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ABSTRACT: The Boundary Element Method (BEM) based on the linear potential flow theory has shown
to produce accurate results at low computational costs in numerical modelling of the hydrodynamics of Wave
Energy Converters (WECs). WAMIT , Nemoh and Capytaine are some of the most popular frequency domain
BEM solvers used in the response analysis of various WECs. Hydrodynamic Analysis of Marine Structures
(HAMS), another open-source BEM solver gaining traction, has been applied to the analysis of single WECs
considering rigid body motions providing highly accurate solutions at lower computational costs as compared
to other solvers. This research extends its current capabilities to model structures with constraints by apply-
ing the generalized modes approach Results presented include of a cross-model validation with commercial
solver WAMIT, of the hydrodynamic coefficients and exciting forces considering flap converter. Furthermore, a
comparison is shown with popular open-source solver Capytaine for the same case, since it has parallelization.

1 INTRODUCTION

The strategy from the European Union has targets to
deploy 40 GW of wave energy by 2050 (EC 2020). In
order the achieve these set targets, research into low-
ering the Levelized Cost of Energy (LCOE) for WECs
is essential. One of the key aspects here is to advance
the numerical techniques that can simulate the behav-
ior of all types of WECs at low computational costs.

Over the last two decades, many WEC designs have
been proposed with a wide range of energy conver-
sion principles (e.g. oscillating water column, attenu-
ator, oscillating surge converter, overtopping) (Falcao
2010). Historically, most WECs were designed as-
suming rigid body motions, however recent WEC re-
search efforts have brought attention to the design
of flexible structures as a way of lowering the cost
of energy (van Rij et al. 2017). Furthermore, when
modelling WECs such as the oscillating surge con-
verter/flap, the consideration of the hinge constraint
at the bottom is important to assess the hydrodynam-
ics of the structure (Gomes et al. 2015). Therefore,
numerical techniques that can model the fluid struc-
ture interaction with a flexible structure/structure with
constraint is important.

BEM based on linear potential flow theory is one
of the most popular numerical methods for simulat-

ing the hydrodynamics of structures within the field
of wave energy, since it has good accuracy at low
computational costs. There are many well established
commercial codes such as WAMIT (Lee & New-
man 2006) and ANSYS AQWA (ANSYS 2012), as
well as open-source codes such as Nemoh (Babarit &
Delhommeau 2015) and Capytaine (Ancellin & Dias
2019).

When modelling flexible WECs or WECs with
constraints, the ’Generalized modes approach’ pro-
posed by Newman (1994) is one of the most power-
ful techniques implemented within the BEM frame-
work. This has been extensively used with the com-
mercial solver WAMIT. Gomes et al. (2015) used this
approach in WAMIT to study a bottom hinged flap
subjected to regular and irregular waves for assessing
power extraction and capture width ratio. The mod-
elling approach utilized a combination of the gen-
eralized modes approach with a thin plate modelled
with dipole panels in BEM. Sismani & Loukoge-
orgaki (2020) modelled and evaluated the response
and power of a wave energy conversion system with
multiple flaps in WAMIT, wherein additional mode
shapes based on the displacement of each individ-
ual flap were captured within the hydrodynamics
of the system. This has also been implemented in
open-source BEM solvers. The generalized modes ap-



proach was used to investigate the design of a bottom
fixed pressure-differential wave energy converter us-
ing Nemoh (Babarit et al. 2017). More recently, the
S3 wave energy converter (a bulging horizontal cylin-
der) was modelled with Capytaine considering up to
4 modes (Ancellin et al. 2020).

