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Safe Control of Soft Robots: Bridging Physics and Learned Models
2025 IEEE-RAS International Conference on Soft Robotics (RoboSoft) Rising Stars

Maximilian Stolzle, Cognitive Robotics, Delft University of Technology, M.W.stolzle@tudelft.nl.

TL;DR. The contributions presented in this abstract equip
soft robots with the motor intelligence they need to function
effectively in human-centric environments. We accomplish
this by combining advanced machine learning techniques
with physical priors and stability guarantees. By incorpo-
rating physical structure into learned models, we enable
the use of well-established model-based control methods,
ensuring effective, stable, and computationally efficient
control. The contributions discussed in this abstract, both
current and future, aim to enhance the productivity and
effectiveness of soft robotic manipulators (e.g., achieving
precise movements at high speeds) while prioritizing safety,
compliant behavior, and the development of transparent
and inspectable computational intelligence.

I. MOTIVATION

As we strive to integrate robotics into human-centric
environments, guaranteeing safety becomes an absolute pri-
ority. While safety is traditionally ensured through computa-
tional control policies, this approach is vulnerable to percep-
tion errors and often results in overly cautious behavior that
limits robot performance. Soft robotics presents a promising
alternative by establishing passive compliance throughout
the entire robot body with material softness. This embodied
intelligence is inherently resistant to perception or control
errors. Recent years have witnessed remarkable progress in
soft robotics, with researchers developing new designs, smart
materials, actuators, sensors, models, and control approaches.
However, the modeling and control of continuum soft
robots presents significant challenges due to their infinite
degrees of freedom, complex nonlinear dynamics, and time-
dependent behaviors such as hysteresis.

Currently, two dominant approaches exist for controlling
soft robots. The first relies on model-based control using
physics-based models derived from first principles under sig-
nificant approximations. The second employs learned control
policies, primarily through Reinforcement Learning (RL).
Both existing approaches face substantial limitations.
Existing model-based controllers cannot fully exploit the dy-
namics of soft robots as their underlying models inadequately
capture complex dynamic behavior, particularly regarding
how actuation and external interaction influence the robot’s
deformation. These models also require considerable expert
knowledge to make appropriate design choices. Conversely,
RL lacks interpretability and stability guarantees while being
highly sample inefficient—a significant drawback given the
time-dependent material properties and limited lifetime of
current soft robots.

As visualized in Fig. 1, this abstract proposes that in-
tegrating learned models with model-based controllers
presents a compelling alternative approach, combining the
strengths of both existing methods: data-driven models
that demand less expert knowledge and controllers with
interpretable, provably stable behavior. The central chal-
lenge lies in determining the essential characteristics and
structures a learned model must exhibit to facilitate the
application of established model-based control strategies,
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Fig. 1: Scheme of the main contribution - Model-based control of
soft robots with learned models that exhibit a physical structure.

such as PID-like feedback with feedforward control while
ensuring the closed-loop robot system remains compliant and
safe. This raises the key research question: How can we
effectively leverage learned models to achieve efficient,
stable, and safe control of soft robots?

Our research addresses answers this research question
through several interconnected key contributions, which
we detail in the following section.

II. RESEARCH CONTRIBUTIONS

During our quest towards model-based control of soft
robots with learned models, we contributed multiple inter-
connected key contributions to the domains of shape sensing,
modeling, and control of soft robots.

Contribution I - Leveraging Kinematic Models for Soft
Robot Shape Sensing. Proprioception via shape sensing is
crucial for soft robots, particularly for feedback controllers
that require state information. Existing methods rarely lever-
age prior knowledge, such as the robot’s kinematic model.
To fill this research gap, we developed two approaches for
shape sensing using visual or magnetic sensor data, respec-
tively - both integrating kinematic model knowledge. In one
approach, we integrated visual SLAM with a projection onto
the kinematic model to enable shape sensing from monocular
camera images [2]. In another, we developed a method
for proprioception using magnetic sensor measurements,
parameterizing spatial relationships between magnets and
sensors [1]. This approach reduced learning complexity and
improved robustness by incorporating kinematic knowledge.

