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Chapter 1

Introduction

This chapter provides an introduction to this thesis. Section 1.1 presents the back-
ground information relevant to the research. Section 1.2 outlines the problem state-
ment and the research questions. The research approach employed to address these
questions is given in Section 1.3. Section 1.4 highlights the contributions of this thesis,
and finally, Section 1.5 offers a brief outline of the thesis structure.

1.1 Background
Automated vehicles (AVs), also known as self-driving or autonomous vehicles, repre-
sent a significant shift in transportation technology. Equipped with sensors, cameras,
artificial intelligence, and advanced algorithms, these vehicles can operate with min-
imal or no human intervention. Research has highlighted the benefits of deploying
AVs, such as reducing human error and increasing road safety (Wang et al., 2020a),
enhancing mobility solutions (Spieser et al., 2014; Liang et al., 2020), and reducing
environmental impacts (Fagnant & Kockelman, 2014).

The Society of Automotive Engineers (SAE) has developed a widely recognised
framework for vehicle automation levels, ranging from Level 0 to Level 5, with Level 5
representing full automation (On-Road Automated Driving (ORAD) committee, 2021).
Level 5 AVs can perform all driving tasks, such as navigating streets, parking, and
changing lanes, without human intervention. Passengers in a Level 5 AV are not re-
quired to take over driving at any time, allowing them to engage in work-related or
leisure activities. This also eliminates the need for a driving licence, making this mode
of transportation more accessible to everyone. These advantages of AVs are expected
to drive a revolution in mobility systems.

Many researchers have investigated the potential of integrating AVs into ride-hailing

1



2 1 Introduction

services as shared AVs (SAVs) to provide seamless door-to-door transportation in fu-
ture mobility systems. SAVs, which can be centrally controlled as “moving robots”,
are likely to be deployed by on-demand mobility systems, benefiting service providers
by eliminating driver costs and offering continuous, high-quality door-to-door service
(Liang et al., 2020; Yang et al., 2020). In such a system, customers can request rides
from any location using their smartphones by entering trip details like origin, desti-
nation, and departure time, and they will be matched with nearby available vehicles
through the platform.

Numerous benefits have been identified for including AVs in providing ride-hailing
services. According to Spieser et al. (2014), an automated mobility-on-demand (AMoD)
system could meet the mobility needs of the entire population with roughly one-third of
the current number of private cars. Additionally, Fagnant & Kockelman (2014) suggest
that each SAV could replace approximately eleven privately owned vehicles, leading
to significant reductions in energy consumption and greenhouse gas emissions. The in-
tegration of SAVs into the transportation system could also decrease parking demand,
as indicated by Zhang & Guhathakurta (2017), due to higher vehicle utilisation rates
and reduced reliance on private cars. This thesis focuses on this new ride-hailing sys-
tem with SAVs providing on-demand mobility services and describes a comprehensive
study on planning and operational decision-making from the SAV service provider’s
perspective.

Compared to current ride-hailing services like Uber, Lyft, and Didi, the planning
and operations of future SAV services encounter numerous additional challenges. A
primary challenge is the significant transformation that AVs are expected to bring to
existing infrastructure. Traditional transportation networks may evolve into being part
of the realm of intelligent transportation systems (ITS). Research suggests that city
planners and government agencies are likely to designate specific traffic lanes (Chen
et al., 2016; Liu & Song, 2019; Conceição et al., 2021) or dedicated zones (Chen et al.,
2017; Madadi et al., 2020) exclusively to AVs. These AVs-only lanes/streets aim to
facilitate the seamless integration of AVs into the current transportation framework,
ensuring efficient and safe operations. Meanwhile, AVs-only zones are intended to
maximise the benefits of AV technology by creating environments optimised for AV
navigation. Initially, such zones might be established in areas prone to frequent traf-
fic congestion—like city centres, train stations, and university campuses—to alleviate
congestion through optimised traffic flow and enhanced link capacity. They might also
be set up in high pedestrian traffic areas, such as commercial districts, where the pre-
cise and predictable behaviour of AVs, also in terms of low speed, can significantly
lower the risk of accidents. These designated AV-only areas are expected to gradually
expand, eventually transforming the entire road network into an automated and con-
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nected system. In this thesis, we consider a scenario involving Level 5 AVs that can
navigate freely to any destination, alongside human-driven vehicles (HVs) in mixed
traffic outside of an AV-only zone. However, the AV-only zone is exclusively dedi-
cated to AVs and prohibits HVs from entering. For ride-hailing service providers, this
necessitates adaptively updating decisions such as fleet type and size with the gradual
expansion of network infrastructure.

Another significant challenge in the transition to fully ITS is the coexistence of
HVs with AVs on part of the road networks. Despite the significant advantages that AV
technology is going to bring to mobility systems and transportation networks, the tran-
sition from traditional transportation systems to fully intelligent ones will be gradual.
While AVs and HVs will most likely coexist on the same roads, as already observed in
the US and China, their routing behaviours differ significantly. SAVs, centrally con-
trolled by operators, will cooperate and follow platform guidance to benefit the overall
system profit. In contrast, HVs will behave selfishly to minimise their individual costs
following the well-known so-called user equilibrium principle. This mixed driving sit-
uation can be problematic, significantly reducing traffic efficiency (Yang et al., 2016).
This presents a challenge for ride-hailing services: understanding different driving
behaviours and studying the interactions among different traffic participants to make
informed planning and operational decisions. This thesis studies the evolution of the
mobility system, from a mixed driving environment to a fully automated one, to help
ride-hailing services make the most profitable planning and operational decisions.

In addition to the interactions among different traffic participants, the interactions
between infrastructure and vehicle routing behaviours also significantly influence the
management and operational decisions of ride-hailing services. A crucial factor is
the driving restrictions imposed on HVs by AVs-only zones. During the period of
mixed driving, these restrictions can profoundly affect the routing behaviours of both
AVs and HVs. Furthermore, link capacity restrictions and congestion effects, caused
by routing large numbers of vehicles, play a vital role. AVs-only zones are specifi-
cally designed to optimally control AV flow, thereby enhancing link capacity. Conse-
quently, when analysing future mobility systems, it is essential to consider congestion
effects in the models that are used for planning and operating such systems. Although
drivers/operators typically select the shortest paths for routing, capacity restrictions
can make these paths suboptimal when many vehicles drive on the same route. This
leads to congestion effects that trigger dynamic route choices, which in turn influence
the management and operational decisions of ride-hailing services.

The emergence of this new mobility system and the resulting revolution of trans-
portation infrastructure are expected to significantly impact passengers’ travel behaviour
and mode choice. The driving environment will shift from mixed traffic to a fully auto-
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mated environment. However, active modes of transport, such as walking and cycling,
will remain an important part of urban mobility. Even in fully automated environments
with widespread adoption of SAVs, active modes are expected to remain in cities.

With this evolution, the future demand for ride-hailing services will likely differ
significantly from current patterns, potentially leading to increased traffic. Therefore,
it is essential for ride-hailing service providers to understand how their decisions, along
with factors like congestion and diverse traveller preferences, influence mode choice
behaviour. This understanding is critical for making informed decisions about fleet
sizing and management, adding complexity to SAV operators’ decision-making pro-
cesses. This thesis aims to methodically address these challenges one by one.

1.2 Problem statement and research questions
The problem addressed in this thesis is a high-level planning problem from the per-
spective of a ride-hailing service provider. To achieve the most profitable planning
decisions, it is essential to characterise the performance of a ride-hailing system dur-
ing a typical day of operation. With this aim, we model the service provider’s deci-
sions at both the planning and operational levels. At the planning level, key decisions
include determining the pricing strategy, fleet type and size, initial fleet distribution,
and service level. At the operational level, the centralised operator matches the travel
requests to available vehicles and provides optimal routing guidance to ensure timely
and efficient transport. When there is no request, decisions regarding the relocation
and parking of AVs need to be made. Given that a city’s demand structure and trans-
portation infrastructure evolve over time—with some areas becoming accessible only
to AVs—all decisions must be adaptable to current conditions to ensure optimal prof-
itability.

Research questions addressed in this thesis

Research Question 1: How should ride-hailing service providers optimally size and
manage mixed fleets of SAVs and conventional vehicles/taxis in response to the grad-
ual expansion of AV-only zones in urban areas, considering their impact on traffic
congestion?

This question is explored in Chapters 2 and 3.
Research question 2: How can we model the interactions between different routing
behaviours—specifically, privately-owned HVs following the user equilibrium (UE)
and centrally dispatched vehicles/taxis following the system optimum (SO)? How do
these interactions influence the optimal sizing and management of the fleets?
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This question is addressed in Chapter 3.
Research question 3: How can existing models be adapted to incorporate endogenous
demand to plan and operate an SAV service?

This question is answered in Chapter 4.
Research question 4: What are the optimal pricing strategies for SAV services, consid-
ering the interplay between demand and supply variables, congestion effects, and the
heterogeneous income levels of travellers?

This question is answered in Chapter 5.

1.3 Research approach

Mathematical optimisation and simulation are two primary approaches used by re-
searchers to study the optimal management and operations of ride-hailing services
(Liang et al., 2020; Pinto et al., 2020; Wei et al., 2022). Simulation approaches can
replicate complex scenarios by accounting for the diverse behaviours of road users
and monitoring their dynamic interactions. However, these techniques are typically
time-consuming, as they require running a large number of simulations to evaluate
system performance by exploring combinations of many decisions to find optimal so-
lutions. Therefore, simulation is more suited to evaluate multiple scenarios rather than
pinpointing the optimal combination of values assigned to decision variables in a com-
binatorically complex system.

Mathematical optimisation seeks the best solution from a set of available alterna-
tives, aiming to minimise or maximise an objective function. This function may rep-
resent components that need to be minimised—such as cost, time, or distance—and/or
maximised—such as profit or efficiency. The variables in these models are the control-
lable elements used to achieve these goals and often come with constraints that define
the feasible region for viable solutions.

The questions we aim to address in this thesis are more suitable to be tackled us-
ing mathematical optimisation approaches. These include classical optimisation meth-
ods—such as linear programming, nonlinear programming, integer programming, dy-
namic programming, and stochastic programming—as well as alternative approaches
like heuristics and metaheuristics. Classical optimisation techniques aim to find opti-
mal solutions which can be challenging for large-scale and complex problems. Heuris-
tics and metaheuristics offer more flexibility in exploring diverse solution spaces and
adapting to various problem structures, often providing satisfactory solutions within
a shorter timeframe. Unlike classical methods, heuristics and metaheuristics do not
guarantee optimality or convergence under strict conditions, but they are well-suited
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for practical problem-solving where a feasible solution is needed in a reasonable/short
time. In this thesis, we explore various solution methods, integrating them to develop
tailored approaches for the studied problems. The proposed methods leverage the
strengths of different techniques to enhance overall effectiveness.

Table 1.1 gives an overview of the elements modelled in each chapter of this thesis.
In Chapter 2, we develop a flow-based vehicle routing model to determine the optimal
fleet size of SAVs and conventional taxis. This model considers the gradually increas-
ing coverage of dedicated AV-only zones. Traffic congestion is incorporated through
flow-dependent travel times. We test two service regimes: the User Preference Mode
(UPM), where passengers select their vehicle type based on personal preferences, and
the System Profit Mode (SPM), where the taxi company assigns vehicles to maximise
profits. The model is formulated as a mixed integer linear programming model and
solved using a state-of-the-art solver.

Table 1.1: Overview of research elements and decisions

Chapter 2 Chapter 3 Chapter 4 Chapter 5

Driving environ-
ment

AVs and HVs
mixed driving

AVs and HVs
mixed driving

Fully automated
driving

Fully automated
driving

Evolving AVs-only
zone?

Yes Yes No No

Traffic congestion
modelling?

Yes Yes Yes Yes

Mixed routing be-
haviour modelling?

No Yes No No

Mode choice mod-
elling?

No No Yes Yes

Main decisions Fleet type and
size

Fleet type and
size

Fleet size and
initial distri-
bution, service
quality

Pricing strate-
gies, fleet size
and initial
distribution,
service quality

In Chapter 3, we introduce a bi-level framework that captures the mixed routing be-
haviour of vehicles (both HVs and AVs) and endogenous traffic congestion at the lower
level, while the upper level determines the fleet size to maximise profit. This frame-
work is tackled using a parallel genetic algorithm, embedded with a tailored iterative
algorithm for solving the lower-level model.

In Chapter 4, we formulate a mixed-integer non-linear programming model that
addresses congestion effects and the mode choices of urban travellers across different
income classes, between SAVs and bicycles. Travellers’ preferences for both transport
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modes are modelled using a binary logit model, and congestion effects are described
through dynamically varying travel times based on traffic flow in a non-linear manner.
Additionally, we explore two types of accept/reject mechanisms for the service oper-
ator (mandatory versus non-mandatory acceptance), which influence an endogenously
determined acceptance rate affecting travellers’ willingness to use SAV services. The
computational challenges posed by the non-linear and non-convex nature of the model
are addressed through a reformulation and the use of outer-inner approximation meth-
ods combined with a breakpoint generation algorithm. Then, the reformulated model
is solved using a state-of-the-art solver.

In Chapter 5, we extend the model introduced in Chapter 4 to determine the optimal
pricing and fleet management decisions under three distinct pricing strategies: base
fare plus distance-based fare, distance-based fare only, and income class-based fare.
We then develop three unique solution algorithms to address the model’s complex non-
linearities from different perspectives. These approaches include linearisation tech-
niques, hybrid metaheuristic-based optimisation, and hybrid Bayesian optimisation-
based methods. A comparative analysis of these methods is conducted.

1.4 Thesis contributions

This thesis makes contributions from both scientific and practical perspectives.
From a scientific perspective, it enhances the well-explored area of fleet sizing and

management for on-demand mobility services by incorporating several new elements.
These elements include the evolution of infrastructure, particularly the emergence and
expansion of AV-only zones; the interactions of different routing behaviours, such as
centrally dispatched taxis following the SO and privately-owned HVs following the
UE; the endogenous congestion arising from the routing of both AVs and HVs; the
consideration of endogenous demand; operators’ accept/reject decisions; and the de-
velopment of pricing strategies that consider the heterogeneous preferences of trav-
ellers. Additionally, this thesis introduces novel mathematical models designed to op-
timise planning and operational decisions to maximise the profitability of ride-hailing
services. Tailored solution algorithms have also been developed and compared to ef-
fectively solve these complex mathematical models.

On the practical side, this thesis offers methodologies for ride-hailing service provi-
ders to make the most profitable decisions at both the planning and operational levels.
It also demonstrates the benefits of utilising AVs for ride-hailing services. Moreover, it
provides valuable managerial insights for ride-hailing service providers, city planners,
and government officials regarding the potential impact of AV-related infrastructure.
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The thesis further explores the complex interactions between traffic participants and
infrastructure, as well as the interplay between supply and demand, thereby deepening
the understanding of the dynamics within SAV systems.

1.5 Thesis outline

Figure 1.1 provides an overview of the thesis structure, which consists of six chapters.
Chapter 1 introduces the background, problem statement, research questions, research
approaches, and both scientific and practical contributions. Chapters 2 to 5 include the
main content of the published and under-review papers.

Figure 1.1: Overview of thesis structure

Chapter 2 addresses the heterogeneous fleet sizing problem in the context of the
emergence of AVs-only zones. The model formulations are applied to a case study
using a large, simulated network, providing insights into the performance of a hetero-
geneous taxi system on a hybrid network. This chapter has been published in Trans-
portation Research Procedia:

Fan, Q., Van Essen, J. T., & Correia, G. H. (2022). Heterogeneous fleet
sizing for on-demand transport in mixed automated and non-automated
urban areas. Transportation Research Procedia, 62, 163-170.
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Chapter 3 introduces a bi-level framework to capture the mixed routing behaviour
of vehicles and endogenous traffic congestion when making fleet sizing and manage-
ment decisions. The proposed solution methods are tested using instances based on
a small network and the network of the city of Delft, the Netherlands, to investigate
the impacts of AVs-only zones on traffic and ride-hailing operations. This chapter has
been published in the European Journal of Operational Research:

Fan, Q., van Essen, J. T., & Correia, G. H. (2024). A bi-level frame-
work for heterogeneous fleet sizing of ride-hailing services considering an
approximated mixed equilibrium between automated and non-automated
traffic. European Journal of Operational Research, 315(3), 879-898.

Chapter 4 envisions a fully automated driving environment where AVs replace pri-
vate cars and offer public on-demand mobility services to meet the mobility needs of
city residents. Our proposed method is applied to the case study of the city of Delft
in the Netherlands. Additionally, we conduct scaling analyses on three simulated net-
works of varying sizes and demand profiles to demonstrate the effectiveness of our
proposed method. This chapter has been published in Transportation Research Part C:

Fan, Q., van Essen, J. T., & Correia, G. H. (2023). Optimising fleet sizing
and management of shared automated vehicle (SAV) services: A mixed-
integer programming approach integrating endogenous demand, conges-
tion effects, and accept/reject mechanism impacts. Transportation Re-
search Part C: Emerging Technologies, 157, 104398.

Chapter 5 explores optimal pricing strategies for the system studied in Chapter
4 and develops three different solution algorithms to address the non-linearity from
various perspectives. The performance of these algorithms is compared to assess their
efficacy. This chapter has been submitted for publication.

Fan, Q., van Essen, J. T., & Correia, G. H. (Under review). Solution
methods for pricing and fleet management in shared automated vehicle
services considering supply-demand dynamics, congestion, and income
heterogeneity.

Chapter 6 discusses the main conclusions and directions for future research.





Chapter 2

Heterogeneous fleet sizing for
on-demand transport in mixed
automated and non-automated urban
areas

The era of intelligent transportation with automated vehicles (AVs) is coming.
Nonetheless, the transition to this system will be a gradual process. On the one hand,
some zones in the city may be dedicated to AVs with a fully intelligent traffic man-
agement system geared toward high performance. On the other hand, automated and
conventional vehicles may have to be allowed to drive in the remaining zones of the
urban network in a transition stage. In this chapter, we consider a situation where AVs
are deployed by a taxi operating company to serve door-to-door travel requests. Facing
this transition period, a strategic flow-based vehicle routing model is developed to de-
termine the optimal fleet size of automated and conventional taxis as a function of the
gradually increasing coverage of the AVs-only dedicated area. The developed model
formulations are applied to a case study of a large toy network.

This chapter is structured as follows: Section 2.1 gives the introduction to the stud-
ied problem. Section 2.2 establishes a flow-based routing model for heterogeneous
vehicles in a mixed automated and non-automated zone network incorporating differ-
ent service regimes. Section 2.3 presents the numerical results of a case study with a
large toy network. Section 2.4 draws our conclusions.

11
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2.1 Introduction

In recent years, various technologies for automated driving have been developed and
extensively tested, which leads to believe that automated vehicles (AVs) are coming
to the market soon. This will revolutionise people’s travel patterns. For example, the
emergence of shared automated vehicles (SAVs) will challenge the usage of privately-
owned cars and public transport as they can provide on-demand door-to-door service to
meet personal mobility needs. Novel business models using SAVs may emerge and be
deployed globally, providing app-based on-demand service. This will allow passengers
to make online requests providing their desired trip information including the origin
and destination. The operating system will then assign passengers’ requests to vehicles
and determine the vehicles’ route in the transportation network.

Many papers focus on optimising the profit from the operator’s perspective (Liang
et al., 2017); Liang et al. (2020). However, most of them consider the situation where
all travel requests are served by SAVs. By this, they ignore the fact that the transition to
such an intelligent automated transportation system will be a slow and gradual process.
Many researchers hold the view that some critical locations or zones, such as the city
centre or locations where it is easy to have traffic bottlenecks, are likely to be the first
to be dedicated to AVs thus establishing AVs-only zones to improve traffic efficiency
(Chen et al., 2017)). Within an AVs-only zone, AVs will follow the route guidance
given by the operating company realising a fully automated driving environment. The
human-driven vehicles would therefore be prohibited from entering the AVs-only zone
to avoid randomness brought by human drivers. In the remaining part of the network,
AVs and conventional vehicles (CVs) used as shared taxis are very likely to cooperate
to satisfy the travel requests. Considering the gradual expansion process of intelligent
infrastructure in the city, it is much more realistic at this point to build models that
consider vehicle routing in mixed traffic conditions (automated and human-driven).

To determine a new strategy for a taxi company when facing the upcoming SAVs
era, we develop a strategic flow-based vehicle routing model in a time-space network
to determine the optimal fleet size of automated taxis (ATs) and make adjustments to
the existing fleet size of conventional taxis (CTs) as the coverage of the AVs-only zone
expands. We assume that ATs at level 5 automation and CTs co-exist to serve the
total mobility demand in a city. Due to the restriction of an existing AVs-only zone,
CTs cannot drive in the whole network whilst ATs can drive in both the AVs-only
zone and outside the AVs-only zone. Traffic congestion is considered in the model by
making travel times dependent on the vehicle flows. Furthermore, two service regimes
are considered. The first one is a User Preference Mode (UPM) where passengers
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are allowed to choose the vehicle type (AT or CT) if their origin and destination are
both outside the AVs-only zone. The user’s preference towards the vehicle type makes
sense since many people may prefer low levels of automation as they worry about the
potential risk of the AVs without human supervision (Ha et al., 2020). The second
one is a System Profit Mode (SPM) in which the taxi company will take charge of the
vehicle assignment to maximise the profit.

2.2 Methodology: mixed-integer linear programming
(MILP) models

The aim of this chapter is to develop a method to determine the fleet size of ATs and
CTs for a taxi company in a city while the AVs-only zone is expanding. To characterise
the performance of a taxi system during a general day of operations, one must be able
to assign travellers to taxis and to determine vehicle routes under a mixed driving envi-
ronment subject to AVs-only zone constraints. The interplay between the route choice
of vehicles and dynamic travel time considering traffic congestion is also incorporated
in this model.

We have the following assumptions for this future scenario: (1) ATs are allowed to
move empty in the network without a human driver; (2) Vehicles can only park at cer-
tain nodes which are defined as the parking depots provided by the taxi company; (3)
To keep a high-quality service, the taxi company cannot reject any travel request; (4)
Only the taxi company uses AVs, so travellers are assumed not to be able to use private
AVs; (5) The background traffic flow generated by privately-owned human-driven cars
outside the AVs-only zone is simplified. Constants are used to represent the average
value of such background traffic. Considering the driving restrictions imposed on CVs,
trips received by the on-demand mobility system should be assigned to the appropriate
type of vehicle based on three types of trips: 1) a trip with origin and destination inside
the AVs-only zone which should be served by an AT; 2) a trip with origin and desti-
nation outside of the AVs-only zone which can be served by either an AT or CT; 3) a
trip with origin/destination inside the AVs-only zone and destination/origin outside the
AVs-only which should be served by an AT. Next, the mathematical models for UPM
and SPM are presented.



14 2 Heterogeneous fleet sizing for on-demand transport

Table 2.1: Notation.

Notation Description

Sets
T Set of time instants in the operation period.
N Set of nodes.
L Set of road links between nodes in set N.
G Set of links in the time-space network.
M Set of vehicle types, with option 1 being the conventional taxi (CT ) and option 2 being

the automated taxi (AT ).
R Set of groups of requests, where each group of requests r 2 R has the same origin,

destination, desired departure time, and latest arrival time at the destination.
Nm Set of nodes that can be used by vehicles of type m 2 M with Nm ✓ N. CTs can use the

nodes outside the AVs-only zone and the nodes located at the border of the AVs-only
zone; ATs can use all the nodes.

Nm
P Set of nodes allowing parking for vehicles of type m 2 M with Nm

P ✓ Nm.
Gm Set of links that can be used by vehicles of type m 2 M in the time-space network.
Rm Set of groups of requests served by vehicles of type m 2 M with Rm ✓ R.

Parameters
nr Total number of requests for group of requests r 2 R.
or Origin node for group of requests r 2 R.
dr Destination node for group of requests r 2 R.
ar Desired departure time for group of requests r 2 R.
br Latest arrival time for group of requests r 2 R.
fi jt Background traffic flow on road link (i, j) 2 L at time instant t 2 T .
Qi j Capacity of road link (i, j) 2 L in vehicles per time unit.
Cit1 jt2 Spatial capacity of road link (i, j) 2 L in vehicles that fit on the road link from time

instant t1 to t2, where (it1 , jt2) 2 G.
tmax
i j Maximum travel time on road link (i, j) 2 L.

tmin
i j Minimum travel time on road link (i, j) 2 L.
p0 Initial base fare in euros for using the taxis.
pm Price per kilometre in euros/km for using vehicle type m 2 M.
com Unit driving operational cost in euros/km for vehicle type m 2 M.
cd Delay cost in euros per time instant.
cp Salary of a driver in euros per time instant.
c f m Depreciation cost in euros per vehicle per time step for using vehicle type m 2 M.
li j Length of road link (i, j) 2 L.
stdr Shortest travel distance for group of requests r 2 R.
sttr Shortest travel time assuming free flow speed for group of requests r 2 R.
s Total number of time instants in the operation period.
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Decision variables
PFr

it1 jt2
Passenger flow in group of requests r 2 Rm served by vehicle type m 2 M in road link
(i, j), from time instant t1 to t2. Only defined for (it1 , jt2) 2 Gm, ar  t1 < t2  br. If
t1 = ar, then i = or.

PFrm
it1 jt2

Passenger flow in group of requests r 2 R served by vehicle type m 2 M in road link
(i, j) from time instant t1 to t2. Only defined for (it1 , jt2) 2 Gm, ar  t1 < t2  br. If
t1 = ar, then i = or.

Auxiliary variables
V m Taxi fleet size of type m 2 M.
Ert Total number of passengers in group of requests r 2Rm for vehicle type m2M arriving

at time t 2 T .
T Fm

it1 jt2
Total number of taxis of type m 2 M in road link (i, j) from time instant t1 to t2, where
(it1 , jt2) 2 Gm.

T Pm
it Total number of taxis of type m 2 M parking at node i 2 Nm

P from time instant t to
t +1, with t 2 T .

Xit1 jt2 Binary variable which is 1 when vehicles travel in road link (i, j) from time instant t1
to t2, where (it1 , jt2) 2 G, and 0 otherwise.

Fi jt Traffic flow on road link (i, j) 2 L at time instant t 2 T .
Prm Total number of requests in group of requests r 2 R served by vehicle type m 2 M.
Ermt Total number of passengers in group of requests r 2 R served by vehicle type m 2 M

arriving at time t 2 T .

2.2.1 User preference mode (UPM)
As explained before, in this on-demand mobility service system, we consider a service
regime called ‘user preference mode’ in which travellers can choose the vehicle type
by themselves if the requests can be served by both types of vehicles. While for the
trips of type 1 and type 3, there is no option for the passengers and they always have
to use an AT. In this case, we assume that all the passengers have known the available
options and will adjust their behaviour to the on-demand mobility system. Thus, the re-
quests for the vehicle type will always be feasible and no request will be rejected. This
mode takes users’ preferences into account which will increase the users’ satisfaction
with the on-demand mobility service system. A mixed-integer linear programming
(MILP) model is developed with the objective of maximising the total profit of the
whole system.

Base formulation

The travel requests in group r 2 Rm have the same origin and destination node. Even
though the vehicles serving group r 2 Rm depart at the same time, they may arrive at
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the destination at different times. Constraints (2.1)-(2.3) make sure that, for each group
r 2 Rm, the passenger flows departing from the origin node or at time ar and arriving
at the destination node dr should be equal to the total number of requests.

Â
jt |(or

ar , jt)2Gm

PFr
or

ar jt = nr,8r 2 Rm,m 2 M (2.1)

Â
t2T |ar+sttrtbr

Ert = nr,8r 2 Rm,m 2 M (2.2)

Ert = Â
it1 |(it1 ,d

r
t )2Gm

PFr
it1 dr

t
,8r 2 Rm,m 2 M, t 2 T (2.3)

Constraints (2.4) and (2.5) ensure that the passenger flows are generated in the ori-
gin node and absorbed in the destination node. The passenger flow conservation in the
intermediate nodes is described in Constraints (2.6). The total number of passengers
on road link (i, j) travelling from time instant t1 to time instant t2, should be less than
or equal to the total number of taxis on the same link as some taxis might drive without
passengers, as in Constraints (2.7).

Â
jt2 |
⇣

dr
t1 , jt2

⌘
2Gm

PFr
dr

t1 jt2
= 0,8r 2 Rm,m 2 M, t1 2 T,ar + sttr  t1  br (2.4)

Â
it1 |
⇣

it1 ,o
r
t2

⌘
2Gm

PFr
it1or

t2
= 0,8r 2 Rm,m 2 M, t2 2 T,ar  t2  br (2.5)

Â
jt0 |( jt0 ,it1)2Gm

PFr
jt0 it1

= Â
jt2 |(it1 , jt2)2Gm

PFr
it1 jt2

,8r 2 Rm,m 2 M, t1 2 T, t0 < t1 < t2,

i 2 Nm, i 6= or, i 6= dr (2.6)

Â
r2Rm

PFr
it1 jt2

 T Fm
it1 jt2

,8(it1 , jt2) 2 Gm,m 2 M (2.7)

At the beginning of the service period, the total number of taxis driving on road
link (i, j) plus the total number of taxis parked at depot i 2 Nm

P should be equal to the
fleet size of AT and CT as specified in Constraints (2.8). Constraints (2.9) and (2.10)
describe the vehicle flow equilibrium for the nodes that allow and do not allow vehicle
parking, respectively. Outside the AVs-only zone, the traffic flow of road link (i, j) at
time instant t is calculated by the background traffic flow generated by privately owned
CVs together with the flow generated by ATs and CTs, while in the AVs-only zone, the
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value of background traffic flow is zero and the traffic flow will be generated only by
ATs. Constraints (2.11) calculate the traffic flow on every link.

Â
(i0, jt)2Gm

T Fm
i0 jt + Â

i2Nm
P

T Pm
i0 =V m,8m 2 M (2.8)

Â
( jt1 ,it)2Gm|t1<t

T Fm
jt1 it +T Pm

it�1
= Â
(it , jt2)2Gm|t<t2

T Fm
it jt2

+T Pm
it ,8t 2 T, i 2 Nm

P ,m 2 M

(2.9)
Â

( jt1 ,it)2Gm|t1<t

T Fm
jt1 it = Â

(it , jt2)2Gm|t<t2

T Fm
it jt2

,8t 2 T, i 2 Nm \Nm
P ,m 2 M (2.10)

Fi jt = fi jt + Â
m2M

Â
t22T |(it , jt2)2Gm

T Fm
it jt2

,8t 2 T,(i, j) 2 L (2.11)

Traffic congestion

We use the formulation of Van Essen & Correia (2019) to include traffic congestion
in our model. Based on the Bureau of Public Roads (BPR) function, we calculate
the spatial capacity Cit1 jt2 of road link (i, j) from time instant t1 to time instant t2 by
Equation (2.12). Note that if the difference between t2 and t1 equals the minimum
travel time of road link (i, j), the value of Cit1 jt2 will be zero. To avoid this, we add
in this case 0.5 to t2 to obtain a nonzero value. To match the road link flow with the
spatial link capacity, binary variables Xit1 jt2 are introduced. Constraints (2.13) describe
the allowed total flow on road link (i, j) at time instant t1. Constraints (2.14) ensure that
at most one travel time for road link (i, j) starting from time instant t1 can be chosen.
Constraints (2.15) ensure that there is only vehicle flow from time instant t1 to at most
one time instant t2. The first-in first-out Constraints (2.16) ensure that the vehicle that
enters the road link first will leave the road link first, which means that vehicles cannot
pass one another when driving on a link.

Cit1 jt2 = (t2 � t1)Qi j

 
1
a

 
t2 � t1
tmin
i j

�1

!! 1
b

,8(it1 , jt2) 2 G (2.12)
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Cit1 jt2

k
Xit1 jt2 ,8(i, j) 2 L, t1 2 T (2.13)
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Xit1 jt2  1,8(i, j) 2 L, t1 2 T (2.14)
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Xit1 jt2 �
Âm2M T Fm

it1 jt2
Cit1 jt2

,8(it1 , jt2) 2 G (2.15)

t1+ Â
t2T
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!
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(2.16)

Objective function

From the operator’s point of view, the aim is to maximise the total profit of the whole
system, which includes the taxi fares paid by passengers, the operational cost (includ-
ing fuel, cleaning, maintenance, etc.) of the fleet, the delay penalisation, the salaries
for drivers, and the depreciation cost of the taxis. The taxi fares paid by passengers
are constant in Equation (2.17) as the number of requests served by ATs and CTs are
known beforehand. This term is included in the objective function to be able to com-
pare with the SPM in which the vehicle type serving a request is determined by the
model.

max Â
m2M

Â
r2Rm

�
p0 ·nr + pm ·nr · stdr�� Â

m2M
com ·

0

@ Â
(it1 , jt2)2Gm

T Fm
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1
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� cd · Â
m2M

Â
r2Rm

 

Â
t2T

Ert · t �ar ·nr � sttr ·nr

!
� s · cp ·VCT � Â

m2M
s · c f m ·V m

(2.17)

2.2.2 System profit mode (SPM)
The UPM may lead to higher customer satisfaction, but a lower revenue for the op-
erating company, because of additional relocations of vehicles. From the operator’s
point of view, the best way to maximise the system profit is to decide on the vehicle to
assign to each client. In this mode, the set of groups of requests R can be divided into
three subsets R1,R2,R3, representing the set of groups of requests of type 1, type 2, and
type 3, respectively. For trips of type 1 and 3, the vehicle type is known beforehand,
whereas the mode of vehicles serving trips of type 2 is determined by the model.

The requests in group r 2 R2, which have the same trip information, might be
assigned to different vehicle types to maximise the system profit. Constraints (2.18)
ensure that the number of requests Prm in group r 2 R served by vehicle type m 2 M in
total equals the number of requests in group r 2 R. Constraints (2.19) impose that the
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requests of type 1 and 3 should only be served by ATs. Constraints (2.1) and (2.2) are
replaced by Constraints (2.20) and (2.21). For each group of requests r 2 R served by
different vehicle types m 2 M, the variables Ert and PFr

it1 jt2
in Constraints (2.3)-(2.7)

should be replaced by Ermt and PFrm
it1 jt2

, respectively. The objective function for the
SPM should also be modified. When calculating the total taxi fares paid by passengers
and the delay penalisation, the total number of requests nr in group r 2 R in Equation
(2.17) should be replaced by Prm. The set of groups of requests Rm should be replaced
by R.

Â
m2M

Prm = nr,8r 2 R (2.18)

Prm = 0,8r 2 R1 [R3,m =CT (2.19)

Prm = Â
jt |(or

ar , jt)2Gm

PFrm
or

ar jt ,8r 2 R,m 2 M (2.20)

Prm = Â
t2T |ar+sttrtbr

Ermt ,8r 2 R,m 2 M (2.21)

2.3 Computational results
We test the models on a large toy network consisting of 64 nodes and 112 links (two-
way circulation allowed). Each road link has an equal length of 2 kilometres. We
use several networks with different AVs-only zone coverage rate of the road network,
namely 10%, 30%, 50%, 70%, and 90%, as shown in Fig. 1. The time step is set to
2.5 minutes. The shortest travel time and the longest travel time for each road link
are 2.5 minutes and 10 minutes, respectively. The background traffic flow outside the
AVs-only zone is generated randomly within the capacity restriction. 600 requests and
their trip information including origins, destinations, departure time, latest arrival time,
number of passengers in each group, shortest distance, and shortest travel time, are
generated randomly with equal probability, to emulate the travel demands in the peak
hour. Assuming that the acceptance of users towards AVs in level 5 is low, more than
80% of the requests with a preference for CVs are generated. In this case study, the
value of the parameters are as follows: the initial base fare p0 for using the taxis is 2.66
euros and is based on the price rate of a ride-hailing company in the Netherlands; the
prices pm for using CTs and ATs are 1.95 euros/km and 1.8 euros/km, respectively; the
unit operational costs com for using CTs and ATs are 0.24 euros/km and 0.32 euros/km,
respectively, calculated according to the methodology proposed by Bösch et al. (2018);
the delay cost cd is 0.5 euros/time instant based on Liang et al. (2020); the salary
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cp of a driver is 10 euros/hour according to the minimum wage in the Netherlands,
resulting in 0.42 euros/time instant; the depreciation costs c f m for CTs and ATs are
0.04 and 0.05 euros/time instant/vehicle, respectively, which is calculated as the price
of a taxi divided by its statutory lifespan. The estimation parameters a and b of the BPR
function are set to 2 and 4, respectively, based on Van Essen & Correia (2019). We
solve these models using the Python interface of Gurobi 9.0.2 on an Intel(R) Core(TM)
i5-6500 CPU @3.6GHz 8.0GB RAM computer. A comparison of the UPM and SPM
in scenarios with a different coverage rate of the AVs-only zone is given in Table 2.2.

Figure 2.1: Networks with different AVs-only zone size: (a) 10% (b) 30% (c) 50% (d)
70% (e) 90%

The total profit increases with the coverage rate of the AVs-only zone in most cases.
This happens, first of all, because the privately-owned CVs are not allowed to drive in-
side the AVs-only zone, resulting in a lower delay cost caused by traffic congestion
when the AVs-only zone enlarges. Secondly, in the SPM, the total travel distance de-
creases with the increase of the AVs-only zone coverage, as less detour and relocation
kilometres are needed when the congestion effect diminishes. For UPM, the total travel
distance increases at the early stage as the CTs have to detour more on the road network
because of the driving restriction. When the AVs-only zone is big enough, fewer CTs
are required and their total travel distance decreases correspondingly. In addition to
this, a smaller fleet size of taxis is needed when the AVs-only zone expands, as fewer
CTs are needed and the usage rate of ATs increases. This leads to less depreciation
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Table 2.2: Optimal results for the different coverage rates of the AVs-only zone.

AVs-only
zone

coverage
rate %

Service
mode

Obj.
value

Total
fleet
size

AT
fleet
size

CT
fleet
size

Satisfied
requests
by ATs

Satisfied
requests
by CTs

Total
travel

distance
(km)

Relocation
distance

(km)

Detour
distance

(km)

Delayed
time

(time step)

CPU
time

(minutes)

10% UPM 4526.6 160 20 140 40 560 4870 1354 276 160 6.9
SPM 5836.0 123 123 0 600 0 4348 1072 36 18 12.5

30% UPM 3831.5 260 100 160 200 400 4980 1444 296 229 5.8
SPM 5846.7 122 122 0 600 0 4332 1068 24 12 10.6

50% UPM 3917.4 260 120 140 320 280 5122 1746 136 188 5.5
SPM 5852.5 122 122 0 600 0 4320 1064 16 8 9.9

70% UPM 4906.3 181 121 60 480 120 4910 1570 100 170 6.1
SPM 5856.0 121 121 0 600 0 4292 1044 8 4 8.1

90% UPM 5283.2 160 120 40 520 80 4544 1292 12 86 6.3
SPM 5856.0 121 121 0 600 0 4292 1044 8 4 8.1

cost of the taxi fleet. A larger AVs-only zone means that more requests can be served
by ATs instead of CTs which will also reduce the salary cost. The total profit does
not decrease a lot in the SPM with different AVs-only zone sizes, as traffic congestion
is the only factor that impacts the profit and the fleet size. When the AVs-only zone
enlarges up to 70%, there is no variation in the performance of this model because the
congestion effect has already been greatly reduced. Even though there exist privately-
owned vehicles, ATs can always make use of the links within the AVs-only zone and
find an alternative path to reduce the congestion effect. If the coverage rate of the
AVs-only zone is 100%, there is no difference between UPM and SPM as all the re-
quests will be assigned to ATs. An exception happens in the UPM when the AVs-only
zone enlarges in the initial stage. The total profit falls steeply, with the coverage of
the AVs-only zone increasing from 10% to 30%. This is due to the longer relocation
and detour distance of CTs. Without permission to drive across the AVs-only zone, the
CTs should detour more to satisfy the users’ requirements and drive empty for a longer
distance for the next requests. Once a CT detours, a delay cost is obtained as the CT
should spend more time serving the requests. Thus, more CTs are needed to fulfil all
the mobility needs, resulting in a higher salary cost for drivers. When comparing the
UPM with the SPM, it is evident that the SPM can bring more profit than the UPM.
All the requests are assigned to ATs in SPM, as ATs services are more profitable due to
less detour and relocation cost, no salaries for drivers, and less delay penalization. In
terms of the computation time, the SPM takes longer than the UPM as also the vehicle
type for each request in R2 needs to be determined.
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2.4 Conclusions and future research
In this chapter, we introduced an MILP model to determine the fleet size under different
service regimes and study the impact of an AVs-only zone on the taxi service system
performance. In general, ATs can bring more profit than CTs. The operating company
should deploy more ATs when the AVs-only zone emerges if they do not consider the
users’ preference towards the type of taxis. UPM brings less profit than SPM but can
satisfy passengers’ demand if they prefer to ride in a CV. In the long run, it is still
worthwhile to consider users’ preference. At the early stage, the emergence of the
AVs-only zone will lead to a longer detour and relocation distance for CTs. So a well-
designed construction strategy of the AVs-only zone can be beneficial to help diminish
the negative effects for conventional human-driven vehicles. When the coverage rate
of the AVs-only zone is relatively large, the traffic congestion will be largely reduced
and the taxi operating company can gain more profit by using ATs. Further research
should be done in real case studies, considering the impact of the AVs-only zone on
privately-owned vehicles in a global view. Also, a sensitivity analysis of the parameters
should be performed.



Chapter 3

A bi-level framework for
heterogeneous fleet sizing considering
an approximated mixed equilibrium
between automated and
non-automated traffic

In the previous chapter, we introduced the basic heterogeneous fleet sizing problem
considering traffic congestion. In this chapter, building on the discussed problem, we
examine interactions between centrally dispatched taxis and privately-owned human-
driven vehicles. To model this, we propose a bi-level framework where the lower
level captures mixed routing behaviour, and the upper level determines fleet sizes to
maximise profit. A parallel genetic algorithm, embedded with a tailored algorithm for
the lower level, is introduced. Numerical experiments on a small network and the Delft
network in the Netherlands demonstrate the solution method’s performance.

This chapter is structured as follows. Section 3.1 introduces the background infor-
mation. Section 3.2 presents the literature review. Section 3.3 describes the mathemat-
ical model of the proposed bi-level framework. In Section 3.4, a detailed explanation
of the solution methods is provided. Section 3.5 presents the case studies. Finally,
conclusions and future outlook are given in Section 3.6.
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3.1 Introduction

Uber’s establishment in 2009 marked the beginning of the e-hailing industry. Since
then, an increasing number of e-hailing services by the so-called Transportation Net-
work Companies (TNCs), such as Uber, Lyft and Didi, have emerged globally, revolu-
tionising urban mobility patterns and passenger travel behaviour (Liang et al., 2020).
To maximise profit, a TNC must make a series of decisions, both at the planning level
(fleet sizing, pricing strategy, service quality level) and the operational level (ride-
matching and vehicle routing). Since transport demand and transportation infrastruc-
ture evolve through time, planning and operations must be adaptable to the existing
situation at each point in time to obtain the highest performance.

Nowadays, e-hailing services are anticipating an upcoming revolution in urban mo-
bility and road infrastructure that will result from the emergence of automated vehicles
(AVs). AVs, which can be centrally controlled as “moving robots”, are likely to be
deployed by TNCs, promising to benefit service providers by eliminating both drivers’
costs and their driving preferences (Ashkrof et al., 2022b) and offering continuous and
high-quality door-to-door trip service Liang et al. (2020); Yang et al. (2020). Despite
the great potential benefits, it is still impossible to convert all vehicles to AVs at once
because of the high costs of fleet renewal and infrastructure adaptation. It is more
realistic to expect in the near future that a small number of AVs are being used and
that human-driven vehicles (HVs) gradually phase out. Throughout this transition pe-
riod, AVs and conventional vehicles (CVs) will inevitably coexist in mixed traffic on
the urban network (Chen et al., 2017). However, numerous studies have demonstrated
that mixed traffic is less efficient than a fully automated traffic system (Yang et al.,
2016; Olia et al., 2018). To improve traffic efficiency, many researchers envisioned
that city planners and government agencies may have to dedicate specific traffic lanes
(Chen et al., 2016; Liu & Song, 2019), or areas (Chen et al., 2017; Madadi et al., 2020;
Conceição et al., 2021) to AVs. These areas, which we will designate in this chapter
as AVs-only zones, will gradually expand until the entire road network is fully trans-
formed into an automated and connected shared mobility system. For a TNC or a taxi
company that wishes to modernise its services, decisions need to be taken adaptively
and dynamically with the expansion of such areas.

Among all decisions, fleet sizing is one of the most critical determinants for a TNC
as it determines the number of trips that can be satisfied and therefore the company’s
market share and associated profit. The literature on the fleet sizing problem is exten-
sive. Recently, great interest has been rising in the heterogeneous fleet sizing problem
under a mixed driving environment (Scherr et al., 2019; Yang et al., 2020; Mo et al.,
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2022). Some consider this problem in a mixed driving environment with the emer-
gence of AVs-only zones (Scherr et al., 2019) or mixed operation zones (Guo et al.,
2021b). However, less attention has been devoted to dynamic interactions between
road users and the infrastructure, resulting in endogenous traffic congestion. None of
them considers the different routing behaviours among all road users.

