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SUMMARY

Spreading processes are ubiquitous in nature and society, from the diffusion of infor-
mation in social platforms to the spread of diseases within populations. Many real-
world systems can be represented as networks, where a piece of information or a dis-
ease spreads along links connecting nodes. Different nodes and links often differ in their
network properties and play distinct roles in a spreading process. Based on network
properties of nodes or links, practitioners may be interested in identifying key nodes as
the seed nodes to maximally diffuse a piece of information, or removing specific links to
mitigate the spreading. In this thesis, we study the roles of a node or a link in a spreading
process from three different perspectives and investigate how these roles relate to the
properties of nodes and links within the underlying network.

We first explore how the network properties of a node can be used to predict the
spreading influence of the node, defined as the average number of nodes that are ul-
timately infected when this node is the only seed node. Previous studies have shown
that combining node properties derived from local and global topological information
can better predict nodal influence than using a single metric. In Chapter 2, we investi-
gate whether using relatively local information is sufficient for the prediction. To address
this question, we define an iterative metric set by leveraging the iterative process used
to derive classical nodal centralities like eigenvector centrality. The iterative metric set
progressively incorporates more global information and is used as the feature set in a
regression model to predict nodal spreading influence. The iterative metric set is then
used as the feature set in a regression model to predict the spreading influence of a node.
We find that the model using the iterative metric set that includes relatively local infor-
mation achieves comparable prediction quality with the method that includes both local
and global information, in various networks.

A spreading process can be mitigated by blocking social contacts, i.e., time-specific
interactions. In Chapter 3, we investigate how the network properties of a contact are as-
sociated with the mitigation effect when the contact is blocked. We develop probabilistic
contact blocking strategies, which remove contacts (temporal links) based on their prop-
erties in a temporal network, to mitigate the spread of a Susceptible-Infected-Recovered
spreading process. The removal probability of a contact depends on a given central-
ity metric of the corresponding link in the time-aggregated network and the occurring
time of the contact. We propose diverse link centrality metrics, and each centrality met-
ric leads to a unique contact blocking strategy. Our results indicate that the spread of
the epidemic is most effectively mitigated when contacts between node pairs that have
fewer contacts and contacts that occur earlier in time are more likely to be removed.

The role of a link in a spreading process can also be reflected by the extent to which
the link is used in the process. Many real-world systems may involve interactions among
groups of more than two individuals and can therefore be represented as temporal higher-
order networks. Chapter 4 explores the Susceptible-Infected threshold spreading pro-

vii



viii SUMMARY

cess unfolding on temporal higher-order networks with two objectives: (1) to under-
stand the contribution of each hyperlink to the spreading process, defined as the aver-
age number of nodes that are directly infected via the activation of the hyperlink starting
from an arbitrary seed node, and (2) to investigate hyperlinks with what network proper-
ties tend to contribute more to the spreading process. This understanding is crucial for
developing effective strategies to mitigate a spreading process. Given a temporal higher-
order network, we propose to construct a weighted higher-order network, the so-called
diffusion backbone, where the weight of each hyperlink denotes its contribution to the
spreading process. We then systematically design centrality metrics for hyperlinks in a
temporal higher-order network, where each centrality metric captures a specific prop-
erty of the hyperlink within a temporal higher-order network and is used to estimate the
ranking of hyperlinks by their weights in the backbone. We find and explain why certain
centrality metrics can better estimate the contributions of hyperlinks under different pa-
rameters of the spreading process.

The last chapter reflects on the insights of this thesis and discusses possible future
directions related to our research.
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1.1. BACKGROUND
Spreading processes are ubiquitous in various systems of nature and society. Daily ex-
amples include diffusion of information among individuals and spread of infectious
diseases within populations. Advances in information technology have facilitated effi-
cient communication, enabling people to easily share and exchange information online.
However, alongside the benefits, we have also witnessed the spread of misinformation
on an unprecedented scale. Empirical studies have shown that false information tends
to spread faster than true information on social media platforms like Twitter [1]. The
spread of online misinformation has been found to influence political elections [2] and
harm public health during pandemics [3]. Similarly, while the advances in transporta-
tion have improved mobility, they have also facilitated the spread of viruses, increasing
the society’s susceptibility to infectious diseases [4, 5]. These emerging challenges high-
light the importance of understanding how spreading processes unfold in the real-world
systems, as this understanding is crucial for not only suppressing the spread of misinfor-
mation or disease, but also for maximizing the spread of useful information [6].

Many real-world systems consist of components that may interact with each other.
Such interactions between components in a system can be represented as a network,
where nodes stand for components and links connecting nodes represent interactions
among components. Networks serve as substrates for spreading processes, where a
piece of information or the disease spreads along links (interactions) between nodes (in-
dividuals). Given that the spread of information (like a news or post) is akin to the dis-
ease spread, the spread of information or disease can be modelled by epidemic spread-
ing models [7] such as susceptible-infected (SI) model and susceptible-infected-recovered
(SIR) model. In the SI model, each node is in one of the two possible states at any time:
susceptible or infected. A susceptible node can be infected by each of its infected neigh-
boring nodes independently with an infection probability. In the SIR model, in addition
to the infection process, each infected node can recover with a recovery probability, and
recovered nodes no longer spread the disease. Information diffusion can occur in a simi-
lar way. For example, consider the diffusion of a piece of news in a social network. If per-
son X initially knows the news (infected), he/she possibly shares it with his/her friends
(susceptible) who have not yet heard it. Those who become informed (infected) may
then share the news with their own friends who remain uninformed. Moreover, individ-
uals who already know the news might lose interest (recovered) and stop spreading it for
some reasons. Many other spreading processes, e.g., the adoption of behaviour and the
spread of failures that can lead to catastrophic system collapse, can be modelled using
epidemic models.

A spreading process is intrinsically affected by the underlying network structure . Un-
derstanding the role of the network in spreading processes is one of the key challenges
in studying spreading processes. Initial studies assumed networks as static networks,
where nodes and links between nodes remain unchanged over time. Static networks
are useful for representing systems that have a constant topology and only involve pair-
wise interactions. This limits them in their capability to describe real-world systems in
a broad sense. Firstly, many systems are rarely static but exhibit time-varying network
topologies. A typical example is a human face-to-face contact network, where two nodes
(individuals) only contact (interact) with each other at specific time periods. Such net-
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works can be represented as temporal networks, where links between pairs of nodes are
activated and deactivated over time [8]. Unlike static networks, spreading processes on
temporal networks can be intrinsically different. For example, if node X contacts node
Y at time t1 and node Y contacts node Z at time t2, the spread of information from X
to Z is only possible if t1 • t2. Secondly, many real-world systems involve interactions
among more than two nodes [9], e.g., individuals often interact in groups, and scientific
collaboration may include multiple researchers. Such systems can be represented as a
temporal higher-order network, where higher-order links, also called hyperlinks, are ac-
tivated and deactivated over time. In temporal higher-order networks, a hyperlink can
involve a group of nodes of an arbitrary size.

