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Abstract—Knowledge distillation compresses large language
models (LLMs) into more compact and efficient versions that
achieve similar accuracy on code-related tasks. However, as we
demonstrate in this study, compressed models are four times less
robust than the original LLMs when evaluated with metamorphic
code. They exhibit a 440% higher probability of misclassifying
code clones due to minor changes in the code fragment under
analysis, such as replacing parameter names with synonyms. To
address this issue, we propose MORPH, a novel method that
combines metamorphic testing with many-objective optimization
for a robust distillation of LLMs for code. MORPH efficiently
explores the models’ configuration space and generates Pareto-
optimal models that effectively balance accuracy, efficiency, and
robustness to metamorphic code. Metamorphic testing measures
robustness as the number of code fragments for which a model
incorrectly makes different predictions between the original
and their equivalent metamorphic variants (prediction flips).
We evaluate MORPH on two tasks—code clone and vulnerabil-
ity detection—targeting CodeBERT and GraphCodeBERT for
distillation. Our comparison includes MORPH, the state-of-the-
art distillation method AVATAR, and the fine-tuned non-distilled
LLMs. Compared to AVATAR, MORPH produces compressed
models that are (i) 47% more robust, (ii) 25% more efficient
(fewer floating-point operations), while maintaining (iii) equal or
higher accuracy (up to +6%), and (iv) similar model size.

Index Terms—Knowledge distillation, Large Language Models,
Metamorphic testing, Many-objective Optimization, Green-AI,
Sustainability, Search-based Software Engineering, AI for SE

I. INTRODUCTION

Large Language Models (LLMs) have received broad in-
terest in the software engineering community due to their
ability to perform a wide spectrum of tasks, such as code
completion [1], [2], clone detection [3], [4], and vulnerability
detection [5], [6]. These capabilities stem from the increasing
model scale, with millions and billions of parameters [7] and
extensive training data spanning thousands of projects [8].
Despite their potential, LLMs frequently face significant com-
putational challenges, such as reliance on dedicated GPU
hardware [9], high energy consumption [10], and long infer-
ence times (up to seconds per prediction [11], [12]). These
factors limit the practical application of LLMs, as IDE creators
and developers prefer compact models that give instantaneous
feedback within a few tens of milliseconds [12], [13].

Recently, researchers have proposed knowledge distillation
methods [14] for compressing large models into smaller, more
efficient models. Knowledge distillation transfers knowledge
from a large, pre-trained model (the teacher) to a small model

(the student) that keeps approximately the same accuracy
on downstream tasks but with significantly lower resource
demand. In the context of LLMs for code, Shi et al. [12] have
proposed AVATAR, a distillation method that compresses code-
specialized BERT-like models from their original size of 500
megabytes (MB) and 125M parameters down to 3MB models
with a small/negligible accuracy loss. Relying on evolutionary
algorithms, AVATAR has shown superior performance over
previously proposed distillation methods [11].

Theoretically, these compressed models are a viable alter-
native to their teacher LLMs. They are smaller, greener (up to
184× lower energy consumption [12]), and faster (up to 76×
faster latency [12]). However, to date, it is unclear whether
these compressed models retain the same robustness and
properties of their teachers in a broader sense beyond accuracy.
This paper aims to shed light on this aspect by investigating the
robustness of compressed LLMs against metamorphic code.
Metamorphic testing [15] is a well-established technique to
assess the robustness of the LLMs models in making pre-
dictions against variants of the same code fragments that are
semantically and behavioral equivalent. Metamorphic code can
reveal model weaknesses [16], [17], implementation bugs [18],
data leakage issues [19], and other model vulnerabilities [20].
Therefore, we investigate the following research question:

RQ1: How robust are the student models distilled with
existing state-of-the-art methods to metamorphic code?

We investigate the robustness of models compressed by
AVATAR against natural metamorphic attacks [21], code frag-
ments with methods, and input parameter names replaced with
synonyms or expanding acronyms. This process does not mod-
ify the code’s behavior and captures the variation in naming
conventions followed by developers in practice [22]–[24]. We
benchmark AVATAR on two downstream code-related tasks —
clone detection and vulnerability detection—by compressing
CodeBERT and GraphCodeBERT on the Devign [25] and
BigCloneBench [26] datasets. While our results confirm the
benefits that the compressed methods bring [12], we also find a
dramatic reduction in robustness since the compressed models
exhibit up to four times (+440%) more mispredictions (or pre-
diction flips) on metamorphic code compared to their teacher
models. A prediction flip (PF) occurs when a model makes
a different, erroneous prediction on a source code snippet
and its corresponding metamorphic variant. For instance, the
distilled models may miss a vulnerability because the code



contains different (semantically equivalent) parameter names.
The significant reduction in robustness raises concerns about
deploying compressed models in IDEs. These models must be
both accurate and robust across diverse coding scenarios. Non-
robust models can compromise the development workflow by
not identifying vulnerabilities or code clones.

Given these limitations in existing distillation methods, we
propose MORPH. Our novel method integrates metamorphic
testing into the distillation process as one of the key objectives
in a many-objective problem formulation. Using a state-of-
the-art many-objective optimizer, namely AGE-MOEA [27],
MORPH generates Pareto-optimal models that minimize the
number of prediction flips on metamorphic code while main-
taining high accuracy, small model size, and low inference
cost. Thus, we investigate the following research questions:

RQ2: How effective is MORPH in distilling robust models
compared to the existing state-of-the-art method?

RQ3: What is the impact of individual components/features
of MORPH on its overall performance?

We empirically evaluated MORPH on clone and vulnerabil-
ity detection tasks to compress CodeBERT and GraphCode-
BERT and compared its performance against the state-of-the-
art distillation method AVATAR. The results show that MORPH
generates models that are 47% more robust (measured in PFs),
25% more sustainable (measured by FLOPs), with a compa-
rable or superior accuracy (up to +6%), while maintaining
the model size of 3MB. An ablation study confirms that
all individual components of MORPH contribute to its overall
performance, with metamorphic testing and many-objective
optimization being particularly critical. AGE-MOEA, the core
optimizer in MORPH, outperforms alternative optimizers in
generating high-quality Pareto-optimal distilled models.

Our contributions can be summarized as follows:
• We identify weaknesses in the robustness of existing

compression techniques against metamorphic code.
• We propose MORPH, a novel approach that integrates

metamorphic testing with many-objective optimization to
generate robust compressed models.

• We empirically evaluate MORPH on multiple tasks and
LLMs; our results demonstrate its effectiveness in pro-
ducing robust, accurate, and efficient models.

• We provide a complete replication package [28], in-
cluding the metamorphic datasets, the implementation of
MORPH, and the raw data of our experiments.

II. BACKGROUND AND RELATED WORK

Knowledge Distillation. Knowledge distillation [14] aims
to compress a large pre-trained model (called the teacher) into
a smaller and more efficient model (called the student). The
student model S is taught how to predict similar responses
on a given dataset as made by the teacher M by minimizing
the difference between the teacher’s and student’s output
distributions [14], [29]. In task-specific distillation, the student
model learns from an already fine-tuned teacher model for a
specific task [11], [30], which means that S can be directly
used for the same downstream task without any fine-tuning.

Finding the optimal architecture for the student model
remains challenging. Common hyperparameters, such as the
number of layers, hidden units, and attention heads, need to be
tuned to achieve the desired performance of the student model.
COMPRESSOR by Shi et al. [11] employs a single-objective
genetic algorithm for compressing code-specific models such
as CodeBERT into 3MB with approximately the same accu-
racy levels. AVATAR [12] extends this work by using a multi-
objective genetic algorithm to balance accuracy and efficiency
when compressing models into 3MB. Since AVATAR has been
shown to outperform COMPRESSOR, we refer to it as the state-
of-the-art distillation method for code-related tasks.

