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DIVERSE PROJECTION ENSEMBLES
FOR DISTRIBUTIONAL REINFORCEMENT LEARNING

Moritz A. Zanger Wendelin Böhmer Matthijs T. J. Spaan
Delft University of Technology, The Netherlands
{m.a.zanger, j.w.bohmer, m.t.j.spaan}@tudelft.nl

ABSTRACT

In contrast to classical reinforcement learning (RL), distributional RL algorithms
aim to learn the distribution of returns rather than their expected value. Since the
nature of the return distribution is generally unknown a priori or arbitrarily complex,
a common approach finds approximations within a set of representable, parametric
distributions. Typically, this involves a projection of the unconstrained distribution
onto the set of simplified distributions. We argue that this projection step entails
a strong inductive bias when coupled with neural networks and gradient descent,
thereby profoundly impacting the generalization behavior of learned models. In
order to facilitate reliable uncertainty estimation through diversity, we study the
combination of several different projections and representations in a distributional
ensemble. We establish theoretical properties of such projection ensembles and
derive an algorithm that uses ensemble disagreement, measured by the average
1-Wasserstein distance, as a bonus for deep exploration. We evaluate our algorithm
on the behavior suite benchmark and VizDoom and find that diverse projection
ensembles lead to significant performance improvements over existing methods on
a variety of tasks with the most pronounced gains in directed exploration problems.

1 INTRODUCTION

In reinforcement learning (RL), agents interact with an unknown environment, aiming to acquire poli-
cies that yield high cumulative rewards. In pursuit of this objective, agents must engage in a trade-off
between information gain and reward maximization, a dilemma known as the exploration/exploitation
trade-off. In the context of model-free RL, many algorithms designed to address this problem effi-
ciently rely on a form of the optimism in the face of uncertainty principle (Auer, 2002) where agents
act according to upper confidence bounds of value estimates. When using high-capacity function
approximators (e.g., neural networks) the derivation of such confidence bounds is non-trivial. One
popular approach fits an ensemble of approximations to a finite set of observations (Dietterich, 2000;
Lakshminarayanan et al., 2017). Based on the intuition that a set of parametric solutions explains
observed data equally well but provides diverse predictions for unobserved data, deep ensembles
have shown particularly successful at quantifying uncertainty for novel inputs. An exploring agent
may, for example, seek to reduce this kind of uncertainty by visiting unseen state-action regions suffi-
ciently often, until ensemble members converge to almost equal predictions. This notion of reducible
uncertainty is also known as epistemic uncertainty (Hora, 1996; Der Kiureghian and Ditlevsen, 2009).

A concept somewhat orthogonal to epistemic uncertainty is aleatoric uncertainty, that is the uncer-
tainty associated with the inherent irreducible randomness of an event. The latter is the subject of the
recently popular distributional branch of RL (Bellemare et al., 2017), which aims to approximate
the distribution of returns, as opposed to its mean. While distributional RL naturally lends itself to
risk-sensitive learning, several results show significant improvements over classical RL even when
distributions are used only to recover the mean (Bellemare et al., 2017; Dabney et al., 2018b; Rowland
et al., 2019; Yang et al., 2019; Nguyen-Tang et al., 2021). In general, the probability distribution
of the random return may be arbitrarily complex and difficult to represent, prompting many recent
advancements to rely on novel methods to project the unconstrained return distribution onto a set of
representable distributions.

In this paper, we study the combination of different projections and representations in an ensemble of
distributional value learners. In this setting, agents who seek to explore previously unseen states and
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actions can recognize such novel, out-of-distribution inputs by the diversity of member predictions:
through learning, these predictions align with labels in frequently visited states and actions, while
novel regions lead to disagreement. For this, the individual predictions for unseen inputs, hereafter
also referred to as generalization behavior, are required to be sufficiently diverse. We argue that the
projection step in distributional RL imposes an inductive bias that leads to such diverse generalization
behaviors when joined with neural function approximation. We thus deem distributional projections
instrumental to the construction of diverse ensembles, capable of effective separation of epistemic
and aleatoric uncertainty. To illustrate the effect of the projection step in the function approximation
setting, Fig. 1 shows a toy regression problem where the predictive distributions differ visibly for
inputs x not densely covered by training data depending on the choice of projection.
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Figure 1: Toy 1D-regression: Black dots are
training data with inputs x and labels y. Two
models have been trained to predict the distri-
bution p(y|x) using a categorical projection
(l.h.s.) and a quantile projection (r.h.s.). We
plot contour lines for the τ = [0.1, ..., 0.9]
quantiles of the predictive distributions over
the interval x ∈ [−1.5, 1.5].

Our main contributions are as follows:

(1) We introduce distributional projection ensembles
and analyze their properties theoretically. In our set-
ting, each model is iteratively updated toward the
projected mixture over ensemble return distributions.
We describe such use of distributional ensembles for-
mally through a projection mixture operator and es-
tablish several of its properties, including contractiv-
ity and residual approximation errors.

(2) When using shared distributional temporal differ-
ence (TD) targets, ensemble disagreement is biased
to represent distributional TD errors rather than errors
w.r.t. the true return distribution. To this end, we de-
rive a propagation scheme for epistemic uncertainty
that relates absolute deviations from the true value
function to distributional TD errors. This insight
allows us to devise an optimism-based exploration
algorithm that leverages a learned bonus for directed exploration.

(3) We implement these algorithmic elements in a deep RL setting and evaluate the resulting agent on
the behavior suite (Osband et al., 2020), a benchmark collection of 468 environments, and a set of
hard exploration problems in the visual domain VizDoom (Kempka et al., 2016). Our experiments
show that projection ensembles aid reliable uncertainty estimation and exploration, outperforming
baselines on most tasks, even when compared to significantly larger ensemble sizes.

2 RELATED WORK

Our work builds on a swiftly growing body of literature in distributional RL (Morimura et al., 2010;
Bellemare et al., 2017). In particular, several of our theoretical results rely on works by Rowland
et al. (2018) and Dabney et al. (2018b), who first provided contraction properties with categorical
and quantile projections in distributional RL respectively. Numerous recently proposed algorithms
(Dabney et al., 2018a; Rowland et al., 2019; Yang et al., 2019; Nguyen-Tang et al., 2021) are based
on novel representations and projections, typically with an increased capacity to represent complex
distributions. In contrast to our approach, however, these methods have no built-in functionality
to estimate epistemic uncertainty. To the best of our knowledge, our work is the first to study the
combination of different projection operators and representations in the context of distributional RL.

Several works, however, have applied ensemble techniques to distributional approaches. For example,
Clements et al. (2019), Eriksson et al. (2022), and Hoel et al. (2023) use ensembles of distributional
models to derive aleatoric and epistemic risk measures. Lindenberg et al. (2020) use an ensemble
of agents in independent environment instances based on categorical models to drive performance
and stability. Jiang et al. (2024) leverage quantile-based ensembles to drive exploration in contextual
MDPs, while Nikolov et al. (2019) combine a deterministic Q-ensemble with a distributional categor-
ical model for information-directed sampling. In a broader sense, the use of deep ensembles for value
estimation and exploration is widespread (Osband et al., 2016; 2019; Flennerhag et al., 2020; Fellows
et al., 2021; Chen et al., 2017). A notable distinction between such algorithms is whether ensemble
members are trained independently or whether joint TD backups are used. Our work falls into the
latter category which typically requires a propagation mechanism to estimate value uncertainty rather
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than uncertainty in TD targets (Janz et al., 2019; Fellows et al., 2021; Moerland et al., 2017). Our
proposed propagation scheme establishes a temporal consistency between distributional TD errors
and errors w.r.t. the true return distribution. In contrast to the related uncertainty Bellman equation
(O’Donoghue et al., 2018), our approach applies to the distributional setting and devises uncertainty
propagation from the perspective of error decomposition, rather than posterior variance.

3 BACKGROUND

Throughout this work, we consider a finite Markov Decision Process (MDP) (Bellman, 1957) of the
tuple (S,A,R, γ, P, µ) as the default problem framework, where S is the finite state space, A is the
finite action space,R : S×A →P(R) is the immediate reward distribution, γ ∈ [0, 1] is the discount
factor, P : S ×A →P(S) is the transition kernel, and µ : P(S) is the start state distribution. Here,
we write P(X ) to indicate the space of probability distributions defined over some space X . Given a
state St at time t, agents draw an action At from a stochastic policy π : S →P(A) to be presented
the random immediate reward Rt ∼ R(·|St, At) and the successor state St+1 ∼ P (·|St, At). Under
policy π and transition kernel P , the discounted return is a random variable given by the discounted
cumulative sum of random rewards according to Zπ(s, a) =

∑∞
t=0 γ

tRt, where S0 = s,A0 = a.
Note that our notation will generally use uppercase letters to indicate random variables. Furthermore,
we write D(Zπ(s, a)) ∈ P(R) to denote the distribution of the random variable Zπ(s,a), that is
a state-action-dependent distribution residing in the space of probability distributions P(R). For
explicit referrals, we label this distribution ηπ(s, a) = D(Zπ(s, a)). The expected value of Zπ(s, a)
is known as the state-action value Qπ(s, a) = E[Zπ(s, a)] and adheres to a temporal consistency
condition described by the Bellman equation (Bellman, 1957)

Qπ(s, a) = EP,π[R0 + γQπ(S1, A1)|S0 = s,A0 = a] , (1)
where EP,π indicates that successor states and actions are drawn from P and π respectively. Moreover,
the Bellman operator TπQ(s, a) := EP,π[R0 + γQ(S1, A1)|S0 = s,A0 = a] has the unique fixed
point Qπ(s, a).