Large efforts have been made to explore how the properties of networks influence the
spreading process unfolding on them. In static networks, the distribution of node degree
(the number of connections a node has) has been shown to affect a spreading process,
such as the reproduction number, which reflects the potential for a disease to spread
within a population. In temporal networks, the distribution of inter-event times, which
is the waiting time between two consecutive link activations, can influence the speed of
epidemic spreading. The temporality of temporal higher-order networks was found to
impact the onset of endemic state in epidemic processes [10]. These insights into how
properties of an entire network influence the spreading process are particularly valuable
for network design aimed at specific objectives, such as improving the efficiency of in-
formation transmission in communication systems or preventing catastrophic system
collapse in infrastructure networks.

1.2. THESIS SCOPE AND CONTRIBUTION
In addition to understanding the impact of network-level properties on a spreading pro-
cess, it is of practical value to unravel the roles of individual nodes and links. On the one
hand, in practical scenarios, there is often a need to facilitate or suppress a spreading
process on a given network. For example, to maximize the diffusion of useful content,
one might aim to select key nodes as seed nodes for the spreading process. Conversely,
to mitigate the spread of diseases or misinformation, the objective may be to immunize
specific nodes or block particular links. The central challenge is to strategically select key
nodes or links based on their properties in the network to achieve the desired outcome.
On the other hand, since nodes and links can differ significantly in their properties, it
is crucial to understand based on what properties some nodes or links contribute more
in the transmission of information or disease than others. This understanding helps in
designing effective strategies to either facilitate or suppress the spreading. The focus of
this thesis is to understand these roles of nodes and links in a spreading process and how
the roles are associated with the properties of nodes and links in the underlying network.

Firstly, we focus on the prediction of spreading influence of a node based on the
properties of the node in the underlying static network. The spreading influence of a
node is defined as the average number of nodes that eventually get infected in the SIR
process when the node is the only seed node. Initial studies on the node influence pre-
diction problem aimed to identify the most influential nodes among all nodes based on
the network topology. These studies proposed to rank nodes by a node centrality metric
such as node degree, eigenvector centrality [11], coreness [12, 13], among others [14].
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The highest-ranked nodes are then identified as the most influential. A node centrality
metric captures a certain topological feature of a node in the network. For example, node
degree encodes the local information (1-hop neighborhood) of a node, while other cen-
trality metrics like eigenvector centrality encode the global information of a node in the
network. It has been found that no single centrality metric consistently outperforms all
other centrality metrics across diverse types of networks. Subsequent studies have pro-
posed methods to integrate local and global centralities or their rankings, these methods
usually exhibit better performance than merely using a local or global centrality. Lo-
cal and global centrality metrics have been shown to complement each other, achieving
universally good performance in locating the most influential nodes across various real-
world networks [15]. However, global centrality metrics often have high computational
complexity, limiting their application to large-scale networks. Moreover, the non-trivial
correlation among different centrality metrics [16] makes it difficult to know to what ex-
tent global nodal properties are needed to estimate nodal spreading influence. In Chap-
ter 2, we explore the following fundamental question: Can the spreading influence of a
node be effectively estimated using relatively local information, i.e., topological informa-
tion derived from the neighborhood within a small hop count from the target node?

In Chapter 3, we focus on a more realistic problem on how to mitigate the epidemic
spreading process on a temporal network by strategically selecting contacts to block. The
motivation is that the spread of epidemics or information can be mitigated via reducing
physical contacts in reality. For instance, measures implemented during the Covid-19
pandemic—such as curfews, remote work, and social distancing—aim to limit physical
interactions. Recent work [17] proposed link removal strategies based on link properties
in the time-aggregated network of the temporal network to suppress epidemic outbreaks
in the SI process on a temporal network. Each of the proposed strategies blocks a portion
of links with a certain property in the aggregated network, thus all contacts associated
with the selected links are removed from the temporal network. With such a framework,
it was revealed that links with different properties in the aggregated network play differ-
ent roles in mitigating the spreading process. However, this study has several limitations.
Firstly, it is often impractical to block all contacts associated with selected links in real-
world scenarios. Secondly, the properties based on the aggregated network ignore the
temporal information of links in the temporal network, which has a crucial impact on
the spreading process on temporal networks. Thirdly, the study only used the outbreak
size as measure of the mitigation effect. These limitations motivate us to investigate how
to suppress the epidemic spreading via blocking contacts. In Chapter 3, we broaden our
investigation by systematically exploring the following question: Given a temporal net-
work, how can we effectively mitigate the spreading process by selecting the contacts to
block?

The role of a link in a spreading process can also be reflected by how likely the link is
used in the spreading process. Understanding such a role of links is crucial to addressing
challenging optimization problems, such as determining which node pairs or tempo-
ral contacts should be stimulated to maximize the prevalence of information spreading.
Zhan et al. [18] studied the probability of a link appearing in the spreading trajectories of
a spreading process on a pairwise temporal network, and investigated the relationship
between this probability of a link and properties of the link within the temporal network.



1.3. PUBLICATION RELATED TO THIS THESIS

1

5

They found that links that activate for a large number of times and activate early in time
tend to be have a high probability to appear in spreading trajectories. Contreras et al.
[19] considered spreading processes on higher-order networks and found that the pa-
rameters of the spreading process affect the probability that a node is directly infected
by another node. However, their study is limited to higher-order static networks. The un-
derstanding of the role of a hyperlink in the spreading process on temporal higher-order
networks is still unknown. This understanding is essential for the design of strategies to
mitigate a spreading process via incentivizing the activity of critical groups. In Chap-
ter 4, we investigate the contribution of a hyperlink, defined as the number of nodes
directly infected through the activations of the hyperlink, in a spreading process on tem-
poral higher-order networks, and explore the question: which kind of hyperlinks, i.e.,
hyperlinks with what specific properties in a temporal higher-order network, contribute
more to the spreading process?

1.3. PUBLICATION RELATED TO THIS THESIS
The following papers are completed by the author of this thesis while pursuing the Ph.D.
degree at the Delft University of Technology.

1. S. Zhang, A. Hanjalic, and H. Wang, Predicting nodal influence via local iterative
metrics, Scientific Reports 14, 4929 (2024). [Chapter 2]

2. S. Zhang, X. Zhao, and H. Wang, Mitigate SIR epidemic spreading via contact block-
ing in temporal networks, Applied Network Science 7, 2 (2022). [Chapter 3]

3. S. Zhang, A. Ceria ,and H. Wang, Diffusion backbone of temporal higher-order net-
works, Communication Physics (submitted) [Chapter 4].

1.4. HOW TO READ THIS THESIS
Chapters 2, 3, and 4 of this thesis comprise original publications. The corresponding
publication references can be found in the footnote at the beginning of each chapter.
Each chapter is a stand-alone work and can be read without reference to previous chap-
ters. The content length and depth may vary across the chapters as we published the
corresponding papers in different scientific journals or conferences.
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Nodal spreading influence is the capability of a node to activate the rest of the net-
work when it is the seed of spreading. Combining nodal properties (centrality metrics)
derived from local and global topological information respectively has been shown to
better predict nodal influence than using a single metric. In this chapter, we investigate
to what extent local and global topological information around a node contributes to
the prediction of nodal influence and whether relatively local information is sufficient
for the prediction. We show that by leveraging the iterative process used to derive a clas-
sical nodal centrality such as eigenvector centrality, we can define an iterative metric set
that progressively incorporates more global information around the node. We propose
to predict nodal influence using an iterative metric set that consists of an iterative met-
ric from order 1 to K produced in an iterative process, encoding gradually more global
information as K increases. Three iterative metrics are considered, which converge to
three classical node centrality metrics, respectively. In various real-world networks and
synthetic networks with community structures, we find that the prediction quality of
each iterative based model converges to its optimal when the metric of relatively low or-
ders (K » 4) are included and increases only marginally when further increasing K . This
fast convergence of prediction quality with K is further explained by analyzing the cor-
relation between the iterative metric and nodal influence, the convergence rate of each
iterative process, and network properties. The prediction quality of the best performing
iterative metric set with K ˘ 4 is comparable with the benchmark method that combines
seven centrality metrics: their prediction quality ratio is within the range [91%,106%]
across all three quality measures and networks. In two spatially embedded networks
with an extremely large diameter, however, iterative metric of higher orders, thus a large
K , is needed to achieve comparable prediction quality to the benchmark.