Despite these undisputed advancements, models compressed
using AVATAR show reduced robustness to code variations, as
we demonstrate in Section V-A. To address this, we introduce
robustness as a fourth objective in the distillation process,
alongside accuracy, size, and efficiency. This addition requires
using a many-objective optimization algorithm (e.g., AGE-
MOEA [27]) rather than a multi-objective one used in prior
studies [12]. Besides, we leverage metamorphic testing to mea-
sure the robustness of the student models against metamorphic
code changes and build surrogate models to predict the model
robustness without fully training and evaluating it.

Metamorphic Testing. Metamorphic testing for software
systems was first introduced by Chen et al. [15] as a technique
to generate new test cases by applying transformations to the
input data while preserving the expected test output (oracle).
Recently, metamorphic testing has gained traction in assessing
the robustness of machine learning models against subtle input
variations (e.g., pixel changes for image classification [31]).
Metamorphic testing has been used in software engineering
to evaluate the robustness of LLMs of code against subtle
code variations (or metamorphic transformations). Compton
et al. [17] demonstrated how Code2Vec models are vulnerable
to obfuscation techniques for variable names. Yefet et al. [32]
introduced metamorphic transformations that add unused vari-
ables to existing code, causing the model to misclassify vul-
nerable code. Other metamorphic changes include renaming
input parameter names, adding lambda expressions, etc. All
these transformations do not alter the code behavior but can
lead to incorrect model predictions [16], [17], [33]. BERT-
like models, such as CodeBERT and GraphCodeBERT, have
also been tested using metamorphic testing and shown to be
vulnerable to metamorphic code changes [16], [21], [33].

There are two main strategies to generate metamorphic
code snippets: applying one change at a time (first-order) or
applying multiple changes at once (higher-order). The latter is
more effective in fooling LLMs and can be applied either by
sampling multiple first-order changes or using meta-heuristics
to select the most effective adversarial changes [21], [34].
As highlighted by Yang et al. [21], the naturalness of the
metamorphic code is crucial to ensure that the changes are
realistic and preserve the natural semantics of code (e.g.,
variable names) in addition to its behavior and syntax.

This work focuses on the robustness of models compressed
with knowledge distillation against metamorphic changes. Our



goal is two-fold: (1) to measure the robustness of models
compressed with existing distillation techniques and (2) to
develop a new distillation method that explicitly relies on
metamorphic testing as one of its core components.

Many-objective Optimization. Many-objective optimiza-
tion refers to problems involving more than three conflicting
objectives [35]. In these problems, identifying a single optimal
solution is infeasible due to the inherent trade-offs between the
objectives. Therefore, the goal is to find solutions representing
the optimal trade-offs, known as the Pareto front [36]. The
Pareto front comprises solutions where no improvement can
be made in one objective without degrading another (Pareto
optimality). A key challenge is the exponential growth of the
search space as the number of objectives increases, making it
difficult to find the Pareto front efficiently [35], [37].

Many-Objective Evolutionary Algorithms (MOEAs) have
emerged as powerful tools for addressing such problems [35],
[36], [38]. MOEAs iteratively evolve an initial population of
solutions through subsequent generations. The aim to approxi-
mate the Pareto front by balancing two aspects: (1) converging
towards the true Pareto front and (2) maintaining diversity
among the solutions to provide decision-makers with a range
of options to choose from [36], [39] Over the last decades,
several MOEAs have been proposed, including NSGA-II [39],
NSGA-III [37], MOEA/D [40], and AGE-MOEA [27]. They
differ mainly in the mechanisms they rely on to select new so-
lutions for the next generations (environmental selection). This
paper leverages AGE-MOEA for its adaptability to diverse
Pareto front shapes and demonstrated superior performance
in prior studies [27], [41], [42]. Its environmental selection
mechanism employs non-dominated sorting [39] and assigns
a survival score that measures both convergence and diversity
based on the (estimated) geometry/shape of the Pareto front.
This promotes solutions near and well-distributed along the
Pareto front [27]. A comparative evaluation of AGE-MOEA
with other MOEAs is provided in Section V-C.

III. PROPOSED METHODOLOGY

Ensuring the robustness of compressed models is crucial,
as non-robust models can fail in real-world applications. For
instance, a model unable to detect a vulnerability in code with
slightly different variable names is highly problematic given
the prevalent use of inconsistent identifier names and vocabu-
lary in existing codebases [22]–[24]. Hence, we formulate the
robust knowledge distillation problem as follows:

Definition: Given a pre-trained LLM (teacher model), the
problem is to find a configuration C = [c1, . . . , cm] for the
student model S that optimizes the following objectives:

minO1 = size(S)
minO2 = | S(v) ̸= S(v) |, ∀v ∈ V and v = meta(v)
minO3 = efficiency(C)
maxO4 = effectiveness(C, V )

(1)

where V is the validation set, and each code snippet v ∈ V
has a corresponding metamorphic v = meta(v). In this
formulation, O1 represents the model size measured as the
number of its internal parameters. O2 measures the model

robustness as the number of data points in V where the
model S changes/flips its prediction between original and
metamorphic code snippets, i.e., when S(v) ̸= S(v). O3

measures the model’s inference cost in terms of floating-
point operations (FLOPs) as done in previous research [10],
[12]; lower FLOP values indicate faster inference and reduced
energy consumption. Lastly, depending on the specific down-
stream task, O4 measures the model’s performance on the
validation set, such as accuracy or F1-score.

Research Challenges: Optimizing the robust knowledge
distillation problem poses several challenges:

Challenge 1: The problem is inherently many objective
(i.e., with 4 objectives), which is difficult to solve due to the
increasing number of trade-offs as the number of objectives
increases [27], [37]. Many traditional evolutionary algorithms,
such as the one used in [12], struggle to scale beyond three
objectives, requiring specialized many-objective algorithms.

Challenge 2: Training student models multiple times with
different configurations to compute accuracy and prediction
flips is computationally expensive, if not prohibitive.

Challenge 3: The search space for student model configu-
rations is vast, with numerous hyperparameters and potential
combinations. Effective sampling strategies are crucial to
identifying promising configurations with few samples.

Challenge 4: Defining and generating natural metamorphic
attacks is crucial to simulate real-world variations in code,
ensuring these transformations preserve code semantics while
mimicking natural coding conventions [22]–[24].

Challenge 5: Generating valid configurations requires ad-
hering to the internal student model constraints, such as main-
taining consistency between hidden size and the number of
attention heads. This is critical to avoid invalid or suboptimal
models during the search process.

Oververview. To tackle the challenges above, we propose
MORPH, a novel approach that integrates metamorphic test-
ing with recent advances in many-objective optimization. As
shown in Figure 1, MORPH comprises three core stages: (1)
generating metamorphic datasets, (2) constructing surrogate
models for fast objective calculation, and (3) employing a
many-objective algorithm. By combining these macro-stages
and leveraging the strengths of each, MORPH efficiently ex-
plores the configuration space and finds a set of Pareto-optimal
configurations for the student model. The following sections
detail each stage, their interactions, and how they address the
challenges outlined above.

A. Generating Metamorphic Code Snippets

To generate metamorphic datasets, we modify the code
snippets in the original dataset by introducing subtle changes
that do not alter their behavior or semantics. Since this paper
focuses on vulnerability and clone detection, we rely on two
metamorphic transformations [33]: (1) method renaming and
(2) input parameter renaming. We choose these transforma-
tions as a code snippet remains vulnerable regardless of how
developers name the functions or input parameters. To generate
natural [43], [44] (i.e., human-like written) code, we avoid
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Fig. 1. Overview of MORPH, which encompasses three macro-stages: (1) generating metamorphic datasets (on the left side), (2) constructing two surrogate
models (middle stage), and (3) employing many-objective optimization (on the right side).