HAMS (Liu 2019) is a recently developed open-
source solver, that is still being established in the field.
It has shown to be highly accurate and computation-
ally efficient when compared with established solvers
such as WAMIT and Nemoh. The work of Raghavan
et al. (2022) compared HAMS, WAMIT and Nemoh
(v2.x) considering the diffraction and radiation prob-
lem for two cases - a cylindrical point absorber and
a flap WEC. It was observed that HAMS was over-
all closer to WAMIT as compared to Nemoh for both
the cases. Furthermore, when comparing the compu-
tational effort, it was observed that HAMS was up
to 21 times faster than Nemoh and 1-2 times faster
than WAMIT (even when parallelization was consid-
ered). The work of Sheng et al. (2022) showed that
HAMS provides better accuracy than Nemoh, as well
as better speed of simulations as compared to both
WAMIT and Nemoh when no parallelization is imple-
mented. They tested several cases of a semi-immersed
cylindrical point buoy, the TALOS WEC, a semi-
immersed cylindrical point buoy with a heave plate,
semi-immersed cylindrical point buoy, with gaps and
semi-immersed cylindrical point buoy with overlap-
ping panels. Furthermore, when creating models with
thin structures (such as a heave plate) and overlapping
panels (examples include joints of structures, mod-
elling an OWC in a two-body system where the inter-
nal water column modelled as a piston overlaps with
the hull of the OWC), HAMS matched the accuracy of
WAMIT, while Nemoh is unable to deal diffraction-
radiation computation when panels there are overlap-
ping panels.

HAMS is currently only capable of analysing sin-
gle floating structures for 6 rigid body modes. This re-
search extends its current capabilities to model struc-
tures with constraints by applying the generalized
modes approach thus making it capable of analyz-
ing WECs such as the attenuators or a flap within
a computationally efficient open-source framework.
Cross-model validation is performed with the com-
mercial solver WAMIT for the hydrodynamic coeffi-
cients and exciting forces. Furthermore, a comparison
is also made with open-source solver Capytaine since
both these solvers can utilize parallelization.

2 CURRENT NUMERICAL FRAMEWORK IN
HAMS

HAMS is a BEM solver based on the three dimen-
sional linear potential flow theory that assumes the
flow to be inviscid, irrotational, incompressible and
free of separation effects (Liu 2019, Liu et al. 2018).
As mentioned earlier, HAMS is currently capable of

only analysing wave structure interaction with float-
ing structure. The flow is described through a complex
spatial velocity potential ¢(X) where X = (XY, 7)
are the global cartesian coordinates. The potential is
decomposed into three parts: the incident wave poten-
tial ¢;(X), the diffracted wave potential ¢ p(X), and
the radiated wave potential ¢;(X).

The considered domain has boundary conditions on
the free surface (where the waves interact with the
floating structure), the rigid sea bottom, the surface of
the structure and the far field (Sommerfield’s radiation
condition). The potentials ¢; (I = D or [ = j) satisfy
the Laplace equation (Liu 2019) in the entire fluid do-
main and are subjected to these boundary conditions
on the free surface (Eqn 1), the sea bottom (Eqn 2),
and on the body (Eqn 3 and Eqn 4) and the far field
(Egn 5):
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where K = w?/g is the deep water wave number, ¢
is the acceleration due to gravity.

Eqn 4 is applicable for the 6 rigid body modes,
where n; is the projection of the normal vector in
each of the 6 degrees of freedom . Green’s theorem
is utilized to form the boundary integral equations for
the diffraction and radiation potentials on the body
boundary. The corresponding boundary value prob-
lem is, then, solved based on a 3D low-order panel
method.

3 IMPLEMENTATION OF GENERALIZED
MODES

In this section, the implementation of the generalized
modes is explained based on the work of Newman
(1994).



Table 1: Properties of the flap(all dimensions in m)
Part Dimension (W x T x H)
Flap top
Rectangular box
Triangular box
Flap bottom
Rectangular box

18 x 1.8 x 8.5
18 x0-1.8x0.9

18 x 1.8 x 1.5

3.1 Body boundary condition for the first order
boundary value problem

The body boundary condition (Eqn 4) can also be ex-
pressed as a general expression:

9¢;
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where S; is a 3D vector shape function with carte-
sian components u;, v;, w; and n = (ng,n,,n) is the
normal vector projecting from the body towards the
fluid Newman (1994). For the rigid body translational
degrees of freedom (j = 1,2,3), the shape function is
unit vector in the corresponding direction, and for the
rigid body rotations (j=4,5,6), S; = S;_3 x r, where
r is the lever arm vector with respect to a rotation
center(Newman 1994, Sismani and Loukogeorgaki
2020).