The fleet sizing decision is dependent on the operational decisions of trip assign-
ment and taxi routing. In a mixed driving environment, taxis’ route choices are heavily
influenced by privately owned human-driven vehicles (PVs). However, very few stud-
ies on fleet sizing problems have considered the impact of PVs’ routing behaviour.
Unlike taxis coordinated by a TNC to maximise system-wide profits, PVs behave self-
ishly, with drivers choosing routes that minimise their individual costs. These distinct
routing behaviours align with the concepts of system optimum (SO) and user equilib-
rium (UE), respectively, in the traffic assignment theory (Sheffi, 1985). It is important
to note that the “system” under examination in this chapter specifically pertains to the
taxi system operated by the TNC, rather than the entire transportation system. To en-
sure realistic fleet sizing decisions, it is essential not to overlook the routing of PVs;
this requires explicit modelling. The key challenge in this chapter is to integrate the dif-
ferent routing behaviours and the complex operational decisions of taxis in one model
to determine a realistic optimal fleet size.

We propose a fleet sizing model for a TNC that deploys a heterogeneous fleet of
both automated taxis (ATs) and conventional taxis (CTs) during a transition period
while taking into account the dynamic interactions of this fleet with PVs and the road
infrastructure. Along with the expansion of the AVs-only zone, the TNC needs to
determine the optimal fleet size for ATs and adjust the current fleet size of CTs to
better meet passengers’ demand who can have a preference for using either ATs or
CTs. Therefore, three types of traffic participants are considered in the model: ATs
at level 5 automation (On-Road Automated Driving (ORAD) committee, 2021), CTs
driven by taxi drivers and PVs driven by their owners. ATs at level 5 are capable of
driving freely on the entire network, while HVs (CTs and PVs) are only allowed to
drive outside the AVs-only zone. The exclusion of privately-owned AVs is motivated
by two primary factors. Firstly, numerous researchers envision a future where AVs
are mainly used through sharing and pooling options integrated into public transport,
rather than being privately owned (Stoiber et al., 2019; Liang et al., 2020); secondly,
we anticipate that the overall number of privately-owned AVs will likely be relatively
small compared to the number of ATs. This projection is attributed to the expected high
cost of AVs and the prevailing trend of favouring public transport and active modes
of transport in cities, thereby limiting private vehicle ownership (Nieuwenhuijsen &
Khreis, 2016; UITP, 2017).
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To address the aforementioned problem and fill the gap in the current literature, we
propose a bi-level framework to give managerial insights with regards to heterogeneous
fleet sizing decisions (CTs and ATs) for a TNC along with the expansion of the AVs-
only zone, also investigating the impacts of the AVs-only zone on traffic. At the upper
level, the optimal fleet size of CTs and ATs is determined with the aim of maximising
the profit of a TNC on the premise of fulfilling the travel demand. At the lower level,
the dynamic routing interaction among travellers with UE (PVs) and SO (CTs, ATs)
routing behaviours is captured. This behaviour will in turn have an impact on the
decision-making process at the upper level. The traffic congestion effect is expressed
through the dynamic travel times at the lower level.

The contributions of this chapter are summarised as follows:

• The studied problem enriches the well-investigated fleet sizing problem for on-
demand mobility services by incorporating the following new elements: (1)
infrastructure evolution: the emergence and expansion of AVs-only zones; (2)
multiple players with different routing behaviour: PVs (following the UE) and
centrally dispatched taxis (following the SO); (3) endogenous congestion caused
by the routing of both the e-hailing taxis and PVs.

• We introduce a novel methodology that approximates the dynamic mixed equi-
librium and integrates the comprehensive planning and operational decisions for
taxis (fleet sizing, matching, routing, relocation, and parking) within a bi-level
mixed-integer linear programming (MILP) model.

• We develop a tailored genetic algorithm framework to tackle the bi-level model.
To solve the lower-level model, a two-stage solution framework is proposed. The
first stage introduces a method for generating a path pool by determining the
maximum allowable travel distances for all OD pairs, effectively constraining
the path pool to a manageable size. In the second stage, using the path pool as
input, we employ an iterative procedure embedded with a weight determination
algorithm to compute the approximated mixed equilibrium model.

• This study provides TNCs as well as city planners and the government with
managerial insights regarding the potential impact of AV-related infrastructure.

Given the nature of the proposed model as a MILP, a perfect mixed equilibrium
cannot be guaranteed. We fully acknowledge that this is not a perfect model to cap-
ture the dynamic mix equilibrium, and we can only approximate the dynamic mixed
equilibrium at a macroscopic level and ignore microscopic traffic dynamics. However,
this research may provide insights into fleet management challenges, especially when
considering the route choices made by PVs in a congested environment.
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3.2 Literature review

3.2.1 Fleet sizing problem for e-hailing services
The problem we study is the extension of the well-known fleet sizing and mix vehicle
routing problem (FSMVRP). Different from the typical fleet sizing problem, FSMVRP
relaxes the assumption that all vehicles need to be homogeneous, which is more real-
istic in real-world applications. Heterogeneous fleet composition is considered but
not limited to the following cases: vehicles with different capacities (Hiermann et al.,
2016; Balac et al., 2020), vehicles with different cost structures (Hiermann et al., 2016),
and vehicles with different functional types such as cars and buses (Santos & Correia,
2021). Including AVs in on-demand mobility brings non-negligible benefits which dis-
tinguish AV’s cost structure from that of HVs, and may result in potential cost savings.
This boosts the need to investigate the fleet sizing problem once AVs enter the market.

Research has demonstrated the need to investigate the heterogeneous fleet sizing
problem on shared mobility deploying both AVs and HVs in a mixed driving environ-
ment. Mo et al. (2022) stated that managerial decisions such as fleet size and pricing
for AVs and HVs need to be determined properly and attention needs to be paid to the
trade-off between these two types of services. To this end, they proposed an aggre-
gated market model to examine how fleet sizing and pricing decisions for both types of
services affect the demand rates, riders’ utility, and riders’ waiting time with conges-
tion effects. Based on the numerical analysis, they suggested that more AVs should be
arranged than HVs even under the scenario where AVs had a higher depreciation cost.

However, few studies consider this problem together with the emergence of specific
intelligent infrastructure. More recently, Guo et al. (2021b) foresaw the emergence of
the mixed operation zone (MOZ), an urban zone in which AVs and HVs can operate
together. Based on the emergence of MOZ, they conducted research to determine the
robust minimum fleet size of AVs and HVs deployed by on-demand rides services,
taking demand uncertainty into account, and investigating the impacts of this zone on
the performance of the service. A two-stage robust optimisation model is proposed
and solved optimally. The objective function of this model is to minimise the total
number of vehicles required to fulfil the travel demand. However, the minimum fleet
size to serve all the demand is not necessarily the optimal fleet size for the on-demand
mobility system as the minimum fleet may not lead to the greatest profit. For instance,
a small fleet is likely to result in a longer detour distance (Militão & Tirachini, 2021),
which might cause high operational costs. As a profit-oriented company, a TNC would
rather systematically make the fleet sizing decision by analysing various factors, such
as the total operational cost, the depreciation cost, the salaries paid to drivers, and the
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congestion effect caused by the fleets, etc. Nevertheless, it is worthwhile to investigate
the relationship between the minimum and optimal fleet size, as well as the trade-off
between fleet sizes of different vehicle types. Fan et al. (2022) examined how the
gradual expansion of the AVs-only zone affects fleet size decisions during the transi-
tion period from a conventional to a fully intelligent road network. They envisioned
two business models for on-demand mobility services and included endogenous traffic
congestion in the model. However, they did not take into account the distinct routing
behaviours of AVs and HVs, which will be the focus of this chapter.

Mainly three types of modelling techniques have been used to tackle fleet sizing
problems: simulation-based techniques (Fagnant & Kockelman, 2018; Yi & Smart,
2021; Wang et al., 2022a), optimisation-based techniques (Allahviranloo & Chow,
2019; Balac et al., 2020; Guo et al., 2021b), and hybrid methods combining the two
(Militão & Tirachini, 2021). Simulation-based techniques can reproduce complex sce-
narios by considering the diverse behaviours of road users and monitoring their dy-
namic interactions. However, they are usually time-consuming because a large num-
ber of simulations with varying fleet sizes are required to evaluate the system’s perfor-
mance. When various fleet types are considered, the number of possible combinations
could be very high. Moreover reproducing realistic route choices of a mixed fleet of
vehicles also takes time in a simulation-based methodology.

Among the optimisation-based techniques, fleet sizing problems are typically mod-
elled as a single-level mixed integer linear programming model (Koç et al., 2016; Balac
et al., 2020; Santos & Correia, 2021), or a bi-level model (Allahviranloo & Chow,
2019), solved by exact methods (Balac et al., 2020; Santos & Correia, 2021; Fan et al.,
2022), or heuristic methods (Renaud & Boctor, 2002; Brandão, 2009; Koç et al., 2016),
or hybrid methods (Wang et al., 2019). For some simple scenarios, a single-level model
is sufficient when minimising the fleet size is the only goal. Another typical scenario
is when all vehicles are under the control of a central agent (eg. TNC, or government).
In this case, the fleet size decisions together with the route choice of vehicles are taken
over by the operator.

For a more complex problem involving interactions between the supply strategies
of the fleet operators and the route choices or activity schedule of all travellers (not
just the deployed fleets) in the road network, a bi-level model is required. This type of
problem is known as the network design problem. At the upper level, operators make
profit-maximising decisions. Travellers respond to those decisions at the lower level.
Allahviranloo & Chow (2019) studied the fleet sizing problem in a future scenario in
which users of autonomous transport services may share ownership of AVs and pay
for the time slots for daily activities. A bi-level model was formulated. At the lower
level, demand was determined by the activity scheduling decisions. This decision was
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in turn influenced by the fleet capacity and the time slot prices determined at the upper
level. Li & Liao (2020) proposed a bi-level framework for the network design problem
to investigate the optimal deployment of shared AVs (SAVs). The optimal SAV hub
locations, fleet size and the initial distribution of SAVs were determined at the upper
level. Based on these decisions, the activity-travel scheduling was modelled at the
lower level. When modelling the interactions between AVs and CVs, some researchers
use a leader-follower game structure, in which AVs are the leaders and HVs are the fol-
lowers. In this system, AVs are centrally controlled by the operators and CVs respond
to the coordination of AVs (Yang et al., 2020).

As a complement to the existing literature, this chapter aims to investigate the inter-
actions between the operator’s strategy and travellers’ behaviour in the context of the
emergence of AVs-only zones. This type of problem is best characterised by a bi-level
framework. At the lower level, the route choices of taxis and PVs are modelled, which
follow the SO and UE principles, respectively. At the upper level, fleet sizing decisions
are made to maximise profit. If we disregard the flow of PVs, all decisions (fleet size,
number of served trips, route choices of taxis) can be made at the same level, according
to the SO principle.

3.2.2 Vehicle routing problem (VRP) and Traffic assignment (TA)
As stated previously, the problem we study is an extension of the FSMVRP, which is
further integrated with important TA concepts. These two fields share non-negligible
similarities but also have distinct features. In a traditional VRP, the optimal routes
of a fleet of vehicles are determined to traverse the road network from one depot to
another to deliver and/or pick up a set of goods/customers (Laporte, 2009). In the con-
text of on-demand mobility transport, a few decisions must be made, including trip
assignment, passenger pick-up and delivery process, vacant vehicles’ relocation and
parking decisions, under the restrictions of time windows and vehicle capacity. Based
on these decisions, more managerial strategies/decisions of the fleet operator could be
included in the model, such as fleet size, pricing, service quality, etc. The dynamic
traffic assignment (DTA) models traffic flow between a specific origin and destination
pair without considering the planning and operational decision-making process (or-
der dispatching, vehicle parking, vehicle relocation, etc) in the context of on-demand
mobility services. Nevertheless, TA can capture the congestion effect incurred by the
interactions between vehicles and infrastructures, as well as modelling the different
routing behaviours of travellers. The methodology proposed in this chapter will bridge
these two research fields by modelling the congestion effects and different routing be-
haviours of travellers within an FSMVRP.
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A few researchers have attempted to bridge the VRP with the TA. Correia &
Van Arem (2016) proposed a successive average framework to solve the dynamic user
optimum privately-owned AV assignment. However, rather than directly assigning the
flow to the minimum cost path on the network, the routing and parking decisions of
a household’s AV are determined by solving a proposed MILP model to minimise
the total generalised cost of transporting a single household. The congestion effect
is captured by the flow-dependent link travel time, which will be updated outside the
MILP model using a non-linear Bureau of Public Roads (BPR) function. Van Essen &
Correia (2019) proposed a novel exact formulation to approximate the dynamic user
optimum by incorporating it into a MILP model. The objective of the model is to
minimise the maximum relative deviation from the minimum cost for each household.
By doing so, households will have similar relative deviations. The traffic congestion
effect described by the non-linear BPR function is involved in the model in a linear
form. Liang et al. (2018) introduced an optimisation model for trip assignment and
dynamic routing of ATs to maximise the total profit of the operator. To describe the
congestion level of each link, they used breakpoints on a BPR function while embed-
ding it in the proposed MILP model. Chen & Levin (2019) claimed that dynamic UE
assignment is more promising for on-demand mobility services, because of the compe-
tition among mobility service providers. They firstly developed a static UE TA model
for the route choice of AVs between urban origins and destinations. Based on the so-
lution, a linear programming model is solved to specify the optimal rebalancing flow.
This static model is converted into a dynamic one by adding the time dimension. Liu
et al. (2020) considered an ideal scenario where all the vehicles operate with the SO
principle. They firstly proposed a vehicle-based arc-based integer programming model
in the space-time-state network which is similar to the VRP problem. Then, based on
the generated mapping information of vehicle-passenger and vehicle-arc, they further
developed a flow-based path-based linear programming model from the perspective of
DTA and solved it by a column-pool-based approximation method.

A challenge for our problem is to model the dynamic mixed equilibrium consid-
ering both SO and UE principles in an FSMVRP which is usually a MILP model.
Related works on modelling the mixed equilibrium in TA are mostly focused on static
scenarios (Bagloee et al., 2017; Chen et al., 2017; Zhang & Nie, 2018; Kashmiri & Lo,
2022; Zhang et al., 2022; Ke & Qian, 2023), day-to-day dynamic systems (Li et al.,
2018; Liang et al., 2023), and dynamic scenarios (Guo et al., 2021a; Mansourianfar
et al., 2021, 2022; Hoang et al., 2023), but ignore the detailed vehicle operations (re-
location and parking), trip assignment and vehicle dispatching, and the managerial
decisions from the perspective of a TNC. To overcome these shortcomings, in this
chapter, we consider the feedback of operational strategies of taxis on the network
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traffic conditions and propose a bi-level framework to determine the planning and op-
erational decisions while approximating the dynamic mixed equilibrium in a typical
working day. Our work shares a few similarities with the study by Ge et al. (2021),
which proposes an SAV matching and routing problem in a traffic assignment context,
considering the endogenous traffic congestion from both CVs and SAVs. In their ap-
proach, a bi-level programming model is developed with SAVs as leaders and CVs as
followers. Although this problem is investigated under a static setting, they suggest
the possibility of extending the model to dynamic traffic conditions. Compared with
the referred work, our study aims to determine the optimal planning decisions while
also providing more detailed operational decision chains, including detailed parking
choices, relocation decisions from trip to trip, and endogenous congestion caused by
all the road users under dynamic traffic settings. To the best of our knowledge, the
FSMVRP considering traffic congestion and the approximated mixed equilibrium has
rarely been studied in the context of on-demand mobility services.

3.3 Problem formulation

The proposed bi-level framework is presented in this section as a bi-level MILP model.
In Section 3.3.1, we first introduce the problem. Then, we propose the mathematical
formulation of the upper level and the lower level in Sections 3.3.2 and 3.3.3, respec-
tively.

3.3.1 Problem description and modelling framework
The demand of travellers heading from origins to destinations triggers the need to
plan the operation of e-hailing services and vehicle movements on the road network.
The model structure that is supposed to solve the problem is presented in Figure 3.1
depicting the decisions, elements (e.g. demand, game players, and infrastructure) and
their relations.

In terms of planning, we assume that the demand for the optimisation period is
known in advance and the overall travel demand in an urban area is fixed for a given
optimisation period. This assumption makes sense for a planning problem that this
study addresses. The overall travel demand is divided into two groups: those who
drive their own vehicles, and those who choose to ride in taxis. For the first group of
travellers, driving their PVs will always be the preferred mode of transportation, unless
the destination is inaccessible to HVs due to the restrictions imposed by the AVs-only
zone. These travellers will then have to switch to ATs. No choice modelling is involved
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Figure 3.1: Decisions, elements and their relations in the bi-level optimisation prob-
lem.

because it is not the focus of our problem. In a future study, when analysing the effect
of AVs-only zones on travellers’ behaviour, choice modelling can be incorporated.

The demand for different types of taxis is determined by customers’ preferences,
which are known in advance. This means that travellers can choose the vehicle type by
themselves in case the trip can be served by either type of taxi. Considering travellers’
preferences will significantly increase users’ satisfaction with the e-hailing service.
Assuming that travellers who use e-hailing taxi services are fully aware of the services
provided by the TNC and the available options of the vehicle types, they will adapt
their behaviour to the on-demand mobility system and make feasible trips through
the app-based service provider platform. Above a minimum service rate to guarantee
service quality, the company will serve those trips that generate the most profit. Once
the trip is rejected by the system, the traveller will opt for public transit, such as bus,
subway, or train, which are not included in our model as they barely contribute to the
congestion on the road network.

The movement of passengers and vehicles is aggregated into flows in the model if
their trips have the same origin, destination and departure time. This avoids tracking
each vehicle independently, thereby reducing the number of decision variables. On
the roads, vehicle flows composed of PVs, CTs and ATs make route choices and then
contribute to congestion. Congestion is quantified by the dynamic link travel time as
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a function of traffic flow. The varying link travel time will, in turn, affect the route
choices of the vehicles. The interplay between the route choice of the vehicles and dy-
namic travel time considering traffic congestion is also considered in this model. De-
spite treating the vehicle movements as flows, vehicles in the same group are allowed
to take different routes and have different arrival times at the destination to balance the
network usage.

A time-space network is used to capture the dynamic interactions among road
users. This network is defined by duplicating the directed physical network (N,L)
at each time instant t 2 T , where N and L denote the set of nodes and road links. On
the time-space network, vehicles move on links (it1 , jt2)2 G, indicating the flow move-
ment from node i 2 N to node j 2 N from time instant t1 2 T to time instant t2 2 T . To
specify the driving area of different types of vehicles m 2 M, extra sets are introduced
as Nm and Gm to denote the nodes and links in the time-space network that can be
used by the vehicles of type m 2 M. By doing so, the driving restrictions for differ-
ent types of vehicles are easily included. In our problem, each type of vehicle has a
corresponding driving area: CTs and PVs are not permitted to use the links inside the
AVs-only zone; ATs of level 5 automation, on the other hand, can drive everywhere
on the urban network. The proposed model can easily be extended to a more general
situation involving additional vehicle types such as level 4 AVs that can only circulate
in certain areas. We assume that taxis are only permitted to park at designated nodes
that are identified as TNC’s parking depots. The parking depots that are accessible to
taxis of type m 2 {CT,AT} are designated as Nm

p .
Given the driving restrictions imposed on HVs, the unique TNC operator in the city

will assign the appropriate type of vehicle to fulfil the incoming trip requests. There
are three types of trips regarding the location of the origin and destination (shown in
Table 3.1).

Table 3.1: Type of trips and serving vehicles

Demand Origin Destination CT AT

Type 1 AVs-only zone AVs-only zone X
Type 2 Outside the AVs-only zone Outside the AVs-only zone X X
Type 3 AVs-only zone

Outside the AVs-only zone
Outside the AVs-only zone

AVs-only zone
X
X

Moreover, several assumptions are made underlying the proposed modelling frame-
work: (1) No vehicles are allowed to go back to a previously visited arc in the road
network when heading from the origin to the destination of a trip; (2) The origin and
destination node of a group of trips will be visited only once while delivering the
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clients; (3) No ride-pooling is considered in this study. Each vehicle is limited to car-
rying a single passenger at a time. (4) The capacity of links within the AVs-only zone
is larger than the capacity of the links outside the AVs-only zone which is to represent
the added traffic efficiency of these vehicles (Chen et al., 2017; Madadi et al., 2020).

The following sections introduce the mathematical formulation of the bi-level MILP
model. The notation used in this model is presented in Table 2.

Table 3.2: Notation
Notation Description

Sets
M = {CT,AT,PV}, set of vehicle types.
T = {0, . . . , t, . . . ,s}, set of time instants in the operation period.
N = {1, . . . , i, . . .}, set of nodes.
L = {. . . ,(i, j), . . .}, set of road links between nodes in set N.
G = {. . . ,(it1 , jt2), . . .}, set of links in the time-space network.
Rm = {1, . . . ,r, . . .}, set of groups of trips served by vehicles of type m 2 M, where each

group of requests r 2 Rm has the same origin, destination, desired departure time, and
latest arrival time at the destination.

Nm ✓ N, set of nodes that can be used by vehicles of type m 2 M. CTs and PVs can use
the nodes outside the AVs-only zone and the nodes located at the border of the AVs-only
zone; ATs can use all the nodes.

Nm
P ✓ Nm, set of nodes allowing parking for taxis of type m 2 {CT,AT}.

Gm ✓ G, set of links that can be used by vehicles of type m 2 M in the time-space network.
Pr = {1, . . . ,p, . . .}, set of paths of group of trips r 2 RPV .

Parameters
p0 Initial base fare in euros for using the taxis.
pm Price per kilometre in euros/km for using a taxi of type m 2 {CT,AT}.
com Unit driving operational cost in euros/km for vehicle type m 2 M.
cp Salary of a driver in euros/time step.
cd Penalty for drop-off delay of passengers in euros/time step.
c f m Depreciation cost in euros/vehicle in one hour for using vehicle type m 2 {CT,AT}.
ct Perceived value of time cost for passengers driving PVs in euros/time step.
s Total number of time instants in the operation period.
a Minimum service rate for orders.
lbm,
ubm

Lower bound and upper bound of taxi’s fleet size of type m 2 {CT,AT}.

w Calibrated weighting coefficient to combine two objective functions into one.
l Predefined weighting coefficient to give priority to a certain term in the objective function.
li j Length of road link (i, j) 2 L.
Qi j Capacity of road link (i, j) 2 L in vehicles per time step.
Cit1 jt2 Spatial capacity of road link (i, j)2 L in vehicles that fit on the road link from time instant

t1 to t2, where (it1 , jt2) 2 G.
tmax
i j Maximum travel time on road link (i, j) 2 L.
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tmin
i j Minimum travel time on road link (i, j) 2 L.

or Origin node for group of trips r 2 Rm,m 2 M.
dr Destination node for group of trips r 2 Rm,m 2 M.
ar Desired departure time for group of trips r 2 Rm,m 2 M.
br Latest arrival time for group of trips r 2 Rm,m 2 M.
sdr Shortest travel distance for group of trips r 2 Rm,m 2 M.
str Shortest travel time assuming free-flow speed for group of trips r 2 Rm,m 2 M.
nr Total number of trips for group r 2 Rm,m 2 M.
Drp The length of the path p 2 Pr used by trips in group r 2 RPV

Mr Minimum travel cost for trips in group r 2 RPV .
d rp

i j Incidence between road link (i, j) 2 LPV and path p 2 Pr in group of trips r 2 RPV , 1 if
the link is part of the path; 0 otherwise.

Decision variables
Pr Integer variable representing the total number of served trips from group r, where r 2

Rm,m 2 {CT,AT}.
PFr

it1 jt2
Integer variable representing the passenger flow in the group of trips r 2 Rm served by
vehicle type m2M in road link (i, j), from time instant t1 to t2. Only defined for (it1 , jt2)2
Gm,ar  t1 < t2  br. If t1 = ar, then i = or.

PFrp
it1 jt2

Continuous variable representing the passenger flow of the group of trips r 2 RPV using
path p 2 Pr that travels in road link (i, j) from time instant t1 to t2. Only defined for
(it1 , jt2) where d rp

i j = 1, ar  t1 < t2  br.
V m Integer variable representing the taxi fleet size of type m 2 {CT,AT}.
Ert Integer variable representing the total number of passengers in group of trips r 2 Rm for

vehicle type m 2 {CT,AT} arriving at time t 2 T .
Fm

it1 jt2
Continuous variable representing the vehicle flow of type m 2 M in road link (i, j) from
time instant t1 to t2, where (it1 , jt2) 2 Gm.

W m
it Continuous variable representing the total number of taxis of type m 2 {CT,AT} parking

at node i 2 Nm
P from time instant t to t +1, with t 2 T .

Krp Continuous variable representing the generalised cost of trips in group r 2 RPV using path
p 2 Pr.

Kr Continuous variable representing the maximum general cost of trips in group r 2 RPV .
Frp Integer variable representing the vehicle flow using path p 2 Pr of group of trips r 2 RPV .
Arp

t Binary variable which is 1 when at least one trip in group r 2 RPV using path p 2 Pr

arrives at time t 2 T , and 0 otherwise.
Xit1 jt2 Binary variable which is 1 when any vehicle travels in road link (i, j) from time instant t1

to t2, where (it1 , jt2) 2 G, and 0 otherwise.
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3.3.2 Upper-level model (ULM): Planning for the TNC
The upper-level optimisation model denoted as [ULM] has the following mathematical
formulation. The objective function is:

[ULM]maxZ = Â
m2{CT,AT}

Â
r2Rm

�
p0Pr + pmPrsdr�� s · cp ·VCT � Â

m2{CT,AT}
c f mV m

� Â
m2{CT,AT}

com

0

@ Â
(it1 , jt2)2Gm

li jFm
it1 jt2

1

A

� cd Â
m2{CT,AT}

Â
r2Rm

 

Â
t2T

tErt �arnr � strnr

!

(3.1)
Subject to:

Ert ,Fm
it1 jt2

2 argmin{Objective function (3.5)-(3.7) : Constraints (3.8)-(3.28)} (3.2)

lbm V m  ubm, 8m 2 {CT,AT} (3.3)

anr  Pr  nr, 8r 2 Rm,m 2 {CT,AT} (3.4)

The upper-level objective function denoted as Z is to maximise the total profit of
the TNC. The first term represents the taxi fares paid by the passengers. Two types
of fares are included: an initial fixed base fare p0 once the order is accepted, and an
additional price pm based on the shortest travel distance sdr of the trip r 2 Rm where
m 2 {CT,AT}. Here, the shortest travel distance is used rather than the taxis’ actual
travel distance in order to avoid taxis detouring and charging passengers more money.
The second term represents the salaries paid to human drivers of the CT fleet. The third
term defines the depreciation cost of the different types of taxis in the system. The de-
preciation cost of a vehicle of type m represented by c f m, is calculated as the vehicle’s
purchase price divided by its service life span. Both the second and the third terms
describe the cost associated with the fleet size. The fourth term is the operation cost of
vehicles on the entire network including fuels, maintenance and assurance costs. This
is calculated by the total travel distance for all the taxis multiplied by the operational
cost per unit denoted by com. The final term is the penalty for the drop-off delay of
the client which is calculated by multiplying the delay cost cd by the delay time. The
delay time is calculated as the time difference between the passengers’ actual riding
time and the shortest travel time in free-flow speed.

In this upper-level model, the values of variables Fm
it1 jt2

and Ert are determined in
the lower-level problem, as indicated in Equation (3.2). Constraints (3.3) impose an
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upper bound and lower bound on the total fleet size of CTs and ATs which is explained
in Section 3.4.2. Constraints (3.4) guarantee that the number of trips served in the
group of trips r 2 Rm should be less than the group’s demand, but greater than the
minimum number required to ensure service quality.

3.3.3 Lower-level model (LLM): Mixed routing model for taxis
and PVs

For the lower-level problem, we describe the routing behaviour of heterogeneous traffic
participants within a MILP model. Unlike the traditional TA problem, our methodol-
ogy tackles a discrete optimisation problem within a time-space network framework
rather than a continuous optimisation problem. This allows us to model both plan-
ning and operational decisions, whilst still capturing the impact of varying congestion
resulting from the routing of the vehicles. In our problem formulation, integer vari-
ables are used to represent link travel times and passenger flows. However, due to the
inherent nature of the integrality of time and flow, it becomes infeasible to achieve
the traditional UE where travellers in all paths for a given O-D pair experience equal
travel costs. This integrality aspect poses a challenge when trying to directly impose
UE constraints in the MILP framework. Alternatively, brought from Van Essen & Cor-
reia (2019) the concept of approximated dynamic UE in mathematical programming,
we propose a new method to approximate the mixed equilibrium (both UE and SO) in
a MILP model.

The approximated mixed equilibrium used in this chapter is realised by the fol-
lowing steps. Firstly, in a dynamic setting we approximate the UE by minimising the
difference between the cost of all routes for the same O-D pairs. This is accomplished
by initially minimising the maximum relative deviation from the minimum cost and
then minimising the total costs of PVs so that the costs of all the used paths have sim-
ilar relative deviations. Secondly, when modelling the SO, the “system” we target is
the TNC rather than the entire transportation system. The objective is to minimise
the overall cost of taxi routing by optimally assigning clients to taxis and determining
taxis’ route choices. Subsequently, we approximate the mixed equilibrium by formu-
lating a bi-objective optimisation model that considers the two independent objectives
of taxis and PVs. We further propose an approach to balance the contribution of these
two objectives.

In terms of modelling bi-objective optimisation problems, one of the most exten-
sively used classic techniques is the weighted-sum method, which can convert the two
objective functions into one by using a weighting coefficient. The weighting coefficient
indicates the decision maker’s preference or the relative importance of the two objec-
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tives. Thus, it is critical to properly assign it a value. In the mixed routing problem,
when the network is congested and the objectives of all road users cannot be satisfied
simultaneously, vehicles with different routing objectives are usually competing for the
best routes. Nonetheless, the objective functions of taxis and PVs should be given the
same priority. Thus, the weighting coefficient should balance the contribution of the
two objective function values. An iterative weight determination method is proposed
to produce the desired traffic patterns on the network. A detailed description of this
method can be found in Appendix 3.A.1.

The route choices of the taxis and PVs are modelled differently. Assume that the
PVs consider generalised costs as the routing criteria, which contain a travel time-
related cost and a distance-related cost. When modelling the routing behaviour of PVs,
it is necessary to compare the generalised travel costs of different paths for the same
O-D pair. To specify the travel time and distance associated with a particular path,
path-based variables will be required to describe the movement of the passengers. For
taxis, no paths will be compared when modelling their route choices because one is
aiming for the system optimal flow distribution. As a result, arc-based variables are
enough to describe the taxi flow.

Path sets containing alternatives for a given O-D pair will be generated before the
optimisation. Some restrictions are taken into account when generating paths: first,
the shortest travel time of using a path should be within the time window indicated by
passengers which is the latest arrival time minus the departure time; paths with repeated
arcs are not included as we assume that vehicles will not detour back to a previously
visited arc in a directed network when heading from the origin to the destination due
to the significantly increased travel distance cost. Even so, enumerating all the paths
with the proposed restrictions in an urban scale network is still unrealistic as the huge
number of paths could significantly increase the scale of decision variables, leading to
a computational burden. Section 3.4.1 describes how to find small-scale path sets that
include paths that PVs will take.

We formulate the described LLM as follows:
Objective function

[LLM] minJ = w · JT +(1�w) · JP (3.5)

where
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m2{CT,AT}
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JP = l · Â
r2RPV

Kr

Mr + Â
p2Pr,r2RPV

Â
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t )2GPV
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t

�
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Taxis have an objective function denoted by JT that seeks to minimise the total
operational costs and the drop-off delay penalty of the clients. PVs have an objective
function denoted as JP that minimises first the maximum generalised travel cost Kr

relative to the lowest possible generalised travel cost Mr for all groups of trips r 2 RPV .
Additionally, it seeks to minimise the total generalised cost across all trips, taking into
account that costs with a lower relative deviation than the maximum relative deviation
can also be minimised. To prioritise the first term of the objective function, which aims
to minimise the cost difference between routes for the same OD pair, we introduce a
weighting coefficient l that gives absolute priority to this term. A detailed description
of how to determine the value of l can be found in Appendix 3.A.2. As previously
stated, we use the weighted-sum method to combine JT and JP into one single objective
function (weight w). The objective function is constrained by the following:
Constraints for taxis:
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Taxis serving the trips in the same group r 2 Rm depart from the origin or at the
same time, but are permitted to take different routes and arrive at the destination at dif-
ferent times. Constraints (3.8)-(3.10) ensure that passenger flows departing from node
or at time ar and arriving at the destination node dr are equal to the total number of
trips served in group r 2 Rm. Constraints (3.11) and (3.12) guarantee that the passenger
flows start at the origin node and end at the destination node. Constraints (3.13) define
the conservation of passenger flow through intermediate nodes of the network. Then,
the passenger flows and the vehicle flows are linked via constraints (3.14), which make
sure that the total number of passengers travelling on road link (i, j) from time instant
t1 to time instant t2 will never exceed the total number of taxis on the same link. Given
the fleet size of CTs and ATs, constraints (3.15) guarantee that the total number of
taxis circulating on road link (i, j) or parking at depot i 2 Nm

p at the start of the service
period is consistent with the fleet size specified. In this case, the fleet sizes V m of taxis
of type m are exogenous variables, whose values are determined at the upper level. The
vehicle flow equilibrium for nodes that allow or not allow vehicle parking is defined
by constraints (3.16) and (3.17) respectively.
Constraints for PVs:

Â
p2Pr

Frp = nr, 8r 2 RPV (3.18)

Frp = Â
jt2 |(or

ar , jt2)2GPV ,d rp
or j=1

PFrp
or

ar , jt2
, 8p 2 Pr,r 2 RPV (3.19)

Frp = Â
(it1 ,d

rt2)2GPV ,d rp
idr=1

PFrp
it1 ,d

rt2
, 8p 2 Pr,r 2 RPV (3.20)

Â
jt0 |( jt0 ,it1)2GPV ,d rp

ji =1

PFrp
jt0 it1

= Â
jt2 |(it1 , jt2)2GPV ,d rp

i j =1
PFrp

it1 , jt2
, 8p 2 Pr,r 2 RPV , t1 2 T,

ar < t1 < br, i 2 NPV , i 6= or, i 6= dr

(3.21)



3.3.3 Lower-level model (LLM): Mixed routing model for taxis and PVs 41
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Constraints (3.18) ensure that the total number of trips using different paths p 2 Pr

in group r 2 RPV equals the total number of trips in group r 2 RPV . If link (i, j) 2 LPV

belongs to path p 2Pr of group of trips r 2RPV , the link flow for this path should equal
the path flow, as indicated in constraints (3.19) and (3.20). Constraints (3.21) describe
the passenger flow conservation for trips in group r 2 RPV using different paths p 2 Pr

at all nodes excluding their origin and destination node. Constraints (3.22) link the
passenger flow to the vehicle flow. To compare the generalised cost of all the used
paths, we have to calculate the path lengths and their corresponding travel times. The
length of the path p 2 Pr in group of trips r 2 RPV is calculated as the sum of length
of link (i, j) 2 LPV if link (i, j) is part of the path, which is Drp = Â(i, j)2LPV li j · d rp

i j .
Constraints (3.23) determine whether PVs in the group of trips r using the path p 2 Pr

arrive at the destination at time instant t 2 T . Then, the generalised cost of using path
p 2 Pr for group of trips r 2 RPV is calculated as expressed by constraints (3.24).
Knowing the costs of all the used paths from group of trips r 2 RPV , the maximum cost
over all the trips is determined by constraints (3.25).
Constraints for traffic congestion:
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Traffic congestion is expressed through the travel time required to traverse a road
link of the network. In the traditional TA problem, travel time is considered a function
of traffic flow, and their relationship is described by the BPR function (Dafermos &
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Sparrow, 1969): t = t0(1+ a(F
Q)

b) where F is the flow variable, Q denotes the link
capacity within an hour, t0 denotes the free-flow travel time, and a and b denotes esti-
mation parameters. However, including this non-linear equation increases the difficulty
of solving the MILP model. Thus, we replace the BPR function by imposing several
linear constraints which select one from multiple link-traveltime choices at each time
point. To realise that, a spatial link capacity Cit1 jt2 that represents the maximum pos-
sible flow traversing a certain link (i, j) 2 L within a travel time slot between t1 2 T
to t2 2 T is calculated before the optimisation (Van Essen & Correia, 2019). Firstly,

we rewrite the BPR function as F = Q
⇣

1
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⇣
t
t0
�1
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b . Then, the spatial link capacity
Cit1 jt2 can be calculated beforehand, and thus can be used as an input parameter, by
replacing travel time t by t2 � t1, Q by (t2 � t1)Qi j, and t0 by tmin

i j , which is
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When t2 � t1 equals the minimum travel time, we add 0.5 to t2 to ensure that the
value of Cit1 jt2 is not zero. The spatial link capacity is calculated in advance, providing
multiple choices of the link travel time and the corresponding link capacity to the
model. Only one link travel time and the corresponding capacity can be selected, as
specified by constraints (3.26) and (3.27). Constraints (3.26) impose an additional
requirement that the total flow on road link (i, j) never exceeds its spatial link capacity.
Constraints (3.28) describe the first-in-first-out (FIFO) rule meaning that the vehicle
entering the road link first will leave the road link first. These constraints only apply to
time instant t1 and t2 when t1 < t2  t1+ tmax

i j � tmin
i j . Otherwise, if t2 > t1+ tmax

i j � tmin
i j ,

rewritten as t2 + tmin
i j > t1 + tmax

i j , it indicates that the arrival time of vehicles entering
the road link (i, j) first at time instant t1 with the longest travel time is even earlier than
that of vehicles entering the road link (i, j) at a later time instant t2 with the shortest
travel time. In this case, there is no need to impose FIFO rule.

3.4 Solution methods
In this section, we first propose a two-stage solution method to solve the LLM in Sec-
tion 3.4.1. Then, in Section 3.4.2, based on the analysis of the relationship between the
main decision variables, we adopt a metaheuristic, Parallel Genetic Algorithm (PGA),
to obtain a near-optimal solution to the bi-level problem. This method includes an
iterative process of solving the lower-level and the upper-level problems.
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3.4.1 Solution method for the LLM

One question remains to be tackled before we can solve the proposed LLM in Section
3.3.3: how to generate the set of paths Pr for each group of trips r 2 RPV . The set of
paths Pr is referred to as a path pool in the following. After getting the path pool, the
proposed LLM can be solved.

Generating all possible paths for a given O-D pair is a hard problem, as its number
could be huge, especially in a large-scale network. Solving the proposed model with
a large number of alternative paths is not only computationally expensive but also
unnecessary. Theoretically, vehicles can drive freely and use any path possible to reach
their destination. However, in practice, PVs that drive according to the UE principle
will behave selfishly to minimise their travel costs. With this aim, path choices may
be limited, as vehicles will always compete for the shortest paths until the shortest one
becomes congested and is no longer the optimal one. Then, detouring from the shortest
path is needed to avoid traffic congestion and alternative paths will be used. Regarding
travel time and travel distance-related costs, long detours are also less likely to occur,
which further restricts the available options.

Figure 3.2: Framework of the lower-level solution method.
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To solve the LLM, we propose the two-stage solution method depicted in Figure
3.2. At Stage 1, we propose a method for generating a path pool for each O-D pair
with a reasonable size. The key idea is to identify the longest feasible path in terms
of distance that PVs might potentially use, and then generate paths whose length falls
beneath the length limit. The longest path for each O-D pair is identified via itera-
tively solving an additional MILP model which is adjusted from the proposed LLM
in Section 3.3.3. The mathematical formulation of this model is presented in Section
3.4.1. The procedure is embedded with the weight determination algorithm described
in Appendix 3.A.1. The path enumeration with length limits is presented in Section
3.4.1. By doing so, the unnecessarily long and redundant paths which are unlikely to
be used will be eliminated.

At Stage 2, given the path pool for each group of trips, the proposed LLM is solved
using the same iterative procedure embedded with the weight determination algorithm.
When the algorithm terminates, it is possible to obtain the values of the decision vari-
ables and the objective function. These values will be passed to the upper level.

Adjusted lower-level model (ALLM)

A new MILP is adjusted from the proposed LLM to produce the longest possible path
in terms of distance for PVs in each group of trips. Different from the LLM, the
adjusted lower-level model (ALLM) assumes that PVs make route choices based solely
on travel times instead of the generalised costs, representing an extreme case where
travellers minimise travel time without considering travel distance. While this scenario
may not directly correspond to actual travel patterns, the ALLM serves as a crucial step
in our solution method to facilitate the solution of the LLM.

The objective function of PVs in ALLM is to minimise the difference between the
travel times using different routes for the same O-D pair. By doing so, PVs are likely
to detour longer to avoid congestion when a network is super crowded. Later on, when
the distance-related cost is included in the objective function of LLM, travellers in PVs
will not use paths that are longer than the solution found in the ALLM. Taxis make
route choices with the same objective as in LLM. The proposition of ALLM serves
as a part of our solution method to facilitate the resolution of the LLM, although PVs
only considering travel time may not directly correspond to actual travel behaviours.

Changing the behaviours requires modifying the modelling. As we do not need to
track the travel distance using different paths, the path-based variables are no longer
necessary in the ALLM. The notations of the newly introduced arc-based variables are
presented in Table 3.3. Following is the formulation of the ALLM.
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Table 3.3: Notation

Variables Description

Ar
t

Binary variable which is 1 when at least one trip in group r 2 RPV arrives at time t 2 T ,
and 0 otherwise.

mr Continuous variable representing the maximum travel time of trips in group r 2 RPV .

Objective function

[ALLM] minJ = w · JT +(1�w) · ĴP (3.30)

where

ĴP = l Â
r2RPV
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str + Â
r2RPV

0

@ Â
(it1 ,d
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t )2GPV
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t
· t �ar ·nr

1
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The objective function is updated to Equation (3.30), with JT remaining unchanged
from Equation (3.6) and ĴP represented by Equation (3.31). The aim of routing PVs is
to minimise firstly the maximum travel time relative to the shortest possible travel time
for all groups of trips and then the total travel time over all the trips. The objective
function (3.30) is subject to Constraints (3.8)-(3.17), (3.26)-(3.28), and (3.32)-(3.37).
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mr � Ar
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FPV
it1 jt2

= Â
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it1 jt2

, 8(it1 , jt2) 2 GPV (3.37)

Constraints (3.32) and (3.33) ensure that the passenger flows in group of trips r 2
RPV depart from the origin node or at the scheduled departure time ar and arrive at the
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destination node dr at time t 2 T . The flow conservation of passengers driving their
PVs is guaranteed by constraints (3.34). The arrival times of trips in group r 2 RPV are
specified in constraints (3.35) using a binary variable Ar

t . Among them, we determine
the maximum travel time over the trips in group r 2 RPV , as indicated in constraints
(3.36). The movement of PVs is identical to the movement of travellers within the
cars. Constraints (3.37) determine the total vehicle flow on each link in the time-space
network.

After solving the ALLM to optimality, the route choices of PVs can be retrieved
from the optimal solution, based on which the longest feasible paths in terms of dis-
tance for each O-D pair can be identified.

Path enumeration with length limits

Given the length limitations, the path enumeration method is needed to generate all the
paths with lengths shorter than or equal to these limitations. One frequently used path
enumeration method is the k-shortest path algorithm. Assuming that travellers driving
PVs will have perfect information on traffic, going back to a previously visited node
is unrealistic. Thus, we adopt a loopless k-shortest path algorithm (Yen, 1970) with
a predefined sufficiently large value of k (k represents the number of shortest paths to
find). The algorithm terminates once the length of a newly generated path exceeds the
longest distance threshold. Otherwise, if the total number of generated paths reaches
k and the length of the longest path currently found is less than the threshold, we
increase the value of k until all paths with lengths less than or equal to the maximum
length limits are found.

Using the k-shortest path algorithm with a length limit determined by solving
model ALLM can effectively restrict the size of the path pool. However, there may
be an exception in a particular circumstance. Assuming that vehicles could travel at
the maximum permitted speed on the road network without experiencing any conges-
tion, a longer path in terms of distance with a higher maximum speed limit may result
in a shorter travel time. It typically occurs outside of built-up areas or on expressways.
With a longer length as the threshold value, the k-shortest path algorithm is likely to
produce a large path pool containing paths that are very similar to one another. Some
are deviations from the shortest path, consequently, they are highly overlapped and
only differ by a small number of links. These paths are likely to be perceived as the
same paths from the driver’s perspective as they provide no additional utility. A variety
of methods have been proposed for generating a path set considering the overlapping
issues. Interested readers can refer to papers written by Chen et al. (2012) and Chon-
drogiannis et al. (2020).
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To shrink the size of the path pool while preserving its heterogeneity, we employ a
similarity-based reduction method (Liu et al., 2017; Chondrogiannis et al., 2020). This
method consists of removing paths whose similarity to any selected paths exceeds a
predetermined threshold q . Schnabel & Löhse (1997) proposed that the paths are not
considered separate if they overlap more than 50%. In this chapter, we use a less
restrictive value of 80% to guarantee the solution quality. The similarity between two
paths is calculated by dividing the total length of overlapping links by the length of
the shorter path between them. In this way, the unnecessarily lengthy paths could be
excluded. The pseudo-code of the similarity-based path pool reduction procedure can
be found in Algorithm 3.1. By reducing the number of possible paths in the path pools,
the number of variables and constraints in the LLM are reduced.

Algorithm 3.1 Similarity-based path pool reduction procedure
Require: similarity threshold q , longest distance thresholds ldr for r 2 RPV .
Ensure: PathPoolU pdated (a list).
1: Initialise empty lists PathPool := [[ ]] for r 2 RPV , PathPoolU pdated := [[ ]] for r 2 RPV .
2: for r in RPV do
3: Generate paths within the longest distance thresholds ldr and sort them by path length from

shortest to longest.
4: Save the sorted paths to list PathPool[r].
5: Add the shortest path to list PathPoolU pdated[r].
6: for path1 in PathPool[r] do
7: flag := true
8: for path2 in PathPoolU pdated[r] do
9: Compute the similarity q 0 between path1 and path2.