Prompt:
"Here is a [LANG] function: ‘‘[CODE]‘‘
Change the function name (and input parameters names)

↪→ with equivalent ones or synonyms in English.
↪→ Just return the changed code (the complete new
↪→ code) without any extra text."

Listing 1. Prompt for obtaining module name and version

using obfuscation techniques that rely on randomly generated
strings, as done in prior work [17], [32]. Instead, we use
ChatGPT-3.5 to replace English words with synonyms and
expand acronyms to their full forms; for example, args is
expanded to arguments. Synonyms are common in daily
development, as previous studies show that developers do
not use consistent vocabularies, frequently opting for syn-
onyms and acronyms [22]–[24]. By focusing on these natural
transformations, our approach directly addresses Challenge 4
since it generates transformed code that mirrors the real-world
variability in naming conventions employed by developers.

Listing 1 displays the prompt we used to generate metamor-
phic code snippets. In the listing, [LANG] indicates the pro-
gramming language (e.g., Java), and [CODE] is the original
code snippet. Figure 2 shows an example of metamorphic code
generated by ChatGPT-3.5 from the Devign dataset [25]
comparing the original snippet (left) with its metamorphic
variant (right). Both snippets exhibit a CWE-200 vulnerability.

As a result, our methodology employs higher-order meta-
morphic transformation, in which all input parameter names
and main function names are changed at once. This generates
only one metamorphic variant for each original code snippet.
We further validated that the metamorphic code fragments
are well-formed by using source code parsers generated with
tree-sitter [45]. Tree-sitter offers a comprehensive set
of grammars for various programming languages, allowing us
to check that the generated code adheres to the grammar rules
of the corresponding programming language. We manually
inspect a representative subset of generated snippets, as de-
tailed in Section IV, to check the semantic equivalence to the

original code. This two-step validation process guarantees the
naturalness and correctness of the metamorphic datasets.

B. Building the Surrogate Models

Searching for Pareto-optimal model configurations requires
training the models with the given configurations and mea-
suring their effectiveness on the validation set. However,
training and evaluating hundreds of models is computationally
expensive (Challenge 2 mentioned above). To address this, we
use surrogate models, which provide a computationally effi-
cient prediction/estimation of a model’s performance given its
configuration as input. Surrogate models are a well-established
method to tackle problems with expensive fitness functions
in evolutionary computation [46], [47], and are widely used
in software testing for costly tests [38] and in knowledge
distillation [12]. We defined two surrogate models that are
custom and specific to our problem: one for predicting the
accuracy of the student model and the other for predicting the
number of prediction flips on metamorphic code.

To build these surrogates (the second stage in Figure 1),
MORPH first samples the configuration space using Latin
Hypercube Sampling (LHS) [48], [49]. Then, it applies knowl-
edge distillation techniques to train the student model with
each sampled configuration. Finally, the sampled configura-
tions (features) and their corresponding performance metrics
(targets) are used to train the surrogate models.

1) Latin Hypercube Sampling: MORPH employs Latin
Hypercube Sampling (LHS) [48], [49] to sample a diverse
pool of configurations. LHS is a stratified sampling method
that ensures uniform coverage of the configuration space by
dividing each decision dimension (e.g., vocabulary size) into
equal intervals (strata) and selecting one value per interval
for each dimension. This process generates a set of sample
points that are uniformly distributed across the entire search
space and represent all configuration intervals, thus providing a
diverse set of configurations for training the surrogate models.
By efficiently exploring the vast configuration space, LHS



1 void qemu_spice_display_init_common(
2 SimpleSpiceDisplay *ssd) {
3 qemu_mutex_init(&ssd->lock);
4 QTAILQ_INIT(&ssd->updates);
5 ssd->mouse_x = -1;
6 ssd->mouse_y = -1;
7 if (ssd->num_surfaces == 0) {
8 ssd->num_surfaces = 1024;
9 }

10 ssd->bufsize = (16 * 1024 * 1024);
11 ssd->buf = g_malloc(ssd->bufsize);
12 }
13

1 void initialize_spice_display_common(
2 SimpleSpiceDisplay *display){
3 qemu_mutex_init(&display->lock);
4 QTAILQ_INIT(&display->updates);
5 display->mouse_x = -1;
6 display->mouse_y = -1;
7 if (display->num_surfaces == 0) {
8 display->num_surfaces = 1024;
9 }

10 display->bufsize = (16 * 1024 * 1024);
11 display->buf = g_malloc(display->bufsize);
12 }
13

Fig. 2. Original code snippet (idx=11939) from the Devigndataset [25] (left) and its metamorphic variant (right) generated using ChatGPT-.5 with the
prompt in Listing 1. Both code snippets exhibit a CWE-200 vulnerability.

addresses Challenge 3, ensuring a diverse and representative
sample of configurations.

2) Knowledge Distillation: To transfer knowledge to the
compact student model S with a given configuration C, we
employ a hybrid loss function comprising a distillation loss
and a cosine similarity loss: L = Ldist+Lcos. Both functions
consider the augmented training set that includes the original
and metamorphic training data (see Figure 1). The distillation
loss Ldist is calculated as the cross-entropy between the
teacher’s softmax output and the student’s log-softmax output:

Ldist = −
N∑
i=1

softmax
(yi

T

)
× log

(
softmax

( si

T

))
× T 2 (2)

where yi and si are the teacher’s and student’s logits, re-
spectively; T is the temperature scaling factor [14]; N is the
number of data points in the training set. The temperature T
controls the softness of the teacher’s predictions, with higher
values leading to softer predictions.

The cosine similarity loss Lcos ensures that the student
model’s predictions are similar to the teacher model’s predic-
tions in terms of direction, not just magnitude. The cosine
distance between the teacher’s and student’s predictions is
calculated as follows:

Lcos = 1−
∑N

i=1 softmax(yi)× softmax(si)√∑N
i=1 softmax(yi)2 ×

√∑N
i=1 softmax(si)2

(3)

For metamorphic code snippets, the teacher model’s predic-
tions are explicitly set equal to those of the corresponding
non-metamorphic code. This assumes an ideal scenario where
the teacher model maintains output consistency between the
original snippets and their metamorphic variants.

3) Training the Surrogate Models: MORPH builds two
surrogate models: one for predicting accuracy and the other
for predicting the number of prediction flips on the validation
set. For both performance indicators, we use the Gradient
Boosting Regression (GBR) model [50]. GBR is an ensemble
method that creates multiple weak models (regression trees)
and combines them to achieve a strong combined model. We
selected GBR for its ability to handle both numerical and
categorical features, and preliminary experiments showed it
outperformed other models in terms of mean squared error.

For each configuration, we assess (1) its accuracy on the
validation set and (2) the number of prediction flips between
original and metamorphic variants. We use these sampled
configurations (input features) and their corresponding out-

come values (prediction targets) to train two regression-based
surrogate models. The surrogate models have been trained on
the validation datasets, which share similar distributions with
the test datasets but remain separate and distinct. Thus, the
test sets have not been used to train the surrogate models.

