first introduced in
[Dym06]. These structures are of interest in the the study of weighted L2-cohomology of
Coxeter groups, see also [Dav+07]. Given a Coxeter system W = 〈S|M〉 and a tuple q =
(qs )s∈S ∈RS

>0 satisfying qs = qt whenever s and t are conjugate in W , the Hecke-von Neu-
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mann algebra Nq(W ) is defined as follows. For s ∈ S define the operator Ts ∈ B(ℓ2(W ))
by

Tsδv =
{
δsv |sv|S > |v|S
δsv +ps (q)δv |sv|S < |v|S

.

Interestingly, for w = w1 · · ·wn ∈W with wi ∈ S the operator given by

Tw := Tw1 . . .Twn

is well-defined, i.e. does not depend on the representative of w. Furthermore, for w ∈W

these operators satisfy
T ∗

w = Tw−1 .

The Hecke-von Neumann algebra Nq(W ) is defined, similar to the group von Neumann
algebra, as the closure in the strong operator topology of the linear span of the operators
{Tw}w∈W , i.e.

Nq(W ) = Span{Tw : w ∈W }
SOT

.

Similar also the reduced Hecke C*-algebra can be defined.
From a single parameter q > 0 and a Coxeter group W one can construct the single

parameter Hecke-algebra Nq (W ) (= Nq(W ) where qs = q for s ∈ S) and we observe that
L (W ) = N1(W ). In [Gar16] Garncarek characterized for q > 0 precisely when the single
parameter Hecke algebra Nq (W ) is a factor. This was extended by Raum and Skalski
in [RS23] to the multiparameter case. In this thesis we study general Hecke-algebras
Nq(W ) in the multiparameter setting. Oftentimes the Coxeter group W that we consider
is right-angled. In such case the Hecke-algebra naturally decompose as a graph product
Nq(WΓ) =∗v,ΓNqv (Z/2Z) as we will discuss now.

GRAPH PRODUCTS
In mathematics it is often useful to construct a new object A from two smaller objects A1

and A2. For groups common operations are those of the direct sum G1 ⊕G2 and of the
free product G1∗G2. In [Gre90] Green introduced a new construction, called graph prod-
ucts, which generalizes both these constructions. Given a simple graph Γ and groups Gv

for every vertex v of Γ, the graph product GΓ :=∗v,ΓGv is the group defined by GΓ =G/H
where G is the free product of the groups (Gv )v∈Γ and where H ⊆ G is the normal sub-
group generated by the set

{st s−1t−1 : s ∈Gv , t ∈Gw , such that v and w share an edge}.

Edges in the graph Γ correspond to direct sums, and absence of edges correspond to
free products. Indeed, when the graph Γ has no edges, then GΓ equals the free product
GΓ = G and when Γ is a complete graph then GΓ equals the direct sum GΓ = ⊕

v∈ΓGv .
Some groups, such as right-angled Coxeter groups, naturally decompose as graph prod-
ucts. Indeed, any right-angled Coxeter group WΓ can be written as WΓ = ∗v,ΓWv where
Wv = Z/2Z for each vertex v . Many group properties are preserved under graph prod-
ucts, including approximation properties such as the Haagerup property [AD14; DG23]
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and weak amenability with constant 1 [Rec17].

Graph product have also been defined in the setting of operator algebras in [Mło04]
and [CF17] as a generalization of both tensor products M1⊗M2 and (tracial/statial) free
products M1 ∗ M2. The von Neumann algebraic graph product MΓ = ∗v,Γ(Mv ,ϕv ) is
constructed such that MΓ equals the tensor product

⊗
v∈ΓMv whenever Γ is a complete

graph and such that MΓ equals the free product ∗v (Mv ,τv ) whenever Γ is a graph with
no edges. The reduced graph product AΓ = ∗min

v,Γ (Av ,ϕv ) of C*-algebras satisfies similar
relations. The notions of operator algebraic graph products agree with that for groups in
the sense that for discrete groups Gv one has

C∗
r (∗v,ΓGv ) =∗min

v,Γ C∗
r (Gv ) and L (∗v,ΓGv ) =∗v,ΓL (Gv ). (1.4)

Similar to the case of groups, many properties of C*-algebras/von Neumann algebras are
preserved under graph products. Indeed, in [CF17] they showed stability of exactness
(for C*-algebras), Haagerup property and II1-factoriality (for von Neumann algebras). In
this thesis we will study stability of the CCAP and the weak-∗ CCAP under graph prod-
ucts. We will now discuss these and other approximation properties.

1.3. APPROXIMATION PROPERTIES
In this thesis we study and apply approximation properties including: amenability, weak-
amenability and the Haagerup property. For a discrete group G , these properties assert
that we can approximate the constant function 1 on G pointwise by certain nice func-
tions mk : G → C. These properties also have their counterparts for (unital) C*-algebras
and von Neumann algebras. For a C*-algebra/von Neumann algebra M it asserts that
we can approximate the identity map IdM pointwise by nice maps θk : M → M . These
approximation properties play an important role in group theory, in operator algebras,
in functional analysis and in harmonic analysis.

We show how approximation properties appear in harmonic analysis. Of main inter-
est in harmonic analysis is the Fourier transform F : L2(T) → ℓ2(Z), which is the unitary
satisfying

F (g )(n) :=
∫
T

g (z)znd z F−1(ĝ )(z) = ∑
n∈Z

ĝ (n)zn .

In many practical applications it is important to approximate functions by functions
with finite Fourier series. For this we can use approximation properties of the group Z.
Given a sequence (mk )k≥1 of bounded functions mk : Z→ C converging to 1 pointwise,
we can consider their Fourier multiplier Tmk : L2(T) → L2(T) given by∑

n∈Z
f (n)zn 7→ ∑

n∈Z
mk (n) f (n)zn . (1.5)

When the function mk are chosen appropriately (finitely supported and positive defi-
nite), then the maps Tmk can be used to approximate any continuous function g ∈C (T)
uniformly by the continuous functions (Tmk g )k≥1 that satisfy ∥Tmk g∥C (T) ≤ ∥g∥C (T) and
have finite Fourier series. Examples of such appropriate functions (mk )k≥1 are given by
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mk (n) := max{0,1− |n|
k } which corresponds to approximation by Cesàro sums.

The above result is precisely Fejér’s theorem. While for a discrete group G , the Fourier
transform is only defined when G is abelian, it is still possible to study such approxi-
mations when the group G is non-abelian by considering the multipliers Tmk : L (G) →
L (G) given by ∑

g∈G
f (g )λg 7→ ∑

g∈G
mk (g ) f (g )λg . (1.6)

The multipliers Tmk can also be regarded as maps on the reduced C*-algebra C∗
r (G) (note

for the group Z that C∗
r (Z) ≃C (T) and L (Z) ≃ L∞(T)). When the functions mk are cho-

sen appropriately, then the maps θk := Tmk provide approximations of the identity map
on the C*-algebra/von Neumann algebra.

AMENABILITY, NUCLEARITY AND SEMIDISCRETENESS
The property of amenability appears in different equivalent forms. One of the many
characterizations is that a discrete group G is amenable if the approximating functions
mk : G →C can be chosen to be finitely supported and positive definite. The original def-
inition, which was given by von Neumann in [Neu29], involved the existence of invari-
ant means. The motivation came from the Banach-Tarski paradox [BT24] which loosely
states that the 3-dimensional unit ball can be cut into several pieces which can be rear-
ranged in such a way that they will form two unit balls. More precisely, it asserts for d ≥ 3
that any two bounded subsets A,B ⊆Rd with non-empty interior can be decomposed in
finitely many mutually disjoint pieces A = A1 ∪ . . .∪ An and B = B1 ∪ ·· · ∪Bn such that
for 1 ≤ i ≤ n there is a Euclidean transformation Ti ∈ E(d) for which Ti (Ai ) = Bi . This
paradoxical decomposition has to do with the non-amenability of the group E(d) (con-
sisting of isometries of d-dimensional Euclidean space). Examples of amenable groups
include abelian groups, groups with polynomial growth and solvable groups. The stan-
dard example of a non-amenable group is F2 :=Z∗Z, the free group on 2 generators. In
fact, in [Neu29] von Neumann conjectured that any non-amenable group must contain
F2 as a subgroup, but this was disproven by Ol’shanski [Ols80] who gave an example of a
non-amenable group whose proper subgroups are all cyclic.

The operator algebraic counterparts of amenability are nuclearity and semidiscrete-
ness. Indeed, a discrete group G is amenable if and only if the reduced C*-algebra C∗

r (G)
is nuclear, if and only if the group von Neumann algebra L (G) is semidiscrete. It was
shown by the fundamental work of Connes [Con76] and others, that for von Neumann al-
gebras (with separable predual) semidiscreteness coincides with other known von Neu-
mann algebraic notions such as: hyperfiniteness, the extension property, injectivity and
amenability. This property, now often referred to as amenability, is well understood and
plays a central role in the theory of von Neumann algebras. The notion of amenabil-
ity also plays an important role in Popa’s deformation/rigidity theory which arose from
[Pop06b; Pop06a]. In this thesis we encounter amenability due to its connection to
strong solidity, as well as in various other places. Furthermore, we also study the notion
of amenability in the relative setting as was introduced by Ozawa and Popa in [OP10a],
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see Theorem N.

WEAK AMENABILITY AND THE CBAP/CCAP
Weak amenability is a weakened version of amenability that for a discrete group G asserts
that the approximating functions mk : G →C can be chosen to be finitely supported and
such that supk ∥Tmk ∥cb ≤Λ for some finite constant Λ. If the constant Λmay be chosen
to be 1, then G is said to be weakly amenable with constant 1. Examples of such groups
include all amenable groups but also, for instance, the free group F2 [Haa78]. The no-
tion of weak amenability for groups originates from the work of Haagerup [Haa78], De
Cannière-Haagerup [CH85] and Cowling-Haagerup [CH89]. The corresponding notion
for unital C*-algebras and von Neumann algebras is given by the completely bounded
approximation property (CBAP) and the weak-∗ CBAP in the sense that a discrete group
is weakly amenable if and only if its reduced group C*-algebra possesses the CBAP if
and only if its group von Neumann algebra possess the weak-∗ CBAP. The notions cor-
responding to weak amenability with constant 1 are the completely contractive approxi-
mation property (CCAP) and the weak-∗CCAP. We study these properties for graph prod-
ucts, see Theorem O and Theorem P.

1.4. RIGIDITY THEORY AND INDECOMPOSABILITY
One of the most important series of von Neumann algebras are the free group factors,
which for n ≥ 2 are the group von Neumann algebras L (Fn) corresponding to the free
group Fn on n generators. The free group factors satisfy many interesting indecom-
posability properties like: primeness, absence of Cartan subalgebra, solidity and strong
solidity. We will discuss these properties as well as unique prime factorizations (UPF),
unique free product decompositions and unique rigid graph product decompositions.

PRIMENESS AND UPF
It is a simple fact that a matrix algebra Matk (C) factorizes as the tensor product

Matk (C) = Matn(C)⊗Matm(C)

if and only if k = nm. In particular, the matrix algebra Matk (C) does not have any non-
trivial tensor product decomposition if and only if k is a prime number. Similarly, for
a II1-factor M one can ask whether it decomposes as a tensor product M = M1⊗M2 of
factors M1 and M2. As it turns out for n ≥ 1 every II1-factor M decomposes as tensor
product M = N⊗Matn(C) for some unique II1-factor N (denoted M 1/n) called an ampli-
fication of M . In fact, amplifications M t are defined more generally for any t ∈ (0,∞).
The question that we are interested in however, is what factors M decompose as

M = M1⊗M2

for some infinite-dimensional von Neumann algebras M1 and M2. A factor that does not
decompose in this way is called prime. The first known example of a prime factor was the
group von Neumann algebra of the free group with uncountable many generators L (FR)
as was shown Popa in [Pop83]. Thereafter, Ge showed in [Ge96] that L (Fn) is a prime
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factor for n ≥ 2 by computing Voiculescu’s free entropy. Later, in [Oza04] Ozawa intro-
duced a new property, called solidity, which for non-amenable factors implies prime-
ness. He showed that all II1-factors satisfying the Akemann-Ostrand property (AO) are
solid. For a discrete hyperbolic group G it had already been shown in [HG04] by using
the Gromov boundary that L (G) possesses (AO). Thus L (G) is a prime factor for any
icc, non-amenable, hyperbolic group G . There are many more examples of prime fac-
tors, see e.g. [BHV18; CSS18; CKP16; CSU13; DHI19; Pet08; Sak09; SW13]. In this thesis
we will present a characterization of primeness for von Neumann algebras coming from
graph products, see Theorem H.

Given a class C of von Neumann algebras, a natural question is whether any von
Neumann algebra M ∈ C has a tensor product decomposition M = M1⊗·· ·⊗Mm for
some m ≥ 1 and prime factors M1, . . . , Mm ∈ C and whether this prime factorization
is unique. Generally, it holds true that if M = M1⊗M2 is a prime factorization, then
M = M t

1⊗M 1/t
2 also is a prime factorization for any t ∈ (0,∞). Hence, uniqueness of

prime factorizations is always studied up to amplifications. The first unique prime fac-
torization (UPF) results were established by Ozawa and Popa in [OP04] for tensor prod-
ucts of certain group von Neumann algebras. Later, UPF results were obtained in [Iso17],
[HI17] for other classes of von Neumann algebras. In the setting of graph products, UPF
results have been obtained in [CSS18, Theorem 6.16] under the condition that the vertex
von Neumann algebras are group von Neumann algebras. In this thesis, we present in
Theorem I new UPF results for von Neumann algebras in the class CRigid coming from
(rigid) von Neumann algebraic graph products.

FREE-INDECOMPOSABILITY AND KUROSH TYPE THEOREMS

Similar to unique prime factorizations one can ask whether a tracial von Neumann al-
gebra (M ,τ) decomposes as a (reduced) free product M = M1 ∗ ·· · ∗ Mm in a unique
way. In [Oza06] Ozawa extended the results [OP04] for tensor products to the setting
of free products. In particular, he showed for M = M1 ∗ ·· · ∗Mm a von Neumann alge-
braic free product of non-prime, non-amenable, semiexact II1-factors M1, . . . , Mm that if
M = N1∗·· ·∗Nn is another free product decomposition into non-prime, non-amenable,
semiexact II1-factors N1, . . . , Nn , then m = n and, up to permutation of the indices, Mi

unitarily conjugates to Ni inside M for each 1 < i < m. This result can be seen as a von
Neumann algebraic version of the Kurosh isomorphism theorem [Kur34], which states
that any discrete group uniquely decomposes as a free product of freely indecompos-
able groups. Versions of Ozawa’s result were later shown for other classes of von Neu-
mann algebras, see [Ash09; IPP08; Pet08]. In [HU16] these results were then extended by
Houdayer and Ueda to a single, large class of von Neumann algebras. Other Kurosh type
theorems have recently been obtained in [Dri23, Corollary 8.1], [DE24b, Corollary 1.8].
In this thesis we obtain Kurosh type results for graph product in the class CRigid \CVertex,
see Theorem K.

RIGID GRAPH PRODUCTS

In rigidity theory, the famous free factor problem [Kad67] asks whether one can retrieve
the number n ≥ 2 of generators from the von Neumann algebra L (Fn), i.e. is it true that
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L (Fn) ̸≃ L (Fm) for n ̸= m? This question is related to Kurosh type results since the free
group factor L (Fn) decomposes as the tracial free product

L (Fn) = R ∗·· ·∗R (n times)

of hyperfinite II1-factors R, see [Dyk94]. On a level of C*-algebras the question has been
answered by Pimsner and Voiculescu in [PV82]. Indeed, they showed that the reduced
group C*-algebras C∗

r (Fn) for n ≥ 2 are pairwise non-isomorphic by computing their K-
theory. However, the question for von Neumann algebras is still open.

It was shown independently by Rădulescu [Răd94] and by Dykema [Dyk94] that it is
possible to extend the definition of the free group factors L (Fn) and more generally, for
r ∈ (1,∞], construct the interpolated free group factors L (Fr ) which satisfy

L (Fr+s ) =L (Fr )∗L (Fs ) r, s ∈ (1,∞] (1.7)

L (Fr )t =L (F1+ r−1
t2

) r ∈ (1,∞], t ∈ (0,∞) (1.8)

(observe that the group Fr is only defined when r ∈N). Rădulescu moreover showed in
[Răd94] that the free factors L (Fr ) for r ∈ (1,∞] are either all isomorphic or pairwise
non-isomorphic. It is widely believed that the free factor problem is true, but the prob-
lem is considered very hard.

A natural generalization of the free factor problem is to ask what information of the
graph Γwe can retrieve from the graph product MΓ =∗v,Γ(Mv ,τv ). For the case of Hecke
algebras, Garncarek showed in [Gar16] using [Dyk93] that when Γ is a non-complete
graph whose connected components are complete and when q ∈ [0,1] is close enough
to 1 then Nq (WΓ) is equal to an interpolated free group factor. In particular, as stated in
[CSW19] when Γ is a graph of size N = |Γ| ≥ 3 and with no edges, then for q ∈ [ 1

N+1 ,1] it
holds true that

Nq (WΓ) =L (F2N q/(1+q)2 ). (1.9)

This shows the connection with the free factor problem.
The theory of graph products becomes somewhat more elegant when the vertex von

Neumann algebras Mv are all taken to be II1-factors. In this setting rigidity results were
obtain for graph products MΓ =∗v,Γ(Mv ,τv ) in [CDD22; CDD23a] when Mv comes from
a class of group von Neumann algebras of certain property (T) groups. In this thesis
we study rigidity results for other classes of von Neumann algebraic graph products of
II1-factors. We will obtain several rigidity results that allow us, in some cases, to fully or
partially retrieve the graph Γ and the von Neumann algebras Mv from the graph product
MΓ, see Theorem F and Theorem G.

CARTAN SUBALGEBRAS AND STRONG SOLIDITY
A construction more general than that of the group von Neumann algebra is that of
the crossed product M ⋊α G , which can be build from a trace preserving group action
α : G → Aut(M) on a von Neumann algebra (M ,τ). Group von Neumann algebras are
a special case of crossed products since L (G) = C⋊G . A question that has been stud-
ied is what von Neumann algebras decompose as a group measure space L∞(0,1)⋊αG
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for some group G and some group action α on L∞(0,1). This question reduces to the
question what von Neumann algebras posses a Cartan subalgebra. Indeed, the theorem
of [FM77a; FM77b] shows that a von Neumann algebra decomposes as a (generalized)
group measure space von Neumann algebra if and only if M possesses a Cartan sub-
algebra. It was first shown by Voiculescu in [Voi96] that the free group factors L (Ft )
for t ∈ (1,∞) do not posses a Cartan subalgebra. Later, Popa and Ozawa introduced in
[OP10a] the property strong solidity which is a strengthened version of Ozawa’s property
solidity that moreover implies absence of Cartan subalgebras. A von Neumann algebra
M is called strongly solid if for every amenable von Neumann subalgebra A ⊆ M that is
diffuse (i.e. that contains no minimal projections) the set of normalizers

NorM (A) := {u ∈ M unitary : u∗Au = A}

generates a von Neumann algebra that is amenable again. Popa and Ozawa showed that
the free group factors posses this property which moreover retrieved Voiculescu’s result.
Many examples of strongly solid von Neumann algebras have been obtain, see [Cas22;
CS13; DP23; Iso15a; PV14b]. In this thesis we fully characterize when a graph product of
von Neumann algebras is strongly solid (see Theorem C, Theorem D and Theorem E).

1.5. DERIVATIONS AND QUANTUM MARKOV SEMIGROUPS
Derivations are linear maps δ that satisfy the Leibniz rule δ(x y) = δ(x)y + xδ(y). They
play an essential role in the theory of Lie algebras, cohomology, and in quantum physics,
see [KL14; SS95]. Derivations are also of interest in the study of semigroups since deriva-
tions are square-roots of generators of quantum Markov semi-groups (QMS). In this the-
sis we will study commutator estimates to obtain estimates on the norms of derivations.
Furthermore, we will study QMS’s on Hecke algebras to obtain strong solidity results.

COMMUTATOR ESTIMATES AND NORMS OF DERIVATIONS
A classical result on derivations is due to Stampfli [Sta70] which asserts that for a ∈ B(H )
the derivation δa : B(H ) → B(H ) defined by the commutator δa(x) = [a, x] = ax−xa has
operator norm ∥δa∥ = 2infz∈C ∥a − z1M∥. Through the work of [KLT20; Gaj72; Zsi73], the
result of Stampfli has been extended to derivations on arbitrary von Neumann algebras
M (see also [Mag95] for more in this direction). More precisely, the result of Zsidó [Zsi73,
Corollary] asserts that for M a von Neumann algebra and a ∈ M , the derivation δa : M →
M associated to a satisfies the distance formula:

∥δa∥M→M = 2 min
z∈Z(M)

∥a − z∥, (1.10)

where Z(M) denotes the center of M . Derivations have also been studied as maps from
M to the predual M∗. Indeed, the predual M∗ is a M-bimodule (see Section 7.7) and
therefore it is possible to consider derivations δ : M → M∗. Important work on such
derivations was done in [BP80; Haa83; BGM12] and particularly the result of [Haa83,
Theorem 4.1] showed that all these derivations are inner, i.e. of the form δ= δa for some
a ∈ M∗ defined by δa(x) = ax − xa. These studies arose after Connes proved in [Con78]
that all C*-algebras that are amenable (as a Banach ∗-algebra) are necessarily nuclear.
Haagerup proved in [Haa83] that the reverse implication is also true.
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In [BHS23] the norms of these derivations were studied and results analogous to
(1.10) were found in certain cases: for M properly infinite it was shown that some form of
formula (1.10) holds true and for M finite the same was proved under the condition that
a is self-adjoint. The proofs of these results were based on improvements of the operator
estimates obtained in [BS12b; BS12a]. The estimates in [BHS23] show in particular for
a factor M and a self-adjoint a ∈ M that there is a λ ∈ C so that for ϵ > 0 there exists a
unitary uϵ ∈ M for which

|[a,uε]| ≥ (1−ε)(|a −λ1M |+uε|a −λ1M |uε). (1.11)

In this thesis we show analogous estimates for normal elements (Theorem Q) and
obtain sharp estimates on the norm ∥δa∥M→L1(M ,τ) for finite factors M (Theorem R).

QUANTUM MARKOV SEMIGROUPS AND GRADIENT-Sp
A quantum Markov semigroup (QMS) (Φt )t≥0 on a tracial von Neumann algebra (M ,τ)
is a semigroup of nice maps Φt : M → M . As already mentioned, QMS’s are connected
to derivations, since by [CS03] the generator ∆ of a (symmetric) QMS can be written
as ∆ = δ∗δ for some derivation δ. Furthermore, QMS’s are also connected to approxi-
mation properties, since the maps (Φ 1

k
)k≥1 form an approximation of the identity IdM .

In fact, as was shown by Jolissaint in [JM04] there exists on a von Neumann algebra
(M ,τ) a (symmetric) QMS whose generator has compact resolvent if and only if M pos-
sesses the Haagerup approximation property. This approximation property is, just as
weak amenability, a weakened version of amenability. The Haagerup property first arose
for groups in [Haa78] and later for C*-algebras/von Neumann algebras [Cho83; Jol02;
CS15]. As was shown by [BJS88] (see also [Tit09, p. 2.22]) all Coxeter groups W posses the
Haagerup property. For a Coxeter group W it is thus possible to study QMS’s (Φt )t≥0 on
the group von Neumann algebra L (W ). In this thesis we study such semigroups (The-
orem A and Theorem B) with the aim to obtain strong solidity results for the group von
Neumann algebra L (W ) and more generally for the Hecke-algebra Nq(W ). This further
develops the connections between QMS’s and rigidity theory that were made in [Cas21]
and [CIW21].

1.6. THESIS RESULTS AND STRUCTURE OVERVIEW
In this section we present the main results obtained in this thesis. Before we list these
results, we give a quick overview of the structure of this thesis.

• In Chapter 2 (the preliminaries) we recap general theory and fix notation. In par-
ticular, we introduce the notation that we use for simple graphs and for operator
algebraic graph products.

• In Chapter 3 we perform some technical calculations in graph products concern-
ing annihilation, diagonal and creation operators. These calculations are used in
Chapter 6 and in a few parts of Chapter 5.

• In Chapter 4 we study the gradient-Sp property for QMS’s. We apply this study
to obtain strong solidity results for group von Neumann algebras of right-angled
Coxeter groups and for right-angled Hecke algebras.
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• In Chapter 5 we fully characterize strong solidity for von Neumann algebraic graph
products. We stress that the techniques we use here are completely different from
those in Chapter 4. Furthermore, in this chapter we also study nuclearity, relative
amenability, primeness and free indecomposability for graph products. Moreover,
we obtain unique rigid graph product decompositions and show unique prime
factorizations and unique free product decompositions for new classes of von Neu-
mann algebras. We also show that in many cases the graph radius can be retrieved
from the graph product.

• In Chapter 6 we study stability of the CCAP and weak-∗ CCAP under graph prod-
ucts. We are able to show that graph products of finite-dimensional von Neumann
algebras posses the weak-∗ CCAP. Furthermore, we are able to show that a prop-
erty slightly stronger than the CCAP is preserved under reduced graph products.

• In Chapter 7 we slightly deviate from the main topics of this thesis and study com-
mutator estimates for normal operators in factors. We apply these estimates to
obtain optimal norm bounds on derivations.

We stress that the chapters in this thesis are not logically dependent and can be read
in any order; the only exception is Chapter 3. We now summarize the main results. For
some of the notation we refer to later chapters.

QUANTUM MARKOV SEMIGROUPS AND GRADIENT-Sp
In Chapter 4 we study quantum Markov semigroups (QMS) on L (W ) for Coxeter groups
W . Specifically, for a Coxeter system W = 〈S|M〉 we study the QMS on L (W ) associated
with the word length | · |S . This is the semigroup (Φt )t≥0 of the form Φt = e−t∆ where the
(unbounded) generator ∆ on L (W ) is given by

∆(λw) = |w|Sλw.

For these QMS’s we precisely characterize when it possesses the Gradient-Sp property as
was defined in [Cas21] (for p = 2) and [CIW21] (for general p), see Definition 4.3.3.

Theorem A (Theorem 4.4.15). Let W = 〈S|M〉 be a Coxeter system. Fix p ∈ [1,∞]. The
following are equivalent:

1. The QMS (Φt )t≥0 associated with the word length | · |S is gradient-Sp on L (W ).

2. For all s ∈ S the set {v ∈W : sv = vs} is finite.

3. The Coxeter system W = 〈S|M〉 is small at infinity.

As we show in Theorem B, in most cases you can characterize the equivalent state-
ments of Theorem A in purely graph theoretical terms (see Definitions 4.4.5 and 4.4.6).

Theorem B (Theorem 4.4.8 and Theorem 4.4.9). Let W = 〈S|M〉 be a Coxeter group. If
there does not exist a cyclic parity path in Gr aphS (W ) then the semi-group (Φt )t≥0 asso-
ciated to the word length | · |S is gradient-Sp for all p ∈ [1,∞]. The converse holds true if
mi , j ̸= 2 for all i , j .
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STRONG SOLIDITY
Continuing, in Chapter 4 we study for right-angled Coxeter groups WΓ some QMS’s on
L (WΓ) that are associated to different kinds of word lengths. Using the non-commutative

Riesz transform R = ∇◦∆− 1
2 we show that if WΓ is hyperbolic then the group von Neu-

mann algebra L (WΓ) possesses AO+ and is strongly solid (Theorem 4.6.2). This result
was already known using different techniques, see [PV14b]. However, when we apply
our results on QMS’s on right-angled Hecke von Neumann algebras we are able to ob-
tain the following new result.

Theorem C (Theorem 4.7.5). LetΓ be a finite simple graph and let q = (qv )v∈Γ with qv > 0.
Assume

Λ := {r ∈ Γ : ∃s, t ∈ Γ such that r ∈ LinkΓ(s)∩LinkΓ(t ), s ̸∈ StarΓ(t )}

is a clique in Γ. Then the Hecke von Neumann algebra Nq(WΓ) satisfies the Akemann-
Ostrand property AO+ and is strongly solid.

In the next chapter, Chapter 5, we study general von Neumann algebraic graph prod-
ucts. Using completely different techniques (such as Popa’s intertwining by bimodule
theory) we are able to fully characterize when a graph product of tracial von Neumann
algebras is strongly solid.

Theorem D (Theorem 5.6.7). Let Γ be a finite graph, and for each v ∈ Γ let Mv (̸=C) be a
von Neumann algebra with normal faithful trace τv . Then MΓ = ∗v,Γ(Mv ,τv ) is strongly
solid if and only if the following conditions are satisfied:

1. For each vertex v ∈ Γ the von Neumann algebra Mv is strongly solid.

2. For each subgraph Λ⊆ Γ with MΛ non-amenable, we have that MLink(Λ) is not dif-
fuse.

3. For each subgraph Λ ⊆ Γ with MΛ non-amenable and diffuse, we have moreover
that MLink(Λ) is atomic.

We remark that in most cases the stated conditions can be easily verified from the
graph Γ and the vertex von Neumann algebras Mv . In particular, Theorem D com-
pletes the characterization of strong solidity for right-angled Hecke-algebras, see The-
orem 5.6.12 Moreover, for group von Neumann algebras of Coxeter groups we obtain the
following simple characterization of strong solidity.

Theorem E (Theorem 5.6.13). Let WΓ be a right-angled Coxeter group. The following are
equivalent:

1. The von Neumann algebra L (WΓ) is strongly solid.

2. The Coxeter group WΓ does not contain Z×F2 as a subgroup.

3. The graph Γ does not contain K2,3 nor K +
2,3 as a subgraph (see Figure 5.1).

We do remark that a right-angled Coxeter group WΓ is hyperbolic if and only if WΓ
does not contain Z×Z as a subgroup, if and only if the graph Γ does not contain Z4

(the cyclic graph with four vertices) as a (induced) subgraph (see [Dav08]). The result
of Theorem E establishes strong solidity of L (WΓ) for a broader class of right-angled
Coxeter groups than just those that are hyperbolic.
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RIGID GRAPH PRODUCTS
In Chapter 5 we moreover study other rigidity properties of graph products. Indeed, we
introduce a class CVertex of II1-factors (see Definition 5.5.4) and introduce the notion of
a rigid graph (see Definition 5.2.1). We then study graph product von Neumann algebras
MΓ = ∗v,Γ(Mv ,τv ) whose vertex algebras Mv are in CVertex, and whose graph Γ is rigid.
We show that the Neumann algebra MΓ uniquely decomposes as such a graph product.
This is the content of the following theorem.

Theorem F (Theorem 5.5.19 and Theorem 5.7.5). Let Γ be finite rigid graphs and for v ∈ Γ
let Mv be von Neumann algebras in the class CVertex with faithful normal trace τv . Let
MΓ =∗v,Γ(Mv ,τv ) be their graph product. Suppose there is another graph product decom-
position of MΓ over another rigid graphΛ and other von Neumann algebras Nw ∈CVertex,
w ∈Λ, i.e. MΓ =∗w,Λ(Nw ,τw ). Then there is a graph isomorphismα : Γ→Λ, and for each
v ∈ Γ there is a unitary uv ∈ MΓ and a real number 0 < tv <∞ such that:

MStar(v) = u∗
v NStar(α(v))uv and Mv ≃ N tv

α(v). (1.12)

Furthermore, for the connected component Γv ⊆ Γ of any vertex v ∈ Γ, we have MΓv =
u∗

v Nα(Γv )uv ; and for any irreducible component Γ0 ⊆ Γ, ∃t0 ∈ (0,∞) such that MΓ0 ≃
N t0
α(Γ0).

For more general graph products we study what information of the graph Γ can be
retrieved from the graph products MΓ. Indeed, we introduce the notion of the radius
of a von Neumann algebra (see Definition 5.9.3), and show that in many cases we can
retrieve the radius of the graph Γ (up to some constant) from the radius of the von Neu-
mann algebra MΓ (Remark 5.9.7). In particular, this allows us to distinguish certain graph
products of hyperfinite II1-factors.

Theorem G (Theorem 5.9.6 and Theorem 5.9.11). Let Γ be a finite, non-complete graph.
For v ∈ Γ let Mv be a II1-factor and let MΓ = ∗v,Γ(Mv ,τv ) be the tracial graph product.
Suppose one of the following holds true.

1. For all v ∈ Γ the vertex algebra Mv possesses strong (AO) and has separable predual.

2. For all v ∈ Γwe have Mv =L (Gv ) for some countable icc group Gv .

Then
Radius(Γ)−2 ≤ Radius(MΓ) ≤ max{2,Radius(Γ)}.

UNIQUE PRIME FACTORIZATIONS
In Chapter 5 we also prove the following result which characterizes primeness for graph
products.

Theorem H (Theorem 5.7.4). Let Γ be a finite graph of size |Γ| ≥ 2. For any v ∈ Γ, let Mv be
a II1-factor. The graph product MΓ =∗v,Γ(Mv ,τv ) is prime if and only if Γ is irreducible.

By combing Theorem H with Theorem F we are able to obtain the following unique
prime factorization result.
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Theorem I (Theorem 5.7.6). Any von Neumann algebra M ∈ CRigid has a prime factor-
ization inside CRigid, i.e.

M = M1⊗·· ·⊗Mm , (1.13)

for some m ≥ 1 and prime factors M1, . . . , Mm ∈CRigid.
Suppose M has another prime factorization inside CRigid, i.e.

M = N1⊗·· ·⊗Nn , (1.14)

for some n ≥ 1, and prime factors N1, . . . , Nn ∈CRigid. Then m = n and there is a permuta-
tion σ of {1, . . . ,m} such that Mi is isomorphic to an amplification of Nσ(i ) for 1 ≤ i ≤ m.

UNIQUE FREE PRODUCT DECOMPOSITION
In Chapter 5 we also study free product decompositions. The following result character-
izes when a graph product decomposes as free product of II1-factor.

Theorem J (Theorem 5.8.1). Let Γ be a finite graph of size |Γ| ≥ 2, and for each v ∈ Γ let
Mv be II1-factor with separable predual. Then the graph product MΓ := ∗v,Γ(Mv ,τv ) can
decompose as a tracial free product MΓ = (M1,τ1)∗ (M2,τ2) of II1-factors M1,M2 if and
only if Γ is not connected.

Combining with Theorem J with Theorem F we obtain the follow unique free product
decomposition for von Neumann in the class CRigid \CVertex.

Theorem K (Theorem 5.8.2). Any von Neumann algebra M ∈CRigid \CVertex can decom-
pose as a tracial free product inside CRigid \CVertex, i.e.

M = M1 ∗·· ·∗Mm , (1.15)

for some m ≥ 1 and factors M1, . . . Mm ∈ CRigid \ CVertex that can not decompose as any
tracial free product of II1-factors.

Suppose M can decompose as another tracial free product inside CRigid \CVertex, i.e.

M = N1 ∗·· ·∗Nn ,

for some n ≥ 1 and factors N1, . . . , Nn ∈ CRigid \ CVertex that can not decompose as tracial
free product of II1-factors. Then m = n and there is a permutation σ of {1, . . . ,m} such that
Ni unitarily conjugate to Mσ(i ) in M.

NUCLEARITY, (RELATIVE) AMENABILITY AND THE ( WEAK-∗) CCAP
We study several approximation properties for graph products.

GRAPH PRODUCTS AND NUCLEARITY

In Chapter 5 we give sufficient conditions for a reduced graph product of unital C∗-
algebras to be nuclear. This is a generalization of Ozawa’s result for free products [Oza02]
and is needed in the proof of Theorem F.

Theorem L (Theorem 5.3.4). Let AΓ = ∗min
v,Γ (Av ,ϕv ) be the reduced C∗-algebraic graph

product of nuclear, unital C∗-algebras Av with GNS-faithful stateϕv . Let Hv := L2(Av ,ϕv )
and let πv : Av → B(Hv ) be the GNS-representation. If for any v ∈ Γ, πv (Av ) contains the
space of compact operators K(Hv ), then AΓ is nuclear.
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GRAPH PRODUCTS AND (RELATIVE) AMENABILITY

The following result from Chapter 5 is the graph product analogue of [HI17, Theorem
5.1] and [Oza06, Theorem 3.3], and is crucial in the proof of Theorem F for establishing
the graph isomorphism.

Theorem M (Theorem 5.5.15). Let (MΓ,τ) = ∗v,Γ(Mv ,τv ) be the graph product of finite
von Neumann algebras Mv that satisfy condition strong (AO) and have separable predual.
Let Q ⊆ MΓ be a diffuse von Neumann subalgebra. At least one of the following holds:

1. The relative commutant Q ′∩MΓ is amenable;

2. There exists Γ0 ⊆ Γ such that Q ≺MΓ MΓ0 and Link(Γ0) ̸= ;.

We also study relative amenability for graph products and obtain the following result
which is needed in the proof of Theorem D, Theorem G and Theorem H.

Theorem N (Theorem 5.4.8). Let Γ be a graph with subgraphs Γ1,Γ2 ⊆ Γ. For each v ∈ Γ
let (Mv ,τv ) be a von Neumann algebra with a normal faithful trace. Let P ⊂ MΓ be a von
Neumann subalgebra that is amenable relative to MΓi inside MΓ for i = 1,2. Then P is
amenable relative to MΓ1∩Γ2 inside MΓ.

GRAPH PRODUCTS AND THE CCAP
In the next chapter, Chapter 6, the focus is on showing stability of the CCAP and weak−∗
CCAP under graph products. Similar to [RX06] we are able to show for reduced graph
products of unital C*-algebras that a condition slightly stronger than the CCAP is pre-
served.

Theorem O (Theorem 6.5.2). Let Γ be a simple graph and for v ∈ Γ let (Av ,ϕv ) be unital
C*-algebras that have a u.c.p. extension for the CCAP. Then the reduced graph product

(AΓ,ϕ) =min∗v,Γ (Av ,ϕv ) has the CCAP.

For von Neumann algebraic graph products we are able to show the following result.

Theorem P (Corollary 6.3.4). Let Γ be a simple graph and for v ∈ Γ let Mv be a finite-
dimensional von Neumann algebra together with a normal faithful state ϕv . Then the
von Neumann algebraic graph product (MΓ,ϕ) =∗v,Γ(Mv ,ϕv ) has the weak-∗ CCAP.

COMMUTATOR ESTIMATES AND DERIVATIONS
The topic of the last chapter, Chapter 7, is slightly different from the other parts of this
thesis and does not concern Coxeter groups or graph products. The aim is to generalize
commutator estimates from [BS12b], [BS12a] and [BHS23] for self-adjoint elements to
normal elements. We obtain the following result; here S(M) denotes the algebra of mea-
surable operators affiliated with M . The constants Λn and Λ̃n are defined in Section 7.3
in (7.12) and (7.13) and estimates on these constants are given in Theorem 7.A.1.

Theorem Q (see Theorems 7.5.6, 7.6.4). Let M be a factor and let a ∈ S(M) be normal.
Then there is a λ0 ∈C and unitaries u, v, w ∈ U(M) such that

|[a,u]| ≥C
(
v |a −λ01M |v∗+w |a −λ01M |w∗)

(1.16)

for some constant C > 0 independent of a. Moreover
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1. when M is a In-factor, n <∞, the optimal constant satisfiesΛn ≤C ≤ 1
2 Λ̃n .

2. when M is a II1-factor, the optimal constant is C =
p

3
2 .

3. when M is an infinite factor, we can choose C arbitrarily close to 1.

We apply the commutator estimates from Theorem Q to obtain for a finite factor
M sharp estimates on the norm ∥δa∥M→L1(M ,τ), where δa : M → L1(M ,τ) is the inner
derivation given by δa(x) = ax − xa associated to a normal measurable a ∈ L1(M ,τ). In
this result we denote n(M) = n if M is a In-factor and put n(M) =∞ if M is a II1-factor.

Theorem R. Let M be a finite factor with a faithful tracial state τ and let a ∈ L1(M ,τ) \
Z(M) be normal and measurable. Then the derivation δa : M → L1(M ,τ) satisfies:

2Λn(M) ≤
∥δa∥∞,1

minz∈C ∥a − z1M∥1
≤ 2. (1.17)

Moreover, when M ̸= C there exist non-zero derivations δa ,δb corresponding to normal
a,b ∈ M such that ∥δa∥∞,1 ≤ Λ̃n(M) minz∈C ∥a−z1M∥1 and ∥δb∥∞,1 = 2minz∈C ∥b−z1M∥1.

We remark if n(M) ̸∈ {1,2,4} then the distance formula ∥δa∥∞,1 = 2minz∈C ∥a−z1M∥1

from [BHS23, Theorem 1.1](Theorem 7.7.1) for self-adjoint a does not extend to arbitrary
normal measurable a ∈ L1(M ,τ), since Λ̃n(M) < 2 in these cases. Furthermore, we remark
when M is a II1-factor or a In-factor with n ≡ 0 mod 3 then the constant bounds given
in (1.17) can not be improved as in these cases 2Λn(M) =

p
3 = Λ̃n(M).

DISCUSSION
In the last section of Chapter 4 and of Chapter 5 respectively we discuss some natural
open problems related to the topics of these chapters. In the discussion of Chapter 5
we moreover state a conjecture on rigidity of graph products of hyperfinite II1-factors
(Conjecture 5.10.5).





2
PRELIMINARIES

We recall general theory used in this thesis and establish our notation. In Section 2.1 we
recap theory of C*-algebras, von Neumann algebras and bimodules. In Section 2.2 we es-
tablish the notation we use for (simple) graphs. In Section 2.3 we discuss discrete groups
and their ∗-algebras, reduced C*-algebras and group von Neumann algebra. Further-
more, we establish notation for Coxeter groups and Hecke-algebras and we define graph
products of groups. In Section 2.4 we show the construction of (reduced) graph prod-
ucts in the setting of C*-algebras/ von Neumann algebras as was introduced in [CF17].
In Section 2.5 we define several properties for groups, C*-algebras and von Neumann al-
gebras and discuss how they are connected.

Conventions and general notation: We denote N = {1,2, . . .} for the set of natural
numbers. For a set S we write |S| for its cardinality and 2S for its power set. All Hilbert
spaces H considered are complex, and with inner products 〈·, ·〉 that are linear in the
first variable.

2.1. OPERATOR ALGEBRAS AND BIMODULES

In Section 2.1.1 we discuss the bounded operators, schatten classes, C*-algebras and op-
ertor spaces. In Section 2.1.2 we discuss von Neumann algebras and in Section 2.1.3 we
discuss bimodules. For a detailed exposition on these topics we refer to [SZ19; Mur90;
AP17; Tak02; Tak03a; Tak03b]. Furthermore, we refer to [ER00; Pis03] for general theory
of operator spaces, and we refer to [DPS22; FK86] for more theory on locally measurable
operators.

2.1.1. THE SPACE OF BOUNDED OPERATORS

Given a complex Hilbert space H we denote B(H ) and K(H ) respectively for the space
of bounded operators on H and the space of compact operators on H .

21
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SCHATTEN-VON NEUMANN CLASSES Sp (H )
For positive x ∈ B(H ) we denote

Tr(x) = ∑
i∈I

〈xei ,ei 〉 (2.1)

where (ei )i∈I is any orthonormal basis for H . For p ∈ (0,∞) we define the Schatten-von
Neumann class Sp (H ) as the space of all x ∈ B(H ) for which

∥x∥p := Tr(|x|p )
1
p (2.2)

is finite. If p ∈ [1,∞) then (2.2) defines a norm turning Sp (H ) into a Banach space that
is moreover a 2-sided ideal in B(H ). We additionally define ∥ · ∥∞ equal to the operator
norm ∥·∥ and put S∞(H ) = K(H ). Moreover, we extend the trace (2.1) linearly to define a
bounded map Tr : S1(H ) →C. The Schatten class S1(H ) can be identified as the predual
of B(H ) through the identification S1(H ) ∋ x 7→ Tr(·x).

TOPOLOGIES ON B(H )
We recall the three most imporant topologies on B(H ).

1. The strong operator topology (SOT). A net (xi )i∈I converges strongly to x if ∥xiξ∥→
∥xξ∥ for all ξ ∈H .

2. The weak operator topology (WOT). A net (xi )i∈I converges weakly to x if 〈xiξ,η〉→
〈xξ,η〉 for all ξ,η ∈H .

3. The σ-weak topology. A net (xi )i∈I converges σ-weakly to x if
∑

n≥1〈xiξn ,ηn〉 →∑
n≥1〈xξn ,ηn〉 for all sequences (ξn)n≥1, (ηn)n≥1 in H for which

∑
n≥1 ∥ξn∥2 and∑

n≥1 |ηn∥2 are finite.

We note that convergence in norm implies strong convergence implies weak conver-
gence. Furthermore, we note also that σ-weak convergence implies weak convergence.
In fact, on the unit ball the weak operator topology and the σ-weak topology coincide.

C*-ALGEBRAS AND TENSOR PRODUCTS

An algebra A is a vector space equipped with a multiplication, i.e. a map A× A → A that
is bilinear and associative. A ∗-algebra is an algebra A equipped with an involution ∗,
i.e. an antilinear map A → A satisfying (a∗)∗ = a and (ab)∗ = b∗a∗ for a,b ∈ A. When
A is unital, we denote by 1A the unit of A. A C*-norm on a ∗-algebra A is a norm ∥ · ∥
satisfying ∥x y∥ ≤ ∥x∥∥y∥, ∥x∗∥ = ∥x∥ and ∥x∗x∥ = ∥x∥2 for x, y ∈ A. A C*-algebra is a
∗-algebra A equipped with a C*-norm that makes A into a Banach space. We recall the
following notions of tensor products.

1. For vector spaces V ,W we let V ⊗alg W be the algebraical tensor product.

2. For Hilbert spaces H ,K we let H ⊗K be the Hilbert space tensor product, which
is the Hilbert space completion of H ⊗alg K with respect to the inner product
given by 〈ξ1 ⊗η1,ξ2 ⊗η2〉 = 〈ξ1,ξ2〉H 〈η1,η2〉K
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3. For C*-algebras A and B we let A ⊗min B be the minimal tensor product and let
A ⊗max B be the maximal tensor product. These are the completions of A ⊗alg B
w.r.t the C*-norms ∥ ·∥min respectively ∥ ·∥max that are defined by the property that
∥ ·∥min ≤ ∥·∥ ≤ ∥ ·∥max for any C*-norm ∥ ·∥ on A⊗alg B .

4. For (concrete) C*-algebras A ⊆ B(H ) and B ⊆ B(K ) we can construct an embed-
ding π : A⊗alg B → B(H ⊗K ) as π(a ⊗b)(ξ⊗η) = (aξ)⊗ (bη). The norm closure of
π(A⊗alg B) is called the spatial tensor product. By [Tak02, Theorem 4.19] the spatial
tensor product agrees with the minimal tensor product A⊗min B .

5. For linear maps Ti : Vi → Wi between vector spaces Vi and Wi , we denote by T1 ⊗
T2 : V1⊗alg V2 →W1⊗alg W2 the map given by (T1⊗T2)(x⊗ y) = T1(x)⊗T2(y). When
Ti is a bounded map between Hilbert spaces H i and Ki then we extend T1⊗T2 to
a map from H1 ⊗H2 to K1 ⊗K2.

We remark for n ≥ 1 that the algebraic tensor product A ⊗alg Matn(C) can be equipped
with a unique norm making it into a C*-algebra [BO08, Proposition 3.3.2].

OPERATOR SPACES

An operator space is a (norm-)closed subspace of B(H ) for some complex Hilbert space
H . Given a operator space B ⊆ B(H ) we identify B ⊗Matn(C) with the corresponding
(closed) subspace of B(H ⊗Cn). A bounded map θ : B1 → B2 between operator spaces
B1,B2 is said to be a completely isometry if for all n ≥ 1 the map θ⊗ IdMatn (C) between
B1 ⊗Matn(C) and B2 ⊗Matn(C) is an isometry. Furthermore we denote,

∥θ∥cb := sup
n≥1

∥θ⊗ IdMatn (C) ∥

and call θ completely bounded whenever ∥θ∥cb is finite. We call θ completely contrac-
tive whenever ∥θ∥cb ≤ 1. A bounded map θ : A1 → A2 between C*-algebras is called a
homomorphism if θ(ab) = θ(a)θ(b) for a,b ∈ A1. We call θ a ∗-homomorphism (or repre-
sentation) if moreover θ(a∗) = θ(a)∗ for a ∈ A. We recall the following dilation theorem.

Theorem 2.1.1 (Theorem 8.4 in [Pau02]). Let A be a C*-algebra and θ : A → B(H ) be a
completely bounded map. Then there is a Hilbert space K , a representation π : A → B(K )
and bounded maps V1,V2 : H →K such that

θ(a) =V ∗
1 π(a)V2 a ∈ A (2.3)

and ∥θ∥cb = ∥V1∥∥V2∥. Moreover, if ∥θ∥cb = 1 then V1 and V2 may be taken to be isometries.

We also remark that if A is a C*-algebra and θ : A → B(H ) is any map that can be
written as (2.3), then it is completely bounded. Furthermore, when for i = 1,2 we are
given completely bounded maps Ti between C*-algebras Ai and Bi then we may extend
T1 ⊗T2 to a map from A1 ⊗min A2 to B1 ⊗min B2.

For operator spaces, V ,W we denote V ⊗h W for their Haagerup tensor product, see
[ER00, Chapter 9].
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2.1.2. VON NEUMANN ALGEBRAS
Given a complex Hilbert space H and a subset S ⊆ B(H ) we denote by

S′ := {x ∈ B(H ) : x y − y x = 0 for y ∈ S}

the commutant of S. Moreover, we denote by S′′ := (S′)′ the double commutant of S. A
von Neumann algebra M is a subset M ⊆ B(H ) that satisfies M ′′ = M . Equivalently, a
von Neumann algebra M is a SOT-closed unital ∗-subalgebra of B(H ) for some complex
Hilbert space H . For a von Neumann algebra M ⊆ B(H ) we denote M+ := {a∗a : a ∈ M }
for the cone of positive elements, U(M) for the group of unitaries, P(M) for the lattice of
projections and Z(M) := M ′∩M for the center. We denote the unit of M by 1M (= IdH ).
We call M a factor if Z(M) = C1M . We call N ⊆ M a von Neumann subalgebra when
N is a von Neumann algebra and 1N = 1M . For a projection p ∈ P(M ′) we call the von
Neumann algebra M p|pH ⊆ B(pH ) the reduction of M , and for a projection p ∈ P(M) we
call the von Neumann algebra pM p|pH ⊆ B(pH ) a corner of M . If M ⊆ B(H ) and N ⊆
B(K ) are von Neumann algebras, we denote M⊗N ⊆ B(H ⊗K ) for their von Neumann
tensor product, which is the SOT-closure of their spatial tensor product. We say that von
Neumann algebras M and N are isomorphic if there is a ∗-isomorphism from M to N ,
i.e. a bijective linear map θ : M → N that satisfies θ(x y) = θ(x)θ(y) and θ(x∗) = θ(x)∗
for x, y ∈ M . In this case we write M ≃ N , or sometimes just M = N . We say that M
and N are stably isomorphic if M⊗B(H ) ≃ N⊗B(H ) where H is the separable infinite-
dimensional Hilbert space. For u ∈ U(M) we denote Adu : M → M for the∗-isomorphism
given by Adu(x) = uxu∗. For von Neumann subalgebra N ⊆ 1N M1N we denote by

NorM (N ) = {u ∈ U(M) : uNu∗ = N }

the group of normalizers of N inside M . Furthermore, we define the ∗-algebra of quasi-
normalizers of N inside M as

qNorM (N ) = {x ∈ M : ∃n,m ∈N, x1, . . . , xn , y1, . . . , ym : xN ⊆
n∑

i=1
N xi , N x ⊆

m∑
j=1

y j N }.

COMPLETELY POSITIVE MAPS, COMPLETELY BOUNDED MAPS, STATES AND TRACES

Let M and N be von Neumann algebras (or unital C*-algebras). A linear map θ : M → N
is called unital if it maps the unit of M to the unit of N , i.e. θ(1M ) = 1N . A linear map
θ is called positive if it maps positive elements to positive elements, i.e. θ(M+) ⊆ N+. A
positive map is called faithful if θ(a∗a) > 0 whenever a is non-zero. We call a linear map
θ : M → N completely postive if θ⊗IdMatn (C) is a positive map for all n ≥ 1. We call a linear
map θ unital completely positive (u.c.p) if the map is both unital and completely positive.
We note that every u.c.p map is completely contractive [Pau02, Proposition 3.2].

A linear map θ : M → N is called normal if it is continuous for the σ-weak topology.
We note that a positive map θ between von Neumann algebras M and N is normal if and
only if for any increasing net (ai )i in M we have θ(supi ai ) = supθ(ai ), see [Sak12, Theo-
rem 1.13.2].

For a von Neumann algebra M (or C*-algebra) its (Banach space) dual M∗ is the space
of all bounded linear functionals ϕ : M → C. A state on M is a positive linear functional
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ϕ ∈ M∗ of norm ∥ϕ∥ = 1. Given a von Neumann subalgebra N ⊆ M , a state on M is called
N -central if τ(ab) = τ(ba) for all a ∈ N , b ∈ M . A state on M is called tracial if it is M-
central, i.e. if ϕ(ab) = ϕ(ba) for all a,b ∈ M . A weight on M is a map ϕ : M+ → [0,∞]
satisfying ϕ(a + b) = ϕ(a)+ϕ(b) and ϕ(λa) = λϕ(a) for a,b ∈ M and λ ∈ [0,∞). For a
weight ϕ we denote

Mϕ = Span{a ∈ M+ :ϕ(a) <∞} (2.4)

We may extend a weight linearly to a map ϕ :Mϕ→C. We call a weight semifinite if Mϕ

isσ-weakly dense in M . We call a weight finite ifϕ(x) <∞ for all x ∈ M+. We call a weight
tracial if ϕ(x∗x) =ϕ(xx∗) for x ∈ M . We call a weight faithful if ϕ(x∗x) > 0 for x ∈ M . We
call a weight normal if ϕ(supi ai ) = supi ϕ(ai ) for every increasing net (ai )i∈I in M+. We
note that the map Tr from (2.1) defines a normal semifinite tracial weight on B(H ). Fur-
thermore, we observe that all states are weights (by restiction) and that all finite weights
extend linearly to positive functionals on M .

For a normal state ϕ on a von Neumann algebra M (or a state ϕ on a C*-algebra) put

Nϕ = {a ∈ M :ϕ(a∗a) = 0} (2.5)

and denote L2(M ,ϕ) for the GNS-Hilbert space, which is the completion of M/Nϕ with
respect to the inner product 〈x+Nϕ, y+Nϕ〉 :=ϕ(y∗x). We letπ : M → B(L2(M ,ϕ)) be the
GNS-representation, which is the ∗-homomorphism given by π(a)(b +Nϕ) = ab +Nϕ.

When ϕ is normal and faithful we call (M ,ϕ) a statial von Neumann algebra. For τ is
a normal faithful tracial state, we call (M ,τ) a tracial von Neumann algebra. We denote
L1(M ,τ) for the Banach space completion of M w.r.t. the norm ∥x∥1 = τ(|x|). For a von
Neumann algebra M we denote by M∗ the predual of M , which is a Banach space such
that (M∗)∗ ≃ M . We can identify M∗ with the space of all σ-weakly continuous linear
functionals. When (M ,τ) is a tracial von Neumann algebra, the predual M∗ is isomorphic
to L1(M ,τ) under the identification L1(M ,τ) ∋ x 7→ τ(·x) ∈ M∗. We will sometimes require
a von Neumann algebra M to have a separable predual. This is equivalent with saying
that M can be faithfully representated as M → B(H ) on a separable Hilbert space H .

SUPPORT, PROJECTIONS, TYPE CLASSIFICATION AND AMPLIFICATIONS

For x ∈ M we denote |x| := p
x∗x for its absolute value, ℜ(x) := x+x∗

2 for its real part

and ℑ(x) := x−x∗
2i for its imaginary part. For self-adjoint x ∈ M we denote x+ := |x|+x

2 for

its postive part and x− := |x|−x
2 for its negative part, and we note that x− and x+ satisfy

x−x+ = 0. For x ∈ M we denote the left support (resp. right support) of x by l(x) (resp.
r(x)) which is the smallest projection p ∈ P(M) such that px = x (resp. xp = x). We recall
that any x ∈ M can be written as a polar decomposition x = u|x| where u ∈ M is a partial
isometry with uu∗ = l(x) and u∗u = r(x). For projections p, q ∈ P(M) we say that

We denote the support of x by s(x) := l(x)∨r(x) ∈ M (i.e. s(x) is the smallest projection
larger than l(x) and r(x)). Furthermore, we denote the central support of x by z(x), which
is the smallest projection in M ∩M ′ such that s(x) ≤ z(x).

Projections p, q ∈ P(M) are said to be (Murray-von Neumann) equivalent (in M), de-
noted p ∼ q , whenever there is a v ∈ M such that p = v∗v and q = v v∗. We write p ⪯ q



26 2. PRELIMINARIES

whenever r ≤ q for some projection r with r ∼ p. Moreover, we write p ≺ q when p ⪯ q
and p ̸= q . A projection p ∈ P(M) is called central (in M) if p ∈ M ∩ M ′. A projection
p ∈ P(M) is called abelian (in M) if the corner pM p is commutative. A non-zero pro-
jection p ∈ P(M) is called minimal (in M) if there is no non-zero projection q ∈ P(M)
satisfying q < p. A projection p ∈ P(M) is called finite (in M) if q ≤ p with q ∼ p im-
plies q = p for any projection q ∈ P(M). There are the following types of von Neumann
algebras M .

• Type I if every projection 0 ̸= p ∈ M majorizes an abelian projection 0 ̸= e ∈ M .

• Type II if M does not contain any non-zero abelian projection and if every non-
zero central projection in M majorizes a non-zero finite projection.

• Type III if M does not contain any non-zero finite projection.

A von Neumann algebra is called atomic if every non-zero projection majorizes a non-
zero abelian projection. A von Neumann algebra M is called diffuse if there are no min-
imal projections. A von Neumann algebra M is called finite if the projection 1M is finite
in M . Equivalently, M is finite if and only if there exists a normal faithful tracial state
on M . When M is moreover a factor, then this trace is in fact unique. A von Neumann
algebra that is not finite is called infinite. A von Neumann algebra is called semifinite if
any non-zero central projection p ∈ M majorizes a non-zero finite projection.

Every factor is precisely of one of the three types: I, II or III. Factors of type I are always
atomic and of the form M = B(H ) for some Hilbert space H . When M is moreover finite
then n := dimH <∞ and we call M a factor of type In . A von Neumann algebra of type
I that is not finite, is said to be of type I∞. Von Neumann algebras of type II and III are
always diffuse. A type II von Neumann algebra is said to be of type II1 if it is finite, and
otherwise it is said to be of type II∞. Factors M of type II∞ are always semifinite and
of the form M = N ⊗B(H ) for some II1-factor N and some infinite-dimensional Hilbert
space H . Whenever M is a factor of type II1, the unique normal faithful tracial state τ
satisfies τ(P(M)) = [0,1]. Given t ∈ (0,∞) we then denote by M t the amplification of M
by t . Writing t = ns for some n ≥ 1 and s ∈ (0,1) this amplification is defined as

M t := pM p⊗Matn(C)

where p ∈ P(M) has trace τ(p) = s. We note that this definition is independent of the
choice of n, s and p. Furthermore, we note for t ∈ (0,∞) that the amplification M t is
stably isomorphic to M .

OPPOSITE ALGEBRA AND THE STANDARD FORM

For an algebra A its opposite algebra Aop is defined as a vector space as A and for a ∈ A
the corresponding element in Aop is denoted by aop. We equip Aop with the multipli-
cation Aop × Aop ∋ (aop,bop) 7→ (ba)op ∈ Aop making it into an algebra. When A has an
involution, then we equip Aop with the involution (aop)∗ := (a∗)op, making it into a ∗-
algebra. When A is a C*-algebra, then so is Aop when equipped with the same norm.

Let M ⊆ B(H ) be a von Neumann algebra. Recall that a vector ξ ∈ H is called cyclic
if Mξ is dense in H and that it is called separating if xξ = 0 implies x = 0 for x ∈ M .
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The inclusion M ⊆ B(H ) is said be be in standard form if there exists a conjugation
J : H → H (i.e. a conjugate-linear isometric map satisfying J 2 = IdH ) such that the
map j : M op → M ′ given by xop 7→ J x∗ J defines a ∗-isomorphism that acts as the iden-
tity on Z(M). In this case H is called the standard Hilbert space for M and denoted by
L2(M). The map J is called the modular conjugate operator. If there exists a vector ξ ∈H

that is both cyclic and separating, then M is in standard form [SZ19, Introduction (8◦) of
Chapter 10]. In such case we shall identify M op with J M J .

CONDITIONAL EXPECTATIONS

Let M be a von Neumann algebra and N ⊆ M a von Neumann subalgebra. A map E : M →
N is called a conditional expectation from M to N if it satisfies the following conditions

1. E is positive (i.e. E(M+) ⊆ N+)

2. E(a) = a for a ∈ N

3. E(axb) = aE(x)b for a,b ∈ N , x ∈ M .

An equivalent definition is that E is a projection on N with norm ∥E∥ = 1. We note
that conditional expectations are u.c.p maps and therefore satisfy the Schwarz inequality
E(x)∗E(x) ≤ E(x∗x) [Pau02, proposition 3.3].

If (M ,τ) is a tracial von Neumann algebra and N ⊆ M is a von Neumann subalgebra,
then there is a unique conditional expectation EN on N that is trace-preserving (i.e. sat-
isfies τ(EN (x)) = τ(x) for x ∈ M), see [AP17, Theorem 9.1.2]. The map EN is automatically
normal and faithful and moreover extends to a contraction on L2(M ,τ) as

∥EN (x)∥2
2 = τ(EN (x)∗EN (x)) ≤ τ(EN (x∗x)) = τ(x∗x) = ∥x∥2

2

This L2-extension is denoted by eN and called the Jones projection. We denote by 〈M ,eN 〉
the Jones extension of M , which is the von Neumann algebra (M ∪ {eN })′′.

LOCALLY MEASURABLE OPERATORS

Let M be a von Neumann algebra on a Hilbert space H . Given a linear subspace H0 ⊆
H , we call a linear operator x : H0 →H densely defined if H0 ⊆H is dense. We denote
Dom(x) := H0 for the domain of x. We say that a linear operator y extends x, denoted
x ⊆ y , if Dom(x) ⊆ Dom(y) and xξ= yξ for ξ ∈ Dom(x). We call a densely defined linear
operator x closed if its graph G (x) := {(ξ, xξ) : ξ ∈ H0} is a closed subspace of H ⊕H .
We call x preclosed if it is densely defined and if the closure of G (x) in H ⊕H is the
graph of a linear operator called the closure of x. For linear operators x : Dom(x) → H ,
y : Dom(y) →H we let x + y and x y be the linear operators with domain Dom(x + y) :=
Dom(x)∩Dom(y) and Dom(x y) := {ξ ∈ Dom(y) : yξ ∈ Dom(x)} respectively and defined
in the obvious way.

A densely defined, closed linear operator x : Dom(x) →H is said to be affiliated with
M if y x ⊂ x y for all y from the commutant M ′ of the algebra M . A linear operator x
affiliated with M is called measurable with respect to M if χ(λ,∞)(|x|) is a finite projection
for some λ > 0. Here χ(λ,∞)(|x|) is the spectral projection of |x| corresponding to the
interval (λ,+∞). We denote the set of all measurable operators by S(M). Clearly, M is a
subset of S(M). It is clear that if M is a factor of type I or III then S(M) = M .
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Let x, y ∈ S(M). It is well known that x + y and x y are densely-defined and preclosed
operators [DPS22]. We define the strong sum respectively the strong product of x and y
as the closures of these operators, which we simply also denote by x + y and x y respec-
tively. When S(M) is equipped with the operation of strong sum, operation of strong
product, and the ∗-operation, it becomes a unital ∗-algebra over C. It is clear that M is
a ∗-subalgebra of S(M). Moreover, in the case that M is finite, every operator affiliated
with M becomes measurable. In particular, the set of all affiliated operators then forms a
∗-algebra, which coincides with S(M). Following [KL14; KLT20], in the case when the von
Neumann algebra M is finite, we refer to the algebra S(M) as the Murray-von Neumann
algebra associated with M .

Let M be semifinite and let τbe a faithful normal semifinite trace on M . A linear oper-
ator x affiliated with M is called τ-measurable with respect to M if τ(χ(λ,∞)(|x|)) <∞ for
some λ > 0. We denote the set of all τ-measurable operators by S(M ,τ). The set S(M ,τ)
is a ∗-subalgebra of S(M) that contains M . Consider the topology tτ of convergence in
measure or measure topology on S(M ,τ), which is defined by the following neighbor-
hoods of zero:

N (ε,δ) = {x ∈ S(M ,τ) : ∃e ∈ P(M), τ(1M −e) ≤ δ, xe ∈ M , ∥xe∥ ≤ ε},

where ε,δ are positive numbers. The algebra S(M ,τ) equipped with the measure topol-
ogy is a topological ∗-algebra and F -space [DPS22].

A linear operator x affiliated with M is called locally measurable with respect to M if
there exist increasing central projections (pn) in P(Z(M)) converging strongly to 1M , and
such that xpn ∈ S(M). The set LS(M) of locally measurable operators forms a ∗-algebra
with respect to the operations of a strong sum and a strong product. It is clear that if M
is a factor then LS(M) = S(M).

2.1.3. BIMODULES
Let A be a ∗-algebra. A left Hilbert A-module, or simply a left A-module, is a Hilbert space
H together with a left A action, i.e. a ∗-homomorphism πl : A → B(H ). For a ∈ A, ξ ∈H

we simply write aξ for πl (a)ξ. A right A-module is a Hilbert space with a right A action,
i.e. a ∗-homomorphism πr : Aop → B(H ). For a ∈ A, ξ ∈ H we write ξa for πr (aop)ξ. Let
A,B be ∗-algebras. An A−B-bimodule is a Hilbert space H that is both a left A-module
and a right B-module and such that πl (A) and πr (B op) commute. For η ∈H , a ∈ A, b ∈ B
we can write πl (a)πr (b)η by aηb without ambiguity. To emphatize that H is a A−B bi-
module we sometimes write AHB for H . When A = B we simply call H an A bimodule.
In case A,B are also C∗-algebras we require that both actions are continuous as maps
A → B(H ) (and therefore contractive). In case A,B are von Neumann algebra we require
both actions to be normal. We refer to these bimodules as A−B bimodules and it should
be clear from the context whether this is a bimodule over a ∗-algebra, C∗-algebra or von
Neumann algebra.

Given a von Neumann algebra M , we call a Banach space X a Banach M-bimodule
if we are given homomorphisms πl : M → B(X ) and πr : M op → B(X ) for which πl (M)
and πr (M op) commute. A linear map δ from a von Neumann algebra M to a Banach
M-bimodule X is called a derivation if δ(ab) = δ(a)b + aδ(b) for a,b ∈ M . For a tracial
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von Neumann algebra (M ,τ) we remark that L1(M ,τ) is a Banach M-Bimodule with the
obvious actions.

THE TRIVIAL BIMODULE AND THE COARSE BIMODULE

Let M be a von Neumann algebra. The M−M-bimodule L2(M) with the actions πl (x)η=
xη and πr (xop) = J x∗ Jη is called the trivial bimodule. Let M , N be von Neumann alge-
bras with standard Hilbert spaces L2(M) and L2(N ). Then the M −N -bimodule L2(M)⊗
L2(N ) with actions πl (x)πr (y)(η1 ⊗η2) = (xη1)⊗ (J y∗ Jη2) is called the coarse bimodule.

CONTAINEMENT, WEAK-CONTAINMENT AND QUASI-CONTAINEMENT

We say that an A−B bimodule H is contained in an A−B bimodule K if H is a Hilbert
subspace of K that is invariant under the actions of A and B . We say that H is quasi-
contained in K if H is contained in ⊕i∈I K for some index set I (if H is separable we
may choose I = N). We say that H is weakly contained in K if for every ϵ > 0, every
finite sets F ⊆ A, G ⊆ B and every ξ ∈ H there exist finitely many η j ∈ K indexed by
j ∈G such that for x ∈F , y ∈G ,

|〈xξy,ξ〉− ∑
j∈G

〈xη j y,η j 〉| < ϵ.

Containment implies quasi-containment which implies weak containment. Note that if
A is a ∗-subalgebra of a von Neumann algebra M and K is an A bimodule that is quasi-
contained in a M-bimodule. Then the left and right A actions on K are normal and can
be extended to M so that K is a M-bimodule.

POPA’S INTERTWINING-BY-BIMODULE TECHIQUE

We recall the following definition from the fundamental work of [Pop06c; Pop06d]. In
this section we let M be a finite von Neumann algebra.

Definition 2.1.2 (Embedding A ≺M B). For von Neumann subalgebras A ⊆ 1A M1A ,B ⊆
1B M1B we will say that A embeds in B inside M (denoted by A ≺M B) if one of the follow-
ing equivalent statements holds:

1. There exist projections p ∈ A, q ∈ B, a normal ∗-homomorphism θ : p Ap → qB q
and a non-zero partial isometry v ∈ qM p such that θ(x)v = v x for all x ∈ p Ap;

2. There exists no net of unitaries (ui )i in A such that for any x, y ∈ 1A M1B we have
that ∥EB (x∗ui y)∥2 → 0;

3. There exists a Hilbert A-B bimodule H ⊆ L2(M ,τ) such that dimB H <∞ (see [JS97,
Definition 2.2.3] for the definition of dimB H ).

We say that A embeds stably in B inside M (denoted by A ≺s
M B) if for any projection

r ∈ A′∩M we have Ar ≺M B.
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2.2. GRAPHS
We establish notation related to graphs, which will be excessively used throughout the
thesis. The graphs we will consider are simple (i.e. undirected, no double edges, no self-
loops). Formally, this means that a graph Γ consists of a pair (V ,E) where V is a set and
E is a subset of {{v, w} : v, w ∈V , v ̸= w}. The set V is called the vertex set and the set E is
called the edge set. In practice we will identify Γ with the vertex set V and write v ∈ Γ to
mean that v is a vertex of Γ. We also write |Γ| for the cardinality of V , and call it the size
of the graph. We say Γ is finite when |Γ| < ∞. Two vertices v, w ∈ Γ are said to share an
edge in Γ if {v, w} ∈ E . A graph is said to be complete if any two distinct vertices v, w ∈ Γ
share an edge. An induced subgraph or simply subgraph of Γ is a graph Γ0 whose vertex
set is a subset of the vertex set of Γ and that is such that v, w ∈ Γ0 share an edge in Γ0 if
and only if v, w share an edge in Γ. This is denoted as Γ0 ⊆ Γ. We call a subgraph Γ0 of Γ
strict when Γ0 ̸= Γ, and we denote this by Γ0 ⊊ Γ. We will always identify subsets of the
vertex set of Γ with their induced subgraphs. For example, if Γ1,Γ2 are subgraphs of Γ,
then so are Γ1 ∪Γ2, Γ1 ∩Γ2 and Γ1 \Γ2. A complete subgraph of Γ is called a clique and
the set of all cliques is denoted by Cliq(Γ) (this includes the empty graph). For a vertex
v ∈ Γwe define the link of v , respectively the star of v as

LinkΓ(v) := {w ∈ Γ : v and w share an edge in Γ} (2.6)

StarΓ(v) := {v}∪LinkΓ(v) (2.7)

and consider them as a subgraph of Γ. More generally, the link of a subgraph Λ ⊆ Γ is
defined as

LinkΓ(Λ) := ⋂
v∈Λ

LinkΓ(v)

with the convention LinkΓ(;) = Γ. When the graph Γ is fixed, and we only consider sub-
graphs ofΓ, we will omit the subscriptΓ in the notation and simply write Link(v), Link(Λ)
and Star(v). We observe for v ∈ Γ that it always holds true that v ∈ Link(Link(v)).

A graph Γwill be called reducible if there are disjoint non-empty subgraphs Γ1,Γ2 ⊆ Γ
such that Γ= Γ1 ∪Γ2 and LinkΓ(Γ1) = Γ2. The graph Γwill be called irreducible if it is not
reducible. An irreducible component of a graph Γ is a non-empty subgraph Λ⊆ Γ that is
irreducible and satisfies LinkΓ(Λ) = Γ\Λ. For a graph Γ and verices u, v ∈ Γ a path from u
to w is a tuple P = (v0, . . . , vn) of vertices v0, . . . , vn ∈ Γ such that vi−1 shares an edge with
vi for i = 1, . . . ,n and such that v0 = u and vn = w . The number n is called the length of P
and is denoted by |P |. A path from u to v is called a geodesic if it is the shortest path from
u to v . If a path from u to w exists then we say that u and w are connected by a path and
we write DistΓ(u, w) for the minimal length of a path from u to w . If such path does not
exists we put DistΓ(u, w) =∞. We define the radius of a non-empty graph Γ as

Radius(Γ) = inf
u∈Γ

sup
w∈Γ

DistΓ(u, w)

and put Radius(Γ) = 0 when Γ is empty. We say that a graph Γ is connected if any two
vertices v, w ∈ Γ are connected by a path. A connected component of a graph Γ is a non-
empty subgraphΛ⊆ Γ that is connected and satisfies for v ∈Λ that LinkΓ(v) ⊆Λ.
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a b c

d e f

Figure 2.1: A finite graph Γwith vertices {a,b,c,d ,e, f } is depicted. As an example, we have

Link(e) = {b,c,d} Star(e) = {b,c,d ,e} Link({b,e}) = {c}

The graph Γ is irreducible, not connected and has radius Radius(Γ) =∞. The only irreducible component of
Γ is Γ itself. The connected components of Γ are {a} and {b,c,d ,e, f }. The cliques of Γ are the empty graph
; (size 0), the singletons {a}, {b}, {c}, {d}, {e}, { f } (size 1), and the subgraphs {b,c}, {b,e}, {b, f }, {c,e}, {c, f }, {d ,e}
(size 2) and {b,c,e}, {b,c, f } (size 3). A path from b to d is given by P = (b,c,e,d). This is not a geodesic since
Q = (b,e,d) is a path from b to d of length |Q| = 2 < 3 = |P |

We say that a graph Γ is a tree if for every two vertices u, w ∈ Γ there is a unique path
from u to w . We say that a graph Γ is a forest if its connected components are trees. Two
graphs Γ and Λ are said to be isomorphic if there is a bijection ι : Γ→ Λ between their
vertex sets, such that v, w ∈ Γ share an edge if and only if ι(v), ι(w) share an edge. These
definitions are illustrated in Fig. 2.1.

2.3. DISCRETE GROUPS
In Section 2.3.1 we discuss for discrete groups G the Cayley graph CayleyS (G), hyperbol-
icity, word lengths and other functionψ : G →C. In Section 2.3.2 we discuss the group al-
gebra C[G], the reduced group C*-algebra C∗

r (G), the group von Neumann algebra L (G)
and the coarse bimodule ℓ2(G)⊗ℓ2(G). In Section 2.3.3 we introduce notation for Cox-
eter groups and Hecke algebras and furthermore state the definition of graph products
of groups. For more background on Coxeter groups we refer to [Hum90][Dav08] [Tit09].

2.3.1. CAYLEY GRAPHS, WORD LENGTHS AND HYPERBOLICITY

Recall that a topological group is a group G equipped with a topology for which the in-
version map G ∋ g 7→ g−1 ∈ G and the multiplication map G ×G ∋ (g ,h) 7→ g h ∈ G are
continuous. We only consider discrete groups, i.e. groups equipped with the discrete
topology. For a group G we always denote by e its unit element.

CAYLEY GRAPH AND WORD LENGTH

A group G is said to be generated by a subset S ⊆ G if G is the only subgroup of G that
contains S. We say that G is finitely generated if there exists a finite set S that generates
G . For a subset S ⊆G we put S−1 = {s−1 : s ∈ S} and we define the Cayley graph as follows.

Definition 2.3.1 (Cayley graph). Let G be a group that is generated by a set S. Then the
Cayley graph CayleyS (G) is the simple graph with vertex set G and where distinct g ,h ∈G
share an edge if and only if g h−1 ∈ S ∪S−1.
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The Cayley graph CayleyS (G) is connected and for a group element g ∈ G we define
its word length as

|g |S = DistCayleyS (G)(e, g ).

We observe that |g |S equals the minimal integer n such that we can write g = g1 · · ·gn

where gi ∈ S ∪S−1 for 1 ≤ i ≤ n.

HYPERBOLICITY

We state the definition of hyperbolicity for connected graphs.

Definition 2.3.2 (Hyperbolicity). A connected graph Γ is called hyperbolic if there exists a
R > 0 satisfying the following condition: for every u, v, w ∈ Γ and every geodesic P1 from u
to v, geodesic P2 from v to w and geodesic P3 from w to u we have that P3 ⊆ BR (P1 ∪P2)
(here BR (P1 ∪P2) denotes the open ball of radius R around the set of vertices in P1 ∪P2).

A group G generated by a finite set S is called hyperbolic or word hyperbolic if the
Cayley graph CayleyS (G) is hyperbolic. This definition is independent of the choice of
the generating set S, see [BO08, Section 5.3]. We emphasize that in this thesis ‘hyper-
bolic’ and ‘word hyperbolic’ mean the same thing. The terminology ‘word hyperbolic’ is
more common in the theory of Coxeter groups.

FUNCTIONS ON GROUPS

A length function ψ on a discrete group G is a function ψ : G → R≥0 satisfying ψ(uv) ≤
ψ(u)+ψ(v) for all u, v ∈G . If G is generated by a finite set S then a typical length function
is defined by ψ(w) = |w |S . A function ψ : G → R is called conditionally of negative type if
ψ(e) = 0, ψ(g ) =ψ(g−1), g ∈ G and for all n ∈ N and g1, . . . , gn ∈ G and c1, . . . ,cn ∈ C with∑n

i=1 ci = 0 we have
n∑

i=1

n∑
j=1

ci c jψ(g−1
j gi ) ≤ 0.

A functionψ : G →R is called positive definite if for n ∈N and g1, . . . , gn ∈G and c1, . . . ,cn ∈
Cwe have

n∑
i=1

n∑
j=1

ci c jψ(g−1
j gi ) ≥ 0.

A function ψ : G → R is called proper if the inverse image of a compact set is compact
(hence finite as G is discrete). The function ψ is called symmetric if ψ(g−1) = ψ(g ) for
g ∈G .

2.3.2. THE GROUP VON NEUMANN ALGEBRA
For a discrete group G we show the construction of the group algebra C[G], reduced
group C*-algebra C∗

r (G) and of the group von Neumann algebra L (G). We shall denote
ℓ2(G) for the space of all square summable functions f : G → C. This is a Hilbert space
with an orthonormal basis given by (δt )t∈G where δt is the delta function at t ∈ G (i.e.
δt (s) equals 1 if s = t and equals 0 otherwise). For s ∈G define bounded operators λs ,ρs :
ℓ2(G) → ℓ2(G) as

(λs f )(t ) = f (s−1t )(ρs f )(t ) = f (t s) (2.8)
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and observe that λsδt = δst and ρsδt = δt s−1 for s, t ∈ G . We define the left (resp. right)
regular representation

G → B(ℓ2(G)) : s 7→λs , (2.9)

G → B(ℓ2(G)) : s 7→ ρs . (2.10)

The group algebra C[G] is the ∗-algebra generated by λs , s ∈ G . The reduced group C∗-
algebra C∗

r (G) is the norm closure of C[G]. The group von Neumann algebra L (G) is the
strong operator topology closure of C[G]. The von Neumann algebra L (G) is finite with
normal faithful tracial state

τ(x) = 〈xδe ,δe〉, x ∈L (G). (2.11)

Furthermore, the commutant L (G)′ equals the von Neumann algebra generated by the
set {ρs : s ∈G}. We note that we have an identification as Hilbert spaces L2(L (G)) ≃ ℓ2(G)
by x 7→ xδe with x ∈ C[G]. Under this identification ℓ2(G) is the trivial bimodule with
actions given by the left and right regular representations λ and ρ. The coarse bimodule
is then given by ℓ2(G)⊗ℓ2(G) with left and right actions given by

x · (ξ⊗η) · y = (xξ)⊗ (ηy), ξ,η ∈ ℓ2(G).

We simply call ℓ2(G)⊗ℓ2(G) with these bimodule actions the coarse bimodule of G . We
also summarize that

G ⊆C[G] ⊆C∗
r (G) ⊆L (G) ⊆ ℓ2(G),

where the first inclusion is given by s 7→λs and the others were discussed above.

2.3.3. COXETER GROUPS, HECKE-ALGEBRAS AND GRAPH PRODUCTS

Let S be a (possibly infinite) set. A Coxeter matrix on S is a symmetric matrix M =
(ms,t )s,t∈S (indexed by S) with ms,s = 1 for s ∈ S and ms,t = mt ,s ∈ {2,3, . . .}∪ {∞} for s ̸= t .
We write W := 〈S|M〉 to denote the corresponding Coxeter group, which is defined by

W = 〈S|(st )ms,t = e for s, t ∈ S〉 (2.12)

that is, W is the group generated by S subject to the relations (st )ms,t = e for s, t ∈ S.
When ms,t =∞, we mean that no relation of the form (st )k = e exists for k ≥ 1. We call
(W ,S) a Coxeter system. When such a system is fixed, we write | · | for the length function
| · |S . We call a Coxeter system finite rank if S is finite. An element v ∈ S is referred to as
a letter, and an element v ∈ W is referred to as a word. We will say that an expression
w = w1w2 · · ·wn is reduced if |w| = |w1|+ |w2|+ . . .+|wn |. We will say that a word w starts
with v if |w| = |v|+ |v−1w| and we will say that w ends with v if |w| = |wv−1|+ |v|.

HECKE ALGEBRAS

Fix a Coxeter system W = 〈S|M〉. Let q = (qs )s∈S with qs > 0 for s ∈ S and such that qs = qt

whenever s, t ∈ S are conjugate in W . In this thesis we shall call such tuples Hecke tuples.
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Moreover, we will denote ps (q) = qs−1p
qs

. We can as in [Dav08, Theorem 19.1.1] define for

s ∈ S the operators T (q)
s : ℓ2(W ) → ℓ2(W ) given by

T (q)
s (δw) =

{
δsw |sw| > |w|
δsw +ps (q)δw |sw| < |w| .

For these operators we have

〈T (q)
s (δw),δz〉 = 〈δsw,δz〉+〈ps (q)δw,δz〉1(|sw| < |w|)

= 〈δw,δsz〉+〈δw, ps (q)δz〉1(|sz| < |z|)
= 〈δw,T (q)

s (δz)〉

that is (T (q)
s )∗ = T (q)

s . For a word w ∈ W with a reduced expression w = w1 . . . wk we can
set

T (q)
w = T (q)

w1
.....T (q)

wk
,

which is well-defined by [Dav08, Theorem 19.1.1]. We note that we have (T (q)
w )∗ = T (q)

w−1

and T (q)
w (δe ) = δw. Furthermore for s ∈ S and w ∈W they satisfy the equations

T (q)
s T (q)

w = T (q)
sw +ps (q)T (q)

w 1(|sw| < |w|),

T (q)
w T (q)

s = T (q)
ws +ps (q)T (q)

w 1(|ws| < |w|).

Note that the first equation holds by the proof of [Dav08, Theorem 19.1.1], and the sec-
ond equation follows by taking the adjoint on both sides.

We will denote Cq[W ] for the ∗-algebra spanned by the linear basis {T (q)
w : w ∈W }. We

furthermore denote C∗
r,q(W ) ⊆ B(ℓ2(W )) for the reduced C∗-algebra obtained by taking

the norm closure ofCq[W ]. Finally, we define the Hecke von Neumann algebra Nq(W ) as
the strong closure of C∗

r,q(W ). We equip the von Neumann algebra with the faithful finite
trace τ(x) = 〈xδe ,δe〉. For q > 0 we write Nq (W ) for the Hecke algebra corresponding to
the tuple q = (qs )s∈S with qs = q for s ∈ S. We note here that when q is taken equal to 1,
then (Nq (W ),τ) is simply the group von Neumann algebra L (W ) with canonical trace τ.

RIGHT-ANGLED COXETER GROUPS

A Coxeter group W is called right-angled if it can be represented in the form W = 〈S|M〉
where ms,t ∈ {2,∞} for s ̸= t . Let Γ be a simple graph. We will write WΓ for the right-
angled Coxeter group WΓ := 〈S|M〉 where S = Γ and M = (ms,t )s,t∈S satisfies ms,t = 1 if
s = t , ms,t = 2 when s, t share an edge and ms,t =∞ otherwise. By [Gre90, Theorem 4.12]
every right-angled Coxeter group corresponds to a unique simple graph.

For v,w ∈ WΓ, we say that v is a subword of w if we can write w in reduced form w =
v1vv2 for some v1,v2 ∈ WΓ. A Coxeter word w ∈ Γ with reduced expression w = w1 · · ·wn

is called a clique word if wi commutes with w j for all 1 ≤ i , j ≤ n. We can define a partial
order on the set of clique words by writing v ⊆ w if v is a subword of w. We observe that a
clique word w in WΓ uniquely corresponds to a subgraphs of Γ (the graph of all letters in
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w). For clique words w = w1 · · ·wn , v = v1 · · ·vm we write w∩v for the clique word with
letters {w1, . . . , wn}∩ {v1, . . . , vm}. If w and v moreover commute, we write w∪ v for the
clique word with letters {w1, . . . , wn}∪ {v1, . . . , vm}. For a word u ∈ WΓ we write sl (u) for
the maximal clique word that u start with and write sr (u) for the maximal clique word
that u ends with.