10: if q 0 > q then
11: flag := false
12: break
13: end if
14: end for
15: if flag is true then
16: Add path1 to list PathPoolU pdated[r].
17: end if
18: end for
19: end for

3.4.2 Solution method for the overall problem
To solve the proposed bi-level programming model, an overall algorithm is required af-
ter solving the lower-level model. In our problem, the upper level is relatively straight-
forward compared to the lower level due to the limited number of decision variables
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(fleet size variables for CTs and ATs) and constraints. While a simple enumeration
scheme-based method, such as a binary search algorithm, appears to be a possibility,
this is not suitable for solving a heterogeneous FSMVRP considering endogenous traf-
fic congestion and the interaction of different types of vehicles. We explain the reasons
below.

First, the interdependence of the fleet size variables increases complexity. Modi-
fying one variable can potentially lead to changes in the other variable since the fleet
sizes directly impact road traffic and congestion. Additionally, this relationship is non-
linear and non-monotonic, which means that multiple local minima may exist. For
instance, one local minimum could occur when both fleet sizes are small, while an-
other local minimum could be found when the AT fleet size is large, and the CT fleet
size is even smaller. In the latter case, with more ATs, relocation needs can be reduced,
thus alleviating congestion effects on the road network. Consequently, a smaller fleet
of CTs would suffice to serve more requests, leading to cost savings for TNCs as they
employ fewer drivers for CTs. A binary search algorithm cannot be used in our case,
as it discards half of the feasible region once the searching direction is determined.
Consequently, it may only find one local minimum while another local minimum may
exist in the discarded feasible region. Therefore, relying on a binary search algorithm
to find all possible local minima is not possible.

Enumerating all feasible solutions is a possible, but computationally expensive ap-
proach, particularly when the fleet size bounds are large and there are multiple types
of fleets. Given these considerations, employing heuristic/meta-heuristic methods to
solve the proposed bi-level problem is more suitable. These methods can effectively
handle the complexities of the problem and are better equipped to identify multiple
local minima, considering the nonlinearity and non-monotonicity of the relationship
between fleet sizes and congestion. Several heuristic and meta-heuristic techniques
have been employed to address bi-level leader-follower problems, such as genetic al-
gorithm (Madadi et al., 2020), simulated annealing (Chen et al., 2017), tabu search
(Camacho-Vallejo et al., 2021), etc. Among them, the genetic algorithm is one of the
most commonly used methods (Farahani et al., 2013) and has been shown to have a
competitive performance compared with other methods (Liu et al., 2009).

The primal disadvantage of adopting a Genetic Algorithm (GA) in our problem
is the computationally expensive fitness evaluation process for each individual in the
population along with the evolution process. However, since GA is a population-based
meta-heuristic working on improving the quality of the whole population instead of
a single solution, every individual can be evaluated independently at each generation.
The independent parts of GA can be distributed to different processes and executed in
parallel to reduce computational time. Interested readers may refer to the literature for
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more details (Eklund, 2004; Katoch et al., 2021). In this chapter, we adopt a method
called Global single-population master-slave GA which parallelises the fitness evalua-
tion process (solving the lower-level problem) because it is the most time-consuming
part of the problem.

Figure 3.3: Structure of the parallel genetic algorithm (PGA)

GA is firstly applied at the upper level to generate individuals, which are then
distributed to independent processors to solve the lower-level problem. No tasks asso-
ciated with the GA process such as crossover and mutation operators are paralleled as
its execution takes a very short time. Parallelism enables the use of a multi-core CPU’s
computational capacity, resulting in a significant reduction in computational time. Fig-
ure 3.3 shows the structure of the parallel genetic algorithm (PGA). A brief overview
of the PGA is presented in the following section.

Initialisation The first step of the PGA is to initialise the population. The population
consists of a certain number of chromosomes, each of whom represents a potential
solution to our problem. In this chapter, we simplify the problem by assuming that no
trips will be rejected. Thus, each chromosome is composed of two integer variables
[VCT ,V AT ], representing the fleet size of CTs and ATs.

Before randomly generating the population’s first generation, the bounds for these
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two variables need to be specified. One upper bound for the fleet size of CTs and
ATs is the total number of trips for CTs and ATs, which means one vehicle per trip,
while a lower bound is not that easy to find. We search for respective lower bounds
of CTs and ATs that ensure the feasibility of the model. In other words, these values
are the minimum number of vehicles below which it would not be possible to satisfy
the demand. Thus, these lower bounds correspond to the minimum fleet sizes for the
problem. A binary search algorithm is proposed to find that lower bound. Notice that
the binary search will be conducted on only one type of fleet at a time, with the value of
the other type being its upper bound, to make sure that the latter type never introduces
infeasibility. Given the fleet size value of CTs and ATs, the feasibility of the model can
be identified by solving the LLM (not necessarily to the optimum). This feasibility can
then act as the indicator to repeatedly divide the fleet size bound of CTs or ATs that
contain the minimum feasible solution in half until there is only one value remaining.
This value is the lower bound of one fleet.

An initial lower bound needs to be given before implementing the binary search al-
gorithm. We assume all the passengers will be delivered in the shortest possible travel
time and no relocation time of taxis is considered. Once the passenger is dropped off at
the destination, the taxi can immediately begin serving the next trip. Thus, this initial
lower bound value can be obtained by finding the maximum number of overlapping
travel time intervals for all trips at any point in time. Here, the travel time interval for
each trip is defined as the time difference between the departure time and the earliest
possible arrival time when heading from the origin to the destination. Figure 3.4 illus-
trates how to determine the minimum number of taxis required to serve four trips. In
this case, the maximum number of overlapped travel time intervals is three, implying
that three vehicles are needed as a minimum to serve all trips. The pseudo-code of the
detailed process for finding the lower bound of fleet sizes can be found in Appendix
3.B. Knowing the bound of the fleet size of CTs and ATs, the population in the first
generation can be randomly generated from a uniform distribution.

Figure 3.4: Illustration of finding the minimum number of taxis to serve four trips.
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Parents selection The parents who will have offspring are selected from the popula-
tion using a fitness proportionate selection method. Knowing the fitness value of each
individual, we rank the individuals and then introduce a new fitness function based on
the rank. Individuals with a higher rank are more likely to be selected as parents.

Crossover operator The crossover operator exchanges the chromosomes of the se-
lected parents to produce two offspring. In our case, the crossover operator is applied
with a probability Pc. We randomly generate a number between zero and one for each
pair of parents to determine whether we should apply this operator. If this random
number is less than Pc, we perform the crossover operator. Otherwise, we keep the par-
ents’ chromosomes unchanged. In this chapter, we cross the fleet size values to change
the chromosome of the parents as only two values are included in each chromosome.

Mutation operator After the crossover operator is applied, the mutation operator is
executed for every offspring with a given probability. Two types of mutation operators
are used in our algorithm: the creep mutation operator and the random mutation oper-
ator. In our case, a simplified creep mutation operator is used by simply performing
+1 or -1 to each value in a chromosome with an equal probability. By doing so, the al-
gorithm could exploit more solutions in a concentrated area in the solution space. The
random mutation operator is used to explore a large region for a better solution and
avoid the local optima. It replaces the value in the chromosome with a random integer
between the upper bound and lower bound of the fleet size with a given probability.

The mutation operator is applied to fleet size values from each chromosome ran-
domly. For the newly produced offspring, we perform the creep mutation operator. If
the chromosome of an offspring has already existed in the current population, the creep
mutation operator is applied with a high probability Pcm1. Else, the creep mutation op-
erator is applied with a low probability Pcm2. For the parents whose chromosomes stay
unchanged after performing the crossover, the random mutation operator is applied
with a probability Prm to explore the feasible region. After performing the mutation
operator, the chromosomes will be added to the list of offspring if no individual in the
current population has the same chromosomes as them.

Fitness evaluation Once we obtain new offspring, a fitness evaluation will be con-
ducted. To avoid performing repetitive calculations, the check is made to see if the
fitness of the current offspring has been calculated previously. For those who have
been computed, we can obtain their fitness value directly from memory. For those off-
spring who have never been evaluated, individual fitness evaluations will be distributed
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to different processors and performed in parallel to maximise the computational capac-
ity of multiple cores.

Multiple criteria are defined to terminate the LLM and ALLM solution process in
case the computational time is extremely long. Firstly, the model is solved as close to
optimality as possible within a small time limit (denoted as a soft time limit). After
reaching this time limit, the model is terminated either because the MIP gap reaches
a predefined gap limit or the computational time reaches a predefined large time limit
(denoted as a hard time limit).

Survivor selection The elitism replacement approach is used for the survivor selec-
tion. After getting the fitness value of the offspring, the previous generation and the
offspring are put in a pool. The first q% best individuals in terms of fitness value are
firstly selected. Then, we randomly select from the rest individuals until the number
of selected individuals equals the predefined population size.

Termination criteria We terminate the algorithm based on three criteria. First, if
there is no improvement of the best individual in the population for a certain number
of successive iterations. Second, if the average population quality of the top 5 fittest
individuals has no improvement after a certain number of successive iterations. Here,
we measure the average population quality using the mean and standard deviation val-
ues of the individual fitness. Third, if the predefined maximum number of generations
has been reached.

3.5 Computational experiments
To test the performance of the proposed model and algorithm, we present two case
studies in this section. Firstly, a small toy network case study is presented to demon-
strate that solving the proposed lower-level problem can achieve an approximated
mixed-equilibrium in Section 3.5.1. Then, in Section 3.5.2, we apply the proposed
bi-level model to a quasi-real case study representing the city of Delft, in the Nether-
lands.

3.5.1 Demonstration of the lower-level problem on a small toy net-
work

The small toy network we use contains 16 nodes and 48 directed links (each road
segment has two directions), as shown in Figure 3.5. Among all nodes, nodes 4, 6, 9
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and 11 are parking nodes that can be regarded as free parking depots, while the rest
of the nodes do not allow parking. For the links in this small toy network, each of
them has an equal length of 2 kilometres and the same capacity of 1800 vehicles/h.
The minimum and the maximum travel time for traversing a link are set to 1 time step
(2.5 minutes) and 4 time steps (10 minutes), respectively. In the current experiment,
no AVs-only zone is included as we would like to leave out the impact of the AVs zone
on the route choices and only focus on the equilibrium achieved by solving the model.

Six groups of trips are considered, with the trip information shown in Table 3.4.
Here, for simplicity, only CTs and PVs are considered options for travellers because the
routing behaviours of CTs and ATs are the same. By doing so, we focus on comparing
the route choices of road users with different routing behaviours (SO and UE). The
lower bound for the CTs’ fleet size can be easily derived from the given data, 390, as
all the trips depart at the same time. Given a great number of trips in each group, traffic
congestion occurs in the network.

The parameters related to the CTs and PVs are as follows. com with m 2 {CT,PV}
is set to 0.25 euros/km and 0.27 euros/km, respectively, representing the unit oper-
ational costs for using CTs and PVs. These values are calculated according to the
methodology proposed by Bösch et al. (2018). cd represents the drop-off delay penalty,
which is 0.2 euros/min based on Liang et al. (2020). ct is the travel time related cost
for PVs which is set to 9 euros/h based on Kouwenhoven et al. (2014). The estima-
tion parameters a and b of the BPR function are set to 2 and 4, respectively, based on
Van Essen & Correia (2019). The optimisation period is 10 time instants.

Using the minimum fleet size of CTs as the input, the LLM is solved to demonstrate
the approximated mixed equilibrium. A base scenario (S0) is tested first, followed by
two different scenarios to see how the value of the delay penalty affects the route
choice of different road users when reaching an approximated mixed equilibrium. In
the first scenario (S1), we assume there is no penalty for delivery delay, so cd is set to
0 euros/min. In the second scenario (S2), a high penalty for delivery delay is set to 0.4
euros/min. Here, only the parameters that could be controlled by TNCs are tested. The
operational costs of CTs and PVs, and the value of travel time using PVs are not varied
for sensitivity analysis as these parameters could be well estimated (Kouwenhoven
et al., 2014; Bösch et al., 2018).

The lower-level framework was implemented in Python and solved using Gurobi
9.0.2 on an Intel(R) Xeon(R) W-2123 CPU @3.60 GHz, and 32.00 GB RAM com-
puter. The base scenario was tested firstly with a given initial weight w as 0.5. The
algorithm terminates when the relative difference between the contributed values is
smaller than 5%.
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Figure 3.5: Illustration of the small toy network.

Table 3.4: Demand for CTs and PVs.

Index of
group of trips

Origin Destination Departure time
(time instant)

Latest arrival time
(time instant)

Number
of trips

Type of
vehicle

1 1 10 0 10 140 PV
2 1 10 0 10 140 CT
3 11 6 0 10 130 PV
4 11 6 0 10 130 CT
5 5 7 0 10 120 PV
6 5 7 0 10 120 CT

Computational results at Stage 1: Path pool generation

The computational results are shown in Table 3.5, demonstrating that three iterations
are needed to satisfy the convergence criterion and accurately determine the value of
w in stage 1. After solving the ALLM, we retrieve the route choices of CTs and
PVs from the optimal solution and then display the results in Table 3.6. From the
table, we observe that PVs choose different paths with the same travel times. An
equilibrium state is reached in which no driver is able to deviate from his/her current
route otherwise travel time will increase. Hence, this scenario exemplifies a UE. In the
case of the taxis, the travel times and distances differ from each other. Some taxis take
the shortest path regarding length and travel time, while others are sacrificed to reach
a SO. Compared with the PVs, taxis would prefer shorter paths in terms of distance
as they consider generalised costs when routing. But PVs choose longer paths to have
shorter travel times.

The longest travel distance of PVs for group 1, 3 and 5 can be determined from
the optimal solution of ALLM, which are 10km, 8km, and 8km, respectively. These
values are then used as the length limits to generate a path pool for each group of trips
using the k-shortest path algorithm. In this small case, 9 paths, 6 paths and 7 paths are
obtained for group 1, 3 and 5, respectively, which are used for Stage 2.
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Table 3.5: Results of the base scenario in the small toy network.

Number of iterations Value of w , l Objective function values Contributed values

Stage 1 3 0.99987
1251600

JT = 1030,
ĴP = 7928780

w · JT = 1029.87,
(1�w) · ĴP = 1029.87

Table 3.6: Route choices at Stage 1.

O-D Model Paths Flow Path length
(km)

Travel time
(timestep)

1-10 ALLM Taxi (SO): [1-2-6-10], [1-5-6-10],
[1-5-9-10]
PV (UE): [1-2-3-7-11-10], [1-2-6-
10]

34, 53, 53
48, 92

6, 6, 6
10, 6

7, 4, 4
7, 7

11-6 ALLM Taxi (SO): [11-10-6], [11-7-6]
PV (UE): [11-12-8-7-6], [11-15-
14-10-6], [11-7-6]

53, 77
53, 53, 24

4, 4
8, 8, 4

2, 4
4, 4, 4

5-7 ALLM Taxi (SO): [5-6-7], [5-1-2-6-7], [5-
1-2-3-7]
PV (UE): [5-6-7], [5-9-10-11-7]

59, 8, 53
67, 53

4, 8, 8
4, 8

4, 6, 6
4, 4

Computational results at Stage 2: Approximation of mixed equilibrium

Knowing the path pool for each group of trips, the LLM is solved. The final results,
displayed in Table 3.7, reveal that three iterations are required to achieve a balanced
contribution of the objective function between taxis and PVs, signifying the conver-
gence of the algorithm. From the results, we see that the total operational cost of taxis
in the LLM, denoted by JT is higher than that in the ALLM, because of the greater
travel time and longer travel distance of CTs resulting from the intense competition for
the lowest cost paths with PVs.

Table 3.7: Final results of the base scenario in the small toy network.

Stage 2 Number of iterations Value of w , l Objective function values Contributed values

LLM 3 0.99953
591322.41

JT = 1192,
JP = 2583009.41

w · JT = 1191.44
(1�w) · JP = 1207.93

Table 3.8 shows the final route choices of taxis and PVs. In the LLM, PVs consider
the general cost when making route choices. From the table, we can see that PVs
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Table 3.8: Final route choices.

O-D Model Paths Flow Path length
(km)

Travel time
(timestep)

1-10 LLM Taxi (SO): [1-2-6-10], [1-5-9-10]
PV (UE): [1-2-6-10], [1-5-6-10]

87, 53
39, 101

6, 6
6, 6

6, 5
6, 7

11-6 LLM Taxi (SO): [11-12-8-7-6], [11-7-6]
PV (UE): [11-7-6], [11-10-6]

8, 122
4, 126

8, 4
4, 4

4, 4
4, 4

5-7 LLM Taxi (SO): [5-1-2-3-7], [5-6-7], [5-
9-13-14-10-6-7], [5-9-10-6-7]
PV (UE): [5-6-7]

53, 6, 8,
53
120

8, 4, 12, 8
4

4, 4, 7, 5
4

choose paths with similar or the same generalised costs. Taxis take paths with diverse
generalised costs. Some taxis are sacrificed and take a path with a large cost to reach
a SO. By analysing the flow patterns and the route choices of CTs and PVs, we can
demonstrate that an approximated mixed equilibrium has been reached.

Sensitivity analysis

A sensitivity analysis regarding the delay penalty parameter cd is carried out. For
illustration purposes, only the route choices of CTs and PVs departing from node 11
and heading to node 6 are shown in Table 3.9. Similar patterns happen for the other
O-D pairs. When there is no delay penalty in scenario 1, taxis no longer care about the
travel time and only consider the travel distance. Therefore, in the ALLM, taxis choose
the shortest distance path with a long travel time, while in the LLM, PVs would also
like to join in the competition for the shortest travel distance. To cope with the needs
of PVs, the travel time of the shortest paths can no longer be very long. Consequently,
some taxis have to divert to longer paths to avoid extreme congestion. In scenario 2,
where the delay penalty is twice as high, we found that there is no change to the route
choices of PVs and taxis in the ALLM, while in the LLM, taxis prefer to use longer
paths but lower travel time to reduce the delay penalty.

3.5.2 Quasi-real case study of the city of Delft, in the Netherlands

Application setting

The next set of experiments is based on the network of the city of Delft, which is
located in the South Holland province of the Netherlands. We call this case study a
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Table 3.9: Computational results for the referred scenarios

Scenario Model Paths Flow Path length
(km)

Travel time
(timestep)

S0 (Base) ALLM Taxi (SO): [11-10-6], [11-7-6]
PV (UE): [11-12-8-7-6], [11-15-14-10-
6], [11-7-6]

53, 77
53, 53, 24

4, 4
8, 8, 4

2, 4
4, 4, 4

LLM Taxi (SO): [11-7-6], [11-12-8-7-6]
PV (UE): [11-7-6], [11-10-6]

122, 8
4, 126

4, 8
4, 4

4, 4
4, 4

S1 (No delay
penalty)

ALLM Taxi (SO): [11-10-6]
PV (UE): [11-12-8-7-6], [11-7-6], [11-
15-14-10-6]

130
24, 53, 53

4
8, 4, 8

7
4, 2, 4

LLM Taxi (SO): [11-10-6], [11-12-8-7-6]
PV (UE): [11-7-6], [11-10-6]

122, 8
126, 4

4, 8
4, 4

4, 8
4, 4

S2 (High de-
lay penalty)

ALLM Taxi (SO): [11-10-6], [11-7-6]
PV (UE): [11-12-8-7-6], [11-15-14-10-
6], [11-10-6]

77, 53
53, 53, 24

4, 4
8, 8, 4

4, 2
4, 4, 4

LLM Taxi (SO): [11-12-8-7-6], [11-7-6], [11-
15-14-10-6]
PV (UE): [11-10-6], [11-7-6]

53, 49, 28
126, 4

8, 4, 8
4, 4

4, 2, 4
4, 2

quasi-real one, because of the following reasons: (1) A simplified road network of
Delft is used instead of the real one; (2) The expansion process and the transformed
links of the AVs-only zone are experimental; (3) Despite using as source real travel
data, the mobility data tested in the case study was generated from the Dutch mobility
dataset (MON 2007/2008) which does not have a large sample for this city (Correia &
Van Arem, 2016). The purpose of carrying out this case study is to test the effectiveness
of the proposed method and get first insights into the impacts on travellers imposed by
AVs-only zones.

The road network used for this study is simplified to 35 nodes and 104 directed
links (each road segment has two directions). In the network, nodes 19, 3, 10, 22,
27 and 15 are designated as free parking depots for taxis. Both the CTs and ATs are
permitted to utilise the nodes located at the border of the AVs-only zone. Moreover,
two types of links with one or two lanes per direction and a capacity of 1600 or 3200
are considered. The maximum travel speed for the lower and higher capacity links was
assumed to be 50km/h and 70km/h, respectively. The road capacity triples after the
road links are transformed to AV links. The minimum travel time and maximum travel
time on each link are calculated based on the free-flow speed and a speed of 5 km/h.

Figure 3.6 (a) depicts the conventional road network where there is no AVs-only
zone. The AVs-only zone is expanded gradually covering 25%, 50%, 75%, and 100%
of the links, as shown in Figure 3.6. To expand the AVs-only zone, we initially define
it in areas characterised by frequent traffic congestion, such as the city centre, train
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Figure 3.6: Road networks of Delft with different AVs-only zone size: (a) 0%, (b) 25%,
(c) 50%, (d) 75%, (e) 100%.

station, and university campus. Subsequently, we employ a randomised approach to
gradually expand the zone until it encompasses the entire city. However, it is important
to note that the optimal design of the AVs-only zone is beyond the scope of this thesis.
At that point, no HVs are permitted to operate on the network. For this particular
exceptional scenario, the fleet sizing problem can be easily solved by a single-level
MILP model with the objective function (3.1) subject to Constraints (3.3), (3.4), (3.8)-
(3.17) and (3.26)-(3.28).

The Dutch mobility dataset (MON 2007/2008) is used in this study to generate
mobility data for the morning peak hour. This data includes trip information, such as
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origin, destination, departure time, arrival time, and travel mode for O-D pairs on a
typical working day. A total of one hour is studied during the morning peak when de-
mand is high and traffic congestion has a significant impact on vehicles’ route choices.
The data set we used includes 1163 trips in total, with 23 groups for taxis and 23
groups for PVs. The departure time of each group of trips is distributed within one
hour. Once generated, the departure time does not change with the expansion of the
AVs-only zone. Regarding the preference of CTs and ATs, in a base scenario with 0%
AVs-only zone, more than 80% of the trips with a preference for CTs are generated
assuming that the trust of users towards AVs in level 5 is relatively low at the early
stage (Correia et al., 2019). Besides, a time step of 2.5 mins is used.

The parameter values used in the solution method are shown in Table 3.10. For
simplification purposes, the minimum service rate a in Constraint (4) is set to 1 in this
case study, meaning that all demand will be served by taxis. The influence of the value
of a will be studied in future research. The appendix contains the parameter tuning for
the similarity threshold and population size.

Table 3.10: Parameter values.

Parameters Values Parameters Values

com,m 2 {CT,AT,PV} 0.25, 0.32, 0.27 eu-
ros/km

Population size 8

cp 10 euros/hour Crossover rate 0.8
c f m,m 2 {CT,AT} 1, 1.2 euro/vehicle/h Mutation rate (Pcm1, Pcm2, Prm) 0.5, 0.03, 0.5
cd 0.2 euros/min Percentage of elitism individuals 0.8
ct 0.27 euros/min Maximum number of generations 100
p0 3 euros/trip Maximum number of iterations with no

change for the best solution
20

pm,m 2 {CT,AT} 2.55, 2.3 euros/km Similarity threshold (q ) 80%
Minimum service rate (a) 1 Relative difference threshold (e) 5%
Soft time limit 30 mins Maximum number of iterations with no

change for the quality of the top five
fittest individuals

10

Hard time limit 60 mins MILP gap limit 2%

Performance of the solution method

We applied the proposed solution method to the bi-level problem in several scenarios
where the coverage rate of the AVs-only zone is 0%, 25%, 50% and 75%. Figure
3.7 shows the computational performance in each scenario. Three main indicators are
shown along with the iteration until the algorithm terminates: the best fitness value,
the mean and the standard deviation value of the fitness value of the top five fittest
individuals.
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According to the charts, convergence has been reached for all four scenarios. In
addition, the solution method ended because the maximum number of iterations where
the mean value and the standard deviation of the top five fittest individuals do not
change has been reached. In the first few iterations, PGA explored the feasible solution
space and selected the best few individuals to produce the next generation. As the
iterations progressed, the mean fitness of the top five fittest individuals approached the
best fitness value, and their standard deviation approached zero. This means that the
quality of the population has reached a stable and favourable state in a limited number
of iterations. The computational times for these four scenarios are 23.7h, 13.6h, 4h,
and 6.7h, respectively, demonstrating a decreasing trend as the coverage of the AVs-
only zone increases. Besides, to mitigate the risk of the algorithm converging to a local
optimum, we executed the PGA algorithm multiple times using identical experimental
settings for each scenario. All yielded consistent results.

Figure 3.7: Performance of the solution method with different coverage rates of the
AVs-only zone: best fitness value, mean and standard deviation of the fit-
ness value of the top five fittest individuals.
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Comparison between the best fleet size and the lower bound

The optimisation results for the base scenario are shown in Table 3.11. Note that the
fleet size obtained by applying PGA is a near-optimal solution as the optimality cannot
be guaranteed since PGA is a meta-heuristic. We call it ‘best’ hereinafter to distinguish
it from its lower bound. The lower bound which is the minimum feasible fleet size to
satisfy all the demand in different AVs-only zone settings can be obtained by applying
the binary search algorithm presented in Section 3.4.2.

Looking at the fleet size in each scenario, we notice that the minimum fleet size
is the best one when the coverage rate of the AVs-only zone is 25%, whereas, in the
remaining scenarios, the best fleet size differs from the minimum one. To be more
specific, only the best fleet size of the ATs differs. From Table 3.11, it is quite clear
that this difference comes from the cost-saving deriving from the shorter relocation
distance of ATs, despite the larger fleet size. In all the scenarios, the best fleet size of
CTs equals their minimum feasible fleet size, as deploying a larger CT fleet is more
costly because more human drivers have to be hired. That is why a TNC will try to
deploy the least number of CTs. Therefore, deploying ATs may create a cheaper form
of on-demand mobility.

The relocation distance consists of three possible parts: the distance from the drop-
off location to the parking depot, the distance from the parking depot to the next pick-
up location and the distance from the drop-off location to the next pick-up location,
which therefore highly depends on the location of the parking depots and the demand
pattern. Theoretically, locating a parking depot in an area frequently visited by trav-
ellers or densely populated could reduce the relocation distance. However, such loca-
tions typically lack sufficient space for constructing large parking facilities. In this case
study, three parking depots are located in densely populated areas (corresponding to
nodes 3, 10 and 22), and four parking depots are located on the outskirts or outside the
city (corresponding to nodes 11, 15, 19, 27). Less densely distributed parking depots
also result in large relocation costs. Nevertheless, the optimal location and distribution
of parking depots are not the focus of this chapter.

Demonstration of the approximated user equilibrium

To demonstrate that the approximated user equilibrium for PVs has been achieved, we
calculate the ratios of the maximum cost to the minimum cost among all the utilised
paths for each group of trips. A ratio approaching 1 indicates superior results, as it
signifies that the costs of all utilised paths are similar. Then, in Figure 3.8, we show
the mean and standard deviation (SD) of the calculated cost ratios across all groups of
trips for scenarios with different coverage rates of the AVs-only zone (0%, 25%, 50%,
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Figure 3.8: Mean and standard deviation of the cost ratios across all groups of trips
for scenarios with different coverage rates of AVs-only zone (0%, 25%,
50%, and 75%) and the best fleet sizes.

and 75%) and the best fleet sizes.
As illustrated in Figure 3.8, the mean values range between 1 and 1.047 for all

the scenarios. This indicates that, on average, the costs of the utilised paths are very
similar across each group. For scenarios with a 0% and 25% coverage rate of the
AVs-only zone, the SD values are 0.077 and 0.034, respectively, as represented by
the error bars in the figure. These values are reasonable, considering a perfect UE
can hardly be achieved because of the discrete time setting in the time-space network.
Notably, when the AVs-only zone coverage rate exceeds 50%, all scenarios exhibit a
mean value of 1 and an SD of 0. This suggests that UE has been achieved without any
deviation in the groups. Additionally, the mean and SD values show a decreased trend
in the figure with the increased coverage rate of the AVs-only zone. This is due to the
decreased number of trips using PVs with the expanded AVs-only zone, resulting in
fewer vehicles competing selfishly for the shortest paths in the network.

Validation of model performance regarding data with uncertainty

In the synthetic demand data created for the case study, two sets of information are
generated randomly: departure times and preferences towards CTs or ATs for each
group of trips. In reality, trip departure times may fluctuate within a time interval
instead of being static. The preference towards CTs or ATs is based on travellers’
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perceptions and their personal habits, which may change as well. However, travellers’
preferences have a great impact on a city’s demand pattern. When the demand pattern
changes, it is worthwhile to evaluate the model performance.

Besides the original dataset (denoted as dataset 0), we implemented the proposed
solution method using ten different data sets, five of which had departure times that
fluctuated by ± 3 time steps (a total time range of 15 minutes) based on dataset 0 (de-
noted as datasets 1-5), another five with randomly generated vehicle type preferences
(denoted as datasets 6-10). The performance of the solution method with different
datasets is displayed in Figure 3.9, in which (a) shows the computational times and
(b) shows the maximum number of iterations needed to terminate the algorithm. The
computational times are dependent on the required number of iterations and the solu-
tion time of the proposed MILP models. When the coverage rate of the AVs-only zone
is relatively low (0% and 25%), the algorithm takes fewer iterations but more time to
converge compared to other scenarios. This is due to the high demand for PVs at the
early stage of the AVs-only zone’s expansion. To solve the proposed LLM, a large
number of paths are generated resulting in a long solution time of the model in each
iteration. On the other hand, the demand for CTs and ATs is relatively small at these
stages, leading to a small solution space for PGA. So the algorithm converged easily.
When more demand shifts from PVs and CTs to ATs with the expansion of AVs-only
zone, the computational time decreases accordingly and more iterations are needed for
some datasets because the solution space of PGA is larger even though the solution
time for the model is short. When the coverage rate of the AVs-only zone is 100%,
no iteration is needed as the fleet sizing problem can be solved by a single-level MILP
model.

Figure 3.9: Performance of the solution method with different datasets: (a) Computa-
tional time, (b) Maximum number of iterations.

The computational results are shown in Table 3.12. Analysing the optimisation
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results for the first five datasets, we can see a reasonable fluctuation range regarding
the best fleets, demonstrating the effectiveness of the proposed solution method. These
results provide a TNC with a preliminary insight into choosing the proper fleet sizes
considering the randomness of daily trips. A more intuitive suggestion is to take the
mean value of all the results. Future research could include a comprehensive stochastic
analysis in order to obtain a robust solution. Regarding the results of datasets 6-10, the
fleet size fluctuates during the early expansion of the AVs-only zone. This is due
to the demand structure change caused by the randomly generated preference toward
vehicles. With the increasing coverage rate of the AVs-only zone, more demand will
have to be served by ATs (no other option), thereby smoothing the effects of people’s
preference uncertainty on fleet size decisions.

Table 3.12: Fleet sizing results for CTs and ATs of different data sets.

Coverage rate 0% 25% 50% 75% 100%

Fleet size Min Best Min Best Min Best Min Best Min Best
Dataset 0 95, 32 95, 43 89, 253 89, 253 27, 550 27, 659 7, 608 7, 714 0, 662 0, 711

Random departure time
Dataset 1 95, 32 95, 43 86, 257 86, 263 22, 625 22, 639 7, 680 7, 718 0, 666 0, 716
Dataset 2 92, 28 92, 36 81, 249 81, 251 23, 549 23, 653 7, 578 7, 696 0, 606 0, 693
Dataset 3 102, 33 102, 41 84, 249 84, 249 23, 625 23, 695 7, 680 7, 782 0, 735 0, 767
Dataset 4 115, 32 115, 46 85, 274 85, 314 27, 673 27, 673 7, 748 7, 748 0, 784 0, 784
Dataset 5 100, 32 100, 38 77, 249 77, 249 23, 621 23, 651 7, 676 7, 742 0, 676 0, 723
STD 8.8, 2.7 8.9, 4.0 3.7,10.9 3.7, 27.9 2, 44.4 2, 22.0 0, 60.7 0, 32.5 0, 68.3 0, 37.7

Random preference towards CTs and ATs
Dataset 6 94, 42 94, 42 89, 250 89, 250 33, 550 33, 653 7, 608 7, 714 0, 662 0, 711
Dataset 7 79, 57 79, 57 70, 249 70, 249 25, 550 25, 659 11, 608 11, 714 0, 662 0, 711
Dataset 8 105, 29 105, 40 100, 226 100, 226 30, 555 30, 658 11, 608 11, 714 0, 662 0, 711
Dataset 9 79, 41 79, 41 77, 260 77, 260 31, 560 31, 663 11, 608 11, 714 0, 662 0, 711
Dataset 10 80, 42 80, 53 74, 243 74, 243 37, 550 37, 653 11, 608 11, 714 0, 662 0, 711
STD 11.7, 11.5 11.7, 7.8 12.3, 12.5 12.3, 12.5 4.4, 4.5 4.4, 4.3 1.8, 0 1.8, 0 0, 0 0, 0

Looking at the fleet size of CTs in all the tested datasets, we observe again that
their minimum feasible fleet size is always the best one. This is because of one signif-
icant difference in the cost structure of CTs compared with ATs, which is the drivers’
salaries. This observation further corroborates the conclusion drawn in the previous
section that the smallest possible fleet size of CTs is always preferable for a TNC in
this study.

Impacts of AVs-only zones

The upgrade of the conventional road networks to AVs-only zones brings inevitable
effects on the demand patterns, e-hailing operations, behaviours of travellers, and traf-
fic conditions on road networks. Table 3.11 reveals a clear increase in demand for ATs
and a decrease in demand for CTs as HVs (CTs and PVs) are not allowed in most of the
network anymore. As a result, the fleet size of ATs increases with the expansion of the
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AVs-only zone while that of CTs decreases. When most of the road network is covered
by the AVs-only zone, the fleet size of ATs remains stable with the expansion of the
AVs-only zone as the usage rate of ATs rises. The total profit of the TNC increases
gradually with the expansion of the AVs-only zone.

HVs including both CTs and PVs have to drive outside the AVs-only zone, which
results in a longer detour distance and relocation distance in the transition period. Re-
sults in Table 3.11 show a significant increase in the relocation distance share of CTs’
total travel distance when the coverage rate rises from 0% to 75%. The detour distance
share of both CTs and PVs also obviously increases when the coverage rate increases
from 0% to 50%. However, with 75% coverage rate of the AVs-only zone, CTs and
PVs did not detour. In this case, most of the road links have been converted to AVs-
only links. CTs only need to serve a small fraction of the demand in a limited area.
Accordingly, the percentage of delivering distance of CTs in total travel distance de-
creases along with the increase of the percentage of the relocation distance. When ATs
are deployed with the best fleet size, there is no significant variation in the percentage
of relocation distance and the detour distance. Additionally, the detour only happens
to ATs to avoid traffic congestion incurred by competing for the shortest paths. Look-
ing at the results in Table 3.11, there is a slight variation in the percentage of detour
distance of ATs which exhibits the same variation tendency as the average delay time
per trip of ATs.

In this case study, the AVs-only zone has not necessarily contributed to the re-
duction of traffic congestion when there is low coverage, even with larger road link
capacities. Looking at the total delay time and the average delay time per trip in Ta-
ble 3.11, these values increase in most cases when the coverage rate goes from 0% to
50%. At the early stage, the benefits of AVs-only zones are not obvious as the demand
for ATs is low. However, even at an early stage, the specific delay time of the ATs
is lower than those of all HVs because part of the trips are served within the AVs-
only zone. In contrast, the congestion effect outside the AVs-only zone increases as
the non-automated urban area is further shrunk and vehicles need to compete for the
shortest paths. With the expansion of the AVs-only zone, more demand is served by
the ATs, and the benefits of the AVs-only zone on decreasing congestion effects begin
to unfold. The delay time is largely reduced when most of the urban area is covered by
the AVs-only zone. What’s more, the total cost for the TNC increases along with the
coverage rate of the AVs-only zone up to 50%, as more demand from both CTs and
PVs shifts to ATs. Then, it decreases when the coverage rate is 75% and 100% due to
the reduced delay penalty and the smaller CT fleet size.



3.6 Conclusions and future research 67

3.6 Conclusions and future research

Envisioning the emergence and expansion of AVs-only zones in urban areas, a bi-
level framework has been proposed in this chapter to determine the (near) optimal
fleet size of CTs and ATs which leads to the maximum profit of a TNC at each stage
of a mixed automated and non-automated driving network. At the upper level, the
fleet sizing decision of CTs and ATs is made with the aim to maximise the profit of
a TNC while satisfying the travel demand. To capture the mixed driving behaviour,
an approximated dynamic mixed equilibrium model is proposed at the lower level,
in which the respective objective functions of taxis and PVs are combined into one
function using a weighted sum approach and the vehicle movements in a morning
peak hour of a typical working day are determined. A metaheuristic algorithm PGA is
then adopted to solve the bi-level model, which is embedded with a tailored algorithm
for solving the LLM.

Computational experiments with the case-study city of Delft show that the (near)
optimal solution obtained through the solution method and the minimum fleet sizes of
CTs and ATs (minimum feasible fleet to satisfy all the demand) with the expansion
of the AVs-only zone can be effectively determined for different datasets with random
departure time and random preference towards CTs and ATs. However, the proposed
solution approach is hard to apply to a real-size urban network of a metropolis as the
computational time can be long and the solution quality cannot be guaranteed. What’s
more, if a high number of decisions have to be determined in the upper-level model,
the solution process can be time-consuming as more iterations are needed until the
algorithm converges. Several conclusions can be drawn from the experiments.

Firstly, the minimum fleet size for satisfying the demand is not necessarily the best
fleet size for the company’s profits. It depends greatly on the cost of the fleet and the
drivers. The drivers’ salaries, which are one of the highest fleet size-related costs of
CTs, have a significant impact on the decision-making process, resulting in that the
minimum feasible fleet size of CTs is always their best fleet size for all the tested
datasets. Besides, the location and distribution of the parking depots can also influ-
ence the fleet size of taxis. TNCs should carefully determine the number of parking
depots and locate those depots in areas with high demand to reduce relocation-related
costs. Secondly, the existence of AVs-only zones improves transportation efficiency
by reducing the congestion effects. But this effect is not obvious at an early stage.
To get the best out of using the AVs-only area, governments should consider ways to
encourage people to use more AVs at the early stage. Thirdly, the introduction of an
AVs-only zone will result in long detours and relocation distances for HVs. Therefore,
a proper network design strategy for an AVs-only zone can reduce the negative effects
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on HVs, thereby increasing public acceptance of AV-related mobility renovation and
the new intelligent infrastructure.

For future research, we recommend studying the following: modelling the fleet
sizing problem considering stochastic factors (such as the uncertainty in demand, the
fluctuation of traveller’s departure time as well as travel times) to make a more robust
decision for TNCs; adding travellers’ mode choice to describe their preference towards
the type of the vehicle; investigating the optimal design strategy of AVs-only zones in a
multi-period perspective; and studying the optimal location and distribution of parking
depots.
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3.A Weight determination method
Two weighting coefficients are used in our problem: w is used to combine the objec-
tives of taxis and PVs into one single objective function in both LLM and ALLM; and
l is used in the objective function of PVs, which is JP, to ensure that the first term of
the objective function has absolute priority over the second term. In this section, we
introduce methods to determine the value of these two weighting coefficients properly.

3.A.1 Determining weighting coefficient w
The value of the weighting coefficient w reflects the priority of the objectives. To
give the same priority to the objective of taxis and PVs, the value of w need to be
properly determined, so that the contribution of both the objective function values can
be balanced.

An iterative weight w determination method is proposed. Given an initial value
to w , we solve the bi-objective model to obtain the values of JT and JP and their
contributed values w · JT and (1�w) · JP. Given values JT and JP, a new value of w
is determined for which w · JT equals (1�w) · JP. This procedure is repeated until
the relative difference between the contributions of JT and JP is less than a predefined
small value e . The pseudo-code is given by Algorithm 3.2 using LLM as an example.
The same procedure applies to ALLM by simply substituting JP for ĴP.

Algorithm 3.2 Weight w determination algorithm
Initialise w .
Solve the bi-objective optimisation model LLM. Calculate the value of JT , JP, w ·JT

and (1�w) · JP.

while |w·JT�(1�w)·JP|
w·JT � e do

Update the value of w by the following equation:
w := JP

JT+JP

Solve the bi-objective optimisation model LLM with the newly updated w .
Update the value of JT , JP, w · JT and (1�w) · JP.

end while

3.A.2 Determining weighting coefficient l
In the LLM, the value of l has to guarantee that the first term in Equation (3.7), which
is l ·Âr2RPV

Kr

Mr , is always greater than or equal to the second term Âp2Pr,r2RPV Â(it1 ,d
r
t )2GPV
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. Here, the second term represents the total travel costs

of PVs, the worst-case of which is that all PVs take the routes with the maximum cost,
which is Âr2RPV Kr ·nr. To make sure that the first term is greater than or equal to the
biggest value of the second term, which is l Âr2RPV

Kr

Mr � Âr2RPV Kr · nr, we can let
l = max(Mr) ·max(nr). In an extreme case, the first term could equal the second term
in value. However, to realise that the first term in the objective function has an abso-
lute priority over the second term, meaning that any single unit of increase of the first
term is worse than the maximum increase the second term could bring to the objective
function value, we let l = (ub� lb) ·max(Mr) ·max(nr), where ub and lb represent
the upper and lower bound values of the second term. The bound values can easily be
calculated by knowing the departure time, the latest arrival time and the longest possi-
ble path of each group of trips. Here, (ub� lb) represents the maximum increase in the
objective function that the second term could bring about. The same method could be
used to determine the value of l in ALLM, where l = (ub� lb) ·max(str) ·max(nr).

3.B Binary search algorithm

The pseudo-code of the binary search algorithm for finding the lower bound of the fleet
sizes is shown in Algorithm 3.3.

3.C PGA parameter tuning

Population size is a crucial parameter which influences the algorithm’s performance
in finding a good solution in the solution space. Using a large population size might
increase the possibility of finding an optimal solution but it is not always a good choice
when the solution space is small.

We evaluate the performance of PGA with population sizes of 8 and 16, respec-
tively. All other parameters are identical to those listed in Table 3.10. From the results,
we see that the best solutions for the four scenarios with 0%, 25%, 50% and 75% AVs-
only zones are the same. The only difference is the number of iterations needed, as
shown in Table 3.C.1. The algorithm with a population size of 16 is likely to require
more iterations than the algorithm with a population size of 8 as more individuals who
are less qualified are eligible to be parents, which influences the convergence speed.
However, this will not influence the quality of the best solution found in the end.
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Algorithm 3.3 Binary search algorithm for finding the lower bound of fleet sizes
Given the demand for CTs and ATs, calculate the total demand for CTs, ATs as the upper bounds of
fleet sizes of CTs, ATs, denoted as vCT

ub0, vAT
ub0.

Calculate the maximum number of overlapping travel time intervals for all trips at any point in time
as the initial lower bounds of fleet sizes of CTs, ATs, denoted as vCT

lb0, vAT
lb0.

Initialise VCT =VCT
lb = vCT

lb0, VCT
ub = vCT

ub0, V AT = vAT
ub0.

Check the feasibility of the LLM using vCT
lb0, vAT

ub0 as input.
if LLM is feasible then

The bound of CT’s fleet size is [vCT
lb0, vCT

ub0].
else

while VCT
ub �VCT

lb 6= 1 do
VCT =VCT

lb +
j
(VCT

ub �VCT
lb )/2

k

Check the feasibility of the LLM using VCT , V AT as input.
if LLM is feasible then

VCT
ub =VCT

else
VCT

lb =VCT

end if
end while
VCT

lb =VCT
ub

The bound of CT’s fleet size is updated to [VCT
lb , VCT

ub0].
end if
Same process to determine the lower bound of AT fleet size.

Table 3.C.1: PGA performance for different population sizes.

8 individuals 16 individuals

Number of iterations with 0% coverage rate 17 17
Number of iterations with 25% coverage rate 18 22
Number of iterations with 50% coverage rate 17 28
Number of iterations with 75% coverage rate 29 25



3.D Similarity threshold selection 73

3.D Similarity threshold selection
A predetermined similarity threshold value q is specified in order to reduce the size
of the path pool by removing paths that are highly overlapping with other paths. A
proper value of this similarity threshold can balance the solution quality and computa-
tional efficiency. Our goal is to find a proper similarity threshold value with which the
problem can be solved in an acceptable time but also returns a high-quality solution.

Three similarity thresholds of 70%, 80%, and 90% were tested to see how this
value affects the objective function value of the found solution and the computational
time. Before the optimisation, the fleet sizes of CTs and ATs were given as 95 and 32.
This experiment was done in a scenario where the coverage rate of the AVs-only zone
is 0%, because this is the scenario with the most demand for PVs. Multiple stopping
criteria were set to terminate the algorithm. First, the model could be solved as close
to optimality as possible within one hour. After one hour, the algorithm stops either
because the MILP gap reached 2%, or because the computational time exceeds ten
hours.