The projection of the normal vector can be written
in general as:

Sjn = u;n, +vjn; +wmn, (7

Therefore, by deriving this vector shape function
for any additional mode/degree of freedom, the radi-
ation and diffraction problem can also be solved con-
sidering this degree of freedom in HAMS. The vec-
tor shape function can represent general mode shapes
corresponding to structural deflections, the motions of
the interior free surfaces inside moonpools, or multi-
ple bodies with constraints (Lee & Newman 2003).

3.2 Derivation of the shape function for a flap

The rigid flap from the work of Van 'T Hoff (Van
T Hoff 2009) is used as a case study here for veri-
fication. The geometry is shown in Figure 2. The flap
top combines two geometries, a rectangular box and a
triangular box, while the flap bottom, which is rigidly
fixed to the sea bottom, is composed of a rectangular
box. The dimensions of these parts is shown in Table
1. The hinge 1s located at L, = 8.9 m from the free
surface. The water depth is 10.9 m, thus the hinge be-
ing at 2 m above the sea bottom.

XY Z is the global coordinate system. zy 2 is the lo-
cal coordinate system located at the top of the flap and
coincides with the global coordinate system, ;.24
is the deformed coordinate system due to the flap’s
unit rotation . The flap is aligned such that the width
(W) is along the Y axis. The surface of the flap is
discretized into panels.

The global position vector Us = (U, Uy, Uy, of
a random panel can be obtained based on the work of
Sismani & Loukogeorgaki (2020) and is given as:

Utyp = Lssind + Xcost — Zsind (8a)
Upy =Y (8b)
Us, = —Ls(1— cost) + Xsinb + Zcost) (8c)

Here XY, Z can be directly utilized as it aligns with
x,y, 2. The position vector of the hinge Uy, is given
as:

Uy = (07 07 _Ls) (9)

Since we want to use the pitch rotation of the rigid
flap top about the hinge, the lever arm vector r needs
to be derived which is given as:

l':Uf—Uh (10)

with r = (r,,r,,r,) where

ry = Lgsind + X cosl — Zsinb (11a)
r,=Y (11b)
r, = Lscost + X sinf + Zcost (11¢)

The normal vector for the considered panel in the de-
formed state is given as:

ng = (n; ,cos0 —n; ,sind,n;
n; sl + n; ,cosd) (12)
where n; = (14, n;,,M; ) is the normal vector of
the considered panel in the undeformed state. The
normal vector for the rigid body rotation for the pitch
about the hinge can then be obtained as the y com-

ponent of the cross product r x n¢ (since the pitching
occurs about the y-axis), which is obtained as:

N7 top = Nix(Ls + X 5in260 + Zcos26)
+n; (—Xcos20 + Zsin20) (13)

which for unit rotation (small angle approximation)
can be reduced to

N7 top = ni,x(Ls + Z) + ni,z(_X) (14)



Figure 1: Mesh of the flap in HAMS with 518 panels - Top
(green) and bottom (pink)

From this the shape function for the additional degree
of freedom/mode shape for the flap top can be ob-
tained as:

S7,t0p = (Ls + Z,O, _X) (15)

Since the flap bottom is stationary, the shape func-
tion for the bottom is a null vector.

S7.pottom = (0,0,0) (16)

Using this as the body boundary condition for the
additional pitch motion about the hinge, the radiation
and diffraction problems can be solved to obtain the
hydrodynamic coefficients and excitation forces.

4 VALIDATION AND DISCUSSION

The cross-model validation with the commercial
solver WAMIT was performed. Furthermore, a com-
parison with open-source solver Capytaine was also
performed here.

As mentioned earlier, the considered geometry and
results for the hydrodynamic coefficients and excita-
tion force for the flap, were taken from the work of
Van ’T Hoff (Van °T Hoff 2009). The same resolu-
tion mesh (518 panels considering flap top and bot-
tom) is utilized in both HAMS and Capytaine, based
on the WAMIT model. In WAMIT, the flap was mod-
elled as a two body problem, wherein the flap top
(see Figure 2) is given a single degree of freedom of
pitch with the center of rotation at the hinge (¢ =-8.9
m). The flap bottom is modelled as a stationary body
with no degrees of freedom for the radiation problem,

N
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Figure 2: Schematic representation of rotation of the flap
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Figure 3: Added mass flap A77
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Figure 6: Finer mesh of the flap in HAMS with 1012 panels -
Top (green) and bottom (pink)
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Figure 7: Added mass flap A77 with finer HAMS mesh for the
flap top

however diffraction was considered. When modelling
in Capytaine, a similar two-body simulation is per-
formed, wherein the same shape functions as derived
earlier are utilized for the top and bottom of the flap.
This utilizes the *Customized degree of freedom’ op-
tion in Capytaine. Lower order panels were utilized
for all simulations to solve both diffraction and radia-
tion problems.