For a subset S ⊆WΓ we will write

WΓ(S) := {w ∈WΓ : uw is reduced for all u ∈ S} (2.13)

W ′
Γ(S) := {w ∈WΓ : wu is reduced for all u ∈ S} (2.14)

This notation will in particular be used when S ⊆ Γ ⊆ WΓ is a subgraph of Γ or when
S = {u} is a singleton. In the latter case we simply write WΓ(u) respectively W ′

Γ(u) for
WΓ({u}) respectively W ′

Γ({u}). Furthermore, when the graph Γ is fixed, we will omit the
subscript Γ in the notation.

GRAPH PRODUCTS OF GROUPS

Given a simple graph Γ and groups Gv for v ∈ Γ. Let G be the free product of the groups
(Gv )v∈Γ. Let H ⊆G be the normal subgroup generated by

{g hg−1h−1 : g ∈Gv ,h ∈Gw for v, w ∈ Γ that share an edge}

The graph product GΓ =∗v,ΓGv is defined by the quotient GΓ :=G/H .

2.4. GRAPH PRODUCTS OF OPERATOR ALGEBRAS
At the end of previous section we defined graph products of groups. In this section we
show the construction of the reduced graph product and the von Neumann algebraic
graph products as in [CF17]. First, in Section 2.4.1 we construct the graph product of
pointed Hilbert spaces, which will be needed in Section 2.4.2 where we construct the re-
duced graph product of unital C*-algebras. In Section 2.4.3 we define the von Neumann
algebraic graph product.

2.4.1. THE GRAPH PRODUCT OF POINTED HILBERT SPACES
Let Γ be a simple graph and for v ∈ Γ let (Hv ,ξv ) be a pair of a Hilbert space Hv and
a unit vector ξv ∈ Hv . For v ∈ Γ we denote H̊v := ξ⊥v for the orthogonal complement.
Furthermore, for a vector η ∈Hv we write η̊ := η−〈η,ξ〉ξ ∈ H̊v for the projection in H̊v .
For every word w ∈WΓ with w ̸= e we fix a reduced representative (w1, . . . , wn) and define
the Hilbert space

H̊w := H̊w1 ⊗·· ·⊗H̊wn . (2.15)

We also set

H̊e :=CΩ (2.16)

where the vectorΩ is called the vacuum vector. For d ≥ 0 define the Hilbert space

HΓ,d := ⊕
w∈WΓ,|w|=d

H̊w. (2.17)
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The graph product of the pointed Hilbert spaces (Hv ,ξv ) is defined by

HΓ := ⊕
w∈WΓ

H̊w. (2.18)

and this will also be denoted by (HΓ,Ω) =∗v,Γ(Hv ,ξv ). We observe for a subgraphΛ⊆ Γ
that the Hilbert space HΛ is a subspace of HΓ.

For a subset S ⊆WΓ we denote

HΓ(S) = ⊕
w∈WΓ(S)

H̊w H ′
Γ(S) = ⊕

w∈W ′
Γ

(S)

H̊w (2.19)

This notation will in particularly be used when S ⊆ Γ ⊆ WΓ is a subgraph of Γ or when
S = {u} is a singleton and in the latter case we simply write HΓ(u) and H ′

Γ(u) respectively.
Furthermore, often we will omit the subscript Γ, and just write H (S) and H ′(S).

2.4.2. THE REDUCED GRAPH PRODUCT

Let Γ be a simple graph with to each vertex v ∈ Γ associated a unital C*-algebra Av to-
gether with a state ϕv on Av that is GNS-faithful (meaning the GNS-representations is
faithful). For v ∈ Γ let Hv := L2(Av ,ϕ) denote the GNS-Hilbert space. As by assumption
the GNS-representations πv : Av → B(Hv ) are faithful we may consider Av ⊆ B(Hv ) as a
subalgebra. Let ξv ∈Hv be a unit vector for which ϕv (x) = 〈xξv ,ξv 〉 for x ∈ A. We will let
(HΓ,Ω) := ∗v,Γ(Hv ,ξv ) be the graph product of the Hilbert spaces. We put Åv := kerϕv

and for a ∈ Av write å := a −ϕv (a)1Av ∈ Åv and â := aξv ∈ Hv . We observe for a ∈ Av

that ̂̊a = ˚̂a and particularly that a ∈ Åv implies â ∈ H̊v .

For an element w ∈WΓ, w ̸= e with representative (w1 . . . wl ) define the algebraic ten-
sor product

Åw := Åw1 ⊗·· ·⊗ Åwl . (2.20)

Furthermore, define

Åe := B(H̊e ). (2.21)

Moreover, for d ≥ 0 we define the algebraic direct sums

AΓ,d := ⊕
w∈WΓ
|w|=d

Åw (2.22)

AΓ := ⊕
w∈WΓ

Åw (2.23)

In order to define the reduced graph product of the algebras (Av ,ϕv ) we will define a
linear map λ : AΓ→ B(HΓ). To define λ we first define maps Q(v1,...,vn ) for certain words
v1, . . . ,vn ∈WΓ.
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IDENTIFYING HILBERT SPACES AND OPERATOR ALGEBRAS

Let n ≥ 1, and (v1, . . . ,vn) ∈ W n
Γ be s.t. |v1 · · ·vn | = |v1| + . . .+ |vn |. We will define linear

maps Q(v1,...,vn ) which will be used in defining the graph product for operator algebras.
Write I for the set of all indices 1 ≤ i ≤ n s.t. vi ̸= e. For i ∈ I write (v(i ,1), . . . , v(i ,li ))
for the representative of vi . Also, write (ṽ1, . . . , ṽl ) for the representative of v := v1 · · ·vn .
By the assumption it holds that l = ∑

i∈I li . For convenience, we define a bijection σ

from {1, . . . , l } to {(i , j )|i ∈ I ,1 ≤ j ≤ li } as σ(m) = (i , j ) where (i , j ) is uniquely cho-
sen with the property that m = j +∑

k∈I ,k<i lk . Now, we have by the definitions that
(vσ(1), . . . , vσ(l )) ∼ (ṽ1, . . . , ṽl ). Therefore, by [CF17, Lemma 2.3] we obtain that there is
a unique permutation π of {1, . . . , l } with the property that

(vσ(π(1)), . . . , vσ(π(l ))) = (ṽ1, . . . , ṽl ) (2.24)

and satisfying that if 1 ≤ i < j ≤ l are s.t. vσ(i ) = vσ( j ), then π(i ) <π( j ).

We will now define a unitary Q(v1,...,vn ) : H̊v1 ⊗ ·· · ⊗ H̊vn → H̊v1···vn as follows. For
i ∈I choose pure tensors ηi = ηi ,1 ⊗·· ·⊗ηi ,li ∈ H̊vi and for 1 ≤ i ≤ n with i ̸∈I denote
ηi =Ω. We define

Q(v1,...,vn )(η1 ⊗·· ·⊗ηn) =
{
ησ(π(1)) ⊗·· ·⊗ησ(π(l )) when I ̸= ;
Ω when I =; (2.25)

and we extend this definition linearly to a bounded map.
Similarly, we define another map Q(v1,...,vn ) : Åv1 ⊗·· ·⊗ Åvn → Åv1···vn , denoted by the

same symbol, as follows. For i ∈I choose pure tensors ai = ai ,1 ⊗·· ·⊗ai ,li ∈ Åvi and for
1 ≤ i ≤ n with i ̸∈I denote ai = IdH̊e

. We define

Q(v1,...,vn )(a1 ⊗·· ·⊗an) =
{

aσ(π(1)) ⊗·· ·⊗aσ(π(l )) when I ̸= ;
IdHΓ when I =; (2.26)

and we extend this definition to a linear map.

DEFINING THE GRAPH PRODUCT

We will for a subgraphΛ⊆ Γ define unitaries

UΛ : HΛ⊗HΓ(Λ) →HΓ as UΛ|H̊u⊗H̊w
=Q(u,w) for u ∈WΛ,w ∈WΓ(Λ) (2.27)

U ′
Λ : H ′

Γ(Λ)⊗HΛ→HΓ as UΛ|H̊u⊗H̊w
=Q(u,w) for u ∈W ′

Γ(Λ),w ∈WΛ (2.28)

and define operators λΛ : B(HΛ) → B(HΓ) and ρΛ : B(HΛ) → B(HΓ) as

λΛ(a) =UΛ(a ⊗ Id)U∗
Λ (2.29)

ρΛ(a) =U ′
Λ(Id⊗a)(U ′

Λ)∗. (2.30)

For u ∈ Γwe simply write Uu , U ′
u . λu , ρu instead of U{u}, U ′

{u}, λ{u}, ρ{u} respectively. The
definitions of Uu ,U ′

u and λu ,ρu are the same as in [CF17] and the intuition behind these
maps is as follows. The unitary U∗

u represents a pure tensor η= ηv1 ⊗·· ·⊗ηvn ∈ H̊v ⊆HΓ

by an element in Hu ⊗HΓ(u) by either shuffling the indices (when v starts with u), or
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tensoring with the vector ξu (when v does not start with u). The operator λu(a) acts
on η ∈ HΓ by rearranging the tensor η using U∗

u , acting with a on the part in Hu , and
subsequently using Uu to map the vector back to an element from HΓ.

This construction also coincides with [CKL21, Section 1.5] where the shuffling is
done implicit by using an equivalence relation (called shuffle equivalence) to identify
Hilbert spaces H̊w1 ⊗ ·· · ⊗ H̊wn and H̊w ′

1
⊗ ·· · ⊗ H̊w ′

n
whenever w1 · · ·wn = w ′

1 · · ·w ′
n

are two reduced expressions for the same word. The action is then defined by a · η =̂̊a⊗η+ϕ(a)ηwhen v does not start with u, and a ·η= ˚(aη0)⊗η′+〈aη0,ξu〉η′ when v starts
with u and η is shuffle equivalent to η0 ⊗η′ ∈ H̊u ⊗H̊uv.

We define a linear map λ : AΓ→ B(HΓ) for w ∈WΓ with representative (w1, . . . wt ) and
for a pure tensor a = a1 ⊗·· ·⊗at ∈ Åw as

λ(a1 ⊗·· ·⊗at ) =λw1 (a1)λw2 (a2) . . .λwt (at ) (2.31)

and we moreover define λ(IdH̊e
) = IdHΓ . We note that λ is injective as â := λ(a)Ω =

â1⊗·· ·⊗ ân for a = a1⊗·· ·⊗an ∈ Åw. We moreover note that for words v1, . . . ,vn ∈WΓ with
|v1| + . . .+ |vn | = |v1 · · ·vn | and elements ai ∈ Åvi we have for a = Q(v1,...,vn )(a1 ⊗ ·· ·⊗ an)
that λ(a) = λ(a1) . . .λ(an). We call an operator a = λw1 (a1) · · ·λwn (an) with w = w1 · · ·wn

reduced and wi ∈ Åwi for 1 ≤ i ≤ n a reduced operator. Sometimes we leave out the em-
bedding λvi and simply write a = a1 · · ·an .

We now define the reduced graph product as

AΓ :=∗min
v,Γ (Av ,ϕv ) :=λ(AΓ)

∥·∥
(2.32)

Also, for d ≥ 0 we define the homogeneous subspace of degree d as

AΓ,d :=λ(AΓ,d )
∥·∥

. (2.33)

Also, for v ∈WΓ we define

Åv :=λ(Åv)
∥·∥

. (2.34)

We moreover define the graph product stateϕΓ on AΓ (or simply denoted asϕ) byϕΓ(a) =
〈aΩ,Ω〉. This is a faithful state on AΓ which restricts to ϕv ◦λ−1

v on λv (Av ). The vertex
C*-algebras Av are included in AΓ through λv and we simply identify Av as subalgebras
of AΓ. By the universal property [CF17, Proposition 3.12, Proposition 3.22] these inclu-
sions extend to an inclusion of AΛ ⊆ AΓ, for Λ ⊆ Γ. This inclusion admits a unique ϕΓ-
preserving conditional expectation EAΛ : AΓ → AΛ that is determined by the following
formula, where a1 . . . an is a reduced operator with ai ∈ Åvi ,

EAΛ (a1 . . . an) =
{

a1 . . . an , ∀i , vi ∈Λ;
0, otherwise.

(2.35)

We state the following result which we will often use in this thesis (for reduced amal-
gamated free products we refer to [VDN02, Section 3.8]



2.5. PROPERTIES FOR GROUPS AND OPERATOR ALGEBRAS 39

Theorem 2.4.1 (Theorem 3.15 in [CF17]). Let Γ be a graph and for v ∈ Γ let (Av ,ϕv ) be
a C*-algebra with a GNS-faithful state ϕv . Let AΓ = ∗min

v∈Γ(Av ,ϕv ) be their reduced graph
product. Fix u ∈ Γ. There is a ∗-isomorphism from the reduced amalgamated free product

π : AStar(u) ∗ALink(u) AΓ\{u} → AΓ (2.36)

that is state-preserving and so that π|AStar(u) and π|AΓ\{u} are the canonical inclusions.

Remark 2.4.2. While this may be obvious, we remark that the graph product notation
depends on the initial notation. For example, If we are given a simple graph Λ and C*-
algebras (Bv ,ψv ) we use notation like B̊v , B̊v, BΛ, BΛ and ψ.

2.4.3. THE VON NEUMANN ALGEBRAIC GRAPH PRODUCT
Let Γ be a simple graph and for v ∈ Γ let (Mv ,ϕv ) be von Neumann algebras with normal
faithful states ϕv . We define the von Neumann algebraic graph product as the closure in
the strong operator topology of the reduced C*-algebraic graph product, i.e.

MΓ :=∗v,Γ(Mv ,ϕv ) :=λ(MΓ)
SOT

. (2.37)

Again we define a faithful state ϕ on MΓ by ϕ(a) = 〈aΩ,Ω〉 which is normal in this case.
We also define the homogeneous subspace of degree d as

MΓ,d :=λ(MΓ,d )
SOT

(2.38)

Also, for v ∈WΓ we define

M̊v :=λ(M̊v)
SOT

. (2.39)

We note that the conditional expectations from (2.35) extend to normal conditional ex-
pectations EMΛ : MΓ → MΛ. We also have the following amalgamated free product de-
composition.

Theorem 2.4.3 (Theorem 3.26 in [CF17]). Let Γ be a graph and for v ∈ Γ let (Mv ,ϕv ) be
a von Neumann algebra with a normal faithful state ϕv . Let MΓ = ∗v∈Γ(Mv ,ϕv ) be their
von Neumann algebraic graph product. Fix u ∈ Γ. There is a ∗-isomorphism from the von
Neumann algebraic amalgamated free product

π : MStar(u) ∗MLink(u) MΓ\{u} → MΓ (2.40)

that is state-preserving and so that π|MStar(u) and π|MΓ\{u} are the canonical inclusions.

2.5. PROPERTIES FOR GROUPS AND OPERATOR ALGEBRAS
We recall some approximation properties, rigidity properties and indecomposability prop-
erties and collect some results that explain how these properties are related. For a more
detailed exposition we refer to [BO08] and [AP17].

2.5.1. APPROXIMATION PROPERTIES
We recap several approximation properties.
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NUCLEAR MAPS AND EXACTNESS

We state the following definitions.

Definition 2.5.1 (Nuclear maps). A map θ : A → B between C*-algebras is called nuclear if
there are contractive, completely positive maps ϕn : A → Matkn (C) and ψn : Matkn (C) → B
such that ϕn ◦ψn → θ pointwise in the norm topology, i.e.

∥ϕn ◦ψn(a)−θ(a)∥→ 0 as n →∞

for all a ∈ A.

Definition 2.5.2 (Weakly nuclear maps). A map θ : M → N between von Neumann alge-
bras is called weakly nuclear if there are contractive, completely positive maps ϕn : M →
Matkn (C) andψn : Matkn (C) → N such thatϕn◦ψn → θ pointwise in theσ-weak topology,
i.e.

ϕ(ϕn ◦ψn(a)−θ(a)) → 0 as n →∞
for all a ∈ A and all normal functionals ϕ ∈ N∗

Definition 2.5.3 (Exactness). A C*-algebra A is exact if there exists a faithful representa-
tion π : A → B(H ) such that π is nuclear. A discrete group G is exact if C∗

r (G) is exact.

AMENABILITY AND RELATIVE AMENABILITY

We state the notion of amenability for discrete groups, the notion of nuclearity for C*-
algebras, and the notion of semidiscreteness for von Neumann algebras.

Definition 2.5.4 (Amenability). A discrete group G is called amenable if there exists a net
(mk )k of finitely supported, positive definite functions mk : G →C that converge pointwise
to the constant function 1G .

Definition 2.5.5 (Nuclearity). A C*-algebra A is called nuclear if the map IdA : A → A is
nuclear.

Definition 2.5.6 (Semidiscreteness). A von Neumann algebra A is called semidiscrete if
the map IdA : A → A is weakly nuclear.

We state the following result which relates these notions.

Proposition 2.5.7 (Theorem 2.6.8 in [BO08]). Let G be a discrete group. Then G is amenable
if and only if C∗

r (G) is nuclear if and only if L (G) if semidiscrete.

For von Neumann algebras the notion of semidiscreteness agrees with another prop-
erty called injectivity, see [BO08, Theorem 9.3.3]. Injectivity was introduced in [Loe74]
where it was moreover shown to be equivalent to the extension property from [HT67].

Definition 2.5.8 (Extension property). A von Neumann algebra M ⊆ B(H ) satisfies the
extension property if there exists a Banach space projection P : B(H ) → M of norm 1.

We state a definition and a result of due to Murray and von Neumann.
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Definition 2.5.9 (Hyperfiniteness). A von Neumann algebra M is called hyperfinite if
there exists a chain A1 ⊆ A2 ⊆ . . . ⊆ M of finite-dimensional ∗-algebras An such that M
is the von Neumann algebra generated by

⋃
n≥1 An , i.e. M = (

⋃
n≥1 An)′′.

Proposition 2.5.10 ([MN43]). All hyperfinite II1-factors are isomorphic.

In the fundamental work of [Con76] Connes showed for von Neumann algebras M
acting on separable von Neumann algebras that the notion of injectivity coincides with
hyperfiniteness. Furthermore, in [JKR72, Corollary 6.4] it was shown that all hyperfi-
nite von Neumann algebras satisfy a certain cohomological property, called amenability.
Connes moreover showed in [Con78] that amenability implies injectivity. Thus all these
notions agree when M has separable predual. Nowadays, the notions of semidiscrete-
ness, injectivity and the extension property are referred to as amenability. Furthermore,
in [OP10a] Ozawa and Popa introduced the following notion of relative amenability.

Definition 2.5.11. Let (M ,τ) be a tracial von Neumann algebra and let P ⊆ 1P M1P ,Q ⊆
M be von Neumann subalgebras. Say that P is amenable relative to Q inside M if there ex-
ists a P-central positive functional on 1P 〈M ,eQ〉1P that restricts to the trace τ on 1P M1P .

We also remark by [OP10a, Proposition 2.4] that if Q is hyperfinite and P is amenable
relative to Q inside M , then also P is hyperfinite.

WEAK AMENABILITY AND THE CBAP/CCAP AND THE WEAK-∗ CBAP/WEAK-∗ CCAP
In the following definition we will, for a function m : G →C on a discrete group G , denote
by Tm : C∗

r (G) →C∗
r (G) the Fourier multiplier given by Tmλg = m(g )λg (whenever Tm is

well-defined).

Definition 2.5.12 (Weak amenability). A discrete group G is said to be weakly amenable
with constant Λ < ∞ if there is a net (mk )k of finitely supported functions mk : G → C

that converge pointwise to the constant function 1G and satisfy supk ∥Tmk ∥cb ≤ Λ. The
Cowling-Haagerup constantΛcb(G) is defined as the infimum of all constantsΛ for which
such net exists.

We state the definitions of the CBAP (completely bounded approximation property)
and the CCAP (completely contractive approximation property) for C*-algebras as well as
their analogues for von Neumann algebras

Definition 2.5.13 (CBAP and CCAP). A C*-algebra A has the CBAP with constantΛ<∞ if
there exists a net (θi )i of finite rank maps θi : A → A that converge pointwise to the identity
operator IdA in norm (i.e. ∥θi (a)− a∥ → 0 for a ∈ A) and such that supi ∥θi∥cb ≤ Λ. The
Cowling-Haagerup constantΛcb(A) is defined as the infimum of all constantsΛ for which
there exists such net. IfΛcb(A) = 1 we say that A has the CCAP.

Definition 2.5.14 (weak-∗ CBAP and weak-∗ CCAP). A von Neumann algebra M has the
weak-∗ CBAP with constant Λ <∞ if there exists a net (θi )i of normal, finite rank maps
θi : M → M that converge pointwise to the identity operator IdM in the σ-weak topology
(i.e. ϕ(θi (a)− a) → 0 for a ∈ M and normal ϕ ∈ M∗) and such that supi ∥θi∥cb ≤Λ. The
Cowling-Haagerup constantΛcb(M) is defined as the infimum of all constantsΛ for which
there exists such net. IfΛcb(M) = 1 we say that M has the weak-∗ CCAP.
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We state the following result which relates these notions.

Proposition 2.5.15 (Theorem 12.3.8 in [BO08]). Let G be a discrete group. Then

Λcb(G) =Λcb(C∗
r (G)) =Λcb(L (G))

THE HAAGERUP PROPERTY AND QUANTUM MARKOV SEMI-GROUPS

We state the definition of the Haagerup property for groups.

Definition 2.5.16. A discrete group G is has the Haagerup property if there exists a net
(ϕi )i of positive definite functions ϕi : G → C that vanish at infinity and converge point-
wise to 1G .

We state the definition of the Haagerup property for a finite von Neumann algebra
(M ,τ) and remark by [Jol02, Proposition 2.4] that this is independent of the trace τ.

Definition 2.5.17. A finite von Neumann algebra (M ,τ) has the Haagerup property if
there exists a net (Φi )i of normal, completely positive maps Φi : M → M such that for
x ∈ M we have ∥φi (x)−x∥2 → 0 as i →∞ and so that τ◦Ψ≤ τ.

We state the definition of a quantum Markov semigroup and state a result which re-
lates it to the Haagerup property.

Definition 2.5.18. A quantum Markov semigroup (QMS) on a finite von Neumann al-
gebra (M ,τ) is a family (Φt )t≥0 of normal, trace preserving u.c.p maps Φt : M → M such
that

1. The family (Φt )t≥0 forms a semigroup, i.e. Φt+s =Φt ◦Φs for t , s ≥ 0 andΦ0 = IdM .

2. For x ∈ M the map t 7→Φt (x) is strongly continuous.

3. For t ≥ 0 and x, y ∈ M we have τ(Φt (x)y) = τ(xΦt (y)) (symmetric).

We stress that we assume the QMS to be symmetric, so QMS always means symmetric QMS.

Proposition 2.5.19 (Theorem 1 in [JM04]). A finite von Neumann algebra (M ,τ) with
separable predual has the Haagerup property if and only if there exists a QMS (Φt )t≥0 on
M such that for t > 0 the mapsΦt : M → M extend to compact operators on L2(M ,τ).

2.5.2. RIGIDY PROPERTIES OF VON NEUMANN ALGEBRAS
We recall versions of the Akemann-Ostrand property and recall the notions of Cartan
subalgebras, primeness, solidity and strong solidity and how they are related.

AKEMANN-OSTRAND PROPERTIES (AO), (AO)+ AND STRONG (AO)
We state the definition of versions of the Akemann-Ostrand property.

Definition 2.5.20 (Property (AO) [AO75] and (AO)+ [Iso15a]). A finite von Neumann al-
gebra M possesses the Akemann Ostrand property (AO) if there are σ-weakly dense unital
C*-subalgebra A,B ⊆ M such that
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1. A is locally reflexive [BO08, Definition 9.1.2]

2. There exists a u.c.p map
θ : A⊗B op → B(L2(M))

such that θ(a ⊗bop)−abop is compact for all a ∈ A, b ∈ Aop.

Furthermore, we say that M possesses the property (AO)+ if the C*-algebras A and B can
be chosen equal.

Local reflexivity is a certain approximation property satisfied by many C*-algebras,
including all exact C*-algebras [BO08, Corollary 9.4.1]. As we will not deal with local
reflexivity directly, we leave out its definition. We note for an exact group G that L (G)
has (AO) if and only if it has (AO)+, see [DP23, Corollary 7.18].

We state the definition of strong (AO).

Definition 2.5.21 (Strong property (AO), see [HI17]). Let M be a von Neumann algebra
with standard form (M ,L2(M), J ,L2(M)+). We say that M has strong property (AO) if there
exist unital C∗-subalgebras A ⊆ M and C ⊆ B(L2(M)) such that:

• A is σ-weakly dense in M,

• C is nuclear and contains A,

• The commutators [C , J AJ ] = {[c, Ja J ] | c ∈ C , a ∈ A} are contained in the space of
compact operators K(L2(M)).

We remark by [HI17, Remark 2.7] for general von Neumann algebras that strong (AO)
implies (AO). Moreover, under some extra conditions strong (AO) also implies (AO)+.
Furthermore, we note by [Iso15b, Lemma 3.1.4] that the von Neumann algebra L (G)
has strong (AO) for any hyperbolic discrete group G .

CARTAN SUBALGEBRAS, PRIMENESS, SOLIDITY AND STRONG SOLIDITY

We recall the following definition.

Definition 2.5.22 (MASA). A maximal abelian subalgebra (MASA) in a von Neumann
algebra M is von Neumann subalgebra A ⊆ M that satisfies A′∩M = A.

We remark that every von Neumann algebra M possesses a MASA (this can be shown
using Zorn’s Lemma).

Definition 2.5.23 (Cartan subalgebra). A Cartan subalgebra A of a von Neumann algebra
M is a MASA in M for which the set of normalizers

NorM (A) = {u ∈ U(M) : u Au∗ = A}

generate M as a von Neumann algebra, i.e. NorM (A)′′ = M.

Without providing the definition of the group measure space M := L∞(0,1)⋊α G ,
we remark that for a countable discrete group G and a free, ergodic action α the von
Neumann algebra M possesses L∞(0,1) as a Cartan subalgebra.
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Definition 2.5.24 (Primeness). A II1-factor M is called prime if it does not decompose as
a tensor product M = M1⊗M2 with both M1 and M2 diffuse.

We now state the definitions of solidity and strong solidity that were introduced by
Ozawa [Oza04] and Ozawa and Popa [OP10a].

Definition 2.5.25 (Solidity). A von Neumann algebra M is called solid if for every diffuse
von Neumann subalgebra A ⊆ M its relative commutant A′∩M is amenable.

Definition 2.5.26 (Strong solidity). A von Neumann algebra M is called strongly solid if
for every diffuse amenable subalgebra A ⊆ M the set of normalizers NorM (A) generates a
von Neumann algebra that is amenable again.

The following result provides sufficient conditions to be strongly solid.

Proposition 2.5.27 (Theorem A in [Iso15a]). Let M be a II1-factor with separable predual.
If M has condition (AO)+ and has the weak-∗ CBAP, then M is strongly solid.

In Proposition 2.5.29 we state some direct implications of solidy/strong solidity. For
the interested reader we included a short proof, that uses the following lemma.

Lemma 2.5.28. If A is a MASA in a diffuse von Neumann algebra M, then A is also diffuse.

Proof. Let A be a MASA in a diffuse von Neumann algebra M . Suppose A is not diffuse
and let p ∈ A be a minimal projection (in A). Since M is diffuse there is a projection
q ∈ M satisfying 0 < q < p. Now, for a ∈ A we have qa = qpa = qpap since q ≤ p and
p ∈ A = A′∩M . Now since p is minimal in A we obtain p Ap = Cp. Hence, qa = aq , i.e.
q ∈ A′∩M = A. This contradicts that p is minimal in A. We conclude that A is diffuse.

Proposition 2.5.29. A solid factor is amenable or prime. A diffuse, strongly solid von
Neumann algebra is amenable or does not posses a Cartan subalgebra. Furthermore, every
strongly solid von Neumann algebra is solid.

Proof. Suppose M is a solid factor. Suppose M is not prime, we show it is amenable.
Indeed, we can write M = M1⊗M2 for some diffuse M1, M2. Then since M is solid, the
relative commutants M2 = M ′

1∩M and M1 = M ′
2∩M are amenable. Hence, M = M1⊗M2

is amenable.
Now suppose M is diffuse, strongly solid and non-amenable. We show it does not

posses a Cartan subalgebra. Indeed, let A ⊆ M be a MASA in M . Then A is diffuse by
Lemma 2.5.28. Furthermore, A is commutative, hence amenable. Thus, NorM (A)′′ is
again amenable, since M is strongly solid. Therefore, since M is non-amenable we have
NorM (A)′′ ̸= M . Thus A can not be a Cartan subalgebra. This shows M does not posses
any Cartan subalgebra.

Let M be a strongly solid von Neumann algebra. We show M is solid. Indeed, let
A ⊆ M be a diffuse von Neumann subalgebra. We let B ⊆ A be a MASA in A. Note that
this MASA always exists and is amenable (since it is commutative). Furthermore, note
that B is diffuse by Lemma 2.5.28 since A is diffuse. Then by strong solidity of M we have
that NorM (B)′′ is amenable as well. Observe that A′ ∩ M ⊆ B ′ ∩ M ⊆ NorM (B)′′. Thus
A′∩M is amenable. Thus M is solid.



3
CALCULATIONS IN GRAPH

PRODUCTS

In this chapter we will not prove any main results, but instead preform some calculations
in graph products which will be used in Chapter 6 and also in a few parts of Chapter 5.
These calculations involve the annihilation, diagonal and creation operators which were
considered in [CKL21]. We introduce new notation and prove some additional results.

This chapter is based on (a small part of) the paper:

• Matthijs Borst, The CCAP for graph products of operator algebras, Journal of Func-
tional Analysis 286.8 (2024) 110350.

3.1. CREATION, ANNIHILATION AND DIAGONAL OPERATORS

Let Γ be a finite graph and for v ∈ Γ let (Av ,ϕv ) be a C*-algebra equipped with a GNS-
faithful state. Let Hv := L2(Av ,ϕv ) and consider Av ⊆ B(Hv ). Let AΓ = ∗min

v,Γ (Av ,ϕv )
be the reduced graph product. For v ∈ Γ denote Pv ∈ B(HΓ) for the projection on the
complement of H (v). We make the following definitions.

Definition 3.1.1. We define the annihilation operator λann : AΓ → B(HΓ), the diagonal
operator λdi a : AΓ→ B(HΓ) and the creation operator λcr e : AΓ→ B(HΓ) for a pure tensor
a = a1 ⊗·· ·⊗an ∈ Åw = Åw1 ⊗·· ·⊗ Åwn with w ∈WΓ, w ̸= e as

λann(a1 ⊗·· ·⊗an) = (P⊥
w1
λ(a1)Pw1 )(P⊥

w2
λ(a2)Pw2 ) . . . (P⊥

wn
λ(an)Pwn ) (3.1)

λdi a(a1 ⊗·· ·⊗an) = (Pw1λ(a1)Pw1 )(Pw2λ(a2)Pw2 ) . . . (Pwnλ(an)Pwn ) (3.2)

λcr e (a1 ⊗·· ·⊗an) = (Pw1λ(a1)P⊥
w1

)(Pw2λ(a2)P⊥
w2

) . . . (Pwnλ(an)P⊥
wn

). (3.3)

Furthermore, we put λann(IdH̊e
) = λdi a(IdH̊e

) = λcr e (IdH̊e
) = IdHΓ and we extend these

maps linearly.
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Lemma 3.1.2. Let Γ be a simple graph. Let w ∈ Γ and let v ∈WΓ. Let b ∈ Åw and let η ∈ H̊v.
Then λann(b)η ∈ H̊wv, λdi a(b)η ∈ H̊v and λcr e (b)η ∈ H̊wv. Furthermore,

1. If λann(b)η is non-zero then v starts with w.

2. If λdi a(b)η is non-zero then v starts with w.

3. If λcr e (b)η is non-zero then v does not start with w.

Moreover, if η is a pure tensor, then so are λann(b)η, λdi a(b)η and λcr e (b)η.

Proof. Let v,w,b and η be given. Note that Pwη = 0 when v does not start with w and
that P⊥

wη = 0 when v starts with w . This shows λann(b)η = λdi a(b)η = 0 when v does
not start with w and that λcr e (b)η = 0 when v starts with v . This already shows (1), (2)
and (3). To prove the other statements we may assume that η is a pure tensor. We show
that λann(b)η ∈ H̊wv. We may assume that v starts with w (since 0 ∈ H̊wv). Thus write
η=Q(w,wv)(η1 ⊗η2) for some η1 ∈ H̊w and η2 ∈ H̊wv. Then

λann(b)η= Pwλ(b)η= Pw (Q(w,wv)( ˚(bη1)⊗η2)+〈bΩ,η1〉η2) = 〈bΩ,η1〉η2 ∈ H̊wv.

We now show that λdi a(b)η ∈ H̊v. Again we may assume that v starts with w (since
0 ∈ H̊v). Thus write η=Q(w,wv)(η1 ⊗η2) for some η1 ∈ H̊w and η2 ∈ H̊wv. Then

λdi a(b)η= P⊥
wλ(b)η= P⊥

w (Q(w,wv)( ˚(bη1)⊗η2)+〈bΩ,η1〉η2) =Q(w,wv)( ˚(bη1)⊗η2) ∈ H̊v.

We now show that λcr e (b)η ∈ H̊wv. This time we may assume that v does not start with
w (since 0 ∈ H̊wv). Then

λdi a(b)η= Pwλ(b)η= P⊥
w Q(w,v)(b ⊗η2) =Q(w,v)(b ⊗η2) ∈ H̊wv.

The final remark now also follows directly from these calculations.

Definition 3.1.3. Let (w1,w2,w3) ∈ W 3
Γ be s.t. w := w1w2w3 is a reduced expression. We

define a linear map λ(w1,w2,w3) : AΓ→ B(HΓ) as follows. For a pure tensor a ∈ Åw, there is
a unique tensor a1 ⊗ a2 ⊗ a3 ∈ Åw1 ⊗ Åw2 ⊗ Åw3 s.t. a = Q(w1,w2,w3)(a1 ⊗ a2 ⊗ a3). We then
define

λ(w1,w2,w3)(a) =λcr e (a1)λdi a(a2)λann(a3) (3.4)

Furthermore, we define λ(w1,w2,w3)(a) = 0 for a ∈ Åw′ with w′ ̸= w1w2w3.

The operator λ(w1,w2,w3)(a) must be seen as the part of λ(a) that acts on a pure tensor
η ∈ H̊v precisely by annihilating the w3-part, diagonally acting on a w2-part, and creating
a w1-part. We prove the following lemma.

Lemma 3.1.4. Let w,v ∈ WΓ, let (w1,w2,w3) ∈ W 3
Γ with w1w2w3 reduced, let a ∈ Åw and

η ∈ H̊v. Then λ(w1,w2,w3)(a)η ∈ H̊u where u = w1w3v. Moreover, if λ(w1,w2,w3)(a)η is non-
zero, we have that w = w1w2w3, that w2 is a clique word and that v and u start with w−1

3 w2

and w1w2 respectively. Moreover, if a and η are pure tensors, then so is λ(w1,w2,w3)(a)η.
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Proof. Let w,v, (w1,w2,w3), a and η be a stated. It follows directly from Lemma 3.1.2
that λ(w1,w2,w3)(a)η ∈ H̊u where u := w1w2v. Suppose λ(w1,w2,w3)(a)η is non-zero. By
Definition 3.1.3 we have that w = w1w2w3 We may assume that a is of the form a =
a1a2a3 with ai ∈ Åwi . Then Lemma 3.1.2(1) asserts that η1 := λ(e,e,w3)(a3)η ∈ H̊w3v and
that v starts with w−1

3 . Moreover, Lemma 3.1.2(2) then implies that λ(e,w2,w3)(a2a3)η =
λ(e,w2,e)(a2)η1 ∈ H̊w3v and that w3v starts every letter from w2. This already shows w2 is a
clique word and that v starts with w−1

3 w2. Last, Lemma 3.1.2(3) implies thatλ(w1,w2,w3)(a) =
λ(w1,e,e)(a1)λ(e,w2,w3)(a2a3)η ∈ H̊w1w3v and that w1w3v starts with w1. Hence u := w1w3v
starts with w1w2. The statements on pure tensors follows directly from Lemma 3.1.2.

For convenience we make the following definition.

Definition 3.1.5. For an element w ∈WΓ we define the set of triple splittings

Sw =
 (w1,w2,w3) ∈W 3

Γ

∣∣∣∣∣∣
w = w1w2w3

w2 is a clique word
|w| = |w1|+ |w2|+ |w3|

 (3.5)

and also define SΓ =⋃
w∈WΓ Sw.

Remark 3.1.6. We explain how the definitions of the sets Sv relates to permutations
defined in [CKL21, Definition 2.3]. Let v = v1 · · ·vd ∈ WΓ be a reduced expression, let
0 ≤ l ≤ d , 0 ≤ k ≤ d − l and let t,ul ,ur ∈ WΓ be clique words such that ul t, tur are clique
words, ul tur is reduced, and |t| = l (in the notation of [CKL21, Definition 2.3] t,ul ,ur cor-
respond to the cliques Γ0,Γ1,Γ2, and the conditions we put on t,ul ,ur are equivalent to
Γ0 ∈ Cliq(Γ, l ) and (Γ1,Γ2) ∈ Comm(Γ0)). Then a permutation σ(= σv

l ,k,t,ul ,ur
) is defined

(if existent) as the permutation such that (1) v = vσ(1) · · ·vσ(d), (2) vσ(k+1) · · ·vσ(k+l ) = t,
(3) |vσ(1) · · ·vσ(k)s| = k −1 for any letter s of ul , (4) |vσ(1) · · ·vσ(k)s| = k +1 for any letter s
such that sul t is a reduced clique word, (5) |svσ(k+l+1) · · ·vσ(d)| = d−k−l−1 for any letter
s of ur , (6) |svσ(k+l+1) · · ·vσ(d)| = d −k − l +1 for any letter s such that sur t is a reduced
clique word. Furthermore σ is chosen such that the expressions v1 := vσ(1) · · ·vσ(k), v2 :=
vσ(k+1) · · ·vσ(k+l ) and v3 := vσ(k+l+1) · · ·vσ(d) are the representatives of their equivalence
classes and such that vi = v j for i < j implies σ(i ) < σ( j ). Such permutation, if exis-
tent, is unique. We make a few remarks on the definition of σ. First of all we note that
conditions (3)+(4) are equivalent to

sr (vσ(1) · · ·vσ(k)t) = ul t

and similarly that conditions (5)+(6) are equivalent to

sl (tvσ(k+l+1) · · ·vσ(d)) = ur t.

Secondly, we note that, when σ exists, the obtained triple (v1,v2,v3) lies in Sv. In fact,
for v = v1 · · ·vd ∈WΓ, this correspondence

(l ,k,ul ,ur ,t) ↔ (v1,v2,v3)

between tuples (l ,k,ul ,ur ,t) for which σv
l ,k,t,ul ,ur

exists, and tuples (v1,v2,v3) in Sv, is
bijective. Indeed, for (v1,v2,v3) ∈Sv the tuple (l ,k,ul ,ur ,t) such that the corresponding
permutation σ satisfies v1 = vσ(1) · · ·vσ(k), v2 = vσ(k+1) · · ·vσ(k+l ), v3 = vσ(k+l+1) · · ·vσ(d) is
given by k = |v1|, l = |v2|, t = v2, ul = sr (v1t)t, ur = sl (tv3)t.
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The following lemma was essentially proven in [CKL21, Lemma 2.5, Proposition 2.6],
and tells in what ways an element a ∈λ(AΓ) can act on a vector.

Lemma 3.1.7. We have for w ∈WΓ and a ∈ Åw that

λ= ∑
(w1,w2,w3)∈SΓ

λ(w1,w2,w3) (3.6)

λ(a) = ∑
(w1,w2,w3)∈Sw

λ(w1,w2,w3)(a). (3.7)

Moreover, for w1w2w3 a reduced expression in WΓ we have that λ(w1,w2,w3) = 0 whenever
w2 is not a clique word.

Proof. Let w = w1 · · ·wd ∈ WΓ and (w1,w2,w3) ∈ Sw and let σ be the corresponding per-
mutation with w1 = wσ(1) · · ·wσ(k), w2 = wσ(k+1) · · ·wσ(k+l ) and w3 = wσ(k+l+1) · · ·wd .
Then, for a = a1 ⊗·· ·⊗ad ∈ Åw we have

λ(w1,w2,w3)(a) = (3.8)

=λcr e (aσ(1) ⊗·· ·⊗aσ(k)) (3.9)

·λdi a(aσ(k+1) ⊗·· ·⊗aσ(k+l )) (3.10)

·λann(aσ(k+l+1) ⊗·· ·⊗aσ(d)) (3.11)

= (Pwσ(1)λwσ(1) (aσ(1))P⊥
wσ(1)

) . . . (Pwσ(k)λwσ(1) (aσ(k))P⊥
wσ(k)

) (3.12)

· (Pwσ(k+1)λwσ(k+1) (aσ(k+1))Pwσ(k+1) ) . . . (Pwσ(k+l )λwσ(k+l ) (aσ(k+l ))Pwσ(k+l ) ) (3.13)

· (P⊥
wσ(k+l+1)

λwσ(m+1) (aσ(k+l+1))Pwσ(k+l+1) ) . . . (P⊥
wσ(d)

λwσ(d) (aσ(d))Pwσ(d) ). (3.14)

Equation (3.7) now follows from [CKL21, Proposition 2.6] and from the bijective corre-
spondence between the tuples (l ,k,ul ,ur ,t) and the elements in Sw as described in Re-
mark 3.1.6. Equation (3.6) then follows from linearity and the fact that λ(w1,w2,w3)(b) = 0
whenever b ∈ Åw′ with w′ ̸= w. Last, we note that by [CKL21, Lemma 2.5] we have
λ(w1,w2,w3)(a) = 0 whenever w2 is not a clique word, which completes the proof.

We now prove the following lemma.

Lemma 3.1.8. Let v1,v2 ∈ WΓ with |v1v2| = |v1|+ |v2|. Let η ∈ H̊v1v2 be a pure tensor, and
write η = Q(v1,v2)(η1 ⊗η2) for some η1 ⊗η2 ∈ H̊v1 ⊗H̊v2 . Let w ∈ WΓ and let a ∈ Åw. The
following holds

1. If |v1| = |w|+ |wv1| then also |wv1v2| = |wv1|+ |v2| and

λann(a)η=Q(wv1,v2)(λann(a)η1 ⊗η2) (3.15)

λdi a(a)η=Q(v1,v2)(λdi a(a)η1 ⊗η2). (3.16)

2. If |wv1v2| = |w|+ |v1v2| then also |wv1| = |w|+ |v1| and

λcr e (a)η=Q(wv1,v2)(λcr e (a)η1 ⊗η2). (3.17)
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3. If (w1,w2,w3) ∈Sw and if |v1| = |w2w3|+|w2w3v1| and |w1w3v1v2| = |w1|+|w3v1v2|,
then also |w1w3v1v2| = |w1w3v1|+ |v2| and

λ(w1,w2,w3)(a)η=Q(w1w3v1,v2)(λ(w1,w2,w3)(a)η1 ⊗η2). (3.18)

Proof. (1) Assume that |v1| = |w|+ |wv1|. Then

|v1v2|− |w| ≤ |wv1v2| ≤ |wv1|+ |v2| = |v1|+ |v2|− |w| = |v1v2|− |w|. (3.19)

Hence, |wv1v2| = |wv1|+ |v2|, which proves the remark. We now prove that the equations
by induction to the length |w|. First of all, it is clear that the statement holds when w = e,
as then λann(a) =λdi a(a) = a ∈C IdH̊e

.
Thus assume that |w| ≥ 1 and that the statement holds for w̃ with |w̃| ≤ |w|−1. Write

w = w̃w with w̃ ∈WΓ and w ∈ Γ and s.t. |w̃| = |w|−1. Then we also have |v1| = |w |+ |wv1|.
Let us write a =Q(w̃,w)(a1⊗a2) with a1⊗a2 ∈ Åw̃⊗Åw . Thenλann(a) =λann(a1)λann(a2).

Now, write η = Q(w,wv1,v2)(ηw ⊗η′1 ⊗η2) for some ηw ⊗η′1 ⊗η2 ∈ H̊w ⊗ H̊wv1 ⊗ H̊v2

and define

η′ =Q(wv1,v2)(η
′
1 ⊗η2) (3.20)

η1 =Q(w,wv1)(ηw ⊗η′1) (3.21)

so that also η=Q(w,wv1v2)(ηw ⊗η′) =Q(v1,v2)(η1 ⊗η2).
We now have, using the definitions, that

λann(a2)η= P⊥
wλw (a2)Pwη= P⊥

wUw ((a2ηw )⊗η′) = 〈a2ηw ,ξw 〉η′ (3.22)

λann(a2)η1 = P⊥
wλw (a2)Pwη1 = P⊥

wUw ((a2ηw )⊗η′1) = 〈a2ηw ,ξw 〉η′1 (3.23)

and

λdi a(a2)η= PwUw ((a2ηw )⊗η′) =Q(w,wv1v2)( ˚(aηw )⊗η′) (3.24)

λdi a(a2)η1 = PwUw ((a2ηw )⊗η′1) =Q(w,wv1)( ˚(aηw )⊗η′1). (3.25)

Now this means that

λann(a2)η=ϕw (a2ηw )η′ (3.26)

=Q(wv1,v2)(〈a2ηw ,ξw 〉η′1 ⊗η2) (3.27)

=Q(wv1,v2)(λann(a2)η1 ⊗η2) (3.28)

and

λdi a(a2)η=Q(w,wv1v2)( ˚(a2ηw )⊗η′) (3.29)

=Q(w,wv1,v2)( ˚(a2ηw )⊗η′1 ⊗η2) (3.30)

=Q(v1,v2)(Q(w,wv1)( ˚(a2ηw )⊗η′1)⊗η2) (3.31)

=Q(v1,v2)(λdi a(a2)η1 ⊗η2). (3.32)
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Now, we note that |wv1| = |w̃| + |w̃wv1| so that using the induction hypothesis and the
fact that |w̃| = |w|−1 we find

λann(a)η=λann(a1)λann(a2)η (3.33)

=λann(a1)Q(wv1,v2)(λann(a2)η1 ⊗η2) (3.34)

=Q(w̃wv1,v2)(λann(a1)λann(a2)η1 ⊗η2) (3.35)

=Q(wv1,v2)(λann(a)η1 ⊗η2). (3.36)

Similarly

λdi a(a)η=λdi a(a1)λdi a(a2)η (3.37)

=λdi a(a1)Q(v1,v2)(λdi a(a2)η1 ⊗η2) (3.38)

=Q(v1,v2)(λdi a(a1)λdi a(a2)η1 ⊗η2) (3.39)

=Q(v1,v2)(λdi a(a)η1 ⊗η2). (3.40)

This finishes the induction, and proves the statement.

(2) Assume that |wv1v2| = |w|+ |v1v2|. Then

|wv1v2| ≤ |wv1|+ |v2| ≤ |w|+ |v1|+ |v2| = |w|+ |v1v2| = |wv1v2|. (3.41)

Hence |wv1| = |w| + |v1|, which shows the first remark. Again we prove the equation by
induction to the length |w|. Again, it is clear that the statement holds when w = e. Thus
assume that |w| ≥ 1 and that the statement holds for w̃ with |w̃| ≤ |w|−1. Write w = w̃w
with w̃ ∈WΓ and w ∈ Γ and s.t. |w̃| = |w|−1. Then we also have |wv1v2| = |w |+ |v1v2|. Let
us write a =Q(w̃,w)(a1 ⊗a2) with a1 ⊗a2 ∈ Åw̃ ⊗ Åw . Then λcr e (a) =λcr e (a1)λcr e (a2).

We now have by definition

λcr e (a2)η= Pwλw (a2)P⊥
wη= (PwUw )((a2ξw )⊗η) =Q(w,v1v2)(â2 ⊗η) (3.42)

λcr e (a2)η1 = Pwλw (a2)P⊥
wη1 = (PwUw )((a2ξw )⊗η1) =Q(w,v1)(â2 ⊗η1). (3.43)

Now this means that

λcr e (a2)η=Q(w,v1v2)(â2 ⊗η) (3.44)

=Q(w,v1,v2)(â2 ⊗η1 ⊗η2) (3.45)

=Q(wv1,v2)(Q(w,v1)(â2 ⊗η1)⊗η2) (3.46)

=Q(wv1,v2)(λcr e (a2)η1 ⊗η2). (3.47)

Now, we note that |w̃wv1v2| = |w̃| + |wv1v2| so that using the induction hypothesis and
the fact that |w̃| = |w|−1 we find

λcr e (a)η=λcr e (a1)λcr e (a2)η (3.48)

=λcr e (a1)Q(wv1,v2)(λcr e (a2)η1 ⊗η2) (3.49)

=Q(w̃wv1,v2)(λcr e (a1)λcr e (a2)η1 ⊗η2) (3.50)

=Q(wv1,v2)(λcr e (a)η1 ⊗η2). (3.51)
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This finishes the induction, and proves the statement.

(3) Let (w1,w2,w3) ∈Sw be s.t |v1| = |w2w3|+|w2w3v1| and |w1w3v1v2| = |w1|+|w3v1v2|.
We will write λ(w1,w2,w3)(a) =λcr e (a1)λdi a(a2)λann(a3) for some a1⊗a2⊗a3 ∈ Åw1 ⊗Åw2 ⊗
Åw3 . Now, first, as |v1| = |w2w3|+ |w2w3v1|, we also have

|v1| ≤ |w3|+ |w3v1| (3.52)

≤ |w2|+ |w3|+ |w2w3v1| (3.53)

= |w2w3|+ |w2w3v1| (3.54)

= |v1| (3.55)

and therefore |v1| = |w3|+ |w3v1|. By (1) this gives us

λann(a3)η=Q(w3v1,v2)(λann(a3)η1 ⊗η2) (3.56)

and also |w3v1v2| = |w3v1|+ |v2|. Now, we also find

|w3v1| = |v1|− |w3| = |w2w3|+ |w2w3v1|− |w3| = |w2|+ |w2w3v1|. (3.57)

Let us set v′1 = w3v1 and v′2 = v2, so that |v′1v′2| = |v′1|+ |v′2| and |v′1| = |w2|+ |w2v′1|. More-
over set η′ = λann(a3)η and η′1 = λann(a3)η1 and η′2 = η2. Now η′ = Q(v′1,v′2)(η

′
1 ⊗η′2) and

we see that the conditions for applying (1) are satisfied. This thus gives us that

λdi a(a2)λann(a3)η=Q(w3v1,v2)(λdi a(a2)λann(a3)η1 ⊗η2). (3.58)

Now, set ṽ1 = v′1 = w3v1 and ṽ2 = v′2 = v2 so that again |ṽ1ṽ2| = |ṽ1| + |ṽ2|. Also we get
|w1ṽ1ṽ2| = |w1w3v1v2| = |w1w3v1| + |v2| = |w1ṽ1| + |ṽ2|. Also set η̃ = λdi a(a2)λann(a3)η
and η̃1 =λdi a(a2)λann(a3)η1 and η̃2 = η2 Then η̃=Q(v′1,v′2)(η̃1⊗η̃2) and all conditions for
applying (2) are satisfied. By (2) we thus get

λcr e (a1)λdi a(a2)λann(a3)η=Q(w1w3v1,v2)(λcr e (a1)λdi a(a2)λann(a3)η1 ⊗η2) (3.59)

and moreover |w1w3v1| = |w1|+|w3v1|. The previous equation is precisely what we needed
to show, and we moreover obtain |w1w3v1v2| = |w1| + |w3v1v2| = |w1| + |w3v1| + |v2| =
|w1w3v1|+ |v2|, which proves the statement.





4
BIMODULE COEFFICIENTS, RIESZ

TRANSFORMS AND STRONG

SOLIDITY

In deformation-rigidity theory, it is often important to know whether certain bimodules
are weakly contained in the coarse bimodule. Consider a bimodule H over the group
algebra C[G] with G a discrete group. The starting point of this chapter is that if a dense
set of the so-called coefficients of H is contained in the Schatten Sp class p ∈ [2,∞),
then the n-fold tensor power H ⊗n

G for n ≥ p
2 is quasi-contained in the coarse bimodule.

We apply this to gradient bimodules associated with the carré du champ of a symmetric
quantum Markov semigroup.

For Coxeter groups, we give a number of characterizations of having coefficients in
Sp for the gradient bimodule constructed from the word length function. We get equiva-
lence of: (1) the gradient-Sp property, (2) smallness at infinity of a natural compactifica-
tion of the Coxeter group, and for a large class of Coxeter groups, (3) walks in the Coxeter
diagram called parity paths. We derive several strong solidity results. In particular, we
obtain current strong solidity results for right-angled Hecke von Neumann algebras be-
yond right-angled Coxeter groups that are small at infinity.

This chapter is based on the paper:

• Matthijs Borst, Martijn Caspers and Mateusz Wasilewski, Bimodule coefficients,
Riesz transforms on Coxeter groups and strong solidity, Groups, Geometry, and Dy-
namics 18.2 (2023) pp. 501–549.

4.1. INTRODUCTION
This chapter establishes bridges between the Riesz transform in modern harmonic anal-
ysis and von Neumann algebra theory. The original Riesz transform can be defined as
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follows. Consider the positive unbounded Laplace operator ∆ and the directional gradi-
ent ∇ j on L2(Rn) given by

∆=−
n∑

j=1

∂2

∂x2
j

, ∇ j = ∂

∂x j
, 1 ≤ j ≤ n.

Then the Riesz transform R j = ∇ j ◦∆− 1
2 for 1 ≤ j ≤ n is an isometry on L2(Rn) that has

been studied extensively in classical harmonic analysis in the context of Fourier multi-
pliers, singular integral operators and Calderón-Zygmund theory.

Riesz transforms can be defined abstractly for any C0-semigroup of positive mea-
sure preserving unital contractions on L∞(X ,µ), with (X ,µ) a finite Borel measure space.
Such semigroups admit a generator∆ and a natural replacement of the gradient∇ known

as the carré du champ. The Riesz transform is then defined as ∇◦∆− 1
2 . These Riesz trans-

forms were studied by Meyer [Mey84] for (commutative) Gaussian algebras and their
study was continued by Bakry [Bak85], [Bak87], Gundy [Gun86], Pisier [Pis88], amongst
others. This in particular involves an analysis of diffusion semigroups on compact Rie-
mannian manifolds with lower bounds on the Ricci curvature [Bak87]. Furthermore,
in the non-commutative situation, Clifford algebras were considered by Lust-Piquard
[Lus99], [Lus98]. Also the Riesz transform was studied on general groups [JMP18] using
certain multipliers associated with cocycles.

In this chapter, we study Riesz transforms associated with non-commutative gener-
alizations of diffusion semigroups: (symmetric) quantum Markov semigroups. Let M be
a finite von Neumann algebra and Φ = (Φt )t≥0 a point-strongly continuous semigroup
of trace preserving unital completely positive maps. Such a semigroup comes with a
generator ∆. The proper replacement of the gradient is played by a bilinear form that is
a non-commutative version of the carré du champ. For simplicity, we consider mostly
quantum Markov semigroups of Fourier multipliers associated with a discrete group G ,
acting on the group algebra C[G]. Then the carré du champ allows the construction of a
C[G] bimodule H∇ and a derivation, i.e. a map satisfying the Leibniz rule, ∇ :C[G] →H∇
such that (here formally) ∆ = ∇∗∇. So ∇ is a root of ∆ just as in the case of the Laplace
operator and the gradient. We refer to Cipriani and Sauvageot [CS03] where also the an-

alytical framework is established. Then there is an isometry ∇◦∆− 1
2 : ℓ2(G) →H∇ called

the Riesz transform. This Riesz transform was studied in the context of q-Gaussian alge-
bras [CIW21], [Lus99], [Lus98] and compact quantum groups [Cas22], [Cas21].

In the current chapter we are interested in applications of the Riesz transform to
group von Neumann algebras of discrete groups; we focus on Coxeter groups but we
also obtain results for other groups.

Recall that to a discrete group G we may associate the group von Neumann algebra
L (G) which is the von Neumann algebra generated by the left regular representation.
Let F2 be the free group with two generators. In his fundamental papers on free probabil-
ity Voiculescu [Voi96] showed that L (F2) does not possess a Cartan subalgebra, meaning
that there does not exist a maximal abelian subalgebra (MASA) of L (F2) whose normal-
izer generates L (F2). An important consequence is that L (F2) does not non-trivially
decompose as a crossed product and cannot be constructed from an equivalence rela-
tion with a cocycle as was shown by Feldman and Moore [FM77a], [FM77b]. In [OP10a]
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Ozawa and Popa gave an alternative proof of the Voiculescu’s result. They showed that
L (F2) is strongly solid. This means that the normalizer of any diffuse amenable von Neu-
mann subalgebra of L (F2) generates a von Neumann algebra that is amenable again.
Since L (F2) is nonamenable and since MASA’s are diffuse it automatically follows that
L (F2) does not possess a Cartan subalgebra. After [OP10a] many von Neumann algebras
were proven to be strongly solid, see e.g. [Iso15a], [OP10b], [PV14b] and references given
there. As a consequence of the methods in this chapter we are able to prove such strong
solidity results as well.

To motivate the first part of this chapter we recall the following theorem from [CIW21].
We do not explain for now the technical terms that occur in this theorem but in the sub-
sequent paragraph we explain what the crucial part is. Theorem 4.1.1 itself is actually not
that hard to prove; however its consequences (see [PV14b], [Iso15a]) and proving that its
assumptions hold in examples is rather intricate.

Theorem 4.1.1 (Proposition 5.2 in [CIW21]). Let H be aC[G] bimodule and let V : ℓ2(G) →
H be bounded. Assume that H is quasi-contained in the coarse bimodule of G, that V is
almost bimodular and that V ∗V is Fredholm. Assume that C∗

r (G) is locally reflexive. Then
L (G) satisfies AO+.

The Akemann-Ostrand property AO+ (as in [Iso15a]) will be used frequently in this
chapter for which we refer to Definition 4.2.11. If G is weakly amenable then AO+ implies
strong solidity [PV14b], [Iso15a]. The Coxeter groups in this thesis are weakly amenable
[Fen02], [Jan02] as are all hyperbolic discrete groups [Oza08].

In view of Theorem 4.1.1 we are mostly still interested in two things: (1) constructing
almost bimodular maps V : ℓ2(G) → H with H a C[G] bimodule; (2) showing that the
C[G] bimodule H is quasi-contained in the coarse bimodule ℓ2(G)⊗ℓ2(G) of G . It turns
out that very often the Riesz transform is an almost bimodular map. Further, we provide
comprehensible conditions that show that the gradient bimodule is quasi-contained in
the coarse bimodule. We will develop general theory for this as follows.

In the first part of this chapter we study bimodules over C[G] and their coefficients.
We define coefficients of a C[G] bimodule as a certain map C[G] → C[G]. This notion
occurs for instance in [AP17, Section 13] for von Neumann algebras; the more algebraic
notion we present here is more convenient for our purposes. Since C[G] ⊆ ℓ2(G) a coef-
ficient determines a densely defined map ℓ2(G) → ℓ2(G). We study when these maps are
contained in the Schatten von Neumann non-commutative Lp -space Sp .

For two C[G] bimodules H1 and H2 we shall also show that H1 ⊗H2 has a natural
C[G] bimodule structure and we denote this bimodule by H1 ⊗G H2. As a Hilbert space
H1 ⊗G H2 = H1 ⊗H2. Recall that the coarse bimodule of G is given by ℓ2(G)⊗ℓ2(G)
where the left action of C[G] is on the first tensor leg and the right action on the second
tensor leg. In Section 4.2 we prove the following, amongst other results (except for part
(4), which is proved in Section 4.3, see Corollary 4.3.13).

Theorem 4.1.2. Let H ,H1 and H2 be C[Γ] bimodules.

1. If a dense set of coefficients of H are in S2 then H is a L (G) bimodule that is quasi-
contained in the coarse bimodule of G.
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2. If a dense set of coefficients of H i , i = 1,2 is contained in Spi , pi ∈ [1,∞) then a dense
set of coefficients of H1 ⊗G H2 is contained in Sp where 1

p = 1
p1

+ 1
p2

.

3. If Vi : ℓ2(G) → H i , i = 1,2 is almost C[G] bimodular then so is V1 ∗V2 := (V1 ⊗V2)◦
∆G : ℓ2(G) →H1 ⊗G H2 where ∆G : ℓ2(G) → ℓ2(G)⊗ℓ2(G) is the comultiplication.

4. Consider a proper length functionψ : G →Z≥0 that is conditionally of negative type,
defined on a finitely generated group G. Then the associated Riesz transform R :
ℓ2(G) → ℓ2(G)∇ is almost bimodular.

Theorem 4.1.2 provides a clear strategy towards obtaining the input of Theorem 4.1.1.
Namely we start with a proper length functionψ : G →R that is conditionally of negative
type. We construct the associated gradient bimodule H∇ and show that its coefficients
are in Sp for some p ∈ [1,∞). By tensoring we obtain a bimodule (H∇)⊗n

G ,n ≥ ⌈ p
2 ⌉ and a

map

V ∗n : ℓ2(G) → (H∇)⊗n
G ,

with the desired properties of Theorem 4.1.1. This is the rough idea of our strategy. We
say ‘rough’ since in all applications we need some suitably adapted variation of this idea.

In the second part of this chapter we analyse when coefficients of a gradient bimod-
ule H∇ are in Sp , p ∈ [1,∞). In order to do so we recall the property gradient-Sp for
quantum Markov semigroups from [Cas21], [CIW21]. If a quantum Markov semigroup
has gradient-Sp then a dense set of coefficients of H∇ are in Sp ; consequently H∇ is
quasi-contained in the coarse bimodule of G .

We first show (Lemma 4.3.11) that if ψ : Γ → Z is a proper length function that is
conditionally of negative type then gradient Sp , p ∈ [1,∞) for the associated quantum
Markov semigroup is independent of p. Then we analyse when the word length function
of a general (finite rank) Coxeter group is gradient-Sp . We find the following characteri-
zation.

Theorem A (Theorem 4.4.15). Let W = 〈S|M〉 be a finite rank Coxeter system. Fix p ∈
[1,∞]. The following are equivalent:

1. The quantum Markov semigroup associated with the word length is gradient-Sp .

2. For all s ∈ S the set {w ∈W : ws = sw} is finite.

3. The Coxeter system 〈S|M〉 is small at infinity (as in [Kli23b]).

In particular for right-angled Coxeter groups these statements are equivalent to the
Coxeter group being a free product of finite abelian Coxeter groups, see [Kli23b]. This
shows that gradient-Sp is rather rare. However with the right tensor techniques it can
still be turned into a very useful property. We also provide an almost characterization
of when the equivalent statements of Theorem A hold in the following theorem. For the
definition of the graph Gr aphS (W ) we refer to Definition 4.4.5. The definition of a parity
path is given in Definition 4.4.6.
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Theorem B (Theorem 4.4.8 and Theorem 4.4.9). Let W = 〈S|M〉 be a Coxeter group. If
there does not exist a cyclic parity path in Gr aphS (W ) then the semigroup (Φt )t≥0 asso-
ciated to the word length | · |S is gradient-Sp for all p ∈ [1,∞]. The converse holds true if
mi , j ̸= 2 for all i , j .

Section 4.4 shows that it is usually easy to determine whether Gr aphS (W ) has a par-
ity path, see Corollaries 4.4.11 and 4.4.12.

Next we obtain strong solidity results for Hecke von Neumann algebas, i.e. for q-
deformations of group von Neumann algebras of Coxeter groups. The following theo-
rem extends [Kli23b, Theorem 0.7] in the case of a right-angled Coxeter system. What
is of particular interest is that our methods really improve on the approach based on
compactifications and boundaries in [Kli23b]. More precisely, [Kli23b] shows that if the
action of a right-angled Coxeter group on a natural boundary associated with it is small
at infinity, then actually the Coxeter group is a free product of finite (commutative) Cox-
eter groups. So the approach in [Kli23b, Theorem 0.7] cannot be extended to the current
generality.

Theorem C (Theorem 4.7.5). LetΓ be a finite simple graph and let q = (qv )v∈Γ with qv > 0.
Assume

Λ := {r ∈ Γ : ∃s, t ∈ Γ such that r ∈ LinkΓ(s)∩LinkΓ(t ), s ̸∈ StarΓ(t )}

is a clique in Γ. Then the Hecke von Neumann algebra Nq(WΓ) satisfies the Akemann-
Ostrand property AO+ and is strongly solid.

We note that a large part of the analysis in proving Theorem C applies to general
Hecke algebras. However, the strong solidity properties are still pending on whether cer-
tain semigroups extend to quantum Markov semigroups. In the final Section 4.8 of this
chapter we summarize some open problems.

Structure of the chapter. Section 4.2 contains results on bimodules and their coef-
ficients and we prove Theorem 4.1.2. Section 4.3 introduces quantum Markov semi-
groups, the gradient bimodule and the Riesz transform. We also derive many of the basic
properties. Section 4.4 proves Theorem A and Theorem B. Note that here we also estab-
lish the Corollaries 4.4.11 and 4.4.12 which make it easy to see if a Coxeter group is small
at infinity. Section 4.5 contains an analysis of quantum Markov semigroups with weights
on the generators. This applies mostly to right-angled Coxeter groups and it is crucial
in the later sections. Section 4.6 proves strong solidity results for Coxeter groups using
tensor methods. In Section 4.7 we prove Theorem C. We have included Section 4.8 to list
some problems that are left open.

4.2. COEFFICIENTS OF BIMODULES
In this section we study bimodules over the group algebra of a discrete group and provide
sufficient criteria for when such a bimodule is quasi-contained in the coarse bimodule.
We also consider tensor products of such bimodules.
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4.2.1. COEFFICIENTS AND QUASI-CONTAINMENT
Let G be a discrete group with group algebra C[G], reduced group C∗-algebra C∗

r (G) and
group von Neumann algebra L (G). They include naturally

C[G] ⊆C∗
r (G) ⊆L (G).

In turn L (G) ⊆ ℓ2(G) by x 7→ xδe . Hence we may and will view C[G] as the subspace of
ℓ2(G) of functions with finite support. Now a C[G] bimodule will be a Hilbert space H

with commuting left and right actions of G and thus of C[G] by extending the actions
linearly.

Definition 4.2.1 (Coefficients). Let H be aC[G] bimodule. Let ξ,η ∈H be such that there
exists a map Tξ,η :C[G] →C[G] such that

τ(Tξ,η(x)y) = 〈xξy,η〉, x, y ∈C[G]. (4.1)

Then Tξ,η is called the coefficient of H at ξ,η. Set Tξ := Tξ,ξ. We say that the coefficient Tξ,η

is in Sp with p ∈ [1,∞] if Tξ,η exists and extends to a bounded operator Tξ,η : ℓ2(G) → ℓ2(G)
that is moreover in the Schatten class Sp := Sp (ℓ2(G)).

Note that if the map Tξ,η is existent then it is uniquely determined by (4.1). Indeed,
if T ′

ξ,η is another map with this property then τ((Tξ,η−T ′
ξ,η)(x)y) = 0 for all x, y ∈ C[Γ] so

that T ′
ξ,η = Tξ,η.

Remark 4.2.2. In [AP17, Definition 13.1.6] the notion of a coefficient of a von Neumann
bimodule is defined. Definition 4.2.1 is an algebraic analogue which is more convenient
for our purposes. The reason that we work in this algebraic setting is that the bimodules
we consider in this chapter are a priori not necessarily von Neumann bimodules. In fact
for the gradient bimodules we consider in Section 4.3 this is not even true in general.
However, under the conditions of Proposition 4.2.3 the normal extensions of the left and
right actions automatically exist.

Proposition 4.2.3 (Quasi-containment). Let H be a C[G] bimodule. Suppose that there
exists a dense subset H0 ⊂H such that for any ξ ∈H0 the coefficient Tξ :C[G] →C[G] is in
S2. Then the left and right C[G] actions on H extend to (bounded) normal L (G) actions
and the L (G) bimodule H is quasi-contained in the coarse bimodule ℓ2(G)⊗ℓ2(G).

Proof. Take ξ ∈H0. Define the functional

ρ :C[G]⊗algC[G]op →C : x ⊗ yop 7→ 〈x ·ξ · y,ξ〉.

For x, y ∈C[G] by definition of Tξ,

ρ(x ⊗ yop) = 〈x ·ξ · y,ξ〉 = τ(Tξ(x)y) = τ(yTξ(x)) = 〈Tξ(x), y∗〉τ.

Now as Tξ is Hilbert-Schmidt there exists a vector ζξ ∈ ℓ2(G)⊗ℓ2(G) such that

ρ(x ⊗ yop) = 〈x ⊗ yop,ζξ〉 = 〈(x ⊗ yop) · (1⊗1),ζξ〉.
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This shows that ρ extends contractively to C∗
r (G)⊗min C∗

r (G). Moreover, this shows that
ρ extends to a normal contractive map on the von Neumann algebraic tensor prod-
uct L (G)⊗L (G) → C. By Kaplansky’s density theorem this extension of ρ is moreover
positive. Since ℓ2(G) ⊗ ℓ2(G) is the standard form of L (G)⊗L (G)op there exists η ∈
ℓ2(G)⊗ℓ2(G) such that

ρ(x ⊗ yop) = 〈x ·η · y,η〉, x, y ∈L (G).

This proves that the conditions of [CIW21, Lemma 2.2] are fulfilled and hence H is
quasi-contained in the coarse bimodule. We already observed in the preliminaries that
this quasi-containment implies that the left and right actions extend to normal actions
of L (G).

A subset H00 ⊆ H of a C[G] bimodule H is called cyclic if H0 := spanC[Γ]H00C[Γ]
is dense in H . The following lemma tells us that we can reduce Proposition 4.2.3 to
checking the property only for the coefficient in a cyclic subset.

Lemma 4.2.4 (Reduction to cyclic subset). Suppose that H00 ⊆ H is a subset whose co-
efficients Tξ,η for ξ,η ∈ H00 are in S2. Then for ξ,η ∈ H0 := spanC[G]H00C[G] the coef-
ficients Tξ,η are in S2. Consequently, if H00 is cyclic then H is a L (G) bimodule that is
quasi-contained in the coarse bimodule ℓ2(G)⊗ℓ2(G).

Proof. Let ξ′ =λgξλh and η′ =λsηλt for some g ,h, s, t ∈G and ξ,η ∈H00. We have that

τ(Tξ′,η′ (x)y) = 〈xξ′y,η′〉 = 〈xλgξλh y,λsηλt 〉 = 〈λs−1 xλgξλh yλt−1 ,η〉
=τ(Tξ,η(λs−1 xλg )λh yλt−1 ) = τ(λt−1 Tξ,η(λs−1 xλg )λh y).

This shows that Tξ′,η′ (x) = λt−1 Tξ,η(λs−1 xλg )λh and so Tξ′,η′ is in S2. The first statement
then follows by linearity. By Proposition 4.2.3 we find that H is quasi-contained in the
coarse bimodule ℓ2(G)⊗ℓ2(G) in case H00 is cyclic.

4.2.2. TENSORING BIMODULES
If H1 and H2 are two C[G] bimodules then we can construct a bimodule H1 ⊗G H2,
which, as a Hilbert space, is the same as H1 ⊗H2 and the actions are given by

s · (ξ⊗η) := sξ⊗ sη and (ξ⊗η)s := ξs ⊗ηs, ξ ∈H1,η ∈H2, s ∈G .

The actions extend by linearity to actions of C[G]. If we take an n-fold tensor power of
a given bimodule H , it will be denoted by H ⊗n

G . For later use we also recall that the
comultiplication

∆G : C[G] →C[G]⊗C[G]

is given by the linear extension of the assignment g 7→ g ⊗ g , g ∈ G . Then ∆G extends to
an isometry ℓ2(G) → ℓ2(G)⊗ℓ2(G) which we still denote by ∆G .

Lemma 4.2.5. Let 1 ≤ p, q,r ≤∞ with 1
r = 1

p + 1
q . There exists a bounded bilinear map

Sp ×Sq → Sr : (x, y) 7→∆∗
G (x ⊗ y)∆G .
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Proof. For r = 1 take (x, y) ∈ Sp ×Sq both positive so that ∆∗
G (x ⊗ y)∆G ∈ S1 is positive.

Then

∥∆∗
G (x ⊗ y)∆G∥r =τ(∆∗

G (x ⊗ y)∆G ) = ∑
g∈G

〈xg , g 〉〈y g , g 〉

≤
( ∑

g∈G
〈xg , g 〉p

) 1
p

( ∑
g∈G

〈y g , g 〉q

) 1
q

= ∥x∥p∥y∥q .

As every element in Sp and Sq can be written as a linear combination of 4 positive ele-
ments with smaller or equal norm the lemma follows for r = 1. Now, take r =∞. Then
also p = q = ∞ and for (x, y) ∈ Sp ×Sq we see that ∆∗

G (x ⊗ y)∆G ∈ Sr . Furthermore, we
have the norm estimate

∥∆∗
G (x ⊗ y)∆G∥ ≤ ∥∆∗

G∥ ·∥x ⊗ y∥ ·∥∆G∥ ≤ ∥x∥ ·∥y∥.

The lemma then follows from bilinear complex interpolation [BL12, Theorem 4.4.1]

Lemma 4.2.6. Let 1 ≤ p, q,r ≤∞ with 1
r = 1

p + 1
q . Let H1 and H2 be C[G] bimodules and

let ξ ∈H1 and η ∈H2. Suppose that the coefficient Tξ is in Sp and the the coefficient Tη is
in Sq . Then the coefficient Tξ⊗η of H1 ⊗ΓH2 is in Sr .

Proof. We have for s, t ∈G ,

τ(Tξ⊗η(s)t ) = 〈sξt ⊗ sηt ,ξ⊗η〉
= 〈sξt ,ξ〉〈sηt ,η〉
= τ(Tξ(s)t )τ(Tη(s)t ).

It follows that Tξ⊗η =∆∗
G (Tξ⊗Tη)∆G . We conclude the proof by Lemma 4.2.5.

Proposition 4.2.7. Let H be a C[G] bimodule such that for a dense subset of H the coef-
ficients are in Sp . Then the bimodule H ⊗n

G is quasi-contained in the coarse bimodule for

any n ≥ p
2 .

Proof. By Lemma 4.2.6 (and induction) we get that a dense subset of coefficients of H ⊗n
G

is in S p
n
⊂ S2, so by Proposition 4.2.3 we get the quasi-containment.

Definition 4.2.8. Let H and K be C[G] bimodules. A linear map V : H → K is called
almost bimodular if for every x, y ∈C[G] the map

H →K : ξ 7→ xV (ξ)y −V (xξy),

is compact.

Lemma 4.2.9. Let H1 and H2 be bimodules over C[G]. Suppose V1 : ℓ2(G) → H1 and
V2 : ℓ2(G) →H2 are almost bimodular bounded linear maps. Then

V1 ∗V2 := (V1 ⊗V2)◦∆G : ℓ2(G) →H1 ⊗G H2

is almost bimodular.
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Proof. It suffices to check the almost bimodularity for x = s and y = t , as the general
case will follow by taking linear combinations. For a map V : ℓ2(G) →H with H a C[G]
bimodule we will write (sV t )(ξ) = sV (ξ)t and V s,t (ξ) :=V (sξt ) where ξ ∈ ℓ2(G). It follows
from the definitions that

s(V1 ∗V2)t = (s ⊗ s) · ((V1 ⊗V2)◦∆G ) · (t ⊗ t ) = (sV1t ∗ sV2t ).

Further, for ξ ∈ ℓ2(G),

(V1 ∗V2)s,t (ξ) =(V1 ⊗V2)∆G (sξt )

=(V1 ⊗V2)((s ⊗ s)∆G (ξ)(t ⊗ t )) = (V s,t
1 ∗V s,t

2 )(ξ).

Hence
(V1 ∗V2)s,t =V s,t

1 ∗V s,t
2 .

Therefore we have

s(V1 ∗V2)t − (V1 ∗V2)s,t = ((sV1t −V s,t
1 )∗ sV2t )+ (V s,t

1 ∗ (sV2t −V s,t
2 )). (4.2)

By our assumption the operators sV1t −V s,t
1 and sV2t −V s,t

2 are compact. So it suffices
to check that if K is compact and T is bounded then both K ∗T and T ∗K are com-
pact. To check that, for every finite subset F ⊂G consider the corresponding finite rank
orthogonal projection PF onto the linear span of δs ∈ ℓ2(G), s ∈ F . We can easily check
that ∆G ◦PF = (PF ⊗ Id) ◦∆G = (Id⊗PF ) ◦∆G . It follows that (K ∗T )PF = (K PF ∗T ), so
(K ∗T )PF −K ∗T = (K PF −K )∗T . Further,

∥(K ∗T )PF −K ∗T ∥ ≤ ∥K PF −K ∥∥T ∥.

By compactness of K we see that ∥K PF −K ∥ goes to 0 as F increases. So K ∗T can be
approximated in norm by finite rank operators and thus is compact. The proof for T ∗K
is the same. Hence the operator in (4.2) is compact, i.e. V1 ∗V2 is almost bimodular.

Lemma 4.2.10. For i = 1,2 suppose that Vi : ℓ2(G) → H i is a partial isometry to a C[G]
bimodule H i such that ker(Vi ) is spanned linearly by a subset Fi ⊆ G. Then V1 ∗V2 is a
partial isometry whose kernel is the linear span of F1 ∪F2.

Proof. The comultiplication∆G is an isometryℓ2(G) → ℓ2(G)⊗ℓ2(G). Clearly∆G (s) = s⊗s
is contained in ker(V1 ⊗V2) if s is in F1 ∪F2. Further, V1 ⊗V2 is isometric on ker(V1)⊥⊗
ker(V2)⊥ and so it is certainly isometric on the linear span of∆G (s) = s⊗s, s ∈G\(F1∪F2).
These observations conclude the lemma.

4.2.3. THE AKEMANN-OSTRAND PROPERTY AO+ AND STRONG SOLIDITY
This section serves as a blackbox that connects the theory that we develop in this chapter
to a central concept in deformation-rigidity theory: strong solidity. Firstly we recall a
version of the Akemann-Ostrand property that was introduced in [Iso15a].

Definition 4.2.11. A finite von Neumann algebra M has property AO+ if there exists a
σ-weakly dense unital C∗-subalgebra A ⊆ M such that:
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1. A is locally reflexive [BO08, Section 9];

2. There exists a unital completely positive map θ : A ⊗min Aop → B(L2(M)) such that
θ(a ⊗bop)−abop is compact for all a,b ∈ A.

The following theorem will be the main tool to prove that certain von Neumann al-
gebras have AO+ using the Riesz transforms in this chapter.

Theorem 4.2.12 (Proposition 5.2 in [CIW21]). Let H be a C[G] bimodule and let V :
ℓ2(G) → H be bounded. Assume that H is quasi-contained in the coarse bimodule of
G, that V is almost bimodular and that V ∗V is Fredholm. Assume that C∗

r (G) is locally
reflexive. Then L (G) satisfies AO+.

The following theorem in turn yields the strong solidity results from AO+. For the no-
tion of weak amenability we refer to [BO08, Section 12.3]. If G is a weakly amenable dis-
crete group then C∗

r (G) is automatically locally reflexive. All Coxeter groups are weakly
amenable [Fen02], [Jan02] as well as simple Lie groups of real rank one [CH85], [CH89].
We recall that amenability of a von Neumann algebra was defined in the introduction
and preliminaries. We note that, in this chapter, amenability and weak amenability shall
not appear explicitly in the proofs. We recall that a von Neumann algebra is called diffuse
if it does not contain minimal projections.

Definition 4.2.13. A finite von Neumann algebra M is called strongly solid if for every
diffuse amenable von Neumann subalgebra B ⊆ M we have that the normalizer

NorM (B) := {u ∈ M : u unitary and uBu∗ = B},

generates a von Neumann algebra that is amenable again.

Theorem 4.2.14 (See [PV14b] and [Iso15a]). Let G be a discrete weakly amenable group
such that L (G) satisfies AO+. Then L (G) is strongly solid.

4.3. QUANTUM MARKOV SEMIGROUPS, GRADIENTS AND THE

RIESZ TRANSFORMS
In this section we study quantum Markov semigroups of Fourier multipliers on the group
von Neumann algebra of a discrete group. We introduce the associated Riesz transform
which takes values in a certain bimodule that we call the ‘gradient bimodule’ or the bi-
module associated with the ‘carré du champ’. Our main goal is to analyze when the co-
efficients of this bimodule are in the Schatten Sp space and consequently when this bi-
module is quasi-contained in the coarse bimodule. We also show that under very natural
conditions the Riesz transform is an almost bimodular map in the sense of Section 4.2.

4.3.1. QUANTUM MARKOV SEMIGROUPS, THE GRADIENT BIMODULE AND

THE RIESZ TRANSFORM
We start defining the Riesz transform of a quantum Markov semigroup (QMS). Recall the
definition of a QMS.
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Definition 4.3.1. A quantum Markov semigroup (QMS) on a finite von Neumann algebra
(M ,τ) is a semigroup Φ= (Φt )t≥0 of normal unital completely positive maps Φt : M → M
that are trace preserving (τ◦Φt = τ, t ≥ 0) and such that for every x ∈ M the map t 7→Φt (x)
is strongly continuous. We shall moreover assume that a quantum Markov semigroup is
symmetric meaning that for every x, y ∈ M and t ≥ 0 we have τ(Φt (x)y) = τ(xΦt (y)). So
QMS always means symmetric QMS.

Fix a QMSΦ= (Φt )t≥0 on a finite von Neumann algebra M with a normal faithful tra-
cial state τ. By the Kadison-Schwarz inequality there exists a semigroup of contractions
(Φ(2)

t )t≥0 on L2(M) = L2(M ,τ) by

Φ(2)
t (xΩτ) =Φt (x)Ωτ, x ∈ M .

Here Ωτ = 1M is the cyclic vector in L2(M). The semigroup (Φ(2)
t )t≥0 is moreover point-

norm continuous, i.e. it is continuous for the strong topology on B(L2(M)). By a special
case of the Hille-Yosida theorem there exists an unbounded positive self-adjoint opera-
tor ∆ on L2(M) such that Φ(2)

t = exp(−t∆). We will assume the existence of a σ-weakly
dense ∗-subalgebra A ⊆ M such that AΩτ ⊆ Dom(∆) and ∆(AΩτ) ⊆ AΩτ. By identifying
a ∈ A with aΩτ ∈ L2(M) we may and will view ∆ as a map A → A. We now introduce the
carré du champ or gradient as

Γ : A× A → A : (a,b) 7→ 1

2
(∆(b∗)a +b∗∆(a)−∆(b∗a)).

Let H be any A bimodule, i.e. we recall H is a Hilbert space with commuting left and
right actions of A. For a,b ∈ A,ξ,η ∈H we set the possibly degenerate inner product on
A⊗alg H by

〈a ⊗ξ,b ⊗η〉 = 〈Γ(a,b)ξ,η〉.

The Hilbert space obtained by quotienting out the degenerate part of this inner product
and taking the completion shall be denoted by H∇. We denote by a⊗∇ξ the element a⊗ξ
identified in H∇. For x, y, a ∈ A and ξ ∈ H we define commuting left and right actions
by

x · (a ⊗∇ ξ) = xa ⊗∇ ξ−x ⊗∇ aξ, (a ⊗∇ ξ) · y = a ⊗∇ ξy. (4.3)

In this chapter we shall only deal with the case H = L2(M) with actions by left and right
multiplication of M . In this case the actions (4.3) extend to contractive actions on the
norm closure of A. We do not say anything about whether the actions are normal at this
point, but rather use Proposition 4.2.3 to show that they are normal in the cases that are
relevant. We define a derivation

∇ : A → L2(M)∇ : a 7→ a ⊗∇Ωτ.

More precisely, ∇ satisfies the Leibniz rule

∇(x y) = x∇(y)+∇(x)y, x, y ∈ A
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with respect to the module actions (4.3). This fact uses that τ is tracial. Since Φt is τ-
preserving it follows that for x ∈ A we have 〈∆(x)Ωτ,Ωτ〉 = d

d t |t=0〈Φt (x)Ωτ,Ωτ〉 = 0 (up-
per derivative). Therefore, as ∆≥ 0,

∥∇(a)∥2 =〈Γ(a, a)Ωτ,Ωτ〉
=1

2
(〈∆(a)Ωτ, aΩτ〉+〈aΩτ,∆(a)Ωτ〉−〈∆(a∗a)Ωτ,Ωτ〉)

=1

2
(〈∆ 1

2 (a)Ωτ,∆
1
2 (a)Ωτ〉+〈∆ 1

2 (a)Ωτ,∆
1
2 (a)Ωτ〉−0)

=∥∆ 1
2 (a)Ωτ∥2.