The results are shown in Table 3.D.1. Looking at the resulting computational time
using these three threshold values, we observe that the algorithm with a 90% threshold
value takes the longest time, while its MILP gap value is still greater than those with
70% and 80% threshold values. Regarding the objective function value, the algorithms
with a threshold of 80% and 90% have identical values, and the algorithm with a
threshold of 70% has a slightly lower value. In conclusion, 80% is an appropriate
threshold value in this case as the algorithm could be solved in an acceptable amount
of time while guaranteeing the quality of the solution.

Table 3.D.1: Similarity threshold value.

q Objective function value MIP Gap Computational time

70% 2587.36 2.65% 3600s
2587.36 2.03% 8075s

80% 2587.19 2.35% 3600s
2587.19 1.96% 6953s

90% 2587.19 4.7% 3600s
2587.19 4.22% 39600s





Chapter 4

Optimising fleet sizing and
management of shared automated
vehicle (SAV) services considering
endogenous demand, congestion
effects, and accept/reject mechanism
impacts

In this chapter, we envision a future scenario where non-pooled SAVs replace pri-
vate cars and provide public on-demand mobility services to satisfy the mobility needs
of a city’s residents. To help service providers make profitable fleet sizing and man-
agement decisions, we develop a mixed-integer non-linear programming model that
considers the congestion effects and the mode choice of urban travellers in different
income classes, between SAVs and bicycles. In addition, we investigate two types of
accept/reject mechanisms (mandatory vs. non-mandatory acceptance) which lead to an
endogenously determined acceptance rate that can affect travellers’ willingness to use
SAV services. The computational challenge posed by the non-linear and non-convex
nature of the model is addressed through reformulation and the use of outer-inner ap-
proximation methods combined with a breakpoint generation algorithm. We demon-
strate the effectiveness of our proposed method in a case study of the city of Delft in
The Netherlands, as well as a scaling analysis on three toy networks with various sizes
and demand profiles. A sensitivity analysis of key parameters is carried out to assess

75
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system performance.
This chapter is organised as follows: Section 4.1 introduces the background in-

formation. The literature on fleet management and demand modelling is reviewed in
Section 4.2. Section 4.3 presents the non-linear non-convex mathematical model of the
proposed fleet sizing and management problem. In Section 4.4, a detailed description
is provided of how to linearise the proposed model, enabling its solvability using state-
of-the-art solvers. In Section 4.5, a case study on the city of Delft in the Netherlands
is performed. In addition, a scaling analysis is conducted in Section 4.6 to evaluate
the model’s performance with various network sizes and demand profiles. Section 4.7
gives the main conclusions and provides an outlook on research needs.
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4.1 Introduction

The idea of replacing private cars with shared mobility services and active modes of
transport (walking and cycling) has gained momentum rapidly in recent years. Sev-
eral main reasons are driving this shift. Firstly, the rising number of private cars has
been causing stress in cities, such as the lack of parking for the existing demand, in-
creased traffic congestion, air pollution, energy waste, and traffic accidents between
cars and between cars and vulnerable road users. These effects threaten the sustain-
able development of urban regions. Furthermore, removing private cars within cities
can lead to numerous positive impacts on public health, including the reduction of air
and noise pollution, heat islands, and the occurrence of injuries (Nieuwenhuijsen &
Khreis, 2016). Promoting the use of active modes of transport stands to significantly
improve public health by encouraging physical activity. In addition, on-demand mo-
bility systems like Uber and Lyft have gained popularity due to their flexible, seamless,
door-to-door services. Consequently, in many cities across the world, the concept of
a ‘car-free city’ is being considered and even adopted. Cities like Hamburg, Oslo,
Helsinki, and Madrid have announced their plans to be (partly) private car-free cities,
and many cities such as Bogota, Brussels, Chengdu, Copenhagen, and Paris have im-
plemented car-free days (Nieuwenhuijsen & Khreis, 2016).

Given the promising transition towards a transport system without private cars,
researchers are exploring future smart mobility solutions for urban implementation,
especially considering the high costs associated with traditional public transportation
provision. Among these solutions, the utilisation of shared automated vehicles (SAVs)
to provide public on-demand mobility services (Spieser et al., 2014; Liang et al., 2020)
stands out as one of the most promising. Various benefits have been assessed across
different dimensions. As highlighted by Spieser et al. (2014), an automated mobility-
on-demand (AMoD) solution has the potential to fulfil the mobility needs of the entire
population with approximately one-third of the total number of private cars in opera-
tion. Moreover, Fagnant & Kockelman (2014) point out that each SAV could replace
around eleven privately owned cars, which brings sizeable energy consumption and
greenhouse gas emissions savings. The deployment of SAVs in the transportation sys-
tem could also lead to reduced parking demand, as revealed by Zhang & Guhathakurta
(2017), due to the improved intensity of vehicle utilisation and reduced usage of private
vehicles. In the future mobility system, active modes of transport, such as walking and
cycling, will continue to be utilised by citizens alongside the provision of public ser-
vices by SAVs. Walking remains suitable for short-distance trips, while bicycles offer
a competitive mode of transport for longer distances due to their numerous advantages.
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Bicycles are known for their flexibility, user-friendliness, sustainability, and superior
environmental friendliness compared to SAVs, making them an attractive option for
individuals seeking to reduce transportation costs. Thus, even with the widespread
adoption of SAVs, bicycles are expected to remain prevalent in city centres.

The emergence of such a mobility system will most likely lead to a notable surge
in demand for SAV services, consequently boosting the need to enhance the supply
capability for on-demand responsive services across time. Simultaneously, the large-
scale deployment of SAVs is anticipated to induce substantial shifts in travel behaviour
and mode choice, making the future demand profile different from what we have today.
Thus, estimating the underlying demand and comprehending the factors that influence
the demand profile is important for SAV operators to make the right decisions in fleet
sizing and management.

Demand for future SAV services and fleet management will interact with each
other. Demand for SAV services has a close relationship with travellers’ choice of
travel mode behaviour, which is influenced by a variety of factors including price,
travel time, service quality, and comfort level associated with a particular mode of
transport (Ashkrof et al., 2019; Correia et al., 2019). As a mobility service provider, an
SAV operator needs to manage its fleet and provide sufficient service to fulfil the mo-
bility needs of their clients, which could be the entire population if alternative modes
are restricted. Generally, decisions within an SAV operation system fall into two main
categories: (1) strategic decisions determined prior to service launch (or only ques-
tioned between large periods of time), such as fleet sizing, pricing strategy, and service
quality level; and (2) operational decisions made and adjusted in real-time in response
to incoming requests and the dynamically evolving network status, including trip as-
signment, vehicle routing, parking, and relocation decisions. This demonstrates the
interdependent nature of demand and supply. However, most of the existing studies re-
garding SAVs assume fixed and known travel demand, which is particularly unsuitable
for our problem, given that the demand for the SAV service is currently quite unknown.

Another drawback of assuming travel demand as a known fixed number or as vary-
ing linearly with the service level is the oversights of travellers’ response to decreased
network service levels induced by traffic congestion–a factor that significantly affects
demand patterns. This aspect is often disregarded in existing research on fleet sizing
and management. Having in mind that the road network is highly congested (higher
travel time) and/or that the travel cost is high compared with other transport modes,
travellers may adjust their choices. Numerous studies have underscored the profound
influence of traffic congestion on travellers’ mode preferences. For instance, a pref-
erence survey conducted by Chung et al. (2012) in Cheonggyecheon stream in down-
town Seoul found a 3.2% decrease in private car usage due to increased congestion,
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accompanied by a corresponding 3.6% increase in subway ridership. Additionally, a
survey by Tennøy (2010) revealed that 33% of travellers will shift from vehicles to
other modes during periods of high congestion. Therefore, congestion plays a critical
role in travellers’ travel decisions and should be taken into account when predicting
demand for SAV services.

In the framework of operations research, most existing research on fleet manage-
ment problems with traffic congestion and travellers’ mode choice utilise simulation-
based methods (Gurumurthy et al., 2020; Oh et al., 2020; Pinto et al., 2020; Hörl et al.,
2021; Wang et al., 2022b). Although simulation-based methods possess the capability
to replicate intricate systems with high levels of detail, they are often time-consuming
as a large number of simulations must be executed to evaluate system performance
under various scenarios of fleet size and operational rules. Extensive research has been
conducted on traffic assignments, aiming to comprehend how traffic congestion in-
fluences route choice and travel demand. Nevertheless, traditional traffic assignment
only models the flow between origins and destinations, without considering complex
planning and operational decision-making for SAV services, such as parking location,
relocation strategies, and optimal fleet size. Recent research incorporates traffic as-
signment into (service) network design problems to evaluate the response of travellers
to the (service) network design decisions (Xu et al., 2018b; Pinto et al., 2020; Ye et al.,
2021; Cai et al., 2022). Typically framed as bi-level programming models, these prob-
lems decide planning decisions at the upper level, and independently model a traffic
assignment problem with mode choice at the lower level. However, incorporating the
complex operational decisions of SAV services is still challenging.

The centralised control of SAVs provides an opportunity for optimising the plan-
ning and complex operational decisions through a single-level model. Unlike human
drivers who often prioritise individual route preferences, SAVs can behave cooper-
atively by following the route guidance from the fleet operator to maximise overall
profit. With a shared profit-driven aim, the planning and operational decisions can be
addressed at the same level. Therefore, we propose a single-level mathematical pro-
gramming model from the perspective of an SAV operator to determine the most prof-
itable strategic decisions (fleet size, initial fleet distribution, and service quality level)
alongside the operational decisions of a typical day (trip assignment, vehicle routing,
parking, and relocations) while considering the congestion effects and the traveller’s
mode choice between SAVs and active modes of transport depending on their specific
income profile. In this study, we take bicycles as the representative of the active modes
of transport for the sake of simplicity. We specifically focus on commuting trips during
the morning peak hour, and as such, walking is not considered a competitive mode of
transportation for SAVs.
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We explore two types of accept/reject mechanisms, namely (1) accepting all the re-
quests, and (2) rejecting some requests but the rejection rate will influence travellers’
attitudes toward using SAV services, to investigate how service quality levels influence
the travel demand and SAV operator supply decisions. This type of accept/reject mech-
anism is widely considered in dial-a-ride problems when some trips are not profitable
or impossible to be picked up or delivered within the desired time windows. However,
most papers only consider this mechanism from the service providers’ point of view
and ignore the effect of service quality level on passengers’ willingness to use the ser-
vice again. A high rejection rate of user requests will lower the probability of a client
requesting the service again.

We formulate the proposed problem as a novel mixed integer non-linear non-convex
programming model, in which a binary logit model is embedded to describe the trav-
ellers’ mode choice between SAVs and bikes. Recognising that travellers with differ-
ent demographic characteristics behave differently in terms of mode choice, we divide
the users into three income classes. Each class of travellers perceives the travel util-
ity differently, which is time-dependent, flow-dependent, and path-dependent. The
congestion effect is described within the model by dynamically varying travel times
with respect to traffic flow. To capture the time-dependent features of traffic flow, we
model the vehicle movement through flow variables in a time-space network where
the studied time period is discretised and the spatial network is expanded in the time
dimension. Different from the traditional vehicle routing problem where each vehi-
cle is tracked individually, we use an aggregated flow which can reduce the number
of decision variables in the optimisation model. To facilitate the solution process,
we reformulate the model into a mixed-integer linear programming model. Lineari-
sation techniques are proposed to tackle the non-linearity brought by the binary logit
model, acceptance rate constraints, and demand calculation constraints. In particular,
the outer-inner approximation method together with a breakpoint generation method is
proposed to linearise the binary logit model. The breakpoint generation method aims
to find the least number of breakpoints with a pre-specified acceptable approximation
error. The expression of the maximum approximation error in a specified interval is
given.

The main contributions of this chapter are summarised as follows:

• This chapter extends previous work by incorporating travellers’ reactions to traf-
fic congestion levels. The fleet management decisions in this context, including
the strategic decisions and operational decisions, are constrained by the demand-
supply equilibrium modelled through multi-class travellers’ mode choice be-
haviour and are influenced by congestion effects. Thus, the obtained results can
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provide more practical and realistic managerial and operation insights for future
SAV operators.

• This chapter investigates how accept/reject mechanisms influence the closed
demand-supply loop in the context of SAVs. It also highlights the importance of
considering the impact of service quality on passengers’ willingness to continue
using SAV service, emphasising the role of user attitudes and satisfaction in the
success and sustainability of SAV systems. To the best of our knowledge, it is
still an under-explored topic.

• The proposed flow-based model incorporates three essential elements–mode choice,
traffic congestion, and accept/rejection mechanisms–into a single-level optimi-
sation model. This allows us to explore the intricate interactions between these
elements, leading to a better understanding of the dynamics in SAV systems.

• The proposed model is validated through comprehensive case studies conducted
in the city of Delft, The Netherlands, and three toy networks with various sizes
and demand profiles, demonstrating its effectiveness in solving real-world trans-
portation challenges. Additionally, sensitivity analyses on critical parameters are
conducted, enabling a thorough assessment of system performance under diverse
scenarios.

4.2 Literature review
In this chapter, we aim to combine the SAV service fleet sizing and management prob-
lem, SAVs congestion modelling, and SAV demand modelling in one optimisation
problem. Therefore, from these three aspects, we review the literature to demonstrate
the gaps that we have identified as well as search the grounds for the required method-
ologies for our purpose.

4.2.1 Fleet management with congestion effect and travellers’ mode
choice

A considerable amount of literature has been published on the fleet management prob-
lem. The literature includes a wide range of topics such as capacitated vehicle routing
problems, vehicle routing problems with time windows, pickup and/or delivery prob-
lems, fleet sizing and vehicle routing problems, dial-a-ride transport, etc. This is inde-
pendent of the vehicles being or not automated. Interested readers can refer to Hyland
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& Mahmassani (2017) for the taxonomy of vehicle fleet management problems. More
specifically, we classify our problem as an extension of fleet sizing and the vehicle
routing problem with travellers’ pickup and delivery. The objective of this type of
problem is to identify the optimal planning decisions that yield the minimum costs or
the maximum profit for the fleet operator, which is constrained by the trip assignment
and vehicle operations on the network.

As we mentioned before, most of the existing research on fleet management prob-
lems with closed supply-demand loops, the consideration of congestion effect and trav-
ellers’ mode choice use simulation techniques (Gurumurthy et al., 2020; Oh et al.,
2020; Pinto et al., 2020; Hörl et al., 2021; Wang et al., 2022b). Only a handful of
studies consider a similar problem using an optimisation-based method or a hybrid
approach that combines optimisation with simulation. Wei et al. (2022) study the
optimal transit schedules while taking into account the competition with ride-hailing
services and traffic congestion. A mixed integer non-linear program is proposed and
solved using a bi-level heuristic algorithm including an outer loop and inner loop. The
strategic transit scheduling decisions are determined in the outer loop given travellers’
mode choice and congestion estimates. The path choice of ride-hailing vehicles and
congestion levels are determined in the inner loop in a traffic assignment problem.
However, they consider simplified ride-hailing operations by ignoring the relocation
of ride-hailing vehicles, and parking decisions. Thus, the congestion effects caused
by the re-locations of vehicles can not be captured in the model. Pinto et al. (2020)
combine optimisation-based and simulation-based techniques. They propose a bi-level
programming model to investigate the integration of the transit network redesign prob-
lem and fleet sizing problem for a shared autonomous mobility service. The upper level
determines the transit pattern headways and fleet size of SAVs and the lower level de-
scribes the combined mode choice–traveller assignment problem. Their approach in-
volves an iterative heuristic procedure where the upper-level problem is solved with a
non-linear programming solver and the lower-level problem is solved through agent-
based simulation given the decisions made at the upper level.

4.2.2 Congestion modelling in fleet management problems
Congestion in road transportation networks has been extensively studied in traffic as-
signment problems. As one of the major factors influencing the transportation net-
work’s performance and decisions related to route choice, congestion effects are in-
creasingly being considered in fleet management problems as well. Liang et al. (2018)
envision a future on-demand mobility system where automated vehicles (AVs) serve
as taxis to provide mobility services. They take into account the impact of congestion
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in determining the optimal trip assignment and dynamic routing of AVs. Expanding on
this theme, Liang et al. (2020) delve into a dial-a-ride problem involving ride-sharing
in light of the traffic congestion caused by the routing of a large number of AVs. Fan
et al. (2022) investigate the heterogeneous fleet sizing and vehicle routing problem
for an on-demand mobility service provider envisioning a progressive expansion of
AVs-only zones. The congestion effect is incorporated into the model to examine the
impacts of the AVs-only zone on travellers’ behaviour and network performance.

The congestion effect, measured quantitatively by the variation of travel time as a
function of flow, is typically expressed by the well-known Bureau of Public Roads
(BPR) function, which is non-linear. Incorporating this non-linear function into a
mathematical programming model makes it difficult to solve to optimality. To address
this issue, techniques have been proposed including but not limited to: (1) reformulat-
ing and linearising the non-linear term (Wang et al., 2015); (2) replacing the BPR func-
tion by selecting one from multiple link-traveltime choices at each time point (Van Es-
sen & Correia, 2019); (3) adopting an iterative solution algorithm until the algorithm
converges (Correia et al., 2019). In addition to the mathematical programming model,
simulation-based methods have also been used as a modelling technique to study the
congestion effects on the fleet management problem (Fagnant & Kockelman, 2014;
Wang et al., 2022b).

Existing studies on SAV fleet management problems fall short of taking users’ pref-
erences and choice behaviours into account, especially behaviours that are influenced
by the effect of traffic congestion on travel times. This is an important factor that
significantly impacts the mobility pattern and mode preference of travellers, thereby
influencing the demand for SAV services and the supply.

4.2.3 Demand modelling methods in optimisation
A fundamental assumption used in a large body of literature on fleet management is
that demand for all OD pairs is fixed and known in advance (Correia & Van Arem,
2016; Liang et al., 2018; Van Essen & Correia, 2019; Liang et al., 2020; Fan et al.,
2022), which does not match with the real world. Assuming travel demand to be
constant may lead to unrealistic managerial decisions that result in substantial financial
losses for SAV operators. Thus, a more appropriate representation of demand in the
fleet management problem is essential.

Demand modelling methods have been widely explored in the existing literature
evolving from trip-based models to activity-based models. Trip-based demand mod-
elling representations include but are not limited to the following: (a) elastic demand
represented by a simple linear function (Jorge et al., 2015) or a non-linear function
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such as an exponential function (Huang & Kockelman, 2020; Huang et al., 2020; Xu
& Meng, 2020); (b) probability-based demand representation of discrete choice mod-
els, such as the binary logit model (Lu et al., 2021; Guo et al., 2022; Tian et al., 2022),
multinomial logit model (Joksimovic et al., 2005; Atasoy et al., 2014; Yang et al.,
2022), logit-based chance-constrained model (Dong et al., 2022), mixed logit model
(You et al., 2022); (c) disaggregate demand representation of discrete choice models by
using simulation-based linearisation (Paneque et al., 2021, 2022); (d) machine-learning
methods under a big data context (Wang et al., 2020b). In addition to these trip-based
methods, researchers have also developed methods to study activity-based models that
focus on the interdependent choice of full daily activity-travel patterns at an individual
or household level. These include nested logit models, dynamic discrete choice models
(Västberg et al., 2020), machine-learning-based methods (Ren & Chow, 2022), etc.

Among these methods, the discrete choice model is traditionally used to analyse
choice behaviours. In this chapter, we incorporate the logit model into our trip-based
optimisation problem for the following reasons. Compared with a simple linear func-
tion or an exponential function, the logit model is more realistic as it describes the
probability of selecting a particular alternative against other alternatives considering a
number of factors and their relative importance. It can also take into account the trav-
ellers’ socioeconomic characteristics such as income level, age, etc. Simulation-based
linearisation method is a promising method, but generating a large number of scenarios
may bring a big computational burden. Machine learning methods can analyse indi-
vidual decisions with a higher prediction accuracy but the big data context is missing
for the future scenario.

Including the non-linear logit formula in a mathematical model makes the model
difficult to solve to optimality due to the non-linear and non-convex formulations. To
tackle the non-linearity, researchers proposed many solution methods, such as lineari-
sation algorithm (piece-wise linear function approximation (Wang & Lo, 2010), outer-
approximation (Xu et al., 2018a), outer-inner approximation (Liu & Wang, 2015; Guo
et al., 2022), heuristic and meta-heuristic (Joksimovic et al., 2005; Lu et al., 2021;
Azadeh et al., 2022; Dong et al., 2022; Tian et al., 2022), and simulation (Lou et al.,
2011; Paneque et al., 2021; Wang et al., 2022b). Among all of them, one of the most
fundamental methods is the piecewise-linear function-based approximation, which
aims to find the optimal solution by replacing the non-linear term in the objective
function or constraints with a series of piece-wise linear functions. The key idea is
to transform the mixed-integer nonlinear programming model into a linear one, and
then solve the problem to optimality. A variant of this is the outer/outer-inner approx-
imation method. Instead of replacing the non-linear term with a series of piecewise
linear functions, this method specifies the upper bound/the upper and lower bound of
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the non-linear term using a series of linear constraints. In this chapter, we adopt the
outer-inner approximation method to tackle the computational challenge brought by
the logit model.

4.3 Problem formulation
In this section, we start by outlining the assumptions of the problem and then provide
a detailed description of the mathematical formulation of the proposed model.

4.3.1 Assumptions
We envision a future scenario in which cities are only accessible by SAV services and
active modes of transportation (e.g. bicycles). Travellers who choose SAVs can request
transportation services at any location in a city using SAV service applications on their
smartphones by providing trip information. After receiving the trip information, the
platform decides whether to accept or reject the trip. Two accept/reject mechanisms are
investigated, namely (1) an SAV operator has to accept all the requests, or (2) an SAV
operator may reject a trip if it provides no benefits to the company. In this case, those
rejected trips will use bicycles. Of course, travellers can choose to use bicycles directly
if they perceive that using this mode provides greater travel utility. Once the request is
accepted, the platform will match available SAVs with customers and dispatch them to
pick up the customers.

Before we can formally introduce the model, we describe the made assumptions.
(a) The proposed model serves a strategic planning purpose. During the study

period, the total mobility demand in an urban area is assumed to be constant and known
in advance, enabling the SAV operator to make optimal planning decisions. This stands
in contrast to real-time SAV operating systems where future demand remains uncertain,
necessitating the continuous updating of the optimal operational strategy in response
to new incoming demand.

(b) We assume that SAVs and bicycles operate in separate lanes or designated areas,
ensuring physical separation and minimal interaction. The flexibility and manoeuvra-
bility of bicycles allow cyclists to easily bypass congested areas and find alternative
routes. As a result, our study primarily focuses on analysing the congestion effects
caused by the routing of SAVs. It is worth noting the importance of considering in-
teractions between bicycles and AVs, especially in cases where infrastructures do not
allow for the separation of traffic (Madigan et al., 2019; Vlakveld et al., 2020; Hulse,
2023). However, we do not extensively delve into this topic within the scope of this
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chapter.
(c) We assume that travellers have perfect information about the transportation net-

work status and will make a rational mode choice based on their perceptions of travel
time.

(d) We assume that the SAVs in our study are at SAE level 5, and they are capable
of driving throughout the entire network without the presence of a human driver.

(e) Neither privately-owned vehicles nor human-driven vehicles are considered as
an option.

(f) A traveller will only utilise a single travel mode. Transferring between modes
is not considered.

(g) The model considers exogenous fares by taking SAVs. Deciding on the optimal
fares is an interesting future direction.

(h) Pooled services are not considered in this study.
To provide a comprehensive understanding of the proposed model, we have il-

lustrated its structure in Figure 4.3.1, which outlines the decisions, input, and output
information. Additionally, we have summarised the mathematical notations used in
Section 4.3 in Table 4.1 for easy reference.

Figure 4.3.1: Model structure.
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Table 4.3.1: Notation
Notation Description

Sets
T = {0,1,2, . . . ,T }. Set of time instants in the operation period.
N Set of nodes.
L Set of road links between nodes in set N.
G Set of links in the time-space network.
NP Set of nodes allowing parking for SAVs with NP ✓ N.
R Set of groups of trips, where each group of trips r 2 R has the same origin, destination,

departure time, and latest arrival time at the destination.
M Set of travel modes, with the automated vehicles (AV ) and bicycles (B) as the two

options.

Choice model
Parameters
V r

B Deterministic systematic component of the utility of bicycles for group of trips r 2 R.
OMr

m Monetary costs of travellers in group r 2 R using mode m 2 M, in euros.
b0 Parameter converting generalised costs into utility, in utility/euro.
b1 Parameter converting service rate into utility.
b r

m Travellers’ value of travel time in group r using mode m 2 M, euros/time step.
T r

B Travel time of using bicycles for trips in group r 2 R.
nr Total number of trips for group r 2 R.
Auxiliary variables
V r

AV Deterministic systematic component of travellers’ utility for using an SAV in group
r 2 R.

T r
AV Longest SAVs travel time for group r 2 R.

Pr
AV Probability to choose SAVs for the trips in group r 2 R.

Dr
AV Total number of trips using SAVs in group r 2 R.

Fleet sizing and management model
Parameters
Dt Time step.
li j Length of road link (i, j) 2 L.
Qi j Capacity of road link (i, j) 2 L in vehicles per time step.
tmax
i j Maximum travel time by cars on road link (i, j) 2 L.

tmin
i j Minimum travel time by cars on road link (i, j) 2 L.

Cit1 jt2 Spatial capacity of road link (i, j) 2 L in vehicles that fit on the road link from time
instant t1 to t2, where (it1 , jt2) 2 G.

a Trip service rate when all the requests have to be accepted, %.
or Origin node for group of trips r 2 R.
dr Destination node for group of trips r 2 R.
ar Departure time for group of trips r 2 R.
br Latest arrival time for group of trips r 2 R.
sdr Shortest travel distance for group of trips r 2 R, in kilometres.
str Shortest travel time assuming free-flow speed for group of trips r 2 R, in time steps.
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p0 Initial base fare for using an SAV, in euros/trip.
p Travel distance-related price for using an SAV, in euros/km.
co Unit driving operational cost of an SAV, in euros/km.
cd Penalty for drop-off delay of passengers, in euros/time step.
c f Depreciation cost in one hour for using an SAV, in euros/vehicle.
Decision variables
Sr Total number of trips served by SAVs from group r, where r 2 R.
PFr

it1 jt2
Passenger flow in the group of trips r 2 R served by an SAV in road link (i, j), from
time instant t1 to t2. Only defined for (it1 , jt2) 2 G,ar  t1 < t2  br. If t1 = ar, then
i = or.

Auxiliary variables
a Trip service rate when some requests can be rejected.
V SAV fleet size.
Vi Initial distribution of SAVs at parking node i 2 Np at the beginning of a day.
Er

t Total number of passengers in group of trips r 2 R arriving at time t 2 T .
Fit1 jt2 Vehicle flow in road link (i, j) from time instant t1 to t2, where (it1 , jt2) 2 G. Note that

when t1 = 0, i 2 NP, meaning that SAVs have to depart from the parking nodes at the
beginning of a day.

Wit Total number of vehicles parking at node i2NP from time instant t to t+1, with t 2 T .
Zr

t Binary variable with r 2 R, t 2 T if ar + str  br.
Xit1 jt2 Binary variable which is 1 when any vehicle travels in road link (i, j) from time instant

t1 to t2, where (it1 , jt2) 2 G, and 0 otherwise.
Ar

t Binary variable which is 1 when at least one trip in group r 2 R arrives at time t 2 T ,
and 0 otherwise.

4.3.2 Network representation
To capture the endogenous dynamic traffic congestion caused by the large-scale de-
ployment of SAVs, we utilise a time-space network. A time-space network is a time-
expanded version of the directed physical network (N,L), where N and L denote the
set of nodes and road links, respectively. The time dimension is discretised into T

periods, with each period having a duration Dt, referred to as the time step, hereinafter.
Consequently, an index set of time periods T = {0,1,2, . . . ,T } is defined within the
study horizon. At each time instant t 2 T , the network is replicated, thus multiple net-
works are defined along with the time period, as shown in Figure 4.3.2. We define set
G to denote the set of links in the time-space network.

Different from the traditional physical network, the status of vehicles on the time-
space network is described by both the action of the vehicles and the time those actions
take. Thus, vehicles either move with passengers or relocate without passengers on
links (it1 , jt2) 2 G, representing the flow departing from node i 2 N to node j 2 N
from time instant t1 2 T to time instant t2 2 T , or park at node i 2 Np from time
instant t to t + 1 where t 2 T . Np denotes the subset of nodes N allowing parking
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for SAVs. Here, the parking depots are restricted parking areas spread across the city
that are provided by the SAV operator for their vehicles; therefore, parking is only
permitted at certain designated nodes. Figure 4.3.2 provides an illustrative example of
vehicle movements within a time-space network, depicting passenger deliveries using
solid lines, relocation movements without passengers heading to parking stations or
passengers’ pick-up/drop-off locations with dashed lines, and parking states displayed
by dotted lines. In this small physical network, we assume a uniform travel time of 1
time step for each link.

Figure 4.3.2: Illustration of the physical network, the time-space network, and vehicle
movements over the time-space network.

Several physical attributes related to the road links are defined, such as the length
of road link (i, j) 2 L denoted as li j, the capacity of road link (i, j) 2 L per time step
denoted as Qi j, and the maximum and minimum travel time of link (i, j) 2 L denoted
as tmax

i j and tmin
i j , respectively. Given the maximum and minimum travel time of link

(i, j) 2 L, we can further shrink the size of set G by only including the possible time
choices instead of doing a complete enumeration for all the time instants. It means that
we only include link (it1 , jt2) where t1 + tmin

i j  t2  t1 + tmax
i j .

Please note that when using a time-space network framework, travel time is rep-
resented in an integer number of time periods. However, this representation does not
imply that the actual travel time must be an integer value. The integer value corre-
sponds to the index of the time period within the study horizon. The actual value of
travel time depends on the chosen time step, which may or may not be an integer.
However, we do recognise that the time step sets the precision of travel times where
the maximum precision is always limited by the duration of the time step.
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4.3.3 Demand representation and choice modelling
We consider the peak hour of a typical workday in an urban area, where congestion
occurs which influences travellers’ mode choices. Instead of tracking each trip indi-
vidually, demand that shares the same travel information is aggregated into a group.
We introduce set R as the set of groups of trips, where each group of trips r 2 R has the
same origin or 2N, destination dr 2N, departure time ar 2 T , latest arrival time br 2 T ,
shortest travel distance sdr in kilometres, shortest travel time str, and the same income
level in euro/time step. Note that trips within a group only have the same departure
time, latest arrival time, and shortest travel time based on time periods, not based on
the real times in seconds. Trips from one group are allowed to use different transport
modes and the total number of trips in group r 2 R is denoted as nr. We denote M as
the set of travel modes, with the shared automated vehicles (AV ) and bicycles (B) as
the two options.

The mode choices for travellers in each group are analysed using discrete choice
modelling within the framework of random utility maximisation theory. To measure
the willingness or preference for using a certain type of travel mode, the utility of each
mode is calculated. Besides that, three income levels for travellers are considered: high
income, middle income, and low income. The income level determines the value of
travel time (VOTT) of travellers, which has a direct impact on their perceived utility
for using a particular travel mode and consequently influences their mode choice. The
VOTT of using travel mode m 2 M for travellers in the same group r 2 R is assumed
to be the same, which is denoted by b r

m in euro/time step. The three classes are not
explicitly defined in the model but are implicitly included in the travel information of
each group of trips.

However, the utility is not known with certainty due to factors such as unobserved
variation among travellers, unobserved attributes of the alternatives, and perception
errors of travellers (Ben-Akiva et al., 1985). Therefore, the utility of mode m 2 M for
trips in the group r 2 R, denoted as Ur

m, is treated as a random variable. It consists of a
deterministic systematic component V r

m, which is the observable utility of mode m 2 M
for trips in the group r 2 R, and a random component er

m, which is the unobservable
component of the utility.

Ur
m =V r

m + er
m, 8r 2 R,m 2 M (4.1)

The deterministic term V r
AV of the utility for using an SAV for group r 2 R depends

on the generalised cost of using SAVs and travellers’ satisfaction towards SAV ser-
vices. To be more specific, the generalised cost of using SAVs for group of trips r 2 R
is calculated as the linear sum of the fare of travellers OMr

AV and the travel time-related
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cost of the journey b r
AV T r

AV . The fare OMr
AV of using the SAV service for travellers in

group r 2 R depends on the pricing strategy of SAV operators and the travel distance
of a trip. The perceived travel time T r

AV is affected by the dynamically varying traffic
congestion, which can be determined endogenously by solving the optimisation model.
b0 is a parameter that converts generalised costs into utility, expressed as utility/euro,
which indicates the sensitivity of travellers to the change in the monetary costs. Trav-
ellers’ satisfaction with the SAV service depends on the trip service rate a . When the
SAV operator is not allowed to reject any trips, the trip service rate equals 1 (100%).
However, if some trips are rejected by the SAV operator, the trip service rate will be
less than 1, which will decrease the traveller’s satisfaction with the SAV service. b1 is
the parameter that describes travellers’ satisfaction with the service rate.

V r
AV =�b0(OMr

AV +b r
AV T r

AV )�b1(1�a), 8r 2 R (4.2)

Alternatively, the deterministic term V r
B of the utility for using a bicycle for group

r 2 R is calculated based on the monetary cost of using bicycles, as shown in Equations
(4.3). The monetary cost OMr

B for group r 2 R is the bicycle’s depreciation cost which
is calculated by dividing the bicycle’s purchase price by its service life. We assume
that the travel time T r

B for group r 2 R is a constant, as the congestion in motor lanes
will not affect the travel time of bicycles.

V r
B =�b0(OMr

B +b r
BT r

B), 8r 2 R (4.3)

In Equations (4.1), er
m is the error between the actual utility and the systematic

utility of mode m 2 M for trips in group r 2 R, which can be viewed as the part of
utility that is unknown to the analyst. Assuming these error terms are all independently
and identically Gumbel distributed, we can compute the probability of choosing SAVs
against bicycles in group r 2 R, denoted as continuous variables Pr

AV , by using a binary
logit model shown in Equations (4.4).

Pr
AV =

eV r
AV

eV r
AV + eV r

B
, 8r 2 R (4.4)

We introduce integer variables Dr
AV to represent the demand for SAVs for group r 2

R, which can be calculated using the total number of trips nr in group r 2 R multiplied
by their probability of choosing SAVs. Then, we round this value to the nearest integer
using a floor function as shown in Equations (4.5).

Dr
AV = bnrPr

AV +0.5c, 8r 2 R (4.5)
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4.3.4 Fleet sizing and management for SAV operators
In this section, we develop the base formulation for an SAV operator to manage the
SAV fleet. Three tiers of decisions are made in this model: (1) at the strategic level:
the overall SAV fleet size, the initial fleet distribution at the beginning of a day and
the service quality level; (2) at the operational level: the assignment of passengers
to SAVs, vehicle routes determination, parking and relocation decisions; and (3) the
travel time on each road link.

For each group r 2 R, the total number of trips served by SAVs is specified by
integer variables Sr. Therefore, the relationship between the total number of served
trips, the total demand and the service rate can be described by Constraint (4.6). It
should be noted that when an SAV operator must accept all the requests to maintain a
high level of service quality, the parameter a is set to 1. When an SAV operator can
reject those requests that bring no profits for the company, a is defined as a continuous
variable where a 2 [0,1] and its value is determined endogenously by solving the
model. As a result, Constraint (4.6) becomes a non-linear constraint.

a Â
r2R

Dr
AV = Â

r2R
Sr (4.6)

In addition, for each of the group r 2 R, the number of served trips Sr should be
less than the demand for SAVs Dr

AV .

Sr  Dr
AV , 8r 2 R (4.7)

The movement of vehicles is modelled as flow circulating on the time-space net-
work. We introduce integer variables PFr

it1 jt2
to represent the passenger flow in the

group of trips r 2 R served by an SAV in road link (i, j), from time instant t1 to t2.
These variables are only defined for (it1 , jt2) 2 G,ar  t1 < t2  br. If t1 = ar, then
i = or. Passengers in the same group r 2 R are picked up by the SAVs at the origin
node or at the departure time ar where r 2 R. This is ensured by Constraints (4.8).
In this study, we do not model the explicit waiting time from the passenger’s perspec-
tive. We focus on a strategic planning problem, assuming that all the trip information
is available in advance. This enables the service operator to make optimal planning
decisions. Our primary focus is to determine the required number of vehicles to en-
sure that travellers depart at their desired times. In addition, this analysis concentrates
on two urban travel modes: SAVs and bicycles. Our expectation is for the SAV op-
erator to deliver a high-quality service, with a short waiting time for travellers before
pick-up. Nevertheless, we do acknowledge that our approach possesses limitations in
scenarios where passengers make their requests without sufficient advance notice and
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demand immediate vehicle availability. In such cases, ignoring passenger waiting time
could impact strategic decision-making. However, the explicit inclusion of waiting
time through modelling could increase the model’s complexity, presenting challenges
in achieving optimal solutions. As a result, to strike the balance between computational
complexity and accuracy, we choose not to model the waiting time explicitly.

Sr = Â
jt |(or

ar , jt)2G

PFr
or

ar jt , 8r 2 R (4.8)

When delivering passengers to their destination dr, SAVs serving the same group
of trips r 2 R are allowed to take alternative routes to evenly distribute the flow and
alleviate the network burden. For this reason, SAVs may arrive at the destination at
different times, but not later than the user-specified latest arrival time br. To describe
this, integer variables Er

t are defined to represent the total number of passengers in
group of trips r 2 R arriving at time t 2 T with ar + str  t  br. Constraints (4.9) and
(4.10) ensure that the number of served trips in group r 2 R is equal to the number of
trips arriving at destination dr at different times.

Sr = Â
t2T |ar+strtbr

Er
t , 8r 2 R (4.9)

Er
t = Â

it1 |(it1 ,d
r
t )2G

PFr
it1 dr

t
, 8r 2 R,ar + str  t  br (4.10)

Constraints (4.11) and (4.12) guarantee that the destination node dr and the origin
node or, respectively, of the group of trips r 2 R will only be visited once during client
delivery. It indicates that passengers will be dropped off at the destination node the first
time the SAV arrives there, and SAVs will not return to the origin node after departure.

Â
jt1 |(dr

t , jt1)2G

PFr
dr

t jt1
= 0, 8r 2 R,ar  t  br (4.11)

Â
it1 |(it1 ,o

r
t )2G

PFr
it1 or

t
= 0, 8r 2 R,ar  t  br (4.12)

The next constraints describe the passenger flow conservation at any nodes i 2 N
in the network except the origin node or and destination node dr for the group of trips
r 2 R.

Â
jt1 |( jt1 ,it)2G

PFr
jt1 it = Â

jt2 |(it , jt2)2G

PFr
it jt2

, 8r 2 R,ar < t < br, i 2 N, i 6= or, i 6= dr

(4.13)
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On the road, SAVs have three statuses: (1) transporting a passenger; (2) driving
empty to pick up the next passenger or driving to a parking depot; and (3) being parked
at a depot. We introduce continuous variables Fit1 jt2 to describe the vehicle flow (the
number of SAVs) in road link (i, j) from time instant t1 to t2, where (it1 , jt2) 2 G. Note
that when t1 = 0, only links with i 2 NP are defined, meaning that SAVs have to depart
from the parking nodes at the beginning of the day. In addition, continuous variables
Wit are defined to represent the total number of SAVs parking at node i 2 NP from
time instant t to t +1, with t 2 T . Note that there is no need to define Fit1 jt2 and Wit as
integer variables explicitly. The integrality requirement for these variables is implicitly
satisfied through Constraints (4.14)-(4.17), which will be explained later.

No matter in which status, the vehicle flows Fit1 jt2 in the time-space network should
always be greater than the passenger flow Âr2R PFr

it1 jt2
to satisfy the mobility need, as

indicated by Constraints (4.14).

Â
r2R

PFr
it1 jt2

 Fit1 jt2 , 8(it1 , jt2) 2 G (4.14)

The next constraints describe the flow conservation rules applied to SAVs’ circula-
tion at both normal and parking nodes.

Â
jt1 |( jt1 ,it)2G,t1<t

Fjt1 it = Â
jt2 |(it , jt2)2G,t<t2

Fit jt2 , 8i 2 N \NP,0 < t < T (4.15)

Â
jt1 |( jt1 ,it)2G,t1<t

Fjt1 it +Wit�1 = Â
jt2 |(it , jt2)2G,t<t2

Fit jt2 +Wit , 8i 2 NP,0 < t < T

(4.16)
It is worth mentioning that the vehicle flow Fit1 jt2 is associated with a vehicle flow-

related cost in the objective function, which is minimised. Further details about the
objective function can be found in Section 4.3.6. Consequently, the minimum number
of vehicles required to transport passengers in link (it1 , jt2) equals the total number of
passengers Âr2R PFr

it1 jt2
according to Constraints (4.14), which is an integer. Besides

the occupied vehicle flow, Fit1 jt2 also includes the empty relocating vehicle flow. These
empty vehicles are either driving after delivering the passengers or are on their way to
pick up new passengers. According to the vehicle conservation constraints, these flows
may be integer values as well.

The initial distribution of SAVs at parking node i 2 Np at the beginning of a day
is denoted by integer variables Vi. At the beginning of the optimisation period, SAVs
either depart from the parking depots to pick up passengers or park at the parking node
waiting for the task given by the SAV operator, as described in Constraints (4.17).
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Given that both Fi0, jt and Vi take integer values, Wi0 will also take integer values.

Â
jt |(i0, jt)2G

Fi0 jt +Wi0 =Vi, 8i 2 Np (4.17)

In addition, the sum of the initial fleet distributed at the parking nodes gives the
overall SAV fleet size, denoted as integer variable V , as shown in Constraint (4.18).

Â
i2Np

Vi =V (4.18)

To specify the longest travel time of trips in group r 2 R, we introduce binary
variables Ar

t which are 1 when at least one trip in group r 2 R arrives at time t 2 T ,
and 0 otherwise. Constraints (4.19) specify the arrival times of trips in group r 2 R.
Then, Constraints (4.20)-(4.22) calculate the longest travel time experienced by trips
in group r 2 R. Constraints (4.20) impose a lower bound to the longest travel time of
trips in group r 2 R meaning that it has to be bigger than or equal to all of the different
travel times experienced by travellers. Constraints (4.21) and (4.22) impose an upper
bound to the longest travel time meaning that it has to be less than or equal to the
longest travel time among all of the different travel times experienced by travellers in
group r 2 R. We define binary variables Zr

t and impose that Ât|ar+strtbr Zr
t equals 1

to ensure that variable T r
AV can only take one value which is the longest travel time of

travellers using SAVs in group r 2 R. M in Constraints (4.21) is a sufficiently large
number.

Er
t

nr  Ar
t  Er

t , 8r 2 R,ar + str  t  br (4.19)

T r
AV � Ar

t (t �ar), 8r 2 R,ar + str  t  br (4.20)

T r
AV  Ar

t (t �ar)+M (1�Zr
t ), 8r 2 R,ar + str  t  br (4.21)

Â
t|ar+strtbr

Zr
t = 1, 8r 2 R (4.22)

4.3.5 Traffic congestion
We include traffic congestion in the model by introducing flow-dependent travel time.
It is important to note that only the flow of SAVs contributes to traffic congestion,
as this study does not explore the mixed flow interaction between SAVs and bicy-
cles. According to the BPR function (Dafermos & Sparrow, 1969), the travel time of
traversing a road link has a non-linear relationship with the vehicle flow on this link:

t = t0
✓

1+a
⇣

F
Q

⌘b
◆

. Here, a and b are parameters; t0 represents the minimum travel
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time, F denotes the vehicle flow, and Q represents the link capacity. However, involv-
ing the non-linear BPR function makes the solving process more difficult. Therefore,
we adopt the method proposed by Van Essen & Correia (2019) to replace the non-
linear travel time calculation with multiple link-time-capacity choices. They use the
concept of spatial link capacity Cit1 jt2 of a certain link (i, j) 2 L within a travel time
slot between t1 2 T to t2 2 T . The spatial link capacities can be calculated before the
optimisation using the following equation.

Cit1 jt2 = (t2 � t1)Qi j

 
1
a

 
t2 � t1
tmin
i j

�1

!! 1
b

(4.23)

We add 0.5 to t2 when t2 � t1 equals tmin
i j to prevent the value of Cit1 jt2 from being

zero. Among all the link-time-capacity choices, only one can be selected, meaning that
there is a unique travel time for traversing road link (i, j) at a time instant t1 2 T . This
is described in Constraints (4.24) by making use of binary variables Xit1 jt2 which are 1
when any vehicle travels in road link (i, j) from time instant t1 to t2, where (it1 , jt2)2G,
and 0 otherwise. Note that using a large set of binary variables Xit1 jt2 in the time-
space network may increase the complexity of solving the model (Kaufman et al.,
1998). Specifying the set of binary variables requires the enumeration for each road
link (i, j) 2 L at each time instant t1 2 T and t2 2 T . However, in our case, given the
maximum and minimum travel time of link (i, j) 2 L, we only define binary variables
for each link (i, j) from time instant t1 2 T to t2 2 T if t1 + tmin

i j  t2  t1 + tmax
i j . This

reduces the number of binary variables required.

Â
t1|(it , jt1)2G

Xit jt1  1, 8(i, j) 2 L, t 2 T (4.24)

Constraints (4.25) require that the total flow on road link (i, j) from time instant
t1 to time instant t2 never exceeds its corresponding spatial link capacity. Given that
only one specific travel time will be chosen defined by Constraints (4.24), many flow
variables Fit1 jt2 are imposed to zero.