For accuracy prediction, we use a GBR model with pre-
and post-processing to ensure outputs remain in [0, 1]. First,
we apply the logit function [51], logit(p) = log(p/(1−p)), to
the accuracy values before fitting the model. This function con-
verts the accuracy values to an unbounded scale, making them
more suitable for regression modeling. During prediction, the
model outputs logit-transformed accuracy values, which are
then converted back to the 0 to 1 range using the logistic
sigmoid function [51]: expit(x) = 1/(1 + exp(−x)). For
prediction flips, the model outputs are constrained ∈ [0, |V |],
where negative values are set to zero.

C. Many-Objective Optimization with AGE-MOEA

To address Challenge 1, MORPH uses the state-of-the-art
Adaptive Geometry Estimation-based Multi-Objective Evolu-
tionary Algorithm (AGE-MOEA) [27]. AGE-MOEA extends
the framework of traditional multi-objective evolutionary al-
gorithms (MOEAs) by incorporating advanced techniques to
estimate the geometry of the Pareto front. MORPH customizes
AGE-MOEA to handle the four objectives and the specific
constraints of knowledge distillation: (1) custom initialization
with LHS, (2) use of surrogate models for calculation of the
objective scores, and (3) use of a repair operator.

As shown in Figure 1, MORPH iteratively evolves an
initial set of configurations. At each iteration, the algorithm
applies variation operators (crossover, mutation, and repair) to
generate new configurations (offspring). Parent and offspring
configurations are evaluated using the surrogate models, which
predict the performance of the student models on the validation
set without training it. The objective scores are used to select
the best configurations that will survive in the subsequent
iteration (environmental selection). This process is repeated
until the total number of configuration/solution evaluations is
reached. MORPH outputs Pareto-optimal configurations repre-
senting the trade-offs between the four objectives.

1) Search Initialization: Population initialization is the first
step in the many-objective optimization process. The initial
population should include a diverse randomly-sampled pool
of model configurations [52]. MORPH uses Latin Hypercube



Sampling (LHS) to create the initial population, i.e., the same
method used for the surrogate models (Section III-B1).

2) Repair Operator: MORPH employs three operators to
generate offspring solutions: crossover, mutation, and re-
pair. For crossover and mutation, we use the simulated bi-
nary crossover (SBX) [53], [54] and polynomial mutation
(PM) [36], which are standard in many-objective optimiza-
tion [27]. Instead, the repair operator is a custom operator
designed for the distillation problem in MORPH to ensure that
the offspring configurations are valid and meet the constraints
of the student models (Challenge 5). For example, a configura-
tion with a hidden size not divisible by the number of attention
heads is invalid. Besides, some genes (e.g., vocabulary size)
must be integers, while others (e.g., dropout probabilities)
must be within a specific range. Therefore, we developed a
repair operator that fixes and repairs all invalid configurations.
For each child configuration, the repair function adjusts the
genes as follows: (1) Integer configuration values are rounded
to the nearest integer; (2) Probability values (e.g., hidden
dropout probability) are rounded to one decimal place; (3)
The hidden size must be divisible by the number of attention
heads. If this is not the case after crossover and mutation, the
repair operator adjusts the hidden size to the nearest multiple of
the number of attention heads using Equation 4. This process
involves identifying the nearest multiples of the number of
attention heads. Specifically, the repair operator calculates the
next higher multiple (A in Equation 4), and the previous lower
multiple (B in Equation 4). Then, it compares these multiples
to the original hidden size and chooses the closest one. Let h
denote the hidden size and a the number of attention heads;
the repair operator calculates the new fixed hidden size h∗ as:

A =

(⌊
h

a

⌋
+ 1

)
a, B =

⌊
h

a

⌋
a, h∗=

{
A if |h−A| < |h−B|
B otherwise

(4)

3) Objective Score calculation: The new configurations
are evaluated after applying the variation operators, and their
objective scores are calculated. For the accuracy (O4) on
the validation set and the number of prediction flips on the
metamorphic validation set (O2), MORPH uses the surrogate
models instead of training the student models from scratch
(see Section III-B3). W.r.t. O1, the model size is calculated
using the formula from prior studies [11], [12]. This formula
decomposes a student model into three components: (1) the
embedding layer, (2) the transformer layer, and (3) the classi-
fier layer. The formula determines the total model size in MB
by summing the sizes of these three components. Finally, the
FLOPs (O3) are calculated using the same methodology used
in prior studies on knowledge distillation [11], [12].

IV. EMPIRICAL EVALUATION

The goal of this study is to evaluate the effectiveness
of MORPH and compare it with existing model distillation
approaches. We investigate the following research questions:

• RQ1: How robust are the student models distilled with
existing state-of-the-art methods to metamorphic code?

• RQ2: How effective is MORPH in distilling robust models
compared to the existing state-of-the-art method?

• RQ3: What is the impact of individual components/fea-
tures of MORPH on its overall performance?

RQ1 serves as a preliminary investigation to assess the
robustness of models distilled using the existing state-of-the-
art method, AVATAR [12], against metamorphic code. This RQ
is crucial as it helps identify potential weaknesses in existing
distillation approaches, particularly their robustness to meta-
morphic code. If the results indicate that these methods are
less robust than the non-compressed versions of the models,
it will highlight the necessity for a more robust distillation
approach, thus motivating our approach, MORPH.

Our second research question (RQ2) directly evaluates the
effectiveness of MORPH in distilling robust models, especially
in comparison to AVATAR [12]. This question aims to deter-
mine whether MORPH can produce student models that are
more Pareto optimal than those distilled using AVATAR, also
considering the robustness against metamorphic code.

Finally, RQ3 is addressed through an ablation study that in-
vestigates the contribution of each key component of MORPH
to its overall performance. This includes evaluating the impact
of (1) data augmentation, (2) LHS for population initialization,
(3) repair operator, (4) surrogate models, and (5) the employed
many-objective optimization algorithm. For the latter, we com-
pare AGE-MOEA, the default optimizer in MORPH, against
alternative many-objective optimizers, namely NSGA-II [39],
NSGA-III [37], and MOEA/D [40], w.r.t. the Pareto fronts
quality. By systematically removing each component and ana-
lyzing the results, we assess their effectiveness. Comparing the
use of AGE-MOEA with other optimizers allows us to validate
its suitability and explore whether alternative algorithms might
offer additional benefits or improved Pareto front quality.

Downstream Tasks. To align with previous research [11],
[12] in knowledge distillation, we evaluate MORPH and the
baselines (AVATAR and the original LLMs) on two prominent
software engineering tasks: (1) vulnerability prediction and (2)
clone detection. Table I presents an overview of the datasets
used in our experiments. For a fair and rigorous comparison
with existing knowledge distillation methods, we adopt the
identical dataset splits and experimental settings employed in
prior studies [11], [12] for both tasks. This methodological
consistency enables a direct replication of previous results and
facilitates a precise evaluation of MORPH’s performance. The
first task is vulnerability prediction, which involves identifying
security vulnerabilities in source code. We use the Devign
dataset [25], which contains code snippets written in the
C programming language and mined from two open-source
libraries, FFmpeg and Qemu [25]. The second task is clone
detection, which aims to identify code duplications. We utilize
the BigCloneBench dataset [26], an extensive collection of
Java code clones collected by mining 25,000 Java projects
from SourceForge and the Google Code platform. We
have chosen these two datasets to mitigate potential data
leakage issues, as we further elaborate in Section VII.

Metamorphic datasets: To augment the original datasets, we
generate metamorphic code snippets using the methodology
outlined in Section III-A. We apply function/method renaming



TABLE I
OVERVIEW OF DATASETS USED FOR THE EXPERIMENTS, INCLUDING

TRAINING, VALIDATION, AND TEST SET SIZES.