3.1 DISTRIBUTIONAL REINFORCEMENT LEARNING

The distributional Bellman operator T π (Bellemare et al., 2017) is a probabilistic generalization
of Tπ and considers return distributions rather than their expectation. For notational convenience, we
first define Pπ to be the transition operator according to

PπZ(s, a) :
D
= Z(S1, A1), where S1 ∼ P (·|S0 = s,A0 = a), A1 ∼ π(·|S1), (2)

and D
= indicates an equality in distributional law (White, 1988). In this setting, the distributional

Bellman operator is defined as
T πZ(s, a) :

D
= R0 + γPπZ(s, a). (3)

Similar to the classical Bellman operator, the distributional counterpart T π : P(R)S×A −→
P(R)S×A has the unique fixed point T πZπ = Zπ, that is the true return distribution Zπ. In
the context of iterative algorithms, we will also refer to the identity T πZ(s, a) as a bootstrap of the
distribution Z(s, a). For the analysis of many properties of T π, it is helpful to define a distance
metric over the space of return distributions P(R)S×A. Here, the supremum p-Wasserstein metric
w̄p : P(R)S×A ×P(R)S×A −→ [0,∞] has proven particularly useful. In the univariate case, w̄p is
given by

w̄p(ν, ν
′) = sup

s,a∈S×A

(∫ 1

0
|F−1

ν(s,a)(τ)− F−1
ν′(s,a)(τ)|

pdτ
) 1

p , (4)

where p ∈ [1,∞), ν, ν′ are any two state-action return distributions, and Fν(s,a) : R −→ [0, 1]
is the cumulative distribution function (CDF) of ν(s, a). For notational brevity, we will use the
notation wp(ν(s, a), ν

′(s, a)) = wp(ν, ν
′)(s, a) for the p-Wasserstein distance between distributions

ν, ν′, evaluated at (s, a). One of the central insights of previous works in distributional RL is
that the operator T π is a γ-contraction in w̄p (Bellemare et al., 2017), meaning that we have
w̄p(T πν, T πν′) ≤ γw̄p(ν, ν

′), a property that allows us (in principle) to construct convergent value
iteration schemes in the distributional setting.

3.2 CATEGORICAL AND QUANTILE DISTRIBUTIONAL RL

In general, we can not represent arbitrary probability distributions in P(R) and instead resort to
parametric models capable of representing a subset F of P(R). Following Bellemare et al. (2023),
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we refer to F as a representation and define it to be the set of parametric distributions Pθ with
F = {Pθ ∈P(R) : θ ∈ Θ}. Furthermore, we define the projection operator Π : P(R) −→ F to
be a mapping from the space of probability distributions P(R) to the representation F . Recently,
two particular choices for representation and projection have proven highly performant in deep RL:
the categorical and quantile model.

The categorical representation (Bellemare et al., 2017; Rowland et al., 2018) assumes a weighted
mixture of K Dirac deltas δzk with support at evenly spaced locations zk ∈ [z1, ..., zK ]. The
categorical representation is then given by FC = {

∑K
k=1 θkδzk |θk ≥ 0,

∑K
k=1 θk = 1}. The

corresponding categorical projection operator ΠC maps a distribution ν from P(R) to a distribution
in FC by assigning probability mass inversely proportional to the distance to the closest zk in the
support [z1, ..., zK ] for every point in the support of ν. For example, for a single Dirac distribution δx
and assuming zk ≤ x ≤ zk+1 the projection is given by

ΠCδx = zk+1−x
zk+1−zk

δzk + x−zk
zk+1−zk

δzk+1
. (5)

The corner cases are defined such that ΠCδx = δz1 ∀x ≤ z1 and ΠCδx = δzK ∀x ≥ zK . It is
straightforward to extend the above projection step to finite mixtures of Dirac distributions through
ΠC

∑
k pkδzk =

∑
k pkΠCδzk . The full definition of the projection ΠC is deferred to Appendix A.5.

The quantile representation (Dabney et al., 2018b), like the categorical representation, comprises
mixture distributions of Dirac deltas δθk(z), but in contrast parametrizes their locations rather
than probabilities. This yields the representation FQ = {

∑K
k=1

1
K δθk(z)|θk ∈ R}. For some

distribution ν ∈P(R), the quantile projection ΠQν is a mixture of K Dirac delta distributions with
the particular choice of locations that minimizes the 1-Wasserstein distance between ν ∈P(R) and
the projection ΠQν ∈ FQ. The parametrization θk with minimal 1-Wasserstein distance is given by
the evaluation of the inverse of the CDF, F−1

ν , at midpoint quantiles τk = 2k−1
2K , k ∈ [1, ...,K], s.t.

θk = F−1
ν ( 2k−1

2K ). Equivalently, θk is the minimizer of the quantile regression loss (QR) (Koenker
and Hallock, 2001), which is more amenable to gradient-based optimization. The loss is given by

LQ(θk, ν) = EZ∼ν [ρτk(Z − θk)], (6)
where ρτ (u) = u(τ − 1{u≤0}(u)) is an error function that assigns asymmetric weight to over- or
underestimation errors and 1 denotes the indicator function.

4 EXPLORATION WITH DISTRIBUTIONAL PROJECTION ENSEMBLES

This paper is foremost concerned with leveraging ensembles with diverse generalization behaviors
induced by different representations and projection operators. To introduce the concept of distri-
butional projection ensembles and their properties, we describe the main components in a formal
setting that foregoes sample-based stochastic approximation and function approximation, before
moving to a more practical deep RL setting in Section 5. We begin by outlining the projection mixture
operator and its contraction properties. While this does not inform an exploration algorithm in its
own right, it lays a solid algorithmic foundation for the subsequently derived exploration frame-
work. Consider an ensemble E = {ηi(s, a) | i ∈ [1, ...,M ]} of M member distributions ηi(s, a),
each associated with a representation Fi and a projection operator Πi. In this setting, we assume
that each member distribution ηi(s, a) ∈ Fi is an element of the associated representation Fi

and the projection operator Πi : P(R) −→ Fi maps any distribution ν ∈ P(R) to Fi such
that Πiν ∈ Fi. The set of representable uniform mixture distributions over E is then given by
FE = {ηE(s, a) | ηE(s, a) = 1

M

∑
i ηi(s, a), ηi(s, a) ∈ Fi, i ∈ [1, ...,M ]}. We can now define a

central object in this paper, the projection mixture operator ΩM : P(R) −→ FE , as follows:

ΩMη(s, a) = 1
M

M∑
i=1

Πiη(s, a). (7)

Joining ΩM with the distributional Bellman operator T π yields the combined operator ΩMT π . Fig. 2
illustrates the intuition behind the operator ΩMT π: the distributional Bellman operator T π is applied
to a return distribution η (Fig. 2 a and b), then projects the resulting distribution with the individual
projection operators Πi onto M different representations ηi = ΠiT πη ∈ Fi (Fig. 2 c and d), and
finally recombines the ensemble members into a mixture model in FE (Fig. 2 e). In connection with
iterative algorithms, we are often interested in the contractivity of the combined operator ΩMT π to
establish convergence. Proposition 1 delineates conditions under which we can combine individual
projections Πi such that the resulting combined operator ΩMT π is a contraction mapping.
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a) η b) T πη c) ΠCT πη d) ΠQT πη e) ΩMT πη

Figure 2: Illustration of the projection mixture operator with quantile and categorical projections.

Proposition 1 Let Πi, i ∈ [1, ...,M ] be projection operators Πi : P(R) −→ Fi mapping from the
space of probability distributions P(R) to representations Fi and denote the projection mixture
operator ΩM : P(R) −→ FE as defined in Eq. 7. Furthermore, assume that for some p ∈ [1,∞)
each projection Πi is bounded in the p-Wasserstein metric in the sense that for any two return
distributions η, η′ we have wp

(
Πiη,Πiη

′)(s, a) ≤ ciwp

(
η, η′

)
(s, a) for a constant ci. Then, the

combined operator ΩMT π is bounded in the supremum p-Wasserstein distance w̄p by
w̄p(ΩMT πη,ΩMT πη′) ≤ c̄pγw̄p(η, η

′)

and is accordingly a contraction so long as c̄pγ < 1, where c̄p = (
∑M

i=1
1
M cpi )

1/p.

The proof is deferred to Appendix A. The contraction condition in Proposition 1 is naturally satisfied
for example if all projections Πi are non-expansions in a joint metric wp. It is, however, more
permissive in the sense that it only requires the joint modulus c̄p to be limited, allowing for expanding
operators in the ensemble for finite p. A contracting combined operator ΩMT π allows us to formulate
a simple convergent iteration scheme where in a sequence of steps k, ensemble members are moved
toward the projected mixture distribution according to η̂i,k+1 = ΠiT π η̂E,k, yielding the (k + 1)-th
mixture distribution η̂E,k+1 = 1

M

∑M
i=1 η̂i,k+1. This procedure can be compactly expressed by

η̂E,k+1 = ΩMT π η̂E,k, for k = [0, 1, 2, 3, ...] (8)
and has a unique fixed point which we denote ηπE = η̂E,∞.