2.1. INTRODUCTION
Spreading processes are ubiquitous in various systems of nature and society. Exam-
ples include the spreading of epidemics, the propagation of information, and cascade
of failures. Complex networks, usually considered as the underlying structure of such
systems, provide the substrate upon which the spreading process unfolds via links con-
necting nodes. The spreading influence of a node represents the extent to which the
node, where the spread originates, can eventually activate other nodes in the network.
For a given spreading process, the spreading influence of a node is defined as the ex-
pected outbreak size when the spreading process starts from the node, also called the
seed node. Due to the topological heterogeneity of nodes in many real networks [1],
some nodes may have significantly higher spreading influence and are evidently more
influential than the other nodes [2–4]. Identifying these influential nodes and predicting
their spreading influence is crucial for controlling the spread of epidemics [5, 6] or ru-
mors [7, 8], promoting strategic marketing [9–11], quantifying the impact of researchers
and publications [12], and more [13–15].

Two generic influence prediction problems have been addressed in prior research.
The first involves identifying the most influential nodes among all nodes based on the
given network topology. To solve this problem, previous studies have proposed to rank
nodes by a single nodal topological metric, so-called centrality metric [16–18], which en-
codes either local [19, 20] or global [16, 21] topological information around a given node.
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The highest-ranked nodes are then identified as the most influential ones. Nonethe-
less, these prior work suggests that no single centrality metric can outperform all other
centralities for different epidemic parameters and in diverse types of networks, since a
centrality metric only captures a certain topological feature of a node. It has been shown
that nodal degree, i.e., number of 1-hop neighbors, is more (less) predictive than eigen-
vector centrality [22] when the spreading rate is small (large) [6, 23]. The coreness better
predicts the top spreaders than nodal degree in Susceptible-Infected-Recovered model
below epidemic threshold. Further studies put forward methods to integrate local and
global centralities or their rankings. Zhe Li et al. [24] used the sum of normalized degree,
eigenvector centrality, and coreness as the mass of a node in a gravity model to derive a
new nodal metric. Andrea Madotto et al. [25] aggregated the ranking lists by local and
global node centralities to produce a new ranking list based on the correlations between
the rankings. These methods usually exhibit better performance than merely using a
local or global centrality.

In many practical scenarios, it is possible to observe or derive the spreading influ-
ences of a small fraction of nodes. For example, the average number of retweets of con-
tent posted by a node can be used as an approximation of the spreading influence of
the node [6, 26]. This motivates the second influence prediction problem: identify the
most influential nodes given the network topology and the influence of a small frac-
tion of nodes. Bucur [27] recently proposed to train a statistical model on the set of
nodes whose spreading influences are known to classify the rest of nodes into binary
classes, representing whether a node is among the top (e.g., top 10%) influential ones
or not. The statistical model maps the relation between the class of a node in spreading
influence and centrality metrics including both local centrality metrics like degree and
global centrality metrics like betweenness [28] and eigenvector centrality. These central-
ity metrics were shown to be able to complement each other to achieve universally good
performance in locating the most influential nodes across various real-world networks.
However, global centrality metrics have a high computational complexity, which limits
their application to large-scale networks. Moreover, the non-trivial correlation among
different metrics makes it difficult to interpret to what extent global nodal properties are
needed to estimate nodal spreading influence.

To bridge this gap, we will systematically explore two foundational questions: how
local and global topological information around a node contribute to the prediction of
the spreading influence of this node, and whether relatively local information, i.e., topo-
logical information derived from the neighborhood within a small hopcount from a tar-
get node, can predict its nodal spreading influence effectively. The general prediction
task is considered: given the topology of a network and the spreading influences of a
fraction of nodes, how to predict the spreading influences of the other nodes in the net-
work, beyond their ranking. To solve the prediction task, a node-level regression model
is trained on the set of nodes whose spreading influences are known and used to predict
the influences of the remaining nodes. To understand how local and global topological
information contribute to the prediction, we design the input of the regression model
based on nodal properties as follows. We show that by leveraging the iterative process
used to derive a classical node centrality such as eigenvector centrality, we can define
an iterative metric that gradually encodes more global information as the order grows.
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Then, an iterative metric set that consists of an iterative metric from order 1 to order K is
used as input features of the regression model. For example, the number of k-hop walks
originate from a node, which is determined by the k-hop neighborhood of the node, can
be derived in an iterative process starting from k ˘ 1. The resultant iterative metric set
is composed of the iterative metric (the number k-hop walks) with order k 2 [1,K ] after
K iterations. The benefits of using an iterative metric set to predict nodal influence are
as following. Firstly, it allows us to explore to what extent global network information is
needed to estimate the nodal influence, i.e., is K necessarily large for accurate predic-
tion? Second, it enables us to identify the prediction method with low computational
cost, that is, the regression model with an iterative metric set of small K . Moreover, in
practical applications, one has the flexibility to choose an appropriate K to achieve a
well-balanced trade-off between prediction accuracy and computational efficiency. The
intuition is illustrated in Figure 2.1, which shows a network example of 1000 nodes with
community structure generated by Lancichinetti–Fortunato–Radicchi model [29]. The
red-colored nodes are the top 10% nodes when nodes are ranked by spreading influence
(top left), eigenvector centrality (EC, top middle, which corresponds the component of
the eigenvector corresponds to the largest eigenvalue of the adjacency matrix), degree
(DC, top right), number of 2-hop (bottom left), 3-hop (bottom middle) 4-hop (bottom
right) walks originating from a node, respectively. The example suggests that the num-
ber of 2-, 3- and 4-hop walks possibly reflect nodal spreading influence better than the
global metric (eigenvector centrality). Furthermore, it has been observed and partially
proved in previous work that a centrality metric like betweenness with a high computa-
tional complexity is correlated with local metrics derived from a low order neighborhood
[18, 30]. Hence, global network information, i.e., large K , is not necessarily needed in
nodal influence prediction.