Task Source Dataset Size Language

Vulnerability
Prediction Devign [25]

Training = 10,927
CValidation = 2732

Test = 2732

Clone Detection BigClone-
Bench [26]

Training = 45,051
JavaValidation = 4000

Test = 4000

and input parameter renaming to the vulnerability prediction
and clone detection datasets, creating metamorphic versions
for the training, validation, and test sets. To validate the
correctness of the generated metamorphic code, we conduct
manual inspections to ensure that CWE labels remain consis-
tent after transformations for vulnerability prediction. These
metamorphic datasets are used to evaluate the susceptibility
of the student models distilled with MORPH and the baselines
to adversarial code perturbations [55]. Notably, the test sets
and their metamorphic versions are not used in any of the
internal steps of MORPH (e.g., surrogate model training and
many-objective optimization). This separation guarantees that
the test set remains unseen during the search process.

Large Language Models. We employ two pre-trained
LLMs specialized for code-related tasks, namely Code-
BERT [56] and GraphCodeBERT [57]. CodeBERT is a bi-
modal pre-trained model for natural language and program-
ming languages. It is based on the BERT architecture and
trained on a large corpus of code from multiple program-
ming languages, including Python, Java, JavaScript, and more.
CodeBERT is designed to understand and generate code snip-
pets, making it useful for various tasks such as code search,
completion, and documentation generation. GraphCodeBERT
extends the capabilities of CodeBERT by incorporating struc-
tural information from code [57]. In addition to the textual
data, GraphCodeBERT leverages the data flow graph of code
snippets to better capture the relationships between different
parts of the code. We selected these LLMs because they are
(1) open source with fully traceable pre-training1, (2) used in
prior distillation studies [12], and (3) previously fine-tuned on
our tasks, allowing us to replicate and compare results directly.

Fine-tuning: We fine-tuned the hyperparameters of Code-
BERT and GraphCodeBERT for the two downstream tasks
described above. Fine-tuning was performed using the con-
figurations recommended by the original studies [8], [57],
achieving results comparable to those reported in the related
literature for the two downstream tasks [8], [11], [12], [57].

Empirical Methodology. To answer RQ1, we evaluate the
robustness of the models distilled with AVATAR and the non-
distilled fine-tuned LLMs. The goal is to determine whether
compressed models are less, more, or as robust as the original
LLMs. To this aim, we measure the robustness of a model
M (either teacher or student model) by counting the number
of instances where M produces different predictions for an

1https://huggingface.co/datasets/code-search-net/code search net

original code snippet t and its corresponding metamorphic
version t. Let T = {t1, t2, . . . , tn} be the original test set,
and let T = {t1, t2, . . . , tn} be the metamorphic test set, such
that ti is the metamorphic version of ti. The robustness of M
is measured by the number of prediction flips:

Prediction Flips =
∣∣{(ti, ti) ∈ T × T : M(ti) ̸= M(ti)

}∣∣ (5)

For this analysis, we use the model checkpoints available in
the replication package2 of AVATAR (model of 3MB in size)
and compare them to the original fine-tuned LLMs.

To answer RQ2, we compare the models distilled by
MORPH with those distilled by AVATAR. The comparison is
made with regard to four metrics: (1) accuracy of the models
on the test sets, (2) model size in MB, (3) number of prediction
flips on the test sets (robustness), and (4) the number of Giga
FLOPs (model efficiency). For this experiment, we did not
use the model checkpoints available in the replication package
of AVATAR but trained/compressed the models from scratch
using the original implementation of AVATAR. The number
of prediction flips is calculated using Equation 5 as done
for RQ1. We ran AVATAR and MORPH 20 times to account
for their randomness. We report the median results of these
approaches across the runs for all four metrics mentioned
above, alongside the interquartile range (IQR). Since MORPH
produces a Pareto front and not a single solution, we select the
Pareto-optimal compressed model with the model size closest
to 3MB, which is the model size of the model produced by
AVATAR [12]. We analyze the results using the Wilcoxon
signed-rank test [58] (p-value≤0.05) for the significance and
the Vargha-Delaney Â12 statistics [59] for the effect size.

To answer RQ3, we perform an ablation study to evaluate
the contribution of each key component of MORPH. For
each ablation, we measure the resulting models’ accuracy and
robustness (number of prediction flips) to determine how the
removal of these components affects MORPH’s performance.
Regarding the many-objective optimization algorithm, we
compare the results of MORPH when using AGE-MOEA (see
Section III) and other alternative algorithms, namely NSGA-
II [39], NSGA-III [37], and MOEA/D [40]. To compare the
MOEAs, we employed the hypervolume (HV) quality indica-
tor [60] to assess the quality of the Pareto fronts. HV takes
values in [0; 1] and quantifies the volume of the objective space
dominated by a Pareto front. For calculating the HV scores, we
determine the nadir (reference) point Zmax corresponding to
the point having as coordinates the maximum value for each
objective across all Pareto fronts generated by all MOEAs
in all experimental runs [61]. A higher HV value indicates
a Pareto front that covers a larger portion of the objective
space, suggesting a better trade-off between the optimization
objectives. We run each MOEA ten times and compare their
median (and IQR) HV scores also using the Wilcoxon signed-
rank test (p-value≤0.05) and Vargha-Delaney Â12 statistics.

Parameter Settings. We set MORPH to evolve a population
of 50 model configurations over 100 generations. MORPH
uses parameter values recommended in the literature: SBX

2https://github.com/soarsmu/Avatar

https://huggingface.co/datasets/code-search-net/code_search_net
https://github.com/soarsmu/Avatar


crossover with distribution index ηc=30, and PM mutation
with distribution index ηm=30, recommended values for multi-
and many-objective problems [27], [36], [62]. The crossover
probability is 0.90, within the recommended interval of
[0.45, 0.95] [36] and a mutation probability of 1/l, where l is
the number of configuration values [36]. Parent configurations
are selected for reproduction using the binary tournament
selection [27], [36]. Our repair operator is always applied after
crossover and mutation to fix invalid solutions.

MORPH employs GBR to construct surrogate models (see
Section III-B3). To optimize GBR hyperparameters, we con-
ducted a grid search across a predefined parameter space: (1)
the number of decision trees ∈ {50, 100, 150}; (2) the learning
rate ∈ {0.05, 0.10, 0.15, 0.20, 0.25}; (3) the maximum depth
of each decision tree ∈ {2, 3, 4, 5}; (4) the minimum number
of samples in internal node ∈ {2, 3, 4}; (5) the minimum
number of samples in leaf nodes ∈ {1, 2, 3}. We employed
a threefold cross-validation strategy to fit the GBR model and
selected the hyperparameter values, achieving the lowest mean
absolute error across the three folds. We ensured the test set
remained unseen when training the surrogate models to prevent
overfitting and maintain evaluation integrity.

Both AVATAR and MORPH are set with the same configu-
ration space for the distillation: (1) tokenizers ∈ {BPE, Word-
Piece, Unigram, Word}, (2) vocabulary size ∈ [1000, 46000],
(3) number of hidden layers ∈ [1, 12], (4) hidden size ∈
[16, 256], (5) hidden act ∈ { gelu, relu, silu, gelu new },
(6) hidden dropout probability ∈ [0.2, 0.5], (7) intermediate
size ∈ [32, 3072], (8) number of attention heads ∈ [1, 12]
(9) attention dropout probability ∈ [0.2, 0.5], (10) maximum
sequence length ∈ [256, 512], (11) position embedding type
∈ {absolute, relative key, relative key query}, (12) learning
rate ∈ {0.001, 0.0001, 0.00001}, (13) batch size ∈ {16, 32,
64 }. Both approaches use the temperature scaling factor T=3,
as recommended [14]. Finally, AVATAR is set with the default
parameter values recommended in the original study [12].
We increase the population size to 50 and the number of
generations to 100 for a fair comparison with MORPH.