The results of the hydrodynamic coefficients
(added mass coefficient and radiation damping co-
efficient) for the additional degree of freedom are
shown in Figure 3 and Figure 4 respectively. When
comparing the added mass (noted as A;;) for the
three solvers, it can be observed that Capytaine is
closer to WAMIT up to the wave period of 4 s. Be-
tween 4 and 6 s, both HAMS and Capytaine are very
close to WAMIT. Between 6 and 14 s, HAMS is very
close to WAMIT. However for wave periods 6 s on-
wards, Capytaine is found to slightly underestimate
the response ( approximately 3%) in comparison to
WAMIT for the rest of the wave periods investigated.
With HAMS, at 14 s, there is a sudden change lead-
ing to a consistent underestimation (about 5-6%) as
compared to WAMIT. Capytaine is closer to WAMIT
in these range of periods. The peaks for all three
solvers are observed to occur at the same wave pe-
riod. The peak of HAMS and WAMIT is very close,
while Capytaine slightly underestimates the peak.

When considering the radiation damping coeffi-
cient (noted as Bz7), all the solvers are generally
quite close with Capytaine being closer to WAMIT
till wave period of 6 s, while HAMS is much closer
to WAMIT from 6 to 12.5 s wave periods; however,
HAMS shows a slightly higher values at around the
wave period of 5 s. Considering the peaks of the ra-
diation damping coefficient, Capytaine is closer to
WAMIT than HAMS.

The results for the excitation forces £, are shown
in Figure 5. When considering the excitation forces,
all solvers are found to produce similar values. The
peaks are also very close.

An unusual drop is observed at the low period of 1
s in both the radiation damping coefficient and exci-
tation force, and is less pronounced in the added mass
coefficient. This can be attributed to the irregular fre-
quency, which is usually observed at high wave fre-
quencies. This can be nullified by using a waterplane
mesh in addition to the hull mesh, and solving the ex-
tended boundary value problem (Liu 2019). This is
however, not investigated in this research.

In order to further improve the results of the added
mass, an additional simulation was performed in-
creasing the mesh resolution of the flap top (see
Figure 6). The results for the added mass A;; with
the finer mesh are shown in Figure 7. As observed,
HAMS is now closer to WAMIT between 0 and 14
s wave periods, but beyond this limit, it agrees well
with Capytaine.



Table 2: Comparison of Capytaine and HAMS

Solver Parallelization IV, Ny DOF  Time(s)

HAMS No 518 270 7 780
Capytaine No 518 270 1 890
HAMS Yes 518 270 7 430
Capytaine Yes 518 270 1 94
HAMS finer Yes 1012 270 7 1040

5 COMPUTATIONAL RESOURCES

The device utilized for running the simulations in
HAMS and Capytaine is a 64-bit laptop with 16GB
RAM, 8 cores and Intel 17-1185G7 of 3.00 GHz CPU.

The comparison of the computational effort be-
tween HAMS and Capytaine is shown in Table 2.
270 periods between 0.1 s and 27.1 s were considered
for the analysis. Since no reference to computational
time was provided for WAMIT in the work of Van
T Hoff (Van T Hoff 2009), this was not included.
With the current implementation in HAMS, the only
option available is to run all degrees of freedom to-
gether. This entails the six rigid body modes and any
additional modes (in this case the pitching of the flap
about the hinge). In Capytaine, it is possible to run the
simulations considering specific degrees of freedom.
Therefore, simulations were run just for the additional
degree of freedom. NN, refers to the number of panels
utilized in each model, N is the number of periods
considered and DOF is the degrees of freedom con-
sidered in the simulation.