In this work, we consider three iterative metrics, which converge, respectively to
three global node centrality metrics: eigenvector centrality, PageRank centrality [31],
and H index of a node [32]. The computation of each iterative metric set can be done
in O (K ¢ jE j) time, where jE j is the number of links in the network. Based on each iter-
ative metric set, a statistical regression model is built and trained to predict nodal in-
fluence. We evaluate the prediction quality of the corresponding three regression mod-
els, in comparison with a benchmark [27], i.e., the regression model that uses 7 nodal
centrality metrics, in both real-world networks and synthetic networks with commu-
nity structure. We find that in almost all networks, an iterative metric set with K » 4
is able to accurately predict nodal spreading influence, and the prediction quality in-
creases marginally when more global metrics are included as K grows. This suggests the
low computational complexity of our iterative metric based prediction methods. Addi-
tionally, the best performing iterative metric based model with K » 4 performs as well
as the benchmark model, which has higher computational cost due to the computation
of global centrality metrics. An exception holds for two infrastructure networks, i.e., US
power grid and Chicago regional road network, which are spatially embedded networks
and have an extremely large diameter (¨ 40). In these two networks, nearly optimal pre-
diction quality is achieved only when using the iterative metric set that includes metrics
of large orders, thus when K is large. Hence, the proposed iterative metric method uti-
lizing relatively local network information could predict nodal influence as well as the
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benchmark in networks with the small-world property and has a lower computational
complexity.

This chapter is organized as follows. In Section 2.2, we introduce the definition of
nodal spreading influence and iterative metrics, and regression models to predict nodal
influence. Section 2.3 evaluates the performance of the proposed influence predication
methods in both real-world networks and synthetic networks with community structure.
Section 2.4 summarizes our findings and discusses limitations and potential extensions
of our work.

Figure 2.1: Location of top ranked nodes in a network generated by LFR model. The red-colored
nodes are the top 10% nodes when nodes are ranked by spread size (top left), eigenvector centrality
(EC, top middle), degree centrality (DC, top right), 2-hop walk counts (bottom left), 3-hop walk
counts (bottom middle), and 4-hop walk counts (bottom right), respectively.

2.2. METHODS
In this section, we present the definition of nodal spreading influence (Section 2.2.1), fol-
lowed by the definition of iterative metrics (Section 2.2.2). We then describe the regres-
sion model that uses an iterative metric set to predict nodal spreading influence (Section
2.2.3).

2.2.1. NODAL SPREADING INFLUENCE
We consider the continuous-time Susceptible-Infected-Recovered (SIR) spreading pro-
cess on a static network [3, 33]. At any time, each node can be in one of three possible
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states: susceptible, infected, or recovered. In the beginning, one seed node gets infected,
while the rest are susceptible. A susceptible node gets infected by each of its infected
neighbors at an infection rate fl, and each infected node recovers at a recovery rate °.
Both the infection and recovery processes are independent Poisson processes. In the
steady state, all nodes are either susceptible or recovered. The ratio ‚ ˘ fl/° is called the
effective infection rate. Without loss of generality, we assume the recovery rate ° ˘ 1,
thus ‚ ˘ fl. For a given network, an epidemic threshold ‚c exists. When ‚ ¨ ‚c , a non-
zero fraction of recovered nodes exist in the stable state. When ‚ ˙ ‚c , the epidemic dies
out. The number of recovered nodes in the steady state, or equivalently, the number of
nodes that have ever been infected is called the outbreak size.

The spreading influence of a node is defined as the average outbreak size when the
node is chosen as the seed node. We derive the influence of a node as the average out-
break size over r ˘ 104 realizations of the SIR spreading process on a given network.
When the effective infection rate ‚ ¿ ‚c or when ‚ À ‚c , nodes tend to have similar
influence. We focus on predicting influence when the effective infection rate is around
the epidemic threshold, e.g., ‚ ˘ 0.5‚c ,‚c 1.5‚c ,2‚c . This is when nodes differ evidently
in influence, and influence prediction is crucial. We estimate the epidemic threshold ‚c
using the numerical approach introduced in [34]. Specifically, referring to ‰ as a random
variable denoting the influence of a random node in the network, we consider the vari-
ability

p
h‰2i¡h‰i2/h‰i as a function of ‚. The epidemic threshold ‚c is then the value

of ‚ that maximizes the variability.

2.2.2. ITERATIVE METRICS
Given an undirected network G ˘ (V ,E), where V is the set of nodes and E is the set of
links between nodes in V , the network can be represented by the adjacency matrix A,
whose element Ai j ˘ 1 if there is a link between node i and j , otherwise Ai j ˘ 0. Various
node centrality metrics have been proposed to measure the topological importance of a
node, such as eigenvector centrality, PageRank, and coreness [32]. For a given centrality
metric, the centralities of all nodes can be denoted by a vector M , where the entry Mi
represents the centrality of node i . The iterative process used to derive the correspond-
ing iterative metric set starts with an initial metric vector M (0) and updates the metric
vector based on a specific rule M (k) ˘ f (M (k¡1)). Eventually, this process converges to
the target centrality metric M . We refer to the derived metric vectors {M (k),k ˘ 1,2, ...K }
as the iterative metric set.

In this work, we consider three iterative processes that converge to three global cen-
trality metrics: eigenvector centrality, PageRank centrality, and coreness of a node, re-
spectively. Three different iterative metrics are derived using these processes.

• Normalized Walk Count (NWC). We adopt the power iteration process for the com-
putation of eigenvector centrality to derive the NWC iterative metric. The cen-
trality vector is initialized as the normalized all-one vector w (0) ˘ u/

p
N , where

u is the all-one vector, and is updated iteratively following the updating equation
w (k) ˘ Aw (k¡1)/jjAw (k¡1)jj. The k-th order NWC follows w (k) ˘ Ak u/jjAk ujj. Its
element w (k)

i represents the normalized number of distinct k-hop walks starting
from node i and can be derived from the neighborhood within k hops of the node
i . As k increases, w (k) converges to the eigenvector centrality w . The rate of con-
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vergence is determined by the ratio of the largest eigenvalue ‚1(A) and the second
largest eigenvalue ‚2(A) of the adjacency matrix A of the network. The conver-
gence rate is higher when j‚2(A)j

j‚1(A)j is smaller [35].

• Visiting Probability (VP) is derived using the iteration process for the computa-
tion of PageRank centrality [31]. The metric vector is initiated as the normalized
all-one vector, p(0) ˘ u/N , and updated iteratively as p(k)

i ˘ fi
PN

j ˘1 A j i p(k¡1)
j /d j ¯

(1¡fi)/N , where d j is the degree of node j and the teleportation parameter fi is set
to 0.85, which is a common choice for calculating the PageRank centrality [36]. As
k increases, p(k)

i converges to PageRank centrality. The updating equation can be

formulated in matrix form: p(k) ˘ Gp(k¡1), where G ˘ fiAT D¡1 ¯ 1¡fi
N uuT , matrix

D is a diagonal matrix with Di i ˘
P

j Ai j . Since matrix G is a stochastic matrix, the
largest eigenvalue ‚1(G) ˘ 1. The rate of convergence is determined by the sec-
ond largest eigenvalue ‚2(G) of the matrix G . The smaller j‚2(G)j is, the faster the
convergence is [35]. The iterative process can be interpreted as a random walk:
the walker starts at a randomly selected node. At each time step, with probability
fi it moves to a random neighbor of the current visiting node, and with probabil-
ity 1 ¡ fi it jumps to a node that is randomly selected from the network. The k-th
order iterative metric p(k)

i of a node i is the probability that node i is visited by
the random walker at the k-th hop. Since the information of neighbors’ degree is
needed in each iteration step, p(1)

i actually encodes 2-hop neighbors’ information.
Similarly, the (k¯1)-hop neighborhood information of a node i is needed to derive
p(k)

i .