Fit1 jt2 
j
Cit1 jt2

k
Xit1 jt2 , 8(it1 , jt2) 2 G (4.25)

Vehicles that enter the road link first will leave the road link. This is known as
the first-in-first-out (FIFO) rule, described by Constraints (4.26). These constraints
only apply to time instant t1 and t2 when t1 < t2  t1 + tmax

i j � tmin
i j . Otherwise, if

t2+ tmin
i j > t1+ tmax

i j , there is no need to impose FIFO rule as vehicles entering the road
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link (i, j) at time instant t1 with the longest travel time have left the link before any
vehicles entering the road link (i, j) at a later time instant t2 despite travelling with the
shortest travel time.

t1 + Â
t2T

Xit1 jt (t � t1) t2 + Â
t2T

Xit2 jt (t � t2)+M

 
1� Â

t2T
Xit2 jt

!
,

8(i, j) 2 L, t1 < t2  t1 + tmax
i j � tmin

i j
(4.26)

4.3.6 Objective function

With the purpose of maximising the total profit of the SAV operator, we define the
objective function as Equation (4.27), which comprises the total revenue paid by the
service users and the total costs of operating the whole system. Service users have to
pay two types of fares for using an SAV, an initial fixed base fare p0 in euros, and a
distance-related price p in euros per kilometre. The distance-related price is charged
based on the shortest travel distance sdr of the trip r 2 R instead of the actual travel
distance to avoid the unnecessary detours of SAVs in order to earn extra profits.

The total costs include the following: (1) the total depreciation costs of the SAV
fleet in the system, which is calculated as the unit depreciation cost in euros per vehicle,
denoted as c f , multiplied by the total fleet size. Here, c f is calculated as the vehicle’s
purchase price divided by its service life span; (2) the total operational costs including
fuel, maintenance and insurance cost, which are calculated by multiplying the total
distance of all the SAVs by the unit operational cost co in euros per kilometre; note
that the total travel distance includes both the deliver distance with clients and the
relocation distance without clients; (3) the penalty for the late drop-off of the client,
calculated by multiplying the delay cost cd in euros per time step by the difference
between the actual riding time of clients and the shortest travel time.

max Â
r2R

OMr
AV Sr � c f ·V � co

0

@ Â
(it1 , jt2)2G

li jFit1 jt2

1

A� cd Â
r2R

 

Â
t2T

tEr
t �arSr � strSr

!

(4.27)
where

OMr
AV = p0 + sdr p, 8r 2 R. (4.28)
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4.4 Problem linearisation
The model proposed in Section 4.3 is a non-linear mixed integer programming model
because of the exponential terms in binary logit model in Equations (4.4), the floor
function to calculate the SAV demand in Equations (4.5) and the quadratic term to
determine the acceptance rate in Constraint (4.6). To facilitate the solution process,
we propose methods to linearise these non-linear equations and constraints, thereby
transforming the model into a mixed integer linear programming model. In addition,
we determine the most appropriate value for M used in Constraints (4.21) and (4.26)
to get a tighter formulation of the proposed model.

4.4.1 Linearisation of the binary logit model
In Section 4.4.1, we first reformulate the binary logit model in Equations (4.4) with
logarithmic functions which are still non-linear. Then, we adopt the outer-inner ap-
proximation method to linearise the logarithmic functions. Details of this method are
described in Section 4.4.1. To use this method, a set of breakpoints needs to be pre-
specified before the optimisation. Thus, in Section 4.4.1, we propose a breakpoint
determination method to find the fewest breakpoints while guaranteeing a certain level
of approximation accuracy.

Model reformulation

We firstly rewrite Equations (4.4) as:

Pr
AV

1�Pr
AV

=
eV r

AV

eV r
B
, 8r 2 R. (4.29)

Then, we take the logarithm of both sides of Equations (4.29) to have the following
equation:

lnPr
AV � ln(1�Pr

AV ) =V r
AV �V r

B, 8r 2 R. (4.30)

By defining new variables LNr
AV and LNr

B, we can further simplify the equation by
having the following:

LNr
AV = lnPr

AV , 8r 2 R, (4.31)

LNr
B = ln(1�Pr

AV ), 8r 2 R, (4.32)
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LNr
AV �LNr

B =V r
AV �V r

B, 8r 2 R. (4.33)

Linearisation of logarithmic functions: outer-inner approximation-based linear
programming relaxation

We adopt the outer-inner approximation method (Wang et al., 2015; Guo et al., 2022)
to linearise the logarithmic term in Constraints (4.31) and (4.32). The logarithmic
function can be relaxed to a set of linear constraints that give the upper and the lower
bound of the original logarithmic function (see Figure 4.4.1). The procedure for lin-
earising Constraints (4.31) and (4.32) are the same. For the sake of simplicity, we only
take Constraints (4.31) as an example.

Figure 4.4.1: Outer-inner approximation.

The original logarithmic function is divided into K � 1 segments by K pre-
determined breakpoints (K is the number of breakpoints). For each segment, the tan-
gent lines at the two breakpoints and the secant line between the breakpoints serve as
the upper bound and the lower bound of the real logarithm function, respectively. Note
that the breakpoints can be distributed non-uniformly to minimise the approximation
error. We introduce an index set for breakpoints, denoted by K = {1,2, . . . ,k, . . . ,K }.
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Each breakpoint k 2 K has coordinates (uk, lnuk) where uk 2 [0,1]. The segment be-
tween two adjacent breakpoints k 2 K and k+ 1 2 K is denoted by [uk,uk+1]. If the
value of variable Pr

AV falls within the interval [uk,uk+1], we say that [uk,uk+1] is an
active interval. A binary variable l k

r is defined for k 2 {1,2, . . . ,k, . . . ,K �1}, r 2 R
to indicate whether or not an interval [uk,uk+1] is active for group r 2 R.

A set of constraints is introduced to describe this outer-inner approximation. Con-
straints (4.34) describe the tangent lines at each breakpoint, which serve as the outer
approximation of the logarithmic function.

LNr
AV  1

uk Pr
AV + lnuk �1, 8r 2 R,k 2 K (4.34)

Constraints (4.35)-(4.41) describe the inner approximation of the logarithmic func-
tion. The value of variables LNr

AV and Pr
AV can be represented by the convex combina-

tion of the coordinates of two consecutive breakpoints, where continuous variables q k
r

are defined to represent the convex combination coefficient for breakpoint k 2 K for
group of trips r 2 R, as shown in Constraints (4.35) and (4.36).

LNr
AV �

K

Â
k=1

q k
r lnuk, 8r 2 R (4.35)

Pr
AV =

K

Â
k=1

q k
r uk, 8r 2 R (4.36)

The summation of coefficient q k
r has to be one, according to the convexity Con-

straints (4.37).
K

Â
k=1

q k
r = 1, 8r 2 R (4.37)

There exists only one active interval, meaning that the value of Pr
AV and LNr

AV can
only fall into one line segment for each r 2 R, ensured by Constraints (4.38).

K �1

Â
k=1

l k
r = 1, 8r 2 R (4.38)

The following constraints describe the relationship between two consecutive break-
points and the active interval in between.

q 1
r  l 1

r , 8r 2 R (4.39)

q k
r  l k�1

r +l k
r , 8r 2 R,k 2 {2, . . . ,K �1} (4.40)

qK
r  lK �1

r , 8r 2 R (4.41)
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Breakpoints determination

The approximation error from the outer-inner approximation can be reduced by us-
ing more breakpoints in the area where the nonlinear function has higher curvature.
However, using too many breakpoints will significantly increase the number of vari-
ables and constraints, resulting in a heavy computational burden. In this section, we
propose a breakpoint determination method with the aim of locating the fewest break-
points with a good distribution so that a certain level of approximation accuracy can
be guaranteed.

First of all, a maximum acceptable approximation (MAA) error for each interval
needs to be specified as the threshold, denoted by g . Then, the maximum approxima-
tion error between two consecutive breakpoints can be calculated given the equation
of the logarithmic function and the approximation functions. Details on how to cal-
culate the maximum approximation error are introduced later in this section. Next,
specifying the coordinate of one breakpoint, the location of another breakpoint can
be determined by ensuring that the maximum approximation error within the inter-
val formed by these two breakpoints does not exceed the predetermined MAA error
threshold g . In this case, we can start from the last known breakpoint which is (1, 0)
for the logarithmic function lnPr

AV , and then calculate the coordinate of the previous
breakpoint. This procedure repeats until the x-coordinate of the newly found break-
point is smaller than the lower bound of Pr

AV for all the groups r 2 R, which is denoted
as P. P is defined as the minimum probability of choosing SAVs among all the groups,
under which the demand for SAVs in all the groups will be zero. Namely, under P, it
is pointless to add additional breakpoints.

According to Constraints (4.5), when the value of nrPr
AV is less than 0.5, the value

of Dr
AV will be zero. Thus, P can take the largest value which satisfies Constraints

(4.42).

P  1
2nr , 8r 2 R (4.42)

When the value of Pr
AV is less than P, the demand for SAVs in group r 2 R will

reach zero. However, this does not mean that Pr
AV cannot have a value less than P.

When the difference between the utility of SAVs and bicycles is sufficiently large, the
probability of choosing SAVs may drop to near zero. To ensure the feasibility of the
model, a boundary breakpoint must be added. The coordinates of this breakpoint can
be specified as (1/M , ln(1/M )), where M is a sufficiently large number.

As shown in Figure 4.4.2, the approximated value lies between the tangent lines
(yellow lines) and the secant lines (blue lines), while the real value is the logarithmic
function (black line). Thus, the maximum approximation error is the maximum of 1)
the maximum distance between the logarithmic function and the secant line, denoted as



102 4 Endogenous Demand, Congestion Effects, and Accept/Reject Mechanism

emax
1 , and 2) the maximum distance between the logarithmic function and the tangent

lines, denoted as emax
2 . The maximum approximation error takes the maximum value

between emax
1 and emax

2 which yields:

emax = max{emax
1 ,emax

2 }. (4.43)

Figure 4.4.2: Maximum approximation error.

Proposition 4.4.1 The maximum error between the logarithmic function and the se-
cant line emax

1 equals the maximum error between the logarithmic function and the
tangent lines emax

2 . The maximum error at interval [uk�1,uk] is:

emax =
uk�1 lnuk �uk lnuk�1

uk �uk�1 � ln
⇣

lnuk � lnuk�1
⌘
+ ln

⇣
uk �uk�1

⌘
�1. (4.44)

Proof :
We first calculate the maximum approximation error between the logarithmic function
and the secant line.

For Pr
AV 2 [uk�1,uk], we define the error at Pr

AV between the approximated value and
the real logarithmic function as e, where

e = lnPr
AV �

✓
lnuk�1 +

lnuk � lnuk�1

uk �uk�1

⇣
Pr

AV �uk�1
⌘◆

. (4.45)
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To determine which point between these two breakpoints contributes to the maxi-
mum error, we have to set the derivative of the error e to 0.

1
Pr

AV
� lnuk � lnuk�1

uk �uk�1 = 0. (4.46)

This results in

Pr
AV =

uk �uk�1

lnuk � lnuk�1 . (4.47)

At this point, the maximum approximation error occurs. The approximation error
equals the difference between the logarithmic function and the secant line at this point.

emax
1 = ln

⇣
uk �uk�1

⌘
� ln

⇣
lnuk � lnuk�1

⌘
+

uk�1 lnuk �uk lnuk�1

uk �uk�1 �1. (4.48)

The maximum approximation error between the tangent lines and the logarithmic
function occurs at the point where two tangent lines of the consecutive breakpoints
intersect. Knowing the coordinates of the two consecutive breakpoints (uk, lnuk) and
(uk�1, lnuk) with uk�1 < uk, the tangent lines at those two breakpoints can be expressed
as follows:

yk =
1
uk x+ lnuk �1, (4.49)

yk�1 =
1

uk�1 x+ lnuk�1 �1. (4.50)

Combining the two equations, we can calculate the intersection point of the two
tangent lines, which is

✓
(lnuk � lnuk�1)ukuk�1

uk �uk�1 ,
(lnuk � lnuk�1)uk�1

uk �uk�1 + lnuk �1
◆
.

The maximum approximation error emax
2 is the vertical distance from the intersec-

tion point to the logarithmic function:

emax
2 =

�
lnuk � lnuk�1�uk�1

uk �uk�1 + lnuk �1� ln

 �
lnuk � lnuk�1�ukuk�1

uk �uk�1

!
. (4.51)

This gives:
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emax
2 =

uk�1 lnuk �uk lnuk�1

uk �uk�1 � ln
⇣

lnuk � lnuk�1
⌘
+ ln

⇣
uk �uk�1

⌘
�1. (4.52)

So, we have emax = emax
1 = emax

2 , with the maximum approximation errors occur-
ring at different locations.

2

Setting the last breakpoint equal to (1,0) and fixing the desired maximum error g ,
we can determine the breakpoint before 1 by solving the following formula numerically
for uk�1.

g = ln
⇣

uk �uk�1
⌘
� ln

⇣
lnuk � lnuk�1

⌘
+

uk�1 lnuk �uk lnuk�1

uk �uk�1 �1 (4.53)

with

uk = 1. (4.54)

Similarly, uk�2 can be obtained by using the found uk�1 as input.

4.4.2 Linearisation of the floor function
The demand calculation function in Equations (4.5) is non-linear. Therefore, we re-
place Equations (4.5) by the following constraints:

nr ·Pr
AV �0.5 < Dr

AV  nrPr
AV +0.5, 8r 2 R. (4.55)

4.4.3 Linearisation of the acceptance rate constraint
When an SAV operator is allowed to reject nonprofitable requests, a is defined as
a continuous variable with a 2 [0,1]. As a result, Constraint (4.6) becomes a non-
linear constraint consisting of the product of the continuous variable a and the integer
variables Dr

AV . To linearise this constraint, we introduce additional binary variables Dh
to discretise the integer term Âr2R Dr

AV , and continuous variables Yh 2 [0,1] to describe
the value of the integer term Âr2R Sr, where h 2 {0,1, . . . ,H }. Here, H should be
chosen such that these constraints still hold when all demand would use SAVs.

Then, we substitute Constraint (4.6) with the following constraints.

Â
r2R

Dr
AV =

H

Â
h=0

2hDh (4.56)
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Yh  a, 8h 2 {0,1, . . . ,H } (4.57)

Yh  Dh, 8h 2 {0,1, . . . ,H } (4.58)

Yh � a +Dh �1, 8h 2 {0,1, . . . ,H } (4.59)
H

Â
h=0

2hYh = Â
r2R

Sr (4.60)

4.4.4 Tightening the model by choosing an appropriate value for
M

M used in Constraints (4.21) and (4.26) represents a sufficiently large number. How-
ever, using an excessively large M may lead to a model with a weak relaxation, which
can, in turn, slow down the solving process of the mixed-integer programming (MIP)
model. Thus, choosing a proper value for M is beneficial in tightening the proposed
model. The main criterion for choosing an appropriate value for M is to identify the
smallest value that is sufficiently large to prevent the cut-off of any feasible solution.
The value of M should be specified for each of the constraints to get a tighter formu-
lation.

We first rewrite Constraints (4.21) as follows with constraint-specific values M
1
r

where r 2 R.

T r
AV  Ar

t (t �ar)+M
1
r (1�Zr

t ), 8r 2 R,ar + str  t  br (4.61)

Given that the longest travel time T r
AV for SAV in group r 2 R is inherently less than

or equal to the time difference between the latest arrival time br and the departure time
ar, M 1

r can take the following value regardless of the values of the binary variables Ar
t .

M
1
r = br �ar, 8r 2 R (4.62)

Then, we rewrite Constraints (4.26) using a constraint-specific value M
2
i jt1t2 with

t1, t2 2 T if t1 < t2  t1 + tmax
i j � tmin

i j ,(i, j) 2 L.

t1 + Â
t2T

Xit1 jt (t � t1) t2 + Â
t2T

Xit2 jt (t � t2)+M
2
i jt1t2

 
1� Â

t2T
Xit2 jt

!
, 8(i, j) 2 L,

t1 < t2  t1 + tmax
i j � tmin

i j

(4.63)
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When the value of Ât2T Xit2 jt is 0, indicating that no vehicles enter the link (i, j)2 L
at time instant t2 2 T , Constraints (4.63) become the follows:

t1 + Â
t2T

Xit1 jt (t � t1) t2 +M
2
i jt1t2 , 8(i, j) 2 L, t1 < t2  t1 + tmax

i j � tmin
i j . (4.64)

The left-hand side of Constraints (4.64) indicates the time that a vehicle leaves link
(i, j) 2 L if it enters this link at time instant t1 2 T . Knowing that a maximum travel
time for a vehicle traversing link (i, j) 2 L is tmax

i j , the latest time that a vehicle leaves
link (i, j) 2 L can never exceed its maximum travel time plus the entering time, which
gives:

t1 + Â
t2T

Xit1 jt (t � t1) t1 + tmax
i j , 8t1 2 T,(i, j) 2 L. (4.65)

Combining Constraints (4.64) and (4.65) gives the smallest value that M
2
i jt1t2 can

take, which is:

M
2
i jt1t2 = t1 + tmax

i j � t2, 8(i, j) 2 L, t1 < t2  t1 + tmax
i j � tmin

i j . (4.66)

To help readers comprehend the model more efficiently, we summarise the com-
plete problem formulation as well as the notations of the sets, parameters, and variables
in Appendix 4.A.

4.5 Case study of the city of Delft, in The Netherlands
In this section, we present the computational results of the case study of Delft, in the
Netherlands to evaluate the effectiveness of the proposed model.

4.5.1 Application setting
The proposed model is applied to a quasi-real case study of the city of Delft, in the
South Holland province in The Netherlands (Correia & Van Arem, 2016). A simplified
road network of Delft is used in this case study which contains 35 nodes and 104
directed links (two-way circulation allowed), displayed in Figure 4.5.1. SAVs are free
to drive on the entire network, but only 7 nodes are designated as free parking depots,
which are nodes 3, 10, 11, 15, 19, 22, and 27 (identified in red). The parking depots
are distributed throughout the city, with three located in the city centre and four located
on the outskirts, which facilitates the use of SAV services by residents from all areas
of the city. In addition, each road link has either one lane or two lanes, with a capacity
of 1600 or 3200, respectively. Vehicles are allowed to travel on these two types of road
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links with a maximum travel speed (free-flow speed without congestion) of 50km/h
and 70 km/h, respectively, and with a minimum travel speed of 5km/h.

Figure 4.5.1: Simplified road network of Delft used in the case study.

The mobility data for the morning peak hour in Delft was obtained using the Dutch
mobility dataset (MON 2007/2008). This dataset provides the daily mobility infor-
mation of a sample of residents, including but not limited to the origin, destination,
departure time, arrival time, transport mode, etc. It has been used previously (Correia
& Van Arem, 2016), Liang et al. (2020) to study the future mobility system with AVs
in urban networks. However, this dataset does not have a large sample of trips for this
city if we focus on just one hour. To overcome this limitation and characterise as much
as possible the real mobility pattern in the morning peak hour, we filtered out the trips
in the database from 7 am to 10 am with travel modes of bicycle, car, and taxi, and
then evenly distributed them within one hour with one-third of the amount. In total,
2933 trips are generated, aggregated into 45 groups of trips by the similarity of the trip
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information as explained in the model.
The optimisation period contains two parts. One is a one-hour period studied dur-

ing the morning peak, comprised of 24 time steps of each 2.5 minutes. Besides that, 5
additional time steps are added as a pre-optimisation period. This is needed since we
assume that all the SAVs depart from parking depots in the morning to serve the trips.
For SAVs to arrive at the requested origin on time, additional time steps are required
as slack in the optimisation period. Therefore, the optimisation period contains a total
of 29 time steps.

The parameters used in this case study related to the network setting, the demand,
and the SAV operating system are summarised and explained in Table 4.5.1.

Table 4.5.1: Parameter summary

ParameterDescription and reference values

tmax
i j Maximum travel time by SAVs which is computed by dividing the length of the road link

by the minimum travel speed of 5km/h.
tmin
i j Minimum travel time by SAVs which is calculated by dividing the length of the road link

by the related maximum travel speed (50km/h or 70km/h). Note that the minimum travel
time on each road link has a minimum value of 1 time step (2.5 minutes in this case study)
due to the time-space network. It imposes that no vehicles can travel with a travel time of
zero.

Cit1 jt2 Spatial capacity of each road link which is calculated using Equation (4.23).
sdr, str Shortest travel distance/time which is calculated using the shortest path algorithm assum-

ing SAVs can travel with free-flow speed.
T r

B Travel time of bicycles which is calculated by dividing the length of the shortest path by
the average speed of the Dutch on a pedal bicycle, 12.4 km/h (BicycleDutch, 2018).

b0 Parameter used in the logit model with a value of 0.1.
b r

AV Travellers’ VOTT for using an AV with high income, middle income, and low income
equal to 6.6, 4.6, and 3.8 euro/hour, respectively (Kolarova et al., 2019).

b r
B Travellers’ VOTT for using a bicycle with high income, middle income, and low income

equal to 24.9, 17.3, and 14.1 euro/hour, respectively (Kolarova et al., 2019).
p0, p Initial base fare and price per km which are set to 3 euros and 1.28 euros/km, respectively,

according to the price rate of Uber in Delft, in The Netherlands (Uber, 2023).
co Operational cost of SAVs which is set to 0.32 euro/km (calculated according to the

methodology proposed by Bösch et al. (2018).
c f Depreciation cost of SAVs which is set to 1.2 euro/vehicle/hour (Fan et al., 2022).
cd Delay penalty which is set to 0.2 euro/min (Liang et al., 2020).
a Service rate which is set to 1 when the SAV operator has to serve all the trips.
a,b Parameters in the BPR function which are set to 2 and 4, respectively (Van Essen &

Correia, 2019).
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4.5.2 Breakpoint generation
Before solving the reformulated MILP model, a set of breakpoints was generated with
a pre-specified MAA error. This error represents the maximum acceptable difference
between the approximation value and the true value of the non-linear terms in Con-
straints (4.31) and (4.32). Therefore, the smaller this value is, the more precise the
approximation will be; however, the greater the number of breakpoints that will be
generated.

Figure 4.5.2 shows the relationship between the number of generated breakpoints
and the value of the MAA error. We can observe a clear trend where the number
of generated breakpoints increases dramatically with the decrease in the value of the
MAA error, especially when the approximation error is less than 0.05. On the one
hand, more breakpoints lead to higher accuracy, but on the other hand, they lead to
greater computational time. To balance these two factors, we need an MAA error that
can ensure a good quality of the optimisation results within an acceptable computa-
tional time. To find a proper value for this case study, we first tested the model in the
base scenario with three different values for the MAA error, which are 0.05, 0.01, and
0.005, yielding 11, 23, and 31 breakpoints, respectively.

Figure 4.5.2: Relationship between MAA error and the number of generated break-
points .

We implemented the reformulated MILP model in Python 3.7 and then solved it
using Gurobi optimiser version 10.0.0 on an on an Intel(R) Xeon(R) W-2123 CPU
@3.60 GHz, and 32.00 GB RAM computer. Table 4.5.2 shows the optimisation results
with the three mentioned MAA errors. Here, we used the objective function value,
the optimal total fleet size, the total demand for SAVs, and the computational time as
indicators to compare the performance for these three cases. The objective function
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value is the maximised profit for an SAV operator. The optimal fleet size and the total
demand for SAVs are selected as the indicators because fleet sizing is one of the most
important planning decisions for an SAV operator, and the demand for SAVs directly
impacts the fleet sizing decision. In addition to this reason, the demand for SAVs is
one of the attributes most affected by the approximation error.

Table 4.5.2: optimisation results with different MAA errors

MAA error 0.005 0.01 0.05

Value Value Relative
change Value Relative

change
Number of breakpoints 31 23 -28.57% 11 -64.29%
Objective function value 11128.07 11143.30 +0.14% 11414.46 +2.57%
Optimal fleet size of SAVs 890 891 +0.11% 914 +2.70%
Demand for SAVs 1269 1271 +0.16% 1304 +2.76%
Computational time 3126s 2236s -28.47% 1921s -38.55%

We first ran the model with MAA error of 0.005, then used the corresponding op-
timisation results as the benchmark to compare with other cases in which the MAA
error is 0.01 and 0.05. The relative changes in the values of the indicators are com-
puted. Looking at the optimisation results with MAA values of 0.005 and 0.01 in Table
4.5.2, we observe very small differences in the objective function values (0.14% rela-
tive difference), the values of the optimal fleet sizes (1 unit difference), and the values
of the demand for SAVs (2 units difference), indicating that using 23 breakpoints has
already achieved a good approximation accuracy. Adding more breakpoints does not
bring a significant improvement to the optimisation outcomes.

In all, the MAA error of 0.01 was used throughout the experiments, which yields
23 breakpoints.

4.5.3 Optimisation results
The model was tested first in a base scenario with parameters given in Section 4.5.1.
Then, we conducted a sensitivity analysis to the following parameters: SAVs price
rate, unit operational cost, delay penalty, parameter b0, and the combination of them in
6 scenarios. We also investigate the impact of congestion by evaluating non-congested
scenarios as a comparison of the existing scenarios. As previously mentioned, this
chapter explores two accept/reject mechanisms. Scenarios 1 to 9 assume that the SAV
operator must accept all requests, while scenarios 10 to 13 assume that the SAV op-
erator may reject the nonprofitable trips. A sensitivity analysis of SAV price rate and
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parameter b1 is carried out to see how travellers’ satisfaction with the service quality
level influences the managerial decisions of the SAV operator under different pricing
policies.

Table 4.5.3 shows the descriptions and parameter settings for all scenarios. The
optimal fleet size distribution can be found in Figure 4.5.3 and key performance indi-
cators can be found in Table 4.5.4.

Table 4.5.3: Scenario description

Scenario description p0

(euro)
p

(euro/km)
co

(euro/km) a cd
(euro/min)

b0
(utility/euro) b1

S1 Base scenario 3 1.28 0.32 1 0.2 0.1 -
S2 Lower price 1.5 0.64 0.32 1 0.2 0.1 -
S3 Lower operational cost 3 1.28 0.1 1 0.2 0.1 -
S4 No delay penalty 3 1.28 0.32 1 0 0.1 -
S5 Higher b0 3 1.28 0.32 1 0.2 0.5 -
S6 Higher b0 with lower price 1.5 0.64 0.32 1 0.2 0.5 -
S7 Base scenario without congestion 3 1.28 0.32 1 0.2 0.1 -
S8 Lower price without congestion 1.5 0.64 0.32 1 0.2 0.1 -
S9 Higher b0 with lower price without
congestion

1.5 0.64 0.32 1 0.2 0.5 -

S10 Base scenario with rejection 3 1.28 0.32 - 0.2 0.5 1
S11 Lower price with rejection 1.5 0.64 0.32 - 0.2 0.5 1
S12 Base scenario with rejection and
lower b1

3 1.28 0.32 - 0.2 0.5 0.1

S13 Lower price with rejection and
lower b1

1.5 0.64 0.32 - 0.2 0.5 0.1

Figure 4.5.3: Fleet size and initial distribution of SAVs at the beginning of a day in all
the scenarios.
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Table
4.5.4:

O
ptim

isation
results

for
allthe

scenarios

Scenario
S1

S2
S3

S4
S5

S6
S7

S8
S9

S10
S11

S12
S13

Totalprofit(euro)
11143.31

3389.07
13904.24

11695.33
7530.06

3653.06
11924.48

4905.77
6437.42

11143.31
3463.92

11152.51
3505.19

Totalrevenue
(euro)

16663.61
11729.52

16672.16
16601.24

10846.61
15113.09

16836.59
11874.50

15667.01
16663.61

11159.4
16599.62

10691.84
A

verage
price

pertrip
(euro)

13.11
6.84

13.11
13.10

14.23
7.07

13.12
6.84

7.02
13.11

6.92
13.15

6.81
Totaldepreciation

cost(euro)
1069.20

1501.20
1009.20

1064.40
673.20

1930.80
1077.60

1519.20
2006.40

1069.20
1453.2

1080.0
1377.6

Totaloperationalcost(euro)
3962.10

5765.25
1285.72

3841.51
2559.35

7510.24
3834.51

5449.54
7223.18

3962.10
5485.27

3934.11
5245.55

Totaldelay
penalty

cost(euro)
489

1074
473

0
84

2019
0

0
0

489
757.0

433
563.5

Totaldem
and

forSAV
s

1271
1715

1272
1267

762
2138

1283
1737

2232
1271

1690
1273

1714.0
SAV

dem
and

share
43.33%

58.47%
43.37%

43.20%
25.98%
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Figure 4.5.4: SAV demand share for different user classes with (a) high VOTT, (b) mid-
dle VOTT, and (c) low VOTT.

Base scenario

As can be seen in Figure 4.5.3, almost all the SAVs are distributed at parking depots 3,
19, 22, and 27 at the beginning of the day, as these depots are either close to residential
areas or the train station in Delft where the commuting demand is high during the
morning peak hour. Depots 10, 11, and 15 have hardly any SAVs as these depots are
either located on the outskirts of the city or near the campus area which is usually the
destination of commuting in the morning. The distribution of the fleet at the beginning
of the day is highly influenced by the geographical distribution of the population, the
distribution of land use, and the travel patterns of residents.

In Table 4.5.4, 43.33% of the travellers choose to use SAV services. However,
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travellers from different income classes behave differently facing trips with different
lengths, as shown in Table 4.5.5. We classified trips into three groups in terms of their
lengths: less than 5 kilometres, between 5 and 10 kilometres, and more than 10 kilome-
tres. Then, we calculated the demand share of SAV services for travellers in different
classes (with high VOTT, middle VOTT, and low VOTT), and their corresponding cost
structures (price, travel time-related cost for using an SAV, and a bicycle).

Results indicate that travellers with a high VOTT are more sensitive to variations
in trip length compared with the other classes. When the trip length is longer than
10 kilometres, 59.22% of travellers with a high VOTT use SAVs rather than cycling
because the increase in time-related costs of cycling is significant for them. When
the length of the trip is short (less than 5 kilometres), 46.9% of travellers with a high
VOTT choose SAVs, meaning that using bicycles can slightly save them some costs.
But the difference between using these two modes is not big. For trips between 5km
and 10km, half of the people choose SAVs as the utilities for using these two modes
are the same. It makes little difference which mode they choose. Note that travellers
with a middle VOTT and a low VOTT always prefer bicycles to SAVs as the price for
using SAVs is high. In addition, travellers with a middle VOTT are insensitive to the
changes in trip length. For them, the cost difference between these two modes does
not change significantly with the increase in trip length.

Table 4.5.5: Optimisation results under the base scenario

User class 0-5km 5-10km � 10km
High VOTT SAV demand share 46.90% 50.23% 59.22%

Average price per trip 8.04 12.32 20.81
Average travel time-related cost per trip for using an SAV 0.99 1.79 2.70
Average travel time-related cost per trip for using a bicycle 7.53 13.82 27.03

Middle VOTT SAV demand share 41.59% 40.93% 40.78%
Average price per trip 8.04 12.32 20.81
Average travel time-related cost per trip for using an SAV 0.76 1.36 1.98
Average travel time-related cost per trip for using a bicycle 5.23 9.63 18.78

Low VOTT SAV demand share 40.00% 37.33% 33.33%
Average price per trip 8.04 12.32 20.81
Average travel time-related cost per trip for using an SAV 0.62 1.07 1.75
Average travel time-related cost per trip for using a bicycle 4.27 7.85 15.31

Sensitivity analysis on price rate

The price rate has a great impact on travellers’ behaviour, which in turn affects the
total demand for SAV services and fleet sizing decisions. In Table 4.5.4, one can see
that the demand for SAVs increased from 1271 (in S1 Base scenario) to 1715 (in S2
Lower price) when the price rate reduces to half of what it was in the base scenario S1.
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To satisfy the increased demand, the SAV operator has to deploy a larger fleet size. At
the same time, the congestion level increased as more vehicles circulated on the road
network and competed for the shortest paths. It can be seen from Table 4.5.4 that the
average delay time per trip increased from 1.93 (in S1 Base scenario) to 3.13 minutes
(in S2 Lower price) and the average delivery time per trip increased from 16.03 minutes
(in S1 Base scenario) to 17.93 minutes (in S2 Lower price). Thus, more delay penalty
was generated which reduced the total profits. Even though more travellers choose to
use SAVs, the total profit is still lower than the one in S1 Base scenario because of
the lower revenue, higher depreciation costs, higher operational costs and higher delay
penalty.

When the price rate for using an SAV is reduced, the willingness of travellers from
different income classes to use the SAV service increases compared with S1 Base sce-
nario, as can be seen in Figure 4.5.4. For travellers with high VOTT (in Figure 4.5.4a),
SAVs are preferable to bicycles regardless of trip length. For travellers with middle
VOTT whose trips are less than 10km in length, the preference between the two modes
is not obvious. Only when the trip length exceeds 10km, do travellers prefer to use
SAVs over the bicycle mode. A similar trend is observed for travellers with a lower
VOTT. The longer the trip is, the more likely a traveller with a low VOTT will choose
SAVs.

Sensitivity analysis on operational costs

As depicted in Figure 4.5.3, the total fleet size in S3 Lower operational cost is 50
vehicles smaller than the one in S1 Base scenario. Looking at the optimisation results
displayed in Table 4.5.4, we found that the total profit increases from 11143.31 euros
(in S1 Base scenario) to 13904.24 euros (in S3 Lower operational cost). The change in
demand for SAVs in S1 and S3 is negligible, and the total relocation distance increases
from 1829.03 km (in S1 Base scenario) to 2050.06 km (in S3 Lower operational cost).
This indicates that the SAV operator can save money by deploying a smaller fleet and
allowing SAVs to relocate more frequently at a lower operational cost.

In addition, the total delay penalty cost decreases from 489 euros (in S1 Base sce-
nario) to 473 euros (in S3 Lower operational cost), while the total delivery distance of
the SAVs increases from 10552.54 km (in S1 Base scenario) to 10807.14 km (in S3
Lower operational cost), meaning that SAVs detour more to avoid traffic congestion to
deliver clients as soon as possible, as well as to pick up more clients.

Looking at Figure 4.5.4, we barely notice any difference between the SAV shares
for different user classes and trip length. Thus, we conclude that lowering the op-
erational cost of the SAV fleet does not have a significant influence on the demand
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structure.
All in all, SAV operators earn more profits through operational cost savings, less

delay penalty, and fewer depreciation costs of the fleet, even though SAVs detour and
relocate more.

Sensitivity analysis on delay penalty

The SAV operator earns greater profits when there is no delay penalty for the late
drop-off of clients in S4. However, the attractiveness of the SAV service drops slightly,
which is reflected in the reduced demand for SAVs, which can be seen in Table 4.5.4.
Furthermore, the reduced amount of fleet size is consistent with the decreased demand
for SAVs.

To compare the trip delay information between S4 (no delay penalty) and S1 (base
scenario), we have plotted the delay distributions, along with the mean and the 90th
percentile values for the delay in Figure 4.5.5. The results indicate that 90% of trips
in S1 experience a delay within 5 minutes, whereas 90% of trips in S4 have a delay
within 7.5 minutes. Additionally, the average delay per trip is 1.93 minutes in S1
and 3.25 minutes in S4. These findings indicate that when there is no penalty for
late deliveries, the actual delivery time becomes longer compared to the base scenario
S1, resulting in increased delay, which can also be seen from the increased average
delivery time per trip and the increased average delay per trip in S4 in Table 4.5.4.
However, it is crucial to consider the perspective of passengers using the SAV service
in an inter-modal fashion, who require a certain level of reliability in their arrival time,
because of the need to coordinate with other transportation modes. In scenarios where
an SAV cannot guarantee arrival before a traveller’s acceptable latest arrival time, the
trip may be rejected, and the traveller may opt for an alternative mode of transportation.
From this perspective, implementing a delay penalty for the SAVs could encourage
more reliable and timely deliveries, addressing passengers’ concerns and potentially
reducing trip rejections. The value of the delay penalty will influence the demand for
SAVs, and consequently, impact overall profitability. Investigating the optimal delay
penalty value remains an area for future research.

The value of the delay penalty will influence the demand for Shared Autonomous
Vehicles (SAVs), and consequently, impact overall profitability. Investigating the opti-
mal delay penalty value and the spatial impact of the rejection rate remains an area for
future research.”

Overall, the delay penalty does not have a significant impact on fleet sizing deci-
sions and travellers’ behaviour. Travellers with higher VOTT care more for late arrival
than those with a relatively lower VOTT.
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Figure 4.5.5: Delay distribution in S1 (base scenario) and S4 (no delay penalty).

Sensitivity analysis on b0

The parameter b0 indicates the level of sensitivity that travellers exhibit towards the
changes in monetary costs. In this section, we tested a higher value of b0 which is 0.5
utility/euro in two scenarios S5 and S6, based on S1 Base scenario and S2 Lower price.
We tested these two scenarios with different price rates because the congestion level is
different in both, which allows for observing the impact of network congestion levels
on the optimisation results.

Looking at Figure 4.5.3, we found a big difference in the optimal fleet size in S5
Higher b0 and S6 Higher b0 with lower price, compared with S1 Base scenario and
S2 Lower price. The fleet size differences mainly come from the decreased/increased
demand in these two scenarios, which are 762 and 2138, as can be found in Table 4.5.4.
When looking into the details of SAV demand share in S5 Higher b0 and S6 Higher b0
with lower price, we notice that more travellers tend to choose the mode with the least
generalised costs, resulting in a greater difference between the demand share for SAVs
and bicycles. Note that the variation of the SAV demand share for all the user classes
in all types of trips in S5 and S6 share a similar trend as in S1 and S2, indicating that a
higher value of b0 can only bring a larger degree of variation to the demand share, but
it cannot completely alter travellers’ preference towards the modes.

A value of b0 that is precisely estimated for the application city can enhance the
realism of the model and lead to a more accurate fleet sizing decision. Note that the
model was solved in S6 Higher b0 with a lower price with a MIP gap of 0.57% with a
time limit of 24h because the congestion level is high due to the increased demand for
SAVs.
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Impact of traffic congestion

To test the impact of traffic congestion on the strategic and operational decisions, we
removed traffic congestion from S1 Base scenario, S2 Lower price and S6 Higher b0
with lower price, by assuming all vehicles can travel at free-flow speed. These three
scenarios are selected as references because they exhibit gradually increased conges-
tion levels. Removing congestion in these three scenarios gives us three new scenarios
named S7, S8, and S9.

In Figure 4.5.3, it can be seen that the optimal fleet size increases from 891 (in
S1 Base scenario) to 898 (in S7 Base scenario without congestion), from 1251 (in S2
Lower price) to 1266 (in S8 Lower price without congestion), from 1609 (in S6 Higher
b0 with lower price) to 1670 (in S9 Higher b0 with a lower price without congestion).
It turns out that congestion has a significant impact on fleet sizing decisions, which
should be taken into consideration when solving the fleet management problem.

Without congestion, all trips can be delivered to the desired destinations in the
shortest travel time and travel distance, as can be seen in Table 4.5.4. The average
delay per trip and the total delay penalty in S7 Base scenario without congestion, S8
Lower price without congestion and S9 Higher b0 with lower price without congestion
are 0. Consequently, the demand for SAVs increased from 1271 (in S1 Base scenario)
to 1283 (in S7 Base scenario without congestion), from 1715 (in S2 Lower price) to
1737 (in S8 Lower price without congestion), and from 2138 (in S6 Higher b0 with
lower price) to 2232 (in S9 Higher b0 with lower price without congestion) because
travellers are more willing to take SAVs if the travel time is lower. However, despite
an increase in demand, the total travel distance and the total delivery time of SAVs
decrease correspondingly, indicating that SAVs no longer need to take longer detours
to avoid the competition for the shortest paths, which reduces operational costs signif-
icantly.

Comparison of the two accept/reject mechanisms

In terms of the accept/reject mechanism, from S10 to S13, the SAV operator can reject
nonprofitable trips. a is defined as a continuous variable that represents the trip service
rate. However, the rejection rate will have an impact on travellers’ satisfaction with
the SAV service since a is included in the utility calculation. Two pricing rates are
tested. S10 and S12 share the same price setting as S1 Base scenario. S11 and S13
share the same price setting as S2 Lower price. Besides, travellers may have different
sensitivities to the rejection rate, which is reflected in parameter b1. A lower value
of parameter b1 is tested in S12 and S13 meaning that travellers can have a lower
sensitivity towards the rejection rate.
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First, we shall have a look at the trip service rate in different scenarios when the
SAV operator is allowed to reject non-profitable trips. Looking at the optimisation
results in Table 4.5.4, we noticed that S1 Base scenario and S10 Base scenario with
rejection yield the same service rate, indicating that the SAV operator did not reject
any requests to maintain a high level of service quality despite having the option to
decline nonprofitable requests. In S10 Base scenario, b1 equals 1, and travellers are
sensitive to the change in rejection rate. Thus, with this price setting, rejecting trips
can decrease demand for SAVs even for profitable requests. However, in S11, when the
price rate of using SAVs is lower than in S10 Base scenario, the trip satisfaction rate
dropped to 95.44%. This indicates that the SAV operator is willing to accept the loss
of revenue caused by decreased travellers’ satisfaction and reduced demand in order
to save costs by rejecting non-profitable trips. As can be observed in Table 4.5.4, the
SAV operator earned more profits in S11 Lower price with rejection compared with S2
Lower price while satisfying fewer trips. The cost saving comes from less operational
cost, less depreciation cost, and less delay penalty.

When travellers are less sensitive to the service quality level, the trip service rate
decreased from 100% (in S10 Base scenario with rejection) to 99.14% (in S12 Base
scenario and lower b1) and from 95.44% (in S11 Lower price with rejection) to 91.6%
(in S13 Lower price with rejection and lower b1). It indicates that the SAV operator
can increase the profit by rejecting more nonprofitable trips, even if it brings negative
impacts on travellers’ satisfaction. Although this resulted in a decrease in revenue due
to a lower number of satisfied trips, the SAV operator can save on operational costs
and reduce delay penalties leading to a higher overall profit.

Rejecting some trips mitigates traffic congestion on the network. As shown in Table
4.5.4, the average delay per trip decreases from 1.93 minutes (in S1 Base scenario and
S10 Base scenario with rejection) to 1.68 minutes (in S12 Base scenario with rejection
and lower b1), and the average delivery time per trip decreases from 16.03 minutes (in
S1 Base scenario and S10 Base scenario with rejection) to 15.88 minutes (in S12 Base
scenario with rejection and lower b1). The same trend can be found when the price rate
of using SAV services is low. The average delay per trip decreases from 3.13 minutes
(in S2 Lower price) to 2.35 minutes (in S11 Lower price with rejection), then to 1.8
minutes (in S13 Lower price with rejection and lower b1), and the average delivery
time per trip decreases from 17.93 minutes (in S2 Lower price) to 17.4 minutes (in S11
Lower price with rejection), then to 16.65 minutes (in S13 Lower price with rejection
and lower b1).

In terms of the fleet sizing decisions, we can conclude that these two accept/reject
mechanisms do not have a significant impact on the fleet size decisions when the price
rate of using SAVs is high. As can be seen in Table 4.5.4, the total SAV fleet size in
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S10 Base scenario with rejection is the same as that in S1 Base scenario, while the total
SAV fleet size in S12 Base scenario with rejection and lower b1 is slightly higher than
that in S1 Base scenario and S10 Base scenario with rejection. This indicates that using
a bit more vehicles in S12 can save the relocation distance and further release the con-
gestion effect caused by the relocation of SAVs. This part of the savings is greater than
the increased depreciation costs of the total fleet which makes it the optimal strategy
in S12. However, when the price rate is low, we observe that the fleet size is sensitive
to the accept/reject mechanism and parameter b1. When travellers have a low sensitiv-
ity to the service quality level (rejection rate), the SAV operator tends to reject more
nonprofitable trips to gain more profits. Thus, a smaller fleet can be deployed as the
number of served trips decreases. Our future research will involve further exploration
of the spatial impacts of the rejection rate.

4.6 Scaling analysis: model performance with various
network sizes and demand

Scalability denotes the capability of the proposed methodology to manage an expand-
ing workload, including accommodating larger network sizes and rising demands. In-
vestigating the scalability of our proposed model holds significance due to its nature as
a single-level mixed integer programming model that integrates endogenous demand,
congestion and accept/reject mechanism, and that is solved using an exact method.
Thus, within this section, we present the computational tests conducted to evaluate the
performance of the proposed model under various network sizes and demand profiles.
These experiments were executed on a desktop computer with an Intel(R) Xeon(R)
W-2123 CPU @3.60 GHz, and 32.00 GB RAM. The implementation of the model was
accomplished using Python 3.7, and the MILP solver Gurobi 10.0.0 was utilised to
solve the optimisation problems.

To evaluate the model’s scalability towards the network sizes, we generated three
grid networks, each with varying sizes: 16 nodes and 48 directed links, 64 nodes and
224 directed links, and 144 nodes and 528 directed links, as illustrated in Figure 4.6.1.
All the links are two-way circulation allowed. For each network, we distributed 4, 8,
and 12 parking depots, respectively. The road links in these networks have an equal
length of 2 kilometres and an equal capacity of 3200 vehicles/hour. In our testing, we
set a time step of 2.5 minutes with the shortest travel time per link at 2.5 minutes (1
time step) and the longest travel time per link at 10 minutes (4 time steps).

To investigate the impact of demand variations, we conducted tests with differ-
ent demand profiles. The total number of trips and the number of groups of trips were
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Figure 4.6.1: Illustration of grid networks: (a) small, (b) medium, and (c) large.

modified to simulate the varying passenger demands in different scenarios. The config-
uration of the tests can be found in Table 4.6.1. Trip details such as origin, destination,
and departure time were randomly generated to create realistic scenarios. The shortest
travel time and the shortest travel distance were calculated using the Dijkstra shortest
path algorithm based on the known origin and destination. The latest arrival time for
each trip was calculated by doubling the shortest travel time and adding it to the depar-
ture time. The optimisation period contains 29 time steps, the same as the case study
of the city of Delft in the Netherlands. Furthermore, the remaining parameters remain
consistent with the Delft case study and are provided in Table 4.5.1 for reference.