It follows that we have an isometric map

∇∆− 1
2 : ker(∆)⊥ → L2(M)∇.

We extend this map to a partial isometry

RΦ : L2(M) → L2(M)∇

by defining it to have ker(∆) as its kernel. We call RΦ the Riesz transform.

Remark 4.3.2. This Riesz transform was also used in [CIW21, Section 5]. Note that map-
ping that was introduced in [CIW21, Section 5, Eqn. (5.1)] differs from RΦ only on ker(∆).
If the kernel of ∆ is finite-dimensional then RΦ agrees with [CIW21, Eqn. (5.1)] up to a
finite rank perturbation. In particular this is the case if ∆ ≥ 0 has a compact resolvent.
The results of [CIW21, Section 5] stay intact under this finite rank perturbation.

4.3.2. COEFFICIENTS OF THE GRADIENT BIMODULE
We now start our analysis of coefficients of the gradient bimodule. The following defi-
nition of ‘gradient-Sp ’ that first occurred in [Cas21] (for p = 2) and [CIW21] (for general
p) plays a central role in this chapter. The definition may depend on the choice of the
σ-weakly dense subalgebra A of M which we fixed before in our notation. This thesis
contains the first results for the gradient-Sp property in the context of group algebras.

Definition 4.3.3. Let p ∈ [1,∞]. Consider a QMS Φ on a finite von Neumann algebra
(M ,τ) with generator ∆ and a dense ∗-subalgebra A ⊆ M as in Section 4.3.1. Then Φ is
called gradient-Sp if for every a,b ∈ A the map

Ψa,b : A → A : x 7→∆(axb)+a∆(x)b −∆(ax)b −a∆(xb),

extends as xΩτ 7→Ψa,b(x)Ωτ to a bounded map on L2(M) that is moreover in the Schatten
p-class Sp = Sp (L2(M)).

Remark 4.3.4. Since ∆ is self-adjoint we have for a,b, x, y ∈ A,

〈Ψa,b(x)Ωτ, yΩτ〉 =〈(∆(axb)+a∆(x)b −∆(ax)b −a∆(xb))Ωτ, yΩτ〉
=〈xΩτ, (∆(a∗yb∗)+a∗∆(y)b∗−∆(a∗x)b∗−a∗∆(yb∗))Ωτ〉
=〈xΩτ,Ψa∗,b∗

(y)Ωτ〉.
So it follows that

(Ψa,b)∗ =Ψa∗,b∗
, a,b ∈ A. (4.4)
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The following lemma simplifies verifying whether a QMS has the gradient-Sp prop-
erty.

Lemma 4.3.5 (Condition that implies Gradient-Sp property). Let p ∈ [1,∞]. Let A0 ⊆ A
be a self-adjoint subset that generates A as a ∗-algebra. Then (Φt )t≥0 is gradient-Sp if and
only if for all a,b ∈ A0 we have thatΨa,b is in Sp .

Proof. The only if statement follows directly from the definition of gradient-Sp . We will
prove the other direction. We must prove thatΨa,b is in Sp for every a,b ∈ A. Since A0 is
self-adjoint, A is generated by A0 as an algebra. So A is spanned linearly by (A0)n ,n ∈N.
Note that the mapΨa,b depends linearly on both a and b. So in order to prove thatΨa,b

is in Sp for all a,b ∈ A it suffices to prove that Ψa,b is in Sp for all a,b ∈ (A0)n for every
n ∈N≥1. We shall prove this latter statement by induction on n. The case n = 1 holds by
assumption of the lemma. We now assume that we have proved the statement for n and
shall prove it for n +1.

First note that for u1,u2, v, w ∈ A we have

Ψu1u2,w (v) =∆(u1u2v w)+u1u2∆(v)w −∆(u1u2v)w −u1u2∆(v w)

= (∆(u1u2v w)+u1∆(u2v)w −∆(u1u2v)w −u1∆(u2v w))

+u1 (∆(u2v w)+u2∆(v)w −∆(u2v)w −u2∆(v w))

=Ψu1,w (u2v)+u1Ψ
u2,w (v),

(4.5)

and likewise for u, v, w1, w2 ∈ A we have

Ψu,w2w1 (v) =Ψu,w1 (v w2)+Ψu,w2 (v)w1. (4.6)

Combining these expressions we see that for u = u1u2 and w = w2w1 we have

Ψu,w (v) =Ψu1u2,w (v)

=Ψu1,w (u2v)+u1Ψ
u2,w (v)

=Ψu1,w2w1 (u2v)+u1Ψ
u2,w2w1 (v)

= (
Ψu1,w1 (u2v w2)+Ψu1,w2 (u2v)w1

)+u1
(
Ψu2,w1 (v w2)+Ψu2,w2 (v)w1

)
.

(4.7)

By the induction hypothesis we have that Ψu1,w1 ,Ψu1,w2 ,Ψu2,w1 ,Ψu2,w2 are all in Sp .
Since the Sp class forms an ideal in B(L2(M ,τ)) we have that the four operators in (4.7)
are all in Sp . This finishes the induction and thus shows that the associated semigroup
is gradient-Sp .

4.3.3. ALMOST BIMODULARITY OF THE RIESZ TRANSFORM
Next we analyze when the Riesz transform is almost bimodular. Therefore we introduce
the following notions. We say that a QMSΦ on a finite von Neumann algebra is filtered if
the generator∆ has a compact resolvent (i.e. (∆−z)−1 is compact for some z ∈C) and for
every eigenvalue λ of ∆ there exists a (necessarily finite dimensional) subspace A(λ) ⊆ A
such that A(λ)Ωτ equals the eigenspace of ∆ at eigenvalue λ. Moreover, we assume that
for an increasing enumeration (λn)n≥0 of the eigenvalues of∆we have for all k, l ≥ 0 that

A =
∞⊕

n=0
A(λn), A(λl )A(λk ) ⊆

l+k⊕
n=0

A(λn).
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We will further say that ∆ has subexponential growth if

lim
k→∞

λk+1

λk
= 1.

Remark 4.3.6. In [Cas22] a more general notion of filtering and subexponential growth
was considered for central Fourier multipliers on compact quantum groups. The current
‘linear’ type of definition suffices however for our purposes.

Theorem 4.3.7 (Theorem 5.12 of [CIW21]). Suppose that a QMS Φ on a finite von Neu-
mann algebra M is filtered with subexponential growth. Then the Riesz transform RΦ :
L2(M) → L2(M)∇ is almost bimodular.

4.3.4. SEMIGROUPS OF FOURIER MULTIPLIERS ON GROUP VON NEUMANN

ALGEBRAS
Now consider the case that M is a group von Neumann algebra L (G) of a discrete group
G and A =C[G]. The following theorem is a version of Schönberg’s theorem.

Theorem 4.3.8 (See Appendix C of [BHV08]). Letψ : G →R. The following are equivalent:

1. ψ is conditionally of negative type.

2. There exists a (recall: symmetric) QMSΦ= (Φt )t≥0 on M determined by

Φt (λg ) = exp(−tψ(g ))λg , g ∈G .

We will call a QMS Φ as in Theorem 4.3.8 a QMS of Fourier multipliers or a QMS
associated with ψ : G → R. Note that we assume such QMS’s to be symmetric. We view
the generator of this semigroup as a map on C[G] which is given by

∆ψ :C[G] →C[G] :λg 7→ψ(g )λg .

The following Theorem 4.3.9 connects Definition 4.3.3 to Section 4.2.

Theorem 4.3.9. Consider a QMSΦ= (Φt )t≥0 of Fourier multipliers on L (G). Let

H00 = {a ⊗∇ c ∈ ℓ2(G)∇ : a,c ∈C[G]} ⊆ ℓ2(G)∇.

If Φ is gradient-Sp with p ∈ [1,∞] then for every ξ,η ∈ spanC[G]H00C[G] the coefficient
Tξ,η is in Sp .

Proof. Let a,b,c,d , x, y ∈C[G] and let ξ= a⊗∇ c,η= b⊗∇ d be elements of H00. We have

2〈x · (a ⊗∇ c) · y,b ⊗∇ d〉 = 2〈xa ⊗∇ c y −x ⊗∇ ac y,b ⊗∇ d〉
= 2〈Γ(xa,b)c y −Γ(x,b)ac y,d〉τ
= 〈(b∗∆(xa)+∆(b∗)xa −∆(b∗xa)−b∗∆(x)a −∆(b∗)xa +∆(b∗x)a)c y,d〉τ
= 〈(∆(b∗x)a +b∗∆(xa)−∆(b∗xa)−b∗∆(x)a)c y,d〉τ
=−〈Ψb∗,a(x)c y,d〉τ
=−τ(d∗Ψb∗,a(x)c y).
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We conclude that
−2Tξ,η(x) = d∗Ψb∗,a(x)c.

In particular ifΨb∗,a is in Sp then so is Tξ,η. The result now follows from Lemma 4.2.4.

Let us now show that in the case of semigroups of Fourier multipliers, the case gradient-
Sp is conceptually much easier to understand. Consider again a QMS Φ = (Φt )t≥0 of
Fourier multipliers associated with a function ψ : G →R that is conditionally of negative
type. Let∆ψ :C[G] →C[G] be as before. For u, w ∈G we define a function γψu,w : G →R as

γ
ψ
u,w (v) =ψ(uv w)+ψ(v)−ψ(uv)−ψ(v w). (4.8)

We have that the function γ
ψ
u,w is related to the operator Ψλu ,λw associated with ∆ψ as

follows

Ψ
λu ,λv
∆ψ

(λv ) =∆ψ(λuv w )+λu∆ψ(λv )λw −∆ψ(λuv )λw −λu∆ψ(λv w ) = γψu,w (v)λuv w .

Now as by (4.4) we have (Ψλu ,λw )∗ =Ψλ∗u ,λ∗w =Ψλu−1 ,λw−1 we obtain that

|Ψλu ,λw |2(λv ) =Ψλu−1 ,λw−1Ψλu ,λw (λv ) = γψ
u−1,w−1 (uv w)γψu,w (v)λv = |γψu,w (v)|2λv . (4.9)

Now for p ∈ [1,∞), this then means that |Ψλu ,λw |p (λv ) = |γu,w (v)|pλv and therefore, as
{λv }v∈Γ forms an orthonormal basis, we have that

∥Ψλu ,λw ∥Sp = (
∑
v∈Γ

〈|Ψλu ,λw |p (λv ),λv 〉)
1
p = ∥γψu,w∥ℓp (G). (4.10)

In order to check whether Ψλu ,λw is in Sp we thus need to check whether γψu,w ∈ ℓp (G).
Moreover, for p =∞, the condition thatΨλu ,λw ∈ Sp means thatΨλu ,λw is a compact op-

erator, which is precisely the case when γψu,w ∈ c0(G), i.e. when γψu,w vanishes at infinity.

The above calculations, together with Lemma 4.3.5, give us a simple condition to
check for p ∈ [1,∞] whether the semigroup (Φt )t≥0 is gradient-Sp .

Lemma 4.3.10. Let p ∈ [1,∞). Let G0 ⊆ G be a subset that generates a discrete group G
with G−1

0 = G0. Let Φ = (Φt )t≥0 be a QMS associated with a proper function ψ : G → R

that is conditionally of negative type. If γψu,w ∈ ℓp (G) for all u, w ∈ G0 then the QMS Φ is
gradient-Sp . The same holds true for p =∞ when ℓp (G) is replaced with c0(G).

Proof. We denote A0 := {λg : g ∈G0} ⊆C[G]. Since G−1
0 =G0 and G0 generates G we have

that A0 is self-adjoint and generates C[G] as an algebra. Now, if for u, w ∈ G0 we have
that γψu,w ∈ ℓp (G) then by (4.10) we have thatΨλu ,λw ∈ Sp . Then Lemma 4.3.5 shows that
Φ is gradient-Sp . The proof is similar for p =∞.

Lemma 4.3.11. Let Φ = (Φt )t≥0 be a QMS associated to a proper symmetric function ψ :
G → Z that is conditionally of negative type. If Φ is gradient-Sp for some p ∈ [1,∞] then

for every u, v ∈G the function γψu,v : G →Z has compact support. In particular by (4.9) we
find thatΨλu ,λv is of finite rank andΦ is gradient-Sp for all p ∈ [1,∞].

Proof. If ψ takes integer values then so does γψu,v for all u, v ∈ G . Therefore γψu,v is con-

tained in ℓp (G), p ∈ [1,∞) or c0(G) if and only if γψu,v has compact support. The remain-
der of the lemma is directly clear.
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4.3.5. ALMOST BIMODULARITY OF THE RIESZ TRANSFORM FOR LENGTH FUNC-
TIONS

We show that a QMS of Fourier multipliers associated with a Z≥0-valued length func-
tion automatically satisfies the conditions of Theorem 4.3.7. Recall that ψ : G →Z≥0 is a
length function if

ψ(uw) ≤ψ(u)+ψ(w) for all u, w ∈G . (4.11)

Theorem 4.3.12. Let ψ : G → Z≥0 be a proper length function that is conditionally of
negative type. Then ∆ψ is moreover filtered. If ψ(G) =Z≥0 or if G is finitely generated then
∆ψ has subexponential growth.

Proof. First of all we have that (1+∆ψ)−1(λv ) = (1+ψ(v))−1λv for all v ∈ Γ. Asψ is proper
this shows that (1+∆ψ)−1 is a compact operator on ℓ2(G). Consider the finite dimen-
sional spaces

C[G](l ) := Span{λv ∈C[G] :ψ(v) = l } for l ∈Z≥0. (4.12)

Then C[G](l )Ωτ equals the eigenspace of ∆ψ at the eigenvalue l . We have

C[G] =⊕
l≥0

C[G](l ) C[G](l )C[G](k) ⊆
l+k⊕
j=0
C[G]( j ) for l ,k ≥ 0 (4.13)

where
⊕

denotes the algebraic direct sum. The first equality holds because ψ only takes
positive integer values and the second equality holds because ψ is a length function, i.e.
(4.11). This shows that ∆ψ is filtered.

That ∆ψ has subexponential growth follows in the first case from the fact that Z≥0 is
the set of eigenvalues and we have (l + 1)/l → 1 as l → ∞. In case G is generated by a
finite set G0 we set K := {maxψ(u) : u ∈ G0}. Then (4.11) implies that Z≥0\ψ(G) cannot
contain an interval of length K +1. Hence if λ0 ≤λ1 ≤ . . . is an increasing enumeration of
ψ(G) then λk+1 ≤λk +K . Hence λk+1/λk → 1 as k →∞.

Corollary 4.3.13. Assume that G is finitely generated. Let ψ : G →Z≥0 be a proper length
function that is conditionally of negative type. Let Φ be the associated QMS of Fourier
multipliers. Then the Riesz transform RΦ : ℓ2(G) → ℓ2(G)∇ is almost bimodular.

Proof. This follows from Theorem 4.3.7 and Theorem 4.3.12.

Theorem 4.3.14. Assume that G is finitely generated and that C∗
r (G) is locally reflexive.

If there exists a proper length function ψ : G → Z≥0 that is conditionally of negative type
such that the associated QMS is gradient-Sp for some p ∈ [1,∞). Then L (G) has AO+.

Proof. Let H∇ := ℓ2(G)∇ be the gradient bimodule. Let n ≥ p
2 . Then by Proposition 4.2.7

the bimodule (H∇)⊗n
G is quasi-contained in the coarse bimodule. Let RΦ : ℓ2(G) → H∇

be the Riesz transform. The kernel of RΦ is spanned by all δg with ψ(g ) = 0. Since ψ is
proper ker(RΦ) is finite dimensional. By Corollary 4.3.13 we see that RΦ is almost bimod-
ular. By Lemma 4.2.9 and Lemma 4.2.10 the convolved Riesz transform R∗n

Φ : ℓ2(G) →
(H∇)⊗n

G is an almost bimodular partial isometry. Therefore we obtain AO+ from Theo-
rem 4.2.12.

Note that in fact we could have avoided the tensor products in this proof by using
Lemma 4.3.11 instead.
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4.4. CHARACTERIZING GRADIENT-Sp FOR COXETER GROUPS
In this section we will consider the case of Coxeter groups. For any Coxeter group the
word length defines a proper length function that is conditionally of negative type [BJS88]
(see also [Tit09, p. 2.22]). Therefore it determines a QMS of Fourier multipliers. The aim
of this section is to find characterizations of when this specific QMS is gradient-Sp .

Throughout Sections 4.4.1 – 4.4.4 we give an almost characterization of gradient-Sp

in terms of the Coxeter diagram. In particular we give sufficient conditions for gradient-
Sp that are easy to verify in Corollary 4.4.11 and Corollary 4.4.12. We also argue that
these conditions are necessary for a large class of Coxeter groups. In Section 4.4.5 we
show that gradient-Sp is equivalent to smallness at infinity of the Coxeter group. More
precisely, a certain natural compactification of the Coxeter group that was considered in
[CL11], [Kli23b] (see also [Kli23a]), [LT15] is small at infinity. This result can be under-
stood directly after Section 4.4.1.

Consider a finite set S = {s1, .., sn} and a symmetric matrix M = (mi j )1≤i , j≤n with
mi , j ∈ N∪ {∞} satisfying mi ,i = 1 and mi , j ≥ 2 whenever i ̸= j . Occasionally we write
msi ,s j for mi , j ; this notation is convenient when considering ms,t without referring to
the indices of the generators s, t ∈ S. We let W = 〈S|M〉 be a Coxeter system. In this chap-
ter, all Coxeter systems considered are finite rank. For convenience, we will byψS denote
the word length function

ψS : W →Z≥0 : w 7→ |w|.
We state the following result.

Theorem 4.4.1 (See [BJS88]). For any Coxeter group the map ψS : W →Z≥0 is condition-
ally of negative type.

Therefore by Theorem 4.3.8 there exists a QMS of Fourier multipliers on L (W ) asso-
ciated with the word length functionψS . The aim of the current Section 4.4 is to describe
when this QMS has gradient-Sp . Recall that by Lemmas 4.3.10 and 4.3.11 we must thus

investigate for generators u, w ∈ S when precisely γψS
u,w is finite rank where γψS

u,w was de-
fined in (4.8).

4.4.1. DESCRIBING SUPPORT OF THE FUNCTION γ
ψS
u,w

The aim of this subsection is to describe the support of γψS
u,w explicitly. In fact, in antic-

ipation of Section 4.5 we will give this description for more general length functions ψ.
Let 1(·) be the indicator function which equals 1 if the statement within brackets is true.

Lemma 4.4.2. Let W = 〈S|M〉 be a Coxeter group. Suppose ψ : W → R is conditionally
of negative type satisfying ψ(w) =ψ(w1)+ ...+ψ(wk ) whenever w = w1...wk is a reduced
expression. Then for u, w ∈ S and v ∈W we have that

|γψu,w (v)| = 2ψ(u)1(uv = vw) = 2ψ(w)1(uv = vw).

Proof. We first note that, since we have u2 = w2 = e as they are generators, we have that

γ
ψ
u,w (v) = γψu,w (uvw) =−γψu,w (uv) =−γψu,w (vw).
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When v is fixed, we can let z ∈ {v,uv,vw,uvw} be such that |z| = min{|v|, |uv|, |vw |, |uvw |}.
Then we have |γψu,w (z)| = |γψu,w (v)|. Furthermore, because |z| is minimal we have |uz| =
|zw | = |z|+1. Thus, if z = z1....zk is a reduced expression for z we have that uz1...zk and
z1....zk w are reduced expressions for uz respectively zw . Therefore, ψ(uz) =ψ(u)+ψ(z)
and ψ(zw) =ψ(z)+ψ(w). Hence

γ
ψ
u,w (z) =ψ(uzw)+ψ(z)−ψ(uz)−ψ(zw)

=ψ(uzw)−ψ(z)−ψ(u)−ψ(w).

Now, since |uz| = |z|+1 we either have that |uzw | = |z|+2 or |uzw | = |z|. We shall consider
these two separate cases, from which the result will follow.

In the first case we have that uz1....zk w is reduced so that ψ(uzw) = ψ(u)+ψ(z)+
ψ(w) and therefore |γψu,w (v)| = |γψu,w (z)| = 0. We note that in this case also uv ̸= vw .
Namely, uv = vw would imply uz = zw and hence uzw = z, which contradicts that
|uzw | = |z|+2.

In the second case we have that uz1....zk w is not reduced. Therefore, by the exchange
condition (see [Dav08, Theorem 3.3.4.]) and the fact that |uzw | = |z| < |zw | we have that
uz1....zk w is equal to z1...zi−1zi+1..zk w for some index 1 ≤ i ≤ k, or that uz1....zk w =
z1....zk . Now in the former case we also have that uz = z1...zi−1zi+1...zk so that |uz| < |z|
which is a contradiction. In this case we must thus have that uzw = z and hence uz = zw .
This then implies thatψ(uzw) =ψ(z) andψ(u) =ψ(uz)−ψ(z) =ψ(zw)−ψ(z) =ψ(w). In
this case we thus obtain that

γ
ψ
u,w (z) =ψ(uzw)−ψ(z)−ψ(u)−ψ(w) =−2ψ(u) =−2ψ(w)

which shows that |γψu,w (v)| = |γψu,w (z)| = 2ψ(u) = 2ψ(w) in this case.

The result now follows from these cases. Namely, either we have that |γψu,w (v)| = 0 and

that v does not satisfy uv = vw , or we have that |γψu,w (v)| = 2ψ(u) = 2ψ(w) and that v does

satisfy uv = vw . This thus shows us that |γψu,w (v)| = 2ψ(u)1(uv = vw) = 2ψ(w)1(uv =
vw).

4.4.2. A CHARACTERIZATION IN TERMS OF COXETER DIAGRAMS
We note that for the word length ψS we have ψS (s) > 0 for all generators s ∈ S. Now by
Lemma 4.4.2, in order to see when γ

ψS
u,w is finite-rank, we have to know what kind of

words v ∈W have the property that uv = vw . For this we introduce some notation.

For distinct i , j ∈ {1, ..., |S|} we will, whenever the label mi , j is finite, denote ki , j =
⌊mi , j

2 ⌋ ≥ 1. Now if mi , j is even, then mi , j = 2ki , j and we set ri , j = si (s j si )ki , j −1. If mi , j is

odd, then mi , j = 2ki , j +1 and we set ri , j = (si s j )ki , j . Furthermore we set

ai , j = si bi , j =
{

si mi , j even

s j mi , j odd
ci , j = s j di , j =

{
s j mi , j even

si mi , j odd
. (4.14)

Then ai , j and bi , j are respectively the first and last letter of the word ri , j . Furthermore
when mi , j is even we have

ci , j ri , j = s j si (s j si )ki , j −1 = (s j si )ki , j = (si s j )ki , j = ri , j s j = ri , j di , j ,
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and when mi , j is odd we have

ci , j ri , j = s j (si s j )ki , j = si (s j si )ki , j = ri , j si = ri , j di , j .

Thus in either case ci , j ri , j = ri , j di , j .

For given generators u, w ∈ S we will now check for what kind of words v ∈ W with
|v| ≤ |uv|, |vw | we have that uv = vw . In Proposition 4.4.4 we then give a precise descrip-
tion of the support of γψS

u,w .

Lemma 4.4.3. For generators u, w ∈ S and a word v ∈W with |v| ≤ |uv|, |vw | we have uv =
vw if and only if v can be written in the reduced form v = ri1, j1 .....rik ,ik so that u = ci1, j1 and
w = dik , jk and so that for l = 1, ...,k−1 we have that cil+1, jl+1 = dil , jl and ail+1, jl+1 ̸∈ {sil , s jl }
and bil , jl ̸∈ {sil+1 , s jl+1 }.

Proof. First, suppose that v can be written in the given form v = ri1, j1 .....rik ,ik with the
given conditions on cil , jl and dil , jl . Then since we have cil , jl ril , jl = ril , jl dil , jl = ril , jl cil+1, jl+1

for l = 1, ...,k −1, and since u = ci1, j1 and w = dik , jk we have uv = vw , which shows the
‘if’ direction.

We now prove the opposite direction. First note that the statement holds for v = e as
this can be written as the empty word. We now prove by induction on n that for v ∈ W

with |v| ≥ 1 and |v| ≤ n and |v| ≤ |uv|, |vw | and uv = vw for some u, w ∈ S, we can write v
in the given form. Note first that the statement holds for n = 0, since then no such v ∈W

exists. Thus, assume that the statement holds for n − 1, we prove the statement for n.
Let u, w ∈ S and v ∈ W be with |v| = n and |uv| = |vw | = |v|+1 and uv = vw . Let v1 . . . vn

be a reduced expression for v. Then the expression uv1 . . . vn and v1 . . . vn w are reduced
expressions for uv = vw . In particular we have u ̸= v1. Set m := mu,v1 . Now, since uv
and vw are equal and u ̸= v1, we can as in the proof of [Dav08, theorem 3.4.2(ii)] find a
reduced expression y1 . . . yn+1 for uv with n ≥ m−1 so that y1 . . . ym = uv1uv1 . . .u when-
ever m is odd, and y1 . . . ym = uv1 . . .uv1 whenever m is even. This is to say that if we let
i0, j0 ∈ {1, ..., |S|} be such that v1 = si0 and u = s j0 , then we have that ri0, j0 = y2 . . . ym and
ci0, j0 = s j0 = u. Note that by the proof of [Dav08, theorem 3.4.2(ii)] we have in particular
that m <∞. Now moreover, since y1 = u we have that y2 . . . yn+1w is an expression for
vw , and this expression is reduced since |vw | = n +1.

Now suppose that m = n +1, then v = ri0, j0 and i0 ̸= j0 since u ̸= v1. Now, we have
u = s j0 = ci0, j0 and furthermore, since ri0, j0 di0, j0 = ci0, j0 ri0,i0 = uv = vw = ri0, j0 w , also
w = di0, j0 . Thus in this case we can write v in the given form.

Now suppose m < n+1 and define v′ = ym+1 . . . yn+1 and u′ = di0, j0 and w ′ = w . Note
that since u = s j0 = ci0, j0 and u′ = di0, j0 we have

ri0, j0 u′v′ = uri0, j0 v′ = uv = vw = ri0, j0 v′w ′.

Therefore u′v′ = v′w ′. Moreover |u′v′| = |v′w ′| = |v′|+1 since ym+1 . . . yn+1w is a reduced
expression for v′w . Now, since also |v′| ≥ 1 and |v′| ≤ n − 1 we have by the induction
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hypothesis that there is a reduced expression v′ = ri1, j1 ....rik , jk for some indices il , jl ∈
{1, ..., |S|} with il ̸= jl so that u′ = ci1, j1 and w ′ = dik , jk and so that for l = 1, . . . ,k −1 we
have that cil+1, jl+1 = dil , jl and ail+1, jl+1 ̸∈ {sil , s jl } and bil , jl ̸∈ {sil+1 , s jl+1 }. Hence we can
write v = ri0, j0 v′ = ri0, j0 . . .rik , jk . We also have u = s j0 = ci0, j0 and w = w ′ = dik , jk and
di0, j0 = u′ = ci1, j1 . Furthermore, since |v| = n = (m−1)+(n−m+1) = |ri0, j0 |+|v′|, and since
the expression for v′ is reduced we thus have that the expression for v is also reduced.
Now suppose that bi0, j0 ∈ {si1 , s j1 }. We note that bi0, j0 ̸= di0, j0 = ci1, j1 ̸= ai1, j1 . Now as
also ci1, j1 , ai1, j1 ∈ {si1 , s j1 } we obtain that ai1, j1 = bi0, j0 . However as ri0, j0 ends with bi0, j0

and as ri1, j1 starts with ai1, j1 we then obtain that ri0, j0 ri1, j1 is not a reduced expression.
This contradicts the fact that the expression for v is reduced. Likewise, if ai1, j1 ∈ {si0 , s j0 }
we have because of the fact that ai1, j1 ̸= ci1, j1 = di0, j0 ̸= bi0, j0 and di0, j0 ,bi0, j0 ∈ {si0 , s j0 }
that ai1, j1 = bi0, j0 . This then shows that ri0, j0 ri1, j1 is not a reduced expression, which
contradicts the fact that the expression for v is reduced. This proves the lemma.

Proposition 4.4.4. Let u, w ∈ S. Then z ∈ supp(γψS
u,w ) if and only if z ∈ {v,uv,vw,uvw},

where v is a word as in Lemma 4.4.3.

Proof. It is clear that if z ∈ {v,uv,vw,uvw} where v is of the form of Lemma 4.4.3, that we
then have that uz = zw , and hence by Lemma 4.4.2 that ψψS

u,w (z) ̸= 0. For the other direc-

tion we suppose that z ∈ supp(γψS
u,w ). Then we have that uz = zw holds by Lemma 4.4.2.

Now there is a v ∈ {z,uz,zw,uzw} such that |v| ≤ |uv|, |vw |. This word v moreover satis-
fies uv = vw as we had uz = zw . Now, this means that v can be written in an expression
as in Lemma 4.4.3. Last, we note that z ∈ {v,uv,vw,uvw}, which finishes the proof.

4.4.3. PARITY PATHS IN COXETER DIAGRAM
In Proposition 4.4.4 we showed precisely for what kind of words v ∈ W we have v ∈
supp(γψS

u,w ). The question is now whether this support is finite or infinite. It follows
from the proposition that the support is finite if and only if there exist only finitely many
words v ∈ W that can be written in the form v = ri1, j1 ....rik , jk with the condition from
Lemma 4.4.3. To answer the question on whether this is the case, we shall identify these
expressions with certain walks in a graph. The following defines essentially the Coxeter
diagram with the difference that in a Coxeter diagram the edges that are labeled with
mi , j = 2 are deleted and those labeled with mi , j = ∞ are added. Recall that a graph is
simplicial if it contains no double edges and no edges from a point to itself.

Definition 4.4.5. We will let Gr aphS (W ) = (V ,E) be the complete simplicial graph with
vertex set V = S and labels mi , j on the edges {si , s j } ∈ E.

Definition 4.4.6. Let k ≥ 1 and il , jl ∈ {1, .., |S|} for l = 1, ...,k. Let

P = (s j1 , si1 , s j2 , ....., s jk , sik )

be a walk in the Gr aphS (W ), which has even length. We will say that P is a parity path
if the edges of P have finite labels, and if (1) il ̸= jl for all l ; (2) for l = 1, ..,k −1 we have
s jl+1 = dil , jl and (3) il+1 ̸∈ {il , jl }. We will moreover call the parity path P a cyclic parity

path if the path P := (s j1 , si1 , ...., s jk , sik , s j1 , si1 ) is a parity path.
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The intuition for a parity path is that if you walk an edge with odd label, you have
to stay there for one turn and then continue your walk over a different edge than you
came from. Furthermore, when you walk an edge with an even label you have to return
directly over the same edge, and then continue your walk using another edge. Note that
in both cases you may still use same edges as before at a later point in your walk. A cyclic
parity path is defined so that walking the same path any number of times in a row gives
you a parity path.

We state the following definition.

Definition 4.4.7. An elementary M-operation on a word v1....vk is one of the following
operations

1. Delete a subword of the form si si .

2. Replace an alternating subword of the form si s j si s j ... of length mi , j by the alternat-
ing word s j si s j si .... of the same length.

A word is called M-reduced if it cannot be shortened by elementary M-operations.

We shall now show in the following two Theorems that the gradient-Sp property of
the semigroup (Φt )t≥0 on L (W ) associated to the word length ψS , is almost equivalent
with the non-existence of cyclic parity paths in Gr aphS (W ).

Theorem 4.4.8. Let W = 〈S|M〉 be a Coxeter system. Suppose there is a cyclic parity path

P = (s j1 , si1 , s j2 , ..., s jk , sik )

in Gr aphS (W ) in which the labels mil , jl ,mil ,il+1 , m jl ,il+1 are all unequal to 2. Then the
semigroup (Φt )t≥0 associated to the word length ψS is not gradient-Sp for any p ∈ [1,∞].

Proof. Suppose the assumptions hold. Then we have that there exists a parity path
of the form P = (s j1 , si1 , s j2 , ..., s jk , sik , s jk+1 , sik+1 ) where si1 = sik+1 and s j1 = s jk+1 . We
will denote v1 = ri1, j1 ...rik , jk . We note that by the definition of a parity path we have
dil , jl = s jl+1 = cil+1, jl+1 for l = 1, ..,k − 1 and dik , jk = s jk+1 = s j1 = ci1, j1 . We now de-
fine u = ci1, j1 = dik , jk . Now we thus have uv1 = v1u. This means by Lemma 4.4.2 that

γ
ψS
u,u(v1) ̸= 0. We show that ψS (v1) ≥ k. To see this, note that ail+1, jl+1 = sil+1 ̸∈ {sil , s jl }

by the definition of the parity path. Furthermore, since bil , jl ̸= dil , jl = cil+1, jl+1 and
bil , jl ̸= ail+1, jl+1 (as ail+1, jl+1 ̸∈ {sil , s jl } ∋ bil , jl ) and ail+1, jl+1 = sil+1 ̸= s jl+1 = cil+1, jl+1 we
have that bil , jl ̸∈ {ail+1, jl+1 ,cil+1, jl+1 } = {sil+1 , s jl+1 }. Now, since there are no labels mil , jl

equal to 2 we have that the sub-words ril , jl contain both elements sil and s jl . This means,
since ail+1, jl+1 ̸∈ {sil , s jl } and bil , jl ̸∈ {sil+1 , s jl+1 }, that the only sub-words of v1 of the form
si s j si . . . si s j or si s j si . . . s j si are the sub-words of ril , jl for some l = 1, ...,k, and the words
bil , jl ail+1, jl+1 for l = 1, ..,k −1. For an alternating subword x of ri , j for some i , j we have
that x is an alternating sequence of si ’s and s j ’s and further

|x| ≤ |ri , j | ≤ mi , j −1.
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Furthermore, for a word si s j with si = bil , jl and s j = ail+1, jl+1 for some l = 1, . . . ,k −1 (in
which case we have i ∈ {il , jl } and j = il+1) we have that

|si s j | = 2 ≤ min{mil ,il+1 ,m jl ,il+1 }−1 ≤ mi , j −1.

Furthermore, there are no sub-words of v1 of the form si si . This means that the
expression for v1 is M-reduced, and therefore, by [Dav08, Theorem 3.4.2], that the ex-
pression is reduced. This means that ψS (v1) ≥ k. Now, since we can create cyclic parity
paths Pn by walking over P a n number of times, we can create vn ∈W with ψS (vn) ≥ nk
and γ

ψS
u,u(vn) ̸= 0. Therefore γψS

u,u is not finite rank, and hence the semigroup (Φt )t≥0 is
not gradient-Sp for any p ∈ [1,∞].

Theorem 4.4.9. Let W = 〈S|M〉 be a Coxeter group. If there does not exist a cyclic par-
ity path in Gr aphS (W ) then the semigroup (Φt )t≥0 associated to the word length ψS is
gradient-Sp for all p ∈ [1,∞].

Proof. Suppose that (Φt )t≥0 is not gradient-Sp for some p ∈ [1,∞]. We will show that a
cyclic parity path exists. Namely, since the semigroup is not gradient-Sp , there exist by

Lemma 4.3.11 generators u, w ∈ S for which γ
ψS
u,w is not finite rank. Set m = max{mi , j :

1 ≤ i , j ≤ |S|} \ {∞}. We can thus let z ∈ supp(γψS
u,w ) be with ψS (z) > m|S|2 + 2. Then

by Proposition 4.4.4 there is a v ∈ {z,uz,zw,uzw} such that we can write v in reduced
form v = ri1, j1 ....rik , jk with the conditions as in Lemma 4.4.3. Now define the path P =
(s j1 , si1 , ...., s jk , sik ). We show that this is a parity path. By the properties that we obtained
from Lemma 4.4.3, we have that il ̸= jl and that mil , jl < ∞ for all l . Moreover s jl+1 =
cil+1, jl+1 = dil , jl and sil = ail , jl ̸∈ {sil+1 , s jl+1 }. This shows that P is a parity path. Note
furthermore that since ψS (v) ≥ ψS (z)−2 > m|S|2, we have that P has length |P | = 2k ≥
2ψS (v)

m > 2|S|2. Therefore, there must exist indices l < l ′ such that (s jl , sil ) = (s jl ′ , sil ′ ). The
sub-path (s jl ,sil

, . . . , s jl ′−1, jl ′−1
) then is a cyclic parity path.

4.4.4. CHARACTERIZATION OF GRAPHS THAT CONTAIN CYCLIC PARITY PATHS
In the previous subsection, in Theorem 4.4.8 and Theorem 4.4.9 we have shown that the
gradient-Sp property is almost equivalent to the non-existence of a cyclic parity path.
We shall now characterize in Proposition 4.4.10 precisely when a graph possesses a cyclic
parity path. The content of this proposition is moreover visualized in Figure 4.1. There-
after we state two corollaries that follow from this proposition and from Theorem 4.4.8
and Theorem 4.4.9. These corollaries give an ‘almost’ complete characterization of the
types of Coxeter systems for which the semigroup associated to ψS is gradient-Sp .

The following proposition shows exactly when a cyclic parity path P in the graph
Gr aphS (W ) exists. Recall that a forest is a union of trees. A graph is a tree if it has no
loops/cycles.

Proposition 4.4.10. Let us denote V = S and E0 = {{i , j } : mi , j ∈ 2N} and E1 = {{i , j } :
mi , j ∈ 2N+1}. Then there does not exist a cyclic parity path P in Gr aphS (W ) if and only if
(V ,E1) is a forest, and for every connected component C of (V ,E1) there is at most one edge



4.4. CHARACTERIZING GRADIENT-Sp FOR COXETER GROUPS 75

Graphs with and without a cyclic parity path
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(a) Graph with no cyclic parity path
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(b) Graph with a cyclic parity path
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(c) Graph with a cyclic parity path

Figure 4.1: The graph Gr aphS (W ) is denoted for three different Coxeter systems W = 〈S|M〉 with |S| = 6. In
each of the graphs the label mi , j is shown on the edge {si , s j }. We colored the edge orange when the label is
even, we colored it blue when the label is odd, and we colored it black when the label is infinity. The relations
we imposed on the generators are almost the same in the three cases. They only differ on the edges {s4, s5} and
{s5, s6}. The graph in (A) satisfies the assumptions of Proposition 4.4.10 and hence does not contain a cyclic
parity path. The graph in (B) does not satisfy the assumptions of the proposition as for the connected compo-
nent C = {s3, s4} of (V ,E1) there are two distinct edges {s2, s3} and {s4, s5} with even label and with (at least) one
endpoint in C . Therefore the graph contains a cyclic parity path. One is given by P = (s3, s2, s3, s4, s4, s5, s4, s3)
(another cyclic parity path uses the node s1). The graph in (C) does also not satisfy the assumptions of the
proposition as it contains a cycle with odd labels. Here a cyclic parity path is given by P = (s1, s5, s5, s6, s6, s1)
(another cyclic parity path is obtained by walking in reverse order).

{t ,r } ∈ E0 with t ∈C and r ̸∈C , and for every connected component C of (V ,E1) there is no
edge {t , t ′} ∈ E0 with t , t ′ ∈C .

Proof. First suppose that (V ,E1) is not a forest. Then there is a cycle Q = (s j1 , s j2 , . . . , s jk , s j1 )
in (V ,E1). Now, since all edges are odd, this means that

P = (s j1 , s j2 , s j2 , s j3 , s j3 , ...., s jk , s jk , s j1 )

is a cyclic parity path. Indeed, if we denote jk+1 := j1 and jk+2 := j2, then jl ̸= jl+1 for
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l = 1, . . . ,k and we have s jl+1 = d jl+1, jl and jl+2 ̸∈ { jl+1, jl }, which shows all conditions
hold.

Now suppose that there is a connected component C of (V ,E1) for which there are
two distinct edges {t1,r1}, {t2,r2} ∈ E0 with t1, t2 ∈ C and r1,r2 ̸∈ C . If t1 = t2 then r1 ̸= r2

and a cyclic parity path is given by P = (t1,r1, t1,r2). In the case that t1 and t2 are distinct
there is a simple path Q = (t1, s j1 , ..., s jk , t2) in (V ,E1) from t1 to t2. The path

P = (t1, s j1 , s j1 , s j2 , s j2 , ..., s jk , s jk , t2, t2,r2, t2, s jk , s jk , s jk−1 , s jk−1 , ..., s j1 , s j1 , t1, t1,r1)

then is a cyclic parity path. Indeed, just as the previous case we have that the paths

P1 := (t1, s j1 , s j1 , s j2 , s j2 , . . . , s jk , s jk , t2)

and
P2 := (t2, s jk , s jk , s jk−1 , s jk−1 , . . . , s j1 , s j1 , t1)

are parity paths, since they are obtained from a simple path in (V ,E1). We then only
have to check that in the middle and at the start/end of the path P the conditions are
satisfied. For the middle, we see that indeed r2 ̸∈ {s jk , t2} as the label of the edge between
t2 and r2 is even. Furthermore, since P1 is a parity path we have that s jk ̸= t2. Thus
also s jk ̸∈ {t2,r2}. Furthermore, if we let i , j be such that t2 = s j , r2 = si , then since m jk , j

is odd, we have that t2 = d j , jk and since mi , j is even we have t2 = di , j . This shows all
conditions in the middle. The conditions at the start/end hold by symmetry. Thus P is
indeed a cyclic parity path.

Now, suppose that there is a connected component C of (V ,E1) for which there exists
an edge {t , t ′} ∈ E0 with t , t ′ ∈C . Then we can, similar to what we just did, obtain a cyclic
parity path by taking t1 = t and t2 = t ′ and r1 = t ′ and r2 = t .

We now prove the other direction. Thus, suppose that (V ,E1) is a forest and that for
every connected component C there is at most edge {t ,r } ∈ E0 with t ∈C and r ∈V , and
that for every connected component there is no edge {t , t ′} ∈ E0 with t , t ′ ∈ C . Suppose
there exists a cyclic parity path P = (s j1 , si1 , ..., s jk , sik ) in (V ,E0 ∪E1), we show that this
gives a contradiction. First suppose that P only has odd edges. Then s jl+1 = dil , jl = sil

for l = 1, ..,k −1 and s j1 = dik , jk = sik , and thus P = (sik , si1 , si1 , si2 , si2 , ..., sik−1 , sik ). How-
ever, since also il+1 ̸∈ {il , jl } = {il , il−1}, this means that Q = (si1 , si2 , ...., sik , si1 ) is a cy-
cle in (V ,E1). But this is not possible since (V ,E1) is a forest, which gives the contra-
diction. We thus assume that there is an index l such that the label mil , jl is even. By
choosing the starting point of P as jl instead of j1, we can assume that mi1, j1 is even.
Now in that case we have s j2 = di1, j1 = s j1 . We must moreover have i2 ̸∈ {i1, j1} as P
is a parity path. Now as the edges {i1, j1} and {i2, j2} are thus distinct, and share an
endpoint, we obtain that mi2, j2 is odd. This means that j3 = di2, j2 = i2 ̸= j2. Now the
sub-path (s j2 , si2 , . . . , s jk , sik , s j1 , si1 ) is also a parity path. Denote jk+1 = j1 and ik+1 = i1

and let 3 < k ′ ≤ k + 1 be the smallest index such that s jk′ = s j2 . Note that such k ′ ex-
ists since s jk+1 = s j1 = s j2 . Then the sub-path P ′ := (s j2 , si2 , ..., s jk′ , sik′ ) is a parity path,
and the labels mil , jl for l = 2, . . . ,k ′ − 1 are odd since s j2 is the only vertex in its con-
nected component in (V ,E1) that is connected by an edge in E0. Thus, just like in the
previous case we have that P ′ := (sik′ , si2 , si2 , si3 , . . . , sik′−1

, sik′ ). Now this means that the
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path Q = (sik′ , si2 , si3 , . . . , sik′ ) contains a cycle, which is a contradiction with the fact that
(V ,E1) is a forest. This proves the lemma.

We now state two corollaries that directly follow from Theorem 4.4.8, Theorem 4.4.9
and Theorem 4.4.10.

Corollary 4.4.11. Let W = 〈S|M〉 be a Coxeter system and fix p ∈ [1,∞]. Let us denote
E0 = {(i , j ) : mi , j ∈ 2N} and E1 = {(i , j ) : mi , j ∈ 2N+ 1}. Then the semigroup (Φt )t≥0 on
L (W ) associated to the word length ψS is gradient-Sp if (S,E1) is a forest, and if for every
connected component C of (S,E1) there is at most one edge {t ,r } ∈ E0 with t ∈C and r ̸∈C
and no edge {t , t ′} ∈ E0 with t , t ′ ∈C .

Corollary 4.4.12. Let W = 〈S|M〉 be a Coxeter system satisfying mi , j ̸= 2 for all i , j . Fix
p ∈ [1,∞]. Let us denote E0 = {(i , j ) : mi , j ∈ 2N} and E1 = {(i , j ) : mi , j ∈ 2N+1}. Then the
semigroup (Φt )t≥0 on L (W ) associated to the word length ψS is gradient-Sp if and only if
(S,E1) is a forest, and for every connected component C of (S,E1) there is at most one edge
{t ,r } ∈ E0 with t ∈C and r ̸∈C and no edge {t , t ′} ∈ E0 with t , t ′ ∈C .

We would also like to point out the following result from [Bra+02, Example 5.1]. It
follows that the Coxeter groups are in some cases actually equal. In such cases we have
obtained the gradient-Sp property for multiple quantum Markov semigroups.

Proposition 4.4.13. Let Wi = 〈Si |Mi 〉 be Coxeter systems for i = 1,2 such that Gr aphSi (Wi )
has no edges of even label, and such that the edges of odd label form a tree. Then if
Gr aphS1 (W2) has the same set of labels as Gr aphS2 (W2) (counting multiplicities), then
the Coxeter groups are equal, that is W1 =W2.

4.4.5. SMALLNESS AT INFINITY
We recall the construction of a natural compactification and boundary associated with
a finite rank Coxeter group. We base ourselves mostly on the very general construction
from [Kli23b] but in the case of Coxeter groups this boundary was also considered in
[CL11], [LT15]. In [Kli23b] then smallness at infinity was studied as well as its connection
to the Gromov boundary, which generally is different from the construction below.

Let W = 〈S|M〉 be a finite rank Coxeter system and let CayleyS (W ) be its Cayley graph
which has vertex set W and w,v ∈ W are connected by an edge if and only if w = vs for
some s ∈ S. We see CayleyS (W ) as a rooted graph with e ∈W the root. We say that w ≤ v
if there exists a geodesic (=shortest path) from e to v passing through w. An infinite
geodesic path is a sequence α = (αi )i∈N such that: (1) αi ∈ W , (2) αi and αi+1 have dis-
tance 1 in the Cayley graph, (3) (αi )i=0,...,n is a shortest path (geodesic) from α0 to αn for
every n. For every w ∈ W we have either w ≤ αi for all large enough i or w ̸≤ αi for all
large enough i . We write w ≤α in the former case and w ̸≤α in the latter case. We define
an equivalence relation ∼ by saying that for two infinite geodesicsα and βwe haveα∼β
if for all w ∈ W both implications w ≤ α⇔ w ≤ β hold. Let ∂(W ,S) be the set of infinite
geodesics modulo ∼. Define (W ,S) = W ∪ ∂(W ,S). We equip (W ,S) with the topology
generated by the subbase consisting of

Uw :=
{
α ∈ (W ,S) : w ≤α

}
, U c

w :=
{
α ∈ (W ,S) : w ̸≤α

}
,
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with w ∈ W . Then (W ,S) contains W as an open dense subset and the left translation
action of W on W extends to a continuous action on (W ,S) (see [Kli23b]). This means
that (W ,S) is a compactification of W in the sense of [BO08, Definition 5.3.15] and ∂(W ,S)
is the boundary. We now recall the following definition from [BO08, Definition 5.3.15].

Definition 4.4.14. We will say that a finite rank Coxeter system (W ,S) is small at infin-
ity if the compactification (W ,S) is small at infinity. This means that for every sequence
(xi )i∈N ∈W converging to a boundary point z ∈ ∂(W ,S) and for every w ∈W we have that
xi w → z.

The following is the main theorem of this subsection. The authors are indebted to
Mario Klisse for noting the connections in this theorem as well as its proof.

Theorem 4.4.15. Let W = 〈S|M〉 be a Coxeter system. Fix p ∈ [1,∞]. The following are
equivalent:

1. The QMS (Φt )t≥0 associated with the word length ψS is gradient-Sp on L (W ).

2. For all u, w ∈ S the set {v ∈W : uv = vw} is finite.

3. For all s ∈ S the set {v ∈W : sv = vs} is finite.

4. The Coxeter system W = 〈S|M〉 is small at infinity.

Proof. (1) is equivalent to saying that for all u, v ∈ S we have that γψS
u,v has compact sup-

port by Lemma 4.3.11. By Lemma 4.4.2 this is equivalent to (1). The equivalence between
(3) and (4) was proven in [Kli23b, Theorem 0.3]. The implication (2) =⇒ (3) is immedi-
ate.

Now assume (4). We shall prove that (2) holds by contradiction. So suppose that
|{v : uv = vw}| = ∞ for some u, w ∈ S. Choose a sequence (vi )i in {v : uv = vw} which
has increasing word length. By the compactness of the compactification (W ,S) [Kli23b,
Proposition 2.8] this implies that (by possibly going over to a subsequence) the sequence
(vi )i converges to a boundary point z. Now, by the smallness at infinity and the assump-
tion that uvi = vi w we have that z = limi vi w = limi uvi = u · z. We have either u ≤ z
or u ̸≤ z but not both in the partial order from [Kli23b, Lemma 2.2]. Further, u ̸≤ z iff
u ≤ u · z = z which yields a contradiction.

Remark 4.4.16. We refer to [Kli23b, Theorem 0.3] for yet another statement that is equiv-
alent to the statements in Theorem 4.4.15. A consequence of [Kli23b, Theorem 0.3] is
that Coxeter groups that are small at infinity are word hyperbolic. Conversely, not every
word hyperbolic Coxeter group is small at infinity. The simplest example is probably the
Coxeter group generated by S = {s1, s2, s3, s4} where mi , j = 2 if |i− j | = 1 and mi , j =∞ oth-
erwise. We thus see that not for every hyperbolic Coxeter group we have the gradient-Sp

property for the QMS associated with the word length. However, in Section 4.6 we show
that using tensoring we may still use our methods for such Coxeter groups.

Remark 4.4.17. It is known that every discrete hyperbolic group is strongly solid by com-
bining results in [HG04] (to get AO+ using amenable actions on the Gromov bound-
ary), [Oza08] (for weak amenability, see [Fen02], [Jan02] for general Coxeter groups) and
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[PV14b] (for Theorem 4.2.14). Condition AO+ may also be obtained by Theorem 4.3.14
for the Coxeter groups that admit a QMS with gradient-Sp . However, Remark 4.4.16
shows that this covers a smaller class than [HG04] and so our methods – for now at least
– do not improve on existing methods concerning strong solidity questions.

There are still two large benefits of the results in this section. Firstly, given a Coxeter
system W = 〈S|M〉 it is not directly clear whether it is small at infinity. A combination
of Theorem 4.4.15 and Corollaries 4.4.11 and 4.4.12 gives in many cases an easy way to
see whether a Coxeter group is small at infinity. Secondly, for now we may not improve
on current strong solidity results but in Section 4.6 we show that using the tensor meth-
ods of Section 4.2 we may prove strong solidity for all hyperbolic right-angled Coxeter
groups. This gives an alternative path to the method of [HG04] (still not outweighing
known results). In Section 4.7 this alternative path also gives strong solidity results for
Hecke von Neumann algebras. Here we really improve on existing results as the methods
of [HG04] can only be applied in a limited way, see [Kli23b, Theorem 3.15 and Corollary
3.17].

Remark 4.4.18. By Theorem 4.4.15 (see [Kli23b, Theorem 0.3]) smallness at infinity or
gradient-Sp can be characterized in terms of the finiteness of the centralizers of the gen-
erators. Such centralizers can be analyzed using the methods from [All13], [Bri96].

4.5. GRADIENT-Sp SEMIGROUPS ASSOCIATED TO WEIGHTED WORD

LENGTHS ON COXETER GROUPS
In this section we will consider proper length functions on Coxeter groups that are con-
ditionally of negative type and are different from the standard word length. We can
then consider the quantum Markov semigroups associated to these other functions, and
study the gradient-Sp property of these semigroups. We show that these other semi-
groups may have the gradient-Sp properties in cases where the semigroup associated to
the word length ψS fails to be gradient-Sp . For p ∈ [1,∞] this gives us new examples of
Coxeter groups W for which there exist a gradient-Sp quantum Markov semigroup on
L (W ). These results will turn out to be crucial in Section 4.6.

4.5.1. WEIGHTED WORD LENGTHS
For non-negative weights x = (x1, ...x|S|) we consider, if existent, the function ψx : W →R

by taking the word length with respect to the weights x on the generators (see below).
These functions are conditionally of negative definite type as follows for instance as a
special case of [BS94, Theorem 1.1]. Here we give another purely group theoretical proof.

Fix again a (finite rank) Coxeter group W = 〈S|M〉. Recall that the graph Gr aphS (W )
was defined in Definition 4.4.5. Let Gr aph′

S (W ) be the subgraph of Gr aphS (W ) that
has vertex set S and edge set E = {(si , s j ) : 3 ≤ mi , j := msi ,s j < ∞}. Then let Ci be the
connected component in Gr aph′

S (W ) that contains si .

Lemma 4.5.1. Let W = 〈S|M〉 be a Coxeter group. Then if x ∈ [0,∞)|S| is such that xi = x j

whenever Ci =C j , then the function

ψx : W → [0,∞),
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given for a word w = w1....wk in reduced expression by ψx(w) = ∑|S|
i=1 xi |{l : wl = si }| is

well-defined and is conditionally of negative type.

Proof. Let n = (n1, ...,n|S|) ∈ N|S| be such that ni = n j whenever Ci = C j . We will con-

struct a new Coxeter group W̃n = 〈Sn|Mn〉 as follows. We denote Sn = {si ,k : 1 ≤ i ≤ |S|,1 ≤
k ≤ ni } for the set of letters. We then define Mn : Sn →N∪ {∞} as:

mn,si ,k ,s j ,l =


msi ,s j Ci =C j and k = l

2 Ci =C j and k ̸= l

msi ,s j Ci ̸=C j

.

We put W̃n := 〈Sn|Mn〉. We now define a homomorphism ϕn : W → W̃n given for genera-
tors by ϕn(si ) = si ,1si ,2....si ,ni . We note that ϕn(si )2 = si ,1...si ,ni si ,1...si ,ni = s2

i ,1...s2
i ,ni

= e.
Furthermore, when Ci =C j we have that ni = n j and

(ϕn(si )ϕn(s j ))m = (si ,1....si ,ni s j ,1....s j ,n j )m = (si ,1s j ,1)m(si ,2, s j ,2)m ....(si ,ni s j ,n j )m .

This means that in this case (ϕn(si )ϕn(s j ))
msi ,s j = e. If Ci ̸= C j then either msi ,s j = 2 or

msi ,s j =∞. If msi ,s j = 2 then alsoϕn(si )ϕn(s j ) = si ,1...si ,ni s j ,1...s j ,n j = s j ,1...s j ,n j si ,1...si ,ni =
ϕn(si )ϕn(s j ) holds. Therefore, we can extend ϕn to words w = w1....wk ∈ W by defining
ϕn(w) = ϕn(w1)...ϕn(wk ). By what we just showed, this map is well-defined. Further-
more, from the definition it follows that this map is a homomorphism. Moreover, we
note that if w = w1...wk ∈ W is a reduced expression, then ϕn(w) = ϕn(w1)...ϕn(wk ) is
also a reduced expression. This means in particular that ϕn is injective. Furthermore, if
we denote ψ̃n for the word length on W̃n, then we have that for a word w = w1....wk ∈W

written in a reduced expression that

ψ̃n ◦ϕn(w) =
k∑

l=1
ψ̃n(ϕn(wl )) =

|S|∑
i=1

ψ̃n(ϕn(si ))|{l : wl = si }| =
|S|∑

i=1
ni |{l : wl = si }|.

Now fix x ∈ [0,∞)|S| with xi = x j whenever Ci = C j . For m ∈ N define nm ∈ N|S| by
(nm)i = ⌈mxi ⌉+1 ∈N. Now, for w ∈W with reduced expression w = w1...wk we have∣∣∣∣∣ 1

m
ψ̃nm ◦ϕnm (w)−

|S|∑
i=1

xi |{l : wl = si }|
∣∣∣∣∣≤ |S|∑

i=1
| (nm)i

m
−xi | · |{l : wl = si }|

=
|S|∑

i=1

|⌈mxi ⌉+1−mxi |
m

|{l : wl = si }| ≤
|S|∑

i=1

2

m
|{l : wl = si }| ≤ 2|w|

m
,

and hence 1
m ψ̃nm ◦ϕnm (w) → ∑|S|

i=1 xi |{l : wl = si }| as m → ∞. This shows in particular

that ψx is well defined. Now, since 1
m ψ̃nm ◦ϕnm →ψx point-wise. Since 1

m ψ̃nm ◦ϕnm is
conditionally of negative type we have by [BHV08, Proposition C.2.4(ii)] that ψx is con-
ditionally of negative type.

Remark 4.5.2. By Lemma 4.5.1 in the case of a right-angled Coxeter group W = 〈S|M〉
we have that every weight x ∈ [0,∞)|S| defines a function that is conditionally of negative
type.
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Remark 4.5.3. For a general Coxeter group W = 〈S|M〉 and arbitrary non-negative weights
x ∈ [0,∞)|S| the weighted word length is not well-defined. Indeed, if si , s j ∈ S are such

that msi ,s j is odd, then for ki , j := ⌊ 1
2 msi ,s j ⌋ we have that (si s j )ki , j si and s j (si s j )ki , j are two

reduced expressions for the same word, but the values of |{l : wl = si }| and |{l : wl = s j }|
depend on the choice of the reduced expressions.

We shall now turn to examine when a weighted word length is proper. Fix again a
Coxeter system W = 〈S|M〉. Let T ⊆ S be a subset of the generators such that for i =
1, . . . , |S| either Ci ⊆ T or Ci ∩T =;. We set

ψT =ψx, with x ∈ [0,∞)|S| defined by x(i ) =χT (i ),

where χT is the indicator function on T . Then by Lemma 4.5.1 we have that ψT : W →R

is a well-defined function that is conditionally of negative type. We give the following
characterization on when the function ψT is proper.

Proposition 4.5.4. The function ψT is proper if and only if the elements S \ T generate a
finite subgroup.

Proof. Indeed, if the generated group H is infinite, thenψT is not proper asψT |H = 0. On
the other hand, if the generated group H contains N <∞ elements, then for a reduced
expression w = w1....wk ∈ W we can not have that wl , wl+1, ...wl+N ∈ S \ T for some 1 ≤
l ≤ k −N as the expressions wl , wl wl+1, wl wl+1wl+2, .. would all be distinct elements in
H . This thus implies thatψT (w) > |w|

N+1 −1 which shows thatψT is proper in this case.

4.5.2. GRADIENT-Sp PROPERTY WITH RESPECT TO WEIGHTED WORD LENGTHS

ON RIGHT-ANGLED COXETER GROUPS
In this subsection we shall consider a finite rank Coxeter group W = 〈S|M〉. By Remark
4.5.2 it follows that for any x ∈ [0,∞)|S| we have that ψx : W →R is well-defined and con-
ditionally of negative definite type. We note also that ψx(w) =ψx(w1)+ ..+ψx(wk ) when
w = w1...wk is a reduced expression. Therefore by Lemma 4.4.2 we have that γψx

u,w (v) ̸= 0
for u, w ∈ S and v ∈W if and only if uv = vw and ψx(u) > 0.

Theorem 4.5.5. Let W = 〈S|M〉 be a finite rank, right-angled Coxeter group. Let x ∈
[0,∞)|S| and p ∈ [1,∞]. Suppose the function ψx : W → R is proper. Then, the semigroup
(Φt )t≥0 induced by ψx is gradient-Sp if and only if there do not exist (distinct) generators
r, s, t ∈ Γwith mr,s = mr,t = 2,ms,t =∞ and ψx(r ) > 0.

Proof. Suppose that (Φt )t≥0 is not gradient-Sp for some p ∈ [1,∞]. We will show the gen-
erators with the given properties exist. Namely, there are generators u, w ∈ S for which
γ
ψx
u,w is not finite rank. We can thus let v ∈ W with |v| > |S| +1 be such that γψx

u,w (v) ̸= 0.
Then uv = vw and ψx(u),ψx(w) > 0 by Lemma 4.4.2. We note moreover that by [Dav08,
Lemma 3.3.3] we have that u = w because these elements are conjugate and the Coxeter
group is right-angled. We can now let z ∈ {v,uv,vw,uvw} be such that |z| ≤ |uz|, |zw |.
Then the equality uz = zw also holds. Therefore, we can write z in reduced form z =
ri1, j1 ....rik , jk with the conditions as in Lemma 4.4.3. Now, as mil , jl := msil

,s jl
< ∞ we

must have msil
,s jl

= 2 for l = 1, ...,k. Hence z = si1 si2 ...sik . Furthermore s jl+1 = s jl for
l = 1, ..,k −1 since msil

,s jl
is even. We define r = s j1 . Then r = ci1, j1 = u so that ψx(r ) > 0.
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Furthermore, since k = |z| ≥ |v|−1 > |S| there exist indices l < l ′ such that msil
,sil ′

=∞.

We then set s = sil and t = sil ′ . Then ms,r = msil
,s jl

= 2 and likewise mt ,r = 2. This shows
that all stated properties hold for r, s, t .

For the other direction, suppose that there exist r, s, t ∈ S with mr,s = mr,t = 2 and
ms,t = ∞ and ψx(r ) > 0. Define the words vn = (st )n . Then we have |vn | = 2n and
hence {vn}n≥1 are all distinct. Moreover, we have r vn = vnr and ψx(r ) > 0. This means
by Lemma 4.4.2 that γψx

r,r (vn) = ψx(r ) > 0 for n ≥ 1. Thus the semigroup (Φt )t≥0 is not
gradient-Sp .

4.6. STRONG SOLIDITY FOR HYPERBOLIC RIGHT-ANGLED COX-
ETER GROUPS

We conclude this chapter with two applications that combines all the techniques that
we have developed so far. This section contains the first application. We prove that any
right-angled hyperbolic Coxeter group has a strongly solid group von Neumann algebra.
This result was surely known before; it follows for instance from [PV14b]. Nevertheless
we present our alternative proof to demonstrate the techniques that we have established
in this chapter. For the rest of this section fix a right-angled Coxeter group WΓ associated
to a finite graph Γ. We shall use the following characterisation of word hyperbolicity.

Theorem 4.6.1 (See [Dav08]). Let WΓ be a right-angled Coxeter group associated to a finite
graph Γ. The following are equivalent:

1. The Coxeter group WΓ is word hyperbolic.

2. The graph Γ does not contain the cyclic graph Z4 of size |Z4| = 4 as a subgraph.

Our aim is to prove the following. The proof is based on Proposition 4.6.3 and Lemma
4.6.4 which we prove at the end. Recall that a clique of Γ is a complete subgraph Λ ⊆ Γ.
We denote by Cliq(Γ) the set of all cliques. Note that this precisely correspond to the set
of those subgraphsΛ⊆ Γ that generate a finite Coxeter subgroup WΛ ⊆WΓ.

Theorem 4.6.2. Let WΓ be a word hyperbolic right-angled Coxeter group associated to a
finite graph Γ. Then L (WΓ) satisfies AO+ and is strongly solid.

Proof. For Λ ∈ Cliq(Γ) the function ψΓ\Λ is proper (see Proposition 4.5.4) and condi-
tionally of negative type (see Lemma 4.5.1). We may therefore consider the QMS ΦΛ
associated with ψΓ\Λ, the associated gradient C[WΓ] bimodule HWΓ,Λ := ℓ2(WΓ)∇ΦΛ and

the Riesz transform RWΓ,Λ : ℓ2(WΓ) → HWΓ,Λ. The Riesz transform RWΓ,Λ is then a partial
isometry with a finite dimensional kernel spanned by δu ,u ∈ WΛ. Furthermore, RWΓ,Λ is
almost bimodular by Corollary 4.3.13. We now consider the ⊗G tensor product of bimod-
ules with G =WΓ over allΛ ∈ Cliq(Γ) as was defined in Section 4.2.2,

HWΓ =
⊗

Λ∈Cliq(Γ)
HWΓ,Λ. (4.15)

We note that the order in which the tensor products are taken is not relevant for our
analysis. Consider the convolution product of Riesz transforms

RWΓ =∗Λ∈Cliq(Γ)RWΓ,Λ : ℓ2(WΓ) →HWΓ .
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By Lemma 4.2.9 and Lemma 4.2.10 we see that RWΓ is an almost bimodular partial isom-
etry whose kernel is spanned by all vectors δu where u ∈ WΛ for some Λ ∈ Cliq(Γ). In
particular the kernel of RWΓ is finite dimensional. Let K ⊆ HWΓ be the smallest C[WΓ]
subbimodule containing the image of RWΓ . Then RWΓ : ℓ2(WΓ) → K is still an almost
bimodular partial isometry with finite dimensional kernel.

Recall that C∗
r (WΓ) is locally reflexive and L (WΓ) has the weak-∗ completely bounded

approximation property as WΓ is weakly amenable (see [Fen02], [Jan02]). It then follows
from Theorem 4.2.12 that if K is quasi-contained in the coarse bimodule of WΓ then
L (WΓ) satisfies AO+. Consequently, L (WΓ) is strongly solid by Theorem 4.2.14. The
proof that K is quasi-contained in the coarse bimodule of WΓ is given in Proposition
4.6.3 below.

Proposition 4.6.3. TheC[WΓ] bimodule K defined in the proof of Theorem 4.6.2 is quasi-
contained in the coarse bimodule of the word hyperbolic right-angled Coxeter group WΓ.

Proof. We shall prove that a cyclic set of coefficients is in S2 so that the proposition fol-
lows from Lemma 4.2.4. Let us denote H00 ⊆K for the sets of all the vectors

ξv := (∗Λ∈Cliq(Γ)RWΓ,Λ)(δv) = ⊗
Λ∈Cliq(Γ)

λv ⊗∇Λ δe , v ∈WΓ.

Here we used the symbol ⊗∇Λ to denote elements in the gradient bimodule constructed
fromΛ. By construction of K we have that H00 is cyclic for K . For ξu,ξw ∈H00 we now
inspect the coefficient Tξu,ξw . We have for u,v,w ∈WΓ, y ∈C[WΓ],

τ(Tξw,ξu (λv)y) = 〈λv ·ξw · y,ξu〉HWΓ

= ∏
Λ∈Cliq(Γ)

〈λv · (λw ⊗∇Λ δe ) · y,λu ⊗∇Λ δe〉HWΓ ,Λ

= ∏
Λ∈Cliq(Γ)

〈Ψλu−1 ,λw

Λ
(λv)δe y,δe〉

= ∏
Λ∈Cliq(Γ)

γ
ψΓ\Λ

u−1,w
(v)〈λu−1vwδe y,δe〉.

Define the function

γ̃u,w(v) = ∏
Λ∈Cliq(Γ)

γ
ψΓ\Λ
u,w (v). (4.16)

Then, if γ̃u−1,w(v) = 0 we have that τ(Tξw,ξu (λv)y) = 0 for all y ∈ C[WΓ] and consequently
Tξw,ξu (λv) = 0. We thus have that Tξw,ξu is finite rank whenever γ̃u−1,w has finite support.
In Lemma 4.6.4 we shall show that the function γ̃u,w has finite rank for all u,w ∈ WΓ so
that we conclude the proof.

In order to prove Lemma 4.6.4 rigorously we shall introduce some notation here. A
tuple (w1, . . . , wk ) with wi ∈ Γ will be call reduced if the expression w1 . . . wk is reduced.
Furthermore, we will call the tuple semi-reduced whenever wi ∈ Γ∪ {e} for 1 ≤ i ≤ k and
|w1 . . . wk |+ |{l : wl = e}| = k. We will say that a pair (i , j ) with i < j collapses for a tuple
(w1, . . . , wk ) whenever wi = w j ̸= e and the elements {wl : i ≤ l ≤ j } pair-wise commute.



84 4. BIMODULE COEFFICIENTS, RIESZ TRANSFORMS AND STRONG SOLIDITY

In that case we will call the tuple (w1, . . . , wi−1,e, wi+1, . . . , w j−1,e, w j+1, . . . , wk ) the tuple
obtained from (w1, . . . , wk ) by collapsing on the pair (i , j ). We note that the word w1 . . . wk

corresponding to (w1, . . . , wk ) equals the word w1 . . . wi−1ewi+1 . . . w j−1ew j+1 . . . wk cor-
responding to the collapsed tuple. The notation that we introduced here is convenient
because it keeps indices aligned correctly. We also note that a tuple (w1, . . . , wk ) is semi-
reduced if and only if we cannot collapse on any pair (i , j ). Hence, for a general tuple we
can obtain a semi-reduced tuple by subsequently collapsing on pairs (i1, j1), . . . , (iq , jq ).

Lemma 4.6.4. For a right-angled word hyperbolic Coxeter group WΓ associated to a finite
graph Γ, we have that for u,w ∈ WΓ the function γ̃u,w : WΓ → R defined in (4.16) has finite
support.

Proof. Let u = u1 . . .un1 ,v = v1 . . . vn2 ,w = w1 . . . wn3 ∈ WΓ written in reduced expression.
We will moreover assume that |v| > |u|+|w|+|Γ|+2. We will show that for such words we
have γ̃u,w(v) = 0. This then shows that γ̃u,w has finite support.

Let (u′
1, . . . ,u′

n1
, v ′

1, . . . , v ′
n2

) be the semi-reduced tuple obtained by subsequently col-
lapsing the tuple (u1, . . . ,un1 , v1, . . . , vn2 ) on pairs (i ′1, j ′1), . . . , (i ′q1

, j ′q1
). Then we must have

i ′l ≤ n1 and j ′l > n1 since the expressions for u and v were reduced. Also |uv| = |u|+ |v|−
2q1 and more generally for a weight x ∈ [0,∞)|Γ| we have

ψx(uv) =ψx(u)+ψx(v)−2
q1∑

l=1
ψx(ui ′l

).

Likewise let (v ′′
1 , . . . , v ′′

n2
, w ′′

1 , . . . , w ′′
n3

) be the semi-reduced tuple obtained by subse-
quently collapsing the tuple (v1, . . . , vn2 , w1, . . . , wn3 ) on pairs (i ′′1 , j ′′1 ), . . . , (i ′′q2

, j ′′q2
). Then

we must have i ′′l ≤ n2 and j ′′l > n2 since the expressions for v and w were reduced. Also

|vw| = |v|+ |w|−2q2 and more generally for a weight x ∈ [0,∞)|S| we have

ψx(vw) =ψx(v)+ψx(w)−2
q2∑

l=1
ψx(w j ′′l −n2

).

Let us denote

Λ= {v j : j ∈ {1, . . . ,n2} \ ({ j ′1 −n1, . . . , j ′q1
−n1}∪ {i ′′1 , . . . , i ′′q2

})}.

Now since n2 = |v| > |u|+ |w|+ |Γ|+2 ≥ q1 +q2 +|Γ|+2 we have that |Λ| ≥ |Γ|+2. Hence,
there are two elements g1, g2 ∈Λ that do not mutually commute. Now, if s1, s2 ∈ Γ com-
mute with all elements inΛ, then s1, s2 commute with both g1 and g2 so that by the word
hyperbolicity of WΓ (see (2) of Theorem 4.6.1) we must have that also s1 commutes with
s2. We now let Λ0 ⊆ Γ be the set of all generators that commute with all elements in Λ,
i.e. Λ0 = ⋂

v∈ΛStarΓ(v). Then by what we just mentioned we have that the elements in
Λ0 pair-wise commute, i.e. Λ0 ∈ Cliq(Γ).

Now, for i = 1, . . . ,n1 let us set ũi = u′
i and for i = 1, . . . ,n3 set w̃i = w ′′

i . Furthermore,
for i = 1, . . . ,n2 set ṽi = e whenever either v ′

i = e or v ′′
i = e but not both, and set ṽi = vi

otherwise. Let us also denote ũ = ũ1 . . . ũn2 , ṽ = ṽ1...ṽn2 and w̃ = w̃1 . . . w̃n3 .
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We claim that ũṽw̃ = uvw. Indeed, we have that uvw = uv ′′
1 . . . v ′′

n2
w ′′

1 . . . w ′′
n3

. Now
we can collapse (u1, . . . ,un1 , v ′′

1 , . . . , v ′′
n2

, w ′′
1 , . . . , w ′′

n3
) subsequently on the pairs (i ′l , j ′l ) for

l = 1, . . . , q1 except when v ′′
j ′l−n1

̸= v j ′l−n1
for some 1 ≤ l ≤ q1, in which case v ′′

j ′l−n1
= e. If

this is the case then j ′l −n1 = i ′′kl
for some kl ∈ {1, . . . , q2}. In particular it follows that in this

case ui ′l
= v j ′l−n1

= vi ′′kl
= w j ′′kl

−n2
and that this element commutes with all elements inΛ.

Therefore ui ′l
∈Λ0. We can then simply interchange the elements at index i ′l (which is ui ′l

)

and the element at index j ′l (which is v ′′
j ′l−n1

= e). This manipulation does not change the

word, and allows us to continue collapsing on the remaining pairs. Once we are done col-
lapsing on all pairs we have obtained the tuple (ũ1, . . . , ũn1 , ṽ1, . . . , ṽn2 , w̃1, ..., w̃n3 ). This
thus shows us that uvw = ũṽw̃. It also shows us that �v j ′l−n1

∈ {e}∪Λ0 for l = 1, . . . , q2. Note

that also by definition ũi ′l
= e for l = 1, . . . , q1 and âw j ′′l −n2

= e for l = 1, . . . , q2. Therefore we

also have that ψΓ\Λ0 (ũi ′l
) = ψΓ\Λ0 (e) = 0 for l = 1, . . . , q1 and likewise ψΓ\Λ0 ( âw j ′′l −n2

) = 0

for l = 1, . . . , q2. Furthermore ψΓ\Λ0 ( �v j ′l−n1
) = 0 for l = 1, . . . , q1 and ψΓ\Λ0 (ṽi ′′l

) = 0 for

l = 1, . . . , q2.
If we can collapse (ũ1, . . . , ũn1 , ṽ1, . . . , ṽn2 , w̃1, . . . , w̃n3 ) on some pair (i , j ) then we must

have i ≤ n1 and j > n1 +n2. Indeed otherwise we have that either (u′
1, . . . ,u′

n1
, v ′

1, . . . , v ′
n2

)
or (v ′′

1 , . . . , v ′′
n2

, w ′
1, . . . , w ′′

n3
) is not semi-reduced, which is a contradiction. We will let

q ≥ 0 and let (i1, j1), . . . , (iq , jq ) be pairs on which we can subsequently collapse the tu-
ple (ũ1, . . . , ũn1 , ṽ1, ...ṽn2 , w̃1, . . . , w̃n3 ) to obtain a semi-reduced tuple. Then we thus must
have il ≤ n1 and jl > n1 +n2. This thus implies that for l = 1, . . . , q we have that ũil =
w̃ jl−n1−n2 commutes with the elements from Λ. Therefore we have {ũil : l = 1, . . . , q} =
{w̃ jl−n1−n2 : l = 1, . . . , q} ⊆Λ0. Now, we have that

ψΓ\Λ0 (uvw) =ψΓ\Λ0 (u)+ψΓ\Λ0 (v)+ψΓ\Λ0 (w)

−2

[
q1∑

l=1
ψΓ\Λ0 (ui ′l

)+
q2∑

l=1
ψΓ\Λ0 (wi ′′l −n2

)+
q∑

l=1
ψΓ\Λ0 (ũil )

]

=ψΓ\Λ0 (uv)+ψΓ\Λ0 (vw)−ψΓ\Λ0 (v)+2
q∑

l=1
ψΓ\Λ0 (ũil )

=ψΓ\Λ0 (uv)+ψΓ\Λ0 (vw)−ψΓ\Λ0 (v).

This shows that γ
ψΓ\Λ0
u,w (v) = 0. Therefore, as Λ0 ∈ Cliq(Γ) we obtain that γ̃u,w(v) = 0. Now

as this holds for every v ∈ WΓ with |v| > |u| + |w| + |Γ| + 2, we obtain that γ̃u,w has finite
support.

4.7. STRONG SOLIDITY OF HECKE VON NEUMANN ALGEBRAS
In this final section we obtain strong solidity results for Hecke von Neumann algebras.
These are q-deformations of the group (von Neumann) algebra of a Coxeter group. If
q = 1 we retrieve the classical case of a group (von Neumann) algebra of a Coxeter group.

For the Hecke deformations our methods turn out to improve on existing strong so-
lidity results. In [Kli23b, Theorem 0.7] it was shown that for Coxeter groups that are small
at infinity, their Hecke von Neumann algebras satisfy the condition AO+. If such Hecke
von Neumann algebras have the weak-∗ completely bounded approximation property
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(weak-∗ CBAP) then they are strongly solid by [Iso15a, Theorem A] (this is a generalisa-
tion of Theorem 4.2.14 from [PV14b]). The weak-∗ CBAP was proved in [Cas20] for Hecke
von Neumann algebras of right-angled Coxeter groups (see also Example 6.3.7); For gen-
eral Coxeter groups this is an open problem. Therefore right-angled Coxeter groups that
are small at infinity have strongly solid Hecke von Neumann algebras. It was proved in
[Kli23b] that such Coxeter groups are in fact free products of abelian Coxeter groups;
hence this result is somewhat more limited than one would hope for.

It is natural to ask whether these strong solidity results for Hecke von Neumann al-
gebras apply to more general word hyperbolic Coxeter groups. In the group case (q = 1)
this is exactly Theorem 4.6.2. However, the results from [Kli23b] and in particular [Kli23b,
Corollary 3.17] show that it is hard to extend current methods beyond free products of
abelian Coxeter groups. A typical right-angled word hyperbolic Coxeter group that was
not covered before this chapter is given by

〈{s1, s2, s3, s4}|M = (mi , j )i , j 〉 with mi , j = 2 if |i − j | = 1 and mi , j =∞ otherwise.
(4.17)

In this section we prove that also the Hecke deformations of this Coxeter group satisfy
AO+ and are strongly solid. The precise statement is contained in Theorem 4.7.5.

4.7.1. COEFFICIENTS FOR GRADIENT BIMODULES OF HECKE ALGEBRAS
Let W = 〈S|M〉 be a finite rank Coxeter group. We use the notation of Hecke-algebras
from the preliminaries. Fix a Hecke-tuple q = (qs )s∈S . We will simply write Tw instead of

T (q)
w and ps instead of ps (q). We let ψ : W → R be proper and conditionally of negative

type. Define

∆ψ :=∆(q)
ψ :Cq[W ] →Cq[W ] : Tw 7→ψ(w)Tw,

and for t ≥ 0,
Φt :=Φ(q)

t :Cq[W ] →Cq[W ] : Tw 7→ exp(−tψ(w))Tw. (4.18)

We will now work under the following assumption.

Assumption 4.7.1. For t ≥ 0 the map Φt extends to a normal unital completely positive
map Nq(W ) →Nq(W ).

The main point of the assumption is the complete positivity of Φt ; the unitality is
automatic since ψ(e) = e and also the existence of a normal extension can usually be
proved using a standard argument once one knows that Φt is bounded (see the final
paragraph of the proof of [Cas20, Theorem 4.13]).

The assumption holds in case q = 1 by Schönberg’s theorem and in case W is right-
angled by combining [Cas20, Corollary 3.4, Proposition 3.7] and [CF17, Proposition 2.30].
Note that if the assumption holds then Nq(W ) satisfies the Haagerup property sinceψ is
proper. In general we do not know whether Assumption 4.7.1 holds. In fact, it is not even
known whether Nq(W ) has the Haagerup property unless W is right-angled (see [Cas20,
Section 3]) or q = 1 (see [BJS88]).

It is standard to check that if Assumption 4.7.1 holds then Φ = (Φt )t≥0 is a symmet-
ric quantum Markov semigroup. For the continuity property note thatΦt is a contractive
semigroup on L2(Nq(W ),τ) and then use that on the unit ball of Nq(W ) the strong topol-
ogy equals the L2(Nq(W ),τ)-topology.
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We shall now investigate the gradient-Sp , p ∈ [1,∞] property forΦwith respect to the
σ-weak dense subalgebra A := Cq[W ] of Nq(W ). The set A0 := {Ts : s ∈ S} forms a self-
adjoint set that generates the ∗-algebra A. Therefore by Lemma 4.3.5 in order to check
the gradient-Sp property for Φ we only have to check that ΨTu ,Tw given in Definition
4.3.3 is in Sp = Sp (L2(Nq(W ),τ)) for generators u, w ∈ S. To check this we shall make
some calculations to obtain a simplified expression forΨTu ,Tw .

Fix u, w ∈ S and let v ∈W . We have by the multiplication rules that

Tu(TvTw ) =TuTvw +TuTvpw1(|vw | < |v|)
=Tuvw +puTvw1(|uvw | < |vw |)
+ (Tuv +puTv1(|uv| < |v|))pw 1(|vw | < |v|).

We can now make the following calculations

∆ψ(TuTvTw ) =ψ(uvw)Tuvw +ψ(vw)puTvw1(|uvw | < |vw |)
+ψ(uv)Tuvpw1(|vw | < |v|)+ψ(v)puTvpw1(|uv| < |v|)1(|vw | < |v|),

Tu∆ψ(Tv)Tw =ψ(v)(Tuvw +puTvw1(|uvw | < |vw |))

+ψ(v)(Tuv +puTv1(|uv| < |v|))pw 1(|vw | < |v|),

Tu∆ψ(TvTw ) =ψ(vw)TuTvw +ψ(v)TuTvpw1(|vw | < |v|),

=ψ(vw)(Tuvw +puTvw1(|uvw | < |vw |))

+ψ(v)(Tuv +puTv1(|uv| < |v|))pw1(|vw | < |v|),

∆ψ(TuTv)Tw =ψ(uv)TuvTw +ψ(v)puTvTw1(|uv| < |v|)
=ψ(uv)(Tuvw +Tuvpw1(|uvw | < |uv|))

+ψ(v)pu(Tvw +Tvpw1(|vw | < |v|))1(|uv| < |v|).

Let ψS be again the word length function on W . Now by collecting all previous terms we
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get

ΨTu ,Tw (Tv) =∆ψ(TuTvTw )+Tu∆ψ(Tv)Tw −Tu∆ψ(TvTw )−∆ψ(TuTv)Tw

=(ψ(uvw)+ψ(v)−ψ(vw)−ψ(uv))Tuvw

+ [(ψ(uv)+ψ(v)−ψ(v))1(|vw | < |v|)−ψ(uv)1(|uvw | < |uv|)]Tuvpw

+ [(ψ(vw)+ψ(v)−ψ(vw))1(|uvw | < |vw |)−ψ(v)1(|uv| < |v|)]puTvw

+ (ψ(v)+ψ(v)−ψ(v)−ψ(v))1(|uv| < |v|)1(|vw | < |v|)puTvpw

=γψu,w (v)Tuvw

+ψ(uv)(1(|vw | < |v|)−1(|uvw | < |uv|))Tuvpw

+ψ(v)(1(|uvw | < |vw |)−1(|uv| < |v|))puTvw

=γψu,w (v)Tuvw

+ψ(uv)

( |v|− |vw |+1

2
− |uv|− |uvw |+1

2

)
Tuvpw

+ψ(v)

( |vw |− |uvw |+1

2
− |v|− |uv|+1

2

)
puTvw

=γψu,w (v)Tuvw + 1

2
(|uvw |+ |v|− |vw |− |uv|) (ψ(uv)Tuvpw −ψ(v)puTvw )

=γψu,w (v)Tuvw + 1

2
γ
ψS
u,w (v)(ψ(uv)Tuvpw −ψ(v)puTvw ).

Now when uv ̸= vw we have by Lemma 4.4.2 that γψS
u,w (v) = 0. When uv = vw we have

| 1
2γ

ψS
u,w (v)| =ψS (u) = 1. In this case the elements u and w are also conjugate and there-

fore pu = pw . Combining these facts we obtain the simplified formula

ΨTu ,Tw (Tv) = γψu,w (v)Tuvw + 1

2
γ
ψS
u,w (v)(ψ(uv)−ψ(v))Tuvpw . (4.19)

We will proceed under the further assumption that ψ is a length function.

Assumption 4.7.2. We shall assume from this point that the proper, conditionally of neg-
ative type function ψ : W →R is also a length function.

Using the fact that {Tv}v∈W is an orthonormal basis for L2(Nq(W ),τ) we obtain that
for the S2-norm ofΨTu ,Tw we have the following bound

∥ΨTu ,Tw ∥2
S2

= ∑
v∈W

〈ΨTu ,Tw (Tv),ΨTu ,Tw (Tv)〉

= ∑
v∈W

[
|γψu,w (v)|2 + 1

4
|γψS

u,w (v)|2|ψ(uv)−ψ(v)|2|pu |2
]

≤∥γψu,w∥2
ℓ2(W ) +

1

4
|ψ(u)|2p2

u∥γψS
u,w∥2

ℓ2(W ).