• H index (HI) [32]. The 1-st order H index is defined as the degree of a node, i.e.
h(1)

i ˘ di . The k-th order H index of node i can be derived as h(k)
i ˘ H [h(k¡1)

j1
,h(k¡1)

j2
, ...,h(k¡1)

jdi
],

where j1, ..., jdi are neighbors of node i and H is an operator that returns an in-

teger. Specifically, h(k)
i is the maximum integer such that at least h(k)

i elements of

[h(k¡1)
j1

,h(k¡1)
j2

, ...,h(k¡1)
jdi

] are no less than H I (k)
i . It has been proved that h(k) will

converge to the coreness [16, 37] as k increases.

The iterative rules f in the three iterative processes only involve operations among a
node’s 1-hop neighbors. As a result, the metric vector M (k) after one step iteration en-
codes information about the neighborhood one hop further than M (k¡1) (see Section
2.5.1 for a more detailed explanation). Given an iterative process, the obtained metric
set {M (1)

i ,M (2)
i , ...,M (K )

i } will be used to predict the influence of node i using the regres-
sion model described in Nodal influence prediction method subsection. The parameter
K controls the scope of information around a node encoded in the iterative metric set
{M (1)

i ,M (2)
i , ...,M (K )

i }.

2.2.3. NODAL INFLUENCE PREDICTION METHOD
We assume two key types of information are given to predict nodal influence. Firstly,
the network topology is known. Secondly, the influences of a small fraction of nodes are
available. In practical scenarios, these influences can often be estimated from real-world
diffusion data within social media networks. Our objective is to predict the influences of
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the remaining nodes in the network. We approach the prediction of nodal influence as a
node-level regression problem. Specifically, given a static network G ˘ (V ,E) represented
by its adjacency matrix A and the spreading influences of a fraction q of nodes, which
is randomly selected and denoted as Sq , we aim to predict spreading influences of the
remaining 1 ¡ q nodes, referred to as S1¡q .

We choose q ˘ 10% assuming only the influences of a small fraction of nodes are
known. We train a statistical regression model, which maps the nodal features into
the influence of a node, on the training node set Sq , and evaluate it on the remain-
ing test node set S1¡q . For each of the three iterative metrics, the iterative metric set

{M (1)
i ,M (2)

i , ...,M (K )
i } is used as nodal features in the regression model to predict nodal

influence. As a benchmark model, we consider a regression model that uses the same
set of 7 classic centrality metrics as in Bucur’s classification model [27] as nodal features.
These 7 centrality metrics include both local and global centrality metrics and are able
to complement each other in improving the performance in the node classification task.
Finally, we evaluate the prediction quality of the regression models based on 50 realiza-
tions of the random sampling of the training node set Sq and the training of the regres-
sion model.

We choose the Random Forest Regression model (RFR), a classic model that captures
the nonlinear relationship between input features and the outcome variable, i.e., nodal
influence, in our case. We also considered the Ridge regression, a linear regression model
with L2 regularization, and obtained qualitatively similar observations (see Appendix) as
the Random Forest Regression.

2.3. RESULTS
We evaluate the performance of the regression models based on each of the three itera-
tive metrics and the benchmark model based on classic centrality metrics, first in real-
world networks in Performance analysis in real-world networks subsection, and after-
wards in synthetic networks with community structures in Prediction on networks with
communities subsection. Finally, we explore the performance of these models in rela-
tion to parameters of the spreading process in Prediction of nodal spreading influence
near epidemic threshold subsection.

2.3.1. NETWORKS AND MEASURES TO EVALUATE PREDICTION QUALITY

We consider 9 real-world networks that differ in network properties such as size and
and diameter (i.e. the largest shortest path length between a node pair among all pos-
sible node pairs), including four online social networks (advogato, facebook, deezerEU,
github), a scientific collaboration networks (Arxiv Astro), a file sharing network (Gnutella04),
two infrastructure networks (US power grid, ChicagoRegional road network), and an
email communication network (Email Enron). All the datasets are obtained from the
repository of KONECT project [38, 39]. We treat all networks as simple, undirected and
unweighted. Basic properties of these networks are listed in Table 2.1. Notably, the two
infrastructure networks, US powergrid and ChicagoRegional, have significantly larger
diameters, higher modularity, and lower average degree than the other networks.

We evaluate the prediction quality of the proposed regression models using the fol-
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Dataset jN j jE j hdi Diameter Q ‚c
advogato 5042 41791 16.577 9 0.408 0.020
Arxiv-astrophics (astroph) 17903 196972 22.004 14 0.626 0.015
enron 33696 180811 10.732 13 0.608 0.013
facebook 63392 816886 25.773 15 0.632 0.010
Gnutella04 (gnu04) 10876 39994 7.355 10 0.386 0.080
github 37700 289003 15.332 11 0.453 0.011
Deezer EU (deezereu) 28281 92752 6.559 21 0.683 0.070
US power grid (uspower) 4941 6594 2.669 46 0.935 0.870
ChicagoRegional (Chicago) 12979 20627 3.179 106 0.931 1.230

Table 2.1: Basic properties of each real-world network considered: Number of nodes jN j, num-
ber of links jE j, average node degree hdi, network diameter, the modularity Q [1], and epidemic
threshold ‚C of the SIR process on the network.

lowing 3 classic measures:
The coefficient of determination r 2 measures the proportion of the variance in the

dependent variable (nodal influence) that is predictable from the input features in the
regression model. r 2 is defined as:

r 2 ˘ 1 ¡
P

i (yi ¡ ŷi )2

P
i (yi ¡ ȳ)2 (2.1)

Here, yi and ŷi are the ground truth and the predicted nodal influence of node i given
by the regression model, respectively. ȳ ˘ 1

n
Pn

i˘1 yi is the mean value of yi .
Kendall’s correlation coefficient ¿(ŝ, s) measures the similarity of the two ranking

lists of nodes based on the predicted nodal influence ŝ and the ranking based on the
actual nodal influence obtained by SIR simulation. A value of 1 for ¿(ŝ, s) indicates that
the predicted nodal influence gives the same node ranking as the ground truth, while a
value of ¡1 indicates that the two rankings are reverse. Kendall’s correlation coefficient
[40] ¿(ŝ, s) is defined as follows:

¿(ŝ, s) ˘
nc ¡ ndp

(nc ¯ nd ¯ T ) ⁄ (nc ¯ nd ¯U )
(2.2)

where nc and nd are the total number of node pairs that are concordant and discordant
respectively, based on the influence s and the predicted influence ŝ. For example, node
pair (i , j ) is concordant if (ŝi ¡ ŝ j )(si ¡ s j ) ¨ 0, and is discordant if (ŝi ¡ ŝ j )(si ¡ s j ) ˙ 0. T
is the number of node pairs that have the same influence but different predicted influ-
ence, i.e., si ˘ s j , ŝi 6˘ ŝ j and U is the number of node pairs that have the same predicted
influence but different influence, i.e., ŝi ˘ ŝ j , si 6˘ s j .