The computation times for each of the tests are summarised in Table 4.6.1. In the
first 9 instances, we increase the number of trips and the number of groups of trips
for each network setting. Notably, there is a clear tendency for increased computation
time with a higher number of trips and more groups. Then, we compare the instances
with the same number of trips and groups, but with increased network size from small
(N16 L48 P4) to medium (N64 L224 P8) and then to large (N144 L528 P12). For
these increased network sizes, we observe a consistent trend of increasing computation
time. To test the computational limits of the proposed model using the current com-
puter, we further intensified the congestion level by enlarging the number of groups
and the total trips in the large grid network (N144 L528 P12). As depicted in the last
6 instances of Table 4.6.1, this led to a notable increase in computation time. Solving
the final instance with 12000 trips and 180 groups of trips within the large grid net-
work took more than 24 hours in computational time. It is important to note that the
performance of the proposed model may vary when executed on different computers
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Table 4.6.1: Configurations and computational results (Note: ‘N’ represents the num-
ber of nodes; ‘L’ represents the number of links; ‘P’ represents the number
of parking depots; ‘R’ represents the number of trips; ‘G’ represents the
number of group of trips).

Configuration N L P R G Computational time MIP Gap
N16 L48 P4 R1000 G30 16 48 4 1000 30 15s 0
N16 L48 P4 R2000 G60 16 48 4 2000 60 19s 0
N16 L48 P4 R3000 G90 16 48 4 3000 90 60s 0
N64 L224 P8 R1000 G30 64 224 8 1000 30 1112s ⇡ 0.31h 0
N64 L224 P8 R2000 G60 64 224 8 2000 60 1270s ⇡ 0.35h 0
N64 L224 P8 R3000 G90 64 224 8 3000 90 7142s ⇡ 1.98h 0
N144 L528 P12 R1000 G30 144 528 12 1000 30 1984s ⇡ 0.55h 0
N144 L528 P12 R2000 G60 144 528 12 2000 60 4192s ⇡ 1.16h 0
N144 L528 P12 R3000 G90 144 528 12 3000 90 9874s ⇡ 2.74h 0
N144 L528 P12 R6000 G90 144 528 12 6000 90 10637s ⇡ 2.95h 0
N144 L528 P12 R9000 G90 144 528 12 9000 90 21925s ⇡ 6.09h 0
N144 L528 P12 R6000 G180 144 528 12 6000 180 26892s ⇡ 7.47h 0
N144 L528 P12 R9000 G180 144 528 12 9000 180 36615s ⇡ 10.17h 0
N144 L528 P12 R12000 G180 144 528 12 12000 180 > 24h -

and utilising different optimisation solvers.
The computational burden of the proposed model arises from the rapid increase

in the number of variables and constraints within the time-space network framework.
Particularly, the significant rise in the number of integer variables, such as PFr

it1 jt2
and

Xit1 jt2 , poses challenges for exact methods like branch-and-bound. To further reduce
the computational complexity, the following measures can be adopted: (1) employing a
rolling-horizon framework to divide the optimisation period into smaller horizons and
subsequently resolving the model within each of these horizons; (2) clustering requests
based on their spatial and temporal information; however, this approach might com-
promise accuracy for optimality; (3) developing tailored algorithms to tackle the issue,
such as decomposition-based algorithms or meta-heuristics. It is worth mentioning
that all these measures come with the potential drawback of losing optimal solutions.

4.7 Conclusions and future research
In this chapter, we propose a non-convex non-linear mathematical programming model
to optimise fleet sizing and management decisions of an SAV service while consider-
ing traffic congestion and the non-linear demand of multi-class users (according to
income). The congestion effect is measured through a dynamically varying travel time
with respect to the traffic flow. Travellers’ mode choice behaviour is modelled be-
tween SAVs and bicycles, assuming that no private cars are allowed in cities, which is
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captured through an endogenous binary logit model. The two accept/rejection mecha-
nisms (mandatory vs. non-mandatory acceptance) are explored, and the service level is
endogenously determined which can affect travellers’ willingness to use SAV services.
The computational challenge posed by the non-linear and non-convex nature of the
model is addressed through reformulation and the use of outer-inner approximation
methods combined with a breakpoint generation algorithm to obtain a relaxed ver-
sion of the original problem. The reformulated model can be solved using state-of-art
solvers, such as Gurobi.

A quasi-real case study of Delft, in The Netherlands, was performed and a sensi-
tivity analysis was carried out to demonstrate the performance of the proposed model
and provide managerial insights to SAV operators in a promising future scenario. Re-
sults indicated that demand for SAVs, supply strategies of SAV operators, and network
performance (traffic congestion) are interdependent with each other. Thus, it is crucial
to take their interactions into account when managing fleets in an SAV service sys-
tem. In terms of the fleet sizing strategy, computational results indicated that the initial
distribution of the SAV operator’s fleet is greatly impacted by factors such as the pop-
ulation’s geographical distribution, land use patterns, and residents’ travel behaviour.
In addition, the fleet sizing decision is significantly influenced by the pricing strategy,
unit operating costs of the SAV fleet, network congestion level, and the value of the
parameters b0. When the price rate is low, the fleet sizing decision is also sensitive
to the accept/reject mechanism (mandatory vs. non-mandatory acceptance) and the
travellers’ sensitivity to the service quality level described by parameter b1. The fleet
sizing decision is insensitive to the change in the delay penalty. When the pricing rate
of using SAVs is high, the fleet sizing is insensitive to parameter b1. In addition, a low
price of SAV service will attract more users but it may not necessarily bring a higher
profit because of the increased traffic congestion. Besides, bringing fleets with lower
operational costs to the system may earn more profits for an SAV operator through
operational cost savings, reduction in delay penalties due to the improved traffic con-
gestion, and lower depreciation costs of their fleets as less fleet is needed, despite the
fact that SAVs had to take more detours and relocations.

Results indicate that SAV services are more attractive to travellers with a higher
VOTT than those with a lower VOTT. Besides, travellers with a high VOTT are more
sensitive to variations in trip length compared with the other classes. For long trips,
travellers with high VOTT always prefer SAV services. However, for those with lower
VOTT, SAV services are only preferred when the price is low. For middle and short
trips, bicycles are preferable in most cases unless the price rate is low.

As a direction for future research, we propose the integration of the following as-
pects into our model: (1) demand and departure time stochasticity; (2) optimising the



124 4 Endogenous Demand, Congestion Effects, and Accept/Reject Mechanism

pricing strategies; (3) worst-case scenarios in robust optimisation; (4) incorporation
of ride-sharing mechanisms within the SAV service system; (5) interaction between
SAVs and public transit systems.
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4.A Problem formulation
We summarise the complete problem formulation in Chapter 4 as well as the notations
of the sets, parameters, and variables below.

Table 4.A.1: Notation of the sets, parameters, and variables
Notation Description

Set
T = {0,1,2, . . . ,T }. Set of time instants in the operation period.
N Set of nodes.
L Set of road links between nodes in set N.
G Set of links in the time-space network.
NP Set of nodes allowing parking for SAVs with NP ✓ N.
R Set of groups of trips, where each group of trips r 2 R has the same origin, destination,

departure time, and latest arrival time at the destination.
M Set of travel modes, with the automated vehicles (AV ) and bicycles (B) as the two options.
K = {1,2, . . . ,k, . . . ,K }. Index set of predetermined breakpoints.

Parameters
Dt Time step.
li j Length of road link (i, j) 2 L.
Qi j Capacity of road link (i, j) 2 L in vehicles per time step.
tmax
i j Maximum travel time by cars on road link (i, j) 2 L.

tmin
i j Minimum travel time by cars on road link (i, j) 2 L.

Cit1 jt2 Spatial capacity of road link (i, j)2 L in vehicles that fit on the road link from time instant
t1 to t2, where (it1 , jt2) 2 G.

a Trip service rate when all the requests have to be accepted, %.
or Origin node for group of trips r 2 R.
dr Destination node for group of trips r 2 R.
ar Departure time for group of trips r 2 R.
br Latest arrival time for group of trips r 2 R.
sdr Shortest travel distance for group of trips r 2 R, in kilometres.
str Shortest travel time assuming free-flow speed for group of trips r 2 R, in time steps.
nr Total number of trips for group r 2 R.
V r

B Deterministic systematic component of the utility of bicycles for group of trips r 2 R.
OMr

m Monetary costs of travellers in group r 2 R using mode m 2 M, in euros.
b0 Parameter converting costs into utility, utility/euro.
b1 Parameter converting service rate into utility.
b r

m Travellers’ value of travel time in group r using mode m 2 M, euros/time step.
T r

B Travel time of using bicycles for trips in group r 2 R.
p0 Initial base fare for using SAVs, euros/trip.
p Travel distance-related price for using an SAV, euros/km.
co Unit driving operational cost of an SAV, euros/km.
cd Penalty for drop-off delay of passengers, euros/time step.
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c f Depreciation cost in one hour for using an SAV, euros/vehicle .
(uk, lnuk) Coordinates of the kth breakpoint.
M

1
r Big-M parameter, where r 2 R.

M
2
i jt1t2 Big-M parameter, where t1, t2 2 T , if t1 < t2  t1 + tmax

i j � tmin
i j ,(i, j) 2 L.

Decision variables
V r

AV Deterministic systematic component of travellers’ utility for using an SAV in group r 2 R.
T r

AV Longest SAVs travel time for group r 2 R.
Pr

AV Probability to choose SAVs for the trips in group r 2 R.
Dr

AV Total number of trips using SAVs in group r 2 R.
a Trip service rate when some requests can be rejected.
V SAV fleet size.
Vi Initial distribution of SAVs at parking node i 2 Np at the beginning of a day.
Sr Total number of trips served by SAVs from group r, where r 2 R.
PFr

it1 jt2
Passenger flow in the group of trips r 2 R served by an SAV in road link (i, j), from time
instant t1 to t2. Only defined for (it1 , jt2) 2 G,ar  t1 < t2  br. If t1 = ar, then i = or.

Er
t Total number of passengers in group of trips r 2 R arriving at time t 2 T .

Fit1 jt2 Vehicle flow in road link (i, j) from time instant t1 to t2, where (it1 , jt2) 2 G. Note that
when t1 = 0, i 2 NP, meaning that SAVs have to depart from the parking nodes at the
beginning of a day.

Wit Total number of SAVs parking at node i 2 NP from time instant t to t +1, with t 2 T .
Zr

t Binary variable with r 2 R, t 2 T if ar + str  br.
Xit1 jt2 Binary variable which is 1 when any vehicle travels in road link (i, j) from time instant t1

to t2, where (it1 , jt2) 2 G, and 0 otherwise.
Ar

t Binary variable which is 1 when at least one trip in group r 2 R arrives at time t 2 T , and
0 otherwise.

LNr
AV Auxiliary continuous variable, where r 2 R.

LNr
B Auxiliary continuous variable, where r 2 R.

l k
r Binary variable indicating whether an interval [uk,uk+1] is active or not, where k 2

{1,2, . . . ,k, . . . ,K �1}, r 2 R.
q k

r Convex combination coefficient for breakpoint k 2 K for group of trips r 2 R.
l k

r Binary variable indicating whether an interval [1� uk+1,1� uk] is active or not, where
k 2 {1,2, . . . ,k, . . . ,K �1}, r 2 R.

q k
r Convex combination coefficient for breakpoint k 2 K for group of trips r 2 R.

Dh Binary variables utilised for discretising integer variables, where h 2 {0,1, . . . ,H }.
Yh Continuous variables utilised for describing the value of the integer variables, where h 2

{0,1, . . . ,H }.
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Mixed integer linear program
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Dh 2 {0,1}, 8h 2 {0,1, . . . ,H } (4.117)

Yh � 0, 8h 2 {0,1, . . . ,H } (4.118)

V 2 N0 (4.119)

Vi 2 N0, 8i 2 NP (4.120)

Sr 2 N0, 8r 2 R (4.121)

Er
t 2 N0, 8r 2 R, t 2 T (4.122)
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Chapter 5

Solution methods for pricing and fleet
management in shared automated
vehicle services considering
supply-demand dynamics, congestion,
and income heterogeneity

Research on supply-demand dynamics in Shared Automated Vehicles (SAVs) ser-
vices has grown rapidly. However, developed models are often complex non-linear
systems that face significant challenges when solving. This chapter aims to: (1) inves-
tigate optimal pricing and fleet management strategies for SAV services, considering
the interplay between demand and supply side variables, congestion effects, and the
heterogeneous income levels of travellers; (2) propose various solution methods and
conduct a comparative analysis of these methods. For modelling the problem, we
propose a mixed-integer non-linear programming model under three different pricing
strategies: base fare plus distance-based fare, distance-based fare only, and income
class-based fare. For solving the problem, we present three distinct solution algo-
rithms that tackle the model’s complex non-linearities. These consist of using lineari-
sation techniques, a hybrid method based on Particle Swarm Optimisation (PSO), and
a hybrid method based on Bayesian Optimisation (BO).

This chapter is structured as follows: Section 5.1 provides an introduction to the
background. Section 5.2 reviews the existing literature on pricing strategies in ride-
hailing services and the literature that models the dynamics of supply-demand inter-
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actions. Section 5.3 describes the non-linear, non-convex mathematical model for-
mulated for this study. Section 5.4 presents the three proposed solution algorithms,
explaining each method comprehensively. In Section 5.5, to illustrate the practical
application of the models, we first conduct a case study on a small-scale problem, fol-
lowed by a quasi-real case study of the city of Delft in the Netherlands. Finally, Section
5.6 concludes the chapter with a summary of the main findings and suggestions for fur-
ther research.
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5.1 Introduction

Supply-demand interactions in the ride-hailing market are an important element that
should not be ignored when making policy, management and operational decisions,
especially when it comes to researching future mobility systems—such as Shared Au-
tomated Vehicle (SAV) services—where the demand is unknown. Such a future mobil-
ity system consists of a variety of components that depend on each other interactively.
From the perspective of the SAV service suppliers, decisions need to be made at the
planning and operational levels. Planning decisions, made before launching the SAV
service, might include aspects like pricing strategy, SAV fleet sizing, initial fleet dis-
tribution, and service quality. Operational decisions, made in response to new SAV
service requests and real-time network conditions, may involve trip assignment, ve-
hicle routing, relocation, parking, and decisions to accept or reject requests. These
decisions, in turn, influence passengers’ choice to use the service.

On the demand side of the SAV service system, passenger choices are notably
influenced by factors such as price, travel time, and service quality. Moreover, hetero-
geneous passengers with diverse socio-demographic characteristics—including vari-
ations in income level, age, and gender—demonstrate different sensitivities to these
factors. In such a SAV service system, the decisions on the supply side are inher-
ently linked to those on the demand side. However, many studies tend to assume
that demand is predetermined when optimising supply-side decisions, overlook the
time-varying network conditions or fail to consider the heterogeneous preferences of
passengers. This triggers the need for modelling the complex interactions of these de-
cision variables dynamically. Developing such models is crucial for enabling service
suppliers to make profitable and realistic decisions in the management and operations
of current and future systems.

Among all the planning decisions, pricing exerts the most direct and significant
influence on passengers’ willingness to use the service (Chen et al., 2020). Pricing is
an effective tool not only for balancing supply and demand but also for alleviating traf-
fic congestion. Consequently, understanding demand patterns and designing effective
pricing strategies has attracted considerable interest from both academia and the in-
dustry. Although various pricing strategies and fare structures have been explored, few
studies have investigated optimal pricing strategies tailored to diverse demographic
groups. In this chapter, we investigate three pricing strategies: (1) a base fare plus
a distance-based fare, (2) a solely distance-based fare, and (3) an income class-based
fare. Income class-based fares devise prices according to passengers’ income levels,
making SAV services more accessible to low-income individuals and potentially boost-
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ing overall usage and social equity (Verbich & El-Geneidy, 2017; Dong et al., 2022).
Moreover, charging higher fares to high-income users could balance the service’s over-
all affordability and enhance sustainability.

In this chapter, we explore the optimal pricing and fleet management challenges
for an SAV service provider that operates a fleet providing ride-hailing services in a
prospective mobility system. In this envisioned system, travellers have two transporta-
tion options: SAVs and bicycles. This scenario is anticipated as cities increasingly
advocate for the elimination of private cars to create car-free environments, as dis-
cussed in studies of Nieuwenhuijsen & Khreis (2016) and Fan et al. (2023). Travellers
use smartphone apps to request SAVs by entering trip details. The service platform
evaluates these requests, accepting them if beneficial to the company or rejecting them
if otherwise, in which case travellers opt for bicycles if they offer greater utility. Ac-
cepted requests are matched with available SAVs, which are dispatched to pick up
customers.

The mathematical model proposed in this chapter is a Mixed-integer Nonlinear
Programming (MINLP) model adapted from the model by Fan et al. (2023), with two
major modifications. Firstly, three pricing strategies are modelled additionally, with
pricing decisions as endogenous variables. Secondly, the diverse sensitivities of dif-
ferent passenger income classes are incorporated into the demand modelling to ex-
plore their impact on these pricing strategies. In addition, the endogenous demand
for SAVs is modelled using a binary logit model, where price, travel time, and ser-
vice quality influence travellers’ willingness to use SAV services. Traffic congestion
is modelled by dynamically varying travel time based on vehicle flow on road links.
The accept/reject decisions, which reflect service quality, are also endogenously deter-
mined in the model.

With the modifications to the model, its complexity has increased due to the non-
linearity introduced by both non-linear constraints and a non-linear objective function,
as well as the addition of new variables. These changes pose significant challenges for
conventional solution methods. To address this complexity, the existing literature typi-
cally employs but is not limited to, the following strategies: (1) linearisation techniques
(Guo et al., 2022; Fan et al., 2023), which convert non-linear components into a form
that can be solved using linear programming, thereby simplifying the complexity of the
original problem; (2) reformulation techniques (Huang et al., 2018; Lu et al., 2021),
which reformulate the problem, identify problem structure or decompose the problem
into smaller and more manageable problems; (3) heuristic/metaheuristic algorithms
that seek to find sufficiently good solutions for complex optimisation challenges where
exact methods are impractical (Huang et al., 2018; Lu et al., 2021).

In response to these challenges, our research has developed three tailored solu-
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tion methods. The first method utilises linearisation techniques. The second employs
a hybrid approach that combines Particle Swarm Optimisation (PSO), a metaheuris-
tic, with reformulation techniques. The third method employs Bayesian Optimisation
(BO) alongside linearisation techniques. BO is particularly effective in contexts where
evaluating the objective function is costly or complex, such as in parameter tuning for
machine learning algorithms. In our study, it plays a key role in simplifying the ob-
jective function of the mathematical model. To enhance computational efficiency, the
second and third methods are implemented in parallel. A comparative analysis of these
methodologies is conducted to assess their effectiveness and efficiency in solving the
proposed model.

The main contribution of this chapter is therefore twofold: (1) We propose an
adapted model which investigates three pricing strategies and fleet management de-
cisions, incorporating supply-demand interactions, congestion and the heterogeneous
demographic characteristics of passengers; (2) We develop and compare three different
solution algorithms in a comparative study aimed at identifying the method that best
balances performance and computational efficiency.

5.2 Literature review

The literature review is divided into two main sections: Section 5.2.1 focuses on the
existing literature addressing pricing problems in ride-hailing services; and Section
5.2.2 dives into the literature which models the endogenous supply-demand interac-
tions, presenting the demand modelling techniques and main methodologies. This
review aims to provide a comprehensive understanding of both pricing problems and
supply-demand modelling in the context of ride-hailing services.

5.2.1 Pricing problems in ride-hailing services
Pricing problems in ride-hailing services have gained a wide range of research interests
(Tong et al., 2018; Wang et al., 2016; Nourinejad & Ramezani, 2020; Zhang & Nie,
2021; Asadpour et al., 2023). Existing research on the practice of ride-hailing services
focuses on a two-sided market, where both the fare paid by passengers and the wage
paid to drivers need to be determined. However, in the context of using shared auto-
mated taxis for ride-hailing services, the problem is simplified because there is no need
to hire human drivers anymore. Thus, we only focus on the pricing strategies for the
fare paid by the passengers.

Pricing mechanisms can be categorised into two types: static pricing and dynamic
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pricing. Static pricing strategies determine a fixed price structure throughout the plan-
ning period. Research has investigated, amongst others, distance-based pricing (Dong
et al., 2022), travel time-based pricing (Liang et al., 2020), origin- and/or destination-
based pricing (Özkan, 2020; Müller et al., 2023), zone-based spatial pricing (Li et al.,
2021; Dong et al., 2022). Dynamic pricing allows the price and/or wage to vary accord-
ing to various factors such as the current market demand and supply relationship, time,
or even competitor pricing. Examples of this include surge pricing (Al-Kanj et al.,
2020), spatial-temporal pricing (Meskar et al., 2023), and congestion pricing (Zheng
et al., 2023). Surge pricing mechanisms usually charge passengers a higher price dur-
ing peak hours, extreme weather conditions, or major events where the supply-demand
is imbalanced.

Existing research on static and dynamic pricing presents a range of controversial
views. Nourinejad & Ramezani (2020) address three pricing strategies, which are
static pricing, constrained dynamic pricing (assuming the instantaneous profit is also
non-zero), and unconstrained dynamic pricing (allowing the instantaneous profit to be
non-zero). Their results show that the unconstrained dynamic pricing strategy pro-
vides the highest overall profit and ensures a more stable rider waiting time with less
variation during the study period. Similarly, Cachon et al. (2017) find that incorpo-
rating dynamic elements into pricing and/or wages can enhance profits compared to
fixed pricing strategies. However, despite its profitability, surge pricing has faced crit-
icism for its potential negative impact on consumer welfare, as it forces consumers to
either pay higher prices or wait longer during peak demand periods (Ashkrof et al.,
2022a). Moreover, Lin & Zhou (2019) suggest that surge pricing is not always the
optimal choice for ride-hailing companies, as static pricing can achieve comparable
performance. In this study, we focus on investigating static pricing strategies during
surge demand periods (peak hours) in a typical working day. During this optimisation
period, the pricing strategy stays the same.

People with different socio-demographic characteristics—such as gender, age and
income levels—display different sensitivities to price changes. The behaviour of het-
erogeneous users has a great impact on the platform’s optimal pricing and wage de-
cisions (Taylor, 2018; Wu et al., 2020). Beirigo et al. (2022) segment users of an
autonomous mobility-on-demand system into two classes: first-class users, who are
willing to pay more for a higher level of service, and second-class users. Bai &
Tang (2022) proposed a model to study the equilibrium between two competing on-
demand service platforms. Their proposed model can capture some market charac-
teristics such as the price- and time-sensitive customers and earning-sensitive service
providers. Dong et al. (2022) introduced class-based pricing strategies in a chance-
constrained dial-a-ride problem where heterogeneous users are grouped into classes



5.2.2 Endogenous supply-demand interaction modelling 139

by their socio-demographic characteristics. However, the pricing is introduced as a
class-based parameter which is not endogenously determined. In the existing pricing
problems, very few have considered an income class-based fare considering people’s
heterogeneous sensitivity toward the costs/money. Thus, in our work, we plan to study
the optimal income class-based fare and its interplay between this pricing variable and
all the other planning and operational level variables.

5.2.2 Endogenous supply-demand interaction modelling
The supply-demand interaction has been studied in transportation systems for differ-
ent problem settings, for example, in the two-sided market of ride-hailing services (Li
et al., 2021; Meskar et al., 2023), carsharing systems (Huang et al., 2018; Lu et al.,
2021), dial-a-ride problems (Dong et al., 2022), fleet sizing and management prob-
lems using SAVs (Guo et al., 2022; Fan et al., 2023), public transit planning prob-
lems (Cadarso et al., 2017; Steiner & Irnich, 2020; Wei et al., 2022), and competition
among multiple on-demand mobility services (Wang et al., 2022b). In Table 5.2.1, we
list several papers that consider supply-demand interactions with their main decisions,
methodologies, and how demand is modelled.

Accurately modelling the interactions between decision variables on both the sup-
ply and demand sides necessitates that demand is determined endogenously. Normally,
demand can be modelled by (a) a simple linear or non-linear function such as an ex-
ponential function (Jorge et al., 2015; Huang et al., 2020); (b) a discrete choice model,
such as a binary logit model (Lu et al., 2021; Guo et al., 2022; Fan et al., 2023), a multi-
nomial logit model (Zhang & Nie, 2021), a nested logit model (Cadarso et al., 2017),
a dynamic discrete choice model (Västberg et al., 2020), or chance-based constraints
(Dong et al., 2022); (c) a simulation-based approximation of the discrete choice model
(Paneque et al., 2021, 2022). The demand model is then integrated into optimisation
models (Huang et al., 2018; Lu et al., 2021; Paneque et al., 2021; Zhang & Nie, 2021;
Paneque et al., 2022; Fan et al., 2023), simulation-based methods (Hörl et al., 2021;
Wang et al., 2022b), or a hybrid of both (Pinto et al., 2020).

Incorporating demand modelling into an optimisation problem often presents chal-
lenges to the solution process, typically requiring the development of tailored solution
algorithms. Some papers use aggregated market equilibrium models (Nourinejad &
Ramezani, 2020; Li et al., 2021; Zhang & Nie, 2021). However, these models fail
to capture temporal dynamics (such as departure time and arrival time). In our prob-
lem, it is crucial to account for detailed operational decisions, such as trip assignment
and vehicle routing, to accurately reflect the dynamically varying congestion effects.
Simulation-based methods excel at capturing microscopic details by reconstructing
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complex scenarios. However, they often suffer from long computational times, par-
ticularly when there are many decision variables to be combined. Therefore, they are
often used to assess multiple scenarios instead of searching for an optimal combina-
tion. Different from most existing studies, we develop optimisation-based methods
that not only describe the supply-demand endogenous interactions but also capture the
detailed operational decisions of SAVs and the dynamic effects of network congestion.
Due to the complexity of the problem, three tailored solution algorithms are designed
to address the model efficiently.

5.3 Problem formulation
In this section, we first present the main assumptions in Section 5.3.1. Then, we de-
scribe the mathematical model, including model settings in Section 5.3.2, passenger
demand modelling in Section 5.3.3, SAV service planning and operation in Section
5.3.4, traffic congestion modelling in Section 5.3.5, and the objective function in Sec-
tion 5.3.6.

5.3.1 Assumptions
Some assumptions are made in this chapter: (a) It is assumed that the total mobility
demand within an urban area is fixed and predetermined. (b) The SAVs in this study
operate at SAE level 5 (On-Road Automated Driving (ORAD) committee, 2021), al-
lowing them to navigate the entire network autonomously without a human driver. (c)
The use of privately owned or human-driven vehicles is not included in this study.
(d) Travellers are assumed to use only one mode of transportation; mode transfers are
not considered. (e) Pooled service options are excluded from consideration in this
research.

5.3.2 Model setting
The problem is formulated as a mathematical model aiming at optimising planning
decisions by modelling the interactions between passenger demand, TNC supply, and
traffic congestion. Detailed decisions and their relationships are depicted in Figure
5.3.1.

We consider peak-hour traffic on a typical workday in an urban area by aggregating
trips with identical travel information and socio-demographic information into groups.
The travel data includes origin, destination, departure time, and latest arrival time.
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Figure 5.3.1: Main decisions and their interactions.

For socio-demographic information, we categorise travellers based on income levels—
high, middle, and low. Travellers within each group have the freedom to choose their
mode of transportation (either SAV or bicycle). Due to the congestion effects, the
SAVs serving the travellers in the same groups are allowed to choose different routes
to avoid the congestion. The sets and parameters used to detail this trip information
are the following.

Sets associated with trips
IC Set of income classes, categorised into low income (low), middle income (mid), and high

income (high).
Rc Set of groups of trips associated with a specific income class c 2 IC. Each group r 2 Rc

consists of trips that share the same characteristics, including origin, destination, depar-
ture time, latest arrival time, and income level c.

M Set of travel modes, consisting of automated vehicles (AV ) and bicycles (B) as options.
Parameters associated with trips
or Origin node for group of trips r 2 Rc,c 2 IC.
dr Destination node for group of trips r 2 Rc,c 2 IC.
ar Departure time for group of trips r 2 Rc,c 2 IC.
br Latest arrival time for group of trips r 2 Rc,c 2 IC.
sdr Shortest travel distance for group of trips r 2 Rc,c 2 IC, in kilometres.
str Shortest travel time assuming free-flow speed for group of trips r 2 Rc,c 2 IC, in time

steps.
nr Total number of trips for group r 2 Rc,c 2 IC.

We employ a time-space network to address dynamic operational decision-making
and the endogenous traffic congestion resulting from the large-scale deployment of
SAVs. This network, an extension of the conventional directed network, spans multiple
discrete time periods, represented as T , each with a duration of Dt. At every discrete
time t 2 T , the network is duplicated. The sets and parameters associated with the
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network are shown as follows:

Sets associated with the network setting
T Set of discrete time instants T = {0,1,2, . . . ,T } in the operational period.
N Set of physical nodes within the network.
L Set of road links connecting the nodes in set N.
G Set of links in the time-space network.
NP Subset of nodes that allow parking for SAVs, where NP ✓ N.
Parameters associated with the network setting
Dt Time step.
li j Length of road link (i, j) 2 L.
Qi j Capacity of road link (i, j) 2 L in number of vehicles per time step.
tmax
i j Maximum travel time by car on road link (i, j) 2 L.

tmin
i j Minimum travel time by car on road link (i, j) 2 L.

Cit1 jt2 Spatial capacity of road link (i, j) 2 L in number of vehicles that fit on the road link from
time instant t1 to t2, where (it1 , jt2) 2 G.

5.3.3 Passenger demand modelling
We employ a discrete choice model to express travel mode preferences among trav-
ellers. Utility values for the two modes considered in this chapter—SAVs and bicycles—
are computed. We use a binary logit model to estimate the probability of using each
mode for different groups of trips. The parameters and variables relevant to this section
are shown in Table 5.3.1.
Binary logit model:

The utility of using mode m2M for travellers in group r 2Rc,c2 IC is expressed as
Ur

m =V r
m+er

m. Here, V r
m represents the deterministic component of the utility, which is

a function of observed attributes of the alternatives and characteristics of the individual.
er

m is a random component reflecting all the unobservable influence on the utility (Ben-
Akiva et al., 1985). Assuming er

m is independently and identically Gumbel distributed,
we can obtain the probability Pr

AV of using SAVs for groups r 2 Rc,c 2 IC using a
binary logit model, as shown in Equations (5.1). This equation is non-linear due to
the presence of exponential terms in both the numerator and the denominator. To
determine the probability of using SAVs, we need to know the deterministic utility
V r

AV of SAVs and V r
B of bicycles, which can be expressed as Equation (5.2) and (5.3),

respectively.

Pr
AV =

eV r
AV

eV r
AV + eV r

B
, 8r 2 Rc,c 2 IC (5.1)

The deterministic utility V r
AV of using SAVs includes three components as given

in Equation 5.2: the fare for the services, travel time-related costs, and traveller satis-
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Table 5.3.1: Notation used for passenger demand modelling.

Notation Description

Parameters
V r

B Deterministic systematic component of the utility of bicycles for group of trips r 2 Rc,c 2
IC.

OMr
B Monetary costs of travellers in group r 2 Rc,c 2 IC using bicycles, in euros.

b c
0 Parameter converting generalised costs into utility for income class c 2 IC, in utility/euro.

b1 Parameter converting service rate into utility.
VOT c

m Travellers’ value of travel time in class c 2 IC using mode m 2 M, in euros/time step.
T r

B Travel time of using bicycles for trips in group r 2 Rc,c 2 IC.
Variables
Pr

AV Probability to choose SAVs for trips in group r 2 Rc,c 2 IC.
V r

AV Deterministic systematic component of travellers’ utility for using an SAV in group r 2
Rc,c 2 IC.

OMr
AV Monetary costs of travellers in group r 2 Rc,c 2 IC using SAVs, in euros.

T r
AV Longest SAVs travel time for group r 2 Rc,c 2 IC.

a Trip service rate.
Dr

AV Total number of trips using SAVs in group r 2 Rc,c 2 IC.

faction concerning the trip rejection rate. To capture the sensitivity of travellers from
different income classes to changes in costs (measured in euros), we introduce a class-
specific parameter, b c

0 . Individuals with higher incomes tend to perceive costs less
negatively than those with middle or lower incomes, with middle-income individu-
als perceiving costs less negatively than those with low incomes. The cost for group
r 2 Rc,c 2 IC is determined as the monetary cost of using SAV services OMr

AV and
the travel time-related cost VOT c

AV T r
AV . Here, VOT c

AV represents the income class-based
value of travel time for using AVs, and T r

AV represents the travel time of using AVs by
group r 2Rc,c2 IC. Trips can be rejected at a rate of 1�a . The sensitivity of travellers
to this is described by the parameter b1. Rejecting trips negatively impacts people’s
willingness to use SAV services. The deterministic term V r

B of the utility for using a
bicycle for group r 2 Rc,c 2 IC comprises two parts: the monetary cost OMr

B which re-
flects the bicycle’s depreciation cost, and the travel time-related costs VOT c

B T r
B . Since

bicycle travel times T r
B are less affected by congestion due to the flexibility of bicycles,

it is treated as a parameter rather than a variable. Therefore, the utility V r
B for using a

bicycle can be represented by Equations (5.3).

V r
AV =�b c

0 (OMr
AV +VOT c

AV T r
AV )�b1(1�a), 8r 2 Rc,c 2 IC (5.2)

V r
B =�b c

0 (OMr
B +VOT c

B T r
B), 8r 2 Rc,c 2 IC (5.3)

Demand calculation:
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Knowing the probability of using SAVs, we can determine the demand Dr
AV for

SAVs for group r 2 Rc, c 2 IC using Constraints (5.4), which is the total number of
trips nr in group r 2 Rc,c 2 IC multiplied by their probability Pr

AV of choosing SAVs.
The addition and subtraction of 0.5 on either side of Constraints (5.4) ensures that the
demand will take the integer value closest to the value of nrPr

AV .

nrPr
AV �0.5 < Dr

AV  nrPr
AV +0.5, 8r 2 Rc,c 2 IC. (5.4)

5.3.4 SAV service planning and operation modelling
In this subsection, we first present the modelling of pricing strategies. We then intro-
duce the mathematical models for fleet management (fleet sizing, initial fleet distri-
bution and service quality) and operations (trip assignment and vehicle routing). The
notations used in this subsection are summarised in Table 5.3.2.

Table 5.3.2: Notation used for SAV service planning and operation modelling.

Notation Description

Parameters
co Unit driving operational cost of an SAV, in euros/km.
cd Penalty for drop-off delay of passengers, in euros/time step.
c f Depreciation cost in one hour for using an SAV, in euros/vehicle.
M

r Big M-parameter, where r 2 Rc,c 2 IC.
Mi jt1t2 Big M-parameter, where (i, j) 2 L, t1, t2 2 T , if t1 < t2  t1 + tmax

i j � tmin
i j .

Variables
p0 Initial base fare for using an SAV, in euros/trip.
p Travel distance-related price for using an SAV, in euros/km.
pc Travel distance-related price for using an SAV for income class c 2 IC, in euros/km.
Sr Total number of trips served by SAVs from group r, where r 2 Rc,c 2 IC.
PFr

it1 jt2
Passenger flow in group of trips r 2 Rc,c 2 IC served by an SAV on road link (i, j), from
time instant t1 to t2. Only defined for (it1 , jt2)2 G,ar  t1 < t2  br. If t1 = ar, then i = or.

O SAV fleet size.
Oi Initial distribution of SAVs at parking node i 2 NP at the beginning of a day.
Er

t Total number of passengers in group of trips r 2 Rc,c 2 IC arriving at time t 2 T .
Fit1 jt2 Vehicle flow in road link (i, j) from time instant t1 to t2, where (it1 , jt2) 2 G.
Wit Total number of vehicles parking at node i 2 NP from time instant t to t + 1, with t 2

T \{T }.
Zr

t Binary variable which is 1 when Constraint (5.23) is active, and 0 otherwise.
Xit1 jt2 Binary variable which is 1 when any vehicle travels in road link (i, j) from time instant t1

to t2, where (it1 , jt2) 2 G, and 0 otherwise.
Ar

t Binary variable which is 1 when at least one trip in group r 2 Rc,c 2 IC arrives at time
t 2 T , and 0 otherwise.
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Pricing strategy

From the perspective of the SAV service provider, we aim to explore three distinct pric-
ing strategies: (1) charging travellers an initial base fare followed by a distance-related
fare; (2) charging travellers solely based on their travel distance; (3) implementing
a pricing strategy that varies according to travellers’ income class level, which is an
income class-based, distance-related pricing scheme. The detailed explanation and
equations for these three pricing strategies are presented below.
Pricing strategy 1. Base fare + distance-based fare

This pricing strategy is among the most commonly employed. The base fare p0,
a fixed amount charged at the ride’s outset, ensures drivers earn a minimum amount
per trip from the moment they accept a ride. This is crucial for short trips, where
time and distance fares may not sufficiently compensate the driver. Additionally, it
may deter the use of SAVs for short distances. Introducing a base fare, as discussed
in this chapter, can improve bicycle use, offering a more eco-friendly transportation
alternative. Following the base fare p0, a distance-based fare p is introduced based on
the shortest travel distance sdr. The out-of-pocket money OMr

AV for travellers in group
r 2 Rc belong to class c 2 IC is obtained following Equation (5.5).

OMr
AV = p0 + sdr p, 8r 2 Rc,c 2 IC (5.5)

Pricing strategy 2. Distance-based fare
Distance-based pricing is commonly used in some ride-sharing platforms, delivery

services, and some traditional taxi services. It offers a straightforward price structure,
which is favoured in markets where consumers prefer predictable pricing structures.
The out-of-pocket money paid by travellers will be obtained using a distance-based
fare p times the shortest travel distance sdr, as shown in Equation (5.6).

OMr
AV = sdr p, 8r 2 Rc,c 2 IC (5.6)

Pricing strategy 3. Income class-based fare
Income class-based pricing adjusts fares based on the income level of travellers.

For simplicity, we focus solely on income class-based distance-based pricing strate-
gies. The out-of-pocket money for travellers in group r 2 Rc,c 2 IC is expressed in
Equation (5.7), where pc is a distance-based fare for income class c 2 IC.

OMr
AV = sdr pc, 8r 2 Rc,c 2 IC (5.7)
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Fleet management and operation

This section outlines the constraints that describe detailed SAV operations, including
trip assignment, routing, and parking. Based on these operations and the endogenous
SAV demand, service providers can make the most rational fleet management deci-
sions. These include determining fleet size, setting the initial distribution of the fleet
across parking depots, and ensuring service quality. The constraints are detailed as
follows.
Service rate calculation:

SAV operators can reject those requests that bring no profits to the company. Under
this situation, the number of served trips Sr in group r 2 Rc,c 2 IC can be less than or
equal to the group’s demand Dr

AV for SAV services, which is ensured by Constraints
(5.8). Constraint (5.9) determines the endogenously determined service rate a of the
SAV service as the total number of served trips divided by the total demand for SAV.
This is a non-linear constraint because of the product of continuous variable a and
integer variables Dr

AV .
Sr  Dr

AV , 8r 2 Rc,c 2 IC (5.8)

a Â
r2Rc,c2IC

Dr
AV = Â

r2Rc,c2IC
Sr (5.9)

Trip assignment and vehicle routing constraints:
Constraints (5.10) ensure that passengers in group r 2 Rc,c 2 IC are picked up

by the SAVs at the origin node or at departure time ar. After departure, SAVs are
allowed to choose different paths to avoid traffic congestion, even though they serve
passengers with the same income class and in the same group. To capture the different
arrival times of the SAVs, Constraints (5.11) and (5.12) are defined to ensure that
the number of served trips Sr in group r 2 Rc,c 2 IC is equal to the number of trips
arriving at destination dr at different times. Constraints (5.13) and (5.14) ensure that
the passengers are left at the destination node dr upon the SAV’s first arrival, and there
will be no return trips to the origin node or by the SAVs after they depart. Constraints
(5.15) make sure that the vehicle flow circulation Fit1 jt2 on the time-space network must
be greater than or equal to the passenger flow PFr

it1 jt2
. The vehicle flows describe not

only the delivery process of a passenger but also the empty relocation process.

Sr = Â
jt |(or

ar , jt)2G

PFr
or

ar jt , 8r 2 Rc,c 2 IC (5.10)

Sr = Â
t2T |ar+strtbr

Er
t , 8r 2 Rc,c 2 IC (5.11)
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Er
t = Â

it1 |(it1 ,d
r
t )2G

PFr
it1dr

t
, 8r 2 Rc,c 2 IC,ar + str  t  br (5.12)

Â
jt1 |(dr

t , jt1)2G

PFr
dr

t jt1
= 0, 8r 2 Rc,c 2 IC,ar  t  br (5.13)

Â
it1 |(it1 ,o

r
t )2G

PFr
it1or

t
= 0, 8r 2 R,c 2 IC,ar  t  br (5.14)

Â
r2R,c2IC

PFr
it1 jt2

 Fit1 jt2 , 8(it1 , jt2) 2 G (5.15)

Flow conservation constraints:
Constraints (5.16)–(5.18) describe the passenger flow conservation rule at node

i 2 N in the network and the vehicle flow conservation at both normal and parking
nodes.

Â
jt1 |( jt1 ,it)2G

PFr
jt1 it = Â

jt2 |(it , jt2)2G

PFr
it jt2

, 8r 2 Rc,c 2 IC,ar < t < br,

i 2 N, i 6= or, i 6= dr
(5.16)

Â
jt1 |( jt1 ,it)2G,t1<t

Fjt1 it = Â
jt2 |(it , jt2)2G,t<t2

Fit jt2 , 8i 2 N \NP,0 < t < T (5.17)

Â
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Fjt1 it +Wit�1 = Â
jt2 |(it , jt2)2G,t<t2

Fit jt2 +Wit , 8i 2 NP,0 < t < T

(5.18)
Fleet sizing and distribution constraints:

Constraints (5.19) describe the distribution Oi of SAVs across parking nodes i 2 NP
at the beginning of the studied period. When the optimisation period starts, these
SAVs either set out from their parking locations to pick up passengers (indicated by
Fi0 jt ) or stay at the parking node (indicated by Wi0), ready to receive orders from the
SAV operator. The total SAV fleet size O is expressed as the sum of the initial fleet
distribution Oi at each parking node i 2 NP, which is ensured by Constraint (5.20).

Â
jt |(i0, jt)2G

Fi0 jt +Wi0 = Oi, 8i 2 NP (5.19)

Â
i2NP

Oi = O (5.20)
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Longest travel time determination:
When determining the utility of using SAVs for group r 2 Rc,c 2 IC, we consider

the longest travel time T r
AV experienced by all the travellers in this group. To obtain this

value, we express the arrival times (indicated by binary variable Ar
t ) of all travellers by

Constraints (5.21). The longest travel time is then determined using Constraints (5.22)-
(5.25), with the bounds specified by Constraints (5.24). In Constraints (5.23), M is
a sufficiently large number. For each group of trips r 2 Rc,c 2 IC, there is only one
longest travel time. This uniqueness is ensured by Constraints (5.25).

Er
t

nr  Ar
t  Er

t , 8r 2 Rc,c 2 IC,ar + str  t  br (5.21)

T r
AV � Ar

t (t �ar), 8r 2 Rc,c 2 IC,ar + str  t  br (5.22)

T r
AV  Ar

t (t �ar)+M (1�Zr
t ), 8r 2 Rc,c 2 IC,ar + str  t  br (5.23)

str  T r
AV  br �ar, 8r 2 Rc,c 2 IC (5.24)

Â
t|ar+strtbr

Zr
t = 1, 8r 2 Rc,c 2 IC (5.25)

5.3.5 Traffic congestion modelling
Traffic congestion is included in this model by introducing time-dependent link ca-
pacity, which is the so-called spatial link capacity introduced in Van Essen & Correia
(2019). Instead of including the traditional non-linear BPR function (Dafermos &
Sparrow, 1969) directly into the model to determine the travel time, they define spatial
link capacity which is the maximum number of vehicles that can pass road link (i, j)

from time instant t1 to time instant t2, denoted by Cit1 jt2 =(t2 � t1)Qi j

✓
1
a

✓
t2�t1
tmin
i j

�1
◆◆ 1

b
.

Instead of determining the travel time directly, we select one option from multiple link-
time-capacity combinations, as described by Constraints (5.26) and (5.27). Constraints
(5.28) describe the first-in-first-out (FIFO) rule, meaning that the vehicles that enter the
road link first will leave the road link first.
Capacity constraints

Â
t1|(it , jt1)2G

Xit jt1  1, 8(i, j) 2 L, t 2 T (5.26)

Fit1 jt2 
j
Cit1 jt2

k
Xit1 jt2 , 8(it1 , jt2) 2 G (5.27)
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FIFO constraints

t1 + Â
t2T

Xit1 jt (t � t1)t2 + Â
t2T

Xit2 jt (t � t2)+M

 
1� Â

t2T
Xit2 jt

!
,

8(i, j) 2 L, t1 < t2  t1 + tmax
i j � tmin

i j
(5.28)

5.3.6 Objective function
To maximise the SAV operator’s profit, we establish an objective function (see Equa-
tion (5.29)) that accounts for the service’s total income and its operational expenses.
The total income is represented by the sum of the fares paid by all travellers, which
is the first term of the objective function. It is crucial to highlight that this sum in-
cludes non-linear terms, which are the multiplications of continuous variables OMr

AV
and integer variables Sr. Costs are divided into: (1) fleet depreciation, which is the
purchase cost per vehicle divided by its lifespan given by c f , multiplied by the fleet
size, and is represented by the second term in Equation (5.29); (2) operational costs, in-
cluding fuel, maintenance, and insurance, determined by multiplying the total distance
travelled by all SAVs by the cost per kilometre co, as indicated by the third term in
Equation (5.29); and (3) penalties for late drop-offs cd, charged per time unit (cd) for
delays beyond the shortest anticipated travel time, shown by the final term in Equation
(5.29).

max Â
r2Rc,c2IC

OMr
AV Sr � c f ·O� co

0

@ Â
(it1 , jt2)2G

li jFit1 jt2

1

A

� cd Â
r2Rc,c2IC

 

Â
t2T

tEr
t � (ar + str)Sr

! (5.29)

The proposed models for the three pricing strategies are summarised below and are
denoted as [M0-1], [M0-2], and [M0-3], respectively.