Implementation details. We implemented MORPH in
Pymoo v0.6.0 [63], using Python 3.9 and Pytorch v1.13.1.
Pymoo is an open-source framework that implements the
MOEAs used in this study (including AGE-MOEA). We
use the libraries Transformers v4.21.1, Scikit-learn v1.1.2,
and the implementation of LHS available in pyDOE v0.3.8.
The experiments were conducted on a server with an AMD
EPYC 7713 64-Core Processor running at 2.6 GHz and 256
CPUs available. We used 3 Nvidia A40 GPUs, each with
48 GB GDDR6 running CUDA version 11.6. The complete
replication package, including the datasets, the source code,
and results, is available on Zenodo [28].

V. RESULTS

A. RQ1: Robustness of Existing Distillation Methods

Table II reports the number of prediction flips for the orig-
inal LLMs and the student models distilled with AVATAR by
Shi et al. [12] on the two tasks. The results reveal a significant

TABLE II
COMPARISON OF THE NUMBER OF PREDICTION FLIPS BETWEEN THE

ORIGINAL LLMS AND AVATAR ON THE TWO TASKS.

Model Name Task Distillation Size (MB) # Pred. Flips

CodeBERT

Clone
Detection

None 499 32
AVATAR 3 172 (+440%)

Vulnerability
Prediction

None 499 406
AVATAR 3 449 (+11%)

GCodeBERT

Clone
Detection

None 499 45
AVATAR 3 115 (+155%)

Vulnerability
Prediction

None 499 399
AVATAR 3 438 (+11%)

increase in prediction flips for student models generated by
AVATAR compared to teacher models. Specifically, on the
clone detection task, the number of prediction flips surges
by 440% and 155% for CodeBERT and GraphCodeBERT,
respectively. While the vulnerability prediction task exhibits
a less pronounced increase of 11% for both LLMs, the overall
trend indicates a decline in model robustness.

A prediction flip happens when a model generates different
outcomes for an initial code snippet and its corresponding,
semantically equal, metamorphic variation. This phenomenon
reveals the model’s vulnerability to minor variable renaming
(using synonyms) and suggests that its decision-making pro-
cess may be unstable. Since it is a standard practice for de-
velopers to use a variety of often inconsistent identifiers [22]–
[24], this noticeable rice in prediction flips casts doubts on
the reliability and trustworthiness of these compressed models
for real-world deployment. To replace the original LLMs, the
compressed models should be at least as robust as the original
models to achieve similar accuracy with fewer resources.

These findings highlight the necessity for a more robust dis-
tillation approach, such as MORPH, which explicitly addresses
the challenge of preserving model stability.

B. RQ2: Comparison between MORPH and AVATAR

Both MORPH and AVATAR produce multiple student models
with different trade-offs between size and accuracy (MORPH
also considers model robustness as an additional objective).
For both approaches, we select the model configuration with
a size closest to 3MB for training the optimized model,
which is the target size used in the literature for code-related
tasks [11], [12]. 3MB is also the size of the models used in
IDE components or editor plugins [12], [13]. Table III presents
the results of MORPH and AVATAR on the two downstream
tasks: median accuracy, model size, number of prediction flips,
and Giga FLOPs for the two distillation approaches over ten
runs. The interquartile range (IQR) is shown in parentheses
and measures the metric variability across the runs.

Accuracy. MORPH outperforms AVATAR in all metrics for
both tasks while keeping a similar model size of 3MB. For
the clone detection task, MORPH achieves a median accuracy
of 96.43% for CodeBERT and 94.97% for GraphCodeBERT,
compared to 89.55% and 88.88% for AVATAR, respectively.
It is worth noting that AVATAR’s accuracy is slightly lower
than the one reported by the original paper [12]. In our



TABLE III
RESULTS OF MORPH AND AVATAR ON THE TWO DOWNSTREAM TASKS. WE REPORT THE MEDIAN RESULTS, WITH THE INTERQUARTILE RANGE (IQR)

SHOWN IN PARENTHESES. THE BEST RESULT FOR EACH METRIC IS HIGHLIGHTED IN GRAY.

Model Name Task Distillation Approach Accuracy (%) Size (in MB) # Pred. Flips Giga FLOPs

Median Diff. Median Diff. Median Diff. Median Diff.

CodeBERT
Clone Detection AVATAR 89.55 (6.69) +6.88% 3.00 (0.01) -0.06 129.50 (70.75) -73% 1.45 (0.30) -8%MORPH 96.43 (1.49) 2.94 (1.58) 34.50 (15.24) 1.33 (1.00)

Vulnerability Prediction AVATAR 59.55 (1.02) +0.02% 3.01 (0.02) 0.00 444.00 (14.75) -27% 0.89 (0.37) -19%MORPH 59.57 (0.99) 3.01 (0.13) 326.00 (37.00) 0.72 (0.26)

GCodeBERT
Clone Detection AVATAR 88.88 (1.75) +6.09% 3.00 (0.01) +0.01 123.00 (101.00) -57% 1.77 (0.00) -37%MORPH 94.97 (1.66) 3.01 (0.06) 53.00(6.25) 1.12 (0.17)

Vulnerability Prediction AVATAR 59.04 (1.02) -0.27% 3.01 (0.01) +0.02 423.00 (74.00) -33% 0.74 (0.42) -38%MORPH 58.77 (0.18) 3.03 (0.03) 284.00 (18.00) 0.46 (0.20)

Avarage (mean) Difference +3.18% -0.01 -47% -25%

TABLE IV
RESULTS OF THE TEACHER MODELS FINE-TUNED USING THE ORIGNAL
TRAINING SET (NO DIST.) AND THE TRAINING SET AUGMENTED WITH
METAMORPHIC CODE (+ DATA AUG.). FOR MORPH, WE REPORT THE
RESULTS OF THE MODELS WITH A SIZE CLOSEST TO 3MB AND 6MB.

Model Task Distillation Acc (%) #P. Flips

CodeBERT

Clone
Detection

No Dist. 96.10 32.00
No Dist. + Data Aug. 96.42 29.00
MORPH (3MB) 96.43 34.50
MORPH (6MB) 96.80 20.00

Vulnerability
Prediction

w/o Data Aug 61.42 406
w/ Data Aug. 61.13 245
MORPH (3MB) 59.57 326
MORPH (6MB) 59.99 275

GCodeBERT

Clone
Detection

w/o Data Aug. 96.85 45
w/ Data Aug. 96.52 40
MORPH (3MB) 94.97 53
MORPH (6MB) 96.42 24

Vulnerability
Prediction

w/o Data Aug 61.42 399
w/ Data Aug. 62.41 214
MORPH (3MB) 58.77 284
MORPH (6MB) 58.75 191

evaluation, we conducted 20 independent runs and observed
that, in one of these runs, the accuracy was similar to the
values in the original paper. However, we report the average
(median) results over these ten runs, which is the standard ap-
proach for evaluating meta-heuristics [64]. This methodology
provides a more robust and reliable measure of performance by
accounting for variability across multiple runs. The differences
in accuracy between MORPH and AVATAR are statistically
significant (p-value<0.01) with a large effect size (Â12=0.97)
only for clone detection. In contrast, the two approaches yield
comparable accuracy for vulnerability prediction.