HAMS uses OpenMP parallelization while Capy-
taine allows for two types of parallelization —through
OpenM P and through joblib. When solving a sin-
gle problem, matrix constructions and linear alge-
bra operations can be parallelized through OpenM P.
This can be controlled using the environment variable
OMP_NUM_THREADS on a Windows system. When solv-
ing multiple problems, joblib can be utilized in addi-
tion to OpenM P to run multiple jobs. The calcula-
tions performed with 8 threads in Capytaine as seen
in Table 2 were performed utilizing both OpenM P
and joblib with running 8 jobs simultaneously.

From Table 2, it can be observed that HAMS is
slightly faster without parallelization than Capytaine
even considering 7 degrees of freedom as compared
to 1 degree of freedom in Capytaine. With paralleliza-
tion, Capytaine is 5 times faster than HAMS, but this
considering 7 degrees of freedom in HAMS as com-
pared to 1 degree of freedom in Capytaine. The sim-
ulation time for HAMS with the finer mesh is also
shown in Table 2.

6 LIMITATIONS

With the introduction of the generalized modes ap-
proach in HAMS, it is possible to analyse structures
with constraints. With this implementation, a general
shape function describing the body surface bound-
ary condition can be given as input for the additional
mode to solve the diffraction and radiation problem,

in addition to the 6 rigid body modes. The current re-
search showcases this implementation considering the
flap converter as an example. The adopted method-
ology for deriving the shape function can be utilized
to fixed and floating structures with single hinges. If
there are more hinges, this methodology can be ex-
tended to structures with multiple hinges by assum-
ing unit rotation about each hinge and obtaining the
corresponding shape function.

7 CONCLUDING REMARKS

This work showcases the extension of the open-source
BEM solver HAMS to incorporate the generalized
modes. This is done by deriving a shape function,
that describes the additional degree of freedom/mode
shape, and modifying the body boundary condition
within the BEM solver to incorporate it. To demon-
strate this methodology in HAMS, the case of a
hinged rigid flap is considered. A two body diffrac-
tion and radiation problem is solved considering the
pitch motion about the hinge for the flap top and no
degrees of freedom for the flap bottom.

Cross-model validation with commercial solver
WAMIT is performed for the hydrodynamic coeffi-
cients and excitation forces using the work of Van °T
Hoff Van 'T Hoft (2009). Furthermore, a comparison
is also made with open-source BEM solver Capytaine,
comparing the hydrodynamic coefficients and excita-
tion forces, as well as the computational effort. When
comparing the added mass coefficient, it is observed
that HAMS is generally close to WAMIT with slight
overestimation till wave periods of 5 s and slight un-
derestimation of the added mass coefficient for wave
periods of 14 s or higher. In these ranges of wave pe-
riods, Capytaine is closer to WAMIT. Considering the
radiation damping coefficient and excitation forces,
all solvers are close. In order to improve the estima-
tion of the added mass coefficient in HAMS, an ad-
ditional simulation was run with a higher resolution
mesh, which improved the results for both 0-5 s and
above 14 s wave periods, however still slightly under-
estimating the added mass coefficient beyond wave
period of 14 s.

When comparing the computational effort between
HAMS and Capytaine for the diffraction/radiation
problem, it can be observed that HAMS is slightly
faster without parallelization than Capytaine even
considering 7 degrees of freedom as compared to
1 degree of freedom in Capytaine. With paralleliza-
tion, Capytaine is 5 times faster than HAMS, but
this is considering 7 degrees of freedom in HAMS
as compared to 1 degree of freedom in Capytaine.
In HAMS, with the current implementation, the cal-
culation is performed for all considered degrees of
freedom (rigid modes + additional modes). However,
in Capytaine, it is possible to just run the diffrac-
tion/radiation calculations for a specific degree of
freedom. Hence, the comparison here is done with 7



degrees of freedom in HAMS, as compared to 1 in
Capytaine.

With the implementation of generalized modes in
open-source solver HAMS, it can now be utilized for
the hydrodynamic modelling of flexible structures or
structures with constraints thus adding to the open-
source domain and accelerating energy transition.
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