Recognition rate of top- f % measures the performance of a regression model in iden-
tifying the most influential f % nodes in the test set S1¡q . It is calculated as the fraction of
nodes that are present in the top f % of both the ranking by predicted nodal influence ŝ
and the ranking by actual nodal influence s. A higher recognition rate of top- f % implies
better performance of the regression model in identifying the most influential nodes.
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2.3.2. PERFORMANCE ANALYSIS IN REAL-WORLD NETWORKS
We focus on the prediction of spreading influence when the effective infection rate of
the SIR spreading process is ‚ ˘ ‚c , where the epidemic threshold ‚c of each network
is identified using the method described in Method section. The values of ‚c of each
real-world network are shown in Table 2.1. Later in this section, we will discuss how the
choice of the effective infection rate around the epidemic threshold impacts the perfor-
mance of influence prediction methods.

Figure 2.2: Kendall correlation between the actual nodal spreading influence s and the influence
ŝ predicted by a regression model based on NWC (panel A), VP (panel B), and H index (panel C)
respectively. Results are averaged over 50 realizations of training set sampling and model training.

We predict nodal influence in real-world networks using the iterative metric based
regression models. Each model uses an iterative metric set {M (1)

i ,M (2)
i , ...,M (K )

i } as input
features. Thus, topological information of the K -hop (K ¯ 1-hop for VP) neighborhood
of each node is used by the regression model for influence prediction. These regression
models are evaluated using the evaluation metrics introduced in Section 2.2. In Figure
2.2, we show the Kendall correlations ¿(ŝ, s) between the actual nodal influence s and the
influence ŝ predicted by a regression model as a function of K in real-world networks.
As K grows, higher order iterative metrics are included, and the prediction quality in-
creases. For all three iterative metrics, the prediction quality converges relatively fast as
K increases. As shown in Figure 2.2 (A), the prediction quality of the NWC based model is
already close to the highest at a small K (K » 4) and only increases marginally by choos-
ing a K ¨ 4. For example, the prediction quality when K ˘ 4 reaches at least 95% of
the highest prediction quality of the NWC based model. This suggests that a regression
model using relatively local topological information could already achieve comparably
good prediction quality as the one using more global information. This finding does
not hold for the two infrastructure networks with an extremely large diameter, for which
an iterative metric of higher orders (i.e., K ¨ 4) is needed to achieve optimal prediction
quality.

To understand why an iterative metric method achieves nearly its optimal predic-
tion quality with a small K » 4 in all networks except for the two networks without the
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small-world property, we first explore the correlation ¿(M (k), s) between the k-th order
iterative metric M (k) and the spreading influence s. As shown in Figure 2.3 (A-C), each
iterative metric M (k) exhibits positive correlation with spreading influence for any order
k, indicating that each iterative metric has certain predictive power. As k increases, the
correlation ¿(M (k), s) increases when k is small and achieves nearly the highest correla-
tion around k » 4, implying the high predictive power of iterative metrics of up to order
4 in those small-world networks.

Secondly, we study the convergence of the iterative metric M (k) as the order k grows.
As k increases, each centrality metric M (k) converges to the global centrality metric
M ⁄. The three iterative metrics converge to three global metrics: eigenvector centrality,
PageRank centrality, coreness, respectively. Figure 2.3 (D-F) shows the Kendall’s corre-
lation ¿(M (k),M ⁄) between the k-th order metric M (k) and the global metric M ⁄ as a
function of k for each iterative metric. For each iterative metric, M (k) converges to M ⁄

with different convergence rates in different networks. Importantly, M (k) exhibits rela-
tively high correlation with M ⁄ at k » 4 in most networks. Hence, the predictive power
of an high-order iterative metric could be inherited by a low-order iterative metric. This
explains why the corresponding regression model improves in prediction quality only
marginally as K increases when K ‚ 4. Furthermore, the large correlation ¿(h(k),h⁄) for
any k, as shown in Figure 2.3 (F), explains why the prediction quality of the regression
model based on HI hardly improves when K grows, as observed in Figure 2.2 (C).

In the two infrastructure networks with a large diameter and strong community struc-
ture, iterative metrics converge relatively slowly, indicating the possibility that a large K
or high-order iterative metric is needed for better prediction quality. Still, the conver-
gence of the prediction quality ¿(M (k), s) is faster than that of the metric NWC ¿(M (k),M ⁄).
This is likely because the higher-order metric is less predictive, thus possibly less needed
for the prediction, as shown in the decreasing trend of the correlation ¿(M (k), s) with
an increasing k when k is large. The different performance of the iterative metric based
model in the two infrastructure networks from the other networks as well as the weak-
ness of using a single classical centrality to predict influence precisely in networks with
community structure [41, 42] motivate us to investigate the impact of the strength of
community structure on nodal influence prediction in the next section.

To gain insight into why each iterative metric M (k) exhibits relatively high correla-
tion with M ⁄ at k » 4 in most networks, we investigate the average size of the k-hop
neighborhood, i.e., the fraction of nodes that is reachable (covered) from a random node
in k hops. This indicates the proportion of nodes whose information is considered in the
metric M (k). Figure 2.3 (G) shows that in most real-world networks, more than half of
nodes are reachable from a random node within 4 hops. Hence, the 4-th order iterative
metric possibly captures the topological information of a significant amount of nodes,
supporting why ¿(M (k),M ⁄) is high when k » 4. The 4-hop coverage of network deezer
EU and the two infrastructure networks is lower than in the other networks, which is
likely due to their community structure or large diameter. Correspondingly, ¿(M (k),M ⁄)
when k » 4 for NMC is relatively lower in these three networks.

Among all three iterative metrics, NWC achieves evidently the highest prediction
quality when K » 4. This is supported by the higher correlation ¿(s, w (k)) between the
NWC centrality w (k) and the spreading influence s at each order k, as shown in Figure
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2.3 (A-C).

Figure 2.3: Kendall correlation between nodal spreading influence s and different orders of NWC
(w (k), panel A), VP (p(k), panel B), and H index (h(k), panel C), and the convergence of NWC (D),
VP (E), HI (F), measured by the Kendall’s correlation between the iterative metric after k iterations
and the corresponding global centrality metrics, as a function of iteration number k in 9

real-world networks. (G) shows the coverage, i.e. the average fraction of nodes covered
by hopping step out from a node, as a function of the number of hops.

It has been found that combining local and global node centrality metrics can more
accurately identify top influencers than using either local or global centralities alone
[27]. Hence, we build a benchmark regression model that uses the same 7 centrality
metrics (local ones like degree and global ones like closeness) as in the classification
model in [27] as input features. Now, we compare the prediction quality of the proposed
iterative metric based models with the benchmark model. We choose K ˘ 4 for iterative
metric based models. The choice of K ˘ 4 corresponds the case where the iterative met-
ric based model only uses relatively local information, which ensures the computational
efficiency and reasonably good prediction quality in most networks.

Figure 2.4 shows three evaluation measures of the regression models: r 2 (left panel),
Kendall correlation between the actual nodal spreading influence s and the predicted
influence ŝ of the node by a regression model (middle panel), and the recognition rate
of top 10% nodes (right panel). Across all real-world networks, the prediction quality of
NWC based model is evidently better than the other two iterative metric based models.
In all networks except for the two infrastructure networks, NWC based model achieves
prediction quality comparable to the benchmark model. The prediction quality ratio
between NWC based model and the benchmark model is within the range [91%,101%]
for any of the three evaluation measures. In those two infrastructure networks uspower
and Chicago, the NWC based model with K ˘ 4 performs worse than the benchmark,
whereas NWC based model with a large K performs as well as the benchmark, achieving
96% to 105% of the prediction quality of the benchmark model.