4.1 FROM DISTRIBUTIONAL APPROXIMATIONS TO OPTIMISTIC BOUNDS

We proceed to describe how distributional projection ensembles can be leveraged for exploration. Our
setting considers exploration strategies based on the upper-confidence-bound (UCB) algorithm (Auer,
2002). In the context of model-free RL, provably efficient algorithms often rely on the construction of
a bound, that overestimates the true state-action value with high probability (Jin et al., 2018; 2020). In
other words, we are interested in finding an optimistic value Q̂+(s, a) such that Q̂+(s, a) ≥ Qπ(s, a)

with high probability. To this end, Proposition 2 relates an estimate Q̂(s, a) to the true value Qπ(s, a)
through a distributional error term.

Proposition 2 Let Q̂(s, a) = E[Ẑ(s, a)] be a state-action value estimate where Ẑ(s, a) ∼ η̂(s, a)
is a random variable distributed according to an estimate η̂(s, a) of the true state-action re-
turn distribution ηπ(s, a). Further, denote Qπ(s, a) = E[Zπ(s, a)] the true state-action, where
Zπ(s, a) ∼ ηπ(s, a). We have that Qπ(s, a) is bounded from above by

Q̂(s, a) + w1

(
η̂, ηπ

)
(s, a) ≥ Qπ(s, a) ∀(s, a) ∈ S ×A,

where w1 is the 1-Wasserstein distance metric.
The proof follows from the definition of the Wasserstein distance and is given in Appendix A.
Proposition 2 implies that, for a given distributional estimate η̂(s, a), we can construct an optimistic
upper bound on Qπ(s, a) by adding a bonus of the 1-Wasserstein distance between an estimate η̂(s, a)
and the true return distribution ηπ(s, a), which we define as bπ(s, a) = w1(η̂, η

π)(s, a) in the
following. By adopting an optimistic action-selection with this guaranteed upper bound on Qπ(s, a)
according to a = argmax

a∈ A
[Q̂(s, a) + bπ(s, a)], (9)

we maintain that the resulting policy inherits efficient exploration properties of known optimism-based
exploration methods. Note that in a convergent iteration scheme, we should expect the bonus bπ(s, a)
to almost vanish in the limit of infinite iterations. We thus refer to bπ(s, a) as a measure of the
epistemic uncertainty of the estimate η̂(s, a).

4.2 PROPAGATION OF EPISTEMIC UNCERTAINTY THROUGH DISTRIBUTIONAL ERRORS

By Proposition 2, an optimistic policy for efficient exploration can be derived from the distributional
error bπ(s, a). However, since we do not assume knowledge of the true return distribution ηπ(s, a),
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this error term requires estimation. The primary purpose of this section is to establish such an
estimator by propagating distributional TD errors. This is necessary because the use of TD backups
prohibits a consistent uncertainty quantification in values (described extensively in the Bayesian
setting for example by Fellows et al. 2021). The issue is particularly easy to see by considering
the backup in a single (s, a) tuple: even if every estimate η̂i(s, a) in an ensemble fits the backup
T π η̂E(s, a) accurately, this does not imply η̂i(s, a) = ηπ(s, a) as the TD backup may have been
incorrect. Even a well-behaved ensemble (in the sense that its disagreement reliably measures
prediction errors) in this case quantifies errors w.r.t. the bootstrapped target ΩMT π η̂E(s, a), rather
than the true return distribution ηπ(s, a).

To establish a bonus estimate that allows for optimistic action selection in the spirit of Proposition 2,
we now derive a propagation scheme for epistemic uncertainty in the distributional setting. More
specifically, we find that an upper bound on the bonus bπ(s, a) satisfies a temporal consistency
condition, similar to the Bellman equations, that relates the total distributional error w1(η̂, η

π
E)(s, a)

to a one-step error w1(η̂,ΩMT π η̂)(s, a) that is more amenable to estimation.

Theorem 3 Let η̂(s, a) ∈ P(R) be an estimate of the true return distribution ηπ(s, a) ∈ P(R),
and denote the projection mixture operator ΩM : P(R) −→ FE with members Πi and bounding
moduli ci and c̄p as defined in Proposition 1. Furthermore, assume ΩMT π is a contraction mapping
with fixed point ηπE . We then have for all (s, a) ∈ S ×A

w1

(
η̂, ηπE

)
(s, a) ≤ w1

(
η̂,ΩMT π η̂

)
(s, a) + c̄1 γ E

[
w1

(
η̂, ηπE

)
(S1, A1)

∣∣S0 = s,A0 = a
]
,

where S1 ∼ P (·|S0 = s,A0 = a) and A1 ∼ π(·|S1).

The proof is given in Appendix A and exploits the triangle inequality property of the Wasserstein
distance. It may be worth noting that Theorem 3 is a general result that is not restricted to the use
of projection ensembles. It is, however, a natural complement to the iteration described in Eq. 8 in
that it allows us to reconcile the benefits of bootstrapping diverse ensemble mixtures with optimistic
action selection for directed exploration. To this end, we devise a separate iteration procedure aimed
at finding an approximate upper bound on w1(η̂, η

π
E)(s, a). Denoting the k-th iterate of the bonus

estimate b̂k(s, a), we have by Theorem 3 that the iteration

b̂k+1(s, a) = w1

(
η̂,ΩMT π η̂

)
(s, a) + c̄1γEP,π

[
b̂k(S1, A1)

∣∣S0 = s,A0 = a
]
∀(s, a) ∈ S ×A ,

converges to an upper bound on w1(η̂, η
π
E)(s, a)

1. Notably, this iteration requires only a local error
estimate w1

(
η̂,ΩMT π η̂

)
(s, a) and is more amenable to estimation through our ensemble.

We conclude this section with the remark that the use of projection ensembles may clash with the
intuition that epistemic uncertainty should vanish in convergence. This is because each member
inherits irreducible approximation errors from the projections Πi. In Appendix A, we provide general
bounds for these errors and show that residual errors can be controlled through the number of atoms K
in the specific example of an ensemble based on the quantile and categorical projections.

5 DEEP DISTRIBUTIONAL RL WITH PROJECTION ENSEMBLES

Section 4 has introduced the concept of projection ensembles in a formal setting. In this section,
we aim to transcribe the previously derived algorithmic components into a deep RL algorithm
that departs from several of the previous assumptions. Specifically, this includes 1) control with
a greedy policy, 2) sample-based stochastic approximation, 3) nonlinear function approximation,
and 4) gradient-based optimization. While this sets the following section apart from the theoretical
setting considered in Section 4, we hypothesize that diverse projection ensembles bring to bear
several advantages in this scenario. The underlying idea is that distributional projections and the
functional constraints they entail offer an effective tool to impose diverse generalization behaviors on
an ensemble, yielding a more reliable tool for out-of-distribution sample detection. In particular, we
implement the above-described algorithm with a neural ensemble comprising the models of the two
popular deep RL algorithms quantile regression deep Q network (QR-DQN) (Dabney et al., 2018b)
and C51 (Bellemare et al., 2017).

1To see the convergence, note that the sequence is equivalent to an iteration with Tπ in an MDP with the
deterministic immediate reward w1

(
η̂,ΩMT π η̂

)
(s, a).
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5.1 DEEP QUANTILE AND CATEGORICAL PROJECTION ENSEMBLES FOR EXPLORATION

In this section, we propose Projection Ensemble DQN (PE-DQN), a deep RL algorithm that combines
the quantile and categorical projections (Dabney et al., 2018b; Bellemare et al., 2017) into a diverse
ensemble to drive exploration and learning stability. Our parametric model consists of the mixture
distribution ηE,θ parametrized by θ. We construct ηE,θ as an equal mixture between a quantile and
a categorical representation, each parametrized through a NN with K output logits where we use
the notation θik to mean the k-th logit of the network parametrized by the parameters θi of the i-th
model in the ensemble. We consider a sample transition (s, a, r, s′, a′) where a′ is chosen greedily
according to EZ∼ηE,θ(s′,a′)[Z]. Dependencies on (s, a) are hereafter dropped for conciseness by
writing θik = θik(s, a) and θ′ik = θik(s

′, a′).

Projection losses. Next, we assume that bootstrapped return distributions are generated by a set
of delayed parameters θ̃, as is common (Mnih et al., 2015). The stochastic (sampled) version of the
distributional Bellman operator T̂ π , applied to the target ensemble’s mixture distribution ηE,θ̃ yields

T̂ πηE,θ̃ = 1
2

M=2∑
i=1

K∑
k=1

p(θ̃′ik) δr+γz(θ̃′
ik)

. (10)

Instead of applying the projection mixture ΩM analytically, as done in Section 4, the parametric
estimates ηE,θ are moved incrementally towards a projected target distribution through gradient
descent on a loss function. In the quantile representation, we augment the classical quantile regression
loss (Koenker and Hallock, 2001) with an importance-sampling ratio Kp(θ̃′ij) to correct for the non-
uniformity of atoms from the bootstrapped distribution T̂ πηE,θ̃. For a set of fixed quantiles τk, the
loss L1 is given by

L1

(
ηθ1 ,ΠQT̂ πηE,θ̃

)
=

M=2∑
i=1

K∑
k,j=1

Kp(θ̃′ij)
(
ρτk

(
r + γz(θ̃′ij)− θ1k

))
. (11)

The categorical model minimizes the Kullback-Leibler (KL) divergence between the projected
bootstrap distribution ΠC T̂ πηE,θ̃ and an estimate ηθ2 . The corresponding loss is given by

L2

(
ηθ2 ,ΠC T̂ πηE,θ̃

)
= DKL

(
ΠC T̂ πηE,θ̃∥ηθ2

)
. (12)

As T̂ πηE,θ̃ is a mixture of Dirac distributions, the definition of the projection ΠC according to Eq. 5
can be applied straightforwardly to obtain the projected bootstrap distribution ΠC T̂ πηE,θ̃.