(4.20)

We are then thus interested in functions ψ for which this bound is finite for all u, w ∈ S.
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Theorem 4.7.3. Let W = 〈S|M〉 be a finite-rank Coxeter group. Let q = (qs )s∈S with qs > 0.
Let T ⊆ S be a subset that generates a finite subgroup WT ⊆WS , i.e. T ∈ Cliq(S|M). Suppose
that ψ :=ψS\T satisfies Assumption 4.7.1. Then the QMS on Nq(W ) determined by (4.18)
associated with ψS\T is gradient-S2.

Proof. lemma:gradient-Sp-weighted-word-length-right-angled-Coxeter-group

Theorem 4.7.4. Let Γ be a finite simple graph and let q = (qv )v∈Γ with qv > 0. Assume

Λ := {r ∈ Γ : ∃s, t ∈ Γ such that r ∈ LinkΓ(s)∩LinkΓ(t ), s ̸∈ StarΓ(t )} (4.21)

is a clique in Γ. Then the QMS on Nq(WΓ) determined by (4.18) associated with ψΓ\Λ is
gradient-S2.

Proof. It follows from Theorem 4.5.5 that for u, w ∈ Γ we have that γψΓ\Λ
u,w ∈ ℓ2(WΓ). Now

if u ∈Λ then ψΓ\Λ(u) = 0 and hence by (4.20),

∥ΨTu ,Tw ∥2
S2

≤ ∥γψΓ\Λ
u,w ∥2

ℓ2(WΓ) <∞.

If u ∈ Γ\Λ then ψS\Λ(u) = 1 and therefore by Lemma 4.4.2 we have

|γψΓ\Λ
u,w (v)| = 2ψΓ\Λ(u)1(uv = vw) = 2ψΓ(u)1(uv = vw) = |γψΓu,w (v)|.

This means that in this case γψΓ\Λ
u,w = γψΓu,w ∈ ℓ2(WΓ). We conclude from (4.20) that

∥ΨTu ,Tw ∥2
S2

≤ ∥γψΓ\Λ
u,w ∥2

ℓ2(WΓ) +
1

4
p2

u · ∥γψΓu,w∥2
ℓ2(WΓ) <∞.

Theorem 4.7.5. Let Γ be a finite graph and let WΓ be the corresponding right-angled Cox-
eter group. Let q = (qv )v∈Γ with qv > 0. Assume that (4.21) is contained in Cliq(Γ). Then
Nq(WΓ) satisfies AO+ and is strongly solid.

Proof. Theorem 4.7.4 shows that the QMSΦ on Nq(WΓ) associated with the length func-
tion ψΓ\Λ is gradient-S2 . Therefore by Theorem 4.3.9 we see that a dense set of co-
efficients of the associated gradient bimodule L2(Nq(WΓ),τ)∇ is in S2. Note that The-
orem 4.3.9 is stated only for groups, but a straightforward adaptation of the computa-
tions in the proof yields the same result for Hecke algebras. Hence the gradient bimod-
ule is quasi-contained in the coarse bimodule of Nq(WΓ) by [CIW21, Theorem 3.9] (see
also Proposition 4.2.3). The Riesz transform is then an isometry RΦ : L2(Nq(W ),τ) →
L2(Nq(WΓ),τ)∇. The kernel of RΦ is given by the space spanned by the vectors Tw with
w in the (finite) group WΛ. Essentially in the same way as in the group case (q = 1) one
checks thatΦ is filtered with subexponential growth. Therefore by Theorem 4.3.7 we see
that RΦ is almost bimodular. By [CKL21, Theorem 6.1] C∗

r,q(WΓ) is exact and hence lo-
cally reflexive [BO08]. We may now invoke Theorem [CIW21, Proposition 5.2] (see also
Theorem 4.2.12) to conclude that Nq(WΓ) satisfies AO+. By [Cas20, Theorem A] Nq(WΓ)
satisfies the weak-∗ completely bounded approximation property. Hence [Iso15a, The-
orem A] (see also Theorem 4.2.14) shows that Nq(W ) is strongly solid.
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Remark 4.7.6. The strong solidity result of Theorem 4.7.5 can also be proved by com-
bining the results in this chapter with the methods of [Cas21], [OP10b], [Pet08] without
using condition AO+.

Remark 4.7.7. The set (4.21) can be understood as all elements in S that belong to exactly
one maximal clique.

4.8. DISCUSSION
We list two natural problems.

Problem 4.8.1. Consider a Coxeter system W = 〈S|M〉 and q = (qs )s∈S with qs > 0, s ∈ S
such that qs = qt whenever s, t ∈ S are conjugate in W . Does the Hecke von Neumann
algebra Nq(W ) have the Haagerup property and/or the weak-∗ completely bounded ap-
proximation property? An affirmative answer for both properties is known in case qs = 1
for all s ∈ S [BJS88], [Fen02], [Jan02] or in case W = 〈S|M〉 is right-angled [Cas20]. For
general cases these properties are open. In particular we do not know in which general-
ity Assumption 4.7.1 holds for ψ=ψS the (unweighted) word length function.

Problem 4.8.2. For a right-angled word hyperbolic Coxeter system W = 〈S|M〉 and q =
(qs )s∈S a tuple with qs > 0, s ∈ S we ask if the Hecke-algebra Nq(W ) is strongly solid? The
cases obtained in Theorem 4.7.5 are word hyperbolic but do not exhaust all word hyper-
bolic right-angled Coxeter groups. In case qs = 1, s ∈ S the tensor product techniques
from Section 4.6 allows one to improve the results of Section 4.7 to all word hyperbolic
right-angled Coxeter groups. However, such tensor products of bimodules are unavail-
able unless qs = 1, s ∈ S by the absence of a suitable comultiplication for Hecke algebras.

We will resolve parts of these problems in the coming chapters. Indeed, in Chapter 5
(Theorem 5.6.13) we precisely characterize for finite rank, right-angled Coxeter groups
when L (WΓ) is strong solidity in terms of the graph Γ. More generally we even char-
acterize strong solidity for arbitrary graph products of von Neumann algebras (Theo-
rem 5.6.7); in particular right-angled Hecke-von Neumann algebras Nq(WΓ). Further-
more, in Chapter 6 we study the weak-∗ completely contractive approximation property
(weak-∗ CCAP) for graph products. We show that MΓ = ∗v,Γ(Mv ,ϕv ) posses the weak-∗
CCAP whenever dim Mv <∞ for v ∈ Γ. This in particular shows that Nq(W ) possesses
the weak-∗ CCAP whenever W can be written as graph product W =∗v,ΓWv of finite Cox-
eter groups Wv .



5
RIGID GRAPH PRODUCTS

We prove rigidity properties for von Neumann algebraic graph products. We introduce
the notion of rigid graphs and define a class of II1-factors named CRigid. For von Neu-
mann algebras in this class we show a unique rigid graph product decomposition. In
particular, we obtain unique prime factorization results and unique free product de-
composition results for new classes of von Neumann algebras. Furthermore, we show
that for many graph products of II1-factors we can, up to some constant, retrieve the
radius of the graph from the graph product. We also prove several technical results con-
cerning relative amenability and embeddings of (quasi)-normalizers in graph products.
Furthermore, we give sufficient conditions for a graph product to be nuclear and char-
acterize strong solidity, primeness and free-indecomposability for graph products.

This chapter is based on the papers:

• Matthijs Borst and Martijn Caspers, Classification of right-angled Coxeter groups
with a strongly solid von Neumann algebra, Journal de Mathématiques Pures et
Appliquées 189 (2024) 103591.

• Matthijs Borst, Martijn Caspers and Enli Chen, Rigid graph products, Preprint
submitted to journal: Arxiv:2408.06171v2.

5.1. INTRODUCTION
The advent of Popa’s deformation-rigidity theory has led to major applications to the
structure of von Neumann algebras and their decomposability properties for crossed
products, tensor products and free products. For instance, in [OP10a] Ozawa and Popa
studied the notion of strongly solid von Neumann algebras (see Definition 5.6.1) and
proved that the free group factors possess this property. Consequently, these von Neu-
mann algebras do not admit certain crossed product decompositions, and they are prime
factors (see Definition 5.7.1), meaning that they can not decompose as tensor products
in non-trivial way (see also [Oza04], [Pop83]). More general prime factorization results
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were then obtained in e.g. [CKP16; CSU13; HI17; Iso17; OP04; Pet08; Sak09; SW13]. In
the same spirit, decompositions of von Neumann algebras in terms of free products and
Kurosh type results were studied in e.g. [HU16; IPP08; Oza06; Pet08].

This chapter contributes to decomposability and rigidity results for von Neumann
algebras that appear as graph products. We will prove rigidity results for graph products
of von Neumann algebras. We first discuss our main result Theorem F which establishes
unique rigid graph product decompositions. Thereafter, we give new unique prime fac-
torization results and unique free product decomposion results. Furthermore, we state
results that characterize primeness, free indecomposability and strong solidity for graph
products. Hereafter, we present other main results that are needed in the proofs. Last,
we give an overview of the structure of the chapter.

5.1.1. UNIQUE RIGID GRAPH PRODUCT DECOMPOSITION
Our main result, Theorem F, concerns the question whether from the graph product
∗v,Γ(Mv ,ϕv ) we can, under some conditions, retrieve the graph Γ and the vertex von
Neumann algebras Mv . Such questions have already been studied for graph products of
groups. In [Gre90, Theorem 4.12] Green showed the following rigidity result, which for
graph products ∗v,ΓGv of prime cycles Gv asserts that the graph Γ and the vertex groups
Gv can be retrieved from the graph product group.

Theorem (Green). Let Γ,Λ be finite graphs, GΓ := ∗v,ΓGv and HΛ := ∗w,ΛHw be graph
products of groups Gv := Z/pvZ and Hw := Z/qwZ with some prime numbers pv , qw .
If GΓ and HΛ are isomorphic, then there is a graph isomorphism α : Γ → Λ such that
Hα(v) ≃Gv .

In the current chapter we prove an analogy of this result for graph products MΓ =
∗v,Γ(Mv ,τv ) of tracial von Neumann algebras (Mv ,τv ). Earlier rigidity results for von
Neumann algebraic graph products have already been proven in [CDD22, Theorem A
and C] for group von Neumann algebras Mv := L (Gv ) for certain discrete property (T)
groups Gv and for graphs Γ from a class called CC1. In our main result, Theorem F, we
also prove rigidity results for graph products of von Neumann algebras MΓ =∗v,Γ(Mv ,τv ).
Our result compares to [CDD22; CDD23a] as follows. On the one hand we cover a much
richer class of graphs than CC1 and our vertex von Neumann algebras Mv come from a
different class than [CDD22; CDD23a]. In this chapter Mv are not even necessarily group
von Neumann algebras. On the other hand the type of rigidity obtained in [CDD22;
CDD23a] is stronger as it recovers the groups up to isomorphism, and not just the von
Neumann algebras. Furthermore, [CDD22; CDD23a] obtains a so-called superrigidity
result, meaning that the group can be recovered from an isomorphism of L (G) with any
other group von Neumann algebra, whereas our rigidity results are usually for an iso-
morphism of two von Neumann algebras in the class CRigid introduced below. Such a
superrigidity result is simply not true in the context of the current chapter as we argue in
Remark 5.5.6.

The condition we impose on the vertex von Neumann algebras Mv is that they lie
in the class CVertex of all non-amenable II1-factors that satisfy property strong (AO) (see



5.1. INTRODUCTION 93

Definition 5.5.4) and have separable preduals. This is a natural class of von Neumann al-
gebras including the (interpolated) free group factors L (Ft ) for 1 < t <∞, the group von
Neumann algebras L (G) of non-amenable hyperbolic icc groups G [HG04], q-Gaussian
von Neumann algebras Mq (HR) associated with real Hilbert spaces HR with 2 ≤ dim(HR) <
∞ [Bor+23, Remark 4.5], [Kuz23], free orthogonal quantum groups [VV07] as well as
several common series of easy quantum groups and free wreath products of quantum
groups [Cas22, Theorem 0.5].

The condition we impose on the graphΓ is that each vertex v satisfies Link(Link(v)) =
{v}. Such graphs, which we call rigid, form a large natural class of graphs containing for
example complete graphs and cyclic graphs with at least 5 vertices. We also observe
that all graphs in CC1 are rigid (see Remark 5.2.10). We stress that some restrictions
on the graphs need to be imposed. Indeed, for general graphs Γ, and graph products
MΓ = ∗v,Γ(Mv ,τv ) with Mv ∈ CVertex, it is not possible to retrieve the graphs Γ from MΓ

(see Remark 5.5.6). This is due to the fact that the free product (Mv ,τv )∗ (Mw ,τw ) of
factors Mv , Mw ∈CVertex again lies again in the class CVertex (see Remark 5.5.5).

We now state our main result which shows rigidity for the class CRigid of all graph
products MΓ =∗v,Γ(Mv ,τv ) with Γ non-empty, finite, rigid graphs and with Mv ∈CVertex.

Theorem F (Theorem 5.5.19 and Theorem 5.7.5). Let Γ be finite rigid graphs and for v ∈ Γ
let Mv be von Neumann algebras in the class CVertex with faithful normal state τv . Let
MΓ =∗v,Γ(Mv ,τv ) be their graph product. Suppose there is another graph product decom-
position of MΓ over another rigid graphΛ and other von Neumann algebras Nw ∈CVertex,
w ∈Λ, i.e. MΓ =∗w,Λ(Nw ,τw ). Then there is a graph isomorphismα : Γ→Λ, and for each
v ∈ Γ there is a unitary uv ∈ MΓ and a real number 0 < tv <∞ such that:

MStar(v) = u∗
v NStar(α(v))uv and Mv ≃ N tv

α(v). (5.1)

Furthermore, for the connected component Γv ⊆ Γ of any vertex v ∈ Γ, we have MΓv =
u∗

v Nα(Γv )uv ; and for any irreducible component Γ0 ⊆ Γ, ∃t0 ∈ (0,∞) such that MΓ0 ≃
N t0
α(Γ0).

We remark that in the setting of [CDD22, Theorem 7.9], it is possible to obtain uni-
tary conjugacy between the vertex von Neumann algebras Mv =L (Gv ). In our setting it
is generally only possible to obtain isomorphisms up to amplification between the ver-
tex von Neumann algebras. The reason is that the tensor product Mv⊗Mw of II1-factors
is isomorphic to the tensor product M t

v⊗M 1/t
w for any 0 < t <∞. For certain subgraphs

Γ0 ⊆ Γ we do however obtain unitary conjugacy of the graph products MΓ0 to Nα(Γ0) in-
side MΓ. Indeed, this is the case when Γ0 is a connected component of Γ or is of the form
Γ0 = Star(v) for some vertex v of Γ. Moreover, for Γ0 an irreducible component of Γ we
are able to show that MΓ0 is isomorphic to a amplification of Nα(Γ0).

5.1.2. UNIQUE PRIME FACTORIZATION
For classes of von Neumann algebras we are interested in unique prime factorization
results. Recall that a II1-factor M is prime if it can not decompose as a tensor product
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M = M1⊗M2 of diffuse factors M1, M2. The first example of a prime factor was given by
Popa in [Pop83]. Thereafter, Ge showed in [Ge96] that L (Fn) is a prime factor for n ≥ 2
by computing Voiculescu’s free entropy. Later, in [Oza04] Ozawa introduced a new prop-
erty, called solidity, which for non-amenable factors implies primeness. He showed that
all finite von Neumann algebras satisfying the Akemann-Ostrand property are solid. We
note that in particular all von Neummann algebras in CVertex are prime. There are many
more examples of prime factors, see e.g. [BHV18; CSS18; CKP16; CSU13; DHI19; Pet08;
Sak09; SW13].

Given a class C of von Neumann algebras, a natural question is whether any von
Neumann algebra M ∈ C has a tensor product decomposition M = M1⊗·· ·⊗Mm for
some m ≥ 1 and prime factors M1, . . . , Mm ∈ C , which is called prime factorization in-
side C , and whether the prime factorization is unique. This is to say, given another
prime factorization M = N1⊗·· ·⊗Nn , with n ≥ 1 and prime factors N1, . . . , Nn ∈ C , do
we have n = m and, up to permutation of the indices, any Mi is isomorphic to an am-
plification of Ni . The first unique prime factorization (UPF) results were established by
Ozawa and Popa in [OP04] for tensor products of group von Neumann algebras L (Gv )
for certain groups Gv . The groups they considered included non-amenable, icc groups
that are hyperbolic or are discrete subgroups of connected simple Lie groups of rank one.
Later, in [Iso17] Isono studied UPF results for free quantum group factors. Thereafter, by
combining results from [OP04] and [Iso17], Houdayer and Isono showed in [HI17] more
general UPF results for tensor products of factors from a class called C(AO). We note that
our class CVertex is very similar to C(AO) and that CVertex ⊆ C(AO). In the setting of graph
products, UPF results have been obtained in [CSS18, Theorem 6.16] under the condition
that the vertex von Neumann algebras are group von Neumann algebras.

We observe that we can use Theorem F to obtain UPF results. Indeed, let CComplete

be the class of all tensor products of von Neumann algebras in CVertex. If in Theorem F
we restrict our attention to complete graphs (which are rigid) then we precisely obtain
UPF results for the class CComplete (see Corollary 5.5.21). This partially retrieves the
UPF results from [HI17]. To obtain more general UPF results we prove the following
result which characterizes primeness for graph products of II1-factors (see also Theo-
rems 5.7.11 and 5.7.12 in the case the vertex von Neumann algebras are not II1-factors).

Theorem H (Theorem 5.7.4). Let Γ be a finite graph of size |Γ| ≥ 2. For any v ∈ Γ, let Mv be
a II1-factor. The graph product MΓ =∗v,Γ(Mv ,τv ) is prime if and only if Γ is irreducible.

We then use Theorem F and Theorem H to prove the following theorem which covers
UPF results for a new class of von Neumann algebras (see Remark 5.7.7).

Theorem I (Theorem 5.7.6). Any von Neumann algebra M ∈ CRigid has a prime factor-
ization inside CRigid, i.e.

M = M1⊗·· ·⊗Mm , (5.2)

for some m ≥ 1 and prime factors M1, . . . , Mm ∈CRigid.
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Suppose M has another prime factorization inside CRigid, i.e.

M = N1⊗·· ·⊗Nn , (5.3)

for some n ≥ 1, and prime factors N1, . . . , Nn ∈CRigid. Then m = n and there is a permuta-
tion σ of {1, . . . ,m} such that Mi is stably isomorphic to Nσ(i ) for 1 ≤ i ≤ m.

5.1.3. UNIQUE FREE PRODUCT DECOMPOSITION
In [Oza06] Ozawa extended the results [OP04] for tensor products to the setting of free
products. In particular, he showed for M = M1 ∗ ·· · ∗ Mm a von Neumann algebraic
free products of non-prime, non-amenable, semiexact finite factors M1, . . . , Mm that if
M = N1∗·· ·∗Nn is another free product decomposition into non-prime, non-amenable,
semiexact finite factors N1, . . . , Nn , then m = n and, up to permutation of the indices,
Mi unitarily conjugates to Ni inside M for each 1 < i < m. This can be seen as a von
Neumann algebraic version of the Kurosh isomorphism theorem [Kur34], which states
that any discrete group uniquely decomposes as a free product of freely-indecomposable
groups. Versions of Ozawa’s result were later shown for other classes of von Neumann al-
gebras, see [Ash09],[IPP08],[Pet08]. In [HU16] these results were then extended by Hou-
dayer and Ueda to a single, large class of von Neumann algebras. Other Kurosh type
theorems have recently been obtained in [Dri23, Corollary 8.1], [DE24b, Corollary 1.8].

In the current chapter we obtain unique free product decomposition results for a new
class of von Neumann algebras. First, we prove the following result which characterizes
precisely when a graph product MΓ =∗v,Γ(Mv ,τv ) can decompose as tracial free product
of II1-factors.

Theorem J (Theorem 5.8.1). Let Γ be a finite graph of size |Γ| ≥ 2, and for each v ∈ Γ let
Mv be II1-factor with separable predual. Then the graph product MΓ := ∗v,Γ(Mv ,τv ) can
decompose as a tracial free product MΓ = (M1,τ1)∗ (M2,τ2) of II1-factors M1,M2 if and
only if Γ is not connected.

Using Theorem F and Theorem J we obtain unique free product decomposition for
the class CRigid \CVertex.

Theorem K (Theorem 5.8.2). Any von Neumann algebra M ∈CRigid \CVertex can decom-
pose as a tracial free product inside CRigid \CVertex, i.e.

M = M1 ∗·· ·∗Mm , (5.4)

for some m ≥ 1 and factors M1, . . . Mm ∈ CRigid \ CVertex that can not decompose as any
tracial free product of II1-factors.

Suppose M can decompose as another tracial free product inside CRigid \CVertex, i.e.

M = N1 ∗·· ·∗Nn ,

for some n ≥ 1 and factors N1, . . . , Nn ∈ CRigid \ CVertex that can not decompose as tracial
free product of II1-factors. Then m = n and there is a permutation σ of {1, . . . ,m} such that
Ni unitarily conjugate to Mσ(i ) in M.
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Let us remark that von Neumann algebras in the class CComplete \CVertex are examples
of non-prime, non-amenable, semiexact, finite factors. Thus Ozawa’s result in particular
asserts a unique free product decomposition for free products of factors in CComplete \
CVertex. The same result is also covered by Theorem K since any free product of factors in
CComplete \CVertex lies in the class CRigid \CVertex. We observe that, in contrast to Ozawa’s
result, in Theorem K it is possible for the factors M1, . . . , Mm to be prime. More gener-
ally, we remark that the result of Theorem K is not covered by the result from [HU16] (see
Remark 5.8.4). Thus our examples of unique free product decompositions are again new.

5.1.4. GRAPH RADIUS RIGIDITY
We are interested in the question whether from the graph product MΓ = ∗v,Γ(Mv ,τv )
of II1-factors Mv we can retrieve the radius of the graph Γ. To study this question we
introduce the notion of the radius of a von Neumann algebra M (see Definition 5.9.3).
As we show in the following theorem, we are in many cases able to estimate the radius of
the von Neumann algebra MΓ with the radius of the graph Γ.

Theorem G (Theorem 5.9.6 and Theorem 5.9.11). Let Γ be a finite, non-complete graph.
For v ∈ Γ let Mv be a II1-factor and let MΓ = ∗v,Γ(Mv ,τv ) be the tracial graph product.
Suppose one of the following holds true.

1. For all v ∈ Γ the vertex algebra Mv possesses strong (AO) and has separable predual.

2. For all v ∈ Γwe have Mv =L (Gv ) for some countable icc group Gv .

Then
Radius(Γ)−2 ≤ Radius(MΓ) ≤ max{2,Radius(Γ)}

The above result allows us to distinguish certain von Neumann algebras coming from
graph products. In particular, for graph products RΓi = ∗v,Γi (Rv ,τv ) of hyperfinite II1-
factors Rv , we are able to show that RΓ1 ̸≃ RΓ2 whenever 2 ≤ Radius(Γ1) < Radius(Γ2)−2
(see Remark 5.9.7).

We remark that when Λi for i = 1,2 are graph of size 2 ≤ |Λ1| =: n < |Λ2| =: m and
with no edges, then RΛ1 = L (Fn) and RΛ2 = L (Fm) by [Dyk94]. In this case, it is very
hard to distinguish RΛ1 from RΛ2 as this is precisely the free factor problem. Of course,
Theorem G is of no use here since Radius(Λ1) =∞= Radius(Λ2).

5.1.5. STRONG SOLIDITY
For a finite von Neumann algebra M the notion of strong solidity was introduced by
Ozawa and Popa in [OP10a]. This property, which in particular implies solidity, asserts
that for any diffuse amenable von Neumann subalgebra A ⊆ M , its normalizers NorM (A)
generates a von Neumann algebra that is amenable. This property implies that for a
non-amenable von Neumann algebra it does not have a Cartan subalgebra, and hence
can not decompose as a crossed product in a natural way. In [OP10a], it was shown
in that the free group factors L (Ft ) are strong solidity. Nowadays, many examples of
strongly solid von Neumann algebras are known, see e.g. [Cas22; CS13; DP23; Iso15a;
PV14b]. Moreover, we remark that using the resolution of the Peterson-Thom conjecture
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(see [Hay22], [BC24b] ,[BC24a]), it has been shown in [HJE24] that the free group factors
even satisfy a strengthened version of strong solidity.

In this chapter we study strong solidity for graph products of von Neumann algebras.
We fully characterize strong solidity for arbitrary graph products.

Theorem D (Theorem 5.6.7). Let Γ be a finite graph, and for each v ∈ Γ let Mv ( ̸=C) be a
von Neumann algebra with normal faithful trace τv . Then MΓ is strongly solid if and only
if the following conditions are satisfied:

1. For each vertex v ∈ Γ the von Neumann algebra Mv is strongly solid;

2. For each subgraph Λ⊆ Γ with MΛ non-amenable, we have that MLink(Λ) is not dif-
fuse;

3. For each subgraph Λ ⊆ Γ with MΛ non-amenable and diffuse, we have moreover
that MLink(Λ) is atomic.

We remark that for a large class of vertex von Neumann algebras Mv it can be verified
whether the conditions (1), (2) and (3) hold true for the graph products MΛ and MLink(Λ).
For group von Neumann algebras of right-angled Coxeter groups we obtain a simple
characterization of strong solidity, see Theorem 5.6.13. More generally, Theorem D com-
pletes the characterization of strong solidity for right-angled Hecke von Neumann alge-
bras (using Theorem 5.6.12 from [CKL21], [RS23]). Partial results in this direction had
already been obtained in [Cas20] and in Chapter 4

5.1.6. OTHER RESULTS
The proofs of the stated theorems require several main results that are of independent
interest, which we present here. Firstly, we give sufficient conditions for a graph prod-
uct of unital C∗-algebras to be nuclear. This is a generalizion of Ozawa’s result for free
products [Oza02] and is needed in the proof of Theorem F.

Theorem L (Theorem 5.3.4). Let AΓ = ∗min
v,Γ (Av ,ϕv ) be the reduced C∗-algebraic graph

product of nuclear, unital C∗-algebras Av with GNS-faithful stateϕv . Let Hv := L2(Av ,ϕv )
and let πv : Av → B(Hv ) be the GNS-representation. If for any v ∈ Γ, πv (Av ) contains the
space of compact operators K(Hv ), then AΓ is nuclear.

The following result is the graph product analogue of [HI17, Theorem 5.1] and [Oza06,
Theorem 3.3], and is crucial in the proof of Theorem F for establishing the graph isomor-
phism.

Theorem M (Theorem 5.5.15). Let (MΓ,τ) = ∗v,Γ(Mv ,τv ) be the graph product of finite
von Neumann algebras Mv that satisfy condition strong (AO) and have separable predu-
als. Let Q ⊆ MΓ be a diffuse von Neumann subalgebra. At least one of the following holds:

1. The relative commutant Q ′∩MΓ is amenable;

2. There exists Γ0 ⊆ Γ such that Q ≺MΓ MΓ0 and Link(Γ0) ̸= ;.

The following result concerning relative amenability is needed in the proof of the
characterizations given in Theorem D, Theorem G and Theorem H.
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Theorem N (Theorem 5.4.8). Let Γ be a graph with subgraphs Γ1,Γ2 ⊆ Γ. For each v ∈ Γ
let (Mv ,τv ) be a von Neumann algebra with a normal faithful trace. Let P ⊂ MΓ be a von
Neumann subalgebra that is amenable relative to MΓi inside MΓ for i = 1,2. Then P is
amenable relative to MΓ1∩Γ2 inside MΓ.

5.1.7. CHAPTER OVERVIEW
In Section 5.2 we introduce the notion of rigid graphs and study some basic proper-
ties. Here, we also define graph products of graphs and precisely characterize when a
graph product of graphs is rigid. In Section 5.3 we prove Theorem L which establishes
sufficient conditions for a graph product to be nuclear. In Section 5.4 we prove some
technical results concerning graph products. In particular, using calculation for iter-
ated conditional expectations in graph products we prove Theorem N regarding relative-
amenability, and prove some embedding results for graph products. In Section 5.5 we
prove Theorem M which we then use to prove the major part of Theorem F. In Section 5.6
we prove Theorem D which characterizes strong solidity for graph products. In Sec-
tion 5.7 we prove Theorem H which characterizes primeness in graph products. More-
over, we also complete the proof of Theorem F and we prove Theorem I which establishes
UPF results for the class CRigid. In Section 5.8 we prove Theorem J which characterizes
free-indecomposability for graph products and we prove Theorem K which establishes
unique free product decomposition results for the class CRigid \CVertex. In Section 5.9 we
define the radius of a von Neumann algebra and prove Theorem G which for graph prod-
ucts provides good estimates on the radius of the graph. Last, in Section 5.10 we discuss
some open questions and state a conjecture.

5.2. RIGID GRAPHS
In this section we introduce the notion of rigid graphs.

Definition 5.2.1 (Rigid graphs). We say that a simple graph Γ is rigid if for every v ∈ Γ
we have LinkΓ(LinkΓ(v)) = {v}. When |Γ| ≥ 2 this means in particular for each v ∈ Γ that
LinkΓ(v) is not empty.

Example 5.2.2. We give some examples of rigid graphs which are easy to check:

1. By the convention LinkΓ(;) = Γ it follows that if |Γ| = 1 then Γ is rigid.

2. Any complete graph is rigid.

3. For n ≥ 2 let Zn = {1, . . . ,n} be the cyclic graph of length n, i.e. i , j share an edge if
and only if |i − j | = 1 or {i , j } = {1,n}. Then for n ≥ 5 the graph Zn is rigid. Note also
that Z2 and Z3 are rigid, but Z4 is not.

4. Consider Z as the infinite cyclic graph, i.e. i , j share an edge in Z if and only if
|i − j | = 1. Then Z is rigid.

We will now define the notion of graph products of graphs, and construct a large
variety of rigid graphs.
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Definition 5.2.3. Let Γ be a simple graph and for each v ∈ Γ let Λv be a simple graph. We
denote ΛΓ := ∗v,ΓΛv for the graph product of the graphs {Λv }v∈Γ. This is defined as the
graph with vertices set

{(v, s) : v ∈ Γ, s ∈Λv }, (5.5)

where vertices (v, s) and (w, t ) share an edge inΛΓ if either v = w and t , s share an edge in
Λv or v ̸= w and v, w share an edge in Γ.

We observe thatΛΓ contains the graphsΛv for v ∈ Γ as (mutually disjoint) subgraphs.
Furthermore, we observe that if we take |Λv | = 1 for each v ∈ Γ thenΛΓ = Γ.

Remark 5.2.4. For a simple graph Γ and graphs {Λv }v∈Γ, and groups Gw and von Neu-
mann algebras (Nw ,ϕw ) with normal GNS-faithful state, with w ∈Λv , we have

∗w,ΛΓGw =∗v,Γ(∗w,Λv Gw ) (5.6)

∗w,ΛΓ (Nw ,ϕw ), =∗v,Γ(∗w,Λv (Nw ,ϕw )). (5.7)

Indeed, this follows by the defining universal property of graph products of groups as
well as its analogue for operator algebras that can be found in [CF17, Proposition 3.22].

Lemma 5.2.5. Let Γ be a simple graph and for each v ∈ Γ let Λv be a non-empty graph.
Then the graph product graph ΛΓ is rigid if and only if for each vertex v ∈ Γ the graph Λv

is rigid and the vertex v satisfies at least one of the following conditions:

1. LinkΓ(LinkΓ(v)) = {v};

2. |Λv | ≥ 2.

Proof. We may assume Γ is non-empty. First, suppose the conditions in the lemma
are satisfied. We show ΛΓ is rigid. Let (v, j ) ∈ ΛΓ for some v ∈ Γ, j ∈ Λv . Let (z,k) ∈
LinkΛΓ (LinkΛΓ (v, j )). We need to show that (z,k) = (v, j ).

Suppose first that |Λv | ≥ 2. Then, asΛv is rigid, we have that LinkΛv ( j ) is non-empty.
Let l ∈ LinkΛv ( j ). Then (v, l ) ∈ LinkΛΓ (v, j ) and similarly (z,k) ∈ LinkΛΓ (v, l ). If z ̸= v then
by the definition of the graph product graph this implies z ∈ LinkΓ(v). But then, again
by the definition of the graph product graph, we obtain (z,k) ∈ LinkΛΓ (v, j ). However, as
(z,k) ̸∈ LinkΛΓ (z,k), this contradicts that (z,k) ∈ LinkΛΓ (LinkΛΓ (v, j )). We conclude that
z = v . Hence, since (z,k) ∈ LinkΛΓ (v, l ) we obtain that k ∈ LinkΛv (l ). Since this holds true
for all l ∈ LinkΛv ( j ), we obtain that k ∈ LinkΛv (LinkΛv ( j )), so that k = j by rigidity of Λv .
Thus (z,k) = (v, j ).

Now suppose that |Λv | < 2, i.e. Λv = { j }, and just assume that LinkΓ(LinkΓ(v)) = {v}.
If |Γ| = 1 then ΛΓ = Λv is rigid. Thus we can assume |Γ| ≥ 2. Then LinkΓ(v) must be
non-empty since Link(;) = Γ ̸= {v}. Take w ∈ LinkΓ(v). Then, as by assumption Λw is
non-empty, we can pick i ∈Λw . Now (w, i ) ∈ LinkΛΓ (v, j ), by the definition of the graph
ΛΓ. Thus (z,k) ∈ LinkΛΓ (w, i ). If w = z then z ∈ LinkΓ(v) and so also (z,k) ∈ LinkΛΓ (v, j ).
But as (z,k) ̸∈ LinkΛΓ (z,k), this contradicts that (z,k) ∈ LinkΛΓ (LinkΛΓ (v, j )). Thus w ̸= z,
and therefore, as (z,k) ∈ LinkΛΓ (w, i ), we obtain that z ∈ LinkΓ(w). Therefore, since this
holds for any w ∈ LinkΓ(v), we obtain that z ∈ LinkΓ(LinkΓ(v)) = {v} and thus z = v . Thus
as k ∈Λz =Λv = { j }, we obtain (z,k) = (v, j ).
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We now prove the reverse direction. First, suppose there is a vertex v ∈ Γ such that
Λv is not rigid. Take j ∈ Λv such that LinkΛv (LinkΛv ( j )) ̸= { j } so that we can choose
k ∈ LinkΛv (LinkΛv ( j )) with k ̸= j . Now, one can check that (v,k) ∈ LinkΛΓ (LinkΛΓ (v, j )),
henceΛΓ is not rigid.

Now suppose there is vertex v ∈ Γ such that LinkΓ(LinkΓ(v)) ̸= {v} and |Λv | = 1, i.e.
Λv = { j } for some j . Then LinkΛΓ (v, j ) =⋃

w∈LinkΓ(v){(w, i ) : i ∈Λw }. We can choose a z ∈
LinkΓ(LinkΓ(v)) with z ̸= v and let k ∈Λz . Then we see that (z,k) ∈ LinkΛΓ (LinkΛΓ (v, j )),
which showsΛΓ is not rigid.

By the result of Lemma 5.2.5, it is possible to construct many different rigid graphs
using the rigid graphs from Example 5.2.2.

Remark 5.2.6. Let Γ be a rigid graph. Then any connected component of Γ is rigid and
any irreducible component of Γ is rigid. Indeed, if Λ1, . . . ,Λn are the irreducible compo-
nents of Γ and we let Π = {1, . . . ,n} be a complete graph, then Γ = ∗v,ΠΛv = ΛΠ. Hence,
by Lemma 5.2.5 and rigidity of Γwe obtain that the graphsΛ1, . . . ,Λn are rigid. Similarly,
if we let Λ′

1, . . . ,Λ′
m be connected components of Γ and we let Π′ = {1, . . . ,m} be a graph

with no edges, then Γ=∗v,Π′Λ′
v =Λ′

Π′ so that by Lemma 5.2.5 and rigidity of Γwe obtain
thatΛ′

1, . . . ,Λ′
m are rigid.

We now define the core of a graph.

Definition 5.2.7 (Core of a graph). Let Γ be a simple graph. We say that two vertices
v, w ∈ Γ are core equivalent, with notation v ∼ w, if Star(v) = Star(w). Let v be the core
equivalence class of v ∈ Γ. We define the core of Γ, with notation C Γ, as the graph whose
vertices set is the set of all core equivalence classes of Γ. The edges set of C Γ is defined by
declaring that v , w ∈C Γwith v ̸= w share an edge in C Γ if and only if v, w share an edge
in Γ.

We remark that C C Γ=C Γ, that is, the core of the core of a graph is equal to the core
of the graph. In the following lemma we show that any graph can be written as a graph
product over its core.

Lemma 5.2.8. Let Γ be a simple graph. For v ∈ C Γ let Λv be the complete graph of size
|Λv | = |v |. Then Γ≃ΛC Γ. Furthermore, if C Γ is rigid, then so is Γ.

Proof. Indeed, as for v ∈ C Γ we have |v | = |Λv |, we can build a bijection ιv : v → Λv .
We then define the bijection ι : Γ → ΛC Γ as ι(v) = (v , ιv (v)). We show this is a graph
isomorphism. Let v ̸= w ∈ Γ. If v, w do not share an edge in Γ then v ̸= w and v , w do not
share an edge in C Γ. Hence (v , ιv (v)) and (w , ιw (w)) do not share an edge in ΛC Γ. Now
suppose v, w do share an edge in Γ. If v = w then since Λv =Λw is complete we obtain
that (v , ιv (v)) and (w , ιw (w)) share an edge in ΛC Γ . On the other hand, if v ̸= w , then
v , w share an edge in C Γ so that also (v , ιv (v)) and (w , ιw (w)) share an edge inΛC Γ. This
shows that ι is an isomorphism and hence Γ≃ΛC Γ.

We prove the last statement. Suppose C Γ is rigid. Since for each v ∈C Γ the graphΛv

is rigid (since it is complete) and since by rigidity of C Γwe have LinkC Γ(LinkC Γ(v)) = v ,
we obtain by Lemma 5.2.5 thatΛC Γ is rigid. Thus Γ≃ΛC Γ is rigid.

We make two remarks on Lemma 5.2.8



5.3. GRAPH PRODUCTS OF NUCLEAR C∗-ALGEBRAS 101

Remark 5.2.9. We remark that if a simple graph Γ is rigid, then its core is, in general,
not rigid. Indeed, let Π = {v, w} denote the simple graph of size 2 with no edges and let
Λv ,Λw denote complete graphs of size |Λv |, |Λw | ≥ 2. Then the graph Γ :=ΛΠ is rigid by
Lemma 5.2.5 but C Γ=Π is not rigid.

Remark 5.2.10. If a graph Γ is in the class CC1 as described in [CDD22] then Γ is rigid.
Indeed if Γ is CC1 then its core C Γ, which is in fact also CC1, is given by the graph of
[CDD22, Eqn. (1.1)]. This graph is rigid as can be checked directly from the very defi-
nition of rigidity. We can then apply Lemma 5.2.8 to obtain that Γ is rigid. It thus fol-
lows that the graphs considered in the current chapter form a much richer class than
[CDD22].

5.3. GRAPH PRODUCTS OF NUCLEAR C∗-ALGEBRAS
The aim of this section is to give a sufficient condition for when the reduced graph prod-
uct of nuclear C∗-algebras is nuclear again. Such a result cannot hold in full general-
ity as it is clear from the fact that the free product of amenable discrete groups is non-
amenable as soon as one group has at least 2 elements and the other group has at least
3 elements. Hence the stability result in this section requires particular conditions on
the states with respect to which we take the graph product. Such a result was obtained
by Ozawa in [Oza02] for amalgamated free products and we use the amalgamated free
product decomposition of graph products (Theorem 2.4.1) to show that the same holds
for graph products.

Let Γ be a finite simple graph. Let (Av ,ϕv ) with v ∈ Γ be unital C∗-algebras Av ,
GNS-faithful states ϕv and GNS-representation πv of Av on the Hilbert space Hv =
L2(Av ,ϕv ).

For Hilbert C∗-modules we refer to [Lan95]. Consider the reduced graph product
C∗-algebras (AΛ,ϕΛ) for any Λ ⊆ Γ which is a subalgebra of (AΓ,ϕΓ) with conditional
expectation EΛ.

Definition 5.3.1. We construct a Hilbert C∗-module HEΛ as the completion of AΓ with
respect to the AΛ-valued inner product

〈a,b〉EΛ = EΛ(b∗a)

and the corresponding Hilbert AΛ-module norm ∥a∥ = ∥〈a, a〉 1
2 ∥. Let πEΛ : AΓ → B(HEΛ )

be the GNS-representation of AΓ on the Hilbert C∗-module HEΛ by adjointable operators.
Then πEΛ is given by extending left multiplication

πEΛ (x)a = xa, x ∈ AΓ, a ∈ AΓ ⊆HEΛ

and we shall omit πEΛ in the notation if the module action is clear.

Definition 5.3.2. An operator on the Hilbert AΛ-module HEΛ is called finite rank if it is
in the linear span of operators of the form

θη2,η1 : ξ 7→ η2〈ξ,η1〉EΛ , ηi ∈HEΛ .

The closure of the space of all finite rank operators are defined as the space of compact
operators K(HEΛ ).
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Lemma 5.3.3. Suppose there exists v ∈ Γ such that Γ= Star(v). If πv (Av ) contains K(Hv )
then πELink(v) (AStar(v)) contains K(HELink(v) ).

Proof. We have that AStar(v) = Av ⊗ ALink(v) where the tensor product is the minimal ten-
sor product and under this correspondence we have

〈a ⊗b,c ⊗d〉ELink(v) =ϕv (c∗a)d∗b, a,c ∈ Av ,b,d ∈ ALink(v).

We thus may identify HELink(v) as the closure of the algebraic tensor product Hv ⊗ALink(v)

with respect to the inner product 〈ξ⊗b,η⊗d〉 = 〈ξ,η〉d∗b. Further, under this correspon-
dence πELink(v) = πv ⊗πl where πl (x)a = xa, x, a ∈ ALink(v) is the left multiplication. Let
pv be the projection of Hv onto Cξv . Then pv ⊗ 1 equals the extension of ELink(v) as a
bounded map on HELink(v) identified with the closure of Hv ⊗ ALink(v). As by assumption
pv lies in πv (Av ) it thus follows that pv ⊗1 lies in πELink(v) (AStar(v)). It thus follows that for
a,c, x ∈ Av ,b,d , y ∈ ALink(v) we have

θa⊗b,c⊗d (x ⊗ y) =ϕv (c∗x)a ⊗bd∗y =πELink(v) (a ⊗b)(pv ⊗1)πELink(v) (c∗⊗d∗)(x ⊗ y).

The right hand side is contained in πELink(v) (AStar(v)). Hence πELink(v) (AStar(v)) contains a
dense set of finite rank operators and hence must contain all compact operators.

Theorem 5.3.4. Let Γ be a simple graph. If for each v ∈ Γ, Av is nuclear and πv (Av )
contains the compact operators K(Hv ), then AΓ is nuclear.

Proof. It suffices to prove the theorem forΓ a finite graph as inductive limits of inclusions
of nuclear C∗-algebras are nuclear.

Our proof proceeds by induction to the number of vertices in Γ. So we assume that
for anyΛ⊊ Γwe have proved that AΛ is nuclear. We shall prove that AΓ is nuclear.

If Γ is complete then AΓ is the minimal tensor product of Av , v ∈ Γ which is nuclear
as each Av is nuclear.

Assume Γ is not complete. Then we may take v ∈ Γ such that Star(v) ̸= Γ. By Theo-
rem 2.4.1 we obtain

AΓ = AStar(v) ∗ALink(v) AΓ\{v},

where all graph products and amalgamated free products are reduced. By induction
AStar(v) and AΓ\{v} are nuclear. Further the GNS-representation of AStar(v) with respect to
its conditional expectation onto ALink(v) contains all compact operators by Lemma 5.3.3.
Hence [Oza02, Theorem 1.1] concludes that AΓ is nuclear.

5.4. RELATIVE AMENABILITY, QUASI-NORMALIZERS AND EMBED-
DINGS IN GRAPH PRODUCTS

In this section we establish the required machinery we need throughout the chapter.
First in Section 5.4.1 we discuss how to calculate conditional expectations in graph prod-
ucts. This will be used in Section 5.4.2 to prove a result concerning relative amenability
in graph products. The calculations from Section 5.4.1 will furthermore be used in Sec-
tion 5.4.3 to keep control of certain quasi-normalizers in graph products. Last, in Sec-
tion 5.4.4 we apply results from Section 5.4.3 to establish a unitary embedding of certain
subalgebras in graph products.
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5.4.1. CALCULATING CONDITIONAL EXPECTATIONS IN GRAPH PRODUCTS
For a simple graph Γ, a graph product (MΓ,ϕΓ) = ∗v,Γ(Mv ,ϕv ) and subgraphs Γ1,Γ2 ⊆
Γ, we will in Proposition 5.4.3 calculate iterated conditional expectations of the form
EMΓ2

(aEMΓ1
(x)b) for a,b, x ∈ MΓ (here EMΛ is the condition expectation that preserves

the stateϕΓ). In [BC23] we have done these calculations in the setting of Coxeter groups,
i.e. the setting Mv = L (Z/2Z) for all v ∈ Γ. We will present here a generalisation of our
calculations to the setting of general graph products. However, we note that such general
calculations for graph products were already done in [Cha+24].

For our calculations we need the following combinatorial result concerning words in
Coxeter groups. Here, for u ∈WΓ we denote Link(u) = Link(Λu) where Λu is the set of all
letters that occur in u. Alternatively, Link(u) can be described as the set of all w ∈ Γ\Λu

such that wu = uw .

Lemma 5.4.1. Let Γ be a graph and let Γ1,Γ2 ⊆ Γ be subgraphs. Let w ∈WΓ1 ,u,u′ ∈WΓ be
such that u and u′ do not have a letter in Γ1 at the start and do not have a letter in Γ2 at
the end. Then the following are equivalent:

1. u−1wu′ ∈WΓ2 ;

2. u = u′ and w ∈WΓ1∩Γ2∩Link(u).

Proof. We show that (1) =⇒ (2); the other direction is trivial. Suppose that w contains
a letter b in Γ1 which is not contained in Γ2, say that we write w = w1bw2 as a reduced
expression. We may assume that w1 does not end on any letters commuting with b by
moving those letters into w2. Then as u′ does not have letters from Γ1 at the start we
see that wu′ contains the letter b; more precisely we may write a reduced expression
wu′ = w1bw3u′′ where w3 is a start of w2 and u′′ is a tail of u′. Since u−1wu′ is contained
in WΓ2 the letter b cannot occur anymore in its reduced expression. We have u−1wu′ =
u−1w1bw3u′′ (possibly non-reduced). Now if a letter at the end of u−1 deletes the letter b
then this would mean that u has a letter in Γ1 up front (either b itself or a letter from w1)
which is not possible. We conclude that w ∈WΓ1∩Γ2 .

Write u = vu1 and u′ = vu′
1 (both reduced) where u1,u2 ∈ WΓ and where v ∈ WΓ such

that v commutes with w. Moreover we can assume that u1,u2,v are chosen such that
|v| is maximal over all possible choices. Now, suppose that u′

1 ̸= e. Let d be a letter at
the end of u′

1. Then d ̸∈ Γ2 by assumption on u′ (as d is also at the end of u′). Now
u−1

1 wu′
1 = u−1wu′ ∈ WΓ2 , which implies that d is deleted, i.e. u−1

1 wu′
1 is not reduced.

Thus a letter c at the start of u1 must delete a letter at the end of u−1
1 w. If c deletes a letter

from w then in particular c ∈ Γ1 ∩Γ2 (as w ∈ WΓ1∩Γ2 ). However, as u′ does not start with
letters from Γ1 this implies that |v| ≥ 1. Now, every letter of v commutes with the letters
from w (by assumption on v). However, not every letter of v commutes with c, since c is
not at the start of u′. From this we conclude that c is not a letter of w, a contradiction.
We conclude that c is not deleted by a letter from w, and thus that c must commute with
w, and that c deletes a letter at the end of u−1

1 i.e. a letter at the start of u1. Hence, we
can write u1 = cu2 and u′

1 = cu′
2 (both reduced) for some u2,u′

2 ∈ W . But then u = vcu2

and u′ = vcu′
2 and we have that vc commutes with w. This contradicts the maximality of

|v|. We conclude that u′
1 = e. Now as u−1

1 w = u−1
1 wu′

1 = u−1wu′ lies in WΓ2 by assumption
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and as w ∈WΓ1∩Γ2 we obtain that u−1
1 ∈WΓ2 . But u1 does not end with a letter from Γ2 by

assumption on u (since letters at the end of u1 are also at the end of u). This implies that
u1 = e. This shows u = v = u′ and that u (= v) commutes with w.

In the following lemma we calculate conditional expectations in graph products.
We use the explicit graph product notation from the preliminaries. Furthermore, as in
Chapter 3 we consider for (u1,u2,u3) ∈ SΓ the annihilation/diagonal/creation operator
λ(u1,u2,u3) : MΓ → B(HΓ). Furthermore, we recall that for a von Neumann subalgebra
Q ⊆ M that eQ : L2(M ,τ) → L2(Q,τ) denotes the Jones projection.

Lemma 5.4.2. Let Γ be a graph and let Γ1,Γ2 ⊆ Γ be subgraphs. For v ∈ Γ let (Mv ,ϕv )v∈Γ
be von Neumann algebras with normal faithful states and let (MΓ,ϕ) = ∗v,Γ(Mv ,ϕv ) be
the von Neumann algebraic graph product. Let a1 ∈ M̊u−1 and a2 ∈ M̊w and a3 ∈ M̊u′
where w ∈ WΓ1 and u,u′ ∈ WΓ are such that u,u′ do not start with letters from Γ1 and do
not end with letters from Γ2. Then

EMΓ2
(a1a2a3) =

{
ϕ(a1a3)a2, u−1wu′ ∈WΓ2 ;

0, else.
(5.8)

Moreover, for x ∈ MΓ1 we have EMΓ2
(a1xa3) =ϕ(a1a3)EMΓ1∩Γ2∩Link(u) (x).

Proof. First assume that ai =λ(ci ) with c1 ∈ M̊u−1 , c2 ∈ M̊w, c3 ∈ M̊u′ . We put η := a2a3Ω ∈
H̊wu′ (observe that wu′ is reduced). Now

EMΓ2
(a1a2a3)Ω= eMΓ2

a1a2a3eMΓ2
Ω= eMΓ2

a1η.

Furthermore, by Lemma 3.1.7 we have that

a1 =λ(c1) = ∑
(u1,u2,u3)∈Su−1

λ(u1,u2,u3)(c1).

Let (u1,u2,u3) ∈Su−1 and suppose eMΓ2
λ(u1,u2,u3)(c1)η is non-zero. Then by Lemma 3.1.4

we have λ(u1,u2,u3)(c1)η ∈ H̊v where v = u1u3wu′ (possibly non-reduced) and moreover
that v starts with u1u2. Moreover, since eMΓ2

λ(u1,u2,u3)(c1)η is non-zero we have that
v ∈ WΓ2 . Then as v starts with u1u2 and as u1u2 does not start with letters from Γ2 as
this is true for u−1, we have that u1u2 = e. As u1u2 is reduced by definition of Su−1 ,
we obtain u1 = u2 = e. Hence, as u1u2u3 = u−1 we obtain u3 = u−1. We conclude that
(u1,u2,u3) = (e,e,u−1) and moreover that u−1wu′ = u1u3wu′ = v ∈WΓ2 .

Now suppose that u−1wu′ ̸∈ WΓ2 . Then by the above we obtain for all (u1,u2,u3) ∈
Su−1 that eMΓ2

λ(u1,u2,u3)(c1)η = 0 and hence eMΓ2
a1η = 0. But then EMΓ2

(a1a2a3)Ω =
eMΓ2

a1η= 0. Hence EMΓ2
(a1a2a3) = 0.

Now, suppose u−1wu′ ∈WΓ2 . By Lemma 5.4.1 we obtain u = u′ and w ∈WΓ1∩Γ2∩Link(u).
Therefore, since w and u commute and have no letters in common, we obtain that the
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operator λ(e,e,u−1)(c1) commutes with λ(c2). Now

λ(e,e,u−1)(c1)η=λ(e,e,u−1)(c1)λ(c2)λ(u,e,e)(c3)Ω

=λ(c2)λ(e,e,u−1)(c1)λ(u,e,e)(c3)Ω

=λ(c2)ϕ(λ(c1)λ(c3))Ω

=ϕ(a1a3)a2Ω

and hence

eMΓ2
a1η=

∑
(u1,u2,u3)∈Su−1

eMΓ2
λ(u1,u2,u3)(c1)η

= eMΓ2
λ(e,e,u−1)(c1)η

= eMΓ2
ϕ(a1a3)a2Ω

=ϕ(a1a3)a2Ω.

Thus EMΓ2
(a1a2a3)Ω = ϕ(a1a3)a2Ω and thus EMΓ2

(a1a2a3) = ϕ(a1a3)a2. This shows

(5.8) by density of λ(M̊v) ⊆ M̊v for v ∈WΓ.

To prove the second statement, let x ∈ MΓ1 and write x = ∑
w∈WΓ1

xw with xw ∈ M̊w.
Then by what we just proved, we get, where χ is the indicator function,

EMΓ2
(a1xa3) = ∑

w∈WΓ1

EMΓ2
(a1xwa3) =ϕ(a1a3)

∑
w∈WΓ1

xwχWΓ2
(u−1wu′). (5.9)

We now claim that

ϕ(a1a3)χWΓ2
(u−1wu′) =ϕ(a1a3)χWΓ1∩Γ2∩Link(u) (w). (5.10)

Indeed, when u ̸= u′ then ϕ(a1a3) = 0 so that both sides of (5.10) equal 0. Further-
more, in case u = u′ we have by Lemma 5.4.1 that the conditions u−1wu′ ∈ WΓ2 and
w ∈ WΓ1∩Γ2∩Link(u) are equivalent, which establishes (5.10). Now, combining (5.9) and
(5.10) we obtain

EMΓ2
(a1xa3) =ϕ(a1a3)

∑
w∈WΓ1∩Γ2∩Link(u)

xw =ϕ(a1a3)EMΓ1∩Γ2∩Link(u) (x).

This concludes the proof.

Proposition 5.4.3. Let Γ be a graph and let Γ1,Γ2 be subgraphs. Let u,v ∈ WΓ and write
u = ul uc ur and v = vl vc vr (both reduced) with ul ,vl ∈ WΓ1 , ur ,vr ∈ WΓ2 and such that
uc ,vc do not start with letters from Γ1 and do not end with letters from Γ2.

For v ∈ Γ let (Mv ,ϕv ) be a von Neumann algebra with a normal faithful state. Let
a = al ac ar and b = bl bc br where al ∈ M̊ul , ac ∈ M̊uc , ar ∈ M̊ur and bl ∈ M̊vl , bc ∈ M̊vc ,
br ∈ M̊vr . Then for x ∈ MΓ we have

EMΓ2
(a∗EMΓ1

(x)b) =ϕ(a∗
c bc )a∗

r EMΓ1∩Γ2∩Link(uc ) (a∗
l xbl )br .
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Proof. As a∗
l ,bl ∈ MΓ1 and a∗

r ,br ∈ MΓ2 we have

EMΓ2
(a∗EMΓ1

(x)b) = a∗
r EMΓ2

(a∗
c EMΓ1

(a∗
l xbl )bc )br . (5.11)

Now as EMΓ1
(a∗

l xbl ) ∈ MΓ1 and a∗
c ∈ M̊u−1

c
and bc ∈ M̊vc we have by Lemma 5.4.2 that

EMΓ2
(a∗

c EMΓ1
(a∗

l xbl )bc ) =ϕ(a∗
c bc )EMΓ1∩Γ2∩Link(uc ) (EMΓ1

(a∗
l xbl ))

=ϕ(a∗
c bc )EMΓ1∩Γ2∩Link(uc ) (a∗

l xbl ).
(5.12)

This proves the statement by combining (5.11) and (5.12).

5.4.2. RELATIVE AMENABILITY IN GRAPH PRODUCTS
Given a finite von Neumann algebra M with normal faithful tracial state τ and let Q ⊆ M
be a von Neumann subalgebra. We recall that 〈M ,eQ〉 is the Jones extension which is the
von Neumann subalgebra of B(L2(M ,τ)) generated by M∪{eQ } equipped with the tracial
weight Tr : 〈M ,eQ〉+ → [0,∞] whose linear extension satisfies Tr(xeQ y) = τ(x y). Let

TQ : L1(〈M ,eQ〉,Tr) → L1(M ,τ),

be the unique map defined through τ(TQ (y)x) = Tr(y x) for all y ∈ L1(〈M ,eQ〉,Tr), x ∈ M .
Then TQ is the predual of the inclusion map M ⊂ 〈M ,eQ〉 and thus is contractive and pre-
serves positivity. For the following definition of relative amenability we refer to [PV14a,
Definition 2.2, Proposition 2.4].

Definition 5.4.4. Let (M ,τ) be a tracial von Neumann algebra and let P ⊆ 1P M1P ,Q ⊆
M be von Neumann subalgebras. We say that P is amenable relative to Q inside M if
there exists a P-central positive functional on 1P 〈M ,eQ〉1P that restricts to the trace τ on
1P M1P .

Remark 5.4.5. Assume the inclusion P ⊆ M is not unital. Let p = 1M −1P . Set P̃ = P ⊕Cp
which is a unital subalgebra of M . We claim: P is amenable relative to Q inside M if and
only if P̃ is amenable relative to Q inside M . Indeed, for the if part, choose a P̃-central
positive functional Ω̃ on 〈M ,eQ〉 that restricts to τ on M . Set Ω to be the restriction of
Ω̃ to 1P 〈M ,eQ〉1P which then clearly witnesses relative amenability of P . For the only if
part, letΩ be a P-central positive functional on 1P 〈M ,eQ〉1P that restricts to τ on 1P M1P

then we set Ω̃(x) =Ω(pxp)+τ̃((1M −p)x(1M −p)) for any positive functional τ̃ extending
τ from (1M − p)M(1M − p) to (1M − p)〈M ,eQ〉(1M − p). Clearly Ω̃ witnesses the relative
amenability of P̃ .

Using the calculations of conditional expectations we will prove Theorem 5.4.8 which
asserts that when a von Neumann algebra P ⊆ MΓ is amenable relative to MΓi inside MΓ

for some subgraphs Γi ⊆ Γ for i = 1,2, then P is also amenable relative to MΓ1∩Γ2 inside
MΓ. We need the following proposition.

Proposition 5.4.6 (Proposition 2.4 of [PV14a]). Assume P,Q ⊆ M are von Neumann sub-
algebras. Then P is amenable relative to Q inside M if and only if there exists a net
(ξ j ) j ∈ L2(〈M ,eQ〉,Tr)+ such that:
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1. 0 ≤ TQ (ξ2
j ) ≤ 1M for all j and lim j ∥TQ (ξ2

j )−1M∥1 = 0;

2. For all y ∈ P we have lim j ∥yξ j −ξ j y∥2 = 0.

Before we prove Theorem 5.4.8, we will in Remark 5.4.7 do some bimodule compu-
tations for the Connes tensor product. Let M ,Q, N be tracial von Neumann algebras and
let M HQ and QKN be bimodules. Recall that a vector ξ ∈H is called right Q-bounded if
there exists C > 0 s.t. ∥ξy∥ ≤ C∥y∥ for all y ∈ Q. For a right Q-bounded vector ξ ∈ H we
define L(ξ) ∈ B(L2(Q,τ),H ) as L(ξ)x = ξx where x ∈ Q. Then, for right Q-bounded vec-
tors ξ,η ∈H we have that L(η)∗L(ξ) ∈Q. We denote by H0 ⊆H the subspace of all right
Q-bounded vectors. We equip the algebraic tensor product H0 ⊗K with the (possibly
degenerate) inner product

〈ξ1 ⊗η1,ξ2 ⊗η2〉H0⊗Q K := 〈L(ξ2)∗L(ξ1)η1,η2〉K . (5.13)

The Connes tensor product H ⊗Q K is the Hilbert space obtained from H0 ⊗alg K by
quotienting out the degenerate part and taking a completion. The Hilbert space H ⊗Q K

is a M-N bimodule with the action

x · (ξ⊗Q η) · y = (xξ)⊗Q (ηy).

Remark 5.4.7. We calculate the operator L(ξ2)∗L(ξ1) for certain bimodules and vectors
ξ1,ξ2 ∈ H0. Let (M ,τ) be a tracial von Neumann algebra and let P,Q ⊆ M be von Neu-
mann subalgebras with Q unital. Consider the bimodule P L2(M ,τ)Q . Let x, y ∈ M . Then
x, y are right Q-bounded and thus L(x),L(y) : L2(Q,τ) → L2(M ,τ) are well-defined. We
calculate L(x)∗L(y). For q1, q2 ∈ L2(Q,τ) we have

〈L(x)∗L(y)q1, q2〉 = 〈yq1, xq2〉 = τ(q∗
2 x∗yq1) = τ(q∗

2 EQ (x∗y)q1) = 〈EQ (x∗y)q1, q2〉.
(5.14)

Thus L(x)∗L(y) = EQ (x∗y).
Let R ⊆ M be a unital von Neumann subalgebra and let N = 〈M ,eR〉, where eR de-

notes the Jones projection of the inclusion R ⊆ M . We consider the bimodule P L2(N ,Tr)Q .
For x, x ′, y, y ′ ∈ M we have that xeR y and x ′eR y ′ are right Q-bounded vectors as they are
elements in N . We calculate L(xeR y)∗L(x ′eR y ′). For q1, q2 ∈Q we have,

〈L(xeR y)∗L(x ′eR y ′)q1, q2〉 = 〈x ′eR y ′q1, xeR yq2〉
= Tr(q∗

2 y∗eR x∗x ′eR y ′q1)

= Tr(q∗
2 y∗ER (x∗x ′)eR y ′q1)

= τ(q∗
2 y∗ER (x∗x ′)y ′q1)

= τ(EQ (q∗
2 y∗ER (x∗x ′)y ′q1))

= τ(q∗
2 EQ (y∗ER (x∗x ′)y ′)q1)

= 〈EQ (y∗ER (x∗x ′)y ′)q1, q2〉.

Thus we obtain L(xeR y)∗L(x ′eR y ′) = EQ (y∗ER (x∗x ′)y ′).
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We present Theorem 5.4.8 which we proved in [BC23, Theorem 3.7] in the setting of
right-angled Coxeter groups (i.e. Mv = L (Z/2Z) for v ∈ Γ) and later in [BCC24, Theo-
rem 5.3] in the general setting. The proof of the theorem follows [PV14a, Proposition 2.7]
but in our case the subalgebras are not regular. We furthermore remark that the bimod-
ule computations we do in the proof of Theorem 5.4.8 are also related to those done in
[Cha+24, Section 5].

Theorem 5.4.8. Let Γ be a graph and let Γ1,Γ2 ⊆ Γ be subgraphs. For v ∈ Γ let (Mv ,τv ) be
a von Neumann algebra with a normal faithful trace. Let P ⊂ 1P MΓ1P be a von Neumann
subalgebra that is amenable relative to MΓi inside MΓ for i = 1,2. Then P is amenable
relative to MΓ1∩Γ2 inside MΓ.

Proof. By Remark 5.4.5 we may assume without loss of generality that the inclusion
P ⊆ MΓ is unital and use the characterisation of relative amenability given by Propo-
sition 5.4.6. Put Qi := MΓi for i = 1,2. As before, let Ti = TQi : L1(〈MΓ,eQi 〉) → L1(MΓ)
be the contraction determined by τ(Ti (S)x) = Tri (Sx) for S ∈ L1(〈MΓ,eQi 〉) and x ∈ MΓ.
Since P is amenable relative to Qi , Proposition 5.4.6 implies the existence of nets (µi

j ) j

in L2(〈MΓ,eQi 〉)+ satisfying

0 ≤ Ti ((µi
j )2) ≤ 1, ∥Ti ((µi

j )2)−1∥1 → 0, ∥yµi
j −µi

j y∥2 → 0, for all y ∈ P, (5.15)

where the limits are taken over j . Consider the MΓ-MΓ bimodule

H = L2(〈MΓ,eQ1〉)⊗MΓ L2(〈MΓ,eQ2〉).

Claim: As in [PV14a] we claim that tensor products µ j := µ1
j1
⊗µ2

j2
∈ H for certain j =

( j1, j2) can be combined into a net such that

∥yµ j −µ j y∥→ 0, |〈xµ j ,µ j 〉−τ(x)|→ 0,

for all y ∈ P , x ∈ MΓ, where the limit is taken over j . Let us now prove this claim in the
next paragraphs which repeats the argument used in [PV14a, Proposition 2.4].

Proof of the claim. Take F ⊆ P , G ⊆ MΓ finite and let ε > 0. Set G 1 := G and fix j1

such that ∥yµ1
j1
−µ1

j1
y∥2 ≤ ε for all y ∈ F and |〈xµ1

j1
,µ1

j1
〉 − τ(x)| ≤ ε for all x ∈ G 1. As

0 ≤ Ti ((µi
j1

)2) ≤ 1 and as Ti preserves positivity, it follows that for x ∈ MΓ the element

T1(µ1
j1

xµ1
j1

) ∈ L1(MΓ,τ) is bounded in the uniform norm and thus belongs to M . Set

G 2 := T1(µ1
j1

G 1µ1
j1

) ⊆ MΓ, which is finite. We may proceed from F and G 2 to find j2

such that ∥yµ2
j2
−µ2

j2
y∥2 ≤ ε for all y ∈ F and |〈xµ2

j2
,µ2

j2
〉−τ(x)| ≤ ε for all x ∈ G 2. Put

j = ( j1, j2) and set µ j =µ1
j1
⊗µ2

j2
. For y ∈F it follows by the triangle inequality that

∥yµ−µy∥ ≤ ∥(yµ1
j1
−µ1

j1
y)⊗MΓ µ

2
j2
∥+∥µ1

j1
⊗MΓ (yµ2

j2
−µ2

j2
y)∥ ≤ 2ε.

Now, by construction of the sets G i and the vectors µi
ji

we see that for x ∈G that

|〈xµ,µ〉−τ(x)| ≤ |〈xµ,µ〉−〈xµ2
j2

,µ2
j2
〉|+ |〈xµ2

j2
,µ2

j2
〉−τ(x)|

≤ |〈T1(µ1
j1

xµ1
j1

)µ2
j2

,µ2
j2
〉−〈xµ2

j2
,µ2

j2
〉|+ |〈xµ2

j2
,µ2

j2
〉−τ(x)|

≤ 2ϵ
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Taking j = j (F ,G ) with increasing sets F and G as before gives a net of vectors µ j ∈
H with the property that

∥yµ j −µ j y∥→ 0, |〈xµ j ,µ j 〉−τ(x)|→ 0

for all y ∈ P and x ∈ MΓ. This proves the claim.

Remainder of the proof. The net (µ j ) j in particular shows that the bimodule M L2(M)P is
weakly contained in M HP . Denote

V = {v ∈WΓ : v does not start with letters from Γ1 and does not end with letters from Γ2},

and define the subspace H0 ⊆H as

H0 = Span{xeQ1 y ⊗MΓ eQ2 z : v ∈ V , x, z ∈ MΓ, y ∈ M̊v},

which is dense in H . Indeed, clearly the span of all operators of the form xeQ1 y1 ⊗MΓ

y2eQ2 z for some reduced operators x ∈ Mu, z ∈ Mw and yi ∈ Mvi for some u,w,v1,v2 ∈WΓ
is dense in H . However, it can be seen that all these operators are also contained in H0,
which shows that H0 ⊆H is dense.

We define a bimodule K := L2(MΓ)⊗Q0 L2(MΓ) and a map U : H0 → L2(MΓ)⊗Q0 K

as

xeQ1 y ⊗MΓ eQ2 z 7→ x ⊗Q0 y ⊗Q0 z x, z ∈ MΓ,v ∈ V , y ∈ M̊v.

Fix x, x ′, z, z ′ ∈ MΓ. For v,v′ ∈ V and y ∈ M̊v,y ′ ∈ M̊v′ we have by Proposition 5.4.3 that

EQ0 (y∗EQ0 (x∗x ′)y ′) = τ(y∗y ′)EQ0∩Link(v)(x∗x ′) = EQ1 (y∗EQ2 (x∗x ′)y ′). (5.16)

Hence for general y, y ′ ∈ MΓ we have EQ0 (y∗EQ0 (x∗x ′)y ′) = EQ1 (y∗EQ2 (x∗x ′)y ′) by linear-
ity. Combining this with the bimodule computations from Remark 5.4.7 we obtain

〈x ′⊗Q0 y ′⊗Q0 z ′, x⊗Q0 y ⊗Q0 z〉L2(M)⊗Q0 K = 〈EQ0 (x∗x ′)y ′⊗Q0 z ′, y ⊗Q0 z〉K
= 〈EQ0 (y∗EQ0 (x∗x ′)y ′)z ′, z〉
= 〈EQ2 (y∗EQ1 (x∗x ′)y ′)z ′, z〉
= 〈TQ2 (EQ2 (y∗EQ1 (x∗x ′)y ′)eQ2 z ′), z〉
= 〈TQ2 (eQ2 y∗EQ1 (x∗x ′)y ′eQ2 z ′), z〉
= 〈y∗EQ1 (x∗x ′)y ′eQ2 z ′,eQ2 T ∗

Q2
(z)〉

= 〈EMΓ (y∗EQ1 (x∗x ′)y ′)eQ2 z ′,eQ2 z〉
= 〈x ′eQ1 y ′⊗MΓ eQ2 z ′, xeQ1 y ⊗MΓ eQ2 z〉H

Thus U extends to an isometry H → L2(MΓ)⊗Q0 K , which clearly is MΓ-MΓ-bimodular.
This shows that MΓL2(MΓ)P is weakly contained in MΓL2(MΓ)⊗Q0 KP , which by [PV14a,
Proposition 2.4 (3)] means that P is amenable relative to Q0 =Q1 ∩Q2 inside MΓ.
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5.4.3. EMBEDDINGS OF QUASI-NORMALIZERS IN GRAPH PRODUCTS
We prove Proposition 5.4.13 and Proposition 5.4.14 concerning embeddings in graph
products. To prove Proposition 5.4.13 we need some auxiliary lemmas. First, we state
Lemma 5.4.9 which was essentially proven in [Vae08, Remark 3.8]. The result is surely
known but for completeness we give the proof.

Lemma 5.4.9. Let A,B1, . . . ,Bn ,Q ⊆ M be von Neumann subalgebras with Bi ⊆Q. Assume
that A ≺M Q but A ̸≺M Bi for any i = 1, . . . ,n. Then there exist projections p ∈ A, q ∈ Q, a
non-zero partial isometry v ∈ qM p and a normal ∗-homomorphism θ : p Ap → qQq such
that θ(x)v = v x, x ∈ p Ap and such that θ(p Ap) ̸≺Q Bi for any i = 1, . . . ,n. Moreover, it may
be assumed that p is majorized by the support of EA(v∗v).

Proof. Let p ∈ A, q ∈ Q and θ : p Ap → qQq be a normal ∗-homomorphism such that
there is a partial isometry v ∈ qM p such that θ(x)v = v x for all x ∈ p Ap. We first prove
that without loss of generality we can assume that p is majorized by the support of
EA(v∗v).

Let z be the support of EA(v∗v). As pEA(v∗v)p = EA(pv∗v p) = EA(v∗v) it follows that
z ∈ p Ap. Further for x ∈ p Ap we have xEA(v∗v) = EA(xv∗v) = EA(v∗θ(x)v) = EA(v∗v x) =
EA(v∗v)x so that z ∈ (p Ap)′. We conclude z ∈ (p Ap)′∩ p Ap. Now let p ′ := pz ∈ A, let
θ′ : p ′Ap ′ → qQq be the restriction of θ to p ′Ap ′ and let v ′ := v z ∈ qM p ′. Then for
x ∈ p ′Ap ′ we have θ′(x)v ′ = θ(x)v z = v xz = v zx. We claim further that v ′ is non-zero.
Indeed, v ′ = v z = 0 iff zv∗v z = 0 iff 0 = EA(zv∗v z) = zEA(v∗v)z. But as v is non-zero
EA(v∗v) is non-zero and hence zEA(v∗v)z ̸= 0 by construction of z. We conclude that
v ′ ̸= 0. In all the tuple (θ, p ′, q, v ′) witnesses that A ≺M Q and the support of EA((v ′)∗v ′)
majorizes p ′.

For the remainder of the proof one just follows [BC23, Lemma 2.1] which does not
affect the assumption that p is majorized by the support of EA(v∗v).

The following lemma is similar to [DHI19, Remark 2.3].

Lemma 5.4.10. Let (M ,τ) be a tracial von Neumann algebra and let A,B1, . . . ,Bn be (pos-
sibly non-unital) von Neumann subalgebras of M. Assume A ̸≺M Bk for k = 1, . . . ,n. Then
there is a single net (ui )i of unitaries in A such that for 1 ≤ k ≤ n and a,b ∈ 1A M1Bk we
have ∥EBk (a∗ui b)∥2 → 0 as i →∞
Proof. Put

B̃ = ⊕
1≤k≤n

Bk , M̃ = ⊕
1≤k≤n

M . (5.17)

Let π : M → M̃ be the (normal) diagonal embedding π(x) =⊕n
k=1 x. Suppose π(A) ≺M̃ B̃ .

Then there are projections p ∈ π(A), q ∈ B̃ , a normal ∗-homomorphism θ : pπ(A)p →
qB̃ q and a non-zero partial isometry v ∈ qM̃ p s.t. θ(x)v = v x for x ∈ pπ(A)p. For k =
1, . . . ,n let πk : M̃ → M be the coordinate projections. Denote pk := πk (p) ∈ A, qk :=
πk (q) ∈ Bk and vk := πk (v) ∈ πk (qM̃ p) = qk M pk . Define a normal ∗-homomorphism
θk : pk Apk → qk B qk as θk (x) = πk (θ(π(x))). Then θk (x)vk = πk (θ(π(x))v) = πk (vπ(x)) =
vkπk (π(x)) = vk x. Since 0 ̸= v =⊕n

k=1 vk there is 1 ≤ k0 ≤ n s.t. vk0 ̸= 0. This then shows

that A ≺M Bk0 which is a contradiction. We conclude that π(A) ̸≺M̃ B̃ .
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Thus, there is a net of unitaries (ũi )i in π(A) such that for a′,b′ ∈ 1π(A)M̃1B̃ we have
∥EB̃ (a′∗ũi b′)∥2 → 0 as i →∞. Let ui ∈ A be the unitary s.t. π(ui ) = ũi . Fix 1 ≤ k ≤ n and
let a,b ∈ 1A M1Bk . We can choose ã, b̃ ∈ 1π(A)M̃1B̃ s.t. πk (ã) = a and πk (b̃) = b. We have

∥EBk (a∗ui b)∥2 = ∥Eπk (B̃)(πk (ã∗ũi b̃))∥2 ≤ ∥EB̃ (ã∗ũi b̃)∥2 → 0 as i →∞. (5.18)

This shows the net (ui )i satisfies the stated property.

In order to have control over quasi-normalizers we need the following lemma. The
lemma is stated in [Vae07, Lemma D.3] for sequences, but holds equally well for nets.

Remark 5.4.11. Consider an inclusion B ⊆ 1B M1B of finite von Neumann algebras with
conditional expectation EB : 1B M1B → B . We extend it to EB : M → B by setting EB (x) =
EB (1B x1B ). Fix a normal faithful tracial state τ on M . If p ∈ B is a non-zero projection
then p is in the multiplicative domain of EB and so EB : pM p → pB p is a conditional ex-
pectation. If EB preserves τ then it also preserves the normal faithful tracial state τ(p)−1τ

on pM p.

Lemma 5.4.12 (Lemma D.3 in [Vae07]). Let (M ,τ) be a finite von Neumann algebra with
normal faithful trace τ and let B ⊆ 1B M1B and A ⊆ 1AB1A be von Neumann subalgebras.
Suppose there is a net of unitaries (ui )i in A such that for all a,b ∈ M with EB (a) = EB (b) =
0 we have

∥EB (aui b)∥2 → 0 as i →∞. (5.19)

Then if n ≥ 1, x0, x1, . . . , xn ∈ M satisfy Ax0 ⊆∑n
k=1 xk B then we have that 1A x01A ∈ B.

Proof. We put B0 = 1AB1A and M0 = 1A M1A so that A ⊆ B0 ⊆ M0 are unital inclusions.
We observe B0 = B ∩ M0. Now let a,b ∈ M0 be such that EB0 (a) = EB0 (b) = 0. Then by
Remark 5.4.11 with p = 1A we find EB (a) = EB0 (a) = 0 and similarly EB (b) = 0. Thus by as-
sumption ∥EB (aui b)∥2 → 0 as i →∞. Hence, since B0 = 1AB1A we obtain ∥EB0 (aui b)∥2 →
0 as i →∞. Choose a central projection z ∈ B ∩B ′ such that there exists m ≥ 1 and par-
tial isometries vi ∈ B for 1 ≤ i ≤ m with vi v∗

i ≤ 1A and
∑m

i=1 v∗
i vi = z. Now let n ≥ 1,

x0, x1, . . . , xn ∈ M be such that Ax0 ⊆∑n
k=1 xk B . Then

A(1A x0z1A) = (Ax0z)1A ⊆
n∑

k=1
xk B z1A =

n∑
k=1

m∑
i=1

xk (v∗
i 1A vi )B1A ⊆

n∑
k=1

m∑
i=1

xk v∗
i B0.

Multiplying both sides from the left with 1A gives A(1A x0z1A) ⊆ ∑n
k=1

∑m
i=1 1A xk v∗

i B0

where 1A xk v∗
i ∈ 1A M1A . By the existence of the net (ui )i this implies, by applying [Vae07,

Lemma D.3] to the inclusions A ⊆ B0 ⊆ M0, that 1A x0z1A ∈ B . As we may let z approxi-
mate 1B in the strong topology we find that 1A x01A ∈ B .

We are now able to show the following result. The second statement in the proposi-
tion should be compared to [Ioa15, Lemma 9.4]. While the inclusion MΛ ⊆ MΓ is gener-
ally not mixing, we still have enough control over the (quasi)-normalizer of subalgebras.
The proof of Proposition 5.4.13(1) uses Lemma 5.4.10, Lemma 5.4.12 and the results from
Section 5.4.1 for calculating conditional expectations in graph products. The proof of
Proposition 5.4.13(2) uses (1) and Lemma 5.4.9.
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Proposition 5.4.13. Let Γ be a simple graph and for v ∈ Γ let (Mv ,τv ) be a finite von
Neumann algebra with normal faithful trace τv . LetΛ⊆ Γ be a subgraph, and {Λ j } j∈J be
a non-empty, finite collection of subgraphs of Γ. Define

Λemb :=Λ∪ ⋂
j∈J

⋃
v∈Λ\Λ j

LinkΓ(v). (5.20)

Let A ⊆ 1A MΓ1A be a von Neumann subalgebra.

1. If A ⊆ 1A MΛ1A and A ̸≺MΓ MΛ j for all j ∈J then the following properties hold true:

(a) There is a net (ui )i of unitaries in A such that for all a,b ∈ 1A MΓ1A with
EMΛemb

(a) = EMΛemb
(b) = 0 we have ∥EMΛemb

(aui b)∥2 → 0;

(b) 1A qNorMΓ
(A)′′1A ⊆ MΛemb ;

(c) For any unitary u ∈ MΓ satisfying u∗Au ⊆ MΛemb we have 1Au1A ∈ MΛemb .

2. Denote P = NorMΓ (A)′′ and let r ∈ P ∩P ′ be a projection. If r A ≺MΓ MΛ and r A ̸≺MΓ

MΛ j for j ∈J then r P ≺MΓ MΛemb .

We remark that if {Λ j } j∈J enumerates all strict subgraphs ofΛ thenΛemb =Λ∪LinkΓ(Λ).

Proof. (1)
By Lemma 5.4.10 we can build a net of unitaries (ui )i in A such that for any a,b ∈ MΓ

and any j ∈ J we have ∥EMΛ j
(aui b)∥2 → 0 when i →∞. We show the net (ui )i satisfies

the properties of (1a). Let b ∈ M̊v and c ∈ M̊w for some v,w ∈WΓ \WΛemb . Write v = vl vc vr

and w = wl wc wr with vl ,wl ∈WΛemb , vr ,wr ∈WΛ and such that vc and wc do not start with
letter fromΛemb nor do they end with letters fromΛ. Now write b = bl bc br and c = cl cc cr

with bl ∈ M̊vl ,cl ∈ M̊wl , bc ∈ M̊vc ,cc ∈ M̊wc and br ∈ M̊vr ,cr ∈ M̊wr . Then as v ̸∈WΛemb and
vl ∈ WΛemb and vr ∈ WΛ ⊆ WΛemb , we have vc ̸∈ WΛemb and hence there is a letter v of vc

such that v ̸∈Λemb. Thus, there is an index j ∈J such that v ̸∈⋃
w∈Λ\Λ j LinkΓ(w). Hence

Link(v) ⊆ Γ\(Λ\Λ j ) =Λ j ∪(Γ\Λ) and thusΛ∩Link(vc ) ⊆Λ j . Using Proposition 5.4.3 we
get,

∥EMΛemb
(b∗ui c)∥2 =∥EMΛemb

(b∗EMΛ (ui )c)∥2

=∥τ(b∗
c cc )b∗

r EMΛ∩Link(vc ) (b∗
l ui cl )cr ∥2

=∥τ(b∗
c cc )b∗

r EMΛ∩Link(vc ) (EMΛ j
(b∗

l ui cl ))cr ∥2

≤∥bc∥2∥cc∥2∥br ∥∥cr ∥∥EMΛ j
(b∗

l ui cl )∥2.

We see that this expression converges to 0 when i →∞. Thus, more generally, for b,c ∈
MΓ with EMΛemb

(b) = EMΛemb
(c) = 0, we obtain ∥EMΛemb

(b∗ui c)∥2 → 0 when i →∞, which
shows (1a).

(1b) Observe that if x ∈ qNorMΓ
(A) then for some n ≥ 1 and x1, . . . , xn ∈ MΓ we have

Ax ⊆∑n
k=1 xk A ⊆∑n

k=1 xk MΛemb . Therefore by the existence of the net (ui )i shown by (1a)
and by Lemma 5.4.12, we have that 1A x1A ∈ MΛemb . This shows 1A qNorMΓ

(A)1A ⊆ MΛemb

and thus proves (1b).
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(1c) Let u ∈ MΓ be a unitary for which u∗Au ⊆ MΛemb . Then Au ⊆ uMΛemb so again
by the existence of the net (ui )i shown by (1a) and by Lemma 5.4.12, we obtain that
1Au1A ∈ MΛemb .

(2) By replacing {Λ j } j∈J with {Λ j ∩Λ} j∈J we may assume that Λ j ⊆ Λ for j ∈ J .
We observe that r is central in A, which we will use a number of times in the proof. By
Lemma 5.4.9 the assumptions imply that there exist projections p ∈ r A, q ∈ MΛ a non-
zero partial isometry v ∈ qMΓp and a normal ∗-homomorphism θ : p Ap → qMΛq such
that θ(x)v = v x for all x ∈ p Ap and such that moreover θ(p Ap) ̸≺MΛ MΛ j for j ∈J . From
(1) we see that θ(p)qNorMΓ

(θ(p Ap))θ(p) ⊆ MΛemb .
Now take u ∈ NorMΓ (A). We follow the proof of [Pop06c, Lemma 3.5] or [Ioa15, Lemma

9.4]. Take z ∈ A a central projection such that z = ∑n
j=1 v j v∗

j with v j ∈ A partial isome-

tries such that v∗
j v j ≤ p. Then

pzupz(p Ap) ⊆ pzu A = pz Au = p Azu ⊆
n∑

j=1
(p Av j )v∗

j u ⊆
n∑

j=1
(p Ap)v∗

j u,

and similarly (p Ap)pzupz ⊆∑n
j=1 uv j (p Ap). We conclude that pzupz ∈ qNorpM p (p Ap).

Now if x ∈ qNorpMΓp (p Ap) then by direct verification we see that we have that v xv∗ ∈
θ(p)qNorqMΓq (θ(p Ap))θ(p). It follows that v pzupzv∗, with u ∈ NorMΓ (A) as before,
is contained in θ(p)qNorqMΓq (θ(p Ap))θ(p) which was contained in MΛemb . We may
take the projections z to approximate the central support of p and therefore vuv∗ =
v pupv∗ ∈ MΛemb . Hence v NorMΓ (A)′′v∗ ⊆ MΛemb . Set p1 = v∗v ∈ p A′p. Note that p1 ≤
p ≤ r . As both A and A′ are contained in NorMΓ (A)′′ we find that p1 ∈ NorMΓ (A)′′ (as p ∈
A). So we have the ∗-homomorphism ρ : p1 NorMΓ (A)′′p1 = p1r NorMΓ (A)′′p1 → MΛemb :
x 7→ v xv∗ with v ∈ qMΓp1 and clearly ρ(x)v = v x. We conclude that r NorMΓ (A)′′ ≺MΓ

MΛemb .

We prove the following result concerning embeddings in graph products.