Moreover, the computational complexity of NWC based model with K ˘ 4 is lower
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Figure 2.4: Comparison of prediction quality across different empirical networks (horizontal axis)
of four prediction models based on different metrics (vertical axis): Normalized Walk Count when
K ˘ 4 (NWC(4)), Visiting Probability when K ˘ 4 (VP(4)), H index when K ˘ 4 (HI(4)), and classic
centrality metrics [27]. Three panels correspond to different evaluation measures of prediction
quality: r 2 (left panel), Kendall’s ¿ (middle panel), and recognition rate of top 10% nodes (right
panel), respectively. Results are averaged over 50 realizations of Random Forest Model training
process.

than that of the benchmark model, which requires the computation of global centrality
metrics. We summarize in Table 2.2 the computational complexity of an iterative metric
of orders up to K and the 7 classical centrality metrics used in the benchmark model for
all nodes. In each iteration of an iterative process, the iterative metric of each node is
updated via aggregating the metrics of its 1-hop neighbors derived in the previous iter-
ation. Thus, updating the metric for all nodes in each iteration requires 2jE j basic op-
erations. The computational complexity of an iterative metric set {M (1)

i ,M (2)
i , ...,M (K )

i }

for all nodes equals that of M (K )
i for all nodes, which is O (K ¢ jE j). Hence, a relatively

small K facilitates the application of iterative metric based method in large networks. In
contrast, the global metrics used in the benchmark model, such as closeness centrality,
have a higher complexity.

Iterative metric degree,
neighborhood,two-
hop neighborhood

coreness eigenvector, PageR-
ank

closeness

O (K ¢ jE j) O (jE j) O (jE j) O (K ⁄ ¢ jE j) O (jV jjE j)
Table 2.2: Comparison of the computational complexity of different nodal metrics for all nodes
in a network: an iterative metric set {M (1), ...,M (K )} and classical centrality metrics used in the
benchmark model. Neighborhood stands for the sum of degrees of direct neighbors, and two-
hop neighborhood are the sum of degrees of nodes that are two hops away. K ⁄ is the number of
iterations at which the iterative process to compute the centrality metric converges.

2.3.3. PREDICTION ON NETWORKS WITH COMMUNITIES
Community structure has been observed in many real-world networks [43], where nodes
within a community are densely connected while nodes from different communities
have fewer connections. The existence of communities affects significantly the spread-
ing process unfolding on a network [44, 45] and has been ignored in most centrality
metrics used to predict nodal influence [42, 46]. Here we evaluate the performance of
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our influence prediction methods in networks with community structures and investi-
gate how community structure affects the prediction quality. To this end, we adopt the
Lancichinetti–Fortunato–Radicchi (LFR) model [29] to generate networks with power-
law degree distribution and community size distribution, as observed in real-world net-
works. One advantage of LFR model is that the strength of the community structure in
the generated networks can be changed via tuning its parameters. We use LFR model to
generate networks with the following properties: network size N ˘ 1000 and N ˘ 10000
respectively, the exponent of the power-law degree distribution ¿1 ˘ 2, and exponent of
the power-law community size distribution ¿2 ˘ 3, the average degree hki ˘ 10, the max-
imum degree dmax ˘

p
10N /2, the range of community sizes [50,

p
10N ]. The mixing

parameter „ represents the fraction of inter-community links of a node. When „ ˘ 0, the
generated networks have the strongest community structure, with communities being
disjoint from each other. The model with „ ˘ 1 generates networks where all links fall
between different clusters. When „ ¨ 0.5, the community structure is not evident any-
more [29]. We set „ ˘ [0.02,0.05,0.1,0.2,0.3,0.4], thus six networks with different strength
of communities are generated. We will focus on the results for N ˘ 1000, since results for
N ˘ 10000 (as shown in the Appendix) lead to the same observation. The generated net-
works vary in network properties such as diameter and modularity, as shown in Table 2.3
and Table 2.4.

„ Diameter Q ‚c
0.02 10 0.924 0.090
0.05 6 0.872 0.080

0.1 5 0.608 0.070
0.2 5 0.632 0.070
0.3 5 0.386 0.070
0.4 5 0.453 0.070

Table 2.3: Basic properties of networks generated by LFR model with different mixing parameter
„ and N ˘ 1000: network diameter, the modularity Q, epidemic threshold ‚C of the SIR process
on the network.

We first evaluate our iterative metric based models in predicting nodal influence in
LFR networks when the effective infection rate of the SIR model is around epidemic
threshold, i.e., ‚ ˘ ‚c . Figure 2.5 (A-C) show Kendall correlations ¿(ŝ, s) between the
nodal spreading influence s and the prediction ŝ by a regression model based on an it-
erative metric set {M (1),M (2), ...,M (K )}, as a function of K in LFR networks. Like what
we observed in real-world networks, the prediction quality increases as K increases. No-
tably, the prediction quality only improves marginally when choosing a K ¨ 4. This can
be understood by the correlation ¿(M (k), s) between M (k) and nodal influence s, which
is shown in Figure 2.6 (A-C). As k increases up to k » 4, the correlation ¿(M (k), s) in-
creases. As k increases further, the correlation tends to decrease. This decreasing trend
is more evident in networks with more evident community structure, but not observed
in real-world networks that have a relatively small diameter and modularity as shown
in Figure 2.3. This suggests that high-order (k ¨ 4) iterative metrics are less predictive
than an iterative metric of an order around k » 4, thus less needed to predict nodal in-
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fluence in networks with a higher modularity. Furthermore, we explore the convergence
of an iterative metric M (k) as k increases. Figure 2.6 (D-F) show the Kendall’s correlation
¿(M (k),M ⁄) as a function of k for the three iterative metrics, respectively. For NWC,
the correlation tends to be lower when k » 4 as the mixing parameter „ gets smaller
or equivalently in network with more evident community structure. In networks with
strong community structure, NWC converges relatively slowly. Still, the prediction qual-
ity of the regression models in these networks is close to optimal when K » 4, since the
higher order metric is less predictive. This is also in line with the intuition that in net-
works with strong community structure and when the infection rate is around the criti-
cal epidemic threshold, nodal influence is supposed to be mainly determined by nodal
property derived within or around the community that the node belongs to.

Figure 2.6 (G) shows the average fraction of nodes that are reachable (covered) from
a randomly chosen node within k hops, i.e., the so called coverage, as a function of k.
In networks with strong community structure (small „), the coverage and ¿(M (k),M ⁄)
when k » 4 tend to be small. In such networks, an order k » 4 iterative metric encodes
topological information of a small fraction of nodes, which explains partially the weak
correlation ¿(M (k),M ⁄) when k » 4.

Figure 2.5: Kendall correlation between nodal spreading influence ŝ predicted by different num-
bers of iterative metrics as features and nodal spreading influence given by SIR simulations of
NWC (A), VP (B), and H index (C). Results are averaged over 50 realizations of training set sam-
pling and model training.