Uncertainty Propagation. We aim to estimate a state-action dependent bonus bϕ(s, a) in the
spirit of Theorem 3 and the subsequently derived iteration with a set of parameters ϕ. For this, we
estimate the local error estimate w1(ηE,θ,ΩM T̂ πηE,θ)(s, a) as the average ensemble disagreement
wavg(s, a) = 1/(M(M − 1))

∑M
i,j=1 w1(ηθi , ηθj )(s, a). The bonus bϕ(s, a) can then be learned in

the same fashion as a regular value function with the local uncertainty estimate wavg(s, a) as an
intrinsic reward. This yields the exploratory action-selection rule

aϵ = argmax
a∈A

(
EZ∼ηE,θ(s,a)[Z] + β bϕ(s, a)

)
, (13)

where β is a hyperparameter to control the policy’s drive towards exploratory actions. Further details
on our implementation and an illustration of the difference between local error estimates and bonus
estimates in practice are given in Appendix B.2 and Appendix B.3.

6 EXPERIMENTAL RESULTS

Our experiments are designed to provide us with a better understanding of how PE-DQN operates, in
comparison to related algorithms as well as in relation to its algorithmic elements. To this end, we
aimed to keep codebases and hyperparameters between all implementations equal up to algorithm-
specific parameters, which we optimized with a grid search on a selected subsets of problems. Further
details regarding the experimental design and implementations are provided in Appendix B.

We outline our choice of baselines briefly: Bootstrapped DQN with prior functions (BDQN+P)
(Osband et al., 2019) approximates posterior sampling of a parametric value function by combining
statistical bootstrapping with additive prior functions in an ensemble of DQN agents. Information-
directed sampling (IDS-C51) (Nikolov et al., 2019) builds on the BDQN+P architecture but acts
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according to an information-gain ratio for which Nikolov et al. (2019) estimate aleatoric uncertainty
(noise) with the categorical C51 model. In contrast, Decaying Left-Truncated Variance (DLTV)
QR-DQN (Mavrin et al., 2019) uses a distributional value approximation based on the quantile
representation and follows a decaying exploration bonus of the left-truncated variance.

6.1 DO DIFFERENT PROJECTIONS LEAD TO DIFFERENT GENERALIZATION BEHAVIOR?

Mean Var Skew Kurt Statistic

0.5

1.0

#
st

at
es

(i
n

1e
3)

@
50

0
E

p.

Categorical
Quantile

Figure 3: Deep-sea exploration with dif-
ferent statistics. Higher means more ex-
ploration. Bars represent medians and in-
terquartile ranges of 30 seeds.

First, we examine empirically the influence of the projec-
tion step in deep distributional RL on generalization be-
haviors. For this, we probe the influence of the quantile
and categorical projections on generalization through an
experiment that evaluates exploration in a reward-free
setting. Specifically, we equip agents with an action-
selection rule that maximizes a particular statistic S[Z]
of the predictive distribution η̂(s, a) according to

a = argmax
a∈A

(
S[Z]) , Z ∼ η̂(s, a).

The underlying idea is that this selection rule leads to
exploration of novel state-action regions only if high
values of the statistic are correlated with high epistemic uncertainty. For example, if we choose a
quantile representation with S[Z] to be the variance of the distribution, we recover a basic form of
the exploration algorithm DLTV-QR (Mavrin et al., 2019). Fig. 3 shows the results of this study
for the first four statistical moments on the deep exploration benchmark deep sea with size 50.
Except for the mean (the greedy policy), the choice of projection influences significantly whether the
statistic-maximizing policy leads to more exploration, implying that the generalization behaviour of
the 2nd to 4th moment of the predictive distributions is shaped distinctly by the employed projection.

6.2 THE BEHAVIOUR SUITE

In order to assess the learning process of agents in various aspects on a wide range of tasks, we
evaluate PE-DQN on the behavior suite (bsuite) (Osband et al., 2020), a battery of benchmark
problems constructed to assess key properties of RL algorithms. The suite consists of 23 tasks with
up to 22 variations in size or seed, totaling 468 environments.

Comparative evaluation. Fig. 4 (a) shows the results of the entire bsuite experiment, summarized
in seven core capabilities. These capability scores are computed as proposed by Osband et al. (2020)
and follow a handcrafted scoring function per environment. For example, exploration capability
is scored by the average regret in the sparse-reward environments deep sea, stochastic deep sea,
and cartpole swingup. The full set of results is provided in Appendix B. Perhaps unsurprisingly,
PE-DQN has its strongest performance in the exploration category but we find that it improves upon
baselines in several more categories. Note here that PE-DQN uses substantially fewer models than
the baselines, with a total of 4 distributional models compared to the 20 DQN models used in the
ensembles of both BDQN+P and IDS, where the latter requires an additional C51 model.

6.3 THE DEEP-SEA ENVIRONMENT AND ABLATIONS

Deep sea is a hard exploration problem in the behavior suite and has recently gained popularity as an
exploration benchmark (Osband et al., 2019; Janz et al., 2019; Flennerhag et al., 2020). It is a sparse
reward environment where agents can reach the only rewarding state at the bottom right of an N ×N
grid through a unique sequence of actions in an exponentially growing trajectory space. We ran an
additional experiment on deep sea with grid sizes up to 100; double the maximal size in the behavior
suite. Fig. 4 (b) shows a summary of this experiment where we evaluated episodic regret, that is the
number of non-rewarding episodes with a maximum budget of 10000 episodes. PE-DQN scales more
gracefully to larger sizes of the problem than the baselines, reducing the median regret by roughly half.
The r.h.s. plot in Fig. 4 (b) shows the results of ablation studies designed to provide a more nuanced
view of PE-DQN’s performance; the baselines labeled PE-DQN[QR/QR] and PE-DQN[C51/C51]
use the same bonus estimation step as PE-DQN except that ensemble members consist of equivalent
models with the same projections and representations. Conversely, PE-DQN [Ind.] uses PE-DQN’s
diverse projection ensemble and employs an optimistic action-selection directly with the ensemble
disagreement wavg(s, a) but trains models independently and accordingly does not make use of an
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Figure 5: (a) Visual observation in the VizDoom environment (Kempka et al., 2016). (b) Mean
learning curves in different variations of the MyWayHome VizDoom environment. Shaded regions
are 90% Student’s t confidence intervals from 10 seeds.

uncertainty propagation scheme in the spirit of Theorem 3. Both components lead to a pronounced
difference in exploration capability and rendered indispensable to PE-DQN’s overall performance.

6.4 THE VIZDOOM ENVIRONMENT

We investigate PE-DQN’s behavior in a high-dimensional visual domain. The VizDoom environment
MyWayHome (Kempka et al., 2016) tasks agents with finding a (rewarding) object by navigating in
a maze-like map with ego-perspective pixel observations as seen in Fig. 5 (a). Following work by
Pathak et al. (2017), we run three variations of this experiment where the reward sparsity is increased
by spawning the player further away from the goal object. Learning curves for all algorithms are
shown in Fig. 5 (b). Among the tested algorithms, only PE-DQN finds the object across all 10 seeds
in all environments, indicating particularly reliable novelty detection. Interestingly, the sparse domain
proved harder to baseline algorithms which we attribute to the “forkedness” of the associated map
(see Appendix B). This result moreover shows that diverse projection ensembles scale gracefully to
high-dimensional domains while using significantly fewer models than the ensemble-based baselines.

7 CONCLUSION

In this work, we have introduced projection ensembles for distributional RL, a method combining
models based on different parametric representations and projections of return distributions. We
provided a theoretical analysis that establishes convergence conditions and bounds on residual
approximation errors that apply to general compositions of such projection ensembles. Furthermore,
we introduced a general propagation method that reconciles one-step distributional TD errors with
optimism-based exploration. PE-DQN, a deep RL algorithm, empirically demonstrates the efficacy
of diverse projection ensembles on exploration tasks and showed performance improvements on
a wide range of tasks. We believe our work opens up a number of promising avenues for future
research. For example, we have only considered the use of uniform mixtures over distributional
ensembles in this work. A continuation of this approach may aim to use a diverse collection of
models less conservatively, aiming to exploit the strengths of particular models in specific regions of
the state-action space.
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A APPENDIX

This section provides proofs for the theoretical claims and establishes further results on the residual
approximation error incurred by our method.

A.1 PROOF OF PROPOSITION 1

Before stating supporting lemmas and proofs of the results in Section 4, we recall several basic prop-
erties of the p-Wasserstein distances which we will find useful in the subsequent proofs. Derivations
of these properties can for example be found in an overview by Mariucci and Reiß (2018) .

P.1 The p-Wasserstein distances satisfy the triangle inequality, that is
wp(X,Y ) ≤ wp(X,Z) + wp(Z, Y ) .

P.2 For random variables X and Y and an auxiliary variable Z independent of X and Y , the
p-Wasserstein metric satisfies the inequality

wp(X + Z, Y + Z) ≤ wp(X,Y ) .

P.3 For a real-valued scalar a ∈ R, we have
wp(aX, aY ) = |a|wp(X,Y ) .

Lemma 4 Let ν =
∑M

i=1
1
M νi, ν′ =

∑M
i=1

1
M ν′i be two mixture distributions ν, ν′ ∈ P(R).

Furthermore denote wp(ν, ν
′) the p-Wasserstein metric between ν and ν′. Then wp

p satisfies

wp
p(ν, ν

′) ≤ 1
M

M∑
i=1

wp
p(νi, ν

′
i).