Proposition 5.4.14. Let Γ be a simple graph and for v ∈ Γ, and let (Mv ,τv ) be a tracial von
Neumann algebra. Fix v ∈ Γ and let N ⊆ Mv be diffuse. If N ≺MΓ MΛ for some subgraph
Λ⊆ Γ, then v ∈Λ. In particular ifΛ= {w}, a singleton set, then v = w.

Proof. Let Λ⊆ Γ be a subgraph with v ̸∈Λ. We show that N ̸≺MΓ MΛ. Since N is diffuse,
we can choose a net (uk )k of unitaries in N such that τ(uk ) = 0 and uk → 0 σ-weakly.
Since λ(MΓ) is a dense subspace of MΓ, it is sufficient to show for any reduced operators
x = x1x2 . . . xm , y = y1 y2 . . . yn , s.t. xi ∈ M̊vi , yi ∈ M̊wi , we have ∥EMΛ (xuk y)∥2 → 0. In-
deed, writing x = x ′a, y = by ′, where a,b ∈ Mv and where x ′ respectively y ′ is a reduced
operator without letter v at the end respectively start. Then

xuk y = x ′auk by ′ = x ′τ(auk b)y ′+x ′(auk b −τ(auk b))y ′.

On the one hand, EMΛ (x ′τ(auk b)y ′) = τ(auk b)EMΛ (x ′y ′) = 〈uk b, a∗〉EMΛ (x ′y ′) → 0. On
the other hand, we write x ′ = x ′′d , y ′ = e y ′′, where d ,e ∈ MLink(v) and where x ′′ respec-
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tively y ′′ has no letter from Star(v) at the end respectively at the start. Then we have

x ′(auk b −τ(auk b))y ′ = x ′′d(auk b −τ(auk b))e y ′′

= x ′′de(auk b −τ(auk b))y ′′

=∑
i

x ′′ fi (auk b −τ(auk b))y ′′,

where we write de =∑
i fi and fi ∈ MLi nk(v) reduced. Since x ′′ fi (auk b−τ(auk b))y ′′ is re-

duced and v ̸∈Λwe obtain that EMΛ (x ′′ fi (auk b−τ(auk b))y ′′) = 0. Thus ∥EMΛ (xuk y)∥2 →
0, which completes the proof.

Remark 5.4.15. We remark in particular for any graph Γ, II1-factors {Mv }v∈Γ and a fi-
nite subgraph Λ ⊆ Γ that qNorMΓ

(MΛ)′′ = NorMΓ (MΛ)′′ = MΛ∪Link(Λ). Indeed, clearly
MΛ, MLink(Λ) ⊆ NorMΓ (MΛ)′′ (as MLink(Λ) = M ′

Λ∩MΓ) so that MΛ∪Link(Λ) ⊆ NorMΓ (MΛ)′′ ⊆
qNorMΓ

(MΛ)′′. Furthermore, by Proposition 5.4.14 we have MΛ ̸≺MΓ MΛ̃ for any strict

subgraph Λ̃⊊Λ so that by Proposition 5.4.13 we obtain qNorMΓ
(MΛ)′′ ⊆ MΛ∪Link(Λ).

5.4.4. UNITARY CONJUGACY IN GRAPH PRODUCTS

We prove Theorem 5.4.16 which gives sufficient conditions for a subalgebra Q ⊆ MΓ to
unitarily embed in a subalgebra MΛemb . This can be seen as a generalization of [Oza06,
Theorem 3.3] where a unitary embedding is proven for free products. The proof of Theo-
rem 5.4.16 combines (the second half of) the proof of [Oza06, Theorem 3.3] with results
of Section 5.4.3 concerning embeddings in graph products.

Theorem 5.4.16. Let Γ be a simple graph and for v ∈ Γ let (Mv ,τv ) be a II1-factor with
normal faithful trace τv . Let Q ⊆ MΓ be a subfactor whose relative commutant Q ′∩MΓ is
also a factor. Let Λ⊆ Γ be a subgraph and let {Λ j } j∈J be a non-empty, finite collection of
subgraphs of Λ. Suppose Q ≺MΓ MΛ and Q ̸≺MΓ MΛ j for j ∈ J . Then there is a unitary
u ∈ MΓ such that u∗Qu ⊆ MΛemb , whereΛemb is defined as in (5.20).

Proof. Since Q ≺MΓ MΛ and Q ̸≺MΓ MΛ j for j ∈ J we have by Lemma 5.4.9 that there
are projections q ∈Q, e ∈ MΛ, a normal ∗-homomorphism θ : qQq → eMΛe and a non-
zero partial isometry v ∈ eMΓq such that θ(x)v = v x for x ∈ qQq and such that moreover
θ(qQq) ̸≺MΓ MΛ j for j ∈ J . We may moreover assume that q is majorized by the sup-

port of EQ (v∗v). Let q0 ∈ Q be a non-zero projection with q0 ≤ q and trace τ(q0) = 1
m

for some m ≥ 1. Put v0 := vq0. Note that v∗v ∈ (qQq)′ ∩ qMΓq . Then EQ (v∗
0 v0) =

EQ (q0v∗vq0) = EQ (q0v∗v) = q0EQ (v∗v) and the latter expression is non-zero by the as-
sumption that the support of EQ (v∗v) majorizes q . As EQ is faithful v0 ̸= 0. Define
θ0 : q0Qq0 → eMΛe as θ0 := θ|q0Qq0 . Then for x ∈ q0Qq0 we have θ0(x)v0 = θ(x)vq0 =
v xq0 = v0x. Automatically this implies v∗

0 v0 ∈ (q0Qq0)′ ∩ q0MΓq0. Furthermore for
j ∈ J , the corner θ0(q0Qq0) = θ0(q0)θ(qQq)θ(q0) does not embed in MΛ j inside MΓ

since θ(qQq) does not embed in MΛ j inside MΓ. Hence, by Proposition 5.4.13(1b) we
obtain θ(q0)NorMΓ (θ0(q0Qq0))′′θ(q0) ⊆ MΛemb .

Since Q is a factor and τ(q0) = 1
m we can for j = 1, . . . ,m choose a partial isometry u j

in Q such that u∗
j u j = q0 and

∑m
j=1 u j u∗

j = 1MΓ . We may moreover assume that u1 = q0.
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We define a projection q ′ :=∑m
j=1 u j v∗

0 v0u∗
j ∈ MΓ. We show that q ′ ∈Q ′∩MΓ. Indeed, let

y ∈Q. Then using that v∗
0 v0 ∈ (q0Qq0)′ and u∗

j yu j ∈ q0Qq0 for j = 1, . . . ,n we get

q ′y =
m∑

j=1
u j (v∗

0 v0)u∗
j y =

m∑
j=1

m∑
i=1

u j (v∗
0 v0)(u∗

j yui )u∗
i

=
m∑

j=1

m∑
i=1

u j (u∗
j yui )(v∗

0 v0)u∗
i =

m∑
i=1

yui (v∗
0 v0)u∗

i = yq ′.

and thus q ′ ∈ Q ′∩ MΓ. We observe that v∗
0 v0 = q0q ′q0 = q0q ′ which shows in particu-

lar that q ′ is non-zero (since v0 ̸= 0). Since Q ′ ∩ M is a (finite) factor and q ′ is a non-
zero projection, we can choose a projection q ′

0 ∈ Q ′∩M with q ′
0 ≤ q ′ and τ(q ′

0) = 1
n for

some n ≥ 1. Since Q ′∩MΓ is a factor and since τ(q ′
0) = 1

n we can find partial isometries
u′

1, . . . ,u′
n ∈Q ′∩MΓ with (u′

k )∗u′
k = q ′

0 for k = 1, . . . ,n and such that
∑n

k=1 u′
k (u′

k )∗ = 1MΓ .

We put v00 := v0q ′
0 = vq0q ′

0 ∈ eMΓq0. Observe that v∗
00v00 = q ′

0v∗
0 v0q ′

0 = q ′
0q0 has

trace τ(v∗
00v00) = τ(q ′

0)τ(q0) = 1
nm so in particular v00 is non-zero. For x ∈ q0Qq0 we

have θ0(x)v00 = θ0(x)v0q ′
0 = v0xq ′

0 = v00x. Therefore, v00v∗
00 ∈ θ0(q0Qq0)′∩MΓ. Since

v00v∗
00 ≤ θ(q0) we obtain v00v∗

00 ∈ θ(q0)NorMΓ (θ0(q0Qq0))′′θ(q0) ⊆ MΛemb using the first
paragraph.

Since MΛemb is a factor (as it is a graph product of II1-factors), and since τ(v00v∗
00) =

1
nm there exist for j = 1, . . . ,m, k = 1, . . . ,n partial isometries w j ,k ∈ MΛemb with w j ,k w∗

j ,k =
v00v∗

00 and
∑m

j=1

∑n
k=1 w∗

j ,k w j ,k = 1MΓ . Put u :=∑m
j=1

∑n
k=1 u j u′

k v∗
00w j ,k ∈ MΓ and observe

that u is a unitary. Now for x ∈Q we have

u∗xu =
m∑

j1=1

n∑
k1=1

m∑
j2=1

n∑
k2=1

w∗
j1,k1

v00(u′
k1

)∗(u∗
j1

xu j2 )u′
k2

v∗
00w j1,k2

=
m∑

j1=1

n∑
k=1

m∑
j2=1

w∗
j1,k v00(u∗

j1
xu j2 )q ′

0v∗
00w j1,k

=
m∑

j1=1

n∑
k=1

m∑
j2=1

w∗
j1,kθ0(u∗

j1
xu j2 )v00v∗

00w j1,k

=
m∑

j1=1

n∑
k=1

m∑
j2=1

w∗
j1,kθ0(u∗

j1
xu j2 )w j1,k ∈ MΛemb .

Hence u∗Qu ⊆ MΛemb .

5.5. GRAPH PRODUCT RIGIDITY
The aim of this section is to prove Theorem 5.5.19. This provides a rather general class of
graphs and von Neumann algebras such that the graph product completely remembers
the graph and the vertex von Neumann algebra up to stable isomorphism. Note that we
cannot expect to cover all graphs as this would imply the free factor problem and which
is beyond reach of our methods. The class of rigid graphs as presented in Section 5.2 is
therefore natural.
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5.5.1. VERTEX VON NEUMANN ALGEBRAS
We define classes of von Neumann algebras for which we first recall a version of the
Akemann-Ostrand property [HI17].

Definition 5.5.1. A von Neumann algebra M with standard form (M ,L2(M), J ,L2(M)+)
is said to posses strong property (AO) if there exist unital C∗-subalgebras A ⊆ M and C ⊆
B(L2(M)) such that:

• A is σ-weakly dense in M,

• C is nuclear and contains A,

• The commutators [C , J AJ ] = {[c, Ja J ] | c ∈ C , a ∈ A} are contained in the space of
compact operators K(L2(M)).

We recall that a wide class of examples of von Neumann algebras with property strong
(AO) comes from hyperbolic groups.

Theorem 5.5.2 (See Lemma 3.1.4 of [Iso15b] and remarks before). Let G be a discrete
hyperbolic group. Consider the anti-linear isometry J determined by

J : ℓ2(G) → ℓ2(G) : δs 7→ δs−1 , s ∈G .

Then there is a nuclear C∗-algebra C such that:

1. C∗
r (G) ⊆C ⊆ B(ℓ2(G)).

2. C contains all compact operators.

3. The commutator [C , JC∗
r (G)J ] is contained in the space of compact operators.

Remark 5.5.3. In view of Section 5.3 it is worth to note that we may always assume with-
out loss of generality that C contains the space of compact operators by replacing C by
C +K(L2(M)) if necessary, see [HI17, Remark 2.7]. This fact also underlies Theorem 5.5.2.

Definition 5.5.4. We define the following classes of von Neumann algebras:

• Let CVertex denote the class of II1-factors M with separable predual M∗ that satisfy
condition strong (AO) and which are non-amenable;

• Let CComplete denote the class of all von Neumann algebraic graph products (MΓ,τ) =
∗v,Γ(Mv ,τv ) of tracial von Neumann algebras (Mv ,τv ) in CVertex taken over non-
empty, finite, complete graphs Γ;

• Let CRigid denote the class of all von Neumann algebraic graph products (MΓ,τ) =
∗v,Γ(Mv ,τv ) of tracial von Neumann algebras (Mv ,τv ) in CVertex taken over non-
empty, finite, rigid graphs Γ.

Remark 5.5.5. We remark that CVertex ⊆CComplete ⊆CRigid. Furthermore,

1. The class CVertex is closed under taking free products (see [HI17, Example 2.8(5)]).
Moreover, all von Neumann algebras M ∈CVertex are solid and prime, see [Oza04];
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2. The class CComplete is closed under taking tensor products. Moreover, we observe
that CComplete coincides with the class of tensor products of factors from CVertex;

3. The class CRigid is closed under taking graph products over non-empty, finite, rigid
graphs by Remark 5.2.4 and Lemma 5.2.5. In particular, it is closed under tensor
products;

4. The class CRigid \CVertex is closed under taking graph products over arbitrary non-
empty, finite graphs by Remark 5.2.4 and Lemma 5.2.5. In particular, it is closed
under tensor products and under free products.

Remark 5.5.6. We show that it may happen that a graph product over a rigid graph is
isomorphic to a graph product over a non-rigid graph; even if all vertex von Neumann
algebras come from the class CVertex. Consider the graphZ4 defined in Example 5.2.2(3).
The graphZ4 is rigid. For v ∈Z4 let Gv be a countable discrete group. Let Hv =Gv ∗Gv+2.
We have for the graph products of groups that

∗v,Z4Gv = (G0 ∗G2)× (G1 ∗G3) =∗v,Z2 Hv .

We now set Gv = F2 and Hv = F4 to be free groups with 2 and 4 generators respectively.
Set Mv = L (F2), v ∈ Z4 and Nv = L (F4), v ∈ Z2 equipped with their tracial Plancherel
states τv . Then Mv and Nv are in class CVertex and ∗v,Z4 (Mv ,τv ) = ∗v,Z2 (Nv ,τv ). We
have thus given an example of a rigid and non-rigid graph that give isomorphic graph
products.

5.5.2. KEY RESULT FOR EMBEDDINGS OF DIFFUSE SUBALGEBRAS IN GRAPH

PRODUCTS

In this section we fix the following notation. Let Γ be a simple graph. For v ∈ Γ let
(Mv ,τv ) be a tracial von Neumann algebra (Mv ̸= C) that satisfies strong (AO) and has
a separable predual. Let (MΓ,τΓ) = ∗v,Γ(Mv ,τv ) be the von Neumann algebraic graph
product. For v ∈ Γ let Hv = L2(Mv ,τv ) and let HΓ be the graph product of these Hilbert
spaces, which is the standard Hilbert space of MΓ [CF17]. We denote by J : HΓ → HΓ

the modular conjugation. Let Bv = B(Hv ). Let Ωv = 1Mv as a vector in Hv and let
ωv (x) = 〈xΩv ,Ωv 〉, x ∈ Bv . Thenωv is a GNS-faithful, but not faithful, state on Bv and the
GNS-space ofωv can canonically be identified with Hv . The reduced C∗-algebraic graph
product (BΓ,ωΓ) =∗min

v,Γ (Bv ,ωv ) gives then by construction a C∗-subalgebra B of B(HΓ).

We let λv : Bv → B be the canonical embedding. Furthermore we let ρv : B op
v → B op be

the map ρv (xop) = Jλv (x)∗ J . As for v ∈ Γ the von Neumann algebra Mv has strong prop-
erty (AO) by assumption (as Mv ∈ CVertex), there are unital C*-subalgebras Cv ⊆ Bv and
Av ⊆ Mv ∩Cv such that

1. The C∗-algebra Av are σ-weakly dense in Mv ,

2. The C∗-algebra Cv are nuclear,

3. The commutators [Cv , Jv Av Jv ] are contained in K(Hv ).
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As in [HI17, Remarks 2.7 (1)] we may and will moreover assume that K(Hv ) ⊆Cv . We let
(CΓ,ωΓ) =∗min

v,Γ (Cv ,ωv ) and (AΓ,ωΓ) =∗min
v,Γ (Av ,ωv ) be the reduced graph products of the

C*-algebras. Observe that we now have

AΓ ⊆ MΓ ⊆ BΓ and AΓ ⊆CΓ ⊆ BΓ,

and the states ωΓ defined through the different graph products coincide.

Lemma 5.5.7. CΓ is nuclear.

Proof. The vector Ωv is cyclic for Mv . Furthermore, Av is σ-weakly dense in Mv by as-
sumption and soΩv is also cyclic for Av . It follows that the GNS-representation πv of Cv

with respect to ωv is unitarily equivalent with the canonical representation given by the
inclusion Cv ⊆ B(Hv ), see [Con97, Theorem VIII.5.14 (b)]. We assumed that K(Hv ) ⊆Cv

and that Cv is nuclear and so we may apply Theorem 5.3.4 to conclude that CΓ is nu-
clear.

Definition 5.5.8. ForΛ⊆ Γwe define the C∗-algebra

DΛ =U ′
Λ(K(H ′(Λ))⊗B(HΛ))(U ′

Λ)∗.

The tensor product in the definition of DΛ is understood as the spatial (minimal) tensor
product, which is the norm closure of the algebraic tensors acting on the tensor product
Hilbert space. In particular D; = K(HΓ).

Lemma 5.5.9. Let v ∈ Γ. We have BΓDLink(v)BΓ ⊆ DLink(v).

Proof. We note that the proof we give here in particular also works if Link(v) is empty;
though in that case the statement trivially follows from the fact that D; = K(HΓ) is an
ideal in B(HΓ). Take x ∈ B(Hw ). Then if w ̸∈ Link(v) we have that H ′(Link(v)) is an
invariant subspace of x and

x =U ′
Link(v)(x ⊗1)U ′∗

Link(v). (5.21)

Now suppose that w ∈ Link(v). Let P be the orthogonal projection of H ′(Link(v)) onto
H ′(Link(v))∩HLink(w). Then

x =U ′
Link(v)(xP⊥⊗1)U ′∗

Link(v) +U ′
Link(v)(P ⊗x)U ′∗

Link(v). (5.22)

From the decompositions (5.21), (5.22) we see that xDLink(v),DLink(v)x ⊆ DLink(v). As BΓ
is the closed linear span of products of elements in B(Hw ), w ∈ Γ the proof follows.

Denote PΩ for the orthogonal projection onto CΩ.

Lemma 5.5.10. Let v, w ∈ Γ. Let a ∈ Bv , b ∈ Bw . Then

[a, Jb J ] =
{

U ′
Star(v)(PΩ⊗ [a, Jb J ])(U ′

Star(v))
∗, v = w ;

0, v ̸= w.
(5.23)
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Proof. If v ̸= w then the result follows from [CF17, Proposition 3.3]. Suppose v = w .
Let v1 ∈ W ′

Γ(Star(v)) and v2 ∈ WStar(v), and put v = v1v2. Let η1 ∈ H̊v1 , η2 ∈ H̊v2 be pure

tensors and denote η :=U ′
Star(v)(η1 ⊗η2) ∈ H̊v. We claim

aη=
{

U ′
Star(v)(η1 ⊗ (aη2)), if v1 = e;

U ′
Star(v)((aη1)⊗η2), if v1 ̸= e.

(5.24)

Indeed, if v1 = e then η1 =Ω and η= η2 up to scalar multiplication, so that U ′
Star(v)(η1 ⊗

(aη2)) = aη2 = aη. Thus suppose v1 ̸= e. Then it follows that vv1 ∈ W ′(Star(v)) since
v1 ∈W ′(Star(v)).

Suppose vv is reduced. Then also vv1 is reduced, and we have aη = λ(v,e,e)(a)η and
aη1 =λ(v,e,e)(a)η1. It follows from Lemma 3.1.8(3) that

aη=λ(v,e,e)(a)η

=Q(vv1,v2)((λ(v,e,e)(a)η1)⊗η2)

=Q(vv1,v2)((aη1)⊗η2),

and therefore, as vv1 ∈W ′(Star(v)) and v2 ∈WStar(v), we obtain aη=U ′
Star(v)((aη1)⊗η2).

Now, suppose vv is not reduced. Then also vv1 is not reduced as v1 ∈W ′(Star(v)) and
v1 ̸= e. We have aη=λ(e,v,e)(a)η+λ(e,e,v)(a)η and aη1 =λ(e,v,e)(a)η1+λ(e,e,v)(a)η1. Again,
using Lemma 3.1.8(3) we obtain

aη=λ(e,v,e)(a)η+λ(e,e,v)(a)η

=Q(v1,v2)((λ(e,v,e)(a)η1)⊗η2)+Q(vv1,v2)((λ(e,e,v)(a)η1)⊗η2).

And thus

aη=U ′
Star(v)(λ(e,v,e)(a)η1)⊗η2)+U ′

Star(v)(λ(e,e,v)(a)η1)⊗η2) =U ′
Star(v)((aη1)⊗η2)).

This shows (5.24).
We now claim that

Jb Jη=U ′
Star(v)(η1 ⊗ Jb Jη2). (5.25)

First, by [CF17, Proposition 2.20] we observe that Jη1 ∈ H̊v−1
1

, Jη2 ∈ H̊v−1
2

and Jη =
JQ(v1,v2)(η1 ⊗η2) =Q(v−1

2 ,v−1
1 )(Jη2 ⊗ Jη1) ∈ H̊v−1 . Furthermore, note that vv−1

2 = v−1
2 v and

vv2 ∈WStar(v).
Suppose that vv−1 is reduced. Then vv−1

2 is also reduced. Hence, similar as before
we obtain b Jη=Q(vv−1

2 ,v−1
1 )((b Jη2)⊗ Jη1). Hence

Jb Jη=Q(v1,vv2)(η1 ⊗ (Jb Jη2)) =U ′
Star(v)(η1 ⊗ (Jb Jη2)).

Now, suppose that vv−1 is not reduced. Then vv−1
2 is not reduced. Similar as before

we obtain

b Jη=Q(v−1
2 ,v−1

1 )((λ(e,v,e)(b)Jη2)⊗ Jη1)+Q(vv−1
2 ,v−1

1 )((λ(e,e,v)(b)Jη2)⊗ Jη1).
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Hence

Jb Jη=Q(v1,v2)(η1 ⊗ (λ(e,v,e)(b)Jη2))+Q(v1,vv2)(η1 ⊗ (λ(e,e,v)(b)Jη2))

=U ′
Star(v)(η1 ⊗ (Jλ(e,v,e)(b)Jη2))+U ′

Star(v)(η1 ⊗ (Jλ(e,e,v)(b)Jη2))

=U ′
Star(v)(η1 ⊗ (Jb Jη2)),

which shows (5.25). Now, combining (5.24) with (5.25) we obtain

[a, Jb J ]η=
{

U ′
Star(v)(η1 ⊗ ([a, Jb J ]η2)), if v1 = e;

0, if v1 ̸= e

and the statement follows.

Lemma 5.5.11. For v, w ∈ Γ,c ∈Cv , a ∈ Aw we have [c, Ja J ] ∈ DLink(v).

Proof. If v ̸= w it actually holds since by [CF17, Proposition 2.3] [c, Ja J ] = 0. So assume
v = w . Lemma 5.5.10 gives that

[c, Ja J ] =U ′
Star(v)(PΩ⊗ [c, Ja J ])(U ′

Star(v))
∗. (5.26)

In what follows we will use the decomposition of Section 2.4 applied to Link(v) as a sub-
graph of Star(v), opposed to Link(v) as a subgraph of Γ, and correspondingly define the
Hilbert space H ′(Link(v)) with respect to this inclusion. We thus have a natural unitary

U ′′
Link(v) : H ′

Star(v)(Link(v))⊗HLink(v) →HStar(v).

Further as v commutes with all vertices in Link(v) it follows that with respect to this
decomposition we have H ′

Star(v)(Link(v)) =Hv . So

U ′′
Link(v) : Hv ⊗HLink(v) →HStar(v).

For x ∈ B(Hv ) we get that
x =U ′′

Link(v)(x ⊗1)(U ′′
Link(v))

∗. (5.27)

Set the unitary

U ′′
v :=U ′

Star(v)(1⊗U ′′
Link(v)) : H ′

Γ(Star(v))⊗Hv ⊗HLink(v) →HΓ.

Combining (5.26) and (5.27) we have

[c, Ja J ] =U ′′
v (PΩ⊗ [c, Ja J ]⊗1)U ′′∗

v ,

where [c, Ja J ] on the left hand side acts on HΓ and on the right hand side on Hv . As we
assumed [c, Ja J ] ∈ K(Hv ) it follows that [c, Ja J ] is contained in

U ′′
v (K(H ′(Star(v)))⊗K(Hv )⊗1)U ′′∗

v =U ′
Link(v)(K(H ′(Link(v)))⊗1)U ′∗

Link(v) ⊆ DLink(v),

and thus the lemma is proved.
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Let Q ⊆ MΓ be an amenable von Neumann subalgebra. As explained in [OP04, p. 228]
there exists a conditional expectation ΨQ : B(HΓ) → Q ′ that is proper in the sense that
for any a ∈ B(HΓ) we have thatΨQ (a) is in the σ-weak closure of

Conv
{
uau∗ | u ∈U (Q)

}
,

where Conv denotes the convex hull.

Lemma 5.5.12. Let Q ⊆ MΓ be an amenable von Neumann subalgebra. If there is Λ ⊆ Γ
such that Q ̸≺MΓ MΛ, then DΛ is contained in kerΨQ .

Proof. Let p ∈ K(H ′(Λ)) be a finite rank projection. We first claim that

U ′
Λ(p ⊗1)U ′∗

Λ ∈ kerΨQ .

We prove this claim by contradiction so suppose that d :=ΨQ (U ′
Λ(p ⊗1)U ′∗

Λ ) ̸= 0. First
observe that for a ∈ MΛ we have

Ja J =U ′
Λ(1⊗ JΛa JΛ)U ′∗

Λ ,

where JΛ is the modular conjugation operator of MΛ acting on HΛ. It follows in partic-
ular that

(J MΛ J )′ =U ′
Λ(B(H ′(Λ))⊗̄MΛ)U ′∗

Λ .

Any u ∈ U(Q) commutes with M ′
Γ = J MΓ J and so certainly it commutes with J MΛ J .

As ΨQ is proper we find that d as defined above thus commutes with J MΛ J . Thus
d ∈ U ′

Λ(B(H ′(Λ))⊗̄MΛ)U ′∗
Λ . Let Tr the trace on B(H ′(Λ)) and let ΦΛ be the center val-

ued trace of MΛ onto Z(MΛ) = MΛ∩M ′
Λ. Using again thatΨQ is proper we find by lower

semi-continuity [Tak02, Theorem VII.11.1] that for any normal (necessarily tracial) state
τ on the center Z(MΛ) we have

(Tr⊗ (τ◦ΦΛ))(U ′∗
Λ dU ′

Λ) ≤ (Tr⊗ (τ◦ΦΛ))(p ⊗1) <∞.

Let e be a spectral projection of d corresponding to the interval [∥d∥/2,∥d∥]. Then

(Tr⊗ (τ◦ΦΛ))(U ′∗
Λ eU ′

Λ) ≤ 2(Tr⊗ (τ◦ΦΛ))(U ′∗
Λ dU ′

Λ) <∞.

Thus it follows that (Tr⊗ΦΛ)(U ′∗
Λ eU ′

Λ) <∞. Then K := eHΓ is a Q-MΛ sub-bimodule of
HΓ with dimMΛ (K ) <∞ and HΓ is the standard representation Hilbert space of MΓ. It
thus follows from Definition 2.1.2(3) that Q ≺MΓ MΛ. This contradicts the assumptions
and the claim is proved.

Taking linear spans and closures it thus follows from the previous paragraph that

U ′
Λ(K(H ′(Λ))⊗1)U ′∗

Λ ⊆ kerΨQ .

Using the multiplicative domain ofΨQ it follows then that

U ′
Λ(K(H ′(Λ))⊗B(HΛ))U ′∗

Λ ⊆ kerΨQ .

This concludes the proof.
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Lemma 5.5.13. Let Q ⊆ MΓ be an amenable von Neumann subalgebra. Assume that for
every v ∈ Γwe have Q ̸≺MΓ MLink(v). Then we have [CΓ, J AΓ J ] ⊆ ker(ΨQ ).

Proof. The commutator [CΓ, J Av J ] is contained in the closed linear span of the sets

CΓ[Cw , J Av J ]CΓ, v, w ∈ Γ.

We have, as CΓ ⊆ BΓ, by Lemma 5.5.11 and Lemma 5.5.9 that

CΓ[Cw , J Av J ]CΓ ⊆ BΓDLink(v)BΓ ⊆ DLink(v).

By Lemma 5.5.12 we see that DLink(v), v ∈ Γ is contained in the kernel of ΨQ . We thus
conclude that [CΓ, J Av J ] is contained in kerΨQ .

Now [CΓ, J AΓ J ] is contained in the closed linear span of the sets

J AΓ J [CΓ, J Av J ]J AΓ J , v ∈ Γ.

Note J AΓ J is contained in M ′
Γ so certainly in Q ′. As ΨQ is a Q ′-bimodule map it follows

that J AΓ J [CΓ, J Av J ]J AΓ J is contained in kerΨQ . This finishes the proof.

Lemma 5.5.14. Let Q ⊆ MΓ be an amenable von Neumann subalgebra. Assume that for
every v ∈ Γwe have Q ̸≺MΓ MLink(v). The map

Θ : AΓ⊗ J AΓ J → B(HΓ)

a ⊗ Jb J 7→ΨQ (a Jb J ).
(5.28)

is continuous with respect to the minimal tensor norm.

Proof. Observe that ΨQ is a Q ′-bimodule map and we have J AΓ J ⊆ M ′
Γ ⊆ Q ′. It thus

follows from Lemma 5.5.13 that for x ∈CΓ and y ∈ J AΓ J we have

ΨQ (x)y =ΨQ (x y) =ΨQ (y x + [x, y]) =ΨQ (y x) = yΨQ (x).

SoΨQ (CΓ) ⊆ (J AΓ J )′ = MΓ. Now consider the composition of maps, see [BO08, Theorem
3.3.7 and 3.5.3],

Θ̃ : CΓ⊗max J AΓ J →ΨQ⊗Id MΓ⊗max J AΓ J →m B(H ),

where m is the multiplication map. Note that CΓ is nuclear by Lemma 5.5.7. Thus CΓ⊗max

J AΓ J =CΓ⊗min J AΓ J . Then the restriction of Θ̃ to AΓ⊗min J AΓ J gives the mapΘ.

Theorem 5.5.15. Let Γ be a finite simple graph. Let (MΓ,τ) = ∗v,Γ(Mv ,τv ) be a graph
product of finite von Neumann algebras Mv ( ̸= C) that satisfy condition strong (AO) and
have separable preduals. Let Q ⊆ MΓ be a diffuse von Neumann subalgebra. At least one
of the following holds:

1. The relative commutant Q ′∩MΓ is amenable;

2. There exists a non-empty Γ0 ⊆ Γ such that Link(Γ0) ̸= ; and Q ≺MΓ MΓ0 .
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Proof. We first show we can reduce it to the case that Q is amenable. Indeed, suppose
we have proven that every amenable diffuse subalgebra Q0 ⊆ MΓ satisfies (1) or (2). Let
Q ⊆ MΓ be an arbitrary diffuse subalgebra. Then by [HI17, Corollary 4.7] there is an
amenable diffuse von Neumann subalgebra Q0 ⊆ Q such that for subgraphs Λ ⊆ Γ we
have Q0 ̸≺MΓ MΛ whenever Q ̸≺MΓ MΛ. If Q does not satisy (2), then neither does Q0.
Hence Q0 satisfies (1), so Q ′

0 ∩ MΓ is amenable. Hence also the subalgebra Q ′ ∩ MΓ ⊆
Q ′

0 ∩MΓ is amenable, i.e. Q satisfies (1), which shows the reduction.
We now prove the statement with the notation introduced in this section. Assume

(2) does not hold and we shall prove (1). By assumption for Λ ⊆ Γ with Link(Λ) ̸= ; we
have Q ̸≺MΓ MΛ. In particular we have for all v ∈ Γ with Link(v) non-empty that v is
contained in Link(Link(v)) and so Q ̸≺MΓ MLink(v). If Link(v) is empty then MLink(v) = C
and so Q ̸≺MΓ MLink(v) as Q is diffuse. It follows now from Lemma 5.5.14 that Θ defined
in (5.28) is bounded for the minimal tensor norm.

Each Av is exact being included in the nuclear C∗-algebra Cv . Therefore the C∗-
algebra AΓ is exact by [CF17, Corollary 3.17]. Furthermore, the inclusions AΓ ⊆ MΓ and
J AΓ J ⊆ M ′

Γ are σ-weakly dense.
The conclusions of the previous two paragraphs show that the assumptions of [Oza06,

Lemma 2.1] are satisfied and this lemma concludes that Q ′∩MΓ is amenable.

5.5.3. UNIQUE RIGID GRAPH PRODUCT DECOMPOSITION
We will prove our main result Theorem 5.5.19 which asserts for a graph product MΓ =
∗v,Γ(Mv ,τv ) ∈CRigid with Mv ∈CVertex that we can retrieve the rigid graph Γ and retrieve
the vertex von Neumann algebras Mv up to stable isomorphism. To prove the result we
need the following lemmas.

Lemma 5.5.16 (Lemma 3.5 of [Vae08]). If A ⊆ 1A M1A ,B ⊆ 1B M1B are von Neumann
subalgebras and A ≺M B, then B ′∩1B M1B ≺M A′∩1A M1A .

Lemma 5.5.17 ( Lemma 2.4 in [DHI19], see also [Vae08]). Let (M ,τ) be a tracial von Neu-
mann algebra and let P ⊆ 1P M1P , Q ⊆ 1Q M1Q and R ⊆ 1R M1R be von Neumann subal-
gebras. Then the following hold:

1. Assume that P ≺M Q and Q ≺s
M R. Then P ≺M R;

2. Assume that, for any non-zero projection z ∈ Nor1P M1P (P )′∩1P M1P ⊆ Z(P ′∩1P M1P ),
we have P z ≺M Q. Then P ≺s

M Q.

In particular, we note that if Q ′∩1Q M1Q is a factor and P ≺M Q and Q ≺M R then P ≺M R.

Lemma 5.5.18. Let Γ be a finite graph. For v ∈ Γ, let Mv , Nv be II1-factors and put MΓ =
∗v,Γ(Mv ,τv ) and NΓ =∗v,Γ(Nv , τ̃v ). Suppose ι : NΓ→ MΓ is a ∗-isomorphism and for v ∈ Γ
we have

ι(Nv ) ≺MΓ Mv and Mv ≺MΓ ι(Nv ).

Then the following holds true:

1. For v ∈ Γ there is a unitary uv ∈ MΓ such that u∗
v ι(NStar(v))uv = MStar(v).
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2. LetΛ0 ⊆Λ⊆ Γ be subgraphs with ι(NΛ) = MΛ. Then ι(NΛ∪LinkΓ(Λ0)) = MΛ∪LinkΓ(Λ0).

3. Let P = (v1, . . . , vn) be a path in Γ and denote Γ0 := ⋃n
i=1 Star(vi ). If there exist 1 ≤

j ≤ n and a subgraphΛ⊆ Γ0 such that v j ∈Λ and ι(NΛ) = MΛ, then ι(NΓ0 ) = MΓ0 .

4. Let Γ0 be a connected component of Γ. If there is a non-empty subgraphΛ⊆ Γ0 with
ι(NΛ) = MΛ then ι(NΓ0 ) = MΓ0 .

Proof. (1) As ι(Nv ) ≺MΓ Mv and ι(Nv ) ̸≺MΓ M; (since Nv diffuse), and since ι(Nv ) and
ι(Nv )′∩MΓ (= ι(NLink(v))) are factors, we obtain by Theorem 5.4.16 a unitary uv ∈ MΓ such
that u∗

v ι(Nv )uv ⊆ MStar(v). By assumption Mv ≺MΓ ι(Nv ) so that Mv ≺MΓ u∗
v ι(Nv )uv . If

u∗
v ι(Nv )uv ≺MΓ MLink(v) then u∗

v ι(Nv )uv ≺s
MΓ

MLink(v) by Lemma 5.5.17 (2), since M ′
v∩MΓ

is a factor. Consequently, by Lemma 5.5.17 (1) we obtain Mv ≺MΓ MLink(v), which gives
a contradiction by Proposition 5.4.14. We conclude that u∗

v ι(Nv )uv ̸≺MΓ MLink(v). Now,
since u∗

v ι(Nv )uv ⊆ MStar(v) and u∗
v ι(Nv )uv ̸≺MΓ MLink(v) we have by Proposition 5.4.13(1b)

that NorMΓ (u∗
v ι(Nv )uv ) ⊆ MStar(v), hence u∗

v ι(NStar(v))uv ⊆ MStar(v).
By symmetry there is also a unitary ũv ∈ MΓ such that ũ∗

v MStar(v)ũv ⊆ ι(NStar(v)).
Hence

u∗
v ũ∗

v MStar(v)ũv uv ⊆ u∗
v ι(NStar(v))uv ⊆ MStar(v). (5.29)

Hence, since MStar(v) ̸≺MΓ MΛ̃ for any strict subgraph Λ̃⊊ Star(v) we obtain by Proposi-
tion 5.4.13(1c) that ũv uv ∈ MStar(v). From this we conclude that the inclusions in (5.29)
are in fact equalities so u∗

v ι(NStar(v))uv = MStar(v).
(2) Let Λ0 ⊆ Λ be a subgraph. Then ι(NΛ0 ) ⊆ ι(NΛ) = MΛ and by the assumptions

ι(NΛ0 ) ̸≺MΓ MΛ̃ for any strict subgraph Λ̃⊊Λ0. Hence, by Proposition 5.4.13(1b) we ob-
tain that ι(NLink(Λ0)) ⊆ NorMΓ (ι(NΛ0 ))′′ ⊆ MΛ∪Link(Λ0). Thus ι(NΛ∪Link(Λ0 ) ⊆ MΛ∪Link(Λ0).
By symmetry we also obtain that MΛ∪Link(Λ0) ⊆ ι(NΛ∪Link(Λ0)) so we get the equality.

(3) As v j ∈Λ and ι(NΛ) = MΛ, using (2) we obtain that ι(NΛ∪Star(v j )) = ι(NΛ∪Link(v j )) =
MΛ∪Link(v j ) = MΛ∪Star(v j ). Now for 1 ≤ i ≤ n with |i − j | = 1 we have vi ∈ Λ∪ Star(v j ).
Hence, applying (2) again we obtain ι(NΛ∪Star(v j )∪Star(vi )) = MΛ∪Star(v j )∪Star(vi ). Repeating
the same argument at most n times we obtain ι(NΓ0 ) = MΓ0 .

(4) Let P = (v1, . . . , vn) be a path in Γ traversing all vertices in Γ0. Then Γ0 is equal to⋃n
i=1 Star(vi ). Now since Λ ⊆ Γ0 is non-empty, we can choose 1 ≤ j ≤ n s.t. v j ∈Λ. Now

by (3) we obtain ι(NΓ0 ) = MΓ0 .

Theorem 5.5.19. Let Γ be a finite rigid graph. For v ∈ Γ, let Mv be von Neumann algebras
in the class CVertex. Let MΓ = ∗v,Γ(Mv ,τv ). Suppose MΓ = ∗w,Λ(Nw ,τw ) for another finite
rigid graph Λ and other von Neumann algebras Nw ∈ CVertex for w ∈ Λ. Then there is a
graph isomorphism α : Γ→ Λ, and for each v ∈ Γ there is a unitary uv ∈ MΓ and a real
number 0 < tv <∞ such that

MStar(v) = u∗
v NStar(α(v))uv and Mv ≃ N tv

α(v). (5.30)

Furthermore, for each v ∈ Γ its connected component Γv ⊆ Γ satisfies MΓv = u∗
v Nα(Γv )uv .

Proof. First we construct the graph isomorphism α. Take v ∈ Γ. As the vertex von Neu-
mann algebras are factors we have

M ′
Link(v) ∩M = MLink(Link(v)) = Mv .
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In particular M ′
Link(v)∩M is non-amenable. Therefore Theorem 5.5.15 implies that there

existsΛ0 ⊆Λ such that MLink(v) ≺NΓ NΛ0 and Link(Λ0) ̸= ;. Thus taking relative commu-
tants (Lemma 5.5.16) we find that NLink(Λ0) ≺MΓ Mv .

So we have shown that for every v ∈ Γ there exists a subgraph α(v) ⊆Λ that occurs as
the link of a set such that Nα(v) ≺MΓ Mv . Conversely, by symmetry, for every w ∈Λ there
exists β(w) ⊆ Γ that occurs as the link of a set such that Mβ(w) ≺MΓ Nv .

Let again v ∈ Γ. Then for any w ∈ α(v) we have Nw ≺MΓ Mv and consequently as
N ′

w ∩MΓ is a factor Nw ≺s
MΓ

Mv , see Lemma 5.5.17(2). Therefore, by transitivity of stable

embeddings, i.e. Lemma 5.5.17(1), we find Mβ(w) ≺MΓ Mv . Hence for any v ′ ∈ β(w) we
have Mv ′ ≺MΓ Mv . But then by Proposition 5.4.14 we see that v ′ = v . Hence β(w) = v
for any w ∈α(v) and in particular is a singleton set. So we have proved that for v ∈ Γ we
have β(α(v)) :=⋃

w∈α(v)β(w) = v and by symmetry for w ∈Λ we have α(β(w)) = w . But
this can only happen if the values of α and β are singletons and α and β are inverses of
each other.

If v ∈ Γ then we know that Nα(v) ≺MΓ Mv and Mv ≺MΓ Nα(v). Taking relative commu-
tants, using again factoriality of the vertex von Neumann algebras, we find

MLink(v) ≺MΓ NLink(α(v)), NLink(α(v)) ≺MΓ MLink(v).

Now take v ′ ∈ Link(v) so that the first of these embeddings gives Mv ′ ≺MΓ NLink(α(v)),
hence Mv ′ ≺s

MΓ
NLink(α(v)) by Lemma 5.5.17(2). Then again by Lemma 5.5.17(1) we ob-

tain Nα(v ′) ≺NΓ NLink(α(v)). This then implies by Proposition 5.4.14 thatα(v ′) ∈ Link(α(v)).
So we conclude that α preserves edges. Similarly β preserves edges, and it follows that
α : Γ→Λ is a graph isomorphism.

Since Γ≃Λ we obtain by Lemma 5.5.18(1) that for each v ∈ Γ there is a unitary uv ∈
MΓ such that u∗

v NStar(α(v))uv = MStar(v). Consider the ∗-isomorphism ιv := Adu∗
v

: NΓ →
MΓ which satisfies ιv (NStar(α(v))) = MStar(v). Then by Lemma 5.5.18(4) we obtain for the
connected component Γv ⊆ Γ of v that u∗

v NΓv uv = ιv (NΓv ) = MΓv .
We show the isomorphism of vertex von Neumann algebras up to amplification. Let

w ∈ Γ. Since ιw (NStar(α(w))) = MStar(w) and since ιw (NLink(α(w)))
′∩MStar(w) = ιw (Nα(w)) is

non-amenable, we obtain by Theorem 5.5.15 that ιw (NLink(α(w))) ≺MStar(w) MΓ1 for some
subgraph Γ1 ⊆ Star(w) with LinkStar(w)(Γ1) ̸= ;. Thus, by Lemma 5.5.16 we obtain that
MLink(Γ1) ≺MStar(w) ιw (Nα(w)). Let v ∈ Link(Γ1) (which is non-empty). Then Mv ≺MStar(w)

ιw (Nα(w)) and, as before, ιw (Nα(w)) ≺s
MΓ

Mw . Hence Mv ≺MΓ Mw and so v = w by Propo-
sition 5.4.14. Therefore Mw ≺MStar(w) ιw (Nα(w)). Analogously, ιw (Nα(w)) ≺MStar(w) Mw .

Since we are dealing with II1-factors these embeddings are also with expectation, i.e.
ιw (Nα(w)) ⪯MStar(w) Mw as in [HI17, Definition 4.1]. Thus, since MStar(w) = Mw⊗MLink(w)

we obtain by [HI17, Lemma 4.13] non-zero projections pw , qw ∈ MStar(w), a partial isom-
etry vw ∈ MStar(v) with v∗

w vw = pw and vw v∗
w = qw and a subfactor Pw ⊆ qw ιw (Nα(w))qw

so that

qw ιw (Nα(w))qw = vw Mw v∗
w⊗Pw , vw MLink(w)v∗

w = Pw⊗qw ιw (NLink(α(w)))qw .

Since Nw is prime, so is qw ιw (Nα(w))qw . Hence, as vw Mw v∗
w is a II1-factor, we obtain

that Pw is a factor of type In for some n ∈ N. We conclude that Nα(w) is isomorphic to
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some amplification of Mw .

We state two corollaries that follow from Theorem 5.5.19. The following result tells
us when a rigid graph product MΓ can decompose as graph product over another rigid
graphΛ.

Corollary 5.5.20. Let Γ,Λ be finite rigid graphs. Let MΓ =∗v,Γ(Mv ,τv ) be the graph prod-
uct of factors Mv ∈CVertex. The following are equivalent:

1. We can write Γ=∗w,ΛΓw for some non-empty graphs Γw , w ∈Λ;

2. We can write MΓ =∗w,Λ(Mw ,τw ) for some factors Mw ∈CRigid, w ∈Λ.

Proof. Suppose we can write Γ=∗w,ΛΓw for non-empty graphs Γw for w ∈Λ. Note that
Γw is rigid by Lemma 5.2.5. Now by Remark 5.2.4 we have MΓ = ∗w,Λ(Mw ,τw ) where
Mw := MΓw ∈CRigid.

For the other direction, suppose MΓ =∗w,Λ(Mw ,τw ) for some Mw ∈CRigid for w ∈Λ.
Then there are non-empty, finite rigid graphs Γw and factors Nv ∈CVertex for v ∈ Γw such
that Mw =∗v,Γw (Nv ,τv ) for w ∈ Γ. Hence, by Remark 5.2.4 we obtain MΓ =∗v,ΓΛ (Nv ,τv ).
Since ΓΛ is rigid by Lemma 5.2.5, we obtain by Theorem 5.5.19 that Γ≃ ΓΛ =∗w,ΛΓw .

The following corollary states a unique prime factorization for the class CComplete.
This result recovers the result of [HI17] for a slightly smaller class.

Corollary 5.5.21. Any von Neumann algebra M ∈ CComplete can decompose as tensor
product

M = M1⊗·· ·⊗Mm (5.31)

for some m ≥ 1 and prime factors M1, . . . , Mm ∈CVertex.
Furthermore, suppose M ≃ N for

N = N1⊗·· ·⊗Nn , (5.32)

where n ≥ 1, and N1, . . . , Nn ∈ CVertex are other prime factors. Then n = m and there is a
permutation α of {1, . . . ,m} such that Mi is isomorphic to an amplification of Nα(i ).

Proof. Since M ∈ CComplete, there is a non-empty finite complete graph Γ and factors

Mv ∈ CVertex for v ∈ Γ such that M = ∗v,Γ(Mv ,τv ). Hence M = ⊗
v∈ΓMv since Γ is com-

plete. Moreover, for each v ∈ Γ the factor Mv is prime by Remark 5.5.5(1). This shows
(5.31) with m = |Γ|. For each 1 ≤ i ≤ n we have Ni ∈ CVertex since it is prime. Let Λ be
a complete graph with n vertices. Then N = ⊗

1≤i≤n Ni = ∗v,Λ(Ni ,τi ). Since Γ and Λ
are rigid we obtain by Theorem 5.5.19 a graph isomorphism α : Γ→ Λ such that Mi is
isomorphic to an amplification of Nα(i ). In particular, n = |Λ| = |Γ| = m.
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5.6. CLASSIFICATION OF STRONG SOLIDITY FOR GRAPH PROD-
UCTS

We state the definition of strong solidity. We recall the assumption that inclusions of von
Neumann algebras are understood as unital inclusions.

Definition 5.6.1. A von Neumann algebra M is called strongly solid if for any diffuse,
amenable, von Neumann subalgebra A ⊆ M, NorM (A)′′ is also amenable.

Remark 5.6.2. Note that a tracial von Neumann algebra that is not diffuse must be strongly
solid as it contains no diffuse unital subalgebras at all.

In Section 5.6.1 we characterize strong solidity for graph products MΓ of tracial von
Neumann algebras (Mv ,τv ). In Section 5.6.2 we then show that for many concrete cases
this makes it possible to verify whether the graph product is strongly solid.

5.6.1. STRONG SOLIDITY MAIN RESULT
We proof the main result Theorem 5.6.7. which characterizes strong solidity for graph
products. We use the following result concerning amalgamated free products.

Theorem 5.6.3 (Theorem A of [Vae14]). Let (N1,τ1),(N2,τ2) be tracial von Neumann al-
gebras with a common von Neumann subalgebra B ⊆ Ni satisfying τ1|B = τ2|B , and de-
note N := N1∗B N2 for their amalgamated free product. Let A ⊆ 1A N 1A be a von Neumann
algebra that is amenable relative to N1 or N2 inside N . Put P = Nor1A N 1A (A)′′. Then at
least one of the following is true:

1. A ≺N B;

2. P ≺N Ni for some i = 1,2;

3. P is amenable relative to B inside N .

Furthermore, we use the following results that are rather standard.

Proposition 5.6.4. Let N ⊆ M be a von Neumann subalgebra and assume N is strongly
solid. Let A ⊆ M be a diffuse amenable von Neumann subalgebra and P = NorM (A)′′ and
z ∈ P ∩P ′ be a non-zero projection. Assume that zP ≺M N . Then zP has an amenable
direct summand.

Proof. We follow [Vae14, Proof of Corollary C]. As zP ≺M N , using the characteriza-
tion [Vae08, Theorem 3.2.2], (following [Pop06c]), there exists a non-zero projection p ∈
Mn(C)⊗N and a normal unital ∗-homomorphismϕ : zP → p(Mn(C)⊗N )p. Soϕ(Az) is a
diffuse amenable von Neumann subalgebra of Mn(C)⊗N and P̃ = Norp(Mn (C)⊗N )p (ϕ(Az))′′
contains ϕ(P z). As N is strongly solid, so is its amplification p(Mn(C)⊗ N )p [Hou10,
Proposition 5.2] and hence P̃ is amenable. So ϕ(P z) is amenable and therefore P z con-
tains an amenable direct summand.

Recall that a von Neumann algebra M is atomic if any projection in M majorizes
a minimal projection. If M is atomic it is a direct sum of type I factors. We state the
following proposition.
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Proposition 5.6.5. Let N = N1⊗N2 be a tensor product of finite von Neumann algebras
N1, N2. The following statements hold:

1. Suppose N1 is non-amenable and diffuse and N is strongly solid. Then N2 is atomic;

2. Suppose N1 is non-amenable and N2 is diffuse. Then N is not strongly solid;

3. Suppose N1 is strongly solid and diffuse and N2 is atomic. Then N is strongly solid.

Proof. (1) Write N2 = Nc ⊕ Nd with Nc either 0 or a diffuse von Neumann algebra and
Nd an atomic von Neumann algebra. Assume Nc ̸= 0. Let A ⊆ Nc ,B ⊆ N1 be diffuse
amenable von Neumann subalgebras. Then C := C1N1⊗A ⊕B⊗C1Nd ⊆ N is diffuse and
amenable. Furthermore, NorN (C )′′ contains N1⊗A ⊕B⊗C1Nd which is non-amenable.
This contradicts that N is strongly solid and we conclude that Nc = 0.

(2) Take any diffuse amenable subalgebra A ⊆ N2, for instance we may take A to be
a maximal abelian subalgebra. Then C1N1⊗A is a diffuse amenable subalgebra of N and
NorN (C1N1⊗A)′′ contains N1⊗A which is non-amenable. Hence N is not strongly solid.

(3) As N2 is atomic we may identify N2 with
⊕

α∈I Matnα (C) where I is some index set
and nα ∈N≥1. Let 1α be the unit of Matnα (C). Let A ⊆ N1⊗N2 be a diffuse amenable von
Neumann subalgebra. Then 1αA ⊆ N1⊗Matnα (C). So NorN1⊗Matnα (C)(1αA)′′ is amenable
by [Hou10, Proposition 5.2] since N1 is strong solid and diffuse. Since

NorN (A)′′ =⊕
α∈I

NorN1⊗Matnα (C)(1αA)′′

and direct sums of amenable von Neumann algebras are amenable we conclude that
NorN (A)′′ is amenable. It follows that N is strongly solid.

We classify atomicity for graph products.

Proposition 5.6.6. Let (MΓ,τΓ) =∗v,Γ(Mv ,τv ) be a graph product of tracial von Neumann
algebras over a finite graph Γ. Then MΓ is atomic if and only if Γ is complete and each Mv

is atomic.

Proof. Any subalgebra of an atomic von Neumann algebra is atomic again. It follows that
each Mv is atomic. If Γ would not be complete then we may pick v, w ∈ Γ not sharing
an edge and (Mv ,τv )∗ (Mw ,τw ) ⊆ MΓ. However, (Mv ,τv )∗ (Mw ,τw ) is not atomic by
[Ued11]. So Γ is complete. Conversely if Γ is complete and each Mv is atomic then
M =⊗

v∈ΓMv is atomic.

We now classify strong solidity for graph products in terms of conditions on sub-
graphs. These conditions can be verified in most cases (see Proposition 5.6.6, Proposi-
tion 5.6.8, Proposition 5.6.9 and Theorem 5.6.12).

Theorem 5.6.7. Let Γ be a finite graph and for each v ∈ Γ let Mv ( ̸=C) be a von Neumann
algebra with normal faithful trace τv . Then MΓ is strongly solid if and only if the following
conditions are satisfied:

1. For every vertex v ∈ Γ the von Neumann algebra Mv is strongly solid;
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2. For every subgraph Λ⊆ Γwith MΛ non-amenable, we have that MLink(Λ) is not dif-
fuse;

3. For every subgraph Λ ⊆ Γ with MΛ non-amenable and diffuse, we have moreover
that MLink(Λ) is atomic.

Proof. Suppose MΓ is strongly solid, we show that conditions (1), (2) and (3) are satis-
fied. Since strong solidity passes to subalgebras, as follows from its very definition, we
obtain that (1) is satisfied. Furthermore, suppose Γ0 ⊆ Γ is a subgraph for which MΓ0

is non-amenable. We have MΓ0∪Link(Γ0) = MΓ0⊗MLink(Γ0) which is strongly solid being a
von Neumann subalgebra of MΓ. Hence, Proposition 5.6.5(2) shows that MLink(Γ0) can-
not be diffuse. This concludes (2). If MΓ0 is diffuse then Proposition 5.6.5(1) shows that
MLink(Γ0) is atomic. This concludes (3).

We now show the reverse direction. The proof is based on induction to the number of
vertices of the graph. The statement clearly holds when Γ=; since in that case MΓ = C
is strongly solid.

Induction. Let Γ be a non-empty graph, and assume by induction that Theorem 5.6.7 is
proved for any strictly smaller subgraph of Γ, i.e. with less vertices. Assume conditions
(1), (2) and (3) are satisfied for Γ. Observe that condition (1), (2) and (3) are then satisfied
for all subgraphs of Γ as well. Hence by the induction hypothesis we obtain that MΓ0

is strongly solid for all strict subgraphs Γ0 ⊊ Γ. We shall show that MΓ is strongly solid.
Let A ⊆ M be diffuse and amenable and denote P = NorM (A)′′. We will show that P is
amenable.

Suppose there is v ∈ Γ with Star(v) = Γ. Then we can decompose the graph product
as MΓ = Mv⊗MΓ\{v}. Now Mv is strongly solid by condition (1), and MΓ\{v} is strongly
solid by the induction hypothesis as Γ \ {v} ⊊ Γ is a strict subgraph. When both Mv and
MΓ\{v} are amenable then MΓ = Mv⊗MΓ\{v} is also amenable, and hence MΓ is strongly
solid. We can thus assume that Mv or MΓ\{v} is non-amenable. If Mv is non-amenable
we need to separate two cases.

• If Mv is non-amenable and not diffuse then by condition (2) neither MΓ\{v} is dif-
fuse and hence neither is MΓ = Mv⊗MΓ\{v}. Then certainly MΓ is strongly solid by
the absence of (unital) diffuse subalgebras.

• If Mv is non-amenable and diffuse then by condition (3) we obtain that MLink(v)

(= MΓ\{v}) is atomic, so that by Proposition 5.6.5(3) we have MΓ = MLink(v)⊗Mv is
strongly solid.

The case when MΓ\{v} is non-amenable can be treated in the same way by swapping
the roles of Mv and MΓ\{v} in the previous argument. We summarize that our proof is
complete in case there is v ∈ Γwith Star(v) = Γ.

Now we assume that for all v ∈ Γ we have Star(v) ̸= Γ. Pick v ∈ Γ and set Γ1 := Star(v)
and Γ2 := Γ\ {v}. By Theorem 2.4.3 we can decompose MΓ = MΓ1 ∗MΓ1∩Γ2

MΓ2 . Moreover,
as Γ1, Γ2 and Γ1∩Γ2 are strict subgraphs of Γwe obtain by our induction hypothesis that
MΓ1 , MΓ2 and MΓ1∩Γ2 are strongly solid.
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Let z ∈ P ∩P ′ be a central projection such that zP has no amenable direct summand.
Note that zP ⊆ NorzMΓz (z A)′′. As z A is amenable, it is amenable relative to MΓ1 in MΓ.
Therefore by Theorem 5.6.3 at least one of the following three holds.

1. z A ≺MΓ MΓ1∩Γ2 ;

2. There is i ∈ {1,2} such that zP ≺MΓ MΓi ;

3. zP is amenable relative to MΓ1∩Γ2 inside MΓ.

We now analyse each of the cases.

Case (2). In Case (2) we have that Proposition 5.6.4 together with the induction hypothe-
sis shows that zP has an amenable direct summand in case z ̸= 0. This is a contradiction
so we conclude z = 0 and hence P is amenable.

Case (1). In Case (1), since z A ≺MΓ MΓ1∩Γ2 but z A ̸≺MΓ C = M;, there is a subgraph
Λ ⊆ Γ1 ∩Γ2 such that z A ≺MΓ MΛ but z A ̸≺MΓ MΛ̃ for any strict subgraph Λ̃ ⊆ Λ. Put
Λemb := Λ∪ Link(Λ). Observe that Λemb contains at least v and Λ. Furthermore, by
Proposition 5.4.13(2) we obtain that zP ≺MΓ MΛemb . If Λemb ̸= Γ then MΛemb is strongly
solid by the induction hypothesis. Therefore, in case z ̸= 0 we obtain by Proposition 5.6.4
that zP has an amenable direct summand, which is a contradiction. Thus z = 0, and P is
amenable. Hence MΓ is strongly solid.

We can thus assume thatΛemb = Γ. Suppose MΛ is non-amenable. Again we separate
two cases:

• Assume that MΛ is non-amenable and diffuse. Then by condition (3) we have that
MLink(Λ) is atomic and by Proposition 5.6.6 we see that Link(Λ) must be complete.
But as v ∈ Link(Λ) this implies that Link(Λ) ⊆ Star(v) = Γ1 and thus Λemb ⊆ Γ1.
Therefore Λemb is a strict subgraph of Γ, a contradiction. So this case does not
occur;

• Assume that MΛ is non-amenable and not diffuse. Then by (2) MLink(Λ) is not dif-
fuse either. As MΓ = MΛ⊗MLink(Λ) we find that MΓ is not diffuse and thus strongly
solid by absence of diffuse (unital) subalgebras.

Next suppose MLink(Λ) is non-amenable. Again we separate two cases:

• Assume that MLink(Λ) is non-amenable and diffuse. Then MLink(Link(Λ)) = MΛ is
atomic by (3). But then z A ≺MΓ MΛ with z A diffuse leads to a contradiction;

• Assume that MLink(Λ) is non-amenable and not diffuse. Then by (2) also MΛ is not
diffuse and so MΓ = MΛ⊗MLink(Λ) is not diffuse and thus strongly solid.

So we are left with the case that MΛ and MLink(Λ) are amenable. In this case, MΓ =
MΛemb = MΛ⊗MLink(Λ) is amenable and hence MΓ is strongly solid.

Remainder of the proof of the main theorem in the situation that Case (1) and Case (2)
never occur. We first recall that if we can find a single vertex v as above such that we are
in case (1) or (2) then the proof is finished. Otherwise for any vertex v ∈ Γ we are in case
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(3). So zP is amenable relative to MLink(v) inside MΓ. As
⋂

v∈ΓLink(v) ⊆⋂
v∈ΓΓ\{v} =;we

obtain by iteratively using Theorem 5.4.8 that zP is amenable relative to
⋂

v∈V MLink(v) =
C, that is zP is amenable. So z = 0 and we conclude again that P is amenable.

5.6.2. CLASSIFYING STRONG SOLIDITY IN SPECIFIC CASES
We show that in many concrete cases that one can verify whether or not a graph prod-
uct MΓ is strongly solid. Theorem 5.6.7 tells us how to decide whether MΓ is strongly
solid. For this we need to know for each vertex v whether or not Mv is strongly solid.
Furthermore, we need to know for each subgraph Λ ⊆ Γ whether of not MΛ is atomic,
diffuse, or non-amenable. We observe that in concrete cases we can verify whether MΛ

is diffuse, atomic or non-amenable. Indeed, atomicity is classified in Proposition 5.6.6.
Furthermore, amenability was classifed in [Cha+24]. Moreover, in [Cha+24] diffuseness
was classified under the condition that each vertex algebra Mv contains a unitary ele-
ment of trace 0, i.e. a Haar unitary. This in particular applies to the case where Mv is
either diffuse or a group von Neumann algebra. We state these results here.

Proposition 5.6.8 (Proposition 6.3 of [Cha+24]). Let Γ be a simple graph. For v ∈ Γ let Mv

( ̸= C) be a von Neumann algebra with normal faithful state ϕv . Then the graph product
MΓ =∗v,Γ(Mv ,ϕv ) is amenable if and only if the following conditions hold:

1. Each vertex von Neumann algebra Mv , v ∈ Γ is amenable;

2. If v ̸= w ∈ Γ share no edge, then dim Mv = dim Mw = 2 and Link({v, w}) = Γ\ {v, w}.

Proposition 5.6.9 (Theorem E of [Cha+24]). Let (MΓ,τΓ) =∗v,Γ(Mv ,τv ) be a graph prod-
uct of tracial von Neumann algebras over a finite graph Γ. Assume that each Mv , v ∈ Γ
contains a unitary uv with τv (uv ) = 0. Then MΓ is diffuse if either (a) there is v ∈ Γ with
Mv diffuse; (b) Γ is not a complete graph.

In case not every vertex von Neumann algebra contain a unitary of trace 0 the situa-
tion becomes more subtle and the analysis becomes significantly more intricate. How-
ever, if the vertex von Neumann algebras are 2-dimensional then the results in [Gar16],
[RS23], [CKL21] again yield a classification of diffuseness (and amenability) of graph
products.

Definition 5.6.10. Suppose that Mv,qv , qv ∈ (0,1] is the 2-dimensional Hecke algebra which
is the ∗-algebra spanned by the unit 1v and an element Tv,qv satisfying the Hecke relation

(Tv,qv −q
1
2
v )(Tv,qv +q

− 1
2

v ) = 0, T ∗
v,qv

= Tv,qv .

Define the tracial state τv by setting τv (Tv,qv ) = 0 and τv (1v ) = 1. For a finite graph Γ
and q := (qv )v∈Γ ∈ (0,1]Γ we let MΓ,q =∗v,Γ(Mv ,τv,qv ) be the graph product von Neumann
algebra which is called the right-angled Hecke von Neumann algebra.

Remark 5.6.11. Note that (Mv,qv ,τv ) is isomorphic to C2 with tracial state τα(x ⊕ y) :=
αx + (1−α)y with α= 1

2

(
1+

√
1− 4

pv (q)2+4

)
where pv (q) := qv−1p

qv
∈ (−∞,0]. Hence a gen-

eral 2-dimensional von Neumann algebra with a (necessarily tracial) faithful state is of
the form (Mv,qv ,τq ) and Hecke algebras correspond to a general graph product of 2-
dimensional von Neumann algebras.
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Let L be the graph with 3 points and no edges and L+ be the graph with 3 points and
1 edge between two of the points.

Theorem 5.6.12 (Theorm A of [RS23], Theorem 6.2 of [CKL21]). Let Γ be a finite graph
and q := (qv )v∈Γ ∈ (0,1]Γ. Then

1. The Hecke von Neumann algebra MΓ,q is not diffuse if and only if the sum
∑

w∈WΓ qw,
converges where qw = qw1 . . . qwn and w = w1 . . . wn reduced;

2. MΓ,q is non-amenable if and only if WΓ is non-amenable if and only if L or L+ is a
subgraph of Γ.

Hence, by Theorem 5.6.7 and Proposition 5.6.6 and Theorem 5.6.12 the classification
of strongly solid right-angled Hecke von Neumann algebras is complete. Partial results
toward this classification had been obtained earlier in [Cas20] and in Chapter 4. We state
the following result for the specific case of group von Neumann algebras.

Graphs K2,3 and K+
2,3

d

e

a

b

c

(a) Graph K2,3

d

e

a

b

c

(b) Graph K+
2,3

Figure 5.1: We depict the graph K2,3 and the graph K+
2,3.

Theorem 5.6.13. Let WΓ be a right-angled Coxeter group. The following are equivalent:

1. The von Neumann algebra L (WΓ) is strongly solid.

2. The Coxeter group WΓ does not contain Z×F2 as a subgroup.

3. The graph Γ does not contain K2,3 nor K +
2,3 as a subgraph (see Figure 5.1).

Proof. (1) =⇒ (2) Suppose WΓ contains Z×F2 as a subgroup, we show that L (WΓ) is not
strongly solid. Note that L (Z)⊗L (F2) ⊆ L (WΓ) is a von Neumann subalgebra. We see
that the subalgebra L (Z) ⊆ L (WΓ) is amenable (since it is commutative) and is diffuse,
while NorL (WΓ)(L (Z))′′ is non-amenable as it contains L (F2). This shows L (WΓ) is not
strongly solid.

(2) =⇒ (3) Suppose Γ contains K2,3 or K +
2,3 as a subgraph. Then there are distinct

vertices a,b,c,d ,e ∈ Γ such that: a,b ̸∈ Link(c), d ̸∈ Link(e) and d ,e ∈ Link({a,b,c}). Write
F2 = 〈g1, g2〉. Put k = 10. It can be seen that the map φ :Z×F2 →WΓ given by φ((0, g1)) =
(ac)k , φ((0, g2)) = (bc)k and φ((1,0)) = de extends to an injective group homomorphism.
Thus WΓ contains Z×F2 as a subgroup.
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(3) =⇒ (1) Suppose Γ does not contain K2,3 or K +
2,3 as a subgraph. Put Mv =L (Z/2Z)

with the canonical trace τv so that MΓ = ∗v,Γ(Mv ,τv ) = L (WΓ). We show MΓ is strongly
solid by showing that all conditions in Theorem 5.6.7 are satisfied. Clearly Mv is strongly
solid for v ∈ Γ. We show the other conditions are also satisfied. LetΛ⊆ Γ for which MΛ (=
L (WΛ)) is non-amenable. From Proposition 5.6.8 it follows thatΛ contains three distinct
elements a,b,c such that a,b ̸∈ Link(c). We claim that LinkΓ(Λ) is complete. Indeed, ifΛ
contains two distinct vertices d ,e that share no edge, then the graph {a,b,c,d ,e} is either
isomorphic to K2,3 or to K +

2,3 which is a contradiction. Thus LinkΓ(Λ) is complete and so
LinkΓ(Λ) is finite. Hence MLink(Λ) is atomic (and not diffuse). This shows the conditions
of Theorem 5.6.7 are satisfied. Thus L (WΓ) is strongly solid.

5.7. CLASSIFICATION OF PRIMENESS FOR GRAPH PRODUCTS
We start by recalling the definition of primeness.

Definition 5.7.1. A II1-factor M is called prime if it can not factorize as a tensor product
M = M1⊗M2 with M1, M2 diffuse.

We study primeness for graph product MΓ = ∗v,Γ(Mv ,τv ) of tracial von Neumann
algebras Mv . In Section 5.7.1 we prove Theorem 5.7.4 which characterizes primeness
for graph products of II1-factors. In Section 5.7.2 we use this to prove Theorem 5.7.5
concerning irreducible components in rigid graph products. Moreover, we prove Theo-
rem 5.7.6 which establishes UPF results for the class CRigid. Last, in Section 5.7.3 we ex-
tend the primeness characterization from Theorem 5.7.4 to a larger class of graph prod-
ucts.

5.7.1. PRIMENESS RESULTS FOR GRAPH PRODUCTS OF II1-FACTORS
We prove Lemma 5.7.2 which we use in Lemma 5.7.3 to give sufficient conditions for a
graph product to be either prime or amenable. For graph products of II1-factors we then
characterize primeness in Theorem 5.7.4

Lemma 5.7.2. Let Γ be a finite graph that is irreducible. For v ∈ Γ let Mv ( ̸= C) be a
von Neumann algebra with a normal faithful trace τv . Suppose N ⊆ MΓ is a diffuse von
Neumann subalgebra. The following are equivalent:

1. N ̸≺MΓ MΓ0 for any strict subgraph Γ0 ⊊ Γ;

2. NorMΓ (N )′′ ̸≺MΓ MΓ0 for any strict subgraph Γ0 ⊊ Γ.

Proof. As N ⊆ NorMΓ (N )′′, it is clear that (1) =⇒ (2). We will show that (2) =⇒ (1).
As N ⊆ MΓ is a subalgebra, we have that N ≺MΓ MΓ. Therefore, there is a (minimal)

subgraph Λ ⊆ Γ such that N ≺MΓ MΛ and N ̸≺MΓ MΛ̃ for all strict subgraphs Λ̃⊊ Λ. By
Proposition 5.4.13 (2) we obtain that NorMΓ (N )′′ ≺MΓ MΛemb where Λemb =Λ∪Link(Λ).
Now by our assumption this implies that Λemb = Γ. Now, as Γ is irreducible and Γ =
Λ∪Link(Λ) we have that Λ or Link(Λ) is empty. As N ̸≺MΓ C1MΓ (since N is diffuse) and
N ≺MΓ MΛ we must have that Λ is non-empty, and thus that Link(Λ) is empty. Thus
Λ= Γ, and this proves the statement.
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Lemma 5.7.3. Let Γ be a finite, irreducible graph with |Γ| ≥ 2. For v ∈ Γ let Mv (̸= C)
be a von Neumann algebra with a normal faithful trace τv . Suppose the graph product
MΓ = ∗v,Γ(Mv ,τv ) is a II1-factor and MΓ ̸≺MΓ MΓ0 for any strict subgraph Γ0 ⊊ Γ. Then
MΓ is prime or amenable.

Proof. Suppose that MΓ is not prime, we show it is amenable. As MΓ is not prime, we can
write MΓ = N1⊗N2 with N1, N2 both diffuse. We observe that NorMΓ (N1)′′ = MΓ. There-
fore, using our assumption on MΓ and applying Lemma 5.7.2 we obtain that N1 ̸≺MΓ MΓ0

for any strict subgraph Γ0 ⊊ Γ.
As N2 is diffuse it contains a diffuse amenable von Neumann subalgebra A ⊆ N2.

Now observe that NorMΓ (A)′′ contains N1 and hence NorMΓ (A)′′ ̸≺MΓ MΓ0 for any strict
subgraph Γ0 ⊊ Γ. Thus, again by Lemma 5.7.2 we obtain that A ̸≺MΓ MΓ0 for any strict
subgraph Γ0 ⊊ Γ.

Let v ∈ Γ and put Γ1 := Star(v) and Γ2 := Γ\ {v}. We can write

MΓ = MΓ1 ∗MLink(v) MΓ2 . (5.33)

As A is amenable relative to MΓ1 inside MΓ (as A is amenable), we obtain using Theo-
rem 5.6.3 that at least one of the following holds:

1. A ≺MΓ MLink(v);

2. NorMΓ (A)′′ ≺MΓ MΓi for some i ∈ {1,2};

3. NorMΓ (A)′′ is amenable relative to MLink(v) inside MΓ.

Now as Γ1,Γ2 and Link(v) are strict subgraphs of Γ (as Γ is irreducible and |Γ| ≥ 2), we ob-
tain that only option (3) is possible. Thus NorMΓ (A)′′ is amenable relative to MLink(v) in-
side MΓ. Note that v ∈ Γwas chosen arbitarily. Thus, applying Theorem 5.4.8 repeatedly,
and using that

⋂
v∈ΓLink(v) = ;, we obtain that NorMΓ (A)′′ is amenable relative to M;

(=C1MΓ ) inside MΓ, i.e. NorMΓ (A)′′ is amenable. Hence the subalgebra N1 ⊆ NorMΓ (A)′′
is amenable as well. Interchanging the roles of N1 and N2 we obtain that N2 is also
amenable, and hence MΓ = N1⊗N2 is amenable.

We characterize primeness for graph products of II1-factors.

Theorem 5.7.4. Let Γ be a finite graph of size |Γ| ≥ 2. For each v ∈ Γ let Mv be a II1-factor.
Then the graph product MΓ =∗v,Γ(Mv ,τv ) is prime if and only if Γ is irreducible.

Proof. Take the simple graph Γ with |Γ| ≥ 2 and the II1-factors (Mv ,τv ) for v ∈ Γ. By
[CF17, Theorem 1.2] the von Neumann algebra MΓ is a factor. Furthermore, by Propo-
sition 5.4.14 we have that MΓ ̸≺MΓ MΓ0 for any strict subgraph Γ0 ⊊ Γ. Suppose that Γ
is irreducible. Then by applying Lemma 5.7.3 we obtain that MΓ is prime or amenable.
Since Γ is irreducible and has size |Γ| ≥ 2 we obtain that Γ is not complete. We then see by
Proposition 5.6.8 that MΓ is non-amenable. Thus MΓ is prime, which shows one direc-
tion. Now suppose Γ is reducible, so that we can decompose Γ = Γ1 ∪Γ2 with Γ1,Γ2 ⊆ Γ
non-empty and such that Link(Γ1) = Γ2. But then we can decompose MΓ = MΓ1⊗MΓ2 as
a tensor product and again by [CF17, Theorem 1.2] MΓ1 and MΓ2 are II1-factors. Thus
MΓ is not prime.
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5.7.2. UNIQUE PRIME FACTORIZATION RESULTS
We proof Theorem 5.7.5 which strengthens the statement of Theorem 5.5.19 by showing
for irreducible components Γ0 that MΓ0 is isomorphic to an amplification of Nα(Γ0). We
then use this result to proof Theorem 5.7.6 which establishes UPF results for the class
CRigid.

Theorem 5.7.5. Given a finite rigid graph Γ. For each v ∈ Γ let Mv ∈ CVertex. Let MΓ =
∗v,Γ(Mv ,τv ) be the graph product. Suppose MΓ = ∗w,Λ(Nw ,τw ), with another finite rigid
graph Λ and other von Neumann algerbas Nw ∈ CVertex. Let α : Γ→ Λ be the graph iso-
morphism from Theorem 5.5.19. Then for any irreducible component Γ0 ⊆ Γ, MΓ0 is iso-
morphic to an amplification of Nα(Γ0).

Proof. We observe that M ′
Γ\Γ0

∩MΓ = MΓ0 is non-amenable. Hence, by Theorem 5.5.15
we obtain a subgraph Λ0 ⊆ Λ such that MΓ\Γ0 ≺MΓ NΛ0 and LinkΛ(Λ0) ̸= ;. Choose
Λ̃0 ⊆ Λ0 minimal with the property that MΓ\Γ0 ≺MΓ NΛ̃0

. We show Λ̃0 = α(Γ \Γ0). By

Proposition 5.4.13(2) we have NΛ = MΓ = NorMΓ (MΓ\Γ0 )′′ ≺MΓ NΛemb where Λemb = Λ̃0 ∪
LinkΛ(Λ̃0). By Proposition 5.4.14 we conclude Λemb = Λ. We note for v ∈ Γ \Γ0 that
Nα(v) ≺MΓ MΓ\Γ0 and MΓ\Γ0 ≺s

MΓ
NΛ̃0

by Lemma 5.5.17(2). Hence by Lemma 5.5.17(1)

we obtain Nα(v) ≺MΓ NΛ̃0
. Thus α(Γ \Γ0) ⊆ Λ̃0 by Proposition 5.4.14. Put S = Λ̃0 ∩α(Γ0).

Then

S ∪Linkα(Γ0)(S) = (Λ̃0 ∪LinkΛ(S))∩α(Γ0) ⊇ (Λ̃0 ∪LinkΛ(Λ̃0))∩α(Γ0) =α(Γ0).

Since the graph α(Γ0) is irreducible, we conclude that S = ; or S = α(Γ0). Now, if S =
α(Γ0) then α(Γ0) ⊆ Λ̃0, so that Λ = α(Γ0)∪α(Γ \Γ0) ⊆ Λ̃0 . But since Λ̃0 ⊆ Λ0 ⊆ Λ this
implies Λ0 = Λ, which contradicts the fact that LinkΛ(Λ0) ̸= ;. We conclude that S = ;
and thus Λ̃0 =α(Γ\Γ0).

We have obtained MΓ\Γ0 ≺MΓ0
Nα(Γ\Γ0). Taking relative commutants, by Lemma 5.5.16,

we get Nα(Γ0) ≺MΓ MΓ0 . Since we are dealing with II1-factors, these embeddings are also
with expectation, i.e. Nα(Γ0) ⪯MΓ MΓ0 as in [HI17, Definition 4.1]. Thus, since MΓ =
MΓ0⊗MΓ\Γ0 we obtain by [HI17, Lemma 4.13] non-zero projections p, q ∈ MΓ and a par-
tial isometry v ∈ MΓ with v∗v = p and v v∗ = q and a subfactor P ⊆ qNα(Γ0)q so that

qNα(Γ0)q = v MΓ0 v∗⊗P and v MΓ\Γ0 v∗ = P⊗qNα(Γ\Γ0)q.

By Theorem 5.7.4 we have that Nα(Γ0) is prime. Hence qNα(Γ0)q is prime. Thus, since
v MΓ0 v∗ is a II1-factor, we obtain that P is a type In factor for some n ∈N. We conclude
that Nα(Γ0) is isomorphic to some amplification of MΓ0 .

Theorem 5.7.6. Any von Neumann algebra M ∈CRigid have a prime factorization inside
CRigid, i.e.

M = M1⊗·· ·⊗Mm , (5.34)

for some m ≥ 1 and prime factors M1, . . . , Mm ∈CRigid.
Suppose there is another prime factorization of M inside CRigid, i.e.

M = N1⊗·· ·⊗Nn , (5.35)
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for another n ≥ 1 and other prime factors N1, . . . , Nn ∈ CRigid. Then m = n and there is a
permutation σ of {1, . . . ,m} such that Mi is isomorphic to some amplification of Nσ(i ).

Proof. Since M ∈ CRigid, we can write M = ∗v,Γ(Mv ,τv ) for some finite rigid graph Γ
and some Mv ∈ CVertex for v ∈ Γ. Let Γ1, . . . ,Γm be the irreducible components of Γ.
Let Π = {1, . . . ,m} be the complete graph with m vertices and put Mi = MΓi for i ∈ Π.
Then since Γ= ΓΠ we have by Remark 5.2.4 that M =∗v,Γ(Mv ,τv ) =∗i ,Π(∗v,Γi (Mv ,τv )) =
M1⊗·· ·⊗Mm . Now, for i ∈Π we have by Theorem 5.7.4 that Mi is prime since Γi is irre-
ducible. Note furthermore that Γi is rigid by Remark 5.2.6 and hence Mi ∈CRigid.

Now since Ni ∈ CRigid for i ∈ {1,2, . . . ,n}, we can write Ni = ∗v,Λi (Nv ,τv ) for some
non-empty, finite, rigid graph Λi . We note that Λi is irreducible by Theorem 5.7.4 since
Ni is prime. LetΠ′ = {1, . . . ,n} be a complete graph with n vertices and putΛ :=ΛΠ which
is rigid by Lemma 5.2.5. Then by Remark 5.2.4 we have M = N1⊗·· ·⊗Nn =∗i ,Π(Ni ,τi ) =
∗i ,Π(∗v,Λi (Nv ,τv )) =∗v,Λ(Nv ,τv ). Hence, we can apply Theorem 5.5.19 to obtain a graph
isomorphismα : Γ→Λ. We note thatΛ1, . . . ,Λn are the irreducible components ofΛ and
that Γ1, . . . ,Γm are the irreducible components of Γ. Sinceα is a graph isomorphism, this
implies that m = n and that there is a permutation σ of {1, . . . ,m} such that α(Γi ) =Λσ(i ).
Now, for 1 ≤ i ≤ m we obtain by Theorem 5.5.19 a real number 0 < ti < ∞ such that
Mi = MΓi ≃ N ti

α(Γi ) = N ti
Λσ(i )

= N ti
σ(i ).

Remark 5.7.7. In Fig. 5.2 we give an example of a von Neumann algebra for which we
obtain a unique prime factorization. This example was not yet covered by [HI17, The-
orem A] since the graph Γ is not complete. The example is also not covered by [CSS18,
Theorem 6.16] in case the vertex von Neumann algebras Mv ∈CVertex are not known to be
group von Neumann algebras. Examples of such Mv can be found as von Neumann alge-
bras of free orthogonal quantum groups [VV07] or q-Gaussian algebras of finite dimen-
sional Hilbert spaces and q ∈ (−1,1) sufficiently far away from 0, see [Bor+23, Remark
4.5] which is essentially proved in [Kuz23]. We emphasize that it is not known whether
such von Neumann algebras are group von Neumann algebras; we do not make the more
definite claim that they cannot be isomorphic to group von Neumann algebras.

a

b

c

d

e

f

g

h

i

j

Figure 5.2: An example of a rigid graph Γ is depicted. Let Mv ∈ CVertex for v ∈ Γ. Then Theorem 5.7.6 ob-
tains for MΓ = ∗v,Γ(Mv ,τv ) the unique prime factorization MΓ = MΓ1⊗MΓ2 , where Γ1 = {a,b,c,d ,e} and
Γ2 = { f , g ,h, i , j } are the irreducible components of Γ.
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5.7.3. PRIMENESS RESULTS FOR OTHER GRAPH PRODUCTS

In case the von Neumann algebras Mv are not (all) type II1-factors, it is interesting to
know whether the condition MΓ ̸≺MΓ MΓ0 for any strict subgraph Γ0 ⊊ Γ, is satisfied. In
Lemma 5.7.10 we will give sufficient conditions for the property to hold. To prove this,
we need the following lemma.

Lemma 5.7.8. Let Γ be a graph and for v ∈ Γ let (Mv ,τv ) be a tracial von Neumann alge-
bra. Let Λ⊆ Γ be a subgraph and let u ∈WΓ \WΛ. Let v,v′ ∈WΓ be such that every letters at
the start of v respectively v′ does not commute with any letters at the end of u−1 respectively
u. Let w,w′ ∈WΓ with |w| ≤ |v| and |w′| ≤ |v′|. Then

EMΛ (axb) = 0 for a ∈ M̊w, x ∈ M̊v−1uv′ ,b ∈ M̊w′ . (5.36)

Proof. Let u,v,v′,w,w′ be given as stated. Observe by the assumptions on v and v′ that
in particular v−1uv′ is reduced. Denote

H (u) := ⊕
w0∈W (u)

H̊w0 , M(u) := ⊕
w0∈W (u)

M̊w0 . (5.37)

Observe for y1 ∈ λ(M(u−1)), y2 ∈ M̊u and y3 ∈ λ(M(u)) that if we denote y := y∗
1 y2 y3 and

write y =∑
w∈WΓ yw where yw ∈ M̊w, then we have that yw = 0 whenever w does not con-

tain u as a subword. Thus, in particular EMΛ (y∗
1 y2 y3) = 0. We will apply this to obtain the

result.
Let x ∈ M̊v−1uv′ be a pure tensor, and let x1 ∈ M̊v, x2 ∈ M̊u and x3 ∈ M̊v′ be s.t.λ(x) =

λ(x1)∗λ(x2)λ(x3). Let a ∈ M̊w and b ∈ M̊w′ . Let ω ∈Sv′ , then we can write ω= (v′1,v′2,v′3)
for some v′1,v′2,v′3 ∈WΓ with v′ = v′1v′2v′3.

By Lemma 3.1.4 we have ηω := λ(v′1,v′2,v′3)(x3)bΩ ∈ H̊v′0 where v′0 = v′1v′3w′. We show

that ηω ∈ H (u). In particular, we can assume that ηω is non-zero, so that w′ starts with
(v′3)−1v′2 and v′0 starts with v′1v′2. If v′1v′2 = e then v′3 = v′, so that |v′3|+ |v′3w′| = |w′| ≤ |v′| =
|v′3| and therefore v′3w′ = e. We then conclude that ηω ∈ H̊e ⊆ H (u). Thus, suppose
v′1v′2 ̸= e. Then v′1v′2w′

0 (= v′0) starts with a letter v ′
0 at the start of v′. Now, by the assump-

tion on v′ we obtain that v ′
0 does not commute with elements at the end of u. This implies

that uv′0 is reduced and so ηω ∈H (u). Now, asλ(x3)λ(b)Ω=∑
ω∈Sv′ λω(x3)λ(b)Ω ∈H (u)

we obtain that y3 := λ(x3)λ(b) ∈ M(u). In a similar way we obtain y1 := λ(x1)λ(a)∗ ∈
M(u−1). Hence, putting y2 :=λ(x2) we obtain that EMΛ (λ(a)λ(x)λ(b)) = EMΛ (y∗

1 y2 y3) = 0.
The result now follows by density of λ(M̊z) ⊆ M̊z for z ∈WΓ.