Pricing strategy 1: base fare + distance-based fare [M0-1] Objective function
(5.29), subject to Constraints (5.1)-(5.5) and (5.8)-(5.28).

Pricing strategy 2: distance-based fare [M0-2] Objective function (5.29), subject
to Constraints (5.1)-(5.4), (5.6) and (5.8)-(5.28).



5.4 Solution methods 151

Pricing strategy 3: income class-based fare [M0-3] Objective function (5.29), sub-
ject to Constraints (5.1)-(5.4) and (5.7)-(5.28).

5.4 Solution methods

The model presented in Section 5.3 is a MINLP model, which is challenging to solve.
This nonlinearity arises from three aspects: the nonlinear binary logit model described
in Equation (5.1); the nonlinear constraint (5.9) for calculating the service rate, which
involves the multiplication of a continuous variable with integer variables; and the
nonlinear objective function (5.29) that includes products of continuous and integer
variables.

This chapter proposes three distinct solution strategies to address the aforemen-
tioned nonlinearities effectively: (1) reformulating the model into a Mixed-integer
Linear Programming (MILP) model by applying linearisation techniques, introduced
in Section 5.4.1; (2) combining Particle Swarm Optimisation (PSO) with a reformu-
lated MILP in an iterative framework; and (3) combining Bayesian Optimisation (BO)
with a reformulated MILP.

5.4.1 Reformulated MILP model (M1)
Fan et al. (2023) propose a solution method to tackle the non-linearities brought by
the binary logit model and the non-linear constraints. They transform the binary logit
model into equations containing logarithmic terms and approximate these terms using
an outer-inner approximation technique. Furthermore, they employ binary variables
and the big-M method to reformulate the products of a continuous variable and integer
variables. In this chapter, we employ these techniques to linearise Equations (5.1) and
Constraints (5.9), as outlined by Constraints (5.81)-(5.103) in Appendix 5.A. We fur-
ther linearise the nonlinear terms in the objective function, which involves the product
of continuous and integer variables. The continuous variables represent pricing, while
the integer variables represent the number of trips served. We now describe the lineari-
sation of the objective function for the three proposed pricing strategies, followed by
the presentation of the overall mathematical formulation for this method.

Objective function linearisation with different pricing strategies

The nonlinear objective function is shown in Equation (5.29) with three different pric-
ing strategies described by Equation (5.5), (5.6), and (5.7). To linearise the first term
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in the objective function, we firstly introduce binary variables Sr
h to discretise the in-

teger variable Sr for each group r 2 Rc,c 2 IC, as shown in Constraints (5.30). Here,
parameter H

r = blog2(nr)c, which ensures that Constraints (5.30) still hold when all
the trips nr in group r 2 Rc,c 2 IC would use SAVs.

Sr =
H

r

Â
h=0

2hSr
h, 8r 2 Rc,c 2 IC (5.30)

Then, the non-linear term Âr2Rc,c2IC OMr
AV Sr can be reformulated as Âr2Rc,c2IC

ÂH
r

h=0 2hOMr
AV Sr

h. We additionally introduce continuous variables Y r
h to replace OMr

AV Sr
h.

Subsequently, we introduce the following constraints:

Y r
h  pr

maxSr
h, 8r 2 Rc,c 2 IC,h 2 {0,1, . . . ,H r} (5.31)

Y r
h � OMr

AV � pr
max(1�Sr

h), 8r 2 Rc,c 2 IC,h 2 {0,1, . . . ,H r} (5.32)

Y r
h � 0, 8r 2 Rc,c 2 IC,h 2 {0,1, . . . ,H r} (5.33)

Y r
h  OMr

AV , 8r 2 Rc,c 2 IC,h 2 {0,1, . . . ,H r}. (5.34)

Here, pr
max represents the upper-bound value of the variable OMr

AV , where r 2R,c2
IC. The objective function is then updated as follows:
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(5.35)

We now describe the process for appropriately determining the value of pr
max,

which is the upper bound of the variable OMr
AV . The variable OMr

AV denotes the mon-
etary costs for using SAV service for travellers in group r 2 Rc,c 2 IC. The monetary
costs associated with using SAVs must be kept within a reasonable range to ensure
the service remains attractive to users. If these costs are set too high, the SAV service
may become unaffordable, leading all users to opt for bicycles instead. Our objective,
therefore, is to identify the maximum value of OMr

AV that still sustains at least one trip
of demand for SAVs across at least one group of trips. In other words, the price should
be high enough to optimise revenue without causing a complete loss of demand for
SAV services within the entire system.

According to Equation (5.4), the demand Dr
AV becomes zero if nrPr

AV < 0.5. To
maintain a non-zero demand for SAVs, Pr

AV must be at least 1
2nr . To ensure a non-

zero demand for at least one group r, there must be at least one group that satisfies
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Constraints (5.36). In these constraints, the left-hand side represents the probability of
using SAVs for group r, which is derived from Equations (5.1), (5.2), and (5.3).

e�b c
0 (OMr

AV+VOT c
AV T r

AV )�b1(1�a)

e�b c
0 (OMr

AV+VOT c
AV T r

AV )�b1(1�a) + eV r
B
� 1

2nr , 9r 2 Rc,c 2 IC (5.36)

By rewriting these constraints, we obtain the following:

OMr
AV  �b1(1�a)�V r

B + ln(2nr �1)
b c

0
�VOT c

AV T r
AV , 9r 2 Rc,c 2 IC (5.37)

The right-hand side of (5.37) is the largest when a = 1 and T r
AV equals the minimum

travel time str at free-flow speed for group r 2Rc,c2 IC. Furthermore, the “there exist”
symbol (9) can be reformulated as a “for all” symbol (8) by taking the maximum value
of the right-hand side of Constraints (5.37) over all groups r 2 Rc,c 2 IC. This leads
to Constraints (5.38).

OMr
AV  max

r2Rc,c2IC

✓
�V r

B + ln(2nr �1)
b c

0
�VOT c

AV str
◆
, 8r 2 Rc,c 2 IC (5.38)

Thus, pr
max, which describes the upper bound of the variable OMr

AV , can take the
value of the right-hand side of Constraints (5.38). Noted that for each r 2 Rc,c 2 IC,
pr

max has the same value, allowing us to simplify pr
max to pmax. The value of pmax is

provided in Equation (5.39). Consequently, Constraints (5.31) and (5.32) are updated
to Constraints (5.40) and (5.41), respectively.

pmax = max
r2Rc,c2IC

✓
�V r
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b c
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�VOT c

AV str
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(5.39)

Y r
h  pmaxSr

h, 8r 2 Rc,c 2 IC,h 2 {0,1, . . . ,H r} (5.40)

Y r
h � OMr

AV � pmax(1�Sr
h), 8r 2 Rc,c 2 IC,h 2 {0,1, . . . ,H r} (5.41)

The overall mathematical formulations for the three proposed pricing strategies are
summarised as follows:

Pricing strategy 1: base fare + distance-based fare [M1-1] Objective function
(5.35) with Constraints (5.2)-(5.5), (5.8)-(5.28), (5.30), (5.33), (5.34), (5.38)-(5.41),
the linearisation-related constraints (5.81)-(5.103), and the non-negativity constraints
(5.104), (5.105), (5.111)-(5.130) in Appendix 5.A.
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Pricing strategy 2: distance-based fare [M1-2] Objective function (5.35), sub-
ject to Constraints (5.2)-(5.4), (5.6), (5.8)-(5.28), (5.30), (5.33), (5.34), (5.38)-(5.41),
the linearisation-related constraints (5.81)-(5.103), and the non-negativity constraints
(5.105), (5.111)-(5.130) in Appendix 5.A.

Pricing strategy 3: income class-based fare [M1-3] Objective function (5.35), sub-
ject to Constraints (5.2)-(5.4), (5.7), (5.8)-(5.28), (5.30), (5.33), (5.34), (5.38)-(5.41),
the linearisation-related constraints (5.81)-(5.103), and the non-negativity constraints
(5.106)-(5.130) in Appendix 5.A.

5.4.2 Particle Swarm Optimisation (PSO) embedded with an iter-
ative process of solving a reformulated MILP model (M2)

Linearising the binary logit model with the outer-inner approximation method requires
a significant number of binary variables and constraints. Specifically, the number
of these variables and constraints expands with the growth in the number of groups,
thereby escalating the computational load. In this section, we introduce a hybrid solu-
tion approach that integrates Particle Swarm Optimisation (PSO) with a reformulated
MILP model, referred to as M2. In M2, the probability Pr

AV of utilising SAV services
for each group r 2 Rc,c 2 IC is not treated as a variable, but as a fixed parameter pro-
vided as input. Solving M2 to optimality yields the optimal objective function value
under these given probabilities. In PSO, we define the probabilities Pr

AV for all groups
r 2 Rc,c 2 IC as a candidate solution, dubbed a particle. The primary objective of the
PSO is to move particles around in the search space to find the best objective function
value of M2.

We first present the framework of the proposed algorithm in Figure 5.4.1. The
detailed formulation of the reformulated MILP model (M2) is introduced in a later
section. Following this, Section 5.4.2 details the tailored PSO procedure specifically
designed for our problem. The concepts and terms mentioned in Figure 5.4.1, such as
particles, pbest, gbest, velocities, and positions, are also described in a later section.

Inner loop: Iterative process of solving a reformulated MILP model (M2)

In the reformulated MILP model (M2), the pricing variables, fleet sizing variable, ini-
tial fleet distribution variables, and service rate variable will be endogenous variables,
while the probabilities of using SAVs for each group of trips will be considered exoge-
nous variables. Treating probabilities as exogenous variables enables us to transform
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Figure 5.4.1: Flowchart of the particle swarm optimisation framework embedded with
an iterative process of solving a reformulated MILP model (M2).

the non-linear binary logit model into linear constraints within the model, thus facilitat-
ing an easier solution process. First, rewriting Equation (5.1) and applying a logarithm
give us the following equations:

V r
AV = lnPr

AV � ln(1�Pr
AV )+V r

B, 8r 2 Rc,c 2 IC. (5.42)

Combining Equation (5.42) with Equation (5.2) establishes a link between the
probabilities Pr

AV of using SAV, the price variables p0, p, pc, travel time T r
AV , and ser-

vice rate a . However, when generating the exogenous variable Pr
AV via PSO, random

variations are introduced to these values. Directly replacing the non-linear binary logit
model with Equation (5.42) may lead to infeasibility because of the integer nature of
travel time T r

AV , and the bounds on the pricing variables p0, p, pc and service rate vari-
able a .

To maintain feasibility within the model, we relax Equations (5.42) by replacing
the equality condition with an inequality, resulting in the relaxed constraints as shown
in Constraints (5.43). This relaxation enables us to determine the minimum prices
p0, p, pc across all groups that satisfy these constraints.

V r
AV � lnPr

AV � ln(1�Pr
AV )+V r

B, 8r 2 Rc,c 2 IC (5.43)

Additionally, once Pr
AV is predetermined as parameters before optimisation, Con-

straint (5.9) becomes linear, allowing demand variable Dr
AV to be directly determined
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using Equations (5.4). The mathematical formulations for M2 under the three pricing
strategies combine the following equations:

Pricing strategy 1: base fare + distance-based fare [M2-1] Objective function
(5.35), subject to Constraints (5.2)-(5.5), (5.8)-(5.28), (5.30), (5.33), (5.34), (5.38)-
(5.41), (5.43), and the non-negativity constraints (5.104), (5.105), (5.109)-(5.112),
(5.115)-(5.130) in Appendix 5.A.

Pricing strategy 2: distance-based fare [M2-2] Objective function (5.35), sub-
ject to Constraints (5.2)-(5.4), (5.6), (5.8)-(5.28), (5.30), (5.33), (5.34), (5.38)-(5.41),
(5.43), and the non-negativity constraints (5.105), (5.109)-(5.112), (5.115)-(5.130) in
Appendix 5.A.

Pricing strategy 3: income class-based fare [M2-3] Objective function (5.35), sub-
ject to Constraints (5.2)-(5.4), (5.7), (5.8)-(5.28), (5.30), (5.33), (5.34), (5.38)-(5.41),
(5.43), and the non-negativity constraints (5.106), (5.109)-(5.112), (5.115)-(5.130) in
Appendix 5.A.

After solving the model, we obtain optimal values for the price, service rate, and
travel time variables. These values are used to update the probability of using SAVs
in each group, through Equation (5.1). These updated probabilities then serve as new
inputs for M2. This iterative process continues until specific stopping criteria are met,
which are: (1) reaching the maximum number of iterations; or (2) the difference in the
objective function values between two consecutive iterations being less than or equal
to a predetermined threshold. Figure 5.4.1 illustrates the detailed iterative process.

Outer loop: Particle swarm optimisation (PSO)

PSO is a bio-inspired computational algorithm designed to solve optimisation prob-
lems by simulating the social behaviours observed in natural swarms. In PSO, a popu-
lation of candidate solutions, referred to as particles, explores the search space to find
(near-)optimal solutions. Each particle in the swarm adjusts its trajectory based on two
key reference points: its own best-known position pbest, and the global best position
gbest discovered by any member of the swarm. This mechanism guides each parti-
cle toward its personal and collective best positions, thereby facilitating convergence
within the swarm.

In this chapter, the position of a particle is represented by a probability vector, with
each element representing the probability of using SAV service Pr

AV for each group
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r 2 Rc,c 2 IC. PSO aims to find the optimal probability vector that renders the best
objective function value for our problem.

Step 1: Initialisation

Initialise particle swarm We initiate the PSO process by generating an initial pop-
ulation with a fixed number of particles. To ensure a strong starting point for optimi-
sation, we create twice this number of particles and apply an elitism strategy to select
the top-performing particles as the initial population.

When creating the particles, we construct the initial probability vector {P1
AV ,P

2
AV , . . . ,

Pr
AV} using a specialised grid search approach, rather than randomly generating values

for Pr
AV for each group r 2 Rc,c 2 IC. Each probability Pr

AV has a distinct lower and up-
per bound. The upper bounds are determined using the minimum price, shortest travel
time, and a no-rejection policy (a = 1), providing the travellers with the highest utility
as the upper bound. The lower bounds are set to 0.

Starting at the lower bound, each component of the vector is uniformly increased by
a step size, calculated as (upper bound� lower bound)/population size, until it reaches
the upper bound. All components of the vector are increased simultaneously from their
lower bounds to their respective upper bounds. Random generation is less efficient in
our problem due to Constraints (5.43). If even one Pr

AV is randomly assigned an ex-
tremely high value, it could restrict the price variables to lower values. This approach
may restrict the search to a limited feasible region, resulting in particles with perfor-
mance that are too similar to one another.

Initialise particles’ velocity Instead of using the traditional random generation for
the initial velocity, we utilise the distance information among the initial population to
generate their initial velocities. This approach is inspired by the differential evolution
(DE) algorithm, which leverages the spatial relationships between particles to estab-
lish their initial momentum. This method is effective in suggesting a better starting
direction. In this chapter, for each particle that does not possess the gbest fitness value,
we set the initial velocity as the distance between its current location and the location
of gbest. For a particle with the gbest value, we determine its initial velocity using its
distance from a randomly chosen pbest.

Initialise velocity clamping operator Velocity clamps are a mechanism used to pre-
vent the particles from moving too quickly or too slowly across the search space. If the
velocity of a particle is too high, it may skip over good solutions or move out of the
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feasible region. On the other hand, if the velocity is too low, the changes in probability
vectors may fail to produce any meaningful variation in the solution (e.g., total demand
remains unchanged).

We define V r
max and V r

min for r 2 Rc,c 2 IC as velocity clamping parameters to
control the maximum and minimum velocities a particle can attain. The maximum
speed, V r

max, is defined as 20% of the difference between the upper and lower bounds
of the probabilities for each r 2 Rc,c 2 IC, ensuring that the velocity of any particle
remains within the interval [�V r

max,V r
max].

The minimum speed, V r
min, for each group r 2 Rc,c 2 IC, is determined as 1/nr.

This ensures that the SAV system has at least one additional demand or one less. How-
ever, it is not necessary to apply the minimum speed threshold to each group of trips
r 2 Rc,c 2 IC, as long as there are changes in the total demand. When the total de-
mand of trips remains unchanged, we randomly select some groups and adjust their
velocity to either the minimum speed V r

min or its negative counterpart, �V r
min, to ensure

variations in the total demand.

Step 2: Main loop (repeat until stopping criteria are met)

Step 2.1 Update velocities and positions We employ two strategies to update ve-
locities and positions: the first is a dynamic PSO method that incorporates cognitive
and social components, which are weighted by random factors to induce stochastic be-
haviour. The second strategy, inspired by DE, focuses on the thorough exploitation of
the solution space surrounding the best solution identified thus far.

Strategy 1: Dynamic PSO searching strategy

For each particle, we determine the new velocity using its current velocity
V , the vector distance from its current location X to its pbest, and the
vector distance from its current location X to the gbest, as described by
the following velocity update formula:

Vnew = w ·V + c1(t) · r1 · (pbest �X)+ c2(t) · r2 · (gbest �X) (5.44)

c1(t) =
�
c1,min � c1,max

� t
tmax

+ c1,max (5.45)

c2(t) =
�
c2,max � c2,min

� t
tmax

+ c2,min (5.46)

Here, w represents the inertia weight. This value controls how much of
the previous velocity of each particle is retained as it moves to the next
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iteration. c1(t) and c2(t) represent the cognitive and social coefficients at
iteration t, respectively. The cognitive coefficient, c1(t), influences learn-
ing from personal experience, while the social coefficient, c2(t), draws on
the swarm’s collective knowledge. These coefficients dynamically change
over the course of the iterations, with c1(t) gradually decreasing and c2(t)
gradually increasing. This reflects a strategic shift from the initial explo-
ration, focusing on individual best solutions, to later stages of convergence
towards the global best. The maximum and minimum values for these co-
efficients are denoted as c1,max and c1,min for c1(t), and c2,max and c2,min
for c2(t), respectively. A sensitivity analysis is performed on these pa-
rameters, with the results presented in Appendix 5.B. Additionally, tmax
indicates the maximum number of iterations before the algorithm stops.
Random factors r1 and r2, which are values between 0 and 1, are also in-
cluded to introduce stochastic elements into the update equations in each
iteration. This approach ensures a balanced trade-off between exploration
and exploitation throughout the search process.

Then, we apply the velocity clamping operator to ensure that each par-
ticle’s velocity remains within the predefined range, while also ensuring
that there are variations in the total demand.

Next, we update the position of each particle Xnew by adding the clamped
velocity to its current position X :

Xnew = X +Vnew (5.47)

After updating positions, we check if any particle has moved outside the
search space. If so, we apply a bounding strategy to adjust the particle’s
position back within the search space limits.

Strategy 2: DE searching strategy

We adopt a strategy from DE to thoroughly exploit the feasible region
around the gbest solution. This approach adjusts each particle’s position
towards the best solution found so far, enhancing the search for an opti-
mal solution by integrating the relative positions of other particles in the
solution space.

Xnew = Xgbest + r1(Xgbest �X)+ r2(X1 �X2) (5.48)

Here, X1�X2 represent the distance between two randomly selected parti-
cles. After updating the location, we check if the new location falls within
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the probability boundaries. If it does not, we update the location with the
closest boundary value.

Step 2.2 Evaluate fitness After obtaining the new locations of the particles, we eval-
uate the fitness of each particle by solving M2.

Step 2.3 Update pbest and gbest We then update the pbest for each particle. If a
particle’s fitness at its new location is superior to the fitness at its pbest, the pbest
is updated to this new position. Simultaneously, we assess all updated pbest values
and if any particle’s pbest surpasses the current global best gbest, we update gbest
accordingly.

Step 3: Termination Repeat the main loop outlined in Step 2 for a predetermined
number of iterations or until a convergence criterion is met, such as when gbest shows
negligible improvement over a set number of iterations. The final solution is repre-
sented by the position of gbest.

5.4.3 Parallel Bayesian Optimisation with a reformulated MILP
model (M3)

Bayesian Optimisation (BO) has proven to be a powerful tool for exploring the param-
eter space efficiently (Bergstra et al., 2011; Liu et al., 2019; Swersky et al., 2013). It
employs a surrogate model to guide the selection of the next sampling points, with the
goal of identifying optimal parameters with minimal evaluations. Instead of resorting
to binary variables and the big-M method to reformulate the products of continuous
and integer variables in the objective function (5.29), BO provides a sequential search
strategy that allows us to strategically target the best pricing and service rate parame-
ters to maximise the objective function value. By treating the service rate and pricing
variables as parameters in Constraint (5.9) and objective function (5.29), we reduce
the number of binary variables and constraints in Model M1. Note that we still need
to linearise the binary logit model using the outer-inner approximation method. The
formulation of the reformulated MILP, referred to as M3, is detailed under the three
pricing strategies as follows:

Pricing strategy 1: base fare + distance-based fare [M3-1] Objective function
(5.29) with Constraints (5.2)-(5.5), (5.8)-(5.28), the linearisation-related Constraints
(5.81)-(5.97), and the non-negativity constraints (5.111)-(5.130) in Appendix 5.A.
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Pricing strategy 2: distance-based fare [M3-2] Objective function (5.29) with
Constraints (5.2)-(5.4), (5.6), (5.8)-(5.28), the linearisation-related Constraints (5.81)-
(5.97), and the non-negativity constraints (5.111)-(5.130) in Appendix 5.A.

Pricing strategy 3: income class-based fare [M3-3] Objective function (5.29) with
Constraints (5.2)-(5.4), (5.7), (5.8)-(5.28), the linearisation-related Constraints (5.81)-
(5.97), and the non-negativity constraints (5.111)-(5.130) in Appendix 5.A.

There are two main components in BO: the surrogate model and the acquisition
function. The surrogate model is a probabilistic model (typically a Gaussian Process)
that serves as a surrogate for the true objective function. As new data points are ob-
served, this model is iteratively updated, thereby improving its accuracy and reducing
uncertainty with each iteration. The acquisition function is used to determine the next
sample point to evaluate by aiming to maximise the acquisition function’s value. In this
chapter, we do not introduce the details of these two components. Interested readers
can refer to Liu et al. (2019) for a thorough explanation. The parameters that the BO
targets under the three pricing strategies are [p0, p,a], [p,a], and [pc,a] with c 2 IC,
respectively. The bounds of p0, p, pc, and a are determined by combining Constraints
(5.38) with Equations (5.5), (5.6), and (5.7). BO can only target the values within these
ranges.
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r2Rc,c2IC
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�V r
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The framework of parallel BO with the reformulated MILP model (M3) is illus-
trated in Figure 5.4.2.

5.5 Case study of the city of Delft, in the Netherlands
We apply the proposed solution methods to a case study of Delft, in the Netherlands.
This section first introduces the application setting in Section 5.5.1. We then test the
methods on a small problem involving only 9 groups of trips to compare the perfor-
mance of the three proposed methods in Section 5.5.2. Following this small case study,
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Figure 5.4.2: Framework of the Bayesian optimisation with reformulated MILP model
(M3).
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we extend the application to the entire city of Delft. The optimisation results are pre-
sented in Section 5.5.3.

5.5.1 Application setting
We introduce the application setting from the following perspectives: network descrip-
tion, mobility data, optimisation setting, parameter setting, and computational setting.

Network description We apply the proposed model and solution methods to a quasi-
real case study of Delft, a city in the South-Holland province in the Netherlands, using
the simplified road network detailed by Fan et al. (2023). The network consists of 35
nodes and 104 directed links that allow two-way traffic, as depicted in Figure 5.5.1.
SAVs can navigate the entire network, but only seven nodes (3, 10, 11, 15, 19, 22, and
27) are designated as free parking depots, marked in red on the map. The road links are
designed with capacities of 1600 vehicles for single lanes and 3200 for double lanes
per hour, with speed limits of 50 km/h and 70 km/h, respectively, and a minimum speed
of 5 km/h enforced on all roads.

Mobility data We utilised the Dutch mobility dataset (MON 2007/2008) (Correia
& Van Arem, 2016; Liang et al., 2020; Fan et al., 2023) to extract detailed travel de-
mand for bicycles, cars, and taxis between 7 am and 10 am. To represent these data
effectively for the morning peak hour, we evenly distributed these trips over an hour,
creating a total of 2933 trips. These were further aggregated into 45 groups based on
similarity in trip characteristics.

Optimisation setting The optimisation considers a one-hour morning peak, divided
into 24 time steps of 2.5 minutes each. To accommodate the trips from the parking
depots, an additional 5 time steps are included before the peak, resulting in a total of
29 time steps for the complete optimisation period.

Parameter setting The parameters related to the network configuration, demand
characteristics, and SAV operational dynamics in this case study are outlined here. The
maximum travel time tmax

i j for SAVs to travel through link (i, j) 2 L, is computed by
dividing the length of each road link by the minimum travel speed of 5 km/h, ensuring
that the vehicles adhere to speed limits. Conversely, the minimum travel time tmin

i j for
SAVs to travel through link (i, j)2 L, is determined by dividing the road link length by
the respective maximum speeds of 50 km/h or 70 km/h. Due to the time-space network
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Figure 5.5.1: Simplified road network of Delft used in the case study.

model used in this study, the minimum travel time on each road link cannot fall below
one time step. This ensures realism in the network model, as it prevents scenarios
where a vehicle could traverse a link in zero time.

To obtain the shortest travel distances and times, sdr and str for r 2 Rc,c 2 IC, we
use the shortest path algorithm assuming vehicles can travel at free-flow speeds. The
travel time for bicycles T r

B with r 2 Rc,c 2 IC is determined by dividing the shortest
path length by the average cycling speed of 12.4 km/h, reflective of typical Dutch
cycling habits as noted by BicycleDutch (2018).

We set the logit model base parameter b0 at 0.1 (Fan et al., 2023). The VOTT for
using an SAV, VOT c

AV with c 2 IC, is set at 6.6, 4.6, and 3.8 euros per hour for high,
middle, and low-income travellers, respectively, as estimated by Kolarova et al. (2019).
Similarly, the VOTT for using a bicycle, VOT c

B with c 2 IC, is set at 24.9, 17.3, and
14.1 euros per hour for the respective income groups, following the same source.

The operational cost of SAVs, co, is determined to be 0.32 euros per km, based on
the methodology from Bösch et al. (2018), while the depreciation cost c f is set at 1.2
euros per vehicle per hour, as identified in Fan et al. (2022). Additionally, the delay
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penalty cd is fixed at 0.2 euros per minute, following Liang et al. (2020). Finally, the
parameters a and b in the BPR function are set to 2 and 4, respectively, aligning with
the values suggested by Van Essen & Correia (2019).

Algorithm parameter setting We first introduce the parameter setting for the PSO-
based solution algorithm introduced in Section 5.4.2. The population size of PSO
is set to 12, and the maximum number of iterations is established at 30. The initial
10 iterations employ the dynamic PSO searching strategy, while the subsequent 20
iterations switch to the DE searching strategy. The inertia, w, is set at 0.2. Additionally,
the cognitive and social coefficients are configured with the following values: c1,max
and c2,max at 0.8, and c1,min and c2,min at 0.1. The inner loop terminates when either
the number of iterations reaches 5 or the relative difference in the objective function
values between two consecutive iterations is less than or equal to 5%.

For the BO-based solution algorithm introduced in Section 5.4.3, we maintain the
same population size and maximum number of iterations as in the PSO-based solution
algorithm to ensure consistency. Specifically, the number of individuals evaluated in
each iteration is set to 12, and the algorithm terminates upon reaching the predefined
maximum of 30 iterations.

Computational setting The proposed algorithms were implemented in Python 3.7
and the proposed MILP models were solved using Gurobi 9.5.2 on DelftBlue Super-
computer (Delft High Performance Computing Centre , DHPC).

5.5.2 Small case study
Before applying the three proposed solution methods to the real-life, city-sized case
study of Delft, we first compare their performance on a smaller case study that in-
cludes only 9 groups of trips. These groups are randomly selected from the Dutch
mobility dataset (MON 2007/2008). By testing the three proposed solution algorithms
on this smaller case study, we can ensure that all the involved MILP models can be
solved to optimality (resulting in a MILP gap of 0 for all methods in Table 5.5.1).
This approach facilitates a more effective comparison on the performance of the three
proposed solution algorithms.

The optimisation results are presented in Table 5.5.1. In this table, we use Gurobi,
PSO, and BO to represent the three proposed solution algorithms, as introduced in
Sections 5.4.1, 5.4.2, and 5.4.3, respectively. We applied these algorithms to three
different pricing strategies to assess their performance.
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The objective function value is a key indicator of the quality of the found solu-
tions, while computational time reflects the efficiency of these three algorithms. For
PSO and BO, multiple MILP models are solved during the process. The table presents
only the MILP gap and decision variable values that yield the best performance. As
shown in Table 5.5.1, for all three pricing strategies, the proposed algorithms consis-
tently find high-quality solutions within an acceptable time frame, demonstrating their
performance. It is unsurprising to find that Gurobi provides the best objective function
values in all the experiments. Following Gurobi, the PSO-based and BO-based meth-
ods also show similar objective function values. In terms of computational efficiency,
the PSO-based method stands out as the most efficient, achieving good solutions in
the shortest time among the three methods. Comparing the main decision variables—
price, service rate, and fleet size—we find that these three algorithms yield similar
optimal values for these variables, further proving the reliability of these methods.

Table 5.5.1: Comparison of optimisation results in the small case study using three
proposed methods.

Pricing strategy 1 Pricing strategy 2 Pricing strategy 3
Gurobi PSO BO Gurobi PSO BO Gurobi PSO BO

Obj value 313.27 310.55 302.99 291.43 290.28 286.03 319.69 312.24 309.78
Computational
time (s)

1115 895 1575 1537 456 1587 4340 532 4196

MILP gap (%) 0 0 0 0 0 0 0 0 0
Price (e) p0 = 4.93

p = 0.64
p0 = 4.89
p = 0.63

p0 = 4.44
p = 0.68

p = 1.594 p = 1.598 p = 1.62 plow = 1.35
pmid = 1.43
phigh = 1.76

plow = 1.29
pmid = 1.48
phigh = 1.76

plow = 1.32
pmid = 1.37
phigh = 1.79

Service rate
(%)

100 100 99 100 100 100 100 100 100

Fleet size 93 94 98 114 110 108 127 123 128

We further present the current best objective function values found by the three
algorithms, along with the computational times, in Figure 5.5.2. Specifically, Figures
5.5.2a, 5.5.2b, and 5.5.2c show the performance comparisons under the pricing strate-
gies 1, 2, and 3, respectively. These sub-figures demonstrate that the BO-based method
converges to its best solution in the shortest amount of time compared to the other two
algorithms. Initially, it spends some time exploring the feasible region, which leads to
some solutions with lower objective function values. However, it quickly targets the
most promising feasible region, achieving better results rapidly. For the PSO-based
method, we display only the best solution found in each generation in these figures.
Thanks to the elitism strategy employed during the initial population generation, the
PSO-based method can already find a high-quality solution in the first generation.
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(a) Performance comparison under pricing
strategy 1

(b) Performance comparison under pricing
strategy 2

(c) Performance comparison under pricing strategy 3

Figure 5.5.2: Comparison of algorithm performance under the three pricing strategies
in the small case study.

5.5.3 Delft case study

In this section, we present the optimisation results of the Delft case study introduced in
Section 5.5.1 and analyse the interplay among the endogenous decision variables. This
analysis includes the impact of the three pricing strategies, congestion effects, and the
spatial distribution of the rejection rate.

Comparative analysis of algorithm performance

Due to the complexity and scale of the problem, it is challenging to solve all the MILP
models to optimality. Therefore, we established specific stopping rules for different
MILP models. For the first solution algorithm (denoted as Gurobi in Table 5.5.2),
we set the time limit for solving the MILP model (M1) at 48 hours. For the second
solution algorithm (denoted as PSO in Table 5.5.2), when solving the MILP model
(M2), we first allow the solver to run for 20 minutes, during which it searches for the
best possible solution. After these 20 minutes, we check the current optimality gap. If
the gap is bigger than 3%, the solver continues. It stops when either the gap reaches
3% or the total runtime reaches 40 minutes. Similarly, for the third solution algorithm
(denoted as BO in Table 5.5.2), we start by letting the solver run for 30 minutes to
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search for the best possible solution. If, at the end of this period, the optimality gap is
bigger than 3%, the solver continues. It stops when either the gap reaches 3% or the
total runtime reaches 60 minutes. For comparison purposes, both the second and third
solution algorithms are run to a 48-hour time limit. We believe that these times can be
used in such a strategic context.

Table 5.5.2 presents the optimisation results of the Delft case study under the three
pricing strategies. The results from Gurobi exhibit significant gaps when the 48-hour
time limit is reached. For instance, with pricing strategy 1, the MILP gap reaches a
value as high as 92.8%. The gaps under the second and third pricing strategies are
lower, at 46.3% and 45.1%, respectively. Comparing the objective function values
from the three solution algorithms, we observe that the PSO-based and BO-based al-
gorithms outperform the Gurobi method with pricing strategies 1 and 2. With pricing
strategy 3, the Gurobi method and the PSO-based algorithm exhibit very similar per-
formance, with the Gurobi method slightly outperforming the PSO-based algorithm.
However, the BO-based method achieves the best performance among the three meth-
ods.

Table 5.5.2: Comparison of optimisation results in the Delft case study using three
proposed methods.

Pricing strategy 1 Pricing strategy 2 Pricing strategy 3
Gurobi PSO BO Gurobi PSO BO Gurobi PSO BO

Obj function
value

7230.91 7768.87 7852.19 7113.40 7207.06 7628.27 9143.37 9105.75 9341.43

MILP gap (%) 92.8 1.54 1.06 46.3 4.25 0.77 45.1 3.79 4.60
Price (e) p0 = 1.16

p = 2.54
p0 = 1.36
p = 1.10

p0 = 1.43
p = 1.11

p = 1.09 p = 1.16 p = 1.32 plow = 0.99
pmid = 1.17
phigh = 1.45

plow = 0.92
pmid = 1.08
phigh = 1.58

plow = 0.94
pmid = 1.09
phigh = 1.54

Service rate
(%)

100 98.71 100 99.78 95.23 98.26 95.72 94.74 90.85

Fleet size 596 964 926 1296 1088 855 1193 1266 1199

Figure 5.5.3 illustrates the trend of the best-found solutions over computational
time up to the 48-hour time limit. From the figure, we can draw similar conclusions
to those observed in the small case study: both the PSO-based and BO-based solution
methods are capable of finding high-quality solutions in a shorter time compared to
Gurobi.

Gurobi takes a long time to find the first feasible solution, and the quality of this
solution is relatively poor compared to the other two methods. After finding the first
feasible solution, it quickly improves, finding better solutions more rapidly. This obser-
vation suggests that providing a good initial solution could be beneficial for enhancing
the performance of Gurobi. For the PSO-based approach, the first 10 iterations using
the dynamic PSO strategy do not significantly improve the best solution. This is be-
cause the grid search approach and elitism strategy in the initial population generation
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have already found a reasonably good starting solution. The BO-based method shows
the same performance as in the small case study. It initially explores the feasible re-
gion with some random trials, leading to several solutions of lower quality, but then it
efficiently targets the most promising feasible region.

(a) Performance comparison under pric-
ing strategy 1

(b) Performance comparison under pric-
ing strategy 2

(c) Performance comparison under pricing strategy 3

Figure 5.5.3: Comparison of algorithm performance under three pricing strategies in
the Delft case study.

Optimisation results

From the previous section, we observe the best performance using BO for the Delft
case study. In this section, we analyse the optimisation results obtained using the BO-
based method. The optimisation results are presented in Table 5.5.3.

We first investigate the optimal pricing strategy for SAV services and its impact on
travellers’ demand. The three proposed pricing strategies exhibit significantly different
objective function values in the Delft case study. The third pricing strategy, income
class-based pricing, yields the highest profit for the SAV service provider, as shown
in Table 5.5.2. This strategy attracts more travellers to use the SAV service. The total
demand under pricing strategy 3 is significantly higher than under pricing strategies 1
and 2.
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Table 5.5.3: Optimisation results of the Delft case study.

Pricing strategy 1 Pricing strategy 2 Pricing strategy 3

Total revenue (e) 13898.91 12917.70 17626.79
Total depreciation cost (e) 1111.2 1026.0 1438.8
Total operational cost(e) 4254.52 3770.93 5663.06
Total delay penalty (e) 681.0 492.5 1183.5
Total demand for SAVs (e) 1263.0 1265.0 1792.0
SAV demand share (%) 43.06 43.13 61.10
Percentage of satisfied demand (%) 100 98.26 90.85
Average price per trip (e) 11 10.39 10.83
Average delay per trip (min) 2.7 1.98 3.63
Average deliver time per trip 16.30 14.60 17.43
SAVs total travel distance (km) 13295.38 11784.15 17697.06
SAVs total deliver distance (km) 11627.54 10266.68 15525.18
SAVs total relocate distance (km) 1667.84 1517.46 2171.87

In Table 5.5.2, we observe that high-income travellers are charged the highest
unit distance-based rates, followed by middle-income and then low-income travellers.
Higher-income travellers are less sensitive to price changes, making the higher rates
still appealing for them to use the SAV service. A more detailed comparison can be
seen in Figure 5.5.4. For pricing strategy 3, the demand difference between low, mid-
dle, and high-income classes is smaller compared to pricing strategies 1 and 2. The
demand for SAVs among low and middle-income groups significantly increases under
pricing strategy 3 compared to strategies 1 and 2. Interestingly, under pricing strategy
3, while the demand for low and middle-income class travellers increases, the demand
for high-income class travellers decreases compared to pricing strategies 1 and 2. This
is due to two factors: first, high-income travellers are charged higher fees. Second,
high-income individuals with a higher value of travel time (VOTT) are more sensitive
to increased travel time due to congestion effects.

Pricing strategy 1 imposes a base fare for every trip, meaning travellers must pay
this fare regardless of distance. This strategy discourages the use of SAVs for short
trips. As shown in Figure 5.5.4, for trips less than 5 km, pricing strategy 2 generates
higher demand than pricing strategy 1 across all income classes. Pricing strategy 3
exhibits the same trend for low and middle-income travellers but not for high-income
travellers, who are charged higher fees under this strategy. Thus, pricing strategy 1
is more sustainable as it encourages active modes of transport for short trips. Inter-
estingly, the average trip revenue for pricing strategy 1 is the highest among the three
strategies, as shown in Table 5.5.2. Despite having roughly the same demand as pricing
strategy 2, pricing strategy 1 generates significantly more revenue for the SAV service
provider.

Pricing strategy 2 considers only the distance-based fare. It attracts a similar num-
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ber of travellers as pricing strategy 1. However, the SAV operator does not serve all
trips, only the profitable ones, resulting in a smaller fleet, lower depreciation and oper-
ational costs, and reduced delay penalties.

Congestion effects are closely linked to fleet size, road link capacity, and the spatial
distribution of demand. Pricing strategy 2 results in a less congested network with the
fewest SAVs on the road, but it yields the lowest profit for the SAV service provider
among the three strategies. The average delay per trip is similar for both pricing strat-
egy 1 and pricing strategy 3. However, pricing strategy 3 generates the highest profits
for the SAV service provider. From the provider’s perspective, pricing strategy 3 is
the best option. Although it slightly compromises delivery time due to congestion, it
attracts more SAV users and generates higher profits.

Figure 5.5.4 illustrates the SAV demand for all income classes across trip lengths
of 0-5 km, 5-10 km, and greater than 10 km. Several more conclusions can be drawn
from the figures. Firstly, for short trips of less than 5 km, individuals from low and
middle-income classes are particularly sensitive to the pricing strategy, and a fixed
base fare is not appealing to them. Secondly, as trip length increases, the demand
difference between low, middle, and high-income classes becomes more pronounced.
Higher-income individuals are more likely to choose the SAV service due to the higher
VOTT of using bicycles. Lastly, the willingness to use the SAV service increases with
income, indicating that higher-income individuals are more inclined to opt for SAVs.

(a) (b) (c)

Figure 5.5.4: SAV demand for all income classes with trip lengths of (a) 0-5 km, (b)
5-10 km, (c) >10 km.

5.6 Conclusions and future research

This study addresses optimal pricing and fleet management for an SAV service provider
in future urban mobility frameworks. In this setting, travellers choose between SAVs
and bicycles, aligning with urban trends towards car-free environments. Travellers
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request SAVs via apps, and the platform accepts or rejects them based on company
benefits. Accepted requests prompt SAV dispatch to pick up customers. Our research
proposes a Mixed-integer Nonlinear Programming (MINLP) model to explore optimal
pricing strategies and assess varying traveller price sensitivities. Three different pric-
ing strategies are investigated: base fare plus distance-based fare, distance-based fare
only, and income class-based fare.

We develop three solution methods: first, we linearise the proposed model and
solve the problem using a commercial solver; second, we propose a hybrid approach
combining Particle Swarm Optimisation (PSO) with an iterative framework to solve
a reformulated MILP model; third, we integrate Bayesian Optimisation (BO) with a
reformulated MILP model to aid in complex objective function evaluations. We apply
the proposed solution methods to a small case study and a case study of Delft, the
Netherlands.

Conclusions can be drawn from both the algorithm performance perspective and
the optimisation results. The three methods exhibit similar performance in the small
case study, demonstrating their effectiveness. Among them, the PSO-based method is
the most time-efficient. However, in the Delft case study, the BO-based method outper-
forms the other two methods. Regarding the optimisation results, the three proposed
pricing strategies for SAV services have significantly different impacts on demand and
profitability. Pricing strategy 1, which is the base fare and distance-related fare, tends
to be the most environmentally sustainable, as it discourages the use of SAVs and
promotes active transport for short trips (< 5 km). Pricing strategy 2 leads to less con-
gestion and fewer SAVs on the road but results in the lowest profit. Pricing strategy
3, which is the income class-based fare, yields the highest profit for the SAV service
provider by attracting a higher total demand compared to pricing strategies 1 and 2.
High-income travellers are charged the highest rates, effectively leveraging their lower
price sensitivity to increase overall revenue. Although pricing strategy 3 causes more
congestion, it encourages low and middle-income users to utilise the SAV service,
thereby enhancing social equality while being the most profitable for the SAV service
provider. Travellers with different socio-demographic characteristics exhibit varying
behaviours. Demand for SAV services increases with income, particularly for longer
trips, with high-income individuals being more likely to choose SAVs.

Future research could explore several promising areas. Firstly, investigating dy-
namic pricing strategies that account for spatial-temporal congestion levels could pro-
vide more effective congestion management. Secondly, examining optimal ride-sharing
pricing mechanisms could help alleviate congestion effects and increase fleet utilisa-
tion rates. Additionally, the pricing mechanisms of multiple SAV service providers
could be studied to understand competitive dynamics and market impacts. Finally, de-
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veloping heuristics to generate high-quality starting solutions for commercial solvers is
a promising approach to ensure optimal outcomes. This is not covered in this research,
as the solution from the PSO-based method may be infeasible for the reformulated
MILP model (M1) due to their different feasible regions.
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5.A Problem formulation
We summarise the complete problem formulation for the reformulated MILP model
(M1) presented in Chapter 5, along with the notations for the sets, parameters, and
variables below.

Table 5.A.1: Notation for the sets, parameters, and variables
Notation Description

Set
T Set of time instants T = {0,1,2, . . . ,T } in the operational period.
N Set of physical nodes within the network.
L Set of road links connecting the nodes in set N.
G Set of links in the time-space network.
NP Set of nodes that allowing parking for SAVs with NP ✓ N.
IC Set of income classes, categorised into low income (low), middle income (mid), and high

income (high).
Rc Set of groups of trips associated with a specific income class c 2 IC. Each group r 2 Rc

consists of trips that share the same characteristics, including origin, destination, depar-
ture time, latest arrival time, and income level c.

M Set of travel modes, consisting of automated vehicles (AV ) and bicycles (B) as options.
K = {1,2, . . . ,k, . . . ,K }. Index set of predetermined breakpoints.

Parameters
Dt Time step.
li j Length of road link (i, j) 2 L.
Qi j Capacity of road link (i, j) 2 L in number of vehicles per time step.
tmax
i j Maximum travel time by car on road link (i, j) 2 L.

tmin
i j Minimum travel time by car on road link (i, j) 2 L.