Robustness. Besides accuracy, the number of prediction
flips (on metamorphic test datapoints) is significantly lower
for MORPH compared to AVATAR, indicating higher robustness
of the student models distilled with our approach. In partic-
ular, MORPH leads to −73% and −57% prediction flips in
clone detection when distilling CodeBERT and GraphCode-
BERT, respectively. For vulnerability detection, the model
compressed by MORPH exhibits −27% and −33% prediction
flips for CodeBERT and GraphCodeBERT, respectively. These
differences are statistically significant (p-value<0.01) with a
large effect size (Â12=1.00) for all tasks and LLMs.

Sustainability. Finally, MORPH produces more efficient
models than AVATAR in terms of inference efficiency, mea-

sured in Giga FLOPs (floating-point operations). In particular,
the student models distilled by MORPH lead to -25% FLOPs
compared to the baseline method, with the largest difference
observed for the clone detection task. The differences are
statistically significant (p-value<0.01) with a medium effect
size (0.65≤Â12 ≤0.72) for all tasks and models to distill.

Comparison with non-distilled models. Table IV com-
pares the robustness of MORPH with the original LLMs in
terms of robustness and accuracy. Two versions of the teacher
models are considered: one fine-tuned on the original training
set (NoDist.) and another fine-tuned on an augmented set
with metamorphic code (NoDist.+Data Aug.). For MORPH,
we present results for Pareto-optimal models sized at 3MB
(to match AVATAR) and 6MB, which remains far smaller than
the 499MB teacher models. The 3MB models distilled by
MORPH reduce PFs by −19% and −27% for CodeBERT and
GraphCodeBERT respectively, compared to the non-distilled
LLMs for vulnerability prediction. However, teacher models
fine-tuned on metamorphic code produce fewer PFs compared
to MORPH’s 3MB models, indicating that using metamorphic
transformations during fine-tuning enhances model robustness.
Interestingly, MORPH’s 6MB models achieve similar or better
robustness than augmented teacher models. For example, the
6MB models distilled from CodeBERT are more robust for
clone detection and slightly more accurate. Similarly, Graph-
CodeBERT, the 6MB models distilled surpass the augmented
teacher models in robustness on both downstream tasks.

C. RQ3: Abaltion Study on MORPH’s Key Features

To evaluate the impact of the features in MORPH, we con-
ducted an ablation study by removing each feature individually
and comparing the results with the full approach. The results
are presented in Table V and Table VI. The former reports
the accuracy, model size, number of prediction flips, and Giga
FLOPs for the different ablated versions of MORPH, while the
latter reports the median hypervolume score achieved by each
ablated version of MORPH when using different MOEAs.

Impact of Augmentation. Disabling data augmentation
with metamorphic code during training consistently leads to
lower accuracy and lower robustness compared to the full
approach. However, it is worth noting that even without this
single feature enabled, MORPH still outperforms AVATAR in



TABLE V
RESULTS OF THE ABLATION STUDY W.R.T. THE DIFFERENT FEATURES IN
MORPH. WE REPORT THE MEDIAN RESULTS, WITH THE INTERQUARTILE

RANGE (IQR) SHOWN IN PARENTHESES. THE BEST RESULT FOR EACH
METRIC IS HIGHLIGHTED IN GRAY.

Model Task Fatures Acc.(%) Size (MB) # Flips GFLOPs

CB

CD

w/o Aug. 87.13 (2.60) 2.87 (0.02) 46.00 (50.00) 0.06 (0.03)
w/o LHS 84.70 (0.90) 2.88 (0.01) 66.00 (18.00) 0.06 (0.01)
w/o Repair - - - -
All Features 96.43 (1.49) 2.94 (1.58) 34.50 (15.24) 1.33 (1.00)

VP

w/o Aug. 58.67 (2.95) 2.98 (0.10) 405.00 (225.00) 0.61 (0.08)
w/o LHS 57.79 (1.35) 3.02 (0.19) 267.00 (40.00) 0.69 (0.35)
w/o Repair - - - -
All Features 59.57 (0.99) 3.01 (0.01) 326.00 (37.00) 0.71 (0.26)

GCB

CD

w/o Aug. 94.48 (3.63) 3.07 (0.28) 60.50 (48.00) 1.23 (0.10)
w/o LHS 94.95 (0.68) 3.06 (0.10) 65.50 (26.25) 1.72 (0.30)
w/o Repair - - - -
All Features 94.97 (1.66) 3.01 (0.06) 53.00 (6.25) 1.12 (0.17)

VP

w/o Aug. 58.46 (3.34) 3.00 (0.01) 385.00 (314.00) 0.61 (0.25)
w/o LHS 58.18 (2.95) 3.00 (0.01) 327.00 (95.00) 0.65 (0.40)
w/o Repair - - - -
All Features 58.77 (0.18) 3.03 (0.03) 284.00 (37.00) 0.71 (0.26)

terms of robustness. This is due to the use of metamorphic
code (of the validation set) as the fourth objective to optimize
for. On the other hand, not using data augmentation leads to
models with lower FLOPs (aka more efficient models).

Impact of Latin Hypercube Sampling (LHS). Removing
LHS sampling from the search space exploration process leads
to a decrease in accuracy and an increase in the number of
prediction flips (lower robustness). The only exception can be
observed for CodeBERT when detecting vulnerabilities. This
suggests that LHS sampling is crucial for exploring the search
space effectively and finding better model configurations.

Impact of Repair Mechanism. Disabling the repair oper-
ator leads to unreliable results, as the search process is not
able to converge to valid solutions. All model configurations
generated without the repair operator were invalid (all results
are marked with “-”). Thus, this feature is ctitical to guarantee
that the model’s constraints are satisfied.

Impact of Surrogate Model. Removing the surrogate
model dramatically increased the convergence time, with the
running time rising from 3.5 seconds to 750 hours per distilla-
tion. Due to this extreme computational overhead, conducting
and reporting a complete comparison with and without surro-
gate models was infeasible. Performing such an experiment
for just one task and model would require approximately
750 hours × 10 repetitions on our dedicated server, equating
to over 300 days of continuous computation. This confirms
the importance of using surrogate models to complete the
distillation process within reasonable time constraints.

Impact of AGE-MOEA. Table VI reports the median
hypervolume (HV) score achieved by AGE-MOEA and the
alternative MOEAs. MORPH achieves the highest HV score
when using AGE-MOEA for all tasks and LLMs. The dif-
ferences in HV scores between AGE-MOEA and the other
MOEAs are statistically significant (p-value<0.05) with a
large effect size (Â12 ≥0.82) for all tasks and LLMs. The
only two exceptions are NSGA-II and NSGA-III for the
vulnerability prediction task with GraphCodeBERT, where
the differences are not statistically significant (p-value>0.05),
albeit with a medium positive effect size (Â12 ≥0.64). These

TABLE VI
MEDIAN HYPERVOLUME SCORE ACHIEVED BY MORPH WHEN USING
DIFFERENT MOEAS. WE REPORT THE MEDIAN RESULTS, WITH THE
INTERQUARTILE RANGE (IQR) SHOWN IN PARENTHESES. THE BEST

RESULTS ARE HIGHLIGHTED IN GRAY COLOR.