Corollary 5.7.9. Let Γ be a graph,Λ⊆ Γ be a subgraph and let u ∈WΓ\WΛ. Let v,v′ ∈WΓ be
such that every letters at the start of v respectively v′ does not commute with any letters at
the end of u−1 respectively u. Let w,w′ ∈WΓ with |w| ≤ |v| and |w′| ≤ |v′|. Then wv−1uv′w′ ̸∈
WΛ.

Proof. For v ∈ Γ let Mv := L (Z/2Z), so that MΓ = L (WΓ). Take a = λw, x = λv−1uv′ and
b =λw′ . Then Lemma 5.7.8 shows that EMΓ\Λ (λwv−1uv′w) = EMΛ (axb) = 0. This means that
w1v−1uvw2 ̸∈WΛ.
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Lemma 5.7.10. Let Γ be a finite graph of size |Γ| ≥ 3 such that for any v ∈ Γ, St ar (v) ̸= Γ.
For v ∈ Γ let (Mv ,τv ) be a von Neumann algebra with a normal faithful trace. Suppose
for any v ∈ Γ there is a unitary uv ∈ MΓ with τv (uv ) = 0. Then MΓ ̸≺MΓ MΛ for any strict
subgraphΛ⊊ Γ.

Proof. First observe that the Coxeter group WΓ is icc since |Γ| ≥ 3 and Star(v) ̸= Γ for
all v ∈ Γ. Now let Λ ⊊ Γ be a strict subgraph and fix v ∈ Γ \Λ. As the conjugacy class
{v−1vv : v ∈WΓ} is infinite, we can for n ∈N choose vn ∈WΓ such that |v−1

n vvn | ≥ 2n+1. If a
letters s commuting with v is at the start of vn then we can replace vn with ṽn := svn ∈WΓ
which does not start with s and is such that ṽ−1

n v ṽn = v−1
n vvn . Repeating the argument,

we may thus assume that every letter at the start of vn does not commute with v . Then
in particular v−1

n vvn is reduced and |vn | ≥ n. Let (vn,1, . . . , vn,ln ) be a reduced expression
for v−1

n vvn and define un := uvn,1 . . .uvn,ln
∈ M̊v−1

n uvn
. Then un is a unitary and for any

w,w′ ∈WΓ with |w|, |w′| ≤ n and a ∈ M̊w, b ∈ M̊w′ , we have by Lemma 5.7.8 that

EMΛ (aunb) = 0. (5.38)

We take x, y ∈ MΓ and ϵ > 0. We can choose x0 ∈ MΓ of the form x0 = ∑K1
i=1 xi for some

K1 ≥ 1, xi ∈ M̊wi with some wi ∈WΓ, and with ∥y∥ ·∥x0 −x∥2 ≤ ϵ. We can now also choose

y0 ∈ MΓ of the form y0 = ∑K2
i=1 yi for some K2 ≥ 1, yi ∈ M̊w′

i
, with some w′

i ∈ WΓ and

∥x0∥ · ∥y0 − y∥2 ≤ ϵ. Put l1 := max1≤i≤K1 |wi |, l2 := max1≤i≤K2 |w′
i | and l = max{l1, l2}. Let

n ≥ l so that by (5.38) and linearity we have EMΛ (x0un y0) = 0 and hence

EMΛ (xun y) = EMΛ ((x −x0)un y)+EMΛ (x0un(y − y0)). (5.39)

Furthermore,

∥(x −x0)un y∥2 ≤ ∥x −x0∥2 · ∥un y∥ ≤ ϵ, (5.40)

∥x0un(y − y0)∥2 ≤ ∥x0un∥ ·∥y − y0∥2 ≤ ϵ. (5.41)

Thus, as the conditional expectation EMΛ is ∥·∥2-decreasing (this follows from the Schwarz
inequality [Pau02, Proposition 3.3] as EMΛ is trace-preserving and u.c.p.), we obtain for
n ≥ l that

∥EMΛ (xun y)∥2 ≤ 2ϵ. (5.42)

This shows for any x, y ∈ MΓ that ∥EMΛ (xun y)∥2 → 0 as n →∞. By Definition 2.1.2(2) this
means that MΓ ̸≺MΓ MΛ.

Theorem 5.7.11. Let Γ be a irreducible finite graph of size |Γ| ≥ 3 and for v ∈ Γ, let Mv

( ̸= C) be a von Neumann algebra with a normal faithful trace τv such that there exists a
unitary uv ∈ Mv with τv (uv ) = 0. Then MΓ is a prime factor.

Proof. It follows from [Cha+24, Theorem E] and our assumptions that MΓ is a II1-factor.
Furthermore, by Lemma 5.7.10 we have that MΓ ̸≺MΓ MΛ for any strict subgraph Λ ⊊
Γ. Hence, by Lemma 5.7.3 we obtain that MΓ is either prime or amenable. Since Γ is
irreducible and |Γ| ≥ 3 it follows from Proposition 5.6.8 that MΓ is non-amenable. Hence,
MΓ is prime.
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Theorem 5.7.12. LetΓ be a finite graph. For v ∈ Γ, let Mv ( ̸=C) be a von Neumann algebra
with a normal faithful trace τv and assume that MΓ = ∗v,Γ(Mv ,τv ) is a II1-factor. Then
MΓ is prime if and only if there is an irreducible component Λ⊆ Γ for which MΛ is prime
and MΓ\Λ is finite-dimensional.

Proof. Suppose there is an irreducible component Λ ⊆ Γ for which MΛ is prime and
dim MΓ\Λ <∞. Then MΓ = MΛ⊗MΓ\Λ is prime as it is a matrix amplification of MΛ.

For the other direction, suppose that MΓ is a prime factor. Denote

Λ := {v ∈ Γ : StarΓ(v) ̸= Γ or dim Mv =∞}.

If w ∈ Γ\Λ then StarΓ(w) = Γ and dim Mw <∞, so w ∈ LinkΓ(Λ). Hence LinkΓ(Λ) = Γ\Λ
and so MΓ = MΛ⊗MΓ\Λ. Now, since Γ\Λ is complete, and since dim Mv <∞ for v ∈ Γ\Λ
we have that MΓ\Λ is finite-dimensional. Hence, since MΓ is a prime factor also MΛ is a
prime factor.

We now show that the graph Λ is irreducible so that from LinkΓ(Λ) = Γ \Λ it follows
thatΛ is an irreducible component of Γ. Suppose there is a non-empty subgraphΛ1 ⊆Λ
s.t. Λ2 :=Λ\Λ1 is non-empty and LinkΛ(Λ1) =Λ2. We show a contradiction. We can write
MΛ = MΛ1⊗MΛ2 . Hence, by primeness of the factor MΛ there is i ∈ {1,2} s.t. dim MΛi <
∞. Let v ∈Λi . Since dim MΛi <∞ we have dim Mv <∞. Hence, since v ∈Λ we have by
definition of Λ that StarΓ(v) ̸= Γ. Let w ∈ Γ \ StarΓ(v). Then StarΓ(w) ̸= Γ so that w ∈ Λ.
Furthermore, w ̸∈ LinkΓ(v) so that w ̸∈ LinkΛ(Λi ) =Λ \Λi , i.e. w ∈Λi . Hence, since the
vertices v, w in Λi share no edge we have dim MΛi =∞, which is a contradiction. Thus
Λ is irreducible.

5.8. CLASSIFICATION OF FREE INDECOMPOSABILITY FOR GRAPH

PRODUCTS
In this section we study free-indecomposability for graph product of II1-factors. In The-
orem 5.8.1 we characterize for graph products of II1-factors (with separable predual)
when they can decompose as tracial free products of II1-factors. In Theorem 5.8.2 we
combine this result with Theorem 5.5.19 to show unique free product decompositions
for von Neumann algebras in the class CRigid \ CVertex. Hereafter, we show that Theo-
rem 5.8.1 and Theorem 5.8.2 really cover new examples. Indeed, in Proposition 5.8.3 we
give sufficient conditions for a graph product to not posses a Cartan-subalgebra, which
in Remark 5.8.4 we use to give examples of freely indecomposable von Neumann alge-
bras M ∈ CRigid \ CVertex that are not in the class Canti-free from [HU16]. In Remark 5.8.5
we show that the unique free product decomposition from Theorem 5.8.2 also covers
new examples.

Theorem 5.8.1. Let Γ be a finite graph of size |Γ| ≥ 2, and for v ∈ Γ let (Mv ,τv ) be tracial
II1-factor with separable predual. Then the graph product MΓ :=∗v,Γ(Mv ,τv ) can decom-
pose as a tracial free product MΓ = (M1,τ1)∗ (M2,τ2) of II1-factors M1,M2 if and only if Γ
is not connected.

Proof. Let Γ and (Mv ,τv )v∈Γ be given. If Γ is not connected then for any connected com-
ponent Γ0 of Γwe have MΓ = (MΓ0 ,τ1)∗ (MΓ\Γ0 ,τ2), which shows one direction.
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For the other direction suppose that Γ is connected. Assume MΓ = (M1,τ1)∗ (M2,τ2)
for some II1-factors M1, M2. Fix v ∈ Γ and by [OP04, Proposition 13] let N0 ⊆ Mv be an
amenable II1-subfactor with N ′

0 ∩ MΓ = M ′
v ∩ MΓ. Then N0 is amenable relative to Mi

inside M for i = 1,2. Therefore, by Theorem 5.6.3 one of the following holds true:

1. N0 ≺MΓ C1MΓ ;

2. NorMΓ (N0)′′ ≺MΓ Mi for some 1 ≤ i ≤ 2;

3. NorMΓ (N0)′′ is amenable relative to C1MΓ inside MΓ.

Since N0 is diffuse, we can not have (1).
We show that (2) is also not satisfied. Suppose NorMΓ (N0)′′ ≺MΓ M1. Since N0 is dif-

fuse, it can not embed in any type I factor. It follows that NorMΓ (N0)′′ ̸≺MΓ M;. Therefore,
since N0 and N ′

0∩MΓ = M ′
v ∩MΓ = MLink(v) are factors we obtain by Theorem 5.4.16 that

u∗ NorMΓ (N0)′′u ⊆ M1 for some unitary u ∈ MΓ.
Now take w ∈ Γ arbitrarily. Since Γ is connected there is a path P from v to w , i.e.

P = (v0, v1, . . . , vn) for some n ≥ 0 and vertices v0, v1, . . . , vn ∈ Γ such that vi ∈ Link(vi−1)
for 1 ≤ i ≤ n and such that v0 = v and vn = w . As |Γ| ≥ 2 we can moreover choose this
path such that it has length n ≥ 1.

For i ∈ {1, . . . ,n} put Ni := Mvi . Then, as vi ∈ Link(vi−1) we obtain Ni ⊆ NorMΓ (Ni−1)′′.
Since u∗ NorMΓ (N0)′′u ⊆ M1 we obtain u∗N1u ⊆ M1. Then since u∗N1u ̸≺MΓ M; (since
u∗N1u is diffuse) we obtain by Proposition 5.4.13(1b) that NorMΓ (u∗N1u)′′ ⊆ M1. Note
that NorMΓ (u∗N1u) = u∗ NorMΓ (N1)u so that NorMΓ (u∗N1u)′′ = u∗ NorMΓ (N1)′′u. Thus
we obtain u∗ NorMΓ (N1)′′u ⊆ M1. Continuing in this way we obtain u∗ NorMΓ (Ni )′′u ⊆
M1 for all 0 ≤ i ≤ n. Thus, in particular u∗Mw u ⊆ u∗ NorMΓ (Nn−1)′′u ⊆ M1. Since
w was arbitrary, we obtain that Mw ⊆ uM1u∗ for each w ∈ Γ. But this implies MΓ =
(
⋃

w∈ΓMw )′′ ⊆ uM1u∗. Hence MΓ = M1, which is a contradiction. We conclude that
NorMΓ (N0) ̸≺MΓ M1. By symmetry also NorMΓ (N0) ̸≺MΓ M2. We obtain that (2) is not
satisfied.

We conclude that (3) is satisfied, i.e. NorMΓ (N0)′′ is amenable. Hence MLink(v) ⊆
NorMΓ (N0)′′ is amenable as well. Therefore, by Proposition 5.6.8 we obtain that Link(v)
is a clique and that Mw is amenable for any w ∈ Link(v). We observe that v ∈ Γwas arbi-
trary, thus for each vertex z ∈ Γ its Link(z) is a clique. Since Γ is connected, it follows that
Γ is a complete graph. Moreover, for any v ∈ Γ choose z ∈ Γ \ {v} we have Mv ⊆ MLink(z),
which shows that Mv is amenable. Hence MΓ is a tensor product of amenable II1-factors
and so MΓ is amenable. But the amenable II1-factor can not decompose as a free product
of type II1-factors. This gives a contradiction and we conclude that MΓ can not decom-
pose as free product of II1-factors.

Theorem 5.8.2. Any von Neumann algebra M ∈CRigid \CVertex can decompose as tracial
free product inside CRigid \CVertex:

M = M1 ∗·· ·∗Mm , (5.43)

for some m ≥ 1 and II1-factors M1, . . . Mm ∈CRigid \CVertex that can not decompose as any
tracial free product of II1-factors.
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Furthermore, suppose M has another free product decomposition:

M = N1 ∗·· ·∗Nn ,

for some n ≥ 1 and other II1-factors N1, . . . , Nn ∈CRigid \CVertex that can not decompose as
tracial free product of II1-factors. Then m = n and there is a permutation σ of {1, . . . ,m}
such that for each i , Ni is unitarily conjugate to Mσ(i ) in M.

Proof. Since M ∈CRigid \CVertex we can write M = MΓ =∗v,Γ(Mv ,τv ) for some rigid graph
Γ of size |Γ| ≥ 2 and some II1-factors Mv ∈CVertex. Let Γ1, . . . ,Γm be the connected com-
ponents of Γ, which are rigid by Remark 5.2.6. We let Π = {1, . . . ,m} be the graph with
m vertices and no edges. We claim that |Γi | ≥ 2 for all i ∈ Π. Indeed, if m = 1 then
Π = {1} and Γ1 = Γ so that |Γi | = |Γ| ≥ 2 for all i ∈ Π. On the other hand, if m ≥ 2 then
LinkΠ(LinkΠ(i )) = Π ̸= {i } for all i ∈ Π, so it follows from Lemma 5.2.5 and rigidity of
ΓΠ ≃ Γ that |Γi | ≥ 2 for all i ∈Π.

We denote Mi := MΓi ∈ CRigid for i ∈ Π. By Theorem 5.5.19 and rigidity of Γi and
the fact that |Γi | ≥ 2 it follows that Mi ̸∈ CVertex. Furthermore, since Γi is connected we
obtain by Theorem 5.8.1 that Mi can not decompose as tracial free product of II1-factors.
By Remark 5.2.4 we conclude that MΓ =∗v,Γ(Mv ,τv ) =∗i ,Π(MΓi ,τi ) = M1∗·· ·∗Mm which
shows (5.43).

Now let n ≥ 1 and let N1, . . . , Nn ∈CRigid be II1-factors that can not decompose as tra-
cial free product of II1-factors. Since Ni ∈CRigid\CVertex we can write Ni =∗z,Λi (N(i ,z),τ(i ,z))
where Λi is a rigid graph and (N(i ,z))z∈Λi are II1-factors in CVertex. Observe for 1 ≤ i ≤ n
that |Λi | ≥ 2 since Ni ̸∈ CVertex and that Λi is connected by Theorem 5.8.1 since Ni can
not decompose as tracial free product of II1-factors. Let Π′ = {1, . . . ,n} be the graph with
n vertices and no edges. Then by Remark 5.2.4 we have:

M = N1 ∗·· ·∗Nn =∗i ,Π′ (∗v,Λi (N(i ,v),τ(i ,v))) ≃∗w,ΛΠ′ (Nw ,τw ) = NΛΠ′ .

Then since ΛΠ′ is rigid by Lemma 5.2.5, we obtain by Theorem 5.5.19 that ΛΠ′ ≃ Γ.
The connected components of ΛΠ′ respectively Γ are Λ1, . . . ,Λn respectively Γ1, . . . ,Γm .
Hence n = m. Moreover, Theorem 5.5.19 asserts, for some permutation σ of {1, . . . ,m},
that ÑΛi (= Ni ) is unitarily conjugate to MΓσ(i ) (= Mσ(i )) in MΓ.

We give sufficient conditions for absence of Cartan-subalgebras in graph products.
We note that in [Cas20] absence of Cartan was studied for right-angled Hecke algebras
and that in [CE23] absence of Cartan was fully characterized for von Neumann algebras
associated to graph products of groups.

For a non-empty connected graph Γwe define its radius as

Radius(Γ) := inf
s∈Γ

sup
t∈Γ

DistΓ(s, t ), (5.44)

where DistΓ(s, t ) denotes the minimal length of a path in Γ from s to t . Furthermore, we
set Radius(Γ) = 0 if Γ is empty and set Radius(Γ) =∞ if Γ is not connected.

Proposition 5.8.3. Let Γ be a graph with Radius(Γ) ≥ 3 and for v ∈ Γ let Mv be a II1-
factor with normal faithful trace τv . Then MΓ = ∗v,Γ(Mv ,τv ) does not possess a Cartan-
subalgebra.
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Proof. Suppose MΓ has a Cartan subalgebra A ⊆ MΓ. Fix v ∈ Γ. Then MΓ = MStar(v)∗MLink(v)

MΓ\{v}. Since A is amenable, one of the statements of Theorem 5.6.3 must hold. Since
Radius(Γ) ≥ 3, we have Star(v) ̸= Γ. Hence NorMΓ (A)′′ = MΓ ̸≺MΓ MStar(v) and NorMΓ (A)′′ =
MΓ ̸≺MΓ MΓ\{v} by Proposition 5.4.14. Thus we must have that A ≺MΓ MLink(v) or that
NorMΓ (A)′′ is amenable relative to MLink(v) inside MΓ. Suppose that A ≺MΓ MLink(v) then
since A ̸≺MΓ M; we obtain by Proposition 5.4.13(1b) that MΓ = NorMΓ (A)′′ ⊆ MΛemb

where Λemb = Link(v)∪⋃
w∈Link(v) Link(w). We see that Radius(Λemb) ≤ 2 (indeed take

as center v). Hence, since Radius(Γ) ≥ 3 we have MΓ = NorMΓ (A)′′ ⊆ MΛemb ⊊ MΓ, a con-
tradiction. We conclude that NorMΓ (A)′′ (= MΓ) is amenable relative to MLink(v) in MΓ.
Since v was arbitrary we obtain using Theorem 5.4.8 that MΓ is amenable. This is a con-
tradiction since MΓ is non-amenable by Proposition 5.6.8 (since Radius(Γ) ≥ 3). Thus
MΓ does not have a Cartan subalgebra.

Remark 5.8.4. We argue that we find new classes of finite von Neumann algebras that
are freely indecomposable. More precisely we argue that Theorem 5.8.1 covers von Neu-
mann algebras that are not in the class Canti-free from [HU16]. Indeed, let Γ be a graph
with Radius(Γ) ≥ 3 (hence Γ is irreducible) and for v ∈ Γ let Mv be a II1-factor with sepa-
rable predual and possessing the Haagerup property. Then the II1-factor MΓ does not lie
in the class Canti-free from [HU16]. Indeed, (i) MΓ is prime by Theorem 5.7.4, (ii) MΓ is full
(so no property Gamma) by [Cha+24, Theorem E], (iii) MΓ does not have a Cartan sub-
algebra by Proposition 5.8.3, and (iv) MΓ has the Haagerup property (so no property (T)
by [CJ85, Theorem 3]) by [CF17, Theorem 0.2]. If Γ is moreover connected and rigid and
if Mv lies in CVertex for each v ∈ Γ, then MΓ lies in CRigid and can not decompose as free
product of II1-factors. As a concrete example, take the cyclic graph Γ=Zn for some n ≥ 6
and for each v ∈ Γ let Mv = L (F2) ∈ CVertex which has the Haagerup property by [BO08,
Theorem 12.2.5]. Then MΓ is a II1-factor in CRigid \Canti-free that can not decompose as a
(tracial) reduced free product of II1-factors.

Remark 5.8.5. We argue that the unique free product decompositions from Theorem 5.8.2
are not covered by [HU16] nor [DE24b]. Indeed, let Γ be a graph whose connected com-
ponents Γi for i = 1, . . . ,m are of the form Zni for some ni ≥ 6. Observe that Γ is rigid.
For v ∈ Γ put Mv = L (F2) ∈ CVertex. Then Theorem 5.8.2 asserts the unique free prod-
uct decomposition MΓ = MΓ1 ∗ ·· · ∗ MΓm . Since the factors MΓi for i = 1, . . . ,m are not
in the class Canti−free, this result is not covered by [HU16]. Furthermore, we note for
i = 1, . . . ,m that the group ∗v,Γi F2 is properly proximal by [DE24a, Proposition 3.7] since
Radius(Γi ) ≥ 3. Hence, also [DE24b, Corollary 1.8] does not apply.

5.9. GRAPH RADIUS RIGIDITY
In this section we generalize the ideas from the proof of Theorem 5.8.1 and show that we
can, in certain cases, retrieve the radius of the graph Γ from the graph product MΓ. In
Section 5.9.1 we introduce the notion of the radius of a von Neumann algebra. Further-
more, we establish good estimates on Radius(MΓ) in terms of the radius of Γ whenever
the vertex algebras Mv posses the property strong (AO). In Section 5.9.2 we establish sim-
ilar estimates when the vertex algebras Mv are group von Neumann algebras L (Gv ) of
countable icc groups Gv .
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5.9.1. RADIUS OF VON NEUMANN ALGEBRAS
We introduce the following definition for a simple graph.

Definition 5.9.1. Let Γ be a simple graph and letΛ⊆ Γ be a subgraph. For d ∈Z≥0 put

BΓ(Λ;d) = {v ∈ Γ : DistΓ(v, w) ≤ d for some w ∈Λ}.

which is the closed ball of size d aroundΛ. Furthermore, define BΓ(Λ;∞) =⋃
d≥1 BΓ(Λ;d).

We will now introduce a similar definition for von Neumann algebras.

Definition 5.9.2. Let M be a diffuse von Neumann algebra and A ⊆ M a diffuse von Neu-
mann subalgebra. For d ≥ 0 we define the von Neumann algebra BM (A;d) inductively.
Put BM (A;0) = A and for d ≥ 1 define

BM (A;d) =

 ⋃
B⊆BM (A;d−1)

diffuse vNa

NorM (B)


′′

Moreover, we also define

BM (A;∞) =
( ⋃

d≥0
BM (A;d)

)′′
We remark for n,m ∈Z≥0 that BM (A;n +m) = BM (BM (A;n);m).

Recall that the radius of a graph Γwas defined in (5.44) and note that it is equal to the
infimum of all d ∈Z≥0 for which there exists a vertex v ∈ Γ with BΓ(v ;d) = Γ. In a similar
way we can introduce the notion of the radius of a von Neumann algebras.

Definition 5.9.3. Let M be a diffuse von Neumann algebra. We define Radius(M) as the
infimum of all d ∈ Z≥0 such that there exists a diffuse, amenable subfactor A ⊆ M for
which A′∩M is a non-amenable factor and such that BM (A;d) = M.

We remark that the definition of Radius(M) would be more natural with the relax-
ation that A can be any diffuse amenable von Neumann subalgebra satisfying BM (A;d) =
M . However, we need the extra restrictions in order to get appropriate lower bounds on
Radius(M).

Proposition 5.9.4. Let Γ be a finite simple graph and let Λ ⊆ Γ be a subgraph. Let MΓ =
∗v,Γ(Mv ,τv ) be a graph product of II1-factors with separable preduals. Then

1. For d ∈Z≥0 ∪ {∞} we have BMΓ (MΛ;d) = MBΓ(Λ;d)

2. If Γ is not complete then Radius(MΓ) ≤ max{2,Radius(Γ)}.

Proof. (1) The statement holds true for d = 0 since BMΓ (MΛ,0) = MΛ = MBΓ(Λ,0). We show
the statement for d = 1. Let A ⊆ MΛ be amenable and diffuse. Then A ̸≺MΓ C. Let {Λ j } j∈J

be the family {;}. Then by Proposition 5.4.13(1b) we obtain qNorMΓ
(A)′′ ⊆ MΛemb where

Λemb = Λ∪⋃
v∈ΛLinkΓ(v) = BΓ(Λ;1). Hence BM (MΛ;1) ⊆ MBΓ(Λ;1). To show equality,

take w ∈ BΓ(Λ;1) \Λ and let v ∈ Λ such that v and w share an edge. Let A ⊆ Mv be
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an amenable and diffuse. Then NorMΓ (A)′′ ⊇ MLink(v) ⊇ Mw . Hence, Mw ⊆ BMΓ (MΛ;1).
Hence, we obtain equality. Now let d ≥ 1 and suppose the statement holds true for d −1.
Then

BMΓ (MΛ;d) = BMΓ (BMΓ (MΛ;d −1);1) = BMΓ (MBΓ(Λ;d−1);1) = MBΓ(BΓ(Λ;d−1);1) = MBΓ(Λ;d)

This proves the statement by induction for d ∈N. The statement for d =∞ follows auto-
matically.

(2) Put r = Radius(Γ). We know r ≥ 1 and furthermore we may assume r <∞ since
otherwise the statement is trivial. Let v ∈ Γ such that BΓ(v ;r ) = Γ. Observe, since Γ is
not complete, that v can be chosen such that LinkΓ(v) is not a clique in Γ. By [OP04,
Proposition 13] we may let A ⊆ Mv be a diffuse amenable subfactor for which A′∩MΓ =
M ′

v ∩MΓ = MLink(v). Thus A′∩MΓ is a non-amenable factor. We show that BMΓ (A;r ) =
MΓ. We see that

MLink(v) ⊆ NorMΓ (A)′′ ⊆ BMΓ (A;1) ⊆ BMΓ (Mv ;1) ⊆ MBΓ(v ;1)

Hence,

MBΓ(LinkΓ(v);1) = BMΓ (MLink(v);1) ⊆ BMΓ (BMΓ (A;1);1) ⊆ BMΓ (MBΓ(v ;1);1) = MBΓ(v ;2) (5.45)

Now, observe that BMΓ (A;2) = BMΓ (BMΓ (A;1);1) and BΓ(LinkΓ(v);1) = BΓ(v ;2). If r ≤ 2
then BΓ(v ;2) = Γ which shows that Radius(MΓ) ≤ 2 = max{2,r }. Thus assume r ≥ 2. By
(5.45) we obtain BΓ(A;2) = MBΓ(v ;2). Thus we obtain

BMΓ (A;r ) = BMΓ (BMΓ (A;2);r −2) = BMΓ (MBΓ(v ;2);r −2) = MBΓ(v ;r ) = MΓ

This shows Radius(MΓ) ≤ r = max{2,r }.

Proposition 5.9.5. Let Γ be a finite simple graph. Let MΓ = ∗v,Γ(Mv ,τv ) be a graph
product of II1-factors Mv . Let K ≥ 1 be a constant. Suppose for any amenable diffuse
subfactor A ⊆ MΓ with A′ ∩ MΓ a non-amenable factor there is a subgraph Λ ⊆ Γ with
Radius(BΓ(Λ,1)) ≤ K such that A ≺M MΛ. Then

Radius(Γ)−K ≤ Radius(MΓ).

Proof. Denote R = Radius(MΓ). We may assume R < ∞. Let A ⊆ MΓ be an amenable,
diffuse subfactor for which A′∩MΓ is a non-amenable factor and for which BMΓ (A;R) =
MΓ. By assumption A ≺MΓ MΛ for some subgraph Λ ⊆ Γ with Radius(BΓ(Λ;1)) ≤ K . Let
{Λ j } j∈J denote the non-empty familiy {;}. Then by Theorem 5.4.16 we obtain a unitary
u ∈ MΓ so that u∗Au ⊆ MΛemb whereΛemb = BΓ(Λ;1). Hence, for d ≥ 0 we obtain

u∗BMΓ (A;d)u = BMΓ (u∗Au;d) ⊆ BMΓ (MBΓ(Λ;1);d) = MBΓ(BΓ(Λ;1);d)

Then
MΓ = u∗BMΓ (A;R)u ⊆ MBΓ(BΓ(Λ;1);R)
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so that Γ= BΓ(BΓ(Λ;1);R) Therefore we obtain

Radius(Γ) ≤ Radius(BΓ(Λ;1))+R ≤ K +Radius(MΓ)

which completes the proof.

Theorem 5.9.6. Let Γ be a finite simple graph that is not complete. Let MΓ =∗v,Γ(Mv ,τv )
be a graph product of II1-factors Mv that satisfy condition strong (AO) and have separable
predual. Then

Radius(Γ)−2 ≤ Radius(MΓ) ≤ max{2,Radius(Γ)}

In particular this holds true when MΓ is a graph products of hyperfinite II1-factors.

Proof. The upper bound is due to Proposition 5.9.4(2). To obtain the lower bound we
show that the condition of Proposition 5.9.5 is satisfied with constant K = 2. Let A ⊆ MΓ

be amenable and diffuse and such that A′ ∩ MΓ is non-amenable. By Theorem 5.5.15
we obtain A ≺MΓ MΛ for some non-empty subgraph Λ⊆ Γ with Link(Λ) non-empty. Let
v ∈ Link(Λ). Then Λ⊆ Link(v). Hence, BΓ(Λ;1) equals BΓ(v,2) and has radius at most 2.
This proves the lower bound.

Remark 5.9.7. We use Theorem 5.9.6 to distinguish certain von Neumann algebras com-
ing from graph products. Indeed, let Γ and Λ be finite, graphs with 2 ≤ Radius(Γ) <
Radius(Λ)−2. Let MΓ =∗v,Γ(Mv ,τv ) and NΛ =∗v,Λ(Nv ,τv ) be graph products of factors
Mv , Nv satisfying the conditions from Theorem 5.9.6. Then we obtain

Radius(MΓ) ≤ Radius(Γ) < Radius(Λ)−2 ≤ Radius(NΛ)

Thus, in particular MΓ ̸≃ NΛ.

5.9.2. RADIUS ESTIMATES FOR GRAPH PRODUCTS GROUPS
We now show that the statement of Theorem 5.9.6 also holds true when the vertex von
Neumann algebras Mv are group von Neumann algebras L (Gv ) of countable icc groups
(Theorem 5.9.11). We state the following definitions.

Definition 5.9.8. Let G be a countable discrete group and let S be a family of subgroups
of G. Then a subset F ⊆G is called small relative to S if

F ⊆
k⋃

i=1
gi Gi hi

for some k ≥ 1, groups G1, . . . ,Gk ∈S and elements g1, . . . , gk ,h1, . . . ,hk ∈G.

Definition 5.9.9. Let G be a countable discrete group and let S be a family of subgroups
of G. Let V ⊆L (G) be a norm bounded subset. We write

V ⊆approx L (S )

if for every ϵ> 0 there is a subset F ⊆G that is small relative to S and satisfies for all v ∈V
that ∥v −PF (v)∥2 ≤ ϵ (here PF : ℓ2(G) → ℓ2(F ) denotes the orthogonal projection).
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The following proposition is similar to [CSS18, Claim 6.15] and follows from the re-
sults in [Vae13]. In the proof we write (B)1 for the closed unit ball of the von Neumann
algebra B .

Proposition 5.9.10. Let Γ be a finite simple graph and for v ∈ Γ let Gv be a countable
icc group. Let GΓ = ∗v,ΓGv be the graph product and let B ⊆ L (GΓ) be a von Neumann
subalgebra for which B ′∩L (GΓ) is a factor. Let {Λi }i∈I be a collection of subgraphs of Γ
and letΛ=⋂

i Λi be their intersection. If B ≺L (GΓ) L (GΛi ) for all i then B ≺L (GΓ) L (GΛ)

Proof. Assume B ≺L (GΓ) L (GΛi ) for i ∈ I . We show B ≺L (GΓ) L (GΛ). For i ∈ I we can
by [Vae13, Lemma 2.5] obtain a non-zero projection qi ∈ B ′∩L (GΓ) such that for Si :=
{GΛi } we have

(B qi )1 ⊂approx L (Si )

Moreover, by [Vae13, Proposition 2.6] we may assume qi ∈ Z(NorL (GΓ)(B)′′). Note that

qi ∈ Z(NorL (GΓ)(B)′′)∩ (B ′∩L (GΓ)) ⊆ Z(B ′∩L (GΓ)) =C1 (5.46)

Thus qi = 1. Denote
S = {

⋂
i∈I

hi GΛi h−1
i | hi ∈GΓ for i ∈ I }.

From [Vae13, Lemma 2.7] it follows that (B)1 ⊂approx L (S ). Then from [AM15, Proposi-
tion 3.4] for each (hi )i∈I ,hi ∈GΓ there is a subgraphΛ0 ⊆Λ and k ∈GΓ such that⋂

i∈I
hi GΛi h−1

i = kGΛ0 k−1 ⊆ kGΛk−1.

Thus, putting S0 = {GΛ} it follows that (B)1 ⊆approx L (S0) and hence by [Vae13, Lemma
2.5] we obtain B ≺L (GΓ) L (GΛ).

Theorem 5.9.11. Let Γ be a finite simple graph that is not complete. For v ∈ Γ let Gv be a
countable icc group. Let GΓ =∗v,ΓGv be the graph product. Then

Radius(Γ)−2 ≤ Radius(L (GΓ)) ≤ max{2,Radius(Γ)}

Proof. The upper bound on Radius(L (GΓ)) follows immediately from Proposition 5.9.4
since L (Gv ) is a II1-factor for v ∈ Γ. To prove the lower bound we show the condition of
Proposition 5.9.5 is satisfied with K = 2. Put Mv = L (Gv ) and let MΓ = ∗v,Γ(Mv ,τv ) =
L (GΓ) be the graph product. Let R ⊆ MΓ be an amenable II1-factor for which R ′ ∩
MΓ is a non-amenable factor. We need to show that R ≺MΓ MΛ for some Λ ⊆ Γ with
Radius(BΓ(Λ;1)) ≤ 2. Let I be the set of all vertices v inΓ for which NorMΓ (R)′′ is amenable
relative to MLinkΓ(v) inside MΓ. By Theorem 5.4.8 we obtain that NorMΓ (R)′′ is amenable
relative to MLinkΓ(I ) inside MΓ. Since NorMΓ (R)′′ is non-amenable (as it contains R ′ ∩
MΓ), we obtain that LinkΓ(I ) is non-empty. Let w ∈ LinkΓ(I ). Then I ⊆ BΓ(w ;1) so that
BΓ(I ;1) ⊆ BΓ(w,2). Thus since w ∈ BΓ(I ;1) we see that BΓ(I ;2) has radius at most 2.

Now let J ⊆ Γ be the set of all v ∈ Γ for which R ≺MΓ MΓ\{v}. Then since R ′∩L (GΓ) is
a factor we obtain by Proposition 5.9.10 that R ≺MΓ MΓ\J . Now, if Γ\ J ⊆ I then R ≺MΓ MI

which shows that we may take Λ= I . Thus assume Γ\ J ̸⊆ I . Take v ∈ Γ\ J with v ̸∈ I . We
can decompose

MΓ = MStar(v) ∗MLink(v) MLink(v).

Since R is amenable we get by Theorem 5.6.3 that at least one of the following holds true
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1. R ≺MΓ MLink(v)

2. NorMΓ (R)′′ ≺MΓ MStar(v) or NorMΓ (R)′′ ≺MΓ MΓ\{v}.

3. NorMΓ (R)′′ is amenable relative to MLink(v) inside MΓ.

Since v is not in I ∪ J we must have that R ≺MΓ MLink(v) or NorMΓ (R)′′ ≺MΓ MStar(v). Thus
in particular we obtain R ≺MΓ MStar(v). Observe that BΓ(Star(v);1) has radius at most 2.
Hence we may takeΛ := Star(v). This finishes the proof.

5.10. DISCUSSION
We discuss problems concerning rigidity of graph products and state a conjecture. In
Theorem 5.5.19 we obtained rigidity for graph products when the vertex algebras Mv lie
in the class CVertex and the graph Γ is rigid. We can not apply Theorem 5.5.19 to graph
products RΓ = ∗v,Γ(Rv ,τv ) of hyperfinite II1-factors since Rv ̸∈ CVertex. In fact, the result
of Theorem 5.5.19 for hyperfinite II1-factors does not even hold true since RΓ = RΛ for
any complete graphs Γ, Λ (which are rigid). We are interested to know for what class S

of graphs we can distinguish RΓ from RΛ.

Problem 5.10.1. Describe a class of finite graphs S such that:

1. Let Γ,Λ ∈ S and let RΓ = ∗v,Γ(Rv ,τv ) and RΛ = ∗v,Λ(Rv ,τv ) be tracial graph prod-
ucts of hyperfinite II1-factors. If RΓ ≃ RΛ then Γ≃Λ.

2. Let Γ be any finite graph. Then there is a graph Λ ∈ S such that the tracial graph
products RΓ = ∗v,Γ(Rv ,τv ) and RΛ = ∗v,Λ(Rv ,τv ) of hyperfinite II1-factors are iso-
morphic.

Observe that Problem 5.10.1 is very hard. Indeed, for a finite graph Γ with no edges
we have by [Dyk94] that RΓ =L (Fn) whenever n := |Γ| ≥ 2. Thus, to solve Problem 5.10.1
one would first have to solve the free factor problem. To simplify Problem 5.10.1 we
may remove condition (2) and loosely require the class S to be sufficiently large. In
Remark 5.9.7 we were already able to distinguish graph products RΓ and RΛ based on
the radius of the graphs Γ and Λ. Furthermore, as we show in the next remark, Theo-
rem 5.5.19 can be used to distinguish certain graph products of hyperfinite II1-factors.

Remark 5.10.2. Let Γi for i = 1,2 be a rigid graph. For i = 1,2 and v ∈ Γi let Λv,i be a
graph of size nv,i := |Λv,i | ≥ 2 and with no edges. LetΛΓi =∗v,ΓiΛv,i be the graph product
graph. Observe that RΛΓi

= ∗v,Γi (RΛv,i ,τ) = ∗v,Γi (L (Fnv,i ),τ). Therefore, if RΛΓ1
≃ RΛΓ2

then by Theorem 5.5.19 we obtain Γ1 ≃ Γ2 since Γi is rigid and L (Fnv,i ) ∈ CVertex for
i = 1,2, v ∈ Γi . This shows that RΛΓ1

̸≃ RΛΓ2
whenever Γ1 ̸≃ Γ2.

In the following remark we show a difficulty that can arise.

Remark 5.10.3. Let Γ be a graph whose two irreducible components Γ1 and Γ2 are graphs
with no edges and of size |Γ1| = |Γ2| = 3. Similar, let Λ be a graph whose two irreducible
components Λ1 and Λ2 are graphs with no edges and of size |Λ1| = 2 and |Λ2| = 5. While
Γ ̸≃Λwe see using the amplifcation formula (1.8) from [Răd94] that

RΓ =L (F3)⊗L (F3) =L (F3)
p

2 ⊗L (F3)1/
p

2 =L (F2)⊗L (F5) = RΛ
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Say that a finite graph Γ is graph product prime (gpp) if, whenever Γ ≃ ∗v,ΠΛv for
some graphΠ and non-empty graphs (Λv )v∈Π, then either |Π| = 1 orΠ≃ Γ (but not both).
There are many examples of gpp graphs. For example, for n ≥ 5 the cyclic graph Zn of
size |Zn | = n is gpp. However, the class of gpp graphs is in some sense also restrictive.
Indeed, a gpp graph Γ is always connected and irreducible unless |Γ| = 2. We also note
that the graph Γ of size |Γ| = 1 is not gpp. We state the following problem.

Problem 5.10.4. Let Γ and Λ be finite, gpp graphs. Let RΓ = ∗v,Γ(Rv ,τv ) be the graph
product of hyperfinite II1-factors and let MΛ = ∗v,Λ(Mv ,τv ) be the graph product of ar-
bitrary II1-factors. Does RΓ ≃ MΛ imply that Γ≃Λ and Rv ≃ Mv for v ∈ Γ?

We note that an affirmative answer to Problem 5.10.4 would imply R ∗R ̸≃ R ∗L (F2)
which would already resolve the free factor problem. Therefore, we add a restriction and
state the following weaker conjecture which we believe is closer to the horizon.

Conjecture 5.10.5. The class of finite gpp graphs satisfies condition (1) of Problem 5.10.1.

We state another rigidity problem.

Problem 5.10.6. We observe that in Remark 5.9.7 we were able to retrieve the radius of the
graph Γ (up to constant) from the graph product MΓ without imposing any condition on
the II1-factors Mv , except that they are group von Neumann algebras. Such graph prod-
ucts MΓ can generally decompose as graph products in different ways. For example, this
is the case whenΓnon-trivially decomposes as a graph product of graphs. Thus while the
graph may generally not uniquely be retrieved from the graph product MΓ, we are able to
retrieve the radius (up to a constant). We wonder what other graph properties can be re-
trieved like this, without imposing strong conditions on the vertex algebras. In particular,
we ask whether, under some conditions, we can retrieve the diameter (length of largest
geodesic), or the girth (length of smallest cycle) of the graph from the graph product. We
note that, of course the diameter of the graph satisfies Radius(Γ) ≤ Diam(Γ) ≤ 2Radius(Γ)
hence can, up to a factor 2, be retrieved from the graph product in the setting of Theo-
rem 5.9.11. However we ask for a more precise estimate.

Last, we state a problem concerning strong solidity.

Problem 5.10.7. Let W = 〈S|M〉 be a Coxeter group and let q ∈ RS+ be a Hecke-tuple. We
ask if the Hecke-von Neumann algebra Nq(W ) is strongly solid. This question is an-
swered by Theorem 5.6.7 in the case W is right-angled (or a graph product of finite Cox-
eter groups), but it remains open for general Coxeter groups.



6
THE CCAP FOR GRAPH PRODUCTS

OF OPERATOR ALGEBRAS

For a simple graphΓ and for unital C*-algebras with GNS-faithful states (Av ,ϕv ) for v ∈ Γ,
we consider the reduced graph product (AΓ,ϕ) =∗min

v,Γ (Av ,ϕv ) , and show that if every C*-
algebra Av has the completely contractive approximation property (CCAP) and satisfies
some additional condition, then the graph product has the CCAP as well. The additional
condition imposed is satisfied in natural cases, for example for the reduced group C*-
algebra of a discrete group G that possesses the CCAP.

This result is an extension of the result of Ricard and Xu in [RX06, Proposition 4.11]
where they prove this result under the same conditions for free products. Moreover, our
result also extends the result of Reckwerdt in [Rec17, Theorem 5.5], where he proved
for groups that weak amenability with Cowling-Haagerup constant 1 is preserved under
graph products. Our result further covers many new cases coming from Hecke-algebras
and discrete quantum groups.

The content of this chapter is based on the paper:

• Matthijs Borst, The CCAP for graph products of operator algebras, Journal of Func-
tional Analysis 286.8 (2024) 110350.

6.1. INTRODUCTION
In this chapter we study the CCAP and weak-∗ CCAP for operator algebraic graph prod-
ucts. In the setting of groups, graph products were introduced by Green in [Gre90]. They
preserve many interesting properties like: soficity [CHR14], residual finiteness [Gre90],
rapid decay [CHR11] and other properties, see [AM15; Chi12; HM95; HW99]. In particu-
lar, approximation properties like the Haagerup property [AD14] and weak-amenability
with constant 1 [Rec17] are also preserved by graph products of groups.
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Graph products of operator algebras were introduced in [CF17] by Caspers and Fima.
In their paper, they also showed stability of exactness (for C*-algebras), Haagerup prop-
erty, II1-factoriality (for von Neumann algebras) and rapid decay (for certain discrete
quantum groups) under graph products. Also, in [Cas16] it was proven that embeddabil-
ity is preserved under graph products.

The notion of weak amenability for groups originates from the work of Haagerup
[Haa78], De Cannière-Haagerup [CH85] and Cowling-Haagerup [CH89]. The correspond-
ing notion for unital C*-algebras is given by the completely bounded approximation
property (CBAP) in the sense that a discrete group is weakly amenable if and only if its
reduced group C*-algebra possesses the CBAP. We say that a C*-algebra A has the CBAP
if there exists a net of completely bounded maps Vn : A → A that are finite rank, con-
verge to the identity in the point-norm topology and such that supn ∥Vn∥cb ≤Λ<∞ for
some constant Λ. The minimal such Λ is called the Cowling-Haagerup constant. If the
Cowling-Haagerup constant is 1, then we say that A has the completely contractive ap-
proximation property (CCAP).

Weak amenability and the CBAP/CCAP play a crucial role in functional analysis and
operator algebras. Already in case of the group G =Z weak amenability allows, in a way,
to approximate a Fourier series by its partial sums. In operator space theory the CBAP
has led to a deep understanding of several group C*- and von Neumann algebras. Already
the results by Cowling and Haagerup [CH89] allow for the distinction of group von Neu-
mann algebras of lattices in the Lie groups Sp(1,n),n ≥ 2. Later, Ozawa and Popa used
the (weak-∗) CCAP in deformation/rigidity theory of von Neumann algebras [OP10a].
Much more recently also graph products have appeared in the deformation-rigidity pro-
gramme, see e.g. [Cas20], [CE23], [CDD22],[DE24a]. This line of investigation, especially
beyond the realm of group algebras, motivates the study of the CCAP for general graph
products.

In this chapter we are concerned with showing that the CCAP is preserved under
graph products. While we are not able to show this in full, we prove this under a mild
extra condition on the algebras (Av ,ϕv ), similar to the one imposed by [RX06] for prov-
ing the same result for free products. The conditions that we impose are stated in Sec-
tion 6.5, and we abbreviate them by saying that the algebra has a u.c.p extension for the
CCAP. This condition is satisfied by many natural unital C*-algebras, under which finite-
dimensional ones (with a GNS-faithful state), reduced C*-algebras of discrete groups
(with the Plancherel state) that possess the CCAP [RX06], and reduced C*-algebras of
compact quantum groups (with the Haar state) whose discrete dual quantum group is
weakly amenable with Cowling-Haagerup constant 1 [Fre12]. Our main result is the fol-
lowing:

Theorem O (Theorem 6.5.2). Let Γ be a simple graph and for v ∈ Γ let (Av ,ϕv ) be unital
C*-algebras that have a u.c.p. extension for the CCAP. Then the reduced graph product
(AΓ,ϕ) =∗min

v,Γ (Av ,ϕv ) has the CCAP.

Along the way we also obtain the following result for von Neumann algebras.
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Theorem P (Corollary 6.3.4). Let Γ be a simple graph and for v ∈ Γ let Mv be a finite-
dimensional von Neumann algebra together with a normal faithful state ϕv . Then the
von Neumann algebraic graph product (MΓ,ϕ) =∗v,Γ(Mv ,ϕv ) has the weak-∗ CCAP.

The method for proving above results is, on a large scale, similar to [RX06]. However,
at most points, the proofs get more involved in order to work for graph products. This
becomes most clear in Section 6.2, where we have to use different methods to show the
completely boundedness of the word-length projection maps PΓ,d : AΓ→ AΓ that project
on AΓ,d , the homogeneous subspace of order d . For these maps we show for d ≥ 1 the lin-
ear bound ∥PΓ,d∥cb ≤CΓd , where CΓ is some constant only depending on the graph Γ. In
Section 6.3 we show that the graph product map θ of state-preserving u.c.p. maps θv on
unital C*-algebras Av , is again a state-preserving u.c.p. map on the reduced graph prod-
uct AΓ. Together with our bound on ∥PΓ,d∥cb we are then able to show the preliminary
result, Corollary 6.3.4, that, when all C*-algebras, respectively von Neumann algebras,
are finite-dimensional, the reduced graph product has the CCAP, respectively the weak-∗
CCAP. In Section 6.4 we consider the same problem as in Section 6.3, but now for state-
preserving completely bounded maps. We show that the graph product map T of state-
preserving completely bounded maps Tv defines a completely bounded map, when re-
stricted to a homogeneous subspace AΓ,d (i.e. Td := T |AΓ,d is completely bounded). In
order to do this we consider the operator spaces Xd from [CKL21] (analogous to [RX06])
and use the Khintchine type inequality [CKL21, Theorem 2.9] they proved. We moreover
construct other operator spaces X̃d and prove the ‘reversed’ Khintchine type inequality
(Theorem 6.4.2). Finally, in Section 6.5, using all our previous results, we are then able to
show the main result Theorem O (Theorem 6.5.2).

Our results extends [RX06] (as well as [Rec17]) in a natural way, and provides a uni-
fied approach to proving the CCAP and weak-∗ CCAP for various operator algebras.
Specifically, Theorem P can be applied to the von Neumann algebraic graph product
∗v,ΓNqv (Wv ) of Hecke-algebras of finite Coxeter groups. Such a graph product is itself
a Hecke-algebra, and by the result we obtained, possesses the weak-∗ CCAP. This result
is new, and was previously only known, by [Cas20, Theorem A], for the case that Wv is
right-angled for all v . Furthermore, the main theorem, Theorem O, can be applied to
give new examples of C*-algebras that posses the CCAP, for example the graph product
∗min

v,Γ (Av ,ϕv ), where some algebras Av are finite-dimensional, and others are reduced

group C*-algebras of discrete groups that posses the CCAP.

6.2. POLYNOMIAL GROWTH OF WORD-LENGTH PROJECTIONS

In this section we shall fix a simple finite graph Γ, together with unital C*-algebras Av

for v ∈ Γ and states ϕv on Av for which the GNS representation is faithful. We shall look
at the reduced graph product (AΓ,ϕ) = ∗min

v,Γ (Av ,ϕv ) and investigate for d ≥ 0 the natu-
ral projections PΓ,d : AΓ → AΓ,d . The main result of this section, Theorem 6.2.10, is that
these maps are completely bounded, and that we can obtain a bound on ∥PΓ,d∥cb that
depends only linearly on d . To prove this, we can not use the same method as [RX06],
since that relies on the fact that each element either does not act diagonally on a pure
tensor η ∈ H̊v ⊆ HΓ, or acts diagonally on η on precisely one letter. This holds true for
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elements in the free product, but not generally for elements in the graph product, as
they may act diagonally on any clique. Therefore, we will instead introduce completely
contractive maps Hτ (and completely bounded maps H̃ρ) and write PΓ,d as linear com-
bination of these. For this we have to do some technical graph product computations.

6.2.1. THE MAPS Hτ
We introduce some extra notation. Let WΓ be the right-angled Coxeter group associated
to the graph Γ. Recall, for a word w ∈ WΓ we defined sl (w) and sr (w) as the maximal
clique words that w respectively starts with and ends with. Recall that for a word u ∈WΓ,
we defined

W (u) = {w ∈WΓ : |uw| = |u|+ |w|} W ′(u) = {w ∈WΓ : |wu| = |w|+ |u|}

For n ≥ 0, u ∈WΓ we now define

W̃ (u) = {w ∈W (u) : sl (uw) = sl (u)} W̃ ′(u) = {w ∈W ′(u) : sr (wu) = sr (u)}

W̃n(u) = {w ∈ W̃ (u) : |w| = n} W̃ ′
n(u) = {w ∈ W̃ ′(u) : |w| = n}.

Now, let u ∈WΓ and let uL ,uR ∈WΓ be s.t. |u| = |uu−1
L |+ |uL | and |u| = |uR |+ |u−1

R u|, i.e. uL

is some word that u ends with and uR is some word that u starts with. Then we have for
wL ∈ W (u) and wR ∈ W ′(u) that uLwL and wR uR are reduced expressions. Let n ≥ 0. We
define

H (u,uL) = ⊕
w∈W (u)

H̊uL w H ′(u,uR ) = ⊕
w∈W ′(u)

H̊wuR

H̃ (u,uL) = ⊕
w∈W̃ (u)

H̊uL w H̃ ′(u,uR ) = ⊕
w∈W̃ ′(u)

H̊wuR

H̃n(u,uL) = ⊕
w∈W̃n (u)

H̊uL w H̃ ′
n(u,uR ) = ⊕

w∈W̃ ′
n (u)

H̊wuR .

For u ∈WΓ and n ≥ 0 we moreover define

H̃n(u) = ⊕
w1∈W̃ ′

n (u)
w2∈W (u)

H̊w1uw2 .

We note that for w1 ∈ W̃ ′
n(u) and w2 ∈W (u) we have that w1uw2 is a reduced expression.

Indeed, it is clear that w1u and uw2 are reduced by definition. Now, since moreover
sr (w1u) = sr (u), we have that no letter from w1 can cancel out a letter of w2, so that the
expression is reduced.

Definition 6.2.1. Let u ∈WΓ and let r ∈WΓ be any clique word that u ends with. Then ur is
a word in WΓ that u starts with, and |ur|+ |r| = |u|. For n ≥ 0 we define a partial isometry
V u,r

n : HΓ⊗HΓ→HΓ with initial subspace H̃ ′
n(u,ur)⊗H (u,r) and final subspace H̃n(u)

as

V u,r
n |H̊vr ur⊗H̊rvt ai l

=Q(vr ur,rvt ai l ) for vr ∈ W̃ ′
n(u),vt ai l ∈W (u).
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We note that this is well-defined. Indeed, as just pointed out, for vr ∈ W̃ ′
n(u) and

vt ai l ∈ W (u) we have that vr uvt ai l is reduced. Therefore, we get |vr uvt ai l | ≤ |vr ur| +
|rvt ai l | ≤ |vr |+ |ur|+ |r|+ |vt ai l | = |vr |+ |u|+ |vt ai l | = |vr uvt ai l |. This shows that |vr ur|+
|rvt ai l | = |vr uvt ai l |, so that Q(vr ur,rvt ai l ) is well-defined.

Definition 6.2.2. We denote

TΓ =
{

(ul ,ur ,t) ∈W 3
Γ

∣∣∣∣ ul t,tur clique words,
ul tur reduced

}
.

We remark that it follows from the definition that ul ,ur and t must also be clique words
and that ul ur must be reduced.

Definition 6.2.3. Let (ul ,ur ,t) ∈ TΓ. Also let r ∈ WΓ be a sub-clique word of t and let
nl ,nr ≥ 0. For the tuple τ= (nl ,nr ,ul ,ur ,t,r) define a map Hτ : B(HΓ) → B(HΓ) as

Hτ(a) =V (ul t),r
nl

(a ⊗ IdHΓ )
(
V (ur t),r

nr

)∗
.

It is clear that Hτ is completely contractive.

Example 6.2.4. We note that the partial isometry V e,e
0 : HΓ⊗HΓ → HΓ has initial sub-

space H̃ ′
0(e,e)⊗H (e,e) =CΩ⊗HΓ and final subspace H̃0(e) =HΓ and that onCΩ⊗HΓ

it is given by V e,e
0 (zΩ⊗ η) = zη for z ∈ C, η ∈ HΓ. Setting τ = (0,0,e,e,e,e) and let-

ting a ∈ AΓ be a pure tensor a = a1 ⊗ ·· · ⊗ at , we can for η ∈ HΓ calculate Hτ(λ(a))η =
V e,e

0 (λ(a)Ω⊗ η). Now, if λ(a)Ω ̸∈ CΩ, then we get Hτ(λ(a))η = 0. On the other hand,
if â = λ(a)Ω ∈ CΩ, then we must have that λ(a) ∈ C IdHΓ and we get Hτ(a)η = aη. We
conclude that PΓ,0 = H(0,0,e,e,e,e) and ∥PΓ,0∥cb = 1.

Similarly to Example 6.2.4, we aim to write PΓ,d for d ≥ 1 as a linear combination
of Hτ’s for different tuples τ, in order to give a bound on ∥PΓ,d∥cb. To achieve this, we
introduce some convenient notation.

Definition 6.2.5. Let H1 and H2 be closed subspaces of HΓ. For an operator b ∈ B(HΓ)
we define a closed subspace Jb(H1,H2) of HΓ as

Jb(H1,H2) = {η ∈H1|bη ∈H2}.

Recall that for w ∈WΓ we defined in Definition 3.1.5 the set of triple splittings

Sw =
 (w1,w2,w3) ∈W 3

Γ

∣∣∣∣∣∣
w = w1w2w3

w2 is a clique word
|w| = |w1|+ |w2|+ |w3|


and also put SΓ = ⋃

w∈WΓ Sw. Recall also for ω ∈ SΓ that in Definition 3.1.3 we defined
the annihilation/diagonal/creation operator λω. We prove the following proposition.

Proposition 6.2.6. Let (ul ,ur ,t) ∈ TΓ. Also let r ⊆ t be a sub-clique, and let nl ,nr ≥ 0.
Set τ = (nl ,nr ,ul ,ur ,t,r). For w ∈ WΓ and ω = (w1,w2,w3) ∈ Sw and for pure tensor a =
a1 ⊗·· ·⊗at ∈ Åw we have that

Hτ(λω(a)) =λω(a)Pa(τ,ω)
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where Pa(τ,ω) is the projection in B(HΓ) on the closed subspace spanned by⋃
vl∈W̃ ′

nl
(ul t),vr ∈W̃ ′

nr (ur t)

vt ai l∈W (ul t)∩W (ur t)
|vr ur tr|=|w2w3|+|w2w3vr ur tr|

|w1w3vr ur tvt ai l |=|w1|+|w3vr ur tvt ai l |

Jλω(a)(H̊vr ur tvt ai l ,H̊vl ul tvt ai l ).

Proof. We show that the identity holds on pure tensors. First, let v ∈WΓ and let η ∈ H̊v ⊆
HΓ be a pure tensor s.t. λω(a)Pa(τ,ω)η= 0. If η⊥ H̃nr (ur t), then clearly (V ur t,r

nr
)∗η= 0 so

that Hτ(λω(a))η= 0 =λω(a)Pa(τ,ω)η, and we are done. Thus, assume that η ∈ H̃nr (ur t)
and η ̸= 0, so that η ∈ H̊vr ur tvt ai l for some vr ∈ W̃ ′

nr
(ur t), vt ai l ∈ W (ur t). Let us write

V ur t,r∗
nr

η= η1⊗η2 with η1 ∈ H̊vr ur tr, η2 ∈ H̊rvt ai l . Then Hτ(λω(a))η=V ul t,r
nl

(λω(a)η1⊗η2).

We can assume that 0 ̸= λω(a)η1 ∈ H̃ ′
nl

(ul t,ul tr) and η2 ∈ H (ul t,r) since otherwise we

find directly Hτ(λω(a))η = 0. Now we thus have that λω(a)η1 ∈ H̊vl ul tr for some vl ∈
W̃ ′

nl
(ul t) and that η2 ∈ H̊rv′t ai l

for some v′t ai l ∈Wnr (ul t).

As η2 is non-zero, and as η2 ∈ H̊rvt ai l ∩ H̊rv′t ai l
we find that vt ai l = v′t ai l ∈ W (ul t)∩

W (ur t). Also, since η1 ∈ H̊vr ur tr we find by Lemma 3.1.4 that λω(a)η1 ∈ H̊w1w3vr ur tr.
Now, we already had λω(a)η1 ∈ H̊vl ul tr and by the assumption that λω(a)η1 is non-zero,
we thus find vl ul tr = w1w3vr ur tr. Moreover, as λω(a)η1 is non-zero, we must have that
|vr ur tr| = |w2w3|+ |w2w3vr ur tr| and |w1w3vr ur tr| = |w1|+ |w3vr ur tr|.

Set v1 = vr ur tr and v2 = rvt ai l , so that |v1v2| = |v1|+ |v2|, and by the above

|v1| = |w2w3|+ |w2w3v1| (6.1)

|w1w3v1| = |w1|+ |w3v1| (6.2)

Moreover, we now find

|w1w3v1v2| ≤ |w1|+ |w3v1v2|
≤ |w1|+ |w3v1|+ |v2|
= |w1w3v1|+ |v2|
= |w1w3vr ur tr|+ |rvt ai l |
= |vl ul tr|+ |rvt ai l |
= |vl ul tvt ai l |
= |w1w3vr ur tvt ai l |
= |w1w3v1v2|.

This shows that

|w1w3v1v2| = |w1|+ |w3v1v2| (6.3)

Now as η ∈ H̊v1v2 , and as all conditions of Lemma 3.1.8(3) are satisfied, this gives us

Hτ(λω(a))η=V ul t,r
nl

(λω(a)η1 ⊗η2)

=Q(w1w3v1,v2)(λω(a)η1 ⊗η2)

=λω(a)Q(w1w3v1,v2)(η1 ⊗η2)

=λω(a)η.
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By Lemma 3.1.4 λω(a)η ∈ H̊w1w3v1v2 = H̊vl ul tvt ai l , thus η ∈Jλω(a) (H̊vl ul tvt ai l ,H̊vr ur tvt ai l ).
By all the conditions we have shown for vl ,vr ,vt ai l , and as we have shown that |v1| =
|w2w3| + |w2w3v1| (Equation (6.1)) and |w1w3v1v2| = |w1| + |w3v1v2| (Equation (6.3)) it
follows that Pa(τ,ω)η= η. We conclude that Hτ(λω(a))η=λω(a)η=λω(a)Pa(τ,ω)η.

Alternatively, let η ∈ H̊v ⊆ HΓ be a pure vector s.t. λω(a)Pa(τ,ω)η ̸= 0. Then we
must have that Pa(τ,ω)η= η and moreover that λω(a)η is non-zero. We thus get that η ∈
Jλω(a)(H̊vr ur tvt ai l ,H̊vl ul tvt ai l ) with vl ∈ W̃ ′

nl
(ul t), vr ∈ W̃ ′

nr
(ur t), vt ai l ∈ W (ur t)∩W (ul t)

and so that

|vr ur tr| = |w2w3|+ |w2w3vr ur tr|
|w1w3vr ur tvt ai l | = |w1|+ |w3vr ur tvt ai l |.

Set v1 = vr ur tr and v2 = rvt ai l , so that |v1v2| = |v1|+ |v2|. Moreover the above equations
state that |v1| = |w2w3|+ |w2w3v1| and |w1w3v1v2| = |w1|+ |w3v1v2|. As η ∈ H̊vr ur tvt ai l ⊆
H̃nr (ur t), we can write V ur t,r∗

nr
η= η1 ⊗η2 ∈ H̊vr ur tr ⊗H̊rvt ai l = H̊v1 ⊗H̊v2 . By the above

properties we get from Lemma 3.1.8(3) that

λω(a)η=Q(w1w3v1,v2)(λω(a)η1 ⊗η2) ∈ H̊w1w3v1v2 .

However, we also know that λω(a)η ∈ H̊vl ul tvt ai l . Therefore, as λω(a)η is non-zero we
find vl ul tvt ai l = w1w3v1v2 = w1w3vr ur tvt ai l . We thus find vl ul tr = w1w3vr ur tr = w1w3v1,
and hence λω(a)η1 ∈ H̊w1w3v1 = H̊vl ul tr ⊆ H̃ ′

nl
(ul t,ul tr). Note that η2 ∈H (ul t,r) by the

assumption on vt ai l . Hence, as λω(a)η1 ⊗η2 ∈ H̃ ′
nl

(ul t,ul tr)⊗H (ul t,r) we find that

Hτ(λω(a))η=V ul t,r
nl

(λω(a)η1 ⊗η2)

=Q(w1w3v1,v2)(λω(a)η1 ⊗η2)

=λω(a)η

=λω(a)Pa(τ,ω)η

which proves the statement.

6.2.2. THE MAPS H̃ρ

We shall now introduce other maps, H̃ρ , that are linear combinations of the maps Hτ

for different τ’s, and that satisfy a nice equation. We use these maps to show that PΓ,d is
completely bounded, and give a bound on ∥PΓ,d∥cb.

Definition 6.2.7. Let nl ,nr ≥ 0 and (ul ,ur ,t) ∈ TΓ. For w ∈ WΓ and for the tuple ρ =
(nl ,nr ,ul ,ur ,t) define the set

Sw(ρ) =
{

(w1,w2,w3) ∈Sw

∣∣∣∣ w1 = vl ul ,w2 = t and w3 = u−1
r v−1

r

for some vl ∈ W̃ ′
nl

(ul t),vr ∈ W̃ ′
nr

(ur t)

}
.

Also denote |ρ| := nl +|ul |+ |t|+ |ur |+nr .
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Remark 6.2.8. We note that we can partition Sw as {Sw(ρ)}|ρ|=|w| where we run over
all tuples ρ = (nl ,nr ,ul ,ur ,t) for nl ,nr ≥ 0, (ul ,ur ,t) ∈ TΓ with |ρ| = |w|. Indeed, if
(w1,w2,w3) ∈ Sw(ρ) then w1 = vl ul , w2 = t, w3 = u−1

r v−1
r for some vl ∈ W̃ ′

nl
(ul t) and

vr ∈ W̃ ′
nr

(ur t) and we obtain that t = w2, ul = (ul t)t = sr (vl ul t)t = sr (w1w2)w2 and ur =
(ur t)t = sr (vr ur t)t = sr (w−1

3 w2)w2 and nl = |w1| − |ul | = |w1| − |sr (w1w2)w2| and nr =
|w3| − |ur | = |w3| − |sr (w−1

3 w2)w2|. Since we can retrieve ρ from (w1,w2,w3), this shows
the sets Sw(ρ) are disjoint.

Now let (w1,w2,w3) ∈Sw and set t := w2, ul := sr (w1t)t, ur := sr (w−1
3 t)t. Then ul t and

tur are clique words and

|w| ≤ |w1w2sr (w1w2)|+ |sr (w1w2)w2sl (w2w3)|+ |sl (w2w3)w2w3|
= (|w1w2|− |sr (w1w2)|)+|ul tur |+ (|w2w3|− |sl (w2w3)|)
= |w|+ |ul tur |− |sr (w1w2)|+ |w2|− |sl (w2w3)|
= |w|+ |ul tur |− |sr (w1w2)w2|− |w2|− |sl (w2w3)w2|
= |w|+ |ul tur |− |ul |− |t|− |ur |
≤ |w|.

Thus all inequalities must be equalities and we get |ul tur | = |ul | + |t| + |ur | so ul tur is
reduced. This shows (ul ,ur ,t) ∈ TΓ. Now, set nl := |w1| − |ul | ≥ 0, nr := |w3| − |ur | ≥ 0.
Then we have vl := w1u−1

l ∈ W̃ ′
nl

(ul t) and vr := w−1
3 u−1

r ∈ W̃ ′
nr

(ur t). Set ρ = (nl ,nr ,ul ,ur ,t)
and observe that |ρ| = nl +|ul tur |+nr = |w1|+|w2|+|w3| = |w|. Now, as w1 = vl ul , w2 = t
and w3 = u−1

r v−1
r we obtain (w1,w2,w3) ∈Sw(ρ). This proves the claim.

Proposition 6.2.9. For nl ,nr ≥ 0 and (ul ,ur ,t) ∈TΓ define for the tupleρ = (nl ,nr ,ul ,ur ,t)
an operator H̃ρ : B(HΓ) → B(HΓ) as

H̃ρ =
∑
r⊆t

(−1)|r|H(nl ,nr ,ul ,ur ,t,r).

Then we have for w ∈WΓ, ω ∈Sw and a ∈ AΓ that

H̃ρ(λω(a)) =
{
λω(a) if ω ∈Sw(ρ)

0 else
. (6.4)

Proof. Let w ∈ WΓ, ω ∈ Sw and let a = a1 ⊗ ·· · ⊗ at ∈ AΓ be a pure tensor. By Proposi-
tion 6.2.6 we have

H̃ρ(λω(a)) = ∑
r⊆t

(−1)|r|λω(a)Pa((ρ,r),ω).

Let v ∈ WΓ and let η ∈ H̊v ⊆ HΓ be a pure tensor. If λω(a)η = 0, then it is clear that
H̃ρ(λω(a))η = 0, so that Equation (6.4) applied to η holds in either case. Thus assume
λω(a)η ̸= 0. Let Iη,ω be the set of all sub-clique words r ⊆ t s.t. Pa((ρ,r),ω)η= η, that is

Iη,ω = {r ⊆ t|Pa((ρ,r),ω)η ̸= 0}.

We prove the proposition using the following steps.
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1) We prove that Iη,ω is closed under taking sub-cliques. Let r1 ⊆ r2 ⊆ t, and suppose

that r2 ∈ Iη,ω. Then we must have η ∈ Jλω(a)(H̊vr ur tvt ai l ,H̊vl ul tvt ai l ) with vl ∈ W ′
nl

(ul t),
vr ∈ W ′

nr
(ur t) and vt ai l ∈ W (ul t)∩W (ur t), and |vr ur tr2| = |w2w3| + |w2w3vr ur tr2| and

|w1w3vr ur tvt ai l | = |w1|+ |w3vr ur tvt ai l |. This means that also

|vr ur t| ≤ |vr ur tr1|+ |r1|
≤ |w1w2|+ |w1w2vr ur tr1|+ |r1|
≤ |w1w2|+ |w1w2vr ur tr2|+ |r2r1|+ |r1|
= |vr ur tr2|+ |r2|
= |vr ur t|

and so |vr ur tr1| = |w1w2|+|w1w2vr ur tr1|. This shows Pa((ρ,r1),ω)η= η, hence r1 ∈Iη,ω.

2) We prove that Iη,ω is closed under taking unions. Let r1,r2 ⊆ t be sub-cliques with
r1,r2 ∈ Iη,ω. Then Pa((ρ,r1),ω)η = Pa((ρ,r2),ω)η = η. Moreover, by previous step we

moreover have Pa((ρ,e),ω)η = η. We must now have η ∈ Jλω(a)(H̊vr ur tvt ai l ,H̊vl ul tvt ai l )
with vl ∈ W̃ ′

nl
(ul t), vr ∈ W̃ ′

nr
(ur t) and vt ai l ∈ W (ul t) ∩W (ur t), and |w1w3vr ur tvt ai l | =

|w1|+ |w3vr ur tvt ai l | and moreover

|vr ur t| = |w2w3|+ |w2w3vr ur t| (6.5)

|vr ur tr1| = |w2w3|+ |w2w3vr ur tr1| (6.6)

|vr ur tr2| = |w2w3|+ |w2w3vr ur tr2|. (6.7)

Now we note that also |vr ur t| = |vr ur tr1|+ |r1| = |vr ur tr2|+ |r2|, hence

|w2w3vr ur t| = |w2w3vr ur tr1|+ |r1| = |w2w3vr ur tr2|+ |r2|.

As r1,r2 are cliques, this implies r1,r2 ⊆ sr (w2w3vr ur t) so that for r = r1 ∪ r2 it holds that
r ⊆ sr (w2w3vr ur t). But this implies

|w2w3vr ur t| = |w2w3vr ur tr|+ |r|.

Now, as also |vr ur t| = |vr ur tr|+|r|we find using (6.5) that |vr ur tr| = |w2w3|+|w2w3vr ur tr|.
It now directly follows that P ((ρ,r),ω)η= η. This shows that r ∈Iη,ω, and thus that Iη,ω

is closed under taking unions.

3) We prove the equation H̃ρ(λω(a))η = 1(Iη,ω = {e})λω(a)η. Here 1(Iη,ω = {e}) de-
notes 1 whenever Iη,ω = {e} is satisfied, and 0 otherwise. In the case that Iη,ω is empty
we directly find H̃ρ(λω(a))η= 0, so that the equation is satisfied. Thus assume that Iη,ω

is non-zero. Then as Iη,ω is closed under taking unions, there exists a maximal element
rη,ω ∈ Iη,ω. However, since Iη,ω is also closed under taking sub-cliques, we then find
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Iη,ω = {r ⊆ rη,ω}. We conclude that

H̃ρ(λω(a))η= ∑
r⊆t

(−1)|r|λω(a)Pa((ρ,r),ω)η

= ∑
r⊆rη,ω

(−1)|r|λω(a)η

=1(rη,ω = e)λω(a)η

=1(Iη,ω = {e})λω(a)η.

4) We will now show, for a pure tensor η ∈ H̊v ⊆HΓ with λω(a)η ̸= 0, that Iη,ω = {e} if
and only if ω ∈Sw(ρ). First, suppose that ω ∈Sw(ρ). Then we can write ω= (w1,w2,w3),
where w1 = vl ul and w2 = t and w3 = u−1

r v−1
r for some vl ∈ W̃ ′

nl
(ul t) and vr ∈ W̃ ′

nr
(ur t).

Then as λω(a)η ̸= 0, we must have that η ∈Jλω(a)(H̊vr ur tvt ai l ,H̊vl ul tvt ai l ) for some vt ai l ∈
W (ul t)∩W (ur t). It is clear that

|w1w3vr ur tvt ai l | = |vl ul tvt ai l |
= |vl ul |+ |tvt ai l |
= |w1|+ |w3vr ur tvt ai l |.

Moreover, as w2w3vr ur t ⊆ t it is also clear that |vr ur t| = |w2w3|+|w2w3vr ur t|. This shows
that Pa((ρ,e),ω)η= η, hence e ∈Iη,ω.

Now let r ⊆ t be a sub-clique with r ̸= e. Then we have w2w3vr ur tr = r. Hence, we
have

|vr ur tr|+ |r| = |vr ur t|
= |w2w3|+ |w2w3vr ur t|
= |w2w3|+ |w2w3vr ur tr|− |r|.

Now as r ̸= e we have |r| ≥ 1, which shows that |vr ur tr| ̸= |w2w3| + |w2w3vr ur tr|. This
proves that Pa((ρ,r),ω)η= 0. Thus r ̸∈Iη,ω. This shows Iη,ω = {e}.

Now, let ω ∈ Sw for some w ∈ WΓ be s.t. Iη,ω = {e}. Then P ((ρ,e),ω)η = η. Hence

η ∈Jλω(a)(H̊vr ur tvt ai l ,H̊vl ul tvt ai l ) for some vl ∈ W̃ ′(ul t), vr ∈ W̃ ′(ur t) and vt ai l ∈W (ul t)∩
W (ur t) and |w1w3vr ur tvt ai l | = |w1|+ |w3vr ur tvt ai l | and |vr ur t| = |w2w3|+ |w2w3vr ur t|.
Now as also λω(a)η ∈ H̊w1w3vr ur tvt ai l , and as λω(a)η ̸= 0, we have that w1w3vr ur tvt ai l =
vl ul tvt ai l . Hence, w1w3 = vl ul u−1

r v−1
r . Now, as Pa((ρ,r),ω)η = 0 for all r ⊆ t with r ̸= e,

we must have that sr (w2w3vr ur t)∩t = e. However, multiplying w2w3 with vr ur t removes
all letters from w2w3. This means that sr (w2w3vr ur t) ⊆ sr (vr ur t) = sr (ur t). Now we also
have

|vl ul t| ≤ |w2w−1
1 |+ |w2w−1

1 vl ul t|
= |w2w−1

1 |+ |vr ur t|− |w2w3|
≤ |w2w−1

1 |+ |w3vr ur t|− |w2|
= |w1|+ |w3vr ur t|
= |w1w3vr ur t|
= |vl ul t|
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so that |vl ul t| = |w2w−1
1 |+|w2w−1

1 vl ul t|. Now this means that sr (w2w−1
1 vl ul t) ⊆ sr (vl ul t) =

sr (ul t). Hence, as w2w3vr ur t = w2w−1
1 vl ul t, we find sr (w2w3vr ur t) ⊆ ul t∩ur t = t. How-

ever, as also sr (w2w3vr ur t)∩t = e, we conclude that sr (w2w3vr ur t) = e, so w2w−1
1 vl ul t =

w2w3vr ur t = e. But this means that w−1
3 w2 = vr ur t and w1w2 = vl ul t. From this it fol-

lows that w2 ⊆ sr (vl ul t)∩ sr (vr ur t) = t. Now, we can not have that w2 ⊆ t strictly, as this
would mean that w3 starts with a part of t that w1 ends with, which would contradict
the fact that w1w2w3 is reduced. Thus we now find w2 = t and then also w1 = vl ul and
w3 = u−1

r v−1
r . This means that ω ∈Sw(ρ).

5) We now conclude the proof of the proposition as we have shown for w ∈ WΓ, ω ∈
Sw, pure tensor a = a1 ⊗·· ·⊗at ∈ AΓ and pure tensor η ∈ H̊v ⊆HΓ with λω(a)η ̸= 0 that

H̃ρ(λω(a))η=
{
λω(a)η Iη,ω = {e}

0 el se
=

{
λω(a)η ω ∈Sw(ρ)

0 el se
.

Now, as noted earlier, the equation is also satisfied when η is a pure tensor with λω(a)η=
0. Therefore, by linearity and continuity, the equation in the proposition holds for all
η ∈HΓ. By linearity of H̃ρ and λω the equation also holds for all a ∈ AΓ. This proves the
statement.

We now prove our main theorem of this section, that shows that ∥PΓ,d∥cb is polyno-
mially bounded in d .

Theorem 6.2.10. For d ≥ 0 we have (on AΓ) that

PΓ,d = ∑
(ul ,ur ,t)∈TΓ

0≤n≤d−|ul tur |

∑
r⊆t

(−1)|r|H(n,d−n−|ul tur |,ul ,ur ,t,r).

Moreover, for d ≥ 1 we get the linear bound ∥PΓ,d∥cb ≤CΓd, where CΓ denotes the constant

CΓ =
∑

(ul ,ur ,t)∈TΓ

2|t|.

Proof. For d ≥ 0 define

TΓ,d = {ρ = (nl ,nr ,ul ,ur ,t) ∈Z2
≥0 ×TΓ : |ρ| = d}. (6.8)

We recall for w ∈ WΓ that {Sw(ρ)}ρ∈T|w| is a partition of Sw by Remark 6.2.8. Fix some
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a ∈ AΓ. For d ≥ 0 we find using Lemma 3.1.7 that

PΓ,d (λ(a)) = ∑
w∈WΓ,|w|=d

∑
ω∈Sw

λω(a)

= ∑
ρ∈TΓ,d

∑
w∈WΓ,|w|=d

∑
ω∈Sw(ρ)

λω(a)

= ∑
ρ∈TΓ,d

H̃ρ

( ∑
w∈WΓ

∑
ω∈Sw

λω(a)

)
= ∑
ρ∈TΓ,d

H̃ρ(λ(a))

= ∑
(ul ,ur ,t)∈TΓ

0≤n≤d−|ul tur |

∑
r⊆t

(−1)|r|H(n,d−|ul tur |−n,ul ,ur ,t,r)(λ(a)).

Therefore, the equation holds on λ(AΓ) and hence, by continuity, on AΓ.
Now let d ≥ 1, we show that the bound holds. We note first that by definition V e,e

n = 0
for n ≥ 1. This implies directly that H(n,d−n−|ul tur |,ul ,ur ,t,e) = 0 for 0 ≤ n ≤ d − |ul tur |
whenever (ul ,ur ,t) = (e,e,e). Therefore we find

∥PΓ,d∥cb ≤ ∑
(ul ,ur ,t)∈TΓ\{(e,e,e)}

0≤n≤d−|ul tur |

∑
r⊆t

∥H(n,d−n−|ul tur |,ul ,ur ,t,r)∥cb

≤ ∑
(ul ,ur ,t)∈TΓ\{(e,e,e)}

0≤n≤d−|ul tur |

2|t|

≤
( ∑

(ul ,ur ,t)∈TΓ

2|t|
)

d .

6.3. GRAPH PRODUCTS OF STATE-PRESERVING U.C.P MAPS
In Section 6.3.1 we show that the graph product of state-preserving u.c.p maps extends
to a state-preserving u.c.p map. Thereafter, in Section 6.3.2, we use this to obtain the
result that the graph product of finite-dimensional algebras with GNS-faithful states is
weakly amenable with constant 1.

6.3.1. GRAPH PRODUCTS OF STATE-PRESERVING UCP MAPS
Let Γ be a graph, and for v ∈ Γ let θv : Av → Bv be state-preserving maps between unital
C*-algebras (with states s.t. the GNS representation is faithful). Let (AΓ,ϕ) =∗v,Γ(Av ,ϕv )
and (BΓ,ψ) = ∗v,Γ(Bv ,ψv ) be their reduced graph products. As θv is state preserving it
maps Åv to B̊v . We can look at the map θ :λ(AΓ) →λ(BΓ) for a1 ⊗·· ·⊗as ∈ Åv1 ⊗·· ·⊗ Åvs

for a reduced word v1 · · ·vs given as

θ(λ(a1 ⊗·· ·⊗as )) =λ(θv1 (a1)⊗·· ·⊗θvs (as )) (6.9)

and we set θ(Id) = Id. We denote this map by θ = ∗v,Γθv and call it the graph product
map. The map is clearly state-preserving. To prove the main theorem, we need the result
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that the graph product map θ = ∗v,Γθv of state-preserving u.c.p maps θv extends to a
bounded map on the graph product, and that it is again u.c.p. This result was already
proven by Blanchard-Dykema in [BD01] for the case of free products. For graph products
the result has been proven by Caspers-Fima in [CF17, Proposition 3.30] in the setting of
von Neumann algebras.

Proposition 6.3.1. [CF17, Proposition 3.30] Let Γ be a simple graph and for v ∈ Γ, let θv :
Mv → Nv be state-preserving normal u.c.p. maps between von Neumann algebras Mv and
Nv that have faithful normal states. Let (MΓ,ϕ) =∗v,Γ(Mv ,ϕv ) and (NΓ,ψ) =∗v,Γ(Nv ,ψv )
be the von Neumann algebraic graph products. Then there exists a unique normal u.c.p.
map θ : MΓ→ NΓ s.t. for all pure tensors a1 ⊗·· ·⊗as ∈ M̊v1 ⊗·· ·⊗ M̊vs we have

θ(λ(a1 ⊗·· ·⊗as )) =λ(θv1 (a1)⊗·· ·⊗θvs (as )). (6.10)

The map θ will be denoted as θ =∗Γθv

We give here a proof for the case of C*-algebras.

Proposition 6.3.2. For v ∈ Γ let θv : Av → Bv be state-preserving, unital completely pos-
itive maps between unital C*-algebras (Av ,ϕv ) and (Bv ,ψv ), and assume ϕv and ψv are
GNS-faithful. Then the graph product map θ =∗v,Γθv extends to a state-preserving unital
completely positive map between the reduced graph products AΓ and BΓ.

Proof. We will use the notation H A
v , H̊ A

v , H A
Γ , λA , ξA

v , ΩA , et cetera, corresponding
to the reduced graph product (AΓ,ϕ) := ∗min

v,Γ (Av ,ϕv ), and use similar notation for the

reduced graph product (BΓ,ψ) := ∗min
v,Γ (Bv ,ψv ). By the Stinespring’s dilation theorem,

Theorem 2.1.1, we can write θv (a) = V ∗
v πv (a)Vv for some Hilbert space Ĥv and unital

∗-homomorphism πv : Av → B(Ĥv ) and some isometry Vv ∈ B(H B
v ,Ĥv ). We note that

for a ∈ Av we have ϕv (a) = ψv (θv (a)) = 〈θv (a)ξB
v ,ξB

v 〉 = 〈πv (a)ξ̂v , ξ̂v 〉 with ξ̂v := Vvξ
B
v .

Also πv is faithful, as πv (a) = 0 implies for b ∈ Av that

0 = ∥πv (a)πv (b)ξ̂v∥2 = ∥πv (ab)ξ̂v∥2 = 〈πv (b∗a∗ab)ξ̂v , ξ̂v 〉 =ϕv (b∗a∗ab),

which implies a = 0 since ϕv is GNS-faithful. By these properties we conclude that we
can construct the graph product of the Av ’s w.r.t. the representations πv . To distinguish

the notation from the other graph products we use hat-notation like Ĥv, ˚̂
Hv, ĤΓ,λ̂, Ω̂.

Define a contraction V : H B
Γ → ĤΓ for η= η1 ⊗·· ·⊗ηl ∈ H̊ B

v as

V |H̊v
(η1 ⊗·· ·⊗ηl ) =Vv1η1 ⊗·· ·⊗Vvl ηl (6.11)

and V (ΩB ) = Ω̂. We note that ηi ∈ H̊ B
vi

implies 〈V ηi , ξ̂vi 〉 = 〈V ηi ,V ξB
vi
〉 = 〈ηi ,ξB

vi
〉 = 0 and

hence V ηi ∈ ˚̂
Hvi . This shows that V is well-defined.

By [CF17, Proposition 3.12], we know that there exists a state-preserving, unital ∗-
homomorphism π : AΓ→ B(ĤΓ) that for a = a1 ⊗·· ·⊗al ∈ Åv is given by

π(λA(a1 ⊗·· ·⊗al )) = λ̂(πv1 (a1)⊗·· ·⊗πvl (al )) (6.12)
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We will now show that θ(λA(a)) =V ∗π(λA(a))V for a ∈ AΓ, which then shows that θ can
be extended to a u.c.p. map on AΓ.