Proof. The Wasserstein distance in its general form is expressed in terms of couplings between the
probability measures ν and ν′ according to

wp(ν, ν
′) = inf

µ∈Γ(ν,ν′)
E(x,y)∼µ[|x− y|p]1/p,

where Γ(ν, ν′) is the set of all couplings between ν and ν′, i.e. joint distributions on P(R2) with
marginals ν and ν′. Now suppose for each i we have a coupling µi(x, y) ∈ Γ(νi, ν

′
i) such that

E(x,y)∼µi
[|x− y|p] = inf

µ∈Γ(νi,ν′
i)
E(x,y)∼µ[|x− y|p] = wp

p(νi, ν
′
i).

Since by definition µi(x, y) is a coupling of νi and ν′i, the mixture of couplings µ̄(x, y) =∑M
i=1

1
M µi(x, y) is then a valid coupling of ν and ν′, as

∫
µ̄(x, y)dy = ν(x) and

∫
µ̄(x′, y)dx′ =

ν′(x). We can thus write
wp

p(ν, ν
′) = inf

µ∈Γ(ν,ν′)
E(x,y)∼µ[|x− y|p]

≤ E(x,y)∼µ̄[|x− y|p]

=
M∑
i=1

1
ME(x,y)∼µi

[|x− y|p]

=
M∑
i=1

1
Mwp

p(νi, ν
′
i) .

Proposition 1 Let Πi, i ∈ [1, ...,M ] be projection operators Πi : P(R) −→ Fi mapping from the
space of probability distributions P(R) to representations Fi and denote the projection mixture
operator ΩM : P(R) −→ FE as defined in Eq. 7. Furthermore, assume that for some p ∈ [1,∞)
each projection Πi is bounded in the p-Wasserstein metric in the sense that for any two return
distributions η, η′ we have wp

(
Πiη,Πiη

′)(s, a) ≤ ciwp

(
η, η′

)
(s, a) for a constant ci. Then, the

combined operator ΩMT π is bounded in the supremum p-Wasserstein distance w̄p by
w̄p(ΩMT πη,ΩMT πη′) ≤ c̄pγw̄p(η, η

′)

and is accordingly a contraction so long as c̄pγ < 1, where c̄p = (
∑M

i=1
1
M cpi )

1/p.
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Proof. Due to the assumption of the proposition, we have wp(Πiν,Πiν
′) ≤ ciwp(ν, ν

′). With
Lemma 4 and the γ-contractivity of T π , it follows that

w̄p
p(ΩMT πη,ΩMT πη′) = w̄p

p(
M∑
i=1

1
MΠiT πη,

M∑
i=1

1
MΠiT πη′)

≤ 1
M

M∑
i=1

w̄p
p(ΠiT πη,ΠiT πη′)

≤ 1
M

M∑
i=1

cpi w̄
p
p(T πη, T πη′)

≤ 1
M

M∑
i=1

cpi γ
pw̄p

p(η, η
′)

= γpw̄p
p(η, η

′) 1
M

M∑
i=1

cpi .

The state then finally follows by taking the p-th root, yielding the joint modulus c̄p = (
∑M

i=1
1
M cpi )

1/p.

A.2 PROOF OF PROPOSITION 2

Proposition 2 Let Q̂(s, a) = E[Ẑ(s, a)] be a state-action value estimate where Ẑ(s, a) ∼ η̂(s, a)
is a random variable distributed according to an estimate η̂(s, a) of the true state-action re-
turn distribution ηπ(s, a). Further, denote Qπ(s, a) = E[Zπ(s, a)] the true state-action, where
Zπ(s, a) ∼ ηπ(s, a). We have that Qπ(s, a) is bounded from above by

Q̂(s, a) + w1

(
η̂, ηπ

)
(s, a) ≥ Qπ(s, a) ∀(s, a) ∈ S ×A,

where w1 is the 1-Wasserstein distance metric.

Proof. We begin by stating a property that relates the expected value E[X] to the CDF of X under
the condition that the expectation E[X] is well-defined and finite. The property is an extension to
the property of the expectation of nonnegative variables which itself is a consequence of Fubini’s
Theorem (see for example Ibe 2014 for this). Let X ∼ ν and write Fν for the CDF of ν, then:

E[X] =

∫ ∞

0

(
1− Fν(x)

)
dx−

∫ 0

−∞
Fν(x)dx .

Now, suppose an auxiliary variable X ′ is distributed according to the law ν′. It then follows that∣∣E[X]− E[X ′]
∣∣ = ∣∣∣ ∫ ∞

0

(
Fν′(x)− Fν(x)

)
dx−

∫ 0

−∞

(
Fν − Fν′(x)

)
dx

∣∣∣
=

∣∣∣ ∫ ∞

−∞
Fν′(x)− Fν(x)dx

∣∣∣
≤

∫ ∞

−∞

∣∣Fν′(x)− Fν(x)
∣∣dx

= w1(ν, ν
′),

where the last step was obtained by a change of variables in the definition of the 1-Wasserstein
distance:

w1(ν, ν
′) =

∫ 1

0

|F−1
ν (τ)− F−1

ν′ (τ)|dτ

=

∫
R
|Fν(x)− Fν′(x)|dx.

The result of Proposition 2 is obtained by rearranging.

A.3 PROOF OF THEOREM 3

Before stating the proof of Theorem 3, we formalize the notion of a pushforward distribution which
will be useful in a more explicit description of the distributional Bellman operator T π . Our notation
here follows the detailed exposition by Bellemare et al. (2023) .
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Definition 5 For a function f : R −→ R and a random variable Z with distribution ν = D(Z),
ν ∈P(R), the pushforward distribution f#ν ∈P(R) of ν through f is defined as

f#ν(B) = ν(f−1(B)), ∀B ∈ B(R) ,
where B are the Borel subsets of R.

Equivalently to Definition 5, we may write f#ν = D(f(Z)). By defining a bootstrap transformation
br,γ : R −→ R with br,γ = r+γx, we can state a more explicit definition of the distributional Bellman
operator T π according to Definition 6.

Definition 6 [Distributional Bellman Operator (Bellemare et al., 2017) ] The distributional Bellman
operator T π : P(R)S×A −→P(R)S×A is given by(

T πη
)
(s, a) = E

[
(bR0,γ

)
#
η(S1, A1)

∣∣S0 = s,A0 = a
]
,

where S1 ∼ P (·|S0 = s,A0 = a), A1 ∼ π(·|S1).

Lemma 7 Let (br,γ)#ν ∈ P(R) be the pushforward distribution of ν ∈ P(R) through
br,γ : R −→ R. Then we have for two distributions ν, ν′ and the 1-Wasserstein distance w1 that

w1

(
(br,γ)#ν, (br,γ)#ν

′) = γw1(ν, ν
′).

Proof. The proof follows from the definition of the 1-Wasserstein distance. Let Z ∼ ν and Z ′ ∼ ν′

be two independent random variables, then
w1

(
(br,γ)#ν, (br,γ)#ν

′) = w1

(
D(r + γZ),D(r + γZ ′)

)
=

∫ 1

0

∣∣F−1
(b0,γ)#ν(τ)− F−1

(b0,γ)#ν′(τ)
∣∣dτ

= |γ|w1(ν, ν
′) .

Theorem 3 Let η̂(s, a) ∈ P(R) be an estimate of the true return distribution ηπ(s, a) ∈ P(R),
and denote the projection mixture operator ΩM : P(R) −→ FE with members Πi and bounding
moduli ci and c̄p as defined in Proposition 1. Furthermore, assume ΩMT π is a contraction mapping
with fixed point ηπE . We then have for all (s, a) ∈ S ×A

w1

(
η̂, ηπE

)
(s, a) ≤ w1

(
η̂,ΩMT π η̂

)
(s, a) + c̄1 γ E

[
w1

(
η̂, ηπE

)
(S1, A1)

∣∣S0 = s,A0 = a
]
,

where S1 ∼ P (·|S0 = s,A0 = a) and A1 ∼ π(·|S1).

Proof. Since ηπE(s, a) is the fixed point of the combined operator ΩMT π, we have that
ΩMT πηπE(s, a) = ηπE(s, a). From the triangle inequality it follows that

w1

(
η̂, ηπE

)
(s, a) ≤ w1

(
η̂,ΩMT π η̂

)
(s, a) + w1

(
ΩMT π η̂,ΩMT πηπE

)
(s, a). (14)

Furthermore, for the second term on the r.h.s. in Eq. 14 the following holds:

w1

(
ΩMT π η̂,ΩMT πηπE

)
(s, a) = w1

(
1
M

M∑
i=1

ΠiT π η̂, 1
M

M∑
i=1

ΠiT πηπE
)
(s, a)

≤ 1
M

M∑
i=1

ciw1

(
T π η̂, T πηπE

)
(s, a)

= c̄1w1

(
T π η̂, T πηπE

)
(s, a).