Model Task MOEAs HV p-value (Â12)

GCodeBERT

Clone
Detection

NSGA-II 0.98 (0.002) <0.01 (1.00)
NSGA-III 0.963 (0.032) <0.01 (1.00)
MOEA//D 0.055 (0.333) <0.01 (1.00)

AGE-MOEA 0.996 (0.002) -

Vulnerability
Prediction

NSGA-II 0.805 (0.019) 0.30 (0.64)
NSGA-III 0.791 (0.014) 0.06 (0.75)
MOEA//D 0.192 (0.020) <0.01 (1.00)

AGE-MOEA 0.822 (0.035) -

CodeBERT

Clone
Detection

NSGA-II 0.963 (0.006) <0.01 (0.95)
NSGA-III 0.968 (0.004) <0.01 (0.97)
MOEA//D 0.897 (0.033) <0.01 (1.00)

AGE-MOEA 0.980 (0.005) -

Vulnerability
Prediction

NSGA-II 0.837 (0.024) 0.01 (0.82)
NSGA-III 0.831 (0.009) 0.01 (0.82)
MOEA//D 0.288 (0.425) <0.01 (1.00)

AGE-MOEA 0.872 (0.017) -

findings suggest that while other MOEAs might be considered
as alternatives for optimizing student model configurations
(or distillation configurations), AGE-MOEA produces higher-
quality Pareto fronts for the considered tasks and LLMs.

VI. DISCUSSION AND PRACTICAL IMPLICATIONS

Overhead of using AGE-MOEA. One of the potential con-
cerns in deploying multi-objective optimization algorithms is
the required overhead they may introduce. Our experiment
shows that AGE-MOEA only takes around 3.5 seconds per
distillation, which is negligible compared to training a single
3MB model from scratch (on average, 9 minutes using our
dedicated server). Moreover, training surrogate models —
which estimate objective scores for different configurations—
comes at a cost of approximately 1.5 seconds. Unlike iterative
model training, which is resource-intensive and often requires
specialized hardware, AGE-MOEA is a one-time overhead that
can be executed efficiently on standard computing resources.

Impact on inference latency. We measured model per-
formance using FLOPs, a standard practice to estimate the
inference efficiency [10], [12]. To quantify the differences in
a practical setting, we evaluate distilled and original models
on a system with 8 CPU cores, simulating a typical consumer-
grade laptop, and measure the average inference time on the
test sets in seconds (s). The results confirm the differences
we observed w.r.t. FLOPs: the average inference time for the
entire Deving test set (2732 code fragments) is 0.21s for the
models distilled by MORPH compared to 2.55s for AVATAR
when detecting code vulnerability. Both models are much
faster than the original LLMs as GraphCodeBERT requires
44.5s on average, and CodeBERT 22.5s. Therefore, MORPH
produces more efficient models that can provide instantaneous
feedback to developers for code analysis within their IDEs.

Practical implications. Our study highlights the impor-
tance of evaluating model compressing techniques beyond
accuracy, model size, and efficiency. Robustness is critical
to model performance, especially in real-time code analysis.
Researchers should consider incorporating robustness metrics,



such as prediction flips, into their evaluation frameworks to
ensure that models are robust to the broader variety of naming
conventions. Metamorphic testing can both measure/test the
robustness of LLMs [16], [17], [33] but also improve models’
robustness via data augmentation and calibrated distillation/-
training methods. Our methodology can be extended to other
distillation techniques and tasks, providing a general frame-
work for improving model robustness.

VII. THREATS TO VALIDITY

This section outlines potential threats to the study’s validity
and the steps taken to address them. Regarding internal
validity, we used ChatGPT-3.5 to create metamorphic code
by renaming functions and input parameters using synonyms
and acronym expansions. These changes preserve code snip-
pets’ functionality and abstract syntax tree (AST) without
affecting their labels (clone or vulnerability). We validated the
correctness and naturalness [21] of metamorphic code using
parsers and manual inspection (see Sections III-A and IV).

For MORPH’s internal parameters, we followed the rec-
ommended values for genetic operators from existing guide-
lines in many-objective optimization [27], [36], [37], [54].
We used AVATAR’s original implementation and parameter
settings [12], with adjustments to the population size (50) and
number of generations (100) for a fair comparison. Future
work will explore the impact of different parameter values.
Both MORPH and AVATAR were optimized using the same
training and validation sets to ensure fairness. Test sets, unseen
during distillation and optimization, were used to evaluate
student model performance. CodeBERT and GraphCodeBERT
were fine-tuned using the same training and validation sets.

Data leakage is another potential threat and a common issue
when evaluating LLMs [19]. To address this, we carefully
selected the Devign [25] and BigCloneBench [26] datasets and
focused on CodeBERT and GraphCodeBERT. The pretraining
dataset (CodeSearchNet) for these LLMs is publicly available
on HuggingFace3, and it is fully traceable. For clone detection,
we used BigCloneBench with its official training, validation,
and test splits4; these splits are specifically designed to prevent
data leakage. We used the Devign dataset for vulnerability
detection, which consists of vulnerable C++ methods. Impor-
tantly, CodeSearchNet does not include C++ code5. This guar-
antees no overlap between this dataset and the pretraining data
of the two LLMs, fully eliminating any risk of data leakage.
Furthermore, we manually checked that neither the pretraining
nor the validation datasets contained any test snippets or
their metamorphic variations. Additionally, as argued in [19],
metamorphic testing helps mitigate the risk of data leakage
in pre-training by altering original code snippets to create
new semantically equivalent variants. These transformations
guarantee that even if a model has been exposed to similar

3https://huggingface.co/datasets/code-search-net/code search net
4https://github.com/microsoft/CodeXGLUE/blob/main/Code-Code/

Clone-detection-BigCloneBench
5https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/

Defect-detection

patterns during pretraining, the metamorphic variants provide
novel instances that challenge the model’s robustness without
introducing label inconsistencies.

Concerning external validity, we used the Devign [25]
and BigCloneBench [26] datasets, widely employed in the
literature for training AI models for code-related tasks [56],
[65], including model distillation [11], [12]. MORPH was
assessed on two code-related tasks and two LLMs, CodeBERT
and GraphCodeBERT. Future work will extend the evaluation
to other datasets, tasks, and LLMs to corroborate our results.

Threats to conclusion validity arise from the randomized
nature of MORPH and AVATAR. We ran each approach ten
times for each LLM and task using different random seeds,
following best practices for experiments with randomized
algorithms [64]. We analyzed the results using the Wilcoxon
rank-sum test [58] and the Vargha-Delaney statistics [59]. Met-
rics used included accuracy, model size, and FLOPs, common
in knowledge distillation [11], [12]. The number of prediction
flips was used to assess robustness against metamorphic code,
a standard practice in the testing literature [17], [33].

VIII. CONCLUSION AND FUTURE WORK

This study investigates the robustness of models compressed
with the state-of-the-art distillation method, called AVATAR, to
metamorphic code variations. Our findings reveal a significant
increase in prediction flips (up to 440%) for compressed model
compared to their original counterparts when presented with
semantically and behaviorally equivalent code snippets.

To address this issue, we introduced MORPH, a novel
distillation method that integrates metamorphic testing with
many-objective optimization using AGE-MOEA [27]. Our
approach considers the model robustness as a key objective
to optimize, measured as the number of prediction flips (FPs)
between metamorphic variants of the same code snippets. The
other objectives are accuracy, model size (measured in MB),
and inference efficiency/sustainability (measured in FLOPS).

We conducted an empirical study on two tasks —clone
detection and vulnerability detection— using CodeBERT and
GraphCodeBERT. The results showed that MORPH consis-
tently produced more robust (up to 73% fewer PFs) and
efficient models (up to 38% fewer FLOPS) compared to
AVATAR with equal or higher accuracy and (4) similar model
size. Our ablation study confirm the importance and relevance
of all MORPH’s key feature on its overall performance.

Future research will further corroborate our findings’ gener-
alizability by considering more code-related tasks and LLMs
(such as CodeT5 [66]). We intend to design more metamorphic
transformations that preserve the naturalness of developers’
code and investigate their impact on model robustness. We
plan to integrate further compression techniques, such as quan-
tization [67] and pruning [68], to improve the sustainability
and robusteness of LLMs and of their students models.
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