Let η= η1⊗·· ·⊗ηl ∈ H̊ B
v for some v ∈WΓ and let a ∈ Åv for some v ∈ Γ. We will calcu-

late λ̂v (πv (a))V . First suppose that vv is reduced. We have 〈(IdĤv
−Vv V ∗

v )πv (a)ξ̂v , ξ̂v 〉 =
〈πv (a)ξ̂v ,0〉 = 0 so that

λ̂v ((IdĤv
−Vv V ∗

v )πv (a))V η= Ûv ((IdĤv
−Vv V ∗

v )πv (a)⊗ IdĤΓ
)(ξ̂v ⊗V η)

= Ûv ((IdĤv
−Vv V ∗

v )πv (a)ξ̂v ⊗V η)

= Q̂(v,v)(((IdĤv
−Vv V ∗

v )πv (a)ξ̂v ⊗V η).

Also we have 〈Vv V ∗
v πv (a)ξ̂v , ξ̂v 〉 =ϕv (a) = 0 and so we find

λ̂v (Vv V ∗
v πv (a))V η= Ûv (Vv V ∗

v πv (a)⊗ IdĤΓ
)(ξ̂v ⊗V η)

= Ûv (Vv V ∗
v πv (a)ξ̂v ⊗V η)

= Q̂(v,v)((Vv V ∗
v πv (a)ξ̂v )⊗V η)

= Q̂(v,v)((Vvθv (a)ξB
v )⊗V η)

=V QB
(v,v)((θv (a)ξB

v )⊗η)

=V λB
v (θv (a))η.

Now, suppose instead that v starts with v . Then we can write η = QB
(v,vv)(η0 ⊗η′) for

some η0 ∈ H̊ B
v and η′ ∈ H̊ B

vv and we have V η = Q̂(v,vv)(Vvη0 ⊗V η′). Again we have that
〈(IdĤv

−Vv V ∗
v )πv (a)Vvη0, ξ̂v 〉 = 0 and so

λ̂v ((IdĤv
−Vv V ∗

v )πv (a))V η= Ûv ((IdĤv
−Vv V ∗

v )πv (a)⊗ IdHΓ )Û∗
v V η

= Ûv ((IdĤv
−Vv V ∗

v )πv (a)⊗ IdHΓ )(V η0 ⊗V η′)

= Ûv

(
((IdĤv

−Vv V ∗
v )πv (a)Vvη0)⊗V η′

)
= Q̂(v,vv)

(
((IdĤv

−Vv V ∗
v )πv (a)Vvη0)⊗V η′

)
.

Furthermore, we have

λ̂v (Vv V ∗
v πv (a))V η= Ûv (Vv V ∗

v πv (a)⊗ IdHΓ )Û∗
v V η

= Ûv (Vv V ∗
v πv (a)⊗ IdHΓ )(V η0 ⊗V η′)

= Ûv
(
Vv V ∗

v πv (a)Vvη0)⊗V η′
)

= Ûv
(
(Vvθv (a)η0)⊗V η′

)
=V U B

v

(
(θv (a)η0)⊗η′)

=V U B
v

(
θv (a)⊗ IdHΓ

)
(U B

u )∗η

=V λB (θv (a))η.
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Now, when a = a1 ⊗·· ·⊗ak ∈ Åw, then we have

V ∗π(λA(a))V η=V ∗λ̂(πw1 (a1)) . . . λ̂(πwk−1 (ak−1))λ̂(Vwk V ∗
wk
πwk (ak ))V η

+V ∗λ̂(πw1 (a1)) . . . λ̂(πwk−1 (ak−1))λ̂((IdĤwk
−Vwk V ∗

wk
)πwk (ak ))V η

=V ∗λ̂(πw1 (a1)) . . . λ̂(πwk−1 (ak−1))λ̂(Vwk V ∗
wk
πwk (ak ))V η

=V ∗π(λA(a1 ⊗·· ·⊗ak−1))V λB (θwk (ak ))η.

Note here that the reason why we can remove the second summand is because one ten-
sor leg of λ̂((IdĤwk

−Vwk V ∗
wk

)πwk (ak ))V η is of the form (IdĤwk
−Vwk V ∗

wk
)πwk (ak )Vwkη0

for some η0 ∈H B
wk

. This tensor leg is not changed by the operator π(λA(a1 ⊗·· ·⊗ak−1))
as it may not act on the same letter. Now after the application of V ∗ we obtain for this
tensor leg that V ∗

wk
(IdĤwk

−Vwk V ∗
wk

)πwk (ak )Vwkη0 = 0, so that this term vanishes.

By what we showed, it now follows from induction to the tensor length k that for all
a ∈ AΓ we have V ∗π(λA(a))V = θ(λA(a)) . This then shows the statement.

6.3.2. CCAP FOR REDUCED GRAPH PRODUCTS OF FINITE-DIMENSIONAL AL-
GEBRAS

We now state the following generalization of [RX06, Proposition 3.5.] to graph products.
The proof uses Theorem 6.2.10 and Proposition 6.3.1 and Proposition 6.3.2 and goes
analogously to [RX06, Proposition 3.5.].

Proposition 6.3.3. Let Γ be a finite simple graph. For v ∈ Γ let Av be a unital C*-algebra
together with a GNS-faithful state ϕv . Let (AΓ,ϕ) := ∗min

v,Γ (Av ,ϕv ) be the reduced graph
product. For d ≥ 0 let PΓ,d : AΓ→ AΓ,d be the natural projection. Let 0 ≤ r ≤ 1, n ∈N and
define

Tr =
∞∑

k=0
r k PΓ,k Tr,n =

n∑
k=0

r k PΓ,k .

Then Tr and Tr,n are completely bounded with

∥Tr ∥cb ≤ 1 and ∥Tr −Tr,n∥cb ≤ CΓnr n

(1− r )2 . (6.13)

The maps Te−t for t ≥ 0 form a one-parameter semi-group of unital completely positive
maps on AΓ preserving the state ϕ. Moreover, the sequence (T1− 1p

n
,n)n≥1 tends pointwise

to the identity of AΓ and limn→∞ ∥T1− 1p
n

,n∥cb = 1.

Proof. For v ∈ Γ we define a state-preserving u.c.p map Ur,v : Av → Av as Ur,v (a) = r a +
(1−r )ϕv (a) IdHv . It can be seen that ∗v,ΓUr,v =Tr on λ(AΓ) and by Proposition 6.3.2 this
map extends to a state-preserving u.c.p map on AΓ. Thus ∥Tr ∥cb = 1. Furthermore,

∥Tr −Tr,n∥cb ≤
∞∑

k=n+1
r k∥PΓ,k∥cb ≤CΓ

∞∑
k=n

kr k =CΓr
d

dr

(
r n

1− r

)
(6.14)
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Therefore, as d
dr

(
r n

1−r

)
= nr n−1(1− r )−1 + r n(1− r )−2 ≤ nr n−1(1− r )−2 this proves (6.13).

It is furthermore clear that (Te−t )t≥0 forms a semi-group since PΓ,mPΓ,n = 0 when n ̸= m.
By (6.13) and by the triangle inequality we have ∥T1− 1p

n
,n∥cb ≤ 1+CΓn2(1− 1p

n
)n → 1

as n →∞ which shows lim
n→∞∥T1− 1p

n
,n∥cb = 1 since the maps T1− 1p

n
,n are unital. More-

over, on λ(AΓ) it is clear that (T1− 1p
n

,n)n≥1 tends pointwise to the identity. Therefore,

as (T1− 1p
n

,n)n≥1 is uniformly bounded it follows by density that this holds true on AΓ as

well.

Corollary 6.3.4. For v ∈ Γ let Av be a finite-dimensional C*-algebras together with a GNS-
faithful state ϕv . Then the reduced graph product AΓ has the CCAP. Similarly, for finite
dimensional von Neumann algebras Mv together with normal faithful states ϕv , we have
that the graph product MΓ has the weak-∗ CCAP.

We give an application of this result to Hecke-algebras (for references on Hecke-
algebras see [Dav08, Chapter 19]). Let W be a Coxeter group generated by some set S
and let q = (qs )s∈S be a Hecke tuple (i.e. qs > 0 for all s ∈ S and qs = qt whenever s and
t are conjugate in W ). Denote Nq(W ) for the Hecke algebra corresponding to W and
q. Our application uses the following proposition which asserts that we can decompose
Hecke algebras as graph products. This is somewhat similar to Remark 5.2.4. Further-
more, the result for right-angled Coxeter groups is stated in [Cas20, Corollary 3.4].

Proposition 6.3.5. Let Γ be a graph, and for v ∈ Γ let Wv be a Coxeter group generated
by a set Sv and let qv = (qv,s )s∈Sv be a Hecke-tuple. Set W = ∗v,ΓWv and q := ∗v,Γqv =
(qv,s )v∈Γ,s∈Sv . Then we get a graph product decomposition Nq(W ) =∗v,ΓNqv (Wv ).

Proof. This follows from [CF17, Proposition 3.22] by considering the natural embed-
dings πv : Nqv (Wv ) →Nq(W ) that send generators to generators.

The following was already known from [Cas20, Theorem A], but we believe our ap-
proach is more conceptual.

Example 6.3.6. Let W be a right-angled Coxeter group generated by a finite set S, and
q = (qv )v∈S a Hecke-tuple. Then as W = ∗v,Γ(Z/2Z) for some (finite) graph Γ, we can by
Proposition 6.3.5 write Nq(W ) =∗v,ΓNqv (Z/2Z). As Nqv (Z/2Z) is finite-dimensional we
obtain by Corollary 6.3.4 that Nq(W ) has the weak-∗ CCAP.

The result for the following example is new.

Example 6.3.7. Let Γ be a finite simple graph, and for v ∈ Γ let Wv be a finite Coxeter
group generated by some set Sv and let qv = (qv,s )s∈Sv be a Hecke-tuple for Wv . Then
if we let W = ∗v,ΓWv and q = ∗v,Γqv := (qv,s )v∈Γ,s∈Sv , we have by Proposition 6.3.5 that
Nq(W ) =∗v,ΓNqv (Wv ). Since Nqv (Wv ) is finite-dimensional we obtain by Corollary 6.3.4
that Nq(W ) possesses the weak-∗ CCAP.
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6.4. GRAPH PRODUCT OF COMPLETELY BOUNDED MAPS ON AΓ,d
The main result of this section is Theorem 6.4.3, which shows that the graph product
of completely bounded maps Tv defines a completely bounded map Td on the homo-
geneous subspace AΓ,d of degree d . The proof of this results follows the lines of [RX06]
(where they use the different convention 〈â, b̂〉 = ϕ(a∗b)), and uses the construction of
the operator space Xd as in [CKL21] and another operator space X̃d , to extend it to graph
products.

6.4.1. FREE PRODUCTS AND OPERATOR SPACES
When given a finite graph Γ and algebras (Av ,ϕv ) we will denote the reduced free prod-

uct of the algebras as (A f
Γ

,ϕ f ) = ∗v (Av ,ϕv ). Let Γ f be the graph with the same vertex
set as Γ and no edges. Note that the free product is simply the reduced graph product

corresponding to Γ f , i.e. A f
Γ
= AΓ f . For the graph product corresponding to Γ f we will

use notation using superscript f , that is we will write W
f
Γ

, λ f , P f
v , H f

Γ
,H̊ f

v , Å f
w, et cetera.

We remark that HΓ ⊆ H
f
Γ

and AΓ ⊆ A f
Γ

as linear subspaces and that Av = A f
v for v ∈ Γ.

For w ∈WΓ\{e} with representative (w1, . . . , wn) we will define Hw =Hw1 ⊗·· ·⊗Hwn and
Aw = Aw1 ⊗·· ·⊗ Awn , and we define He = CΩ and Ae = B(He ). Define a subspace L1 of

B(H f
Γ

) by the closed linear span

L1 = Span{P f
v λ

f
v (a)P f ⊥

v |v ∈ Γ, a ∈ Å f
v }, K1 = L∗

1 . (6.15)

For a Hilbert space H denote HC , HR respectively for the column and row Hilbert
space, see [Pis03]. Recall that HC and HR can be seen as the subspaces of B(C⊕H )
given by HC = {xξ : ξ ∈ H } and HR = {yξ : ξ ∈ H } where xξ and yξ are the operators
given by xξ(z ⊕η) = zξ and yξ(z ⊕η) = 〈η,ξ〉. In [RX06, Lemma 2.3 and Corollary 2.4] it is
shown that

L1 ≃
(⊕

v∈Γ
H̊v

)
C

, K1 ≃
(⊕

v∈Γ
H̊

op
v

)
R

(6.16)

completely isometrically, and that the maps θ1 : A f
Γ,1 → L1 and ρ1 : A f

Γ,1 → K1 given for

a ∈ Åv by θ1(λ f
v (a)) = P f

v λ
f
v (a)P f ⊥

v and ρ1(λ f
v (a)) = P f ⊥

v λ
f
v (a)P f

v are completely contrac-
tive. We denote ⊗h for the Haagerup tensor product, see [ER00, Chapter 9]. We denote

Ld = L⊗h d
1 and Kd = K ⊗h d

1 for the d-fold tensor product and we write θ⊗d
1 for the map

A f
Γ,d → Ld defined for b = b1 ⊗·· ·⊗bd ∈ AΓ,d by

θ⊗d
1 (λ f (b)) = θ1(λ f (b1))⊗h · · ·⊗h θ1(λ f (bd )).

Similarly, we write ρ⊗d
1 for the map A f

Γ,d → Kd defined analoguously.

We introduce notation similar to [CKL21, Section 2]. Let w ∈ W
f
Γ

s.t. in the graph
product w is equivalent to some clique word vΓ0 for some clique Γ0 ⊆ Γ (which we will

denote by w ≡ vΓ0 ). Let a = a1⊗·· ·⊗ad ∈ A f
w. We define an operator Diagw(a) : H f

Γ
→H

f
Γ

on H̊
f

v for v ∈W
f
Γ

with |v| = |w|+ |w−1v| as

Diagw(a)|
H̊

f
v
= Pv1 a1Pv1 ⊗·· ·⊗Pvd ad Pvd ⊗ IdH̊vd+1

⊗·· ·⊗ IdH̊v|v|
(6.17)
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and we define Diagw(a)|
H̊

f
v
= 0 if v ∈ W f is not of the given form. Extending this, we

obtain a linear map Diagw : A f
w → B(H f

Γ
). For a cliqueΓ0 inΓ, we now define the operator

space

ADiag
Γ0

= Span{Diagw(A f
w)|w ∈W

f
Γ

,w ≡ vΓ0 }.

Also, for w ∈W
f
Γ

we consider A f
w as an operator space by embedding A f

w ⊆ B(H f
w ).

Proposition 6.4.1. For a clique Γ0 and a word w ∈W
f
Γ

with w ≡ vΓ0 we have that the map

Diagw : A f
w → ADiag

Γ0
is completely contractive.

Proof. We define a map Vw : H f
Γ
→H

f
w ⊗H

f
Γ

as

Vw|H̊ f
v

:=Q
f ∗
(w,w−1v)

(6.18)

whenever v ∈W
f
Γ

is s.t. |v| = |w|+|w−1v| and set Vw|H̊ f
v
= 0 when v is not of this form. We

then obtain that

Diagw(a) =V ∗
w (a ⊗ Id

H
f
Γ

)Vw (6.19)

which shows the statement.

As in [RX06] and [CKL21] we define operator spaces Xd and additionally we will de-
fine other operator spaces X̃d . For t ∈WΓ a clique word, denote Γt for the clique in Γ. We
now set

Xd = ⊕
nl ,nr ≥0,

(ul ,ur ,t)∈TΓ
nl+|ul tur |+nr =d

Lnl+|ul |⊗h ADiag
Γt

⊗h Knr +|ur | (6.20)

X̃d = ⊕
nl ,nr ≥0,

(ul ,ur ,t)∈TΓ
nl+|ul tur |+nr =d

Lnl+|ul |⊗h At ⊗h Knr +|ur | (6.21)

equipped with the sup-norm. We remark here that the operator space structure on At

is given by the inclusion At = A f
t′ ⊆ B(H f

t′ ) where t′ ∈ W
f
Γ

is the representant of t. Also,
recall that TΓ was defined in Definition 6.2.2 and that in Definition 6.2.7 for a tuple ρ =
(nl ,nr ,ul ,ur ,t) with nl ,nr ≥ 0, (ul ,ur ,t) ∈ TΓ we defined |ρ| = nl + |ul | + |t| + |ur | +nr .
By the above, we can find a completely contractive map Dd : X̃d → Xd by defining Dd =
(Dρ)ρ,|ρ|=d where Dρ = (IdLnl +|ul | ⊗Diagt′ ⊗ IdKnr +|ur | ) for ρ = (nl ,nr ,ul ,ur ,t).

We now define two linear maps Θ̃d : AΓ,d → X̃d and jd : AΓ,d → Xd as follows. Fix a
tuple ρ = (nl ,nr ,ul ,ur ,t), |ρ| = d . We denote ñl = nl +|ul | and ñr = nr +|ur |. Let a ∈ Åw

be a pure tensor with w ∈ WΓ. Suppose that w = vl ul tu−1
r v−1

r for some vl ∈ W̃ ′
nl

(ul t) and
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vr ∈ W̃ ′
nr

(ur t). We can then write a = Q(vl ul ,t,u−1
r v−1

r )(a1 ⊗ a2 ⊗ a3) for some a1 ∈ Åvl ul ,

a2 ∈ Åt and a3 ∈ Åu−1
r v−1

r
. We then defined

Θ̃d (λ(a))ρ = θ⊗ñl
1 (λ f (a1))⊗a2 ⊗ρ⊗ñr

1 (λ f (a3)) (6.22)

jd (a)ρ = θ⊗ñl
1 (λ f (a1))⊗Diagt′ (a2)⊗ρ⊗ñr

1 (λ f (a3)). (6.23)

In the case that w is not of the given form we define Θ̃d (λ(a))ρ = 0 and jd (a)ρ = 0. This
is extended linearly and we set Θ̃d (λ(a)) = (Θ̃d (λ(a))ρ)ρ and jd (a) = ( jd (a)ρ)ρ . We more-
over define the map Θd := Dd ◦ Θ̃d and see that jd = Θd ◦λ|AΓ,d . We note that the defi-
nition of jd agrees with that in [CKL21, Equation (2.16)], and that, in the case of dealing
with free products, the map Θd compares with a restriction of the map Θd in [RX06].
In [CKL21, Equation (2.24)] a completely bounded map πd : Ed → B(HΓ) was defined,
where Ed := jd (AΓ,d ) ⊆ Xd , and that satisfied πd ◦ jd = λ|AΓ,d . For d ≥ 1 the norm bound
∥πd∥cb ≤ (#Cliq(Γ))3d holds by [CKL21, Theorem 2.9], where #Cliq(Γ) denotes the num-
ber of cliques in the graph Γ. We get the following commuting diagram:

X̃d

Ed

AΓ,d

AΓ,d

A f
Γ,d

Xd

⊆

⊆

Θ̃d Dd

λ

πd

jd

For a clique word t ∈WΓ with representative (t1, . . . , t|t|) we define a unitary U : Ht →⊕
r⊆t H̊r in a natural way. Let η = η1 ⊗ ·· ·η|t| ∈ Ht be a tensor with either ηi ∈ H̊ ti or

ηi ∈ Cξti . For 1 ≤ i ≤ |t| set ri := ti when ηi ∈ H̊ ti and ri = e when ηi ∈ Cξti . Then
r := r1 · · ·r|t| is a subword of t since t is a clique word. Using the identification Cξti ≃ H̊e

given by ξti → Ω we can define U (η) = Q(r1,...,r|t|)(η) ∈ H̊r. This extends linearly to a

unitary. We remark that for a ∈ Åt we have U∗λ(a)U = a. Indeed, it can be checked that
for ai ∈ Åti we have U∗λ(ai )U = IdH t1

⊗·· · IdH ti−1
⊗ai ⊗ IdH ti+1

⊗·· ·⊗ IdH t|t| so that the

statement follows as λ(a1 ⊗·· ·⊗an) =λ(a1) · · ·λ(an).

Theorem 6.4.2. The map Θ̃d is completely contractive.

Proof. Choose d ≥ 0. Fix a tuple ρ = (nl ,nr ,ul ,ur ,t) with |ρ| = d and write ñl = nl +|ul |,
ñr = nr +|ur |. We define two partial isometries

Jρ : H f
Γ

⊗ñl ⊗Ht →H
f
Γ

⊗ñl ⊗HΓ (6.24)

J ′ρ : Ht ⊗H
f
Γ

⊗ñr →HΓ⊗H
f
Γ

⊗ñr
(6.25)

as follows. Let rl ⊆ t, let η = η1 ⊗·· ·⊗ηñl
⊗η0 ∈ H

f
Γ

⊗ñl ⊗ (U∗H̊rl ) be a pure tensor and

denote η′0 := Uη0 ∈ H̊rl . If for i ≥ 1 we can write ηi = η′i ⊗ η̃i for some η′i ∈ H̊vi and
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η̃i ∈ H
f
Γ

for which (v1, . . . , vn) is the representative of vl ul for some vl ∈ W̃ ′
nl

(ul t), then
we define

Jρη= η̃1 ⊗·· ·⊗ η̃ñl
⊗Q(v1,...,vñl

,rl )(η
′
1 ⊗·· ·⊗η′ñl

⊗η′0) ∈H
f
Γ

⊗ñl ⊗H̊vl ul rl (6.26)

and we define Jρ as 0 on the complement of all such tensors. Similarly, let rr ⊆ t let

η= η0 ⊗η1 ⊗·· ·⊗ηñr ∈ (U∗H̊rr )⊗H
f
Γ

⊗ñr
, denote η′0 :=Uη0 ∈ H̊rr and suppose that for

i ≥ 1 we can write ηi = η′i ⊗ η̃i for some η′i ∈ H̊vi and η̃i ∈H
f
Γ

for which (v1, . . . , vn) is the

representative of u−1
r v−1

r for some vr ∈ W̃ ′
nr

(ur t) we define

J ′ρη=Q(vñr ,...,v1,rr )(η
′
ñr

⊗·· ·⊗η′1 ⊗η′0)⊗ η̃1 ⊗ ..⊗ η̃ñr ∈ H̊vr ur rr ⊗H
f ⊗ñr
Γ

(6.27)

and we define J ′ρ as 0 on the complement of all such tensors.
We shall show that

Θ̃d (λ(a))ρ = (J∗ρ ⊗ Id⊗ñr

H
f
Γ

)(Id⊗ñl

H
f
Γ

⊗λ(a)⊗ Id⊗ñr

H
f
Γ

)(Id⊗ñl

H
f
Γ

⊗J ′ρ) (6.28)

which then shows the statement.
Let w ∈WΓ, |w| = d , let a ∈ Åw be a pure tensor, letω= (w1,w2,w3) ∈Sw, vl ∈ W̃ ′

nl
(ul t),

vr ∈ W̃ ′
nr

(ur t) and rl ,rr ⊆ t. Now let η ∈ H̊vr ur rr be a pure tensor, in which case λω(a)η is

also a pure tensor. Suppose that λω(a)η ∈ H̊vl ul rl and that it is non-zero, so that vl ul rr

and vr ur ur start with w1w2 and w−1
3 w2 respectively and so that w1w3vr ur rr = vl ul rl .

Then put wt ai l := w2w3vr ur rr = w2w−1
1 vl ul rl so that w1w2wt ai l and w−1

3 w2wt ai l are
reduced expressions for vl ul rl and vr ur rr respectively. We claim that sr (w2wt ai l ) ⊇
sr (w1w2wt ai l )∩ sr (w−1

3 w2wt ai l ). Indeed, let v be a letter in sr (w1w2wt ai l ) that is not
in sr (w2wt ai l ). Then v is a letter at the end of w1 that commutes with w2. If v is at the
same time a letter in sr (w−1

3 w2wt ai l ) then v is also a letter at the end of w−1
3 , i.e. a letter

at the start of w3. But this would contradict the fact that w1w2w3 is reduced. Thus we
established the inclusion and obtain

sr (w2wt ai l ) ⊇ sr (w1w2wt ai l )∩sr (w−1
3 w2wt ai l ) = sr (vl ul rl )∩sr (vr ur rr ) ⊇ rl ∩ rr

so that |w2wt ai l | ≥ |rl ∩ rr |. Now, combining all this, we find

d +|rl ∩ rr |+ |wt ai l | ≤ |w1w2w3|+ |w2wt ai l |+ |wt ai l | (6.29)

= |w1|+2|w2|+2|wt ai l |+ |w3| (6.30)

= |w1w2wt ai l |+ |w−1
3 w2wt ai l | (6.31)

= |vl |+ |ul |+ |rl |+ |rr |+ |ur |+ |vr | (6.32)

= d +|rl |+ |rr |− |t| (6.33)

≤ d +|rl |+ |rr |− |rl ∪ rr | (6.34)

= d +|rl ∩ rr | (6.35)

We conclude that all the above inequalities must be equalities, in particular |wt ai l | = 0,
|t| = |rl ∪rr | and |w2wt ai l | = |rl ∩rr |. This means t = rl ∪rr and w2 = w2wt ai l . Now as also
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w2 = w2wt ai l ⊇ rl ∩rr we conclude that w2 = rl ∩rr . Set tl := rl w2 = (rl ∩trr ), tm := rl ∩rr

and tr := w2rr = (trl ∩ rr ). Then, as we know vl ul rl = w1w2wt ai l = w1w2 and vr ur rr =
w−1

3 w2wt ai l = w−1
3 w2, we then obtain that w1 = vl ul tl and w3 = tr u−1

r v−1
r . Hence, ω is

of the form ω = (vl ul tl ,tm ,tr u−1
r v−1

r ). We note that tl ,tm ,tr are disjoint subcliques of t
with tl tm tr = t. In particular we find that the assumption implies w = vl ul tu−1

r v−1
r . For a

closed subspace K ⊆HΓ denote PK for the orthogonal projection on K . We conclude
that

PH̊vl ul rl
λ(a)PH̊vr ur rr

=λ(vl ul tl ,tm ,tr u−1
r v−1

r )(a)PH̊vr ur rr
(6.36)

and moreover that this expression is zero whenever a ̸∈ Åvl ul tu−1
r v−1

r
. This shows that for

a ∈ Åw with w not of the form w = vl ul tu−1
r v−1

r for any vl ∈ W̃ ′
nl

(ul t), vr ∈ W̃ ′
nr

(ur t), the
right-hand side of (6.28) is zero. In this case also the left-hand side is zero by definition
ofΘd (λ(a))ρ so that we get equality.

Let v ∈WΓ. We define.

Kρ,v =
⊕
rl⊆t

H̊vul rl K ′
ρ,v =

⊕
rr ⊆t

H̊vur rr (6.37)

Kρ =
⊕

vl∈W̃ ′
nl

(ul t)

K L
ρ,vl

K ′
ρ =

⊕
vr ∈W̃ ′

nr (ur t)

K R
ρ,vr

. (6.38)

Let us now assume a ∈ Åw with w = vl ul tu−1
r v−1

r for some vl ∈ W̃ ′
nl

(ul t), vr ∈ W̃ ′
nr

(ur t)

and write a = Q(vl ul ,t,u−1
r v−1

r )(a1 ⊗ a2 ⊗ a3) for some a1 ∈ Åvl ul , a2 ∈ Åt and a3 ∈ Åu−1
r v−1

r
.

Note that in such case the words vl ,vr are uniquely determined. By the above, we now
find

PKρλ(a)PK ′
ρ
= (6.39)

= PKρ,vl
λ(a)PK ′

ρ,vr
(6.40)

= PKρ,vl

 ∑
tl ,tm ,tr

partition of t

λ(vl ul tl ,tm ,tr u−1
r v−1

r )(a)

PK ′
ρ,vr

(6.41)

= PKρ,vl

 ∑
tl ,tm ,tr

partition of t

λ(vl ul ,e,e)(a1)λ(tl ,tm ,tr )(a2)λ(e,e,u−1
r v−1

r )(a3)

PK ′
ρ,vr

(6.42)

Lemma 3.1.7= PKρ,vl
λ(vl ul ,e,e)(a1)λ(a2)λ(e,e,u−1

r v−1
r )(a3)PK ′

ρ,vr
(6.43)

= PKρ,vl
λ(vl ul ,e,e)(a1)(Ua2U∗)λ(e,e,u−1

r v−1
r )(a3)PK ′

ρ,vr
(6.44)

where we use that λ(a2)|H̊r
=Ua2U∗ for r ⊆ t. Now, a calculation shows that

(U∗λ(e,e,u−1
r v−1

r )(a3)PK ′
ρ,vr

⊗ Id)J ′ρ = (IdHt ⊗ρ⊗ñr
1 (λ f (a3))) (6.45)

J∗ρ (Id⊗PK L
ρ,vl
λ(vl ul ,e,e)(a1)U ) = (θ⊗ñl

1 (λ f (a1))⊗ IdHt ) (6.46)
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We describe the calculation for (6.45) (the calculation for (6.46) is similar by taking ad-

joints and using that θ⊗ñl
1 (λ f (a1))∗ = ρ⊗ñl

1 (λ f (a∗
1 ))). Let η= η0 ⊗η1 ⊗·· ·ηñr ∈ (U∗H̊rr )⊗

H
f
Γ

⊗ñr
for some rr ⊆ t and so that ηi is a pure tensor for i = 0, . . . , ñr . Assume that for

i = 1, . . . , ñr we can write ηi = η′i ⊗ η̃i with η′i ∈ H̊vi and η̃i ∈H
f
Γ

for which (v1, . . . , vñr ) is
the representative of u−1

r v−1
r . Indeed, if η is not of this form then both (PK ′

ρ,vr
⊗Id)J ′ρη= 0

and (IdHt ⊗ρ⊗ñr
1 (λ f (a3)))η = 0 which gives the equality. Now by definition J ′ρη = ζ1 ⊗ζ2

where ζ1 :=Q(vñr ,...,v1,rr )(η′ñr
⊗·· ·⊗η′1 ⊗Uη0) ∈ H̊vr ur rr and ζ2 := η̃1 ⊗·· ·⊗ η̃ñr . Now

(λ(e,e,u−1
r v−1

r )(a3)PK ′
ρ,vr

⊗ Id)J ′ρη= (λ(e,e,u−1
r v−1

r )(a3)PK ′
ρ,vr

ζ1)⊗ζ2 (6.47)

= (λ(e,e,u−1
r v−1

r )(a3)ζ1)⊗ζ2 (6.48)

=ϕ(λ(e,e,u−1
r v−1

r )(a3)Q(vñr ,...,v1)(η
′
ñr

⊗·· ·⊗η′1))(Uη0)⊗ζ2 (6.49)

= (Uη0)⊗ (ρ⊗ñr
1 (λ f (a3))η1 ⊗·· ·ηñr ) (6.50)

= (U ⊗ρ⊗ñr
1 (λ f (a3)))η (6.51)

This shows equality (6.45). Hence, combining (6.45) and (6.46) we obtain

Θ̃d (λ(a))ρ = θ⊗ñl
1 (λ f (a1))⊗a2 ⊗ρ⊗ñr

1 (λ f (a3)) (6.52)

= (J∗ρ ⊗ Id)(Id⊗PKρ,vl
λ(vl ul ,e,e)(a1)Ua2 ⊗ρ⊗ñr

1 (λ f (a3))) (6.53)

= (J∗ρ ⊗ Id)(Id⊗PK L
ρ
λ(a)PK R

ρ
⊗ Id)(Id⊗J ′ρ) (6.54)

= (J∗ρ ⊗ Id)(Id⊗λ(a)⊗ Id)(Id⊗J ′ρ) (6.55)

This shows the equality holds for all a ∈ AΓ,d , and hence, by density it holds on AΓ,d . This
completes the proof.

Theorem 6.4.3. For v ∈ Γ let (Av ,ϕv ) be a unital C*-algebra with a GNS-faithful state.
Let Tv : Av → Av be a state-preserving completely bounded map and assume it naturally
extends to a bounded map on L2(Av ,ϕv ) and on L2(Aop

v ,ϕv ). Fix d ≥ 1. Then, for the
reduced graph product, the map Td : AΓ,d → AΓ,d given for a = a1 ⊗·· ·⊗ad ∈ Åv ⊆ AΓ,d by

Td (λ(a1 ⊗·· ·⊗ad )) =λ(Tv1 (a1)⊗·· ·⊗Tvd (ad )) (6.56)

admits a completely bounded extension on AΓ,d with

∥Td∥cb ≤ (#Cliq(Γ))3d ·
(
max

v
C (Tv )

)d
. (6.57)

where

C (Tv ) := max{∥Tv∥cb,∥Tv∥B(L2(Av ,ϕv )),∥Tv∥B(L2(Aop
v ,ϕv ))}. (6.58)

We will denote this map as Td :=∗v,ΓTv . Moreover, if (Sv )v∈Γ are maps satisfying the same
conditions as (Tv )v∈Γ then

∥Td −Sd∥cb ≤ (#Cliq(Γ))3d 2
(
max

v
max{C (Tv ),C (Sv )}

)d−1
max

v
C (Tv −Sv ). (6.59)
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Proof. Fix d ≥ 1 and suppose first that for all 1 ≤ i ≤ d we are given maps Ev,i : Av → Av

satisfying the assumptions of the theorem for Tv . Now for 1 ≤ i ≤ d the direct sum⊕
v∈ΓEv,i extends to a bounded map on (

⊕
v∈Γ H̊v )C . Moreover, by [ER00, Theorem

3.4.1] this map is in fact completely bounded with the same norm. Hence by (6.16) the
map EL,i := (

⊕
v∈ΓEv,i ) is completely bounded on L1 with norm

∥EL,i∥cb ≤ max
v∈Γ

∥Ev,i∥B(L2(Av ,ϕv )).

Similarly we obtain that ER,i := (
⊕

v∈ΓTv,i ) is completely bounded on K1 with norm
∥ER,i∥cb ≤ maxv∈Γ ∥Ev,i∥B(L2(A

op
v ,ϕv )). Now, fix a tuple ρ = (nl ,nr ,ul ,ur ,t) and denote

ñl = nl +|ul | and ñr = nr +|ur |. Then by [ER00, Proposition 9.2.5] we obtain that

Πρ[(Ev,i )v,i ] := EL,1 ⊗·· ·⊗EL,ñl
⊗Et1,ñl+1 ⊗·· ·⊗Et|t|,ñl+|t|⊗ER,ñl+|t|+1 ⊗·· ·⊗ER,d

is a completely bounded map on Lñl
⊗h At ⊗h Kñr with norm

∥Πρ[(Ev,i )v,i ]∥cb ≤
ñl∏

i=1
∥EL,i∥cb

|t|∏
i=1

∥Eti ,ñl+i∥cb

d∏
i=ñl+|t|+1

∥ER,i∥cb ≤
d∏

i=1
max

v
C (Ev,i ). (6.60)

Now let the maps (Tv ) be given and set Tρ = Πρ[(Tv )v,i ] (i.e. taking Ev,i = Tv for all i ).
Hence, we get a completely bounded map T̃d = (Tρ)ρ on X̃d . Denote T ′

d for the natural

product map on AΓ,d that is given by Tv1 ⊗·· ·⊗Tvd on Åv for v = v1 · · ·vd . We then find

Td ◦λ|AΓ,d =λ◦T ′
d |AΓ,d =πd ◦ jd ◦T ′

d |AΓ,d =πd ◦Dd ◦ T̃d ◦ Θ̃d ◦λ|AΓ,d . (6.61)

This shows that Td extends to a completely bounded map on AΓ,d . The norm-bound
now follows from the bound ∥πd∥cb ≤ (#Cliq(Γ))3d , the bound on ∥T̃d∥cb and the fact
that Dd and Θ̃d are completely contractive.

Now suppose we are given maps (Tv )v∈V and (Sv )v∈V satisfying the assumptions of
the theorem. Set Sρ :=Πρ[(Sv )] and S̃d := (Sρ)ρ . Set Ev,i , j = Tv for i < j , set Ev,i , j = Tv−Sv

for i = j and set Ev,i , j = Sv for i > j . Then by cancellation it follows that Πρ[(Tv )] −
Πρ[(Sv )] =∑d

j=1Πρ[(Ev,i , j )v,i ]. Thus it follows that

∥Tρ −Sρ∥cb ≤
d∑

j=1
∥Πρ[(Ev,i , j )v,i ]∥cb ≤

d∑
j=1

d∏
i=1

max
v

C (Ev,i , j ) (6.62)

≤ d
(
max

v
max{C (Tv ),C (Sv )}

)d−1
max

v
C (Tv −Sv ). (6.63)

Then as (Td − Sd ) ◦λ|AΓ,d = πd ◦Dd ◦ (T̃d − S̃d ) ◦ Θ̃d ◦λ|AΓ,d we obtain ∥Td − Sd∥cb ≤
∥πd∥cb maxρ ∥Tρ −Sρ∥cb which proves the bound.

Additionally we prove an analogue of Theorem 6.4.3 for the Hilbert spaces.

Theorem 6.4.4. Let Γ be a finite graph and for v ∈ Γ let (Av ,ϕv ) and (Bv ,ψv ) be unital
C*-algebras with GNS-faithful states and consider the reduced graph products AΓ and BΓ
respectively. For v ∈ Γ, let Tv : Av → Bv be state-preserving maps that extend to bounded
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maps from L2(Av ,ϕv ) (=H A
v ) to L2(Bv ,ψv ) (=H B

v ). Fix d ≥ 1. Then the map Td : H A
Γ,d →

H B
Γ,d defined for η= η1 ⊗·· ·⊗ηd ∈ H̊ A

v ⊆H A
Γ,d as

Td (η) = Tv1 (η1)⊗·· ·⊗Tvd (ηd ) (6.64)

extends to a bounded map. Moreover, if (Sv )v∈Γ are maps satisfying the same conditions
as (Tv )v∈Γ then

∥Td −Sd∥B(H A
Γ,d ,H B

Γ,d ) (6.65)

≤ d(max
v

max{∥Tv∥B(H̊ A
v ,H̊ B

v ),∥Sv∥B(H̊ A
v ,H̊ B

v )})d−1 max
v

∥Tv −Sv∥B(H̊ A
v ,H̊ B

v ) (6.66)

Proof. Fix d ≥ 1 and for v ∈ Γ and 1 ≤ i ≤ d let Ev,i : Av → Bv be state-preserving that
extend to a map in B(H A

v ,H B
v ). Then as Ev,i is state-preserving we have Ev,i (H̊ A

v ) ⊆ H̊ B
v

so that the mapΠ[(Ev,i )] : H A
Γ,d →H B

Γ,d defined for η= η1 ⊗·· ·⊗ηd ∈ H̊ A
v ⊆H A

Γ,d as

Π[(Ev,i )v,i ](η) = Ev1,1(η1)⊗·· ·⊗Evd ,d (ηd ) (6.67)

is well-defined algebraically and maps H̊ A
v to H̊ B

v for v ∈ WΓ. Hence, since these sub-
spaces are mutually orthogonal for v ∈WΓ we obtain

∥Π[(Ev,i )]∥B(H A
Γ,d ,H B

Γ,d ) = max
v∈WΓ,|v|=d

∥Π[(Ev,i )]∥B(H̊ A
v ,H̊ B

v ) (6.68)

= max
v∈WΓ,|v|=d

d∏
i=1

∥Evi ,i∥B(H̊ A
vi

,H̊ B
vi

) (6.69)

≤
d∏

i=1
max

v
∥Ev,i∥B(H̊ A

v ,H̊ B
v ) (6.70)

Now let (Tv ) and (Sv ) be maps satisfying the conditions from the theorem. We see that
Td = Π[(Tv )v,i ] (i.e. taking Ev,i = Tv for all 1 ≤ i ≤ d) and Sd = Π[(Sv )v,i ] so these maps
are indeed bounded. Now set Ev,i , j = Tv for i < j , set Ev,i , j = Tv − Sv for i = j and set
Ev,i , j = Sv for i > j . It follows from cancellation that

Π[(Tv )v,i ]−Π[(Sv )v,i ] =
d∑

j=1
Π[(Ev,i , j )v,i ] (6.71)

Hence ∥Td −Sd∥B(H A
Γ,d ,H B

Γ,d ) ≤
∑d

j=1 ∥Π[(Ev,i , j )v,i ]∥B(H A
Γ,d ,H B

Γ,d ) from which (6.65) follows.

6.5. A U.C.P EXTENSION FOR CCAP IS PRESERVED UNDER GRAPH

PRODUCTS
We will introduce the following definition, originating from [RX06, Section 4].

Definition 6.5.1. Let (A,ϕ) be a unital C*-algebra with GNS-faithful state ϕ. We will say
that it has a u.c.p extension for the CCAP, when the following are all satisfied:
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1. There is a net (V j ) j∈J of finite rank state-preserving maps on A that converge to the
identity pointwise and with limsup

j
∥V j ∥cb = 1.

2. There is a unital C*-algebra (B ,ψ) that contains A as a unital subalgebra, and s.t. ψ
is GNS-faithful and extends the state ϕ.

3. There exists a net (U j ) j∈J of state-preserving, u.c.p. maps U j : A → B for which
∥V j −U j ∥cb, ∥V j −U j ∥B(L2(A,ϕ),L2(B ,ψ)) and ∥V j −U j ∥B(L2(Aop ,ϕ),L2(B op ,ψ)) all converge
to 0 as j →∞.

Note that by the first property (A,ϕ) must posses the CCAP. It is clear that any finite
dimensional C*-algebra possesses the above property. In [RX06, proof of Theorem 4.13]
it was proven that the reduced group C*-algebra of any discrete group that possess the
CCAP, also satisfies above criteria. In [Fre12, proof of Theorem 4.2] it was proven that the
same is true for reduced C*-algebra of a compact quantum group with Haar state whose
discrete dual quantum group is weakly amenable with Cowling-Haagerup constant 1.

We will now show in the next theorem that the property of having a u.c.p extension
for the CCAP is being preserved under graph products, for finite simple graphs. The
proof imitates the proof method of [RX06, Proposition 4.11]. We will use here Propo-
sition 6.3.1, Proposition 6.3.2, Proposition 6.3.3 and Theorem 6.4.3 and Theorem 6.4.4

Theorem 6.5.2. Let Γ be a finite simple graph and for v ∈ Γ let (Av ,ϕv ) be unital C*-
algebras (with GNS-faithful states ϕv ) that have a u.c.p. extension for the CCAP. Then the
reduced graph product (AΓ,ϕ) =∗min

v,Γ (Av ,ϕv ) has a u.c.p. extension for the CCAP.

Proof. We let (Vv, j ) j∈Jv , (Bv ,ψv ) and (Uv, j ) j∈Jv be a u.c.p extension for the CCAP for
(Av ,ϕv ). As for all v the algebras Av ,Bv have GNS-faithful states, their reduced graph
products (AΓ,ϕ) and (BΓ,ψ) respectively are well-defined, and the states ϕ and ψ are
GNS-faithful as well. By [CF17, Proposition 3.12] there exists a unital ∗-homomorphism
π : AΓ → BΓ that intertwines the graph product states. Now for a ∈ kerπ and b ∈ λ(AΓ)
we have ϕ(b∗a∗ab) = ψ(π(b∗)π(a)∗π(a)π(b)) = 0. Therefore, by the faithfulness of the
GNS-representation of AΓ, this shows that a = 0 and hence π is injective. We will hence
consider π as an inclusion AΓ ⊆ BΓ.

We construct a single directed set J = ∏
v∈Γ Jv with partial order ( jv )v∈Γ ≺ ( j ′v )v∈Γ if

and only if jv ≺ j ′v for all v ∈ Γ. We can now define nets (Vv, j ) j∈J , (Uv, j ) j∈J as follows:
for j = ( jv )v∈Γ we set Vv, j := Vv, jv , and Uv, j :=Uv, jv . Note that these nets still satisfy the
assumptions of a u.c.p. extension for CCAP. For v ∈ Γ, j ∈J we will set

ϵv, j = ∥Vv, j −Uv, j ∥cb +∥Vv, j −Uv, j ∥B(L2(Av ,ϕ),L2(Bv ,ψ)) +∥Vv, j −Uv, j ∥B(L2(A
op
v ,ϕ),L2(B

op
v ,ψ))

and by restricting to a subnet we can assume ϵv, j < 1. Since the maps Uv, j are u.c.p and
state-preserving we have that Uv, j is a contraction from L2(Av ,ϕv ) to L2(Bv ,ψv ) and
from L2(Aop

v ,ϕv ) to L2(B op
v ,ψv ). Hence we also obtain

∥Vv, j ∥cb,∥Vv, j ∥B(L2(Av ,ϕ),L2(Bv ,ψ)),∥Vv, j ∥B(L2(A
op
v ,ϕv ),L2(B

op
v ,ψv )) ≤ 2.
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We can now by Theorem 6.4.3 construct for j ∈ J , the finite rank c.b. maps Fd , j =
∗v,ΓVv, j on AΓ,d . We then obtain completely bounded, finite rank maps

DN , j =
N∑

d=0
(1− 1p

N
)d Fd , j PΓ,d

on AΓ that on the dense subset λ(AΓ) tend in norm to the identity as N , j →∞. We can
now by Proposition 6.3.2 construct the state-preserving u.c.p maps U j := ∗v,ΓUv, j , and
by Proposition 6.3.3 construct the u.c.p maps T1− 1p

N
and the c.b. maps T(1− 1p

N
),N on AΓ.

This gives us state-preserving u.c.p maps EN , j = U j ◦T1− 1p
N

and state-preserving c.b.

maps D̃N , j = U j ◦T1− 1p
N

,N . Applying Theorem 6.4.3 and using that C (Vv, j ),C (Uv, j ) ≤ 2

and C (Vv, j −Uv, j ) ≤ ϵv, j we obtain

∥Fd , j −U j |AΓ,d ∥cb ≤ (#Cliq(Γ))3d 22d−1(max
v

ϵv, j ) → 0 as j →∞. (6.72)

Similarly, by Theorem 6.4.4 we obtain

∥Fd , j −U j ∥B(H A
Γ,d ,H B

Γ,d ) ≤ d2d−1(max
v

ϵv, j ) → 0 as j →∞. (6.73)

Now

∥EN , j −DN , j ∥cb ≤ ∥EN , j − D̃N , j ∥cb +∥D̃N , j −DN , j ∥cb (6.74)

≤ ∥T1− 1p
N
−T1− 1p

N
,N∥cb +

N∑
d=0

∥U j |AΓ,d −Fd , j ∥cb∥PΓ,d∥cb (6.75)

and similarly

∥EN , j −DN , j ∥B(H A
Γ

,H B
Γ

) (6.76)

≤ ∥EN , j − D̃N , j ∥B(H A
Γ

,H B
Γ

) +∥D̃N , j −DN , j ∥B(H A
Γ

,H B
Γ

) (6.77)

≤ ∥U j ∥B(H A
Γ

,H B
Γ

)∥T1− 1p
N
−T1− 1p

N
,N∥B(H A

Γ
,H A

Γ
) (6.78)

+
N∑

d=0
∥U j |AΓ,d −Fd , j ∥B(H A

Γ,d ,H B
Γ,d )∥PΓ,d∥B(H A

Γ
,H A

Γ,d ). (6.79)

Note that ∥PΓ,d∥cb ≤CΓd (Theorem 6.2.10), ∥PΓ,d∥B(H A
Γ

,H A
Γ,d ) ≤ 1 and ∥U j ∥B(H A

Γ
,H B

Γ
) = 1.

Thus we obtain using Proposition 6.3.3 that

lim
N

lim
j
∥EN , j −DN , j ∥cb ≤ lim

N
∥T1− 1p

N
−T1− 1p

N
,N∥cb (6.80)

≤ lim
N

CΓN 2(1− 1p
N

)N = 0 (6.81)

so that in particular limN lim j ∥DN , j ∥cb = 1. Similarly we obtain

lim
N

lim
j
∥EN , j −DN , j ∥B(L2(AΓ,ϕ),L2(BΓ,ψ)) ≤ lim

N
∥T1− 1p

N
−T1− 1p

N
,N∥B(H A

Γ
,H A

Γ
) (6.82)

≤ lim
N

sup
d≥N

(1− 1p
N

)d = 0 (6.83)



6.5. A U.C.P EXTENSION FOR CCAP IS PRESERVED UNDER GRAPH PRODUCTS 175

and analogously limN lim j ∥EN , j −DN , j ∥B(L2(A
op
Γ

,ϕ),L2(B
op
Γ

,ψ)) = 0 can be shown. Now the

construction of (DN , j ), (BΓ,ψ) and (EN , j ) shows that (AΓ,ϕ) has a u.c.p extension for the
CCAP.

Reasoning similarly to [CF17, Corollary 3.17] we show for arbitrary (possibly infinite)
simple graphs that, under the assumptions on the algebras Av , we have that the reduced
graph product possesses the CCAP.

Theorem 6.5.3. Let Γ be a simple graph and for v ∈ Γ let (Av ,ϕv ) be unital C*-algebras
that have a u.c.p. extension for the CCAP. Then the reduced graph product (AΓ,ϕ) =
∗min
Γ (Av ,ϕv ) has the CCAP.

Proof. It follows from Theorem 6.5.2 that for any finite subgraph Γ0 ⊆ Γ, the reduced
graph product ∗min

v,Γ0
(Av ,ϕv ) possesses the CCAP. As the reduced graph product over Γ is

the induced limit of all reduced graph products over finite subgraphs and as the CCAP is
preserved under inductive limits, this shows the result

Corollary 6.5.4. Let Γ be a simple graph and for v ∈ Γ let Av be one of the following:

1. (Av ,ϕv ) is a finite-dimensional C*-algebra with GNS-faithful state ϕv .

2. (Av ,ϕv ) is the reduced group C*-algebra of a discrete group with Plancherel stateϕv

that possesses the CCAP

3. (Av ,ϕv ) is the reduced C*-algebra of a compact quantum group whose discrete dual
quantum group is weakly amenable with Cowling-Haagerup constant 1. Here ϕv

denotes the Haar state.

Then the reduced graph product C*-algebra (AΓ,ϕ) =∗min
v,Γ (Av ,ϕv ) has the CCAP.

We recall, that for a discrete group G we have that G is weakly amenable with constant
1 if and only if the reduced group C*-algebra C∗

r (G) possesses the CCAP, if and only if the
group von Neumann algebra L (G) possesses the weak-∗ CCAP. Using this we obtain the
following result for von Neumann algebras.

Corollary 6.5.5. Let Γ be a simple graph and for v ∈ Γ let (Mv ,ψv ) be the group von
Neumann algebra L (Gv ) of a discrete group Gv , equipped with the canonical state. If
Mv has the weak-∗ CCAP for all v ∈ Γ, then the graph product von Neumann algebra
(MΓ,ψ) =∗v,Γ(Mv ,ψv ) possesses the weak-∗ CCAP as well.

Proof. Note that the graph product MΓ =∗v,ΓL (Gv ) =L (∗v,ΓGv ) has the weak-∗ CCAP
if and only if C∗

r (∗v,ΓGv ) =∗min
v,Γ C∗

r (Gv ) has the CCAP. The result then follows from Corol-
lary 6.5.4

We note that Corollary 6.5.5 was already known by [Rec17] where using different
techniques it was shown that for discrete groups weak amenability with constant 1 is
preserved under graph products. However, Corollary 6.5.4 does give new examples of al-
gebras that posses the CCAP as you can consider graph products of the form∗min

v,Γ (Av ,ϕv )
where some of the algebras (Av ,ϕv ) satisfy condition (1), some satisfy condition (2) and
some satisfy condition (3).





7
COMMUTATOR ESTIMATES FOR

NORMAL OPERATORS IN FACTORS

For a normal measurable operator a affiliated with a von Neumann factor M we show:
If M is infinite, then there is λ0 ∈C so that for ε> 0 there are uε = u∗

ε , vε ∈ U(M) with

vε|[a,uε]|v∗
ε ≥ (1−ε)(|a −λ01M |+uε|a −λ01M |uε).

If M is finite, then there is λ0 ∈C and u, v ∈ U(M) so that

v |[a,u]|v∗ ≥
p

3

2
(|a −λ01M |+u|a −λ01M |u∗).

These bounds are optimal for infinite factors, II1-factors and some In-factors. Fur-
thermore, for finite factors applying ∥ · ∥1-norms to the inequality provides estimates on
the norm of the inner derivation δa : M → L1(M ,τ) associated to a. While by [BHS23,
Theorem 1.1] it is known for finite factors and self-adjoint a ∈ L1(M ,τ) that

∥δa∥M→L1(M ,τ) = 2min
z∈C

∥a − z∥1,

we present concrete examples of finite factors M and normal operators a ∈ M for which
this fails.

This chapter is based on the paper:

• Alexei Ber, Matthijs Borst and Fedor Sukochev, Commutator estimates for nor-
mal operators in factors with applications to derivations, Accepted in the Journal
of Operator Algebras. Preprint: Arxiv:2304.10775v1.

7.1. INTRODUCTION
Derivations are linear maps δ that satisfy the Leibniz rule δ(x y) = δ(x)y + xδ(y). They
play an essential role in the theory of Lie algebras, Cohomology, the study of Semi-groups
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and in Quantum Physics, see [KL14; SS95]. A classical result on derivations is due to
Stampfli [Sta70] which asserts that for a ∈ B(H ), a bounded operator on a Hilbert space
H , the derivation δa : B(H ) → B(H ) defined by the commutator δa(x) = [a, x] = ax−xa
has operator norm ∥δa∥ = 2infz∈C ∥a−z1M∥. Through the work of [KLR67; Gaj72; Zsi73],
the result of Stampfli has been extended to derivations on arbitrary von Neumann alge-
bras M (see also [Mag95] for more in this direction). More precisely, the result of Zsidó
[Zsi73, Corollary] asserts that for M a von Neumann algebra and a ∈ M , the derivation
δa : M → M associated to a satisfies the distance formula:

∥δa∥M→M = 2 min
z∈Z(M)

∥a − z∥, (7.1)

where Z(M) denotes the center of M .
Our research aims to obtain results similar to (7.1) for derivations that map M into

the predual M∗. Indeed, the predual M∗ is a M-bimodule (see Section 7.7) and therefore
it is possible to consider derivations δ : M → M∗. Important work on such derivations
was done in [BP80; Haa83; BGM12] and particularly the result of [Haa83, Theorem 4.1]
showed that all these derivations are inner (i.e. of the form δ = δa for some a ∈ M∗,
defined by δa(x) = ax − xa). These studies arose after Connes proved in [Con78] that all
C*-algebras that are amenable (as Banach ∗-algebra) are necessarily nuclear. Haagerup
proved in [Haa83] that the reverse implication is also true.

In [BHS23] the norms of these derivations were studied and results analogouos to
(7.1) were found in certain cases: for M properly infinite it was shown that some form of
formula (7.1) holds true and for M finite the same was proved under the condition that a
is self-adjoint. The proofs of these results were based on improvements of the operator
estimates obtained in [BS12b; BS12a], see below:

Theorem 7.1.1 (Theorem 1 in [BS12b]). Let M be a factor and let a = a∗ ∈ S(M) (here
S(M) is the algebra of measurable operators affiliated with M).

1. If M is a finite factor or else a purely infinite σ-finite factor, then there exists λ0 ∈ R
and u0 = u∗

0 ∈ U(M), such that

|[a,u0]| = u0|a −λ01M |u0 +|a −λ01M | (7.2)

where U(M) is the group of all unitary operators in M;

2. there exists λ0 ∈R so that for any ε> 0 there exists uε = u∗
ε ∈ U(M) such that

|[a,uε]| ≥ (1−ε)|a −λ01M |. (7.3)

This theorem was extended to arbitrary von Neumann algebras in [BS12a] with the
replacement ofλ01M by an element from the center. In [BHS23, Corollary B.3] inequality
(7.3) was extended to:

|[a,uε]| ≥ (1−ε)(|a − ca |+uε|a − ca |uε) (7.4)

where ca ∈ Zh(LS(M)) (Zh(LS(M)) is the self-adjoint part of the center of the algebra
LS(M) of locally measurable operators. The question arises: is such an inequality as
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(7.4) true for arbitrary a ∈ S(M)? More precisely, are there such λ0 ∈ C, u, v, w ∈ U(M)
and a constant C > 0 such that

|[a,u]| ≥C (v |a −λ01M |v∗+w |a −λ01M |w∗) (7.5)

holds true if a is not necessarily self-adjoint? In this chapter, we give an answer to this
question in the case when a is a normal operator (see Theorems 7.5.6, 7.6.4). It turns out
that if M is an infinite factor, then the constant C can be chosen arbitrarily close to 1,
just as in the case of self-adjoint a. However, in the case when M is a finite factor, the

situation changes. For II1-factors the optimal constant C turns out to be equal to
p

3
2 and

for In-factors appropriate upper and lower bounds on the optimal constant are given
by Λn ≤ C ≤ 1

2 Λ̃n (see (7.12) and (7.13) for definitions of these constants and (7.14) for
estimates). We summarize above results in the following theorem.

Theorem 7.1.2 (see Theorems 7.5.6, 7.6.4). Let M be a factor and let a ∈ S(M) be normal.
Then there is a λ0 ∈C and unitaries u, v, w ∈ U(M) such that

|[a,u]| ≥C
(
v |a −λ01M |v∗+w |a −λ01M |w∗)

(7.6)

for some constant C > 0 independent of a. Moreover

1. when M is a In-factor, n <∞, the optimal constant satisfiesΛn ≤C ≤ 1
2 Λ̃n .

2. when M is a II1-factor, the optimal constant is C =
p

3
2 .

3. when M is an infinite factor, we can choose C arbitrarily close to 1.

This theorem can be applied to obtain norm estimates for derivations δ : M → M∗
and extend results of [BHS23]. Specifically, we consider the case that M is finite, and τ

is a faithful normal tracial state on M . In this case M∗ is isomorphic to L1(M ,τ) (see e.g.
[Tak03a, Lemma 2.12 and Theorem 2.13]). As an application of inequality (7.4), it was
proved in [BHS23, Theorem 1.1] that, for a = a∗ ∈ L1(M ,τ), we have

∥δa∥M→L1(M ,τ) = 2 min
z∈Z(S(M))

∥a − z∥1 (7.7)

(here Z(S(M)) denotes the center of S(M)) and that the minimum is attained at a self-
adjoint element ca = c∗a ∈ L1(M ,τ)∩Z(S(M)). In this thesis, using Theorem 7.1.2, we
show that for a finite factor M and for an arbitrary normal measurable a ∈ L1(M ,τ), the
estimate

p
3min

z∈C
∥a − z∥1 ≤ ∥δa∥M→L1(M ,τ) ≤ 2min

z∈C
∥a − z∥1 (7.8)

holds (see remark after Theorem 7.7.3). In Section 7.7 we show that the estimates given
in (7.8) are sharp. In particular, in Theorem 7.7.3 we demonstrate that for any finite II1-
factor M there exists a normal a ∈ M such that the derivation δa is non-zero and satisfies
∥δa∥M→L1(M ,τ) =

p
3minz∈C ∥a−z∥1, whereas it follows from Theorem 7.6.4 and [BHS23,

Theorem 3.1] that for any infinite factor M formula (7.7) holds for an arbitrary normal
a ∈ L1(M ,τ).

Finally, we remark that (7.8) is in fact an estimate for the L1-diameter of the unitary
orbit O (a) = {uau∗ : u ∈ U(M)} of a as DiamL1(M ,τ)(O (a)) = ∥δa∥M→L1(M ,τ), see end of
Section 7.7.
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DISCUSSION OF PROOFS AND COMPARISON TO [BS12B; BS12A; BHS23]
We first discuss our proof techniques. In the proof for II1-factor M we construct a trace-
preserving injective ∗-homomorphism F from S[0,1] (space of measureable functions
on [0,1]) to S(M) satisfying F (g ) = a for some measurable function g (see Theorem 7.5.2).
We then construct a point z0 ∈ C and a partition {X1}∪ {X m,i

2 : m ≥ 1, i = 1,2} of [0,1]
satisfying:

1. g (X1) ⊂ {z0}.

2. For m ≥ 1 the sets X m,1
2 and X m,2

2 have equal measure.

3. For m ≥ 1 the sets g (X m,1
2 ) and g (X m,2

2 ) are (z0, π3 )-conjugate (see Definition 7.4.1).

The statement that g (X m,1
2 ) and g (X m,2

2 ) are (z0, π3 )-conjugate says that z0 in some sense

lies in between the sets g (X m,1
2 ) and g (X m,2

2 ). Using the partition we can build a measure

preserving transformation T of [0,1] with T (X1) = X1 and T (X m,1
2 ) = X m,2

2 and T (X m,2
2 ) =

X m,1
2 for m ≥ 1. Then T will satisfy

|g ◦T − g | ≥
p

3

2
(|g − z0|+ |g ◦T − z0|). (7.9)

Using the map F and operator inequalities we can in a similar way use the partition to
obtain (7.6) for some u, v, w and λ0 (= z0). The case of In-factors (n <∞) is somewhat
analogous and uses the spectral mapping theorem and the analogue of (7.9) for func-
tions g on the measure space Ωn = {1, . . . ,n} with counting measure. Upper bounds for
the optimal constant C for In-factors and II1 factors are obtained using Proposition 7.5.5
and Lemma 7.A.2 by constructing specific operators a.

The proof for infinite factors is based on the structure of the set A of points of densi-
fication of a. This set A ⊆ C is by definition the set of all complex numbers λ for which
the spectral projection ea(V ) is equivalent to 1M for every neighbourhood V of λ. The
set A is non-empty and compact and we distinguish three cases:

1. There is a point λ0 ∈ A such that ea({λ0}) ∼ 1M .

2. The set A has a limit point λ0.

3. The set A is finite and e({λ}) ̸∼ 1M for all λ ∈ A.

In case (1) we are directly able to build u, v, w that fulfill (7.6) for C = 1 (actually with
equality), while in the cases (2) and (3) for arbitrary ε > 0 we first need to inductively
construct some sequences (pn)n≥1, (qn)n≥1 of orthogonal projections that we then use
to define uε, vε, wε that satisfy (7.6) for C = 1−ε. This shows that for infinite factors the
constant C from (7.6) can be chosen arbitrarily close to 1.

We now compare our techniques to those applied in [BS12b; BS12a; BHS23]. The
proof of [BS12b, Theorem 1] is based on comparing the spectral projections ea(−∞,λ)
and ea(λ,∞) for λ ∈ R and distinguishing cases. When ea(−∞,λ0)+ p ∼ ea(λ0,∞)+ q
for some λ0 ∈ R, p, q ≤ ea({λ0}) with pq = 0 it is shown that (7.2) is satisfied (see [BS12b,
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Lemma 5]). This is in essence not so different to our proof method of Theorem 7.1.2 (for
finite factors) which requires similar comparisons for certain halfspaces in the complex
plane instead of in the real line (see Lemma 7.4.5). Furthermore, in the case of infinite
factors, the proof of [BS12b, Theorem 1] uses the construction of sequences (pn)n≥1,
(qn)n≥1 which have similarities to those we construct in Theorem 7.6.4; though the con-
structions are different.

The proof of [BS12a, Theorem 1] uses additional techniques to extend the result of
[BS12b, Theorem 1] to the setting of arbitrary von Neumann algebras. In particular this
involves obtaining a self-adjoint central element c0 ∈ LS(M) and building certain or-
thogonal central projections p+, p−, p0 ∈ M and combining results for the operators ap0,
(a − c01M )p− and (a − c01M )p+. It is not clear whether the applied techniques can also
be used to extend our results to the setting of arbitrary von Neumann algebras.

The proof of [BHS23, Theorem 13] adapts methods from [BS12b] to obtain the gen-
eralized inequality (7.4) which is more closely related to our method for infinite factors
in Theorem 7.6.4.

STRUCTURE AND OVERVIEW

In Section 7.2 we prove Proposition 7.2.1 and Theorem 7.2.2 that extend some results to
locally measurable operators. In Section 7.3 we introduce the constants Λn and Λ̃n for
n ∈ N∪ {∞} that will be used throughout the chapter. In Section 7.4 our main result is
Theorem 7.4.3, which is closely related to the constants Λn and to the operator inequal-
ity (7.5). In Section 7.5 we use this result to obtain Theorem 7.5.6 which establishes the
operator inequality of Theorem 7.1.2 for normal elements in finite factors. In Section 7.6
we obtain the inequality of Theorem 7.1.2 for normal locally measurable operators af-
filiated with an infinite factor, see Theorem 7.6.4. In Section 7.7 we apply our results
to obtain the estimate (7.8) for the norm of derivations δa : M → L1(M ,τ) for normal
a ∈ L1(M ,τ), and we show the given bounds are optimal in some cases. In the Appendix,
Section 7.A, we prove two technical results regarding the constants Λn and Λ̃n . In par-
ticular, Theorem 7.A.1 determines the exact value ofΛn for n ̸= 4.

7.2. ESTIMATES FOR LOCALLY MEASURABLE OPERATORS
We prove two results, Proposition 7.2.1 and Theorem 7.2.2, which generalize a known
result (a type of triangle inequality for operators) to locally measurable operators. Let M
be a semifinite von Neumann algebra and let LS(M) be the space of locally measurable
operators (see preliminaries). Let x ∈ LS(M). Denote by l(x) - the left carrier of x, by r(x)
- the right carrier of x and s(x) = l(x)∨ r(x). If x = u|x| is the polar decomposition of x,
then l(x) = uu∗ and r(x) = u∗u. We denote ℜ(x) = x+x∗

2 and ℑ(x) = x−x∗
2i for respectively

the real and imaginary part of x. For a self-adjoint x ∈ LS(M) we denote by x+ (respec-
tively, x−) its positive (respectively negative) part, defined by x+ = x+|x|

2 (respectively,

x− =− x−|x|
2 ). We note that x− and x+ are orthogonal, that is x−x+ = 0.

We require Theorem 7.2.2 which states a triangle inequality for operators x ∈ LS(M).
The statement is similar to [AAP82, Theorem 2.2] where for operators x ∈ M the result
was shown with partial isometries instead of isometries (see also [FK86, Lemma 4.3] and
[Hia21, Lemma 4.15]). To prove Theorem 7.2.2, we will need the following statement
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which is similar to [AAP82, Proposition 2.1]. Here, v ∈ M is called an isometry if v∗v = 1M .

Proposition 7.2.1. For each x ∈ LS(M) there is an isometry v ∈ M such that ℜ(x)+ ≤
v |x|v∗.

Proof. Let p = s(ℜ(x)+), a = p(x +|x|). Then clearly l(a) ≤ p. We show p = l(a). Put r =
p − l(a) so that 0 = r a = r ar = r xr + r |x|r . Taking the real part of this equation gives 0 =
rℜ(x)r + r |x|r . Since r ≤ p we have rℜ(x)−r = 0 and therefore rℜ(x)r = rℜ(x)+r . Then

0 = rℜ(x)r+r |x|r = rℜ(x)+r+r |x|r and hence rℜ(x)+r = 0. Then as (ℜ(x)
1
2+r )∗(ℜ(x)

1
2+r ) =

rℜ(x)r = 0, we obtain ℜ(x)
1
2+r = 0 and hence ℜ(x)+r = 0. Therefore, ℜ(x)+(1M − r ) =

ℜ(x)+ which shows (1M − r ) ≥ s(ℜ(x)+) = p and we conclude r = 0, i.e. p = l(a).
Let a = w |a| be the polar decomposition of a. Then w w∗ = p. Put q = w∗w and

s = (1M −q)∧p. We show s = 0. Indeed as = aqs = 0, thus s(x+|x|)s = sas = 0 and taking
the real part of this equation gives sℜ(x)s+s|x|s = 0. As s ≤ p we have sℜ(x)−s = 0 so that
sℜ(x)s = sℜ(x)+s. Again, by the same arguments as before, this implies sℜ(x)+s = 0 and
subsequently (1M − s) ≥ p. Thus s ≤ (1M −p)∧p = 0.

Let (1M − p)(1M − q) = w0|(1M − p)(1M − q)| be the polar decomposition of (1M −
p)(1M − q). Then w0w∗

0 ≤ 1M −p and w∗
0 w0 ≤ 1M − q . Moreover, if t = 1− q −w∗

0 w0 =
1−q − r((1M −p)(1M −q)) then we see (1M −q)t = t and

(1M −p)t = ((1M −p)(1M −q))t = 0 ⇒ t ≤ p ⇒ t ≤ s = 0.

So we obtain the equality w∗
0 w0 = 1M −q and thus v = w +w0 is an isometry in M .

The inequality ℜ(x)+ ≤ v |x|v∗ is proved in the same way as in the proof of [AAP82,
Proposition 2.1] (the monotonicity of the square root function follows from [DPS22, Corol-
lary 2.2.28]).

The proof of Theorem 7.2.2 is exactly the same as the proof of [AAP82, Theorem 2.2],
but instead of [AAP82, Proposition 2.1] we use Proposition 7.2.1 above. We include the
proof for completeness.

Theorem 7.2.2. For any x, y ∈ LS(M) there are isometries v, w ∈ M such that

|x + y | ≤ v |x|v∗+w |y |w∗.

Proof. We write the polar decomposition x + y = u|x + y |. Then

|x + y | = 1

2
(u∗(x + y)+ (x + y)∗u) =ℜ(u∗x)+ℜ(u∗y) (7.10)

Furthermore, |u∗x| = (x∗u∗ux)
1
2 ≤ ∥u∥(x∗x)

1
2 ≤ |x| and similarly |u∗y | ≤ |y |. Now apply

Proposition 7.2.1 to u∗x and to u∗y to obtain isometries v, w ∈ M so that

|x + y | =ℜ(u∗x)+ℜ(u∗y) ≤ v |u∗x|v∗+w |u∗y |w∗ ≤ v |x|v∗+w |y |w∗ (7.11)
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7.3. CONSTANTS Λn AND Λ̃n
For n ∈Nwe denote by (Ωn ,µn) the set {1,2, . . . ,n} equipped with the normalized count-
ing measure, and by (Ω∞,µ∞) we denote the interval [0,1] equipped with Lebesgue mea-
sure. We will moreover write S(Ωn) for the set of complex measurable functions on Ωn ,
which is simply the collection of all n-tuples of complex numbers. We write Autn for the
automorphism group of (Ωn ,µn), n ∈N∪{∞}, where automorphism is defined as follows:

Definition 7.3.1. Let (X1,µ1) and (X2,µ2) be measure spaces. We will say that a map
T is an isomorphism between X1 and X2 if T is a measurable bijective map T : N1 →
N2 between two sets N1 ⊆ X1 and N2 ⊆ X2 of full measure, and such that moreover T −1

is also measurable, and µ1 ◦ T −1 = µ2. Whenever (X1,µ1) = (X2,µ2) we will call T an
automorphism.

Let n ∈N∪ {∞}. We now introduce two constantΛn and Λ̃n as follows. Let g ∈ S(Ωn),
T ∈ Autn , z ∈C, and put

Λ(g ,T, z) = essinf
|g − g ◦T |

|g − z|+ |g ◦T − z| ,

where we assume 0
0 = 1. By the triangle inequality we have |g −g ◦T | ≤ |g −z|+|g ◦T −z|

which showsΛ(g ,T, z) ≤ 1 for all g ,T, z. We put

Λ(g ) = sup{Λ(g ,T, z) : T ∈ Autn , z ∈C}

and defineΛn by

Λn = inf
g∈S(Ωn )

Λ(g ). (7.12)

For n > 1 we define Λ̃n by setting

Λ̃n =



2 if n = 2, n = 4p
3 if n = 3k,

2
p

3√
3k−3
3k+1 + 3k+3

3k+1

if n = 3k +1, n ̸= 4

2
p

3√
3k+6
3k+2 + 3k

3k+2

if n = 3k +2,

p
3 if n =∞.

. (7.13)

In Section 7.A we will prove two results on the constants Λn and Λ̃n . In Theorem 7.A.1
we will precisely determineΛn for all values except for n = 4. It turns out that

Λ1 =Λ2 = 1, and

p
3

2
≤Λ4 ≤ 1, and Λn =

p
3

2
for n ̸∈ {1,2,4}. (7.14)

We observe that this implies that 2Λn ≤ Λ̃n for n > 1 with equality when n ≡ 0 mod 3 or
n =∞ and that moreover limn→∞ 2Λn =p

3 = lim
n→∞Λ̃n .

We denote the diameter of a set A ⊆C by Diam(A) := supz,w∈A |z−w |. In Lemma 7.A.2
we will show for n > 1 that there exists g ∈ L∞(Ωn) with Diam(g (Ωn)) = 1 and Λ̃n =
supz∈C

1
∥g−z∥1

, which will be used throughout the text.
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7.4. TECHNICAL RESULT
This section is devoted to the proof of Theorem 7.4.3, which is closely connected to the
operator inequality (7.5) and to the constantsΛn . To fully state the result we first give the
following definition:

Definition 7.4.1. Let z ∈ C, 0 ≤ α≤ π. The sets A,B ⊂ C will be called (z,α)-conjugate if
there are two lines in C that intersect at the point z at an angle α, such that the sets A and
B lie in opposite closed corners with the vertex z and the magnitude α (see Fig. 7.1)

z α BA

Figure 7.1: Two (z,α)-conjugate sets A and B are depicted.

Remark 7.4.2. Let the sets A,B be (z,α)-conjugate, a ∈ A, b ∈ B . It is easy to see that

|a −b| ≥ (|a − z|+ |b − z|)cos
α

2
.

Indeed, it is enough to consider the projections of points a,b on the bisector of the angle
α.

Theorem 7.4.3. Let g ∈ S(Ωn), n ∈ N∪ {∞}. Then there exists a z0 ∈ C and an automor-
phism T ofΩn such that

|g ◦T − g | ≥
p

3

2

(|g − z0|+ |g ◦T − z0|
)
. (7.15)

i.e.

Λ(g ) ≥
p

3

2
. (7.16)

Moreover, the setΩn can be partitioned into disjoint measurable sets as follows:

1. if n is even or n = ∞ then there is a partition {X1} ∪ {X m,i
2 : 1 ≤ m,1 ≤ i ≤ 2} so

that g (X1) ⊂ {z0}, µn(X m,1
2 ) = µn(X m,2

2 ) and the sets g (X m,1
2 ), g (X m,2

2 ) are (z0, π3 )-

conjugate for m = 1,2, . . . ; Moreover, denoting X2 = Ωn \ X1 we have that T k |Xk =
IdXk for k = 1,2.

2. if n is odd then there is a partition X1, X2, X3, X5, so that T k |Xk = I dXk , k = 1,2,3,5.
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If n <∞ then there exists z0 ∈C and T ∈ Autn so that

Λ(g ,T, z0) =Λ(g ). (7.17)

The above theorem relates to the operator inequality (7.5) through functional cal-
culus. This is best visible in the case of finite-dimensional factors, see Theorem 7.5.1.
Furthermore, we note that Theorem 7.4.3 provides a lower bound on the constants Λn .

Indeed, given g ∈ S(Ωn) the obtained z0, T are such thatΛ(g ,T, z0) ≥
p

3
2 . HenceΛn ≥

p
3

2

for all n ∈N∪ {∞}. In the Appendix, Theorem 7.A.1, it is proved that in fact Λn =
p

3
2 for

n = 3 and n ≥ 5. Therefore, for these values of n, the constant
p

3
2 in the above theorem is

best possible (i.e. maximal so that for all g ∈ S(Ωn) there exist z0,T satisfying (7.15)).
The proof of Theorem 7.4.3 is somewhat technical and requires two other results:

Lemma 7.4.4 and Lemma 7.4.5 We give a sketch of the proof. Given a measurable func-
tion g : Ωn → C we first use Lemma 7.4.5 to locate a point z0 ∈ C, and divide the plane
into 6 components by drawing 3 lines intersecting in z0 making angles of 2π

6 . The way
we do this is such that the measure of the inverse image of g of opposing components is
equal. We can then construct an automorphism T by just mapping the inverse image of
g of each component to the inverse image of its opposing component. For all ω ∈Ω, we
then obtain the estimate ∠g (w), z0, g (T (w)) ≥ 2π

3 for the angle. Lemma 7.4.4 will then
imply that (7.15) holds true. In the actual proof of Theorem 7.4.3 some difficulties arise
with the boundaries of the components, and particularly for the case that we are dealing
with the measure spaceΩn with n odd. Because of this reason, it is necessary to consider
multiple cases in the proof.

The following lemma gives for complex numbers z0, z1, z2 a sufficient condition for

|z1 − z2| ≥
p

3

2
(|z1 − z0|+ |z2 − z0|) (7.18)

to hold, namely when the angle satisfies ∠z1z0z2 ≥ 2π
3 . Equation (7.18) can also be de-

scribed geometrically as saying that the point z0 lies in the ellipse with foci z1 and z2 and

eccentricity
p

3
2 .

Lemma 7.4.4. Let z0, z1, z2 ∈C be points in the plane, and consider the triangle △z0z1z2.
Denote a = |z1 − z2|, b = |z1 − z0|, c = |z2 − z0|, and α=∠z1z0z2. If α≥ 2π

3 then

a ≥
p

3

2
(b + c).

Proof. According to the cosine theorem we have

a2 = b2 + c2 −2bc cosα.

Since cosα≤− 1
2 and b2 + c2 ≥ 2bc we obtain

4a2 ≥ 4(b2 + c2 +bc) ≥ 3b2 +3c2 +6bc = 3(b + c)2

which shows the result.
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The following lemma is used, for a given function g ∈ S(Ωn), to choose the point
z0 ∈ C adequately such that (7.15) holds for some automorphism T that we will later
determine. The point z0 ∈ C should be thought of as the center (or rather a center) of
the image of g . In Lemma 7.4.5 we have identified C with R2 and the point z0 ∈ C is
represented as a vector z0 ∈ R2. This vector z0 is chosen together with three affine hy-
perplanes (i.e. lines) through z0 that are represented by unit vectors v1,v2,v3 orthogonal
to those affine hyperplanes. The unit vectors v1,v2,v3 moreover make angles ∠vi 0v j

for i ̸= j of 2π
3 (this means that the affine hyperplances intersect at angles of 2π

6 ). To
each of the affine hyperplanes correspond two closed halfspaces. The lemma tells us
that z0,v1,v2,v3 can be chosen in such a way that the inverse image of g of each of these
closed halfspaces has measure larger or equal to 1

2 . This explains why we think of z0 as
a center of the image of g . Namely, for all three affine hyperplanes it must hold that an
equal portion of the domain is mapped to each side (or possibly on the affine hyper-
plane). However, we remark that such a ‘center point’ z0 with the above properties does
not need to be unique.

Lemma 7.4.5. Let (Ω,µ) be a probability space and let g be a measurable R2-valued func-
tion. Then, there exists a point z0 ∈ R2, unit vectors v1,v2,v3 ∈ R2 with angles ∠v10v2 =
∠v20v3 =∠v30v1 = 2π

3 so that for i = 1,2,3, denoting ai := 〈z0,vi 〉, we have

mL
i :=µ

(
{ω ∈Ω : 〈g (ω),vi 〉 ≤ ai }

)
≥ 1

2
, mR

i :=µ
(
{ω ∈Ω : 〈g (ω),vi 〉 ≥ ai }

)
≥ 1

2
.

For i = 1,2,3 we point out that mL
i +mR

i = 1 holds if and only if µ({ω ∈ Ω : 〈g (w),vi 〉 =
ai }) = 0.

Proof. We first prove the result for the case that g is bounded. Denote T = R/2πZ and
for t ∈T set v(t ) = (cos(t ),sin(t )) and define

Ω(t ,r ) = {ω ∈Ω : 〈g (ω),v(t )〉 ≤ r }, r ∈R,

A(t ) =
{

r ∈R :
1

2
≤µ(Ω(t ,r ))

}
,

a(t ) = inf A(t ).

If rn ↓ a(t ) and 1
2 ≤ µ(Ω(t ,rn)) then Ω(t ,r1) ⊃ Ω(t ,r2) ⊃ . . . and Ω(t , a(t )) = ⋂

nΩ(t ,rn).
Hence,

1

2
≤µ(Ω(t , a(t ))). (7.19)

If rn ↑ a(t ) then 1
2 ≥ µ(Ω(t ,rn)) and Ω(t ,r1) ⊂ Ω(t ,r2) ⊂ . . . and {ω ∈ Ω : 〈g (ω),v(t )〉 <

a(t )} =⋃
nΩ(t ,rn). Hence,

µ
(
{ω ∈Ω : 〈g (ω),v(t )〉 < a(t )}

)
≤ 1

2
≤µ

(
{ω ∈Ω : 〈g (ω),v(t )〉 ≤ a(t )}

)
(7.20)

and therefore

µ
(
{ω ∈Ω : 〈g (ω),v(t )〉 ≥ a(t )}

)
≥ 1

2
. (7.21)
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We note that it follows from the definition of a that

a(t +π) =−sup
{

r ∈R :
1

2
≤µ({ω ∈Ω : 〈g (ω),v(t )〉 ≥ r })

}
(7.22)

since
Ω(t +π,r ) = {ω ∈Ω : 〈g (ω),v(t )〉 ≥−r }, r ∈R.

Hence, we obtain by (7.21), (7.22) and by properties of the supremum that a(t ) ≤
−a(t +π) for all t ∈ T since a(t ) ∈

{
r ∈ R : 1

2 ≤ µ({ω ∈Ω : 〈g (ω),v(t )〉 ≥ r })
}

. Moreover, in

the second inequality of (7.20), replacing t by t +π we obtain

1

2
≤µ

(
{ω ∈Ω : 〈g (ω),v(t )〉 ≥−a(t +π)}

)
. (7.23)

Hence, for any t ∈T, and any b ∈ [a(t ),−a(t +π)] we obtain using (7.20) and (7.23) that

1

2
≤µ

(
{ω ∈Ω : 〈g (ω),v(t )〉 ≤ b}

)
,

1

2
≤µ

(
{ω ∈Ω : 〈g (ω),v(t )〉 ≥ b}

)
. (7.24)

We show that the function a is continuous. Indeed, let ε > 0, and choose δ > 0 such
that ∥v(t )−v(s)∥2 < ε for all t , s ∈T with Dist(s, t ) < δ. Now, fix t , s ∈T with Dist(t , s) < δ.
Then for ω ∈Ωwe have

|〈g (ω),v(t )〉−〈g (ω),v(s)〉| ≤ ∥g∥∞∥v(t )−v(s)∥2 < ε∥g∥∞.

But this means for r ∈R that

{ω ∈Ω : 〈g (ω),v(t )〉 ≤ r } ⊆ {ω ∈Ω : 〈g (ω),v(s)〉 ≤ r +ε∥g∥∞}.

This implies in particular that

1

2
≤µ

(
{ω : 〈g (ω),v(t )〉 ≤ a(t )}

)
≤µ

(
{ω : 〈g (ω),v(s)〉 ≤ a(t )+ε∥g∥∞}

)
so that a(s) ≤ a(t )+ ε∥g∥∞. By symmetry of s and t we obtain similarly a(t ) ≤ a(s)+
ε∥g∥∞, which implies |a(t )−a(s)| < ε∥g∥∞ and shows the continuity of a.

Now, for t ∈T and b ∈R consider the line

L(t ,b) = {w ∈R2 : 〈w,v(t )〉 = b} = bv(t )+Rv(t + π

2
).

For s ̸= t mod π, the lines L(s) and L(t ) intersect at a unique point w(L(s,b),L(t ,c)). In
particular there is a r ∈R such that

w(L(s,b),L(t ,c)) = bv(s)+ r v(s + π

2
).

Therefore c := 〈w(L(s,b),L(t ,c)),v(t )〉 = b〈v(s),v(t )〉+r 〈v(s+π
2 ),v(t )〉 so that r = c−b〈v(s),v(t )〉

〈v(s+ π
2 ),v(t )〉

and thus

w(L(s,b),L(t ,c)) = bv(s)+ c −b〈v(s),v(t )〉
〈v(s + π

2 ),v(t )〉 v(s + π

2
).
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Let t ∈T. We are interested in finding values b1,b2,b3 ∈R such that the lines L(t− 2π
3 ,b1),

L(t + 2π
3 ,b2) and L(t ,b3) intersect at a single point. This is to say that the intersection

point w(L(t − 2π
3 ,b1),L(t + 2π

3 ,b2)) must lie on the line L(t ,b3). From this we obtain the
expression for b3, namely:

b3 := 〈w(L(t − 2π

3
,b1),L(t + 2π

3
,b2)),v(t )〉

= b1〈v(t − 2π

3
),v(t )〉+ b2 −b1〈v(t − 2π

3 ),v(t + 2π
3 )〉

〈v(t − π
6 ),v(t + 2π

3 )〉 〈v(t − π

6
),v(t )〉

= b1 cos(
2π

3
)+ b2 −b1 cos( 4π

3 )

cos( 5π
6 )

cos(
π

6
)

= b1 cos(
2π

3
)−

(
b2 −b1 cos(

4π

3
)

)
=−b1 −b2.

This shows that the lines L(t − 2π
3 ,b1),L(t + 2π

3 ,b2) and L(t ,b3) intersect precisely when
b1 +b2 +b3 = 0.

Define c :T→R as c(t ) = a(t − 2π
3 )+a(t )+a(t + 2π

3 ), which is a continuous function.
Now, we note that, similar to a, we have c(t ) ≤ −c(t +π) for all t , so that

∫
T c(t )d t ≤

−∫
T c(t +π)d t = −∫

T c(t )d t , and hence that
∫
T c(t )d t ≤ 0. We can thus find a t1 such

that c(t1) ≤ 0. If also 0 ≤ −c(t1 +π) then we set t0 := t1. If instead −c(t1 +π) < 0, we
set t2 := t1 +π and obtain −c(t2 +π) = −c(t1) ≥ c(t1 +π) > 0. By the intermediate value
theorem, we then find a t0 ∈T such that −c(t0 +π) = 0. Then c(t0) ≤−c(t0 +π) = 0.