Under slight abuse of the assumptions in Section 3, we here consider an immediate reward distribution
with finite support on R to simplify the following derivation. In this case, we can write out the
expectation in Definition 6 as(
T π η̂

)
(s, a) =

∑
r∈R

∑
s′∈S

∑
a′∈A

Pr(R0 = r,A1 = a′, S1 = s′|S0 = s,A0 = a)
(
(br,γ

)
#
η̂(s′, a′)

)
,

where Pr(·) is the joint probability distribution given by the transition kernel P (·|s, a), the immediate
reward distributionR(·|s, a), and the policy π(·|S′). Thus, by Lemma 4 and Lemma 7 it follows that

c̄1w1

(
T π η̂, T πηπE

)
(s, a)

≤ c̄1E
[
w1

(
(bR0,γ

)
#
η̂(S1, A1), (bR0,γ

)
#
ηπE(S1, A1)

)∣∣S0 = s,A0 = a
]

= c̄1γE
[
w1

(
η̂, ηπE

)
(S1, A1)

∣∣S0 = s,A0 = a
]
,

where S1 ∼ P (·|S0 = s,A0 = a) and A1 ∼ π(·|S′). The proof is completed by rearranging.
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A.4 RESIDUAL EPISTEMIC UNCERTAINTY

Due to a limitation to finite-dimensional representations and the use of varying projections, our
algorithm incurs residual approximation errors which may not vanish even in convergence. In the
context of epistemic uncertainty quantification, this is unfortunate as it can frustrate exploration
or lead to overconfident predictions. Specifically, the undesired properties are twofold: 1) Even in
convergence, the fixed point ηπE does not equal the true return distribution (bias). 2) Even in the fixed
point ηπE , the ensemble disagreement wavg does not vanish. Often, however, we may be able to upper
bound and control the error incurred due to the projections Πi. In this case, Propositions 8 and 9
provide upper bounds on both types of errors as a function of bounded projection errors.

Proposition 8 Let ΩM be a projection mixture operator with individual projections Πi defined as
in Eq. (7) . Further, assume each projection Πi is upper bounded by wp(Πiν, ν) ≤ di for some
p ∈ [1,∞). Then, the p-Wasserstein distance between the fixed point ηπE(s, a) = ΩMT πηπE(s, a)
and the true return distribution ηπ(s, a) = T πηπ(s, a) satisfies

wp(η
π
E , η

π)(s, a) ≤ d̄p

1−c̄pγ
∀(s, a) ∈ S ×A, where d̄p = (

M∑
i=1

1
M dpi )

1/p .

Proof. To show the desired property, we will make use of Proposition 1 and Lemma 4. We omitted
the dependency on (s, a) in this section for brevity. It follows then from the triangle inequality that

wp(η
π
E , η

π) ≤ wp(ΩMT πηπE ,ΩMηπ) + wp(ΩMηπ, ηπ)

= wp(ΩMT πηπE ,ΩMT πηπ) + wp(ΩMηπ, ηπ)

≤ c̄pγwp(η
π
E , η

π) + wp(
1
M

M∑
i=1

Πiη
π, ηπ)

≤ c̄pγwp(η
π
E , η

π) + ( 1
M

M∑
i=1

wp
p(Πiη

π, ηπ))1/p .

Per the assumption of Proposition 8 and by rearranging we obtain the desired result.

Proposition 9 Let wavg be the average ensemble disagreement given by 1
M(M−1)

∑M
i,j=1 wp(η̂i, η̂j)

and assume individual projections Πi are bounded by wp(Πiν, ν) ≤ di. For an ensemble E whose
mixture distribution equals exactly the fixed point ηπE(s, a) = ΩMT πηπE(s, a), the average ensemble
disagreement wavg satisfies the inequality

wavg(s, a) ≤ 2M
M−1 d̄ ∀(s, a) ∈ S ×A, where d̄ = 1

M

M∑
i=1

di .

Proof. In the fixed point ηπE(s, a) = ΩMT πηπE(s, a), the distributional error estimated by wavg(s, a)

does not vanish, unlike the ground truth error w1

(
ηπE ,ΩMT πηπE

)
(s, a) = 0. The shown property

upper bounds this mismatch and is a direct consequence of the assumption wp(Πiν, ν) ≤ di which
postulates an upper bound on the error introduced by the projection Πi in terms of the p-Wasserstein
distance. The average disagreement is given by

wavg(s, a) =
1

M(M−1)

M∑
i,j=1

wp(η̂i, η̂j)(s, a) .

The proof is given by applying the triangle inequality and the assumption of the proposition with
wp(η̂i, η̂j) = wp(Πiη

π
E ,Πjη

π
E)

≤ wp(Πiη
π
E , η

π
E) + wp(η

π
E ,Πjη

π
E)

≤ di + dj .

Plugging in and rearranging yields the desired result.

Lemma 10 [Projection error of the categorical projection (Rowland et al., 2018) ] For any distribu-
tion ν ∈P([zmin, zmax]) with support on the interval [zmin, zmax] and a categorical projection as
defined in Eq. (5) with K atoms zk ∈ [z1, ..., zK ] s.t. z1 ≥ Zmin and zK ≤ zmax, the error incurred
by the projection ΠC is upper bounded in the 1-Wasserstein distance by the identity

w1(ΠCν, ν) ≤
[

sup
1≤k≤K

(zk+1 − zk)
]
.
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Proof (restated). The proof uses the duality between the 1-Wasserstein distance and the 1-Cramér
distance stating

l1(ν, ν
′) =

∫
R
|Fν(x)− Fν′(x)|dx =

∫ 1

0

|F−1
ν (τ)− F−1

ν′ (τ)|dτ = w1(ν, ν
′) ,

and can be obtained by a change of variables. The l1 formulation simplifies the analysis of the
categorical projection, yielding

w1(ΠCν, ν) =

∫
R
|FΠCν(x)− Fν(x)|dx

≤
K−1∑
k=1

(zk+1 − zk)|FΠCν(zk)− Fν(zk)|

≤
K−1∑
k=1

(zk+1 − zk)|Fν(zk+1)− Fν(zk)|

≤ [ sup
1≤k≤K

(zk+1 − zk)]
K−1∑
k=1

|Fν(zk+1)− Fν(zk)|

≤ [ sup
1≤k≤K

(zk+1 − zk)] .

Lemma 11 [Projection error of the quantile projection (Dabney et al., 2018b) ] For any distribu-
tion ν ∈P([zmin, zmax]) with support on the interval [zmin, zmax] and a quantile projection defined
according to Eq. (6) with K equally weighted locations θk ∈ [θ1, ..., θK ], the error incurred by the
projection ΠQ is bounded in the 1-Wasserstein distance by the identity

w1(ΠQν, ν) ≤
zmax − zmin

K
.

Proof (restated). The projection ΠQ is given by

ΠQν = 1
K

∑K
k=1δF−1

ν (τk)
, where τk = 2k−1

2K .

The desired identity w1(ΠQν, ν) is accordingly given by the continuous integral

w1(ΠQν, ν) =

∫ 1

0

|F−1
ΠQν(τ)− F−1

ν (τ)|dτ ,

and can be rewritten in terms of a sum of piecewise expectations

w1(ΠQν, ν) =
K∑

k=1

1
KEX∼ν

[
|X − F−1

ν ( 2k−1
2K )|

∣∣F−1
ν (k−1

K ) < X ≤ F−1
ν ( k

K )
]
.

From this, it follows that
w1(ΠQν, ν) ≤ 1

K (F−1
ν (1)− F−1

ν (0))

≤ zmax − zmin

K
.

Corollary 12 Let ηπE(s, a) be the fixed point return distribution for an ensemble of the categorical
and quantile projections with the mixture operator ΩMη(s, a) = 1/2ΠQη(s, a) + 1/2ΠCη(s, a).
Furthermore, suppose the return distribution ηπE(s, a) has bounded support on the interval (Rmax −
Rmin)/(1− γ) where Rmax and Rmin denote the maximum and minimum immediate reward of the
MDP. The average ensemble disagreement wavg(s, a) is then bounded by

wavg(s, a) ≤
4(Rmax −Rmin)

(1− γ)K
.

Proof. The result follows straightforwardly from Proposition 9 and Lemmas 10, 11.
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Table 1: Hyperparameter search space for bsuite

Hyperparameter Values

Neural net architecture [[64, 64], [128, 128], [512]]
Learning rate [5× 10−5, 1× 10−4, 5× 10−4, 1× 10−3]
Prior function scale [0.0, 5.0, 20.0]
Heads K [51, 101]
Initial bonus β [0.5, 5.0, 50.0]

Table 2: Hyperparameter search space for VizDoom

Hyperparameter Values

Learning rate [1.25× 10−5, 2.5× 10−5, 3.75× 10−5,
5× 10−5, 6.25× 10−5, 7.5× 10−5]

Prior function scale [1.0, 3.0, 5.0]
Initial bonus β [0.05, 0.1, 0.5, 1.0, 5.0]

A.5 THE CATEGORICAL PROJECTION

The full definition of the categorical (or also Cramér) projection as stated by Rowland et al. (2018) is
given below.

Definition 13 [Categorical projection (Rowland et al., 2018) ] For a set of fixed locations z1, ..., zK
where z1 < z2 < ... < zK , let hzk : R −→ [0, 1] be the hat function centered around zk for
k = 1, ...,K given by

hzk(x) =



zk+1−x
zk+1−zk

forx ∈ [zk, zk+1] and 1 ≤ k < K,
x−zk−1

zk−zk−1
forx ∈ [zk−1, zk] and 1 < k ≤ K,

1 forx ≤ z1 and k = 1,
1 forx ≥ zK and k = K,
0 otherwise.

Furthermore, let the categorical representation FC be defined as a finite mixture of Dirac deltas
FC = {

∑K
k=1 θkδzk |θk ≥ 0,

∑K
k=1 θk = 1}. The categorical projection operator ΠC : P(R) −→

FC of a distribution ν ∈P(R) is then defined as

ΠCν =
K∑

k=1

Eω∼ν [hzk(ω)]δzk .

B EXPERIMENTAL DETAILS

We provide a detailed exposition of our experimental setup, including the hyperparameter search
procedure, hyperparameter settings, algorithmic details, and the full bsuite experimental results.