Contribution II - Advanced Physics-based Actua-
tion Models for Soft Robots. We developed advanced
physics-based actuation models for robots, including auxetic
metamaterial-actuated robots like Handed Shearing Auxetics
(HSA) [4], [6] and piston-driven pneumatic soft robots [7].
These models support provably stable nonlinear controllers,
emphasizing their control-oriented design. This work also
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Fig. 2: Panel (a): Methodology for learning strain models based on the shape evolution of soft robots, including (i) the Kinematic Fusion
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highlights the limitations of physics-based models regarding
their expressiveness in fully capturing the dynamical behav-
ior of soft robots and the needed expert knowledge to design
them, motivating the exploration of more expressive neural
network-based alternatives.

Contribution III - Integrating Physical Structure and
Stability Guarantees into Learned Models. Fourthly, we
identified techniques for learning soft robot models with
physical structures and stability guarantees. Two notable ap-
proaches are presented: an algorithm, visualized in Fig 2(a),
that identifies low-dimensional, physics-based strain models
using samples of the robot backbone’s shape evolution [8]
and Coupled Oscillator Networks (CONSs) for learning Input-
to-State Stable (ISS) latent dynamics of physical systems
from high-dimensional observations such as images shown
in Fig. 2(b).

Contribution IV - Exploiting Learned Models for
Closed-form Model-based Control. We aim to develop
closed-form model-based controllers for the learned models
introduced in Contribution III, building on trailblazing prior
work that designed feedback+feedforward controllers for
continuum soft robots using physics-based models. For ex-
ample, an integral-saturated PID+energy-shaping controller
for HSA robots was presented in [6]. Unlike earlier learned
models, which lacked the physical structure needed for
energy-shaping control, the strain-based and CON-based
models in Contribution III include well-defined potential and
kinetic energy terms. This feature enables the use of energy-
shaping feedforward controllers, which gives rise to effective
and stable control behavior directly in strain-space [8] or in
a learned latent space [6], as shown in Fig. 2(c).

III. FUTURE DIRECTIONS

This abstract so far outlined our past research on using
modern Al approaches to learn dynamical models for soft
robots that preserve physical structure and enable efficient
and provably stable closed-loop control. Despite significant
progress, several key challenges remain for safe and effective
soft robot control: (1) controllers must explicitly address
safety risks, (2) high-level motion policies must ensure stable
and compliant behavior, and (3) computationally tractable
methods are needed for co-designing the robot’s body and
brain. These challenges are discussed in detail below.

Safety-aware Control. Soft robots’ embodied intelligence
offers passive compliance, but its effects on the overall safety
of the (closed-loop) system remain unquantified. To address
this, we aim to develop a quantitative safety metric that
accounts for both the robot’s physical structure and control
system. Using this metric, we will design controllers—such
as ones based on Control Barrier Functions (CBFs)—that
explicitly consider injury risk, ensuring the robot’s actions
stay within safe limits.

energy shaping feedforward and disturbance

Integrating Stability Guarantees into Compliant Mo-
tion Policies. Building on our previous work on compli-
ant impedance controllers for soft robots [3], we aim to
ensure stability and compliance not just at the low-level
controller but also in the motion policies that define task-
space references. By leveraging stable motion primitives
parameterized with dynamical systems, we aim to develop
methods for learning motion policies that guarantee stability
and compliance in soft robots, informed by demonstrations.

Tractable Co-design of Embodied and Computational
Intelligence. Co-designing the body and brain of soft robots
can optimize performance while reducing control effort,
but computational demands limit existing methods. Most
approaches use a cascaded optimization loop: an outer loop
focuses on structural design (e.g., via evolutionary algo-
rithms), while an inner loop trains control policies (e.g.,
using reinforcement learning). These inner loops are com-
putationally expensive, limiting the exploration of the design
space. To overcome this, we aim to create metrics that assess
controllability, observability, and safety in a computationally
efficient manner, enabling more effective co-design algo-
rithms.
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