In both cases, we found t0 ∈ T with c(t0) ≤ 0 ≤ −c(t0 +π). Now, as moreover a(t ) ≤
−a(t +π) for all t ∈T, we can determine

b1 ∈ [a(t0 − 2π

3
),−a(t0 + π

3
)],

b2 ∈ [a(t0 + 2π

3
),−a(t0 − π

3
)],

b3 ∈ [a(t0),−a(t0 +π)]

such that b1 + b2 + b3 = 0. Indeed, this is possible as the sum of the left-endpoints of
the intervals equals c(t0), whereas the sum of the right-endpoints of the intervals equals
−c(t0 +π). We now set v1 := v(t0 − 2π

3 ), v2 := v(t0 + 2π
3 ) and v3 := v(t0) and let z0 be the

unique intersection point of the lines L(t0 − 2π
3 ,b1), L(t0 + 2π

3 ,b2) and L(t0,b3) . As z0 lies
on each of the three lines, we obtain that ai := 〈z0,vi 〉 = bi for i = 1,2,3. By the choice of
the bi ’s in the intervals, it (see (7.24)) now follows that the properties of the lemma are
fulfilled. The last line of the lemma follows from the fact that mL

i +mR
i = µ(Ω)+µ({ω ∈

Ω : 〈g (ω),vi 〉 = ai }).
The result for unbounded g follows by the following reduction to the case of bounded

functions. For j ∈N let Ω j ⊆Ω be a measurable subset for which gχΩ j is bounded and

with Ω j ↑ Ω. Denote µ j := 1
µ(Ω j )µ and g j := g |Ω j ∈ L∞(Ω j ,µ j ). Applying the result of

the lemma to g j , we find z0, j and vi , j and ai , j = 〈z0, j ,vi , j 〉 with the stated properties.
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The sequence z0, j must be bounded. Indeed, otherwise there is an i ∈ {1,2,3} such that
for a subsequence of (ai , j ) j≥1 we have ai , j →+∞. However, this would contradict 1

2 ≤
µ j

(
{ω ∈Ω j : 〈g j (ω),vi , j 〉 ≥ ai , j }

)
. Thus, by boundedness of the sequences (z0, j ) j≥1 and

(vi , j ) j≥1, we have for some strictly increasing sequence ( jk )k≥1 in N, that the limits z0 :=
lim

k→∞
z0, jk and vi := lim

k→∞
vi , jk exist. Setting ai := 〈z0,vi 〉 we also have ai = lim

k→∞
ai , jk . Using

(reversed) Fatou’s lemma, we now obtain for i = 1,2,3 that

µ
(
{ω ∈Ω : 〈g (ω),vi 〉 ≤ ai }

)
≥µ

( ∞⋂
K=1

⋃
k≥K

{ω ∈Ω jk : 〈g (ω),vi , jk 〉 ≤ ai , jk }
)

≥ limsup
k→∞

µ
(
{ω ∈Ω jk : 〈g (ω),vi , jk 〉 ≤ ai , jk }

)
≥ limsup

k→∞
µ jk

(
{ω ∈Ω jk : 〈g jk (ω),vi , jk 〉 ≤ ai , jk }

)
≥ 1

2
.

In the same way µ
(
{ω ∈Ω|〈g (ω),vi 〉 ≥ ai }

)
≥ 1

2 can be shown. The last line of the lemma

follows as before. This proves the lemma.

We are now fully equipped to prove Theorem 7.4.3.

Proof of Theorem 7.4.3. By identifying C with R2, we can apply Lemma 7.4.5, to obtain
z0 and v1,v2,v3 and a1, a2, a3 which we will use to prove the result. Without loss of gen-
erality we can moreover assume that v1,v2 and v3 are orientated counter-clockwise. In
the proof, we distinguish cases, depending on n. We prove the result separately for the
cases: (1) for n even, or n =∞ and (2) for n odd.

(1) n is even, or n = ∞. First, suppose that n ∈ N is even. Then, by the choice of
the point z0 and of v1,v2,v3 (see Lemma 7.4.5) and the fact that n is even, we can for

j = 1,2,3 create partitions {I+j , I−j } of Ωn such that µn(I+j ) = µn (Ωn )
2 = µn(I−j ) and such

that 〈g (ω),v j 〉 ≤ a j whenever ω ∈ I−j and 〈g (ω),v j 〉 ≥ a j whenever ω ∈ I+j . If instead

n =∞ then the same is true, because of the fact that µn is atomless in that case. We can
now define the sets

P+
1 = I+1 ∩ I−2 ∩ I−3 , P−

1 = I−1 ∩ I+2 ∩ I+3 ,

P+
2 = I−1 ∩ I+2 ∩ I−3 , P−

2 = I+1 ∩ I−2 ∩ I+3 ,

P+
3 = I−1 ∩ I−2 ∩ I+3 , P+

3 = I+1 ∩ I+2 ∩ I−3 ,

P+
4 = I+1 ∩ I+2 ∩ I+3 , P−

4 = I−1 ∩ I−2 ∩ I−3

that partitionΩn .
We show that g (P+

4 ∪P−
4 ) ⊆ {z0}. We have that v1 + v2 + v3 = 0 and therefore a1 +

a2 + a3 = 0. For ω ∈ I+1 ∩ I+2 ∩ I+3 we have 〈g (ω),vi 〉 ≥ ai , i = 1,2,3, and
∑3

i=1〈g (ω),vi 〉 =
0. Hence, 〈g (ω),vi 〉 = ai , i = 1,2,3. But this means precisely that g (ω) = z0. Similarly
g (P−

4 ) ⊆ {z0}. For benefit of the reader, we have visualized the partition sets in Fig. 7.2.
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z0

0
v1

v2

v3g (I+1 )g (I−1 )

g (I+2 )

g (I−2 )g (I+3 )

g (I−3 )

g (P−
1 ) g (P+

1 )

g (P−
2 )

g (P+
2 ) g (P−

3 )

g (P+
3 )

Figure 7.2: The partition sets are visualized for a universal example (any example is like this, except for shifting
z0 and rotating the lines). The 3 lines intersect in a single point z0. For every line, the set Ωn is partitioned in
two sets I+i and I−i , so that g (I+i ) and g (I−i ) lie only on one side of this line. The partition sets P±

j are then such

that g (P±
j ) lies in one connected component (or its boundary). The sets g (P+

4 ) and g (P−
4 ) are not visualized.

For these we must have g (P+
4 ∪P−

4 ) ⊆ {z0}.

We have

µn(P+
1 ∪P−

2 ∪P−
3 ∪P+

4 ) =µn(I+1 ) =µn(I−1 ) =µn(P−
1 ∪P+

2 ∪P+
3 ∪P−

4 ), (7.25)

µn(P−
1 ∪P+

2 ∪P−
3 ∪P+

4 ) =µn(I+2 ) =µn(I−2 ) =µn(P+
1 ∪P−

2 ∪P+
3 ∪P−

4 ), (7.26)

µn(P−
1 ∪P−

2 ∪P+
3 ∪P+

4 ) =µn(I+3 ) =µn(I−3 ) =µn(P+
1 ∪P+

2 ∪P−
3 ∪P−

4 ), (7.27)

(7.25)+(7.26):

µn(P−
3 )+µn(P+

4 ) =µn(P+
3 )+µn(P−

4 ),

(7.25)+(7.27):

µn(P−
2 )+µn(P+

4 ) =µn(P+
2 )+µn(P−

4 ),

(7.26)+(7.27):

µn(P−
1 )+µn(P+

4 ) =µn(P+
1 )+µn(P−

4 ).

We thus obtain that t :=µn(P+
j )−µn(P−

j ) is independent of j = 1,2,3,4.

Let us assume that t ≥ 0 so that µn(P+
j ) ≥ t . Choose A j ⊆ P+

j with µn(A j ) = t . We

denote X1 = (P+
4 ∪P−

4 ) \ A4 and

X 1,1
2 = P+

1 \ A1, X 1,2
2 = P−

1 , X 2,1
2 = P+

2 \ A2, X 2,2
2 = P−

2 , X 3,1
2 = P+

3 \ A3, X 3,2
2 = P−

3 .
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First, suppose that n ∈ N is even. Then A j = {a j ,1, . . . , a j ,l }, j = 1,2,3,4, l = tn. Fix
k = 1, . . . , l . In each triple (a1,k , a2,k , a3,k ) there will be such i , j ∈ {1,2,3} (see Fig. 7.2) so
that

2π

3
≤∠g (ai ,k ),z0, g (a j ,k ) ≤π.

Let {q} = {1,2,3} \ {i , j }. Then {g (ai ,k )} and {g (a j ,k )}, and also {g (aq,k )} and {g (a4,k )}

form pairs of (z0, π3 )-conjugate sets. We put X 2k+2,1
2 = {ai ,k }, X 2k+2,2

2 = {a j ,k }, X 2k+3,1
2 =

{aq,k }, X 2k+3,2
2 = {a4,k } and X m,1

2 = X m,2
2 =; for m ≥ 2l +4.

We assume now that n = ∞. Let Σ j = {Y 1
j ,Y 2

j , . . . } be a maximal system of pairwise

disjoint measurable subsets of A j , j = 1,2,3,4, such that µ∞(Y k
1 ) = µ∞(Y k

2 ) = µ∞(Y k
3 ) =

µ∞(Y k
4 ) > 0 and the four (g (Y k

1 ), g (Y k
2 ), g (Y k

3 ), g (Y k
4 )) is divided into two pairs of (z0, π3 )-

conjugate sets for k = 1,2, . . . .
Put B j = A j \

⋃
k Y k

j . Then µ∞(B1) = µ∞(B2) = µ∞(B3) = µ∞(B4) = t0. Suppose that

t0 > 0. If the sets g (B1), g (B2), g (B3) are located on three rays emanating from z0 and
forming angles 2π

3 then g (B1), g (B2) are (z0, π3 )-conjugate sets as well as g (B3), g (B4). This
contradicts the maximality of the above set systems Σ j . Thus we can assume there are
b1 ∈ Bi , b2 ∈ B j , i , j ∈ {1,2,3}, i ̸= j , with ∠g (b1),z0, g (b2) > 2π

3 and such that g (b1), g (b2)
are essential values of g |Bi∪B j . Then there will be such neighborhoods V1 and V2 of the
points g (b1) and g (b2), respectively, that V1,V2 are (z0, π3 )-conjugate sets. Therefore there
exist sets Y1 ⊂ Bi , Y2 ⊂ B j so that µ∞(Y1) = µ∞(Y2) > 0 and g (Yk ) ⊂ Vk , k = 1,2. Hence,
g (Y1), g (Y2) are (z0, π3 )-conjugate sets. Let {q} = {1,2,3} \ {i , j }. There exists Y3 ⊂ Bq , Y4 ⊂
B4, µ∞(Y3) =µ∞(Y4) =µ∞(Y1). It is clear that g (Y3), g (Y4) are (z0, π3 )-conjugate sets. The
presence of sets Y1,Y2,Y3,Y4 contradicts the maximality of the above systems Σ j .

The contradiction obtained in both cases shows t0 = 0. Therefore the system
{X1}∪ {X m,i

2 : 1 ≤ m ≤ 3,1 ≤ i ≤ 2} can be completed using Σ j , j = 1,2,3,4.

It remains to define T so that TX1 = I dX1 , T (X m,1
2 ) = X m,2

2 , T (X m,2
2 ) = X m,1

2 for m =
1,2, . . . and such that T 2 = IdΩn . Then the inequality (7.15) follows from the Lemma 7.4.4.

The case that t ≤ 0 is similar, by changing the roles of P+
j and P−

j .

(2). n is odd. We can for i = 1,2,3 instead build partitions {I+i , {ωi }, I−j } of Ωn with

µn(I+i ) = µn(I−i ) and such that 〈g (ω),vi 〉 ≤ ai whenever ω ∈ I−i and 〈g (ω),vi 〉 ≥ ai when-
ever ω ∈ I+ and 〈g (ωi ),vi 〉 = ai . Indeed, such ωi exist because |{ω ∈ Ωn : 〈g (ω),vi 〉 ≤
ai }|, |{ω ∈Ωn : 〈g (ω),vi 〉 ≥ ai }| ≥ n+1

2 and therefore {ω ∈Ωn : 〈g (ω),vi 〉 ≤ ai }∩ {ω ∈Ωn :
〈g (ω),vi 〉 ≥ ai } ̸= ;. Denote Y0 = {ω1,ω2,ω3}.

Now, suppose that z0 ∈ g (Ωn). Then we could have chosenω1 =ω2 =ω3 all equal and
such that g (ωi ) = z0. Then |Y0| = 1 and the sets {I+i , I−i } are all partitions ofΩn \Y0 similar
to (1), and we can build the corresponding automorphism T of Ωn \ Y0. This completes
the proof for that case by setting T (ω1) =ω1.

We can thus assume that z0 ̸∈ g (Ωn) so that in particular g (ωi ) ̸= g (ω j ) for i ̸= j and
|Y0| = 3. Now suppose first that z0 ∈ Conv(g (Y0)). For all i ∈ {1,2,3} we then have that
Y0 ∩ I+i and Y0 ∩ I−i both consist of 1 element. Hence, µn(I+i \ Y0) = µn(I−i \ Y0) and the
partitions {I+i \ Y0, I−i \ Y0} of Ωn \ Y0 satisfy the same properties as (1). We thus obtain
a measure preserving automorphism T of Ωn \ Y0 with the same properties. Now we
can set T (ω1) = ω2, T (ω2) = ω3 and T (ω3) = ω1, so that ∠g (ωi ),z0, g (T (ωi )) = 2π

3 . This
finishes the proof by Lemma 7.4.4
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Now suppose that z0 ̸∈ Conv(g (Y0)). Then it can be seen geometrically (for intuition
see Fig. 7.3), that there is a unique choice of (distinct) indices i1, i2, i3 ∈ {1,2,3} such that

{ωi1 } = Y0 ∩ I−i2
{ωi3 } = Y0 ∩ I+i2

. (7.28)

Now, suppose that ωi1 ̸∈ I+i3
. Then as ωi1 ̸= ωi3 we get ωi1 ∈ I−i3

. But then as ωi1 ∈ {ωi1 }∩
I−i2

∩ I−i3
we would get g (ωi1 ) = z0 by the same argument as why g (P+

4 ∪P−
4 ) ⊆ {z0} in (1).

However, z0 ̸∈ g (Ωn) by our assumption so this cannot be the case. We conclude that
we must have ωi1 ∈ I+i3

. By a same argument we find that we must have ωi3 ∈ I−i1
(Indeed,

otherwiseωi3 ∈ I+i1
so thatωi3 ∈ I+i1

∩I+i2
∩{ωi3 }, which would imply g (ωi3 ) = z0, which gives

a contradiction). Furthermore, we claim that ωi2 ∈ I+i3
. Indeed, if ωi2 ∈ I−i3

then we could

rearrange the indexes as i ′1 = i2, i ′2 = i3 and i ′3 = i1, so that we get {wi ′1 } = {wi2 } = Y0∩ I−i3
=

Y0∩I−
i ′2

and {wi ′3 } = {wi1 } = Y0∩I+i3
= Y0∩I+

i ′2
. This contradicts the uniqueness of the choice

i1, i2, i3 satisfying (7.28). We conclude that indeed ωi2 ∈ I+i3
. By the same argument we

find ωi2 ∈ I−i1
(Indeed, if ωi2 ∈ I+i1

we could take the rearrangement i ′1 = i3, i ′2 = i1 and

i ′3 = i2 to obtain {wi ′1 } = {wi3 } = Y0 ∩ I−i1
= Y0 ∩ I−

i ′2
and {wi ′3 } = {wi2 } = Y0 ∩ I+i1

= Y0 ∩ I+
i ′2

,

which contradicts the uniqueness). For clarity we summarize the results:

{ωi1 } = Y0 ∩ I−i2
{ωi3 } = Y0 ∩ I+i2

,

{ωi2 ,ωi3 } = Y0 ∩ I−i1
{ωi1 ,ωi2 } = Y0 ∩ I+i3

.

We now obtain

µn(I+i1
∩ I−i2

)+µn(I+i1
∩ I+i2

) =µn(I+i1
\ {ωi2 }) =µn(I+i1

), (7.29)

µn(I+i1
∩ I−i2

)+µn(I−i1
∩ I−i2

) =µn(I−i2
\ {ωi1 }) =µn(I−i2

)− 1

n
, (7.30)

µn(I+i2
∩ I−i3

)+µn(I−i2
∩ I−i3

) =µn(I−i3
\ {ωi2 }) =µn(I−3 ), (7.31)

µn(I+i2
∩ I−i3

)+µn(I+i2
∩ I+i3

) =µn(I+i2
\ {ωi3 }) =µn(I+i2

)− 1

n
. (7.32)

Hence, by (7.29) + (7.30) we obtain µn(I+i1
∩ I+i2

) = 1
n +µn(I−i1

∩ I−i2
) and by summing up

(7.31) with (7.32) we obtain µn(I−i2
∩ I−i3

) = 1
n +µn(I+i3

∩ I+i2
). We conclude the existences of

ω4 ∈ I+i1
∩ I+i2

and ω5 ∈ I−i2
∩ I−i3

. Now, for the sets P+
4 := I+i1

∩ I+i2
∩ I+i3

and P−
4 := I−i1

∩ I−i2
∩ I−i3

we have that g (P+
4 ∪P−

4 ) ⊆ {z0} (same as in (1)), and hence P+
4 ∪P−

4 = ; as z0 ̸∈ g (Ωn)
by assumption. This means that ω4 ̸∈ I+i3

and ω5 ̸∈ I−i1
. Also, as ωi3 ∈ I−i1

and ωi1 ∈ I+i3
we

get that ω4 ̸= ωi3 and ω5 ̸= ωi1 . As {I+i , {ωi }, I−i } are partitions of Ωn , we conclude that
ω4 ∈ I+i1

∩ I+i2
∩ I−i3

and ω5 ∈ I+i1
∩ I−i2

∩ I−i3
Denote Y1 = {ω1,ω2,ω3,ω4,ω5}, so that by the

above we have |Y1| = 5 and moreover:

Y1 ∩ I−i1
= {ωi2 ,ωi3 }, Y1 ∩ I−i2

= {ωi1 ,ω5}, Y1 ∩ I−i3
= {ω4,ω5},

Y1 ∩ I+i1
= {ω4,ω5}, Y1 ∩ I+i2

= {ωi3 ,ω4}, Y1 ∩ I+i3
= {ωi1 ,ωi2 }.

Now, as all these sets have size 2, we must have that

µn(I+i \ Y1) =µn(I+i )− 2

n
=µn(I−i )− 2

n
=µn(I−i \ Y1).
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z0

g (ωi1 )

g (ωi2 )

g (ωi3 )

g (ω4)

g (ω5)

g (I+i2
)g (I−i2

)

g (I+i1
)

g (I−i1
)g (I+i3

)

g (I−i3
)

Figure 7.3: The 5 points are depicted for an example.

This means that the partitions {I+i \ Y1, I−i \ Y1} of Ωn \ Y1 satisfy the same properties as
in (1). We can therefore find a transformation T ofΩn \ Y1 with the same properties. We
can now define T on Y1 by setting T (ωi1 ) = ω4, T (ω4) = ωi2 , T (ωi2 ) = ω5, T (ω5) = ωi3

and T (ωi3 ) = ωi1 . Then ∠g (ωi ),z0, g (T (ωi )) ≥ 2π
3 for all i . Appealing to Lemma 7.4.4

this impies |g (w)− g (T (w))| ≤
p

3
2 (|g (w)−z0|+ |g (T (w)−z0|) for all ω ∈Ω, which shows

that (7.15) holds true. The inequality (7.16) follows from it. Furthermore, in each of
the considered cases it clear how to split Ωn into the parts X1, X2, X3, X5 (note that by
construction we have T k (ω) = ω for some k ∈ {1,2,3,5} for ω ∈ Ω). We prove the final
statement.

Let n <∞ and let (Tm), (zm) be sequences such that 0 <Λ(g ,Tm , zm) ↑Λ(g ). Then

Λ(g ,Tm , zm)−1|g (ω)− g (Tm(ω))| ≥ |g (ω)− zm |+ |g (Tm(ω))− zm | ≥ |g (ω)− zm |
for any ω ∈Ωn . Let ω0 ∈Ωn . Then

|g (ω0)− zm | ≤Λ(g ,Tm , zm)−1 Diam(g (Ωn)) ≤Λ(g ,T1, z1)−1 Diam(g (Ωn)).

Since Autn has cardinality |Autn | = n! <∞ and since the set

{z ∈C : |g (ω0)− z| ≤Λ(g ,T1, z1)−1 Diam(g (Ωn))}

is compact, there exists an increasing sequence (mk ) inN and a z0 ∈C such that

z0 = lim
k

zmk , T0 := Tm1 = Tm2 = ·· · = Tmk = . . . .

ThenΛ(g ,T0, z0) =Λ(g ).

7.5. COMMUTATOR ESTIMATES FOR NORMAL OPERATORS IN FI-
NITE FACTORS

The main result of this section, Theorem 7.5.6 below, establishes the commutator in-
equality (7.5) for normal element a ∈ S(M), where M is a finite factor, and provides upper
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and lower bounds on the optimal constant CM . This yields a version of [BHS23, Theorem
1.1], suitable for normal elements. We consider the case of In-factors (n <∞) in Theo-
rem 7.5.1) and the case of II1-factors in Theorem 7.5.4 and show that the commutator

inequality holds for the constant
p

3
2 . The proof for II1-factors requires two additional re-

sults, Theorem 7.5.2 and Lemma 7.5.3. Furthermore, in order to prove the upper bounds
in Theorem 7.5.6 we provide Proposition 7.5.5.

Theorem 7.5.1. Let M = B(H ) be an In-factor for n ∈N. For an arbitrary normal operator
a ∈ M there is a unitary u ∈ U(M) and a z0 ∈C such that

|[a,u]| ≥
p

3

2
(|a − z01M |+u|a − z01M |u∗). (7.33)

Moreover, u can be chosen so that

• when n is even there are projections p1, p2 such that p1 +p2 = 1M

• when n is odd there are projections p1, p2, p3, p5 such that p1 +p2 +p3 +p5 = 1M

so that
pk u = upk , uk pk = pk , k = 1,2,3,5.

If a ∈ M is such that its spectrum σ(a) lies on a straight line, then we can obtain true
equality:

|[a,u]| = |a − z01M |+u|a − z01M |u, for some u∗ = u ∈ U(M), z0 ∈C. (7.34)

We remark that when n = 1,2 every normal a ∈ M satisfies this extra condition.

Proof. Since a is a normal element on an n-dimensional Hilbert space, it follows from
the spectral mapping theorem that there is a unitary U : H → L2(Ωn) such that a =
U∗MgU , where Mg is the multiplication operator on L2(Ωn) for some g ∈ L∞(Ωn). Ap-
plying Theorem 7.4.3 to g , we find a transformation T and a z0 ∈C such that

|g ◦T − g | ≥
p

3

2
(|g − z0|+ |g ◦T − z0|) (7.35)

together with the given partition of Ωn consisting of the sets X1, X2 (when n is even) or
X1, X2, X3, X5 (when n is odd) and that satisfy T k |Xk = IdXk . Now let uT be the Koopman
operator on L2(Ωn) corresponding to T , i.e. uT f = f ◦T . Denote u =U∗uT U . Then

|[a,u]| = |u(u∗au −a)|
= |uau∗−a|
=U∗|uT Mg u∗

T −Mg |U
=U∗|Mg◦T −Mg |U
=U∗M|g◦T−g |U
≥Λn

(
U∗|Mg − z0|U +U∗|Mg◦T − z0|U

)
=Λn

(
U∗|Mg − z0|U +U∗uT |Mg − z0|u∗

T U
)

.

=Λn
(|a − z0|+u|a − z0|u∗)
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We now define the projections by setting pk = U∗χXk U which clearly satisfy the state-
ments.

If σ(a) lies on a straight line, then there exist scalars α,β ∈ C, |α| = 1, such that a1 :=
α(a −β1M ) ∈ M is self-adjoint. It follows from Theorem 7.1.1 that there exist z0 ∈ R and
u = u∗ ∈ U(M) that

|[a,u]| = |[a1,u]| = |a1−z01M |+u|a1−z01M |u = |a−(β+z0α
−1)1M |+u|a−(β+z0α

−1)1M |u.

We need the following result, which for a diffuse semifinite von Neumann algebra
(M ,τ) and a normal measurable a ∈ S(M) establishes an injective ∗-homomorphism F
between S[0,1] and S(M) which preserves measure and is such that a lies in the image
of F . Special cases of the result which follows for positive bounded elements of M and
positive elements of L1(M ,τ) can be found in [DSZ15, Lemma 9] and in [CS94, Lemma
4.1] respectively.

Theorem 7.5.2. Let M be a diffuse (i.e. atomless) von Neumann algebra with a faithful
normal tracial state τ, let a ∈ S(M) be a normal operator. There exists such an injective
∗-homomorphism F : S[0,1] → S(M) such that a ∈ Im(F ) and m(A) = τ(F (χA)) for any
measurable subset A ⊂ [0,1] (here m is the Lebesgue measure on [0,1]).

Proof. Let e be a spectral measure of the operator a defined on the σ-algebra B(σ(a))
of Borel subsets in σ(a). Then τ(e(·)) yields a probability measure on B(σ(a)). By the
spectral theorem (see [Rud91, Theorem 13.33]), we have

a =
∫
σ(a)

λde(λ).

Let X0 be a set of eigenvalues of a. It is clear that X0 ⊂ σ(a) is at most countable.
Indeed, if t ∈ X0 then e({t }) ̸= 0 and

∑
t∈X0 τ(e({t })) = τ(e(X0)) ≤ 1. Let t ∈ X0. Since

M is diffuse, it follows that in M there is a chain of projections f t
s ↑s e({t }) such that

τ( f t
s ) = s for s ∈ Yt := [0,τ(e({t }))]. Denote by ft the spectral measure on B(Yt ) given by

the equality
ft ((s1, s2)) = f t

s2
− f t

s1
.

We have τ( ft (A)) = m(A) for any A ∈B(Yt ). Let us now set

X = (σ(a) \ X0)⊔ ⊔
t∈X0

Yt .

On B(X ), we define a spectral measure g such that

g |B(σ(a)\X0) = e|B(σ(a)\X0), g |B(Yt ) = ft , t ∈ X0,

and a scalar measure

µX (A) = τ(e(A∩ (σ(a) \ X0)))+ ∑
t∈X0

µ(A∩Yt ).
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It follows that (X ,B(X ),µX ) is a Lebesgue space with an atomless probability mea-
sure. Hence, it is isomorphic to the segment [0,1] equipped with Lebesgue measure m,
see e.g. [Bog07, Theorem 9.5.1].

A linear mapping F : S(X ,B(X ),µX ) → S(M) is defined by

F (ϕ) =
∫

X
ϕ(x)d g (x)

for any ϕ ∈ S(X ,B(X ),µX ) (see [DPS22, Definition 1.5.6]). We remark that F (χA) = g (A)
for measurable A ⊆ X and that µX (A) = τ(F (χA)). Furthermore F (χAχB ) = F (χA∩B ) =
g (A ∩B) = g (A)g (B) = F (χA)F (χB ) for measurable sets A,B ⊆ X . Therefore, as F is con-
tinuous with respect to the topologies of convergence in measure in S(X ,B(X ),µX ) and
S(M ,τ) and since simple functions in S(X ,B(X ),µX ) are dense with respect to the mea-
sure topology, it follows that F (ϕψ) = F (ϕ)F (ψ) for all ϕ,ψ ∈ S(X ,B(X ),µX ). Moreover,
F (ϕ) = ∫

X ϕ(x)d g (x) = F (ϕ)∗ so we find that F is a ∗-homomorphism. Now, suppose
ϕ ∈ S(X ,B(X ),µX ) is such that F (ϕ) = 0 and B ⊆ X is such that ϕ(x) ̸= 0 for a.e. x ∈ B .
Then g (B) = F (χB ) = F ( 1

ϕχB )F (ϕ) = 0, thus µX (B) = τ(g (B)) = 0. This shows that F is
injective.

Finally, let us define the function f by setting f (t ) = t for t ∈ B(σ(a) \ X0) or t ∈ Yt .
Then f ∈ S(X ,B(X ),µX ) and F ( f ) = a.

Lemma 7.5.3. Let M be a finite von Neumann algebra, let a,b ∈ S(M) be normal opera-
tors, z0 ∈C, 0 ≤α<π and let σ(a), σ(b) be (z0,α)-conjugate sets. Then

v |a −b|v∗ ≥ (|a − z01M |+ |b − z01M |)cos
α

2
(7.36)

for some v ∈ U(M).

Proof. Since σ(a) and σ(b) are (z0,α)-conjugate, the shifted sets σ(a)− z0 and σ(b)− z0

are (0,α)-conjugate. We can then obtain a pair of lines as in Fig. 7.1, intersecting at the
origin with an angle α. By rotating the complex plane around the origin we can assure
that these lines are symmetric with respect to the real axis. This is to say that there exists
a function f (z) = c(z − z0) with |c| = 1 so that

f (σ(a)) ⊂ {z : −α
2
≤ Ar g (z) ≤ α

2
}, f (σ(b)) ⊂ {z : π− α

2
≤ Ar g (z) ≤π+ α

2
}.

Let a1 = f (a), b1 = f (b). We have

|a1|cos
α

2
≤ℜa1, |b1|cos

α

2
≤−ℜb1.

Therefore

(|a − z01M |+ |b − z01M |)cos
α

2
= (|a1|+ |b1|)cos

α

2
≤ℜa1 −ℜb1 =ℜ(a1 −b1) ≤ℜ(a1 −b1)+

(7.37)

By Proposition 7.2.1, we obtain

ℜ(a1 −b1)+ ≤ v |a1 −b1|v∗ = v |a −b|v∗. (7.38)

for some v ∈ M with v∗v = 1M . Since 1M is a finite projection it follows that v v∗ = 1M ,
i.e. v ∈ U(M). Combining (7.37) and (7.38) establishes (7.36)
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We now prove a version of Theorem 7.5.1 for II1-factors. Equation (7.39) below is
slightly different from (7.33) as it involves a second unitary w ∈ U(M).

Theorem 7.5.4. Let M be a factor of type II1, a ∈ S(M) be normal. Then there exists a
z0 ∈C, u = u∗ ∈ U(M) and w ∈ U(M) so that

w |[a,u]|w∗ ≥
p

3

2
· (|a − z01M |+u|a − z01M |u). (7.39)

If σ(a) lies on a straight line then

|[a,u]| = |a − z01M |+u|a − z01M |u. (7.40)

Proof. Let τ be a faithful normal tracial state on M and let F : S[0,1] → S(M) be an injec-
tive ∗-homomorphism from Theorem 7.5.2 satisfying a ∈ Im(F ) . Let g = F−1(a).

It follows from Theorem 7.4.3 that there exists z0 such that [0,1] can be divided into
disjoint measurable parts {X1}∪ {X m,i

2 : m ≥ 1,1 ≤ i ≤ 2} so that g (X1) ⊂ {z0}, µ(X m,1
2 ) =

µ(X m,2
2 ) and the sets g (X m,1

2 ), g (X m,2
2 ) are (z0, π3 )-conjugate for m = 1,2, . . . (where µ is

the Lebesgue measure on [0,1]).
Let e = F (χX1 ), pm = F (χX m,1

2
), qm = F (χX m,2

2
), m = 1,2, . . . . Then pm ∼ qm , m =

1,2, . . . , since τ(pm) = µ(X m,1
2 ) = µ(X m,2

2 ) = τ(qm). Besides e +∑
m≥1(pm + qm) = 1M .

Hence, there exists such u = u∗ ∈ U(M) that

ue = e, upm = qmu, m = 1,2, . . . .

Note also that pmu = uqm since u self-adjoint. It is clear that

|[a,u]|e = |[a − z01M ,u]|e = 0 = (|a − z01M |+u|a − z01M |u)e.

For any m = 1,2, . . . σ(apm) coincides with the set Am of essential values of the func-
tion g |X m,1

2
and σ(uaupm) =σ(aqm) coincides with the set Bm of essential values of the

function g |X m,2
2

(here the operators apm and uaupm are considered as elements of the

algebra pmM pm). The sets Am and Bm are (z0, π3 )-conjugate sets. It follows from the
Lemma 7.5.3 that

vm |a −uau|v∗
m pm = vm |a −uau|pm v∗

m ≥
p

3

2
· (|a − z01M |+u|a − z01M |u)pm (7.41)

for some vm ∈ U(pm M pm).
Applying the automorphism u ·u to (7.41), and noting that u|a −uau|u = |a −uau|,

we obtain

(uvmu)|a −uau|(uvmu)∗qm ≥
p

3

2
· (|a − z01M |+u|a − z01M |u)qm . (7.42)

To complete the proof, it remains to define

w = e +
∞∑

n=1
(vn +uvnu)
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which is a unitary (the series converges in the strong operator topology) (note here that
uvmu ∈ U(qm M qm)). We observe that

w |[a,u]|w∗pn = w |[a,u]|pn v∗
n pn = w pn |[a,u]|v∗

n pn = vn |a −uau|v∗
n pn (7.43)

and similarly, w |[a,u]|w∗qn = (uvnu)|a−uau|(uvnu)∗qn and w |[a,u]|w∗e = |[a,u]|e =
0. Summing up the inequalities (7.41) and (7.42) in the measure topology we arrive at

w |[a,u]|w∗ = w |[a,u]|w∗e +
∞∑

n=1
w |[a,u]|w∗(pn +qn)

=
∞∑

n=1
vn |a −uau|v∗

n pn + (uvnu)|a −uau|(uvnu)∗qn

≥
∞∑

n=1

p
3

2
(|a − z01M |+u|a − z01M |u)(pn +qn)

=
p

3

2
(|a − z01M |+u|a − z01M |u)

which proves (7.39). Regarding the proof of equality (7.40), see the end of the proof of
the Theorem 7.5.1.

We have now established in Theorem 7.5.1 and Theorem 7.5.4 that for finite factors
the commutator estimate (7.5) holds with the constant

p
3

2 . However, this may not be the
best constant for which, for all normal a ∈ M , the inequality holds. We will now establish

upper bounds on the best possible constant and we will in particular show that
p

3
2 is in

fact the best possible constant when M is a II1-factor or a In-factor (n <∞) with n ≡ 0
mod 3. To do this we need the following proposition, which is partly motivated by the
proof of [HW53, Theorem 1]. Here, for a given algebra A we denote by Matn(A) the set of
all n ×n matrices with entries in A.

Proposition 7.5.5. Let N be a finite factor with a faithful normal tracial state τN . Let
n ∈N and put M = Matn(C)⊗N ≃ Matn(N ). Let τM = 1

n Trn ⊗τN be the tracial state on M.
Denote U

per
n ⊆ Matn(C) for the group of permutation matrices and Diagn(C) ⊆ Matn(C)

for the set of diagonal matrices. If a ∈ Diagn(C)⊗1N then

sup
u∈U(M)

∥a −u∗au∥2 = max
u∈U

per
n ⊗1N

∥a −u∗au∥2

(The isomorphism (identification) of Matn(N ) → Matn(C)⊗ N is given by the mapping
(ai j )n

i , j=1 →
∑n

i , j=1 ei j ⊗ai j where ei j are matrix units of Matn(C).)

Proof. Write a = Diag(ai )n
i=1⊗1N with ai ∈C and let u = (ui j )n

i , j=1 ∈ U(M), ui j ∈ N , i , j =
1, . . . ,n. We note that

∥a −uau∗∥2
2 = τM ((a −uau∗)(a∗−ua∗u)) = 2τM (|a|2)−2ℜ(τM (aua∗u∗)).

We are interested in finding a unitary element u ∈ M for which the scalar

R(u) :=−ℜ(τM (aua∗u∗)) =− 1

n

∑
i , j

ℜ(τN (ai ui j a j u∗
i j )) =− 1

n

∑
i , j

ℜ(ai a j )τN (ui j u∗
i j )
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attains its maximum. For convenience, let (di j ) ∈ Matn(C) be the matrix given by di j =
− 1

n ℜ(ai a j ), so that R(u) =∑
i j di jτN (ui j u∗

i j ). Define the set

Wn = {(τN (vi j v∗
i j ))i j ∈ Matn(C) : v = (vi j ) ∈ U(Matn(N ))}.

We observe for w = (τN (vi j v∗
i j ))i j ∈Wn and every j such that 1 ≤ j ≤ n, we have

∑
i wi j =

τN (
∑

i vi j v∗
i j ) = τN (1N ) = 1. Similarly, for 1 ≤ i ≤ n we have

∑
j wi j = τN (

∑
j vi j v∗

i j ) =
τN (1N ) = 1. Furthermore, as vi j v∗

i j ≥ 0 in N , it is clear that wi j ≥ 0 for all i , j . Now,

denote by Xn the set of all elements x = (xi j ) ∈ Matn(C) satisfying

∀ j :
∑

i
xi j = 1, ∀i :

∑
j

xi j = 1, ∀i , j : xi j ≥ 0

so that Wn ⊆ Xn . Considering Xn as a subset of Rn2
, we see that Xn defines a closed

convex polytope. By [HW53, Lemma], the vertices of Xn are the permutation matrices.
Hence the maximum of the linear form (xi j ) → ∑

i j di j xi j on Xn is attained for some

permutation matrix ũ = (ũi j ) ∈U
per
n . As ũ ∈U

per
n ⊆ Matn(N ) we have that τN (ũi j ũ∗

i j ) =
ũi j and so

R(ũ) =∑
i , j

di jτN (ũi j ũ∗
i j ) =∑

i , j
di j ũi j = max

x∈Xn

∑
i , j

di j xi j ≥ sup
w∈Wn

∑
i , j

di j wi j = sup
u∈U(M)

R(u).

Thus, supu∈U(M) ∥a −u∗au∥2 ≤ ∥a − (ũ ⊗1N )∗a(ũ ⊗1N )∥2 and the claim follows.

Combining Theorem 7.5.1 and Theorem 7.5.4, we estimate the maximal constant CM

that satisfies the commutator estimate (7.5) for finite factors M in Theorem 7.5.6 below.
For the definitions of the constants Λn and Λ̃n we refer to (7.12) and (7.13) and for the
exact values ofΛn we refer to Theorem 7.A.1.

Theorem 7.5.6. Let M be a finite factor with M ̸= C. Then there is a constant C > 0 with
the property that:

(∗) For any normal a ∈ S(M) there exists a complex number z0 ∈C and unitaries u, v, w ∈
U(M) such that

|[a,u]| ≥C (v |a − z01M |v∗+w |a − z01M |w∗). (7.44)

Moreover, a maximal constant CM with this property exists and it satisfiesΛn ≤CM ≤ 1
2 Λ̃n

when M is a In-factor (1 < n <∞), and CM equals 1
2

p
3 when M is a II1-factor.

Proof. Combining Theorem 7.5.1 and Theorem 7.5.4 we obtain for any finite factor that
the constant C = 1

2

p
3 is admissable for (∗). By Theorem 7.A.1 we have that Λn = 1

2

p
3

when n = 3 or 5 ≤ n ≤∞. Let n <∞. To see that C =Λn is admissible for all n we note
that by Theorem 7.4.3 we have for g ∈ S(Ωn) that there exist z0 ∈ C, T ∈ Autn such that
Λ(g ,T, z0) =Λn(g ) ≥Λn , which means

|g ◦T − g | ≥Λn(|g − z0|+ |g ◦T − z0|). (7.45)
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Repeating the proof of Theorem 7.5.1, replacing (7.35) with (7.45), we obtain that C =
Λn is also an admissible constant for (∗). We will later see that the maximal admissible
constant CM actually exists. First we prove upper bounds on constants C satisfying (∗)
for M . Let τ be a tracial state on M .

Let M be a In-factor with 1 < n <∞. Let g ∈ S(Ωn) be the the function from Lemma 7.A.2
and let a = Diag(g (1), ...g (n)) ∈ M . Let z0 ∈C, u, v, w ∈ U(M) such that (∗) is satisfied for
a with constant C . It follows from Proposition 7.5.5 (N =C) that

∥[a,u]∥1 ≤ ∥[a,u]∥2 = ∥a −u∗au∥2 ≤ max
u0∈U

per
n

∥a −u∗
0 au0∥2 ≤ Diam(σ(a)).

Hence,

2C∥a − z01M∥1 =C∥v |a − z01M |v∗+w |a − z01M |w∗∥1 ≤ ∥[a,u]∥1 ≤ Diam(σ(a)).

Now, choosing g as in the assertion of Lemma 7.A.2 we obtain

1 ≥ Diam(σ(a)) ≥ 2C∥a − z01M∥1 ≥ 2C∥g − z0∥1 ≥ 2C Λ̃−1
n .

Hence, C ≤ 1
2 Λ̃n .

Let M be of type II1. Then M ∼= Mat3(C)⊗N for some II1-factor N . Let the function
g ∈ S(Ω3) be as in Lemma 7.A.2 and let a1 = Diag(g (1), g (2), g (3)) ∈ Mat3(C) and a = a1 ⊗
1N ∈ M . Let z0 ∈C, u, v, w ∈ U(M) be such that (∗) holds for a with constant C . We have

∥[a,u]∥1 ≤ ∥[a,u]∥2 = ∥a −u∗au∥2 ≤ max
u0∈U

per
3 ⊗1N

∥a −u∗
0 au0∥2 (7.46)

= max
u0∈U

per
3

∥a1 −u∗
0 a1u0∥2 (7.47)

≤ Diam(σ(a1)). (7.48)

Hence,

2C∥a1 − z01M∥1 = 2C∥a − z01M∥1 (7.49)

=C∥v |a − z01M |v∗+w |a − z01M |w∗∥1 (7.50)

≤ ∥[a,u]∥1 (7.51)

≤ Diam(σ(a1)) ≤ 1. (7.52)

It follows from Lemma 7.A.2 that

1 ≥ Diam(σ(a1)) ≥ 2C∥g − z0∥1 ≥ 2C Λ̃−1
3 .

Hence, C ≤ 1
2 Λ̃3 =

p
3

2 . For M a II1-factor, this shows that in fact CM exists and that

CM = 1
2

p
3.

We now show that the maximal constant CM also exists when M is a In-factor (1 <
n < ∞). Let (Ci )i≥1 be an increasing sequence of positive constants admissible for (∗)
and set C = supCi ≤ 1

2 Λ̃n . For a normal a ∈ M there exists corresponding ui ∈ U(M) and
z0,i ∈C such that the equation (7.45) holds with the constant Ci . Now by

2∥a∥1 ≥ ∥[a,ui ]∥1 ≥ 2Ci∥a − z0,i 1M∥1 ≥ 2Ci (|z0,i |−∥a∥1)
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we obtain |z0,i | ≤ 1+Ci
Ci

∥a∥1 ≤ 1+C1
C1

∥a∥1. Therefore, as the sequences (ui )i and (z0,i )i are
bounded and as M is finite-dimensional, we can assume these sequences converge in
norm to some u ∈ U(M) and some z0 ∈C (otherwise restrict to a subsequence). Now the
elements di := |[a,ui ]|−Ci (|a − z0,i 1M |+ui |a − z0,i 1M |u∗

i ) are all positive and converge
to d = |[a,u]| −C (|a − z01M | +u|a − z01M |u∗). As the cone of positive elements in M
is closed in the norm, we obtain d ≥ 0. This shows that |[a,u]| ≥ C (|a − z01M | +u|a −
z01M |u∗) holds, and therefore C is admissible for (∗) as well. Hence, the supremum of
all admissible constants (which is finite), is again admissible, and this shows that CM

exists. It now follows thatΛn ≤CM ≤ 1
2 Λ̃n

7.6. COMMUTATOR ESTIMATES FOR NORMAL OPERATORS IN IN-
FINITE FACTORS

We shall now obtain the commutator estimate (7.5) for normal elements in an infinite
factor. We show in Theorem 7.6.4 that for such factors the constant C in this estimate
can be chosen arbitrary close to 1. For infinite factors, this extends the result of [BHS23,
Theorem B.1] to normal elements. The proof of Theorem 7.6.4 extensively uses the ge-
ometry of projections. Before we start its proof, we state and prove three short technical
lemmas. We recall for projections p, q in a von Neumann algebra M we write p ≺ q if
p ⪯ q and p ̸∼ q .

Lemma 7.6.1. Let M be an infinite factor and p be a infinite projection from M. If
p1, . . . , pn ∈ P(M) are pairwise commuting and p1, . . . , pn ≺ p, then p1 ∨·· ·∨pn ≺ p.

Proof. Let q1 = p1 and qk+1 = pk+1(1M −q1 − . . . qk ) for k = 1, . . . ,n −1. Then qi q j = 0 for
i ̸= j , qk ≺ p for k = 1, . . . ,n and p1 ∨ ·· · ∨ pn = q1 + ·· · + qn ≺ p (see [BS12b, Lemma 2
(ii)]).

Lemma 7.6.2. Let M be a factor, a be a normal operator from S(M), p, q ∈ P(M), q ⪯ p.
Suppose that one of the following conditions holds:

1. q is finite and there exists a sequence of finite projections (pn) in M such that pn ↑ p
and [a, pn] = 0 for all n ∈N;

2. q is an infinite projection and [a, p] = 0.

Then there exists a projection q1 ∈ M such that q1 ∼ q, [a, q1] = 0 and such that q1 ≤ p.

Proof. The proof follows along the lines of [BS12b, Lemma 3] and is therefore omitted.

Lemma 7.6.3. Let M be a von Neumann algebra, a,b ∈ LS(M), α1,α2 > 0, and

|a| ≥α11M , α1 > 2α2, α21M ≥ |b|.

Then there exists v ∈ U(M) such that

v |a −b|v∗ ≥ (1− 2α2

α1
)|a|+ |b|.
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Proof. Let a,b ∈ LS(M),α1,α2 > 0 satisfy the assumption of the lemma. By Theorem 7.2.2,
we have that

|a| ≤ v |a −b|v∗+w |b|w∗

for some v, w ∈ M with v∗v = w∗w = 1M . Then

v |a −b|v∗ ≥ |a|−w |b|w∗ ≥ |a|−α2w w∗ ≥ |a|−α21M

≥ |a|+ |b|−2α21M ≥ |a|+ |b|− 2α2

α1
|a| = (1− 2α2

α1
)|a|+ |b|.

Since v |a −b|v∗ ≥ (1− 2α2
α1

)|a| ≥ (α1 −2α2)1M , it follows

0 = (1M − v v∗)v |a −b|v∗(1M − v v∗) ≥ (α1 −2α2)(1M − v v∗) ≥ 0.

Therefore, we have 1M − v v∗ = 0, i.e. v ∈U (M).

Theorem 7.6.4. Let M be an infinite factor, and let a ∈ S(M) be normal. There is a λ0 ∈C
such that for any ε> 0 there exist uε = u∗

ε ∈ U(M), wε ∈ U(M) so that

wε|[a,uε]|w∗
ε ≥ (1−ε)(|a −λ01M |+uε|a −λ01M |uε). (7.53)

Proof. Let e(·) be the spectral measure of a on C, in particular, e(X ) = χX (a) for any
X ∈ B(C). Since a ∈ S(M) there exists a R > 0 so that e(XR ) is a finite projection, where
XR = {λ ∈C : |λ| > R}. Then YR :=C\ XR is compact and it follows from Lemma 7.6.1 that
e(YR ) ∼ 1M . A point λ ∈C will be called a point of densification for a if e(V ) ∼ 1M for any
neighborhood V of a point λ. Denote by A the set of all points of densification for a.

We claim that A ̸= ;. To see that the claim holds it is sufficient to show there exists
a system of nested sets Bn = [αn ,αn + 5R

2n )× [βn ,βn + 5R
2n ), with e(Bn) ∼ 1M . We put α1 =

β1 =−R so that clearly YR ⊂ B1 and therefore e(B1) ∼ 1M . Now suppose α1,β1, . . . ,αn ,βn

are already constructed so that e(B1) ∼ ·· · ∼ e(Bn) ∼ 1M . We can divide the rectangle Bn

into 4 smaller rectangles by

Bn =
1⋃

k,l=0
[αn +k · 5R

2n+1 ,αn + (k +1) · 5R

2n+1 )× [βn + l · 5R

2n+1 ,βn + (l +1) · 5R

2n+1 ).

It follows from Lemma 7.6.1 that one of the sets from this union can be taken for Bn+1

(which then definesαn+1,βn+1). This completes the induction. The pointλ := (supnαn)+
(supn βn)i is a point of densification for a since any neighbourhood V of λ contains a set
Bn for some n. Therefore A ̸= ;.

We show that A is closed. Indeed, if λ is a limit point of A and V is a neighborhood
of λ, then V is also a neighborhood of some point from A. Hence e(V ) ∼ 1M . This shows
λ ∈ A. Thus A is closed. Obviously, A ⊂ YR . Therefore, A is a nonempty compact subset
in C.

Let us consider three cases covering the full picture.

• 1. There is a point λ0 ∈ C such that e({λ0}) ∼ 1M . Then e(C \ {λ0}) ⪯ e({λ0}) and
therefore there is a v ∈ M with v∗v = e(C \ {λ0}) and v v∗ ≤ e({λ0}). Let ’s put u =
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v + v∗+ (e({λ0})− v v∗). Then u = u∗ ∈ U(M). Since

(a −λ01M )u(a −λ01M )∗ = (a −λ01M )u(1M −e({λ0}))(a −λ01M )∗

= (a −λ01M )v(1M − v v∗)(a −λ01M )∗

= (a −λ01M )e({λ0})u(a −λ01M )∗ = 0

and, similarly,
(a −λ01M )∗u(a −λ01M ) = 0

then

|[a,u]| = |(a −λ01M )−u(a −λ01M )u| = |a −λ01M |+u|a −λ01M |u

which shows the result for this case with wε = 1M .

In the following two cases, the scalarλ0 ∈Cwill be found and for a fixed number ε> 0
a sequence of pairs of projectors {(pn , qn)}n≥1 of M will be constructed together with a
sequence (γn) of positive numbers converging to zero satisfying the following condi-
tions:

(i). pn qm = 0, pn pm = δnm pn , qn qm = δnm qn , [a, pn] = [a, qn] = 0, pn ∼ qn for all
n,m;

(ii). qn ≤ e(Wn), pn ≤ e(Vn) for all n ≥ 1;
(iii).

∨
n≥0 pn ∨∨

n≥0 qn = 1M −e({λ0}),
where Vn := {λ : |λ−λ0| > γn} and Wn := {λ : |λ−λ0| < ε

2γn}.

• 2. The set A has a limit point λ0. We can assume that ε < 1
2 . We inductively con-

struct the sequences of positive numbers (γn) (and hence the sets Vn , Wn), num-
bers (λn) from A, and sets

Un = {λ : |λ−λ2n | < γn+1} (7.54)

in such a way that Un ⊆ Wn ∩Vn+1 and the set Vn+1 \
⋃n

k=1(Uk ∪Vk )) is a neigh-

borhood of the point λ2n+1. First, let λ1 ∈ A \ {λ0} and put γ1 = |λ1−λ0|
2 . Then V1 is

a neighborhood of the point λ1. Next, in the set W1 there will be different points
λ2,λ3 from A \{λ0}. Put γ2 = 1

2 min{|λ3−λ0|, |λ2−λ3|, ε2γ1−|λ2−λ0|, |λ2−λ0|} and

note that γ2 < 1
2 |λ3−λ0| ≤ γ1

4 . Note also that the set V2 \(V1∪U1) is a neighborhood
of the point λ3 and that U1 ⊆ W1 ∩V2. We continue this process by induction. Let
these sequences be constructed for the indices 1, . . . ,n. Then in the set Wn there
will be different pointsλ2n ,λ2n+1 from A\{λ0}. Putγn+1 = 1

2 min{|λ2n+1−λ0|, |λ2n−
λ2n+1|, ε2γn −|λ2n −λ0|, |λ2n −λ0|}. Then γn+1 < γn

4 and Vn+1 \
⋃n

k=1(Uk ∪Vk )) is a
neighborhood of the point λ2n+1, and Un ⊆Wn ∩Vn+1. Thus, the above sequences
are constructed. We remark that for n < m we have Un ∩Um ⊆Wm ∩Vn+1 =;
Put p1 = e(V1), q1 = e(U1); qn = e(Un), pn = e(Vn \

⋃n−1
k=1(Uk ∪Vk )) for n > 1. Then

we have by the construction that p1, q1, p2, q2, ... are pairwise orthogonal and pn ∼
1M ∼ qn for any n. Now since Vn = (Vn \

⋃n−1
k=1(Uk ∪Vk ))) ∪⋃n−1

k=1(Uk ∪Vk )) and⋃∞
n=1 Vn =C\ {λ0} we find

∨
n≥0 pn ∨∨

n≥0 qn = 1M −e({λ0}).
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• 3. The set A is finite and e({λ}) ≺ 1M for any λ ∈ A. We can by assumption write
A = {λ0, . . . ,λm} for some m ≥ 0 (note A is non-empty). When |A| = 1 put r = 1 and
when |A| > 1 let r be the minimum distance between points in A. Consider the
sets V (t ) =C\

⋃m
k=0{λ : |λ−λk | < t } for 0 < t < r

2 . It is clear that V (t ) ↑C\ A at t ↓ 0.

We show that e(V (t )) ≺ 1M for 0 < t < r
2 . Indeed, for any point z ∈ V (t ) \ XR there

is a neighborhood Uz of z with e(Uz ) ≺ 1M . Now as the set V (t ) \ XR is compact we
can let {Uz1 , . . . ,Uzl } be a finite subcover for V (t ) \ XR . Then {XR ,Uz1 , . . . ,Uzl } is the
coverage of the set V (t ). It follows from Lemma 7.6.1 that e(V (t )) ≺ 1M .

There are now two possible cases:

3.1. All projections e(V (t )), t > 0, are finite. In this case, put γ1 = r
3 .

3.2. There is a 0 < t0 < r
3 so that the projection e(V (t0)) is infinite. In this case put

γ1 = t0.

Set γn = γ1

2n−1 , n > 1 (and hence Vn ,Wn are defined as well); We set p1 := e(V (γ1)∪
(A \ {λ0})) ≤ e(V1). It follows from Lemma 7.6.1 that p1 ≺ 1M and p := e(W1) ∼ 1M .
If we put q = p1, then for p, q the conditions Lemma 7.6.2 are met: condition (ii) is
met if q is an infinite projection, and condition (i) is met in case 3.1 if q is an finite
projection (in this case, the set W1 is covered by the system V (t ), t > 0). There-
fore, there is a projection q1 ≤ e(W1) such that q1 ∼ p1 and [a, q1] = 0. Now, sup-
pose the projections p1, q1, . . . , pn , qn ≺ 1M are constructed. We build projections
pn+1, qn+1. We put pn+1 = e(V (γn+1)) ·(1M −∑n

k=1(pk +qk )). Then pn+1 ≺ 1M since
pn+1 ≤ e(V (γn+1)). Furthermore, since e(Wn) ∼ 1M and p1, q1, . . . , pn , qn ≺ 1M we
find e(Wn) · (1M −∑n

k=1(pk + qk )) ∼ 1M . Again using Lemma 7.6.2, we find such a
projection qn+1 ∼ pn+1 that qn+1 ≤ e(Wn) · (1M −∑n

k=1(pk + qk )) and [a, qn+1] = 0
(two cases are considered again: pn+1 is a infinite projection; pn+1 is a finite pro-
jection and the condition 3.1 is met). As pn+1 +∑n

k=1(pk + qk ) ≥ e(V (γn+1)) and
p1 ≥ e(A \ {λ0}) we conclude

∑∞
k=1(pk + qk ) = 1M − e({λ0}). Therefore, the projec-

tions p1, q1, p2, q2, . . . satisfy the conditions (i)-(iii).

In the cases (2) and (3) we can now find partial isometries vn ∈ M so that v∗
n vn = pn , vn v∗

n =
qn , for n = 1,2, . . . . We put uε = e({λ0})+∑∞

n=1(vn+v∗
n ). Then uε = u∗

ε ∈ U(M), uεe({λ0}) =
e({λ0}) and uεpn = qnuε for all n. We have

|a −λ01M |pn ≥ γn pn , |a −λ01M |qn ≤ ε

2
γn qn , ∀n. (7.55)

Therefore

|uεauε−λ01M |pn = uε|a −λ01M |qnuε ≤ ε

2
γnuεqnuε = ε

2
γn pn , ∀n. (7.56)

Since [a, pn] = [uεauε, pn] = 0 then

|a −uεauε|pn = |(a −λ01M )pn − (uεauε−λ01M )pn |. (7.57)

It follows from Lemma 7.6.3 that

wn |a −uεauε|pn w∗
n ≥ ((1−ε)|a −λ01M |+ |uεauε−λ01M |)pn
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for some wn ∈ U(pn M pn).
Therefore

wn |a −uεauε|w∗
n pn ≥ ((1−ε)(|a −λ01M |+ |uεauε−λ01M |))pn . (7.58)

Applying the automorphism uε · uε to (7.58), and noting that uε|a − uεauε|uε = |a −
uεauε|, we obtain

(uεwnuε)|a −uεauε|(uεwnuε)∗qn ≥ ((1−ε)(|a −λ01M |+ |uεauε−λ01M |))qn . (7.59)

Recall that S(M) = M if M has type I or III. In this case, we denote by t the strong operator
topology in M . If the factor M is of type II then S(M) = S(M ,τ) for any faithful semifinite
normal trace τ on M . In this case we let t stand for the measure topology tτ (this topology
is defined in the preliminaries, the need to use this topology is due to the fact that a can
be an unbounded operator).

To complete the proof, it remains to set

wε = e({λ0})+
∞∑

n=1
(wn +uεwnuε)

(the series converges in the strong operator topology) and sum up the inequalities (7.58)
and (7.59) in the topology t .

7.7. ESTIMATES FOR INNER DERIVATIONS ASSOCIATED TO NOR-
MAL ELEMENTS

In this section we apply the operator estimates from Theorem 7.5.1 and Theorem 7.5.6
to extend the result of [BHS23, Theorem 1.1] and estimate the norm of inner derivations
δa : M → L1(M ,τ) in the case when M a finite factor with faithful normal trace τ and
a ∈ L1(M ,τ) is normal.

We establish some notation first. Let M be a von Neumann algebra with predual M∗.
The Banach space M∗ can be embedded into its double dual (M∗)∗∗ = M∗. In this way
we identify M∗ with the space of ultraweakly continuous linear functionals on M . The
predual M∗ is a Banach M-bimodule with the bimodule actions given by:

(a ·ω)(x) =ω(xa), (ω ·a)(x) =ω(ax), a, x ∈ M , ω ∈ M∗. (7.60)

If there is a faithful normal semifinite trace τ on M , then the Banach M-bimodule M∗ is
isomorphic to L1(M ,τ) (see e.g. [Tak03a, Chapter IX, Lemma 2.12 and Theorem 2.13]).

A linear operator δ : M → M∗ is called a derivation if

δ(x y) = δ(x)y +xδ(y)

for all x, y ∈ M . For each a ∈ M∗ a derivation δa : M → M∗ can be defined by the equality

δa(x) = [a, x] = ax −xa

(using the M-bimodule structure as defined in (7.60)). Such derivations are called inner.
In fact it holds true that any derivation δ : M → M∗ is inner. Moreover, there exists a ∈ M∗
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so that δ = δa and ∥a∥M∗ ≤ ∥δ∥M→M∗ see [Haa83, Theorem 4.1] and [BGM12, Corollary
C]. We are interested in describing the norm of the derivations δa : M → M∗ for a ∈ M∗.
Is it true that a distance formula similar to (7.1) holds true? This question has been fully
settled in [BHS23, Theorem 3.1] for infinite factors. Moreover, in [BHS23] the following
theorem was proved:

Theorem 7.7.1 (Theorem 1.1 in [BHS23]). If M is a von Neumann algebra with a faithful
normal finite trace τ and a = a∗ ∈ L1(M ,τ), then there exists ca = c∗a ∈ L1(M ,τ)∩Z(S(M))
such that

∥δa∥M→L1(M ,τ) = 2∥a − ca∥1 = 2 min
z∈Z(S(M))

∥a − z∥1 (7.61)

where Z(S(M)) stands for the center of the algebra of all measurable operators affiliated
with M

We focus on the case that M is finite. For brevity, we will denote the norm ∥·∥M→L1(M ,τ)
by ∥·∥∞,1. For general a ∈ L1(M ,τ) we do not know the relationship between ∥δa∥∞,1 and
inf{∥a − z∥1 : z ∈ Z(S(M)). In Theorem 7.7.3, we shall give upper and lower estimates of
this relation in the case when M is a finite factor and a is a normal operator. We will
see a substantial difference with the case of inner derivations associated to self-adjoint
elements. First we state Theorem 7.7.2 which is related and is used in the proof of Theo-
rem 7.7.3. Recall that when n ≡ 0 ( mod 3) or n =∞ we have 2Λn =p

3 = Λ̃n and that in
addition,

lim
n→∞Λ̃n =p

3,

and
2Λn =p

3 for n = 3, or n ≥ 5.

For convenience, we define for a finite factor M the value

n(M) :=
{

n M is a In-factor

∞ M is a II1-factor
(7.62)

Theorem 7.7.2. Let M be a finite factor with a faithful tracial state τ. Assume M ̸= C.
Then

1. For every derivation δa : M → L1(M ,τ) with a ∈ M normal, there is a normal b ∈ M
such that δa = δb and ∥δb∥∞,1 ≥ 2Λn(M)∥b∥1.

2. There exists a normal a ∈ M for which the derivation δa : M → L1(M ,τ) is non-zero
and such that for every b ∈ M with δa = δb we have ∥δb∥∞,1 ≤ Λ̃n(M)∥b∥1.

Proof. (1) Let a ∈ M be normal. By Theorem 7.5.6 there exist u, w ∈ U(M), z0 ∈ C satis-
fying the commutator estimate (7.44), hence ∥δa∥∞,1 ≥ ∥δa(u)∥1 ≥ 2Λn(M)∥a − z01M∥1.
This shows the result since b := a − z1M is normal and δ= δa = δb .

(2) Let M be a finite factor. When M is a In-factor, we set m := n and we can write
M = Matm(N ), with N = C. When M is a II1-factor we set m = 3 and we can write
M = Matm(N ) for some II1-factor N . We now let g ∈ L∞(Ωm) be non-constant and
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let a be the diagonal matrix a = Diag(g (1), . . . , g (m)) ⊗ 1N ∈ Matm(C) ⊗ N = M . Then
δa : M → L1(M ,τ) is a non-zero derivation. To estimate ∥δa∥∞,1 we recall that the Russo-
Dye Theorem, [RD66, Theorem 1], asserts for a unital C*-algebra that the closed unit
ball equals the closed convex hull of all the unitaries. Now, for x ∈ Conv(U(M)) we can
write x = ∑K

i=1 ci ui with K ∈ N, ui ∈ U(M) and ci ≥ 0 with
∑N

i=1 ci = 1. Then clearly

∥δa(x)∥1 ≤ ∑K
i=1 ci∥δa(ui )∥1 ≤ max1≤i≤K ∥δ(ui )∥1 ≤ supu∈U(M) ∥δa(u)∥1. By continuity

of δa this inequality holds for all x in the closed convex hull as well. By the Russo-Dye
Theorem this shows that

∥δa∥∞,1 = sup
x∈M ,∥x∥≤1

∥δa(x)∥1 = sup
x∈Conv(U(M))

∥δa(x)∥1 = sup
u∈U(M)

∥δa(u)∥1. (7.63)

Using this and Proposition 7.5.5 we find

∥δa∥∞,1 = sup
u∈U(M)

∥δa(u)∥1

= sup
u∈U(Matm (N ))

∥u∗[a,u]∥1

= sup
u∈U(Matm (N ))

∥u∗au −a∥1

≤ sup
u∈U(Matm (N ))

∥u∗au −a∥2

= sup
u∈U

per
m ⊗1N

∥u∗au −a∥2

= sup
T :Ωm→Ωm
permutation

∥g ◦T − g∥2.

The last step follows from the fact that, for u ∈ U
per
m ⊗ 1N , we have u∗au = Diag(g ◦

T (1), . . . , g ◦T (n))⊗1N for some permutation T . By Lemma 7.A.2 we can fix a g so that
Diam(g (Ωm)) = 1 ≤ Λ̃m infz∈C ∥g−z∥1 (note that such g is non-constant). Take any b ∈ M
with δa = δb . Then a −b lies in the center of M , so a −b = z01M for some z0 ∈C. Hence,
∥b∥1 = ∥a − z01M∥1 = ∥g − z0∥1 so that ∥δ∥∞,1 ≤ Diam(g (Ωm)) ≤ Λ̃m∥b∥1. The result now
follows. Indeed, when M is a In-factor, we obtained ∥δ∥∞,1 ≤ Λ̃n(M)∥b∥1 and when M is
a II1-factor we obtained ∥δ∥∞,1 ≤ Λ̃3∥b∥1 = Λ̃∞∥b∥1 = Λ̃n(M)∥b∥1.

The following theorem shows that for (most) finite factors the distance formula from
(7.61) does not hold for arbitrary normal a ∈ L1(M ,τ), which shows a crucial difference
with the classical result of Stampfli and its generalisations describing the norm of deriva-
tions δa : M → M , as for these derivations the distance formula (7.1) holds for all a ∈ M .
While the distance formula does not hold true, we are able to obtain constant bounds on
the ratio

∥δa∥∞,1
minz∈C ∥a−z1M ∥1

. In the case of II1-factors and In-factors (1 < n <∞) with n ≡ 0
mod 3 these constants can not be improved.

Theorem 7.7.3. Let M be a finite factor with a faithful tracial state τ and let a ∈ L1(M ,τ)\
Z(M) be normal and measurable. Then the derivation δa : M → L1(M ,τ) satisfies:

2Λn(M) ≤
∥δa∥∞,1

minz∈C ∥a − z1M∥1
≤ 2. (7.64)
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Moreover, when M ̸= C there exist non-zero derivations δa ,δb corresponding to normal
a,b ∈ M such that ∥δa∥∞,1 ≤ Λ̃n(M) minz∈C ∥a−z1M∥1 and ∥δb∥∞,1 = 2minz∈C ∥b−z1M∥1.
We remark that

1. When n(M) ̸∈ {1,2,4} then the distance formula of (7.61) does not extend to arbi-
trary normal measurable a ∈ L1(M ,τ), since Λ̃n(M) < 2 in these cases.

2. When M is a II1-factor or a In-factor with n ≡ 0 mod 3 then the constant bounds
given in (7.64) can not be improved as in these cases 2Λn(M) =

p
3 = Λ̃n(M).

Proof. Let a ∈ L1(M ,τ) \ Z(M) be normal and measurable. By Theorem 7.5.6 there exist
u, w ∈ U(M), z0 ∈ C satisfying (7.44) so that ∥δa∥∞,1 ≥ ∥δa(u)∥1 ≥ 2Λn(M)∥a − z01M∥1,
from which the first inequality follows. The second inequality follows from the fact that
∥δa(x)∥1 = ∥(a − z1M )x −x(a − z1M )∥1 ≤ 2∥a − z1M∥1∥x∥ holds for any x ∈ M , z ∈C.

For the next statement, we note by (7.61) that ∥δb∥∞,1 = 2infz∈C ∥b− z1M∥1 holds for
any self-adjoint b ∈ M , and that when M ̸=Cwe can choose b so that moreover b ̸∈ Z(M),
ensuring that δb is non-zero. Moreover, by Theorem 7.7.2(2) we obtain a normal a ∈ M
such that δa is a non-zero derivation with ∥δa∥∞,1 ≤ Λ̃n(M)∥a − z1M∥1 for every z ∈ C
since δa = δa−z1M . Thus ∥δa∥∞,1 ≤ Λ̃n(M) minz∈C ∥a − z1M∥1 (it is clear the minimum
exists). The last two remarks follow directly.

We point out that Theorem 7.7.3 in particular shows the statement of (7.8) that for a
finite factor M and normal measurable a ∈ L1(M , au) we have

p
3min

z∈C
∥a − z1M∥1 ≤ ∥δa∥∞,1 ≤ 2min

z∈C
∥a − z1M∥1

Indeed, for normal a ∈ L1(M ,τ)\Z(M) this follows by (7.64) and (7.14) while for a ∈ Z(M)
this is trivial.

Secondly, we remark that this actually yields an estimate on the L1-diameter of the
unitary orbit O (a) := {uau∗ : u ∈ U(M)} of a. Indeed, as we already showed in (7.63), we
obtain by the Russo-Dye Theorem [RD66, Theorem 1] that ∥δa∥∞,1 = supu∈U(M) ∥δa(u)∥1.
Therefore

DiamL1(M ,τ)(O (a)) = sup
u∈U(M)

∥a −uau∗∥1 = sup
u∈U(M)

∥δa(u)∥1 = ∥δa∥∞,1.

7.A. APPENDIX: CALCULATING CONSTANTS
We prove two technical results concerning the constants Λn and Λ̃n . In Theorem 7.A.1
we will for n ̸= 4 determine the exact value of Λn with the help of Theorem 7.4.3. In
Lemma 7.A.2 we prove a property of the constants Λ̃n that we used in Theorem 7.7.2.

Theorem 7.A.1. We have that Λ1 =Λ2 = 1,
p

3
2 ≤Λ4 ≤ 1 and Λn =

p
3

2 for any n ∉ {1,2,4}.
Moreover, for n ̸= 4 there is a g ∈ L∞(Ωn), T ∈ Autn , z ∈C such that thatΛ(g ,T, z) =Λ(g ) =
Λn .

Proof. If n = 1 then Λ(g , Id, g (1)) = 1 for all g ∈ S(Ωn) since we agreed to count 0
0 = 1.

Hence, Λ1 = 1. If n = 2 then Λ(g ,T, g (1)+g (2)
2 ) = 1 for all g ∈ S(Ωn) where T (1) = 2. Hence,
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Λ2 = 1. It follows from Theorem 7.4.3 that Λn ≥
p

3
2 for all n ≥ 3. It only remains to show

that this is in fact an equality whenever n = 3 or n ≥ 5, which we shall do now. For the

given values of n, we can find a partition {A1, A2, A3} of Ωn such that 1
5 ≤ µn (A j )

µn (Ωn ) ≤ 2
5

for j = 1,2,3. Now, denote w j := e
2πi j

3 for j = 1,2,3 and construct the function g =∑3
j=1 w jχA j ∈ L∞(Ωn). We will show thatΛ(g ) ≤

p
3

2 .

SupposeΛ(g ) >
p

3
2 . Then there exists T ∈ Autn , z0 ∈C and λ>

p
3

2 so that

|g (T (ω))− g (ω)| ≥λ(|g (T (ω))− z0|+ |g (ω)− z0|) a.e..

We note that for k ̸= l we have

|wk −wl | =
p

3.

Denote Bk, j = Ak ∩ T −1(A j ) so that Bk, j ⊆ Ak and T (Bk, j ) ⊆ A j . Moreover, since
{A1, A2, A3} is a partition ofΩn , we have for l = 1,2,3 that

Al = Bl ,1 ∪Bl ,2 ∪Bl ,3 T −1(Al ) = B1,l ∪B2,l ∪B3,l . (7.65)

We note that if µn(Bk, j ∪B j ,k ) > 0 we must by the assumption have that

|wk −w j | ≥λ(|wk − z0|+ |w j − z0|).

This is to say that z0 lies within the ellipse with foci wk and w j and eccentricity λ.
Now suppose µn(Bk,k ) > 0 for some k. Then z0 = wk and for l , j ̸= k we have

|wl −w j | ≤
p

3 < 2λ< 2λ
p

3 =λ(|wl −wk |+ |w j −wk |) =λ(|wl − z0|+ |w j − z0|)

and hence µn(Bl , j ) = 0. However, (7.65) then implies for j ̸= k that

µn(A j ) =µn(B j ,1)+µn(B j ,2)+µn(B j ,3) =µn(B j ,k ).

Therefore, using this and (7.65) we obtain

2µn(Ak ) =µn(Ak )+ (
µn(B1,k )+µn(B2,k )+µn(B3,k )

)
=µn(Ak )+

 ∑
1≤l≤3

l ̸=k

µn(Bl ,k )

+µn(Bk,k )

=µn(Ak )+

 ∑
1≤l≤3

l ̸=k

µn(Al )

+µn(Bk,k )

=µn(Bk,k )+µn(A1)+µn(A2)+µn(A3)

=µn(Ωn)+µn(Bk,k ) >µn(Ωn).

Hence µn (Ak )
µn (Ωn ) > 1

2 , which is a contradiction with the choice of the partition.
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We conclude that µn(Bk,k ) = 0 for k = 1,2,3. Now suppose that for some 1 ≤ l , j ≤ 3
with l ̸= j we have µn(Bl , j ∪B j ,l ) = 0. Let k ∈ {1,2,3} such that k ̸= l , j . Then we ob-
tain µn(Al ) = µn(Bl ,l )+µn(B j ,l )+µn(Bk,l ) = µn(Bk,l ) and µn(A j ) = µn(Bl , j )+µn(B j , j )+
µn(Bk, j ) =µn(Bk, j ). We thus have

2µn(Ak ) =µn(Ak )+µn(Bk,l )+µn(Bk, j )+µn(Bk,k )

=µn(Ak )+µn(Al )+µn(A j ) =µn(Ωn)

and thus µn (Ak )
µn (Ωn ) = 1

2 . This contradicts the choice of the partition sets.

Hence, µn(Bl , j ∪B j ,l ) > 0 for all l , j with l ̸= j . This means that the point z0 lies in
all three ellipses (i.e. for l ̸= j the point z0 has to lie inside the ellipse with foci wl and

w j and eccentricity λ). We obtain that for λ =
p

3
2 the only point in the intersection of

the three ellipses is 0, and that for λ>
p

3
2 the intersection is empty (see Fig. 7.4). Hence,

Λ(g ) ≤
p

3
2 . ThereforeΛn =

p
3

2 .

O
w3

w1

w2

Figure 7.4: The image of the simple function g consists of the three points w1, w2 and w3. The three ellipses

with foci wl and w j (for l and j different) and eccentricity λ =
p

3
2 are drawn. The only point that lies in all

three the ellipses is the point z0 := 0.

Lemma 7.A.2. Let 1 < n ≤∞. Then there is a g ∈ L∞(Ωn) with Diam(g (Ωn)) = 1 and so
that Λ̃n = supz∈C

1
∥g−z∥1

.

Proof. The result for n = 2 follows directly by taking g =χ{1}.
Thus, suppose n ≥ 3. We can build a partition {A1, A2, A3} ofΩn so that:

• If n = 3k, k ∈N, or n =∞, then µn(A1) =µn(A2) =µn(A3) = 1
3 .

• If n = 3k +1, k ∈N, then µn(A1) =µn(A2) = k
n , µn(A3) = k+1

n .

• If n = 3k +2, k ∈N, then µn(A1) =µn(A2) = k+1
n , µn(A3) = k

n .
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For convenience let us denote

a =µn(A1) =µn(A2), b =µn(A3), wk = e
2πki

3 , k = 0,1,2.

Define g0 ∈ L∞(Ωn ,µn) by

g0 =χA1 w1 +χA2 w2 +χA3 w0.

Since µn(A1) = µn(A2), it is clear that the minimum of C ∋ z 7→ ∥g0 − z∥1 is attained for
real-valued z, and moreover that − 1

2 ≤ z ≤ 1. When n = 4, it is clear from the triangle

inequality that the minimum is attained at the point t0 = 1 and we have ∥g0 − t0∥1 =
p

3
2 .

Now assume n ̸= 4 so that the ratio b
a satisfies b

a <p
3 (the ratio b

a is maximal for n = 7 in

which case we have b
a =

3
7
2
7
= 3

2 <p
3). Hence

p
3a −b > 0. We have for t ∈ [− 1

2 ,1] that

∥g0 − t∥1 = 2a|w1 − t |+b(1− t ).

Then
d

d t
∥g0 − t∥1 = 2a

t + 1
2

|w1 − t | −b.

As d
d t ∥g0 − t∥1 is negative when evaluated at − 1

2 and positive when evaluated at 1 (asp
3a−b > 0), the minimum of ∥g0− t∥1 must be assumed at a point t0 ∈ [− 1

2 ,1] satisfying

b|w1 − t0| = 2a(t0 + 1

2
).

Then

b2((t0 + 1

2
)2 + 3

4
) = 4a2(t0 + 1

2
)2

and

(t0 + 1

2
)2 = 3b2

4(4a2 −b2)
= 3b2

4(2a −b)

since 2a +b = 1. Therefore

(t0 + 1

2
)2 + 3

4
= 3b2

4(2a −b)
+ 3

4
= 3a2

(2a −b)

and

∥g0 − t0∥1 = 2a|t0 −w1|+b(1− t0)

= 2

p
3a2

p
2a −b

+b −b(

p
3b

2
p

2a −b
− 1

2
)

=
p

3
p

2a −b

2
+ 3b

2

=
p

3−6b

2
+ 3b

2
.
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• For n = 3k or n =∞ we have µn(A3) = 1
3 and find ∥g0 − t0∥1 = 1.

• For n = 3k +1 (n ̸= 4) we have µn(A3) = k+1
3k+1 and find

∥g0 − t0∥1 = 1

2

√
3k −3

3k +1
+ 1

2
· 3k +3

3k +1
.

• For n = 3k +2 we have µn(A3) = k
3k+2 and find

∥g0 − t0∥1 = 1

2

√
3k +6

3k +2
+ 1

2
· 3k

3k +2
.

Now, take g = 1p
3

g0 so that Diam(g (Ωn)) = 1. Then

sup
z∈C

1

∥g − z∥1
= sup

z∈C

p
3

∥g0 − z∥1
=

p
3

∥g0 − t0∥1
= Λ̃n .
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SAMENVATTING

Dit proefschrift bestudeert het vakgebied van operatoralgebra’s, niet-commutatieve func-
tionaalanalyse en rigiditeitstheorie. We bestuderen structuureigenschappen van zowel
C*-algebra’s als von Neumann-algebra’s, met een focus op de laatste. Deze wiskundige
structuren werden geïntroduceerd door von Neumann in [Neu30] wegens de noodzaak
voor een niet-commutatief framewerk om kwantumsystemen te beschrijven. De theorie
werd verder ontwikkeld door Murray en von Neumann in meerdere artikelen: [MN36],
[MN37], [Neu39], [Neu40], [MN43], [Neu43] en [Neu49]. Tegenwoordig vormt de studie
van deze operatoralgebra’s zijn eigen deelgebied in de wiskunde. Over de jaren heen
is geprobeerd om von Neumann-algebra’s te classificeren. Er zijn veel structuureigen-
schappen van von Neumannalgebra’s geïntroduceerd en bestudeerd. In dit proefschrift
bestuderen we zulke eigenschappen, waaronder: afwezigheid van Cartan-deelalgebra’s,
priemheid, de (zwakke-∗) CCAP, de Akemann-Ostrand eigenschap en sterke soliditeit.
Verder bestuderen we operatorafschattingen voor commutatoren.

Voor een discrete groep G bestuderen we de groep-von Neumann-algebra L (G). Het
doel is connecties te leggen tussen de groep G en zijn von Neumann-algebra L (G). We
bestuderen rigiditeitstheorie, wat zich bezighoudt met de vraag welke informatie van de
groep G kan worden afgeleid uit zijn von Neumann-algebra L (G). We zijn in het bijzon-
der geïntreseerd in Coxetergroepen. Zo’n groep W kan worden gezien als een abstracte
reflectiegroep. Voor een Coxetergroep W zullen we niet alleen L (W ) bestuderen, maar
ook de q-deformaties: Nq(W ) genaamd Hecke-von Neumann-algebra’s. De focus is op
Coxetergroepen die rechthoekig zijn. Deze Coxetergroepen kunnen op natuurlijke wijze
worden geschreven als graafproduct W = ∗v,ΓWv van de groepen Wv = Z/2Z. De con-
structie van graafproducten van groepen was geïntroduceerd door Green in [Gre90] als
een generalisatie van zowel directe sommen G1 ⊕G2 als vrije producten G1 ∗G2. Later
zijn graafproducten ook gedefinieerd in de setting van C*-algebra’s en von Neumann-
algebra’s in [Mło04] en [CF17]. Hier generaliseren graafproducten zowel tensorproduc-
ten als vrije producten. Deze begrippen van graafproducten komen overeen met die voor
groepen aangezien L (∗v,ΓGv ) =∗v,ΓL (Gv ). In het geval van rechthoekige Coxetergroe-
pen geldt eenzelfde ontbinding ook voor Hecke-von Neumann-algebra’s.

Dit proefschrift bestaat uit 7 hoofdstukken, waaronder de inleiding (Hoofdstuk 1) en
de technische achtergrond (Hoofdstuk 2). In Hoofdstuk 3 voeren we berekeningen uit in
graafproducten die we nodig hebben in latere hoofdstukken. In Hoofdstuk 4 is de stu-
die gericht op (rechthoekige) Coxetergroepen, hun groep-von Neumann-algebra’s L (W )
en Hecke-von Neumann-algebra’s Nq(W ). We bestuderen wanneer deze von Neumann-
algebra’s sterk solide zijn en wanneer ze de Akemann-Ostrand eigenschap (AO)+ bezit-
ten. Sterke soliditeit is een sterkere versie van Ozawa’s eigenschap soliditeit [Oza04]
en kan worden gezien als een sterke onontbindbaarheidseigenschap. Deze eigenschap
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impliceert namelijk dat de von Neumann-algebra niet ontbindt als een tensorproduct
M = M1⊗M2 (priemheid) noch als een groep-maatruimte M = L∞(0,1)⋊G (afwezigheid
van Cartan). Met behulp van kwantum Markov halfgroepen en de niet-commutatieve
Riesz-transformatie bewijzen we nieuwe sterke soliditeitsresultaten.

In Hoofdstuk 5 bestuderen we sterke soliditeit voor algemene graafproducten van
von Neumann-algebra’s. We gebruiken Popa’s intertwining-by-bimodule theorie om voor
graafproducten een volledige karakterisering van sterke soliditeit te krijgen. In het bij-
zonder voltooit dit de karakterisering voor rechthoekige Hecke-algebra’s. Voor recht-
hoekige Coxetergroepen geeft dit een simpele karakterisering wanneer de groep-von
Neumann-algebra sterk solide is. We bestuderen ook andere aspecten van graafproduc-
ten. We geven voldoende voorwaarde voor een (gereduceerd) graafproduct om nucleair
te zijn. Verder karakteriseren we volledig priemheid en vrijproduct-onontbindbaarheid
voor graafproducten. We bestuderen ook rigiditeitstheorie voor graafproducten. Het
doel is om de graaf Γ en de von Neumann-algebra’s (Mv )v∈Γ terug te halen uit de von
Neumann-algebra MΓ. We introduceren in dit proefschrift een klasse CVertex van von
Neumann-algebra’s en een klasse van grafen die we rigide noemen. We laten zien dat uit
het graafproduct MΓ = ∗v,Γ(Mv ,τv ) we de rigide graaf Γ en de von Neumann algebra’s
(Mv )v∈Γ kunnen terughalen (op amplificaties na). In het bijzonder verkrijgen we hier-
mee unieke priemfactorisaties en unieke vrijproduct-ontbindingen voor nieuwe klassen
van von Neumann-algebra’s. We laten ook zien dat, zonder sterke voorwaarden op de
von Neumann-algebra’s Mv , het mogelijk is om (op een constante na) de radius van de
graaf Γ af te leiden uit het graafproduct MΓ.

In Hoofdstuk 6 bestuderen we benaderingseigenschappen van graafproducten. Voor
een groep G stellen benaderingseigenschappen dat we de constante functie 1G puntge-
wijs kunnen benaderen met goede functies mk : G → C. Eensgelijks, voor een operator-
algebra M , stelt een benaderingseigenschap dat we de identiteitsafbeelding IdM punts-
gewijs kunnen benaderen met goede afbeeldingen θk : M → M . Voor het gereduceerde
graafproduct van C*-algebra’s bestuderen we de CCAP. Op eenzelfde wijze bestuderen
we voor graafproducten van von Neumann-algebra’s de zwakke-∗ CCAP. Deze benade-
ringseigenschappen vormen de operatoralgebraïsche tegenhanger van zwakke amena-
biliteit met constante 1. We bestuderen stabiliteit van deze eigenschappen onder graaf-
producten en breiden resultaten uit van [Rec17] en [RX06].

In Hoofdstuk 7 wijken we af van het hoofdonderwerp van dit proefschrift en bestu-
deren we commutatorafschattingen. We breiden de operatorafschattingen van [BS12b],
[BS12a] en [BHS23] voor zelf-geadjungeerde operatoren uit naar normale operatoren.
Voor een normaal element a in een factor M laten we zien dat er een unitair u ∈ M be-
staat, waarvoor we een goede operatorafschatting krijgen voor de commutator [a,u] :=
au −ua. Voor eindige factoren geeft dit een afschatting op de L1-norm van de vorm

p
3min

z∈C
∥a − z1M∥L1(M ,τ) ≤ ∥[a,u]∥L1(M ,τ).

We gebruiken dit resultaat om scherpe afschattingen te krijgen op de norm ∥δa∥M→L1(M ,τ)
van de derivatie δa : M → L1(M ,τ) gegeven door δa(x) = [a, x].
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