B.1 HYPERPARAMETER SETTINGS

In our experiments, we aimed to keep most hyperparameters between different implementations equal
to maintain comparability between the analyzed methods. Algorithm-specific hyperparameters were
optimized over a search space of hyperparameters using Optuna (Akiba et al., 2019). The total search
space for bsuite and VizDoom are given in Table 1 and Table 2 respectively, where the Heads K
parameter only applies to distributional algorithms. C51 requires us to define return ranges, which
we defined manually and can be found in the online code repository. All algorithms use the Adam
optimizer (Kingma and Ba, 2015).

Bsuite. For bsuite, the hyperparameter search was conducted on a subselection of environments
of the bsuite, as shown in Table 3. For each environment, we evaluate a set of hyperparameters by
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Table 3: Hyperparameter search environments

Environment ID Horizon in no. of episodes Scoring function f

deep_sea/20 500
∑

(s,a)1 visited (s, a)
deep_sea_stochastic/20 1500

∑
(s,a)1 visited (s, a)

mountain_car/19 100
∑t

0(−1)

means of a scoring function. A particular set of hyperparameters is evaluated every T/5 episodes
with a maximum training horizon of T episodes. The “continuous” scoring functions make the
hyperparameter search more amenable to pruning, for which we use the median pruner of Optuna,
reducing the computational burden of the combinatorial search space significantly.

Here,
∑

(s,a)1 visited (s, a) is the count of visited state-action tuples and
∑t

0(−1) is simply the
negative number of total environment interactions. For every hyperparameter configuration ζi, the
scores f(ζi) are calibrated to facilitate a meaningful comparison between different environments.
The calibrated score function we use is given by

fc(ζi) = exp
(
0.693

f(ζi)− µζ

supi f(ζi)− µζ

)
, (15)

where µζ is the average score of all hyperparameter configurations µζ =
∑N

i 1/Nf(ζi), and
supi f(ζi) is the maximal score achieved. The calibration function in Eq. (15) was chosen heuristically
to have an intuitive interpretation: it assigns a score of 1 to the best-performing hyperparameter
configuration, 0.5 to configurations that achieve exact average performance, and decays exponentially
according to score. The final score assigned to a hyperparameter configuration ζi is the sum of all
scores of the tested environments. Table 4 shows the full set of hyperparameters used for every
algorithm.

Figure 6: Map for the VizDoom MyWayHome en-
vironment. Agents are spawned in the sparse and
very sparse locations to vary the exploration diffi-
culty.

VizDoom. For the VizDoom domain, the
hyperparameter search was conducted on the
MyWayHomeSparse-v0 variation with a training
budget of 5 million frames, where final config-
urations were chosen by achieved return at the
end of training. Due to the sparsity of the prob-
lem, we did not make use of a pruning algorithm.
The specific difference between the different
variations of the VizDoom environment MyWay-
Home are shown in Fig. 6, where the sparsity of
the problem is increased by changing the agents
spawning location to a room further from the
goal position. The network architecture is based
to a large extent on the rainbow network pro-
posed by Schmidt and Schmied (2021) who in
turn base their architecture on IMPALA (Espe-
holt et al., 2018). The specific algorithm config-
uration for VizDoom is given in Table 5 with a
schematic of the network architecture shown in
Fig. 8. Table 6 shows our preprocessing pipeline
used for the VizDoom environments.

B.2 IMPLEMENTATION DETAILS

Parametric model. Our parametric model is a mixture distribution ηE,θ parametrized by θ. We con-
struct ηE,θ as an equal mixture between a quantile and a categorical representation, each parametrized
through a NN with K output logits where we use the notation θik to mean the k-th logit of the
network parametrized by the parameters θi of the i-th model in the ensemble. We consider a sample
transition (s, a, r, s′, a′) where a′ is chosen greedily according to EZ∼ηE,θ(s′,a′)[Z]. Dependencies
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Table 4: Hyperparameter settings bsuite

Hyperparameter BDQN+P DLTV IDS PE-DQN

Net architecture [64, 64] [512] [64, 64] / [512] [512]
Adam Learning rate 10−3 10−3 10−3 / 5× 10−4 5× 10−4

Prior function scale 5.0 20.0 20.0 / 5.0 20.0 / 0.0
Heads K 1 101 1 / 101 101/101
Ensemble size 20 1 20/1 2/2
Initial bonus βinit n/a 5.0 5.0 5.0
Final bonus βfinal n/a n/a 5.0 5.0
Bonus decay (in eps) n/a 103/Nepisodes 0.33×Nepisodes 0.33×Nepisodes
Discount 0.99
Buffer size 10, 000
Adam epsilon 0.001/batch size
Initialization He truncated normal (He et al., 2015)
Update frequency 1
Target update step size 1.0
Target update frequency 4
Batch size 128

Table 5: Hyperparameter settings VizDoom

Hyperparameter BDQN+P DLTV IDS PE-DQN

Adam Learning rate 2.5× 10−5 7.5× 10−5 2.5× 10−5 6.25× 10−5

Prior function scale 1.0 3.0 1.0 3.0
Heads K 1 101 1 / 101 101/101
Ensemble size 10 1 10/1 2/2
Initial bonus βinit n/a 0.5 0.1 5.0
Final bonus βfinal n/a n/a 0.01 0.01
Bonus decay (in frames) n/a 103/Nframes 0.33×Nframes 0.33×Nframes
Loss function Huber QR-Huber Huber/C51 QR-Huber/C51

Initial ϵ in ϵ-greedy 1.0
Final ϵ in ϵ-greedy 0.01
ϵ decay time 500, 000
Training starts 100, 000
Discount 0.997
Buffer size 1, 000, 000
Batch size 512
Parallel Envs 32

Adam epsilon 0.005/batch size
Initialization He uniform (He et al., 2015)
Gradient clip norm 10
Regularization spectral normalization
Double DQN Yes
Update frequency 1
Target update step size 1.0
Target update frequency 8000
PER β0 0.45
n-step returns 10
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Table 6: VizDoom Preprocessing

Parameter Value

Grayscale Yes
Frame-skipping No
Frame-stacking 6
Resolution 42× 42
Max. Episode Length 2100

on (s, a) are dropped for conciseness by writing θik(s, a) = θik and θik(s
′, a′) = θ′ik. The full

mixture model ηE,θ is then given by

ηE,θ = 1
2

M=2∑
i=1

K∑
k=1

p(θik)δz(θik), with p(θ1k)=
1
K , z(θ1k)=θ1k,

p(θ2k)=σ(θ2k), z(θ2k)=zk,
(16)

where σ(xi) = exi/
∑

j e
xj is the softmax transfer function. Consequently, this representation

comprises a total of 2K atoms, K of which parametrize locations in the quantile model, and the
remaining K parametrizing probabilities in the categorical representation. The losses used for each
projection method are as provided in the main text.

Distributional estimation of bonuses. For the parametric bonus estimate bϕ(s, a) we use the
same procedure for learning a distributional projection ensemble as with extrinsic rewards. Note
that it is not necessary for our method to learn a distributional estimate of the bonus but we find
that diverse projection ensembles are good value learners in general and simply reuse the existent
function approximation machinery for an intrinsic reward instead of the extrinsic reward. We thus
have a model of parameters ϕ trained with an alternate tuple (s, a, wavg, s

′, a′ϵ), where we replaced
the immediate reward with the ensemble disagreement wavg and a′ϵ is an exploratory action chosen
according to the rule

a′ϵ = argmax
a∈A

(
EZ∼ηE,θ(s,a)[Z] + β bϕ(s, a)

)
, where bϕ(s, a) = EB∼ηE,ϕ(s,a)[B]. (17)

Here, β is a hyperparameter to control the policy’s drive towards exploratory actions.

Pseudocode. We provide pseudocode for a basic version of PE-DQN where we have simplified
details such as the previously described distributional estimation of bϕ(s, a), prioritized replay, double
Q-learning, and prior functions for clarity.

Randomized prior functions are added to all baselines and PE-DQN. Specifically, we add the
output of a fixed, randomly initialized neural network of the same architecture as the main net, scaled
by a hyperparameter, to the main network’s logits. In the case of C51, the prior function is added
pre softmax. To the best of our knowledge, DLTV-QR does not use prior functions in its original
formulation but we find it to be crucial in improving exploration performance. Fig. 7 (b) shows an
experiment assessing the exploration performance of DLTV-QR with randomized prior functions and
prior scale 20 (DLTV [rpf20]) compared to the vanilla implementation without priors (DLTV [rpf0]).