Cit1 jt2 Spatial capacity of road link (i, j) 2 L in number of vehicles that fit on the road link from
time instant t1 to t2, where (it1 , jt2) 2 G.

a Trip service rate when all the requests have to be accepted, %.
or Origin node for group of trips r 2 Rc,c 2 IC.
dr Destination node for group of trips r 2 Rc,c 2 IC.
ar Departure time for group of trips r 2 Rc,c 2 IC.
br Latest arrival time for group of trips r 2 Rc,c 2 IC.
sdr Shortest travel distance for group of trips r 2 Rc,c 2 IC, in kilometres.
str Shortest travel time assuming free-flow speed for group of trips r 2 Rc,c 2 IC, in time

steps.
nr Total number of trips for group r 2 Rc,c 2 IC.
V r

B Deterministic systematic component of the utility of bicycles for group of trips r 2 Rc,c 2
IC.

OMr
B Monetary costs of travellers in group r 2 Rc,c 2 IC using bicycles, in euros.

b c
0 Parameter converting generalised costs into utility for income class c 2 IC, in utility/euro.

b1 Parameter converting service rate into utility.
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VOT c
m Travellers’ value of travel time in class c 2 IC using mode m 2 M, in euros/time step.

T r
B Travel time of using bicycles for trips in group r 2 Rc,c 2 IC.

co Unit driving operational cost of an SAV, in euros/km.
cd Penalty for drop-off delay of passengers, in euros/time step.
c f Depreciation cost in one hour for using an SAV, in euros/vehicle .
(uk, lnuk) Coordinates of the kth breakpoint.

Decision variables
V r

AV Deterministic systematic component of travellers’ utility for using an SAV in group r 2
Rc,c 2 IC.

OMr
AV Monetary costs of travellers in group r 2 Rc,c 2 IC using SAVs, in euros.

T r
AV Longest SAVs travel time for group r 2 Rc,c 2 IC.

Pr
AV Probability to choose SAVs for the trips in group r 2 Rc,c 2 IC.

Dr
AV Total number of trips using SAVs in group r 2 Rc,c 2 IC.

a Trip service rate.
p0 Initial base fare for using SAVs, in euros/trip.
p Travel distance-related price for using an SAV, in euros/km.
pc Travel distance-related price for using an SAV for income class c 2 IC, in euros/km.
Sr Total number of trips served by SAVs from group r, where r 2 Rc,c 2 IC.
PFr

it1 jt2
Passenger flow in the group of trips r 2 Rc,c 2 IC served by an SAV in road link (i, j),
from time instant t1 to t2. Only defined for (it1 , jt2) 2 G,ar  t1 < t2  br. If t1 = ar, then
i = or.

O SAV fleet size.
Oi Initial distribution of SAVs at parking node i 2 NP at the beginning of a day.
Er

t Total number of passengers in group of trips r 2 Rc,c 2 IC arriving at time t 2 T .
Fit1 jt2 Vehicle flow in road link (i, j) from time instant t1 to t2, where (it1 , jt2) 2 G. Note that

when t1 = 0, i 2 NP, meaning that SAVs have to depart from the parking nodes at the
beginning of a day.

Wit Total number of vehicles parking at node i 2 NP from time instant t to t + 1, with t 2
T \{T }.

Zr
t Binary variable which is 1 when Constraint (5.23) is active, and 0 otherwise.

Xit1 jt2 Binary variable which is 1 when any vehicle travels in road link (i, j) from time instant t1
to t2, where (it1 , jt2) 2 G, and 0 otherwise.

Ar
t Binary variable which is 1 when at least one trip in group r 2 Rc,c 2 IC arrives at time

t 2 T , and 0 otherwise.
LNr

AV Auxiliary continuous variable, where r 2 Rc,c 2 IC.
LNr

B Auxiliary continuous variable, where r 2 Rc,c 2 IC.
l k

r Binary variable indicating whether an interval [uk,uk+1] is active or not, where k 2
{1,2, . . . ,k, . . . ,K �1}, r 2 Rc,c 2 IC.

q k
r Convex combination coefficient for breakpoint k 2 K for group of trips r 2 Rc,c 2 IC.

l k
r Binary variable indicating whether an interval [1� uk+1,1� uk] is active or not, where

k 2 {1,2, . . . ,k, . . . ,K �1}, r 2 Rc,c 2 IC.
q k

r Convex combination coefficient for breakpoint k 2 K for group of trips r 2 Rc,c 2 IC.
Dh Binary variables utilised for discretising integer variables, where h 2 {0,1, . . . ,H }.
Yh Continuous variables utilised for describing the value of the integer variables, where h 2

{0,1, . . . ,H }.
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Y r
h Continuous variables utilised for describing the value of the product of integer variables

and continuous variables, where r 2 Rc,c 2 IC,h 2 {0,1, . . . ,H }.
Sr

h Binary variables utilised for discretising integer variables, where r 2 Rc,c 2 IC,h 2
{0,1, . . . ,H }.

Mixed integer linear program

max Â
r2R,c2IC

H
r

Â
h=0

2hY r
h � c f ·O� co

0

@ Â
(it1 , jt2)2G

li jFit1 jt2

1

A

� cd Â
r2Rc,c2IC

 

Â
t2T

tEr
t � (ar + str)Sr

!
.

(5.53)

subject to:

OMr
AV =

8
><

>:

p0 + sdr p if pricing strategy 1,
sdr p if pricing strategy 2,
sdr pc if pricing strategy 3,

8r 2 Rc,c 2 IC (5.54)

V r
AV =�b c

0 (OMr
AV +VOT c

AV T r
AV )�b1(1�a), 8r 2 Rc,c 2 IC (5.55)

nrPr
AV �0.5 < Dr

AV  nrPr
AV +0.5, 8r 2 Rc,c 2 IC (5.56)

Sr  Dr
AV , 8r 2 Rc,c 2 IC (5.57)

Sr = Â
jt |(or

ar , jt)2G

PFr
or

ar jt , 8r 2 Rc,c 2 IC (5.58)

Sr = Â
t2T |ar+strtbr

Er
t , 8r 2 Rc,c 2 IC (5.59)

Er
t = Â

it1 |(it1 ,d
r
t )2G

PFr
it1dr

t
, 8r 2 Rc,c 2 IC, t 2 T (5.60)

Â
jt1 |(dr

t , jt1)2G

PFr
dr

t jt1
= 0, 8r 2 Rc,c 2 IC,ar  t  br (5.61)

Â
it1 |(it1 ,o

r
t )2G

PFr
it1 or

t
= 0, 8r 2 Rc,c 2 IC,ar  t  br (5.62)
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Â
jt0 |( jt0 ,it1)2G

PFr
jt0 it1

= Â
jt2 |(it1 , jt2)2G

PFr
it1 jt2

,8r 2 Rc,c 2 IC,

ar < t1 < br, i 2 N, i 6= or, i 6= dr
(5.63)

Â
r2Rcc2IC

PFr
it1 jt2

 Fit1 jt2 , 8(it1 , jt2) 2 G (5.64)

Â
jt1 |( jt1 ,it)2G,t1<t

Fjt1 it = Â
jt2 |(it , jt2)2G,t<t2

Fit jt2 ,8i 2 N \NP,0 < t < T (5.65)

Â
jt1 |( jt1 ,it)2G,t1<t

Fjt1 it +Wit�1 = Â
jt2 |(it , jt2)2G,t<t2

Fit jt2 +Wit , 8i 2 NP,0 < t < T

(5.66)
Â

jt |(i0, jt)2G
Fi0 jt +Wi0 = Oi,8i 2 NP (5.67)

Â
i2NP

Oi = O (5.68)

Er
t

nr  Ar
t  Er

t , 8r 2 Rc,c 2 IC,ar + str  t  br (5.69)

T r
AV � Ar

t (t �ar), 8r 2 Rc,c 2 IC,ar + str  t  br (5.70)

T r
AV  Ar

t (t �ar)+(br �ar)(1�Zr
t ), 8r 2 Rc,c 2 IC,ar + str  t  br (5.71)

Â
t|ar+strtbr

Zr
t = 1, 8r 2 Rc,c 2 IC (5.72)

Â
t2|(it1 , jt2)2G

Xit1 jt2  1, 8(i, j) 2 L, t1 2 T (5.73)

Fit1 jt2 
j
Cit1 jt2

k
Xit1 jt2 , 8(it1 , jt2) 2 G (5.74)

t1 + Â
t2T

Xit1 jt (t � t1) t2+ Â
t2T

Xit2 jt (t � t2)+(t1 + tmax
i j � t2)

 
1� Â

t2T
Xit2 jt

!
,

8(i, j) 2 L, t1 < t2  t1 + tmax
i j � tmin

i j

(5.75)

Sr =
H

r

Â
h=0

2hSr
h, 8r 2 Rc,c 2 IC (5.76)

Y r
h  pmaxSr

h, 8r 2 Rc,c 2 IC,h 2 {0,1, . . . ,H r} (5.77)

Y r
h � OMr

AV � pmax(1�Sr
h), 8r 2 Rc,c 2 IC,h 2 {0,1, . . . ,H r} (5.78)

Y r
h  OMr

AV , 8r 2 Rc,c 2 IC,h 2 {0,1, . . . ,H r}. (5.79)
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OMr
AV  max

r2Rc,c2IC

✓
�V r

B + ln(2nr �1)
b c

0
�VOT c

AV str
◆
, 8r 2 Rc,c 2 IC (5.80)

LNr
AV �LNr

B =V r
AV �V r

B, 8r 2 Rc,c 2 IC (5.81)

LNr
AV  1

uk Pr
AV + lnuk �1, 8r 2 Rc,c 2 IC,k 2 K (5.82)

LNr
AV �

K

Â
k=1

q k
r lnuk, 8r 2 Rc,c 2 IC (5.83)

Pr
AV =

K

Â
k=1

q k
r uk, 8r 2 Rc,c 2 IC (5.84)

K

Â
k=1

q k
r = 1, 8r 2 Rc,c 2 IC (5.85)

K �1

Â
k=1

l k
r = 1, 8r 2 Rc,c 2 IC (5.86)

q 1
r  l 1

r , 8r 2 Rc,c 2 IC (5.87)

q k
r  l k�1

r +l k
r , 8r 2 Rc,c 2 IC,k 2 {2, . . . ,K �1} (5.88)

qK
r  lK �1

r , 8r 2 Rc,c 2 IC (5.89)

LNr
B  1

uk (1�Pr
AV )+ lnuk �1, 8r 2 Rc,c 2 IC,k 2 K (5.90)

LNr
B �

K

Â
k=1

q k
r lnuk, 8r 2 Rc,c 2 IC (5.91)

1�Pr
AV =

K

Â
k=1

q k
ruk, 8r 2 Rc,c 2 IC (5.92)

K

Â
k=1

q k
r = 1, 8r 2 Rc,c 2 IC (5.93)

K �1

Â
k=1

l k
r = 1, 8r 2 Rc,c 2 IC (5.94)

q 1
r  l 1

r , 8r 2 Rc,c 2 IC (5.95)

q k
r  l k�1

r +l k
r , 8r 2 Rc,c 2 IC,k 2 {2, . . . ,K �1} (5.96)
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qK

r  lK �1
r , 8r 2 Rc,c 2 IC (5.97)

Â
r2Rc,c2IC

Dr
AV =

H

Â
h=0

2hDh (5.98)

Yh  a, 8h 2 {0,1, . . . ,H } (5.99)

Yh  Dh, 8h 2 {0,1, . . . ,H } (5.100)

Yh � a +Dh �1, 8h 2 {0,1, . . . ,H } (5.101)
H

r

Â
h=0

2hYh = Â
r2Rc,c2IC

Sr (5.102)

0  a  1 (5.103)

p0 � 0 (5.104)

p � 0 (5.105)

pc � 0, 8c 2 IC (5.106)

Dh 2 {0,1}, 8h 2 {0,1, . . . ,H } (5.107)

Yh � 0, 8h 2 {0,1, . . . ,H } (5.108)

Sr
h 2 {0,1}, 8h 2 {0,1, . . . ,H r} (5.109)

Y r
h � 0, 8r 2 Rc,c 2 IC,h 2 {0,1, . . . ,H r} (5.110)

V r
AV � 0, 8r 2 Rc,c 2 IC (5.111)

T r
AV 2 N0, 8r 2 Rc,c 2 IC (5.112)

Pr
AV � 0, 8r 2 Rc,c 2 IC (5.113)

Dr
AV 2 N0, 8r 2 Rc,c 2 IC (5.114)

O 2 N0 (5.115)

Oi 2 N0, 8i 2 NP (5.116)

Sr 2 N0, 8r 2 Rc,c 2 IC (5.117)

Er
t 2 N0, 8r 2 Rc,c 2 IC, t 2 T (5.118)

PFr
it1 jt2

2 N0, 8r 2 Rc,c 2 IC,(it1 , jt2) 2 G (5.119)

Fit1 jt2 � 0, 8(it1 , jt2) 2 G (5.120)

Wit 2 N0, 8i 2 NP, t 2 T (5.121)
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Zr
t 2 {0,1}, 8r 2 Rc,c 2 IC, t 2 T,ar + str  br (5.122)

Xit1 jt2 2 {0,1}, 8(it1 , jt2) 2 G (5.123)

Ar
t 2 {0,1}, 8r 2 Rc,c 2 IC, t 2 T,ar + str  t  br (5.124)

LNr
AV � 0, 8r 2 Rc,c 2 IC (5.125)

LNr
B � 0, 8r 2 Rc,c 2 IC (5.126)

q k
r � 0, 8r 2 Rc,c 2 IC,k 2 K (5.127)

l k
r 2 {0,1}, 8r 2 Rc,c 2 IC,k 2 K (5.128)

q k
r � 0, 8r 2 Rc,c 2 IC,k 2 K (5.129)

l k
r 2 {0,1}, 8r 2 Rc,c 2 IC,k 2 K (5.130)

5.B Sensitivity analysis of parameters used in PSO

Parameter tuning is crucial for the performance of metaheuristic algorithms, as the
selected settings can significantly influence the outcome. In this study, we conduct a
sensitivity analysis on the key parameters of the PSO-based algorithm. These param-
eters include population size, the cognitive and social coefficients (c1,max and c2,max),
and the inertia coefficient (w). The scenarios with varying parameter settings are pre-
sented in Table 5.B.1. For each scenario, we conducted five experiments and reported
the mean, minimum, and maximum values of the objective functions. These results are
shown in Table 5.B.2, where only the objective function values are displayed as they
serve as an indicator of model performance.

As shown in Table 5.B.2, varying the population size from 12 (base scenario) to 8
(Scenario 1) or 16 (Scenario 2) results in very similar overall performance, with Sce-
nario 1 and 2 showing slightly worse performance in most cases. A population size
of 8 reduces diversity within the population, while a population size of 16 increases
the computational time per generation, leading to fewer iterations within the same
timeframe. Larger cognitive and social coefficients (c1,max and c2,max) promote more
aggressive exploration and exploitation, whereas smaller values are more conservative
and help prevent overshooting optimal regions. The results indicate that the perfor-
mance in the base scenario and in Scenarios 3 and 4 is quite similar, making it difficult
to draw a definitive conclusion about the impact of these coefficients on the outcome.
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In Scenarios 5 and 6, we varied the inertia coefficient (w). A higher inertia encour-
ages particles to retain a greater portion of their previous velocity, leading to more ex-
ploratory behaviour, with particles more likely to continue moving in their current di-
rection. Conversely, lower inertia makes particles more responsive to the cognitive and
social coefficients, thereby promoting quicker convergence and increased exploitation.
The results from the base scenario, Scenario 5, and Scenario 6 are very similar. In our
problem setting, these parameter variations do not significantly affect the model’s per-
formance, indicating that the algorithm is able to maintain stable performance across a
range of different parameter settings.

Table 5.B.1: Parameter setting for sensitivity analysis.

Scenario Population size c1,max,c2,max w

Base scenario 12 0.8 0.2
Scenario 1 8 0.8 0.2
Scenario 2 16 0.8 0.2
Scenario 3 12 1 0.2
Scenario 4 12 0.6 0.2
Scenario 5 12 0.8 0.1
Scenario 6 12 0.8 0.3

Table 5.B.2: Objective function values across different scenarios under three pricing
strategies.

Pricing strategy 1 Pricing strategy 2 Pricing strategy 3

Mean Min Max Mean Min Max Mean Min Max
Base scenario 7669.52 7553.52 7768.87 7161.29 7084.55 7207.06 8962.05 8778.77 9105.75

Scenario 1 7547.43 7180.54 7760.51 7045.8 6931.4 7239.63 8822.34 8660 8920.54
Scenario 2 7589.95 7513 7683.97 7090.33 6976.68 7241.6 8822.48 8737.16 8958.9
Scenario 3 7597.93 7498.34 7790.28 6999.95 6398.17 7259.57 8814.33 8643.61 8963.8
Scenario 4 7685.02 7590.01 7764.06 7158.50 6969.45 7254.77 8814.51 8659.01 9007.63
Scenario 5 7654.72 7436.56 7797.37 6973.07 6423.31 7152.19 8910.99 8842.57 8974.48
Scenario 6 7636.14 7549.43 7705.51 7182.61 7030.08 7289.55 8825.98 8733.11 8983.95





Chapter 6

Conclusions and future research

In this chapter, we first present the main conclusions in Section 6.1, summarizing the
research questions, key findings, and overall conclusions. Section 6.2 offers recom-
mendations for future research.

6.1 Conclusions
This thesis addresses the challenges of high-level planning for a ride-hailing service
provider during the gradual transition from traditional transportation to a fully intelli-
gent transportation system (ITS). To make optimal planning decisions, it is essential
to understand and analyse system operations throughout a typical day. To this end, we
have modelled the decision-making process at both the planning and operational lev-
els. Given that urban demand patterns and transportation infrastructures are dynamic
and constantly evolving, all decisions must be flexible and responsive to the current
environment to maintain optimal profitability. This thesis provides mathematical mod-
els and designs various solution algorithms to tackle the challenges encountered during
different stages of the transition period, thereby making the planning decisions more
realistic. The research questions outlined in Chapter 1 have been systematically ad-
dressed throughout this thesis. Below, we summarise the answers to each question,
along with the key findings, conclusions, and insights from case studies.

Research question 1: How should ride-hailing service providers optimally size
and manage mixed fleets of SAVs and conventional vehicles/taxis in response to the
gradual expansion of AV-only zones in urban areas, considering their impact on traffic
congestion?

To answer this question, we developed a mixed-integer linear programming model
in Chapter 2 to determine the optimal fleet size and type across different service sce-
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narios and to evaluate how an AVs-only zone affects the service performance and the
planning decisions. Traffic congestion is incorporated into the model through flow-
dependent travel times.

Our findings indicate that automated taxis (ATs) generally yield higher profits com-
pared to conventional taxis (CTs). If the passenger preference for a vehicle type is not
considered, the operating company should increase the deployment of ATs in response
to the introduction of an AVs-only zone. When the service provider considers the
user’s preference towards the vehicle types, less profit will be gained.

Initially, the establishment of an AVs-only zone may increase detours and relo-
cation distances for CTs. However, a well-designed expansion strategy for the AVs-
only zone can help mitigate these negative impacts. As the coverage of the AVs-only
zone expands, traffic congestion is likely to decrease, enabling the company to achieve
higher profit by deploying more ATs.

Research question 2: How can we model the interactions between different routing
behaviours—specifically, privately-owned HVs following the user equilibrium (UE)
and centrally dispatched vehicles/taxis following the system optimum (SO)? How do
these interactions influence the optimal sizing and management of the fleets?

To answer this question, we developed a bi-level framework in Chapter 3. The
lower level of this framework presents an approximated dynamic mixed equilibrium
model designed to capture the interactions between vehicles with different routing
behaviours—privately-owned HVs operating under UE and centrally dispatched ve-
hicles/taxis (CTs and ATs) following an SO routing strategy. At the upper level, the
objective is to determine the fleet size of CTs and ATs that maximises the profits of the
company while meeting travel demand. A parallel genetic algorithm is developed to
solve the proposed bi-level framework, embedded with a tailored iterative algorithm to
solve the lower-level problem.

Computational experiments conducted using the city of Delft as a case study demon-
strate the effectiveness of this approach in determining near-optimal fleet sizes of CTs
and ATs under different scenarios with varying departure times and user preferences
for CTs and ATs. However, applying this solution method to large urban networks can
lead to a long computational time due to the NP-hardness of the model and the iterative
nature of the framework.

Several key findings are drawn from the experiments. First, the minimum fleet size
required to meet demand is not necessarily the most profitable fleet size for a ride-
hailing company. Among all expenses associated with CTs, driver salaries represent
a substantial cost, which heavily influences fleet size decisions. As a result, the min-
imum feasible fleet size for CTs often aligns with the optimal choice in the scenarios
tested. In addition, the location and distribution of parking depots also plays a crucial
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role in influencing the fleet sizes, with depots located in high-demand areas helping to
minimize relocation costs. Second, AVs-only zones can enhance transportation effi-
ciency by reducing congestion, though this benefit is less noticeable in the early stages
of implementation. To maximise the benefits of AVs-only zones, governments should
encourage the adoption of AVs.

Research question 3: How can existing models be adapted to incorporate endogenous
demand to plan and operate an SAV service?

To answer this question, we present a non-convex, non-linear mathematical pro-
gramming model in Chapter 4. In this model, we model travellers’ mode choice be-
haviour between SAVs and bicycles using an endogenous binary logit model, under
the assumption that private cars are banned in urban areas. The binary logit model is
incorporated into a mixed-integer programming model which aims at optimising fleet
sizing and management decisions for an SAV service. This model takes into account
traffic congestion, the non-linear demand of users across different income classes, and
different accept/reject mechanisms which influence travellers’ willingness to use the
SAV service.

To address the computational challenges posed by the model’s non-linearities, we
reformulated the problem and applied outer-inner approximation methods along with a
breakpoint generation algorithm to obtain an approximated linear version of the origi-
nal model. This allows the model to be solved using advanced solvers like Gurobi.

We conducted a quasi-real case study in Delft, the Netherlands, accompanied by a
sensitivity analysis, to evaluate the model’s performance and provide practical insights
for SAV service providers in future scenarios. The results reveal that demand for SAVs,
supply strategies, and network performance, particularly traffic congestion, are deeply
interconnected. This highlights the importance of considering these interactions when
managing SAV fleets.

In terms of fleet sizing strategy, we conclude that factors such as population dis-
tribution, land use patterns, and residents’ travel behaviour significantly influence the
initial distribution of the SAV fleet. Additionally, the location and distribution of park-
ing depots are crucial in determining fleet sizes, with depots in high-demand areas
helping to minimise relocation costs.

The study also finds that SAV services are more appealing to travellers with a
higher value of travel time (VOTT), who are more sensitive to trip length/duration
variations. For long trips, these travellers consistently prefer SAVs, while those with
lower VOTT favour SAVs only when prices are low. For shorter trips, bicycles are
generally preferred unless SAV prices are significantly reduced.



188 6 Conclusions and future research

Research question 4: What are the optimal pricing strategies for SAV services, consid-
ering the interplay between demand and supply variables, congestion effects, and the
heterogeneous income levels of travellers?

The thesis evaluates three pricing strategies in Chapter 5: base fare plus distance-
based fare, distance-based fare only, and income class-based fare. To analyse optimal
pricing strategies while considering demand-supply interplay, congestion effects and
the heterogeneous income levels of travellers, we develop a mixed-integer nonlinear
programming model. To solve the problem, we propose three solution methods. The
first method involves linearising the model and solving it using a commercial solver.
The second approach combines Particle Swarm Optimisation with an iterative frame-
work to address a reformulated mixed-integer linear programming model. The third
method integrates Bayesian optimisation with the reformulated mixed-integer linear
programming model to handle complex objective function evaluations. These meth-
ods are applied to both a small-scale case study and a larger case study in Delft, the
Netherlands.

The results show that the three pricing strategies have distinctly different impacts
on demand and profitability. The income class-based fare generates the highest profit
for the SAV service provider by attracting greater overall demand. This strategy charges
higher rates to high-income travellers, leveraging their lower price sensitivity to max-
imise revenue. While it leads to increased congestion, it also encourages usage among
low- and middle-income users, promoting social equity while remaining the most prof-
itable.

In contrast, the base fare plus distance-based fare proves to be the most environ-
mentally sustainable, as it discourages SAV use for short trips (less than 5 km) and
promotes active transport. The distance-based fare results in lower congestion and
fewer SAVs on the road but yields the lowest profit. Traveller behaviour varies signif-
icantly by socio-demographic factors, with demand for SAV services increasing with
income, particularly for longer trips. High-income individuals are more likely to opt
for SAVs.

6.2 Future research

The findings and methodologies presented in this thesis open several directions for
future research.
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6.2.1 Methodological outlook
Firstly, future work could focus on incorporating stochastic elements such as demand
uncertainty, departure time variability, and travel time fluctuations into fleet sizing
models. These factors play a critical role in real-world operations, where demand and
travel conditions are inherently unpredictable. The absence of these stochastic ele-
ments in current models could lead to overly deterministic results, which may not fully
capture the complexities of urban transportation systems. By integrating stochastic
elements, future models could provide more robust solutions that account for a wider
range of possible scenarios. This would improve the decision-making process by of-
fering fleet sizing strategies that are resilient to variability and uncertainty.

Secondly, there is a methodological need to optimise the design of AV-only zones
across multiple time periods, taking into account travellers’ mode choices, routing
behaviours, and congestion effects. This requires advanced methodologies capable of
modelling time-dependent lane and link transitions, strategically allocating AV parking
depots, and capturing the changes in travellers’ behaviour over time.

Thirdly, investigating the competitive dynamics among multiple SAV service provi-
ders through advanced modelling techniques could provide a deeper understanding of
market interactions. For instance, this could be approached as a multi-agent reinforce-
ment learning problem, where service providers dynamically adjust pricing strategies
in response to competitors and evolving market conditions.

6.2.2 Practical outlook
From a practical perspective, future research should focus on optimising the interaction
between SAVs and traditional public transportation systems such as buses, metro, and
trains. Understanding these interactions will be crucial for creating an integrated urban
transportation network. Specifically, practical research should explore how planning
and operational decisions in one mode affect others, including potential conflicts like
competition for passengers and the substitution effects of SAVs on public transit.

Another practical area is the design and implementation of AV-only zones. While
methodological frameworks can guide the optimisation, future research must address
real-world deployment challenges such as public acceptance, regulatory constraints,
and infrastructure readiness.

Lastly, understanding the implications of dynamic pricing on passenger satisfac-
tion, behaviour, and overall network efficiency in real-world scenarios is important.
Field studies or pilot programs could validate the theoretical models and help refine
pricing strategies based on observed outcomes.
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tabu search algorithm to solve a green logistics bi-objective bi-level problem, Annals
of Operations Research, pp. 1–27.

Chen, A., S. Pravinvongvuth, X. Xu, S. Ryu, P. Chootinan (2012) Examining the scal-
ing effect and overlapping problem in logit-based stochastic user equilibrium mod-
els, Transportation Research Part A: Policy and Practice, 46(8), pp. 1343–1358.

Chen, R., M. W. Levin (2019) Dynamic user equilibrium of mobility-on-demand sys-
tem with linear programming rebalancing strategy, Transportation Research Record,
2673(1), pp. 447–459.

Chen, X. M., H. Zheng, J. Ke, H. Yang (2020) Dynamic optimization strategies for
on-demand ride services platform: Surge pricing, commission rate, and incentives,
Transportation Research Part B: Methodological, 138, pp. 23–45.

Chen, Z., F. He, Y. Yin, Y. Du (2017) Optimal design of autonomous vehicle zones in
transportation networks, Transportation Research Part B: Methodological, 99, pp.
44–61.

Chen, Z., F. He, L. Zhang, Y. Yin (2016) Optimal deployment of autonomous vehicle
lanes with endogenous market penetration, Transportation Research Part C: Emerg-
ing Technologies, 72, pp. 143–156.

Chondrogiannis, T., P. Bouros, J. Gamper, U. Leser, D. B. Blumenthal (2020) Finding
k-shortest paths with limited overlap, The VLDB Journal, 29(5), pp. 1023–1047.

Chung, J.-H., K. Y. Hwang, Y. K. Bae (2012) The loss of road capacity and self-
compliance: Lessons from the Cheonggyecheon stream restoration, Transport Pol-
icy, 21, pp. 165–178.

Conceição, L., G. Correia, J. P. Tavares (2021) Automated vehicles (AV) dedicated
networks and their effects on the traveling of conventional vehicle drivers, Trans-
portation Research Procedia, 52, pp. 653–660.

Correia, G. H., E. Looff, S. Van Cranenburgh, M. Snelder, B. Van Arem (2019) On the
impact of vehicle automation on the value of travel time while performing work and
leisure activities in a car: Theoretical insights and results from a stated preference
survey, Transportation Research Part A: Policy and Practice, 119, pp. 359–382.



194 Bibliography

Correia, G. H., B. Van Arem (2016) Solving the user optimum privately owned auto-
mated vehicles assignment problem (UO-POAVAP): A model to explore the impacts
of self-driving vehicles on urban mobility, Transportation Research Part B: Method-
ological, 87, pp. 64–88.

Dafermos, S. C., F. T. Sparrow (1969) The traffic assignment problem for a general
network, Journal of Research of the National Bureau of Standards B, 73(2), pp.
91–118.

Delft High Performance Computing Centre (DHPC) (2024) DelftBlue Supercomputer
(Phase 2), https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2.

Dong, X., J. Y. Chow, S. T. Waller, D. Rey (2022) A chance-constrained dial-a-ride
problem with utility-maximising demand and multiple pricing structures, Trans-
portation Research Part E: Logistics and Transportation Review, 158, p. 102601.

Eklund, S. E. (2004) A massively parallel architecture for distributed genetic algo-
rithms, Parallel Computing, 30(5-6), pp. 647–676.

Fagnant, D. J., K. M. Kockelman (2014) The travel and environmental implications
of shared autonomous vehicles, using agent-based model scenarios, Transportation
Research Part C: Emerging Technologies, 40, pp. 1–13.

Fagnant, D. J., K. M. Kockelman (2018) Dynamic ride-sharing and fleet sizing for a
system of shared autonomous vehicles in Austin, Texas, Transportation, 45(1), pp.
143–158.

Fan, Q., J. T. Van Essen, G. H. Correia (2022) Heterogeneous fleet sizing for on-
demand transport in mixed automated and non-automated urban areas, Transporta-
tion Research Procedia, 62, pp. 163–170.

Fan, Q., J. T. van Essen, G. H. Correia (2023) Optimising fleet sizing and management
of shared automated vehicle (SAV) services: A mixed-integer programming ap-
proach integrating endogenous demand, congestion effects, and accept/reject mech-
anism impacts, Transportation Research Part C: Emerging Technologies, 157, p.
104398.

Farahani, R. Z., E. Miandoabchi, W. Y. Szeto, H. Rashidi (2013) A review of ur-
ban transportation network design problems, European Journal of Operational Re-
search, 229(2), pp. 281–302.

https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2


Bibliography 195

Ge, Q., K. Han, X. Liu (2021) Matching and routing for shared autonomous vehicles in
congestible network, Transportation Research Part E: Logistics and Transportation
Review, 156, p. 102513.

Guo, H., Y. Chen, Y. Liu (2022) Shared autonomous vehicle management considering
competition with human-driven private vehicles, Transportation Research Part C:
Emerging Technologies, 136, p. 103547.

Guo, Q., X. J. Ban, H. A. Aziz (2021a) Mixed traffic flow of human driven vehicles and
automated vehicles on dynamic transportation networks, Transportation Research
Part C: Emerging Technologies, 128, p. 103159.

Guo, Z., M. Hao, B. Yu, B. Yao (2021b) Robust minimum fleet problem for au-
tonomous and human-driven vehicles in on-demand ride services considering mixed
operation zones, Transportation Research Part C: Emerging Technologies, 132, p.
103390.

Gurumurthy, K. M., F. de Souza, A. Enam, J. Auld (2020) Integrating supply and
demand perspectives for a large-scale simulation of shared autonomous vehicles,
Transportation Research Record, 2674(7), pp. 181–192.

Ha, T., S. Kim, D. Seo, S. Lee (2020) Effects of explanation types and perceived risk
on trust in autonomous vehicles, Transportation Research Part F: Traffic Psychology
and Behaviour, 73, pp. 271–280.

Hiermann, G., J. Puchinger, S. Ropke, R. F. Hartl (2016) The electric fleet size and
mix vehicle routing problem with time windows and recharging stations, European
Journal of Operational Research, 252(3), pp. 995–1018.

Hoang, N. H., M. Panda, H. L. Vu, D. Ngoduy, H. K. Lo (2023) A new framework for
mixed-user dynamic traffic assignment considering delay and accessibility to infor-
mation, Transportation Research Part C: Emerging Technologies, 146, p. 103977.

Hörl, S., F. Becker, K. W. Axhausen (2021) Simulation of price, customer behaviour
and system impact for a cost-covering automated taxi system in Zurich, Transporta-
tion Research Part C: Emerging Technologies, 123, p. 102974.

Huang, K., K. An, J. Rich, W. Ma (2020) Vehicle relocation in one-way station-based
electric carsharing systems: A comparative study of operator-based and user-based
methods, Transportation Research Part E: Logistics and Transportation Review,
142, p. 102081.



196 Bibliography

Huang, K., G. H. de Almeida Correia, K. An (2018) Solving the station-based one-
way carsharing network planning problem with relocations and non-linear demand,
Transportation Research Part C: Emerging Technologies, 90, pp. 1–17.

Huang, Y., K. M. Kockelman (2020) Electric vehicle charging station locations: Elastic
demand, station congestion, and network equilibrium, Transportation Research Part
D: Transport and Environment, 78, p. 102179.

Hulse, L. M. (2023) Pedestrians’ perceived vulnerability and observed behaviours re-
lating to crossing and passing interactions with autonomous vehicles, Transporta-
tion Research Part F: Traffic Psychology and Behaviour, 93, pp. 34–54.

Hyland, M. F., H. S. Mahmassani (2017) Taxonomy of shared autonomous vehicle
fleet management problems to inform future transportation mobility, Transportation
Research Record, 2653(1), pp. 26–34.

Joksimovic, D., M. C. Bliemer, P. H. Bovy (2005) Optimal toll design problem in
dynamic traffic networks with joint route and departure time choice, Transportation
Research Record, 1923(1), pp. 61–72.

Jorge, D., G. Molnar, G. H. de Almeida Correia (2015) Trip pricing of one-way station-
based carsharing networks with zone and time of day price variations, Transporta-
tion Research Part B: Methodological, 81, pp. 461–482.

Kashmiri, F. A., H. K. Lo (2022) Routing of autonomous vehicles for system optimal
flows and average travel time equilibrium over time, Transportation Research Part
C: Emerging Technologies, 143, p. 103818.

Katoch, S., S. S. Chauhan, V. Kumar (2021) A review on genetic algorithm: past,
present, and future, Multimedia Tools and Applications, 80(5), pp. 8091–8126.

Kaufman, D. E., J. Nonis, R. L. Smith (1998) A mixed integer linear programming
model for dynamic route guidance, Transportation Research Part B: Methodologi-
cal, 32(6), pp. 431–440.

Ke, Z., S. Qian (2023) Leveraging ride-hailing services for social good: Fleet opti-
mal routing and system optimal pricing, Transportation Research Part C: Emerging
Technologies, 155, p. 104284.
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BPR Bureau of Public Roads
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CT Conventional Taxi
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DE Differential Evolution
DHPC Delft High Performance Computing
DTA Dynamic Traffic Assignment
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FSMVRP Fleet Sizing and Mix Vehicle Routing Problem
GA Genetic Algorithm
HV Human-driven Vehicle
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PGA Parallel Genetic Algorithm
PSO Particle Swarm Optimisation
PV Privately-owned Vehicle
SAE Society of Automotive Engineers
SAV Shared Automated Vehicle
SD Standard Deviation
SO System Optimum
SPM System Profit Mode
TA Traffic Assignment
TNC Transportation Network Company
UE User Equilibrium
ULM Upper-Level Model
UPM User Preference Mode
VOTT Value of Travel Time
VRP Vehicle Routing Problem



Summary

Shared automated vehicles (SAVs) are expected to revolutionise the transportation mo-
bility system and contribute to the sustainable development of urban regions. The
emergence of SAVs is anticipated to replace private cars, providing seamless door-
to-door ride-hailing services that meet people’s mobility needs. However, the intro-
duction of SAVs is a gradual process, and numerous challenges may arise until the
entire transportation system is fully automated. Firstly, there may be a gradual evolu-
tion of the infrastructure from traditional to intelligent transportation systems to better
adapt to automated driving technology. Secondly, the mixed driving situation during
this transition can be problematic. SAVs, functioning like moving robots, will follow
SAV operator’s route guidance to maximise system profits, whereas privately-owned
human-driven vehicles (HVs) tend to operate selfishly to maximize individual utility.
Their driving behaviours will interact with each other. Thirdly, when the entire city
has transformed into a fully intelligent system with SAVs replacing all HVs, the fu-
ture mobility demand for SAVs remains largely unknown, depending on supply side
decisions, such as price and service quality.

The challenges mentioned above will significantly impact the decisions of SAV
service providers. This thesis aims to help SAV service providers in making the most
profitable planning decisions (fleet size, pricing, initial fleet distribution, service qual-
ity) and operational decisions (trip assignment, vehicle routing, parking, and reloca-
tion). These decisions will be tailored to various stages, ranging from a mixed driving
environment to a fully automated driving environment, addressing each of the afore-
mentioned challenges step by step.

We begin by studying the heterogeneous fleet sizing problem during a transitional
stage in which certain city zones may be dedicated to automated vehicles (AVs), sup-
ported by a fully intelligent traffic management system. We propose a strategic flow-
based vehicle routing model to determine the optimal fleet sizes of automated and
conventional taxis, influenced by the gradually increasing coverage of the AVs-only
dedicated area. Traffic congestion is considered through flow-dependent travel times.
We test two taxi company service regimes: the User Preference Mode (UPM) and the
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System Profit Mode (SPM). In the UPM, passengers can select their preferred vehicle
type based on personal preferences. In the SPM, the taxi company manages vehicle
assignments to maximize system profits.

To capture the mixed driving behaviours of centrally dispatched automated and
conventional taxis, and privately-owned HVs and their interactions with infrastruc-
ture, we introduce a bi-level framework. The upper level decides the fleet sizes, while
the lower level models the routing behaviours of centrally dispatched automated and
conventional taxis (following system optimum) and HVs (following user equilibrium).
We solve the proposed bi-level model using a parallel genetic algorithm with a tailored
iterative algorithm to solve the lower-level routing model.

Next, we envision a fully automated scenario where SAVs replace all private cars,
offering public on-demand mobility services. To model future mode choices between
SAVs and active modes of transport, such as bicycles, across travellers in different
income classes, we employ a binary logit model. Additionally, we develop a mixed-
integer non-linear programming model that considers congestion effects and travellers’
mode choice. We explore two types of trip acceptance mechanisms—mandatory and
non-mandatory—that affect travellers’ willingness to use SAV services. The complex
non-linear nature of the model is addressed using reformulation techniques, outer-inner
approximation methods, and a breakpoint determination algorithm.

Finally, we explore various pricing strategies: base fare plus distance-based fare,
distance-based fare only, and income class-based fare. The developed models are non-
linear systems that present significant challenges during the solving process. To ad-
dress the model’s complex nonlinearities, we developed three distinct solution algo-
rithms, employing linearisation techniques, hybrid metaheuristic-based optimisation,
and hybrid Bayesian optimisation-based methods.

In summary, this thesis provides mathematical models that enable SAV service
providers to make optimal planning and operational decisions, facing the promising
transition from a mixed driving environment to a fully automated environment. We
have proposed various solution algorithms to address these models. By applying these
methods to a case study in Delft, the Netherlands, we offer valuable managerial in-
sights for SAV service operators.



Samenvatting

Zelfrijdende deelauto’s (SAV’s: shared automated vehicles) worden gezien als een
revolutie voor het mobiliteitssysteem en worden verwacht bij te dragen aan de ver-
duurzaming van stedelijke regio’s. Particuliere auto’s zullen worden vervangen door
SAV’s die naadloze deur-tot-deur-ritdiensten leveren om aan de mobiliteitsbehoeften
van mensen te voldoen. De introductie van SAV’s is echter een geleidelijk proces en er
kunnen vele uitdagingen ontstaan totdat het hele vervoerssysteem volledig geautomati-
seerd is. Ten eerste kan een geleidelijke evolutie van de infrastructuur van traditionele
naar intelligente transportsystemen nodig zijn om de geautomatiseerde rijtechnologie
beter te kunnen accommoderen. Ten tweede kan de gemengde rijsituatie tijdens deze
overgang problematisch zijn. SAV’s, die functioneren als bewegende robots, zullen de
winst van het systeem maximaliseren door de routeaanwijzingen van de SAV operator
te volgen, terwijl door mensen bestuurde particuliere voertuigen (HV’s: human-driven
vehicles) geneigd zijn om zelfzuchtig te handelen om zo hun individuele nut te maxi-
maliseren. Er zal interactie zijn tussen het rijgedrag van beide. Ten derde, wanneer
de hele stad is getransformeerd naar een volledig intelligent systeem met SAV’s die
alle HV’s vervangen, blijft de toekomstige mobiliteitsvraag voor SAV’s grotendeels
onbekend. Dit hangt sterk af van beslissingen aan de aanbodkant, zoals prijs en servi-
cekwaliteit.

De genoemde uitdagingen zullen de beslissingen van SAV-dienstverleners aanzien-
lijk beı̈nvloeden. Het doel van dit proefschrift is om SAV-dienstverleners te helpen
bij het maken van de meest winstgevende planningsbeslissingen (vlootgrootte, prijs-
stelling, initiële vlootverdeling, servicekwaliteit) en operationele beslissingen (rittoe-
wijzing, voertuigroutering, parkeren en relocatie). Deze beslissingen zullen worden
afgestemd op verschillende stadia, variërend van een gemengde rijomgeving tot een
volledig geautomatiseerde rijomgeving, waarbij elk van de genoemde uitdagingen stap
voor stap aan bod komen.

We beginnen met het bepalen van de grootte van heterogene vloten tijdens een
overgangsfase waarin bepaalde stadszones mogelijk alleen toegankelijk zijn voor ge-
automatiseerde voertuigen (AV’s: automated vehicles), ondersteund door een volledig
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intelligent verkeersbeheersysteem. We formuleren een strategisch stroom gebaseerd
voertuigrouteringsmodel om de optimale vlootgroottes van geautomatiseerde en con-
ventionele taxi’ te bepalen, beı̈nvloed door de geleidelijk toenemende dekking van het
gebied dat alleen toegankelijk is voor AV’s. Hierin worden verkeersopstoppingen mee-
genomen door de reistijd afhankelijk te maken van de verkeersstroom. We testen twee
taxiservice-regimes: de modus waar gebruikersvoorkeur wordt meegenomen (UPM:
User Preference Mode) en de modus die zich richt op systeemwinst (SPM: System
Profit Mode). In de UPM kunnen passagiers hun voorkeur voor een voertuigtype aan-
geven op basis van persoonlijke voorkeuren. In de SPM beheert het taxibedrijf de
toewijzing van voertuigen om de systeemwinst te maximaliseren.

Om het gemengde rijgedrag van centraal gestuurde geautomatiseerde en conventio-
nele taxi’s en particuliere HV’s en hun interacties met de infrastructuur mee te nemen,
introduceren we een kader op twee niveaus. Het bovenste niveau bepaalt de vloot-
grootte, terwijl het lagere niveau het routegedrag modelleert van centraal gestuurde
geautomatiseerde en conventionele taxi’s (volgens het systeemoptimum) en HV’s (vol-
gens het gebruikersevenwicht). We lossen het voorgestelde tweelaagse model op met
een parallel genetisch algoritme met een op maat gemaakt iteratief algoritme voor het
oplossen van het routeringsmodel op het lagere niveau. Vervolgens bekijken we een
volledig geautomatiseerd scenario waarbij alle particuliere voertuigen zijn vervangen
door SAV’s die openbare on-demand mobiliteitsdiensten aanbieden. Om toekomstige
keuzes van vervoersmiddel tussen SAV’s en actieve vervoerswijzen, zoals fietsen, te
modelleren voor reizigers in verschillende inkomensklassen, gebruiken we een binair
logit model. Daarnaast ontwikkelen we een niet-lineair gemengd geheeltallig program-
meermodel dat rekening houdt met de effecten van verkeersopstoppingen en de keuze
van de vervoerswijze van reizigers. We verkennen twee soorten acceptatiemechanis-
men - verplicht en niet-verplicht - die de bereidheid van reizigers om SAV-diensten te
gebruiken beı̈nvloeden. De complexe niet-lineaire aard van het model wordt verhol-
pen met behulp van herformuleringstechnieken, buiten-binnen benaderingsmethoden
en een algoritme voor het bepalen van breekpunten.

Tot slot onderzoeken we verschillende prijsstrategieën: starttarief plus kilometer-
tarief, alleen kilometertarief en inkomensklasse-gebaseerd tarief. De ontwikkelde mo-
dellen zijn niet-lineaire systemen die erg uitdagend zijn om op te lossen. Om de com-
plexe niet-lineariteiten van het model aan te pakken, hebben we drie verschillende op-
lossingsalgoritmen ontwikkeld, waarbij linearisatietechnieken, hybride metaheuristiek-
gebaseerde optimalisatie en hybride Bayesiaanse optimalisatiemethoden worden ge-
bruikt.

Samenvattend worden er in dit proefschrift wiskundige modellen geformuleerd die
SAV-dienstverleners in staat stellen optimale plannings- en operationele beslissingen te
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maken tijdens de veelbelovende overgang van een gemengde rijomgeving naar een vol-
ledig geautomatiseerde omgeving. Verschillende oplossingsalgoritmen worden voor-
gesteld om deze modellen op te lossen. Door deze methoden toe te passen op een
casestudy in Delft (Nederland), bieden we waardevolle managementinzichten voor ex-
ploitanten van SAV-services.
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