Information-gain in our IDS implementation for bsuite is computed in a slightly modified way
compared to the vanilla version. Nikolov et al. (2019) compute the information gain function I(s, a)
with

I(s, a) = log
(
1 +

σ2(s, a)

ρ2(s, a)

)
+ ϵ2 ,

where σ2(s, a) is the empirical variance of BDQN+P predictions, ϵ2 = 1× 10−5 is a zero-division
protection, and ρ2(s, a) is the clipped action-space normalized return variance

ρ(s, a)2 = max

(
Var(Z(s, a))

1
|A|

∑
a∈A Var(Z(s, a))

, 0.25

)
. (18)
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Algorithm 1 PE-DQN

1: quantile model with parameters θ1, target parameters θ̃1, and K heads
2: categorical model with parameters θ2, target parameters θ̃2, K heads, and grid [z1, . . . , zK ]

3: bonus estimation model with parameters ϕ, and target parameters ϕ̃
4: exploration parameter β, learning rate α
5: initialize Buffer B
6: sample initial state s0
7: for t = 0, . . . , T do
8: predict locations [θ11, . . . , θ1K ](st, a) and probabilities [θ21, . . . , θ2K ](st, a)

9: Q(st, a) :=
1
2

∑K
k=1 θ1k(st, a)

1
K + θ2k(st, a)zk

10: predict bonus bϕ(st, a)
11: at ←− argmaxa∈A{Q(st, a) + βbϕ(st, a)}
12: for j = 0, . . . , Ntrainsteps do
13: sample transition tuple (sj , aj , rj , s

′
j) ∼ B

14: predict locations [θ11, . . . , θ1K ](sj , aj) and probabilities [θ21, . . . , θ2K ](sj , aj)

15: predict target locations [θ̃11, . . . , θ̃1K ](s′j , a) and probabilities [θ̃21, . . . , θ̃2K ](s′j , a)

16: Q(s′j , a) :=
1
2

∑K
k=1 θ1k(s

′
j , a)

1
K + θ2k(s

′
j , a)zk

17: a′j ←− argmaxa∈A{Q(s′j , a)}
18: mixture target η̃′M ←− 1

2

∑K
k=1

1
K δrj+γθ̃1k(s′j ,a

′
j)
+ θ̃2k(s

′
j , a

′
j)δrj+γzk

19: quantile loss l1 ←− LQ(θ1, η̃
′
M )

20: categorical loss l2 ←− LC(θ2, η̃
′
M )

21: wasserstein distance rintr ←− w1(
K∑

k=1

1
K δθ1k(sj ,aj),

K∑
k=1

θ2k(sj , aj))δzk

22: bonus estimation target b̃′ ←− rintr + γbϕ̃(s
′
j , a

′
j)

23: bonus estimation loss l3 ←−MSE(bϕ(sj , aj), b̃
′)

24: [θ1, θ2, ϕ]
T ←− [θ1, θ2, ϕ]

T + α∇θ1,θ2,ϕ(l1 + l2 + l3)
25: end for
26: execute at and store (st, at, rt, st+1) in B
27: end for
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Table 7: VizDoom wall clock time comparisons

Environment BDQN+P DLTV IDS PE-DQN

MyWayHome - Dense 14h 35m 14h 22m 16h 49m 17h 3m
MyWayHome - Sparse 14h 29m 13h 49m 16h 11m 16h 11m
MyWayHome - Very Sparse 21h 27m 21h 12m 23h 3m 23h 3m

Var(Z(s, a)) here is the variance of the distributional estimate provided by C51. We replace the
clipping in Eq. (18) by adding a small constant ϵ1 = 1× 10−4 to Var(Z(s, a)), s.t.

ρϵ(s, a)
2 =

Var(Z(s, a)) + ϵ1

ϵ1 +
1

|A|
∑

a∈A Var(Z(s, a))
.

Fig. 7 (b) shows the effect of clipping as in the vanilla version (IDS-C51 [clip]) compared to our
variation (IDS-C51 [noclip]) on the deep sea environment.

Intrinsic reward priors are a computational method we implement with PE-DQN, which leverages
the fact that we can compute the one-step uncertainty estimate wavg(s, a) deterministically from
a parametric ensemble given a state-action tuple. This obviates the need to learn it explicitly in
the bonus estimation step. We thus add wavg(s, a) automatically to the forward pass of the bonus
estimator bϕ(s, a) as a sort of “prior” mechanism according to

bϕ(s, a) := braw
ϕ (s, a) + wavg(s, a) ,

where braw
ϕ is the raw output of the bonus estimator NN of parameters ϕ. In the VizDoom environment,

we follow the default pipeline suggested by Burda et al. (2019b) and subsequent works (Burda et al.,
2019a) that normalize intrinsic rewards by a running estimate of its marginal standard deviation.

Bonus decay is the decaying of the exploratory bonus during action selection. It is well-known
that the factor β is a sensitive parameter for UCB-type exploration algorithms, enabling efficient
exploration when chosen correctly but simultaneously preventing proper convergence when chosen
wrongly. Due to the variety of tasks included in the bsuite and VizDoom, we opted for a fixed
schedule by which β is linearly decayed to 0.0 over one third of the total training horizon. In the
bsuite experiments, we apply this schedule to all tested baselines where applicable and chose the
initial βinit value according to the hyperparameter search. Since the decay rate is a central part of the
DLTV algorithm, we here do not use our linearly deacying schedule but adopt the original decay rate
of β = β0 ∗

√
log(αt)/αt where α is a scaling parameter.

Ensembles and their size are a central parameter in IDS and BDQN+P. For the bsuite experiments,
we used a size of 20 as in the implementation by Osband et al. (2020) , who find that increasing the
ensemble size beyond 20 did not lead to significant performance improvements on the bsuite. Fig. 7
(a) shows a comparison of the influence of ensemble size in BDQN+P compared to PE-DQN. For
VizDoom, we used 10 models in accordance with Nikolov et al. (2019) for their Atari experiments.
Here, we follow the original implementations and let the ensembles used in BDQN+P and IDS-C51
(and also PE-DQN) share a network body for feature extraction to save computation.

Replay buffer In the VizDoom environment, all our algorithms make use of prioritized experience
replay (Schaul et al., 2016).

The computational resources we used to conduct the bsuite experiments were supplied by Delft
High Performance Computing Centre (DHPC) and Delft Artificial Intelligence Cluster (DAIC). We
deployed bsuite environments in 16 parallel jobs to be executed on 8 NVIDIA Tesla V100S 32GB
GPUs, 16 Intel XEON E5-6248R 24C 3.0GHz CPUs, and 64GB of memory in total. In this setup,
the execution of one seed on the entire suite experiment took approximately 38 hours for DLTV, 72
hours for PE-DQN, and 80 hours for IDS. Due to the narrower network architecture of BDQN+P,
we in this case parallelized environments over 64 Intel XEON E5-6248R 24C 3.0GHz CPUs, taking
approximately 76 hours wall-clock time for the entire suite. In the VizDoom environments, we
deployed 32 parallel environments for each agent on the same hardware. In this case, computation
for 10× 106 took approximately 24 hours per seed per environment and did not differ significantly
between any of the tested methods. Table 7 shows the average wall clock time for the VizDoom
experiments.
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Figure 7: (a) Summary of bsuite experiments. Comparison between BDQN+P with different ensemble
sizes and PE-DQN (total ensemble size 4). (b) Deep sea comparison between our implementations
and vanilla implementations of baseline algorithms. Shown are median state-action visitation counts
over number of episodes on the deep sea environment with size 50. Shaded regions represent the
interquartile range of 10 seeds. Higher is better.

Figure 8: Schematic of the architecture used for VizDoom environments. Based on the architecture
used by Espeholt et al. (2018).
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Figure 9: A comparison of inverse counts (top row), ensemble disagreement (mid row), and bonus
estimates (bottom row) on the deep sea environment. t indicates total environment interactions. Each
image depicts the state-space of deep sea, where only the lower triangle (including the diagonal) is
reachable. For each state, the plotted values indicate the maximum of two actions. At t = 32000, the
agent has discovered the goal-state at the bottom right.

B.3 ADDITIONAL EXPERIMENTAL RESULTS

Fig. 9 illustrates a comparison of the uncertainty estimates used in PE-DQN for the deep sea
environment. Every plot shows the entire state-space of the deep sea environment. In deep sea, the
agent starts at the top left entry in a matrix and, depending on his action, moves to the left or right
column while descending one row. The upper right triangular matrix above the diagonal is thus not
reachable to the agent. The goal, i.e., the rewarding final state is located at the bottom right of the
matrix.

For different time steps t (total environment interactions) during training, we evaluate the entire
state-space and compare three quantities:

• Inverse counts are the inverse of visitations to each state-action 1
N(s,a)+0.1 . For every state,

we plot the maximum of both actions.

• Ensemble disagreement defined as wavg(s, a) = 1/(M(M − 1))
∑M

i,j=1 w1(ηθi , ηθj )(s, a).
For every state, we plot the maximum of both actions.

• Bonus estimates bϕ(s, a) as defined in Section 5.1. For every state, we plot the maximum of
both actions.

In the top row, the agent has explored an increasing fraction of the state space with increasing time.
The number of states with high inverse counts thus decreases. The ensemble disagreement wavg(s, a)
behaves similarly to inverse counts, a result in line with the notion that wavg(s, a) serves as an estimate
of the local TD error w1(ηE,θ,ΩM T̂ πηE,θ)(s, a), which is expected to decrease with number of
visits. In contrast to this, we expect bonus estimates bϕ(s, a) to quantify errors w.r.t the true value,
that is w1(η̂, η

π)(s, a). As a result, bϕ(s, a) should not, for example, vanish prematurely for the
initial state at the top left, even after many visitations, since its value can only be assessed upon
having explored the entire state space. The bottom row of Fig. 9 is closely in line with this intuition.
At t = 32000, the agent has discovered the reward at the bottom right.
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Figure 10: Averaged episodic return for all 23 bsuite tasks.

B.4 FULL RESULTS OF BSUITE EXPERIMENTS

Fig. 10 shows the averaged undiscounted episodic return for all bsuite tasks. Each curve represents
the average over approximately 20 variations of the same task (Osband et al. (2020) provide a
detailed account of the task variations) where results were taken from a separate evaluation episode
using a greedy action-selection rule. In the “scale” environments, evaluation results were rescaled to
the original reward range to maintain a sensible average. Bold titles indicate environments tagged as
hard exploration tasks.
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