Now we compare the prediction quality of iterative metric based models (when K ˘
4) with the benchmark model in LFR networks via the same three evaluation measures
as in real-world networks. Figure 2.7 shows that NWC based model with K ˘ 4 performs
comparably as (mostly slightly better than) the benchmark model, the prediction quality
ratio between NWC based model and the benchmark model ranges from 95% to 106%.
Among the three iterative metric based models, NWC based model performs the best
whereas VP based model performs the worst. As the strength of community structure
grows, all models perform worse. This can be explained by the small (large) correlation
¿(M (k), s) in networks with a strong (weak) community structure, as shown in Figure 2.6
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(A-C). The same has also been observed in real-world networks. As shown in Figure 2.4,
both the NWC based model and the benchmark model perform the worst in the two in-
frastructure networks that have the stronger community structure than the other consid-
ered real-world networks. In the two infrastructure networks, the correlation ¿(M (k), s)
is also weaker (see Figure 2.3).

Figure 2.6: Kendall correlation between nodal spreading influence s and different orders of NWC
(w (k), panel A), VP (p(k), panel B), and H index (h( j ), panel C), and the convergence of NWC
(D), VP (E), HI (F), measured by the Kendall’s correlation between the iterative metric after k it-
erations and the corresponding global centrality metrics, as a function of iteration number k in
Lancichinetti–Fortunato–Radicchi (LFR) networks with different „ ˘ 0.02,0.05,0.1,0.2,0.3,0.4. (G)
shows the coverage, i.e. the average fraction of nodes covered by hopping step out from a node, as
a function of the number of hops.

2.3.4. PREDICTION OF NODAL SPREADING INFLUENCE NEAR EPIDEMIC THRESH-
OLD

So far, we have focused on the influence prediction problem, where the influence is de-
fined for the SIR epidemic spreading process with ‚ ˘ ‚c . It has been shown that the
change of parameters in the epidemic spreading can lead to different rankings of nodes
according to their influences [23, 47, 48]. Hence, we evaluate the average prediction
quality of a regression model over all the networks except for the two infrastructure net-
works, at various effective infection rates around the epidemic threshold ‚c . Figure 2.8
(top panel) shows that NWC outperforms VP and HI, as ‚ varies from 0.5 ¢ ‚c to 2.0 ¢ ‚c .
NWC based model with K ˘ 4 and the benchmark model show comparable prediction
quality. Their prediction quality is less sensitive to the effective infection rate ‚. In the
two infrastructure networks (Figure 2.8 bottom panel), the NWC based model with K ˘ 4
exhibits lower prediction quality than the benchmark at different effective infection rates
except that they perform similarly at ‚ ˘ 0.5 ¢‚c , when the SIR spreading is relatively lo-
cal.
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Figure 2.7: Prediction performance on model networks generated with LFR model with varying
mixing parameter „ (horizontal axis) of five sets of metrics (vertical axis): Normalized Walk Count
when K ˘ 4 (NWC(4)), Visiting Probability when K ˘ 4 (VP(4)), H index when K ˘ 4 (HI(4)), and
classical centralities. Three panels correspond to different evaluation measures of predictive mod-
els: r 2 (left panel), Kendall ¿ (middle panel) and recognition rate of top 10% nodes (right panel),
respectively. Results are averaged over 50 realizations of training process of Random Forest Model.

2.4. DISCUSSION AND FUTURE WORK

In summary, we explore to what extent local and global topological information of a
node is needed for the prediction of nodal spreading influence and whether relatively
local topological information around a node is sufficient for the prediction. We propose
to predict nodal influence by an iterative metric set derived from an iterative process.
Three iterative metrics are considered: Normalized Walk Counts (NWC), Visiting Prob-
ability (VP), and H index (HI), which converge to eigenvector centrality, PageRank, and
H index, respectively. The regression model using an iterative metric set as input fea-
tures is trained on a fraction of nodes whose influence is known and is used to predict
the nodal influence of the remaining nodes. We evaluate and interpret the performance
of these three iterative metric based models in predicting nodal influence in SIR spread-
ing processes with diverse effective infection rates around the epidemic threshold, on
both real-world networks and synthetic networks with different strength of community
structure. We find that the prediction quality of each iterative metric based model con-
verges to its optimal when the iterative metric set of relatively low orders (up to order 4)
are included and increases only marginally when further increasing K . This is explained
via the correlation between an iterative metric of order k and nodal influence and the
fast convergence of each iterative metric. The prediction quality of the best perform-
ing iterative metric set (NWC) with K ˘ 4 is comparable with the benchmark method
that combines seven centrality metrics. In two spatially embedded networks with an ex-
tremely large diameter and modularity, however, iterative metric of higher orders, thus a
large K , is needed to achieve comparable predict quality as the benchmark. These find-
ings suggest that the NWC metric of relatively low orders contain sufficient information
to predict nodal influence reasonably well in networks with the small-world property,
whereas its computation complexity is lower than that of the global centrality metrics
needed by the benchmark model. In these networks, the NWC metric has almost the
highest correlation with nodal influence when k … 4 in most networks, indicating that a
node with more distinct 4-hop walks starting from the node tends to be more influential.
However, the interpretability of the iterative metric-based regression model is limited by
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Figure 2.8: Average prediction quality over all considered real-world networks (shown in Table 2.1)
excluding the two spatially embedded networks (top panels) and over the two spatially embedded
networks (bottom panels) as a function of ‚/‚c of 4 different metric sets: Normalized Walk Counts
(NWC), Visiting Probability (VP), H index (HI), and 7 node centralities [27]. Three columns corre-
spond to different evaluation measures of predictive models: r 2 (left panel), kendall’s ¿ (middle
panel), and recognition rate of top 10% nodes (right panel), respectively. Results are averaged over
50 realizations of training process of Random Forest Model.

the strong correlation among the iterative metric of different orders. Nodes with what
kind of combination of low order the iterative metrics are more influential remains an
interesting question.

This study has several limitations that call for further exploration. Firstly, we observe
the trend that a larger K is needed for the iterative metric based method to perform close
to its optimal in networks with a significant large diameter. It is interesting to explore the
minimal K needed for the NWC based model to perform at least, for example, 95% of the
optimal performance of the model in relation to the diameter of the network. Secondly,
the diameter and strength of community structure are possibly correlated in real-world
networks and network models. We have observed the influence of community structure
or diameter on the prediction quality of NWC based model and the benchmark model.
An open question is how the diameter influences the prediction quality while the com-
munity strength is fixed. For both objectives, network models with a controllable diame-
ter and more real-world networks, especially those without the small-world property are
needed. Thirdly, we confine ourselves to the SIR spreading process on a static network.
However, in many scenarios, both the spreading process and the underlying topology
can be more complicated. Our proposed method can be extended to explore its capa-
bility of predicting nodal influence defined in such more complex context using local
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network information.
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2.5. APPENDIX

2.5.1. COMPUTATION OF AN ITERATIVE METRIC SET AND COMPLEXITY ANAL-
YSIS
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Figure 2.9: An illustration of the neighborhood considered to compute an iterative metric of order
k at any node i .

Here, we exemplify how gradually more network information around a node is in-
corporated in the computation an iterative metric of a higher order. In each iteration
k of an iterative process, the computation of an iterative metric M (k)

i of node i is de-
rived via aggregating the metrics of its 1-hop neighbors derived in the previous iter-
ation k ¡ 1. Take the example of NWC computation in the network shown in Figure
2.9. The iterative process of NWC is governed by w (k) ˘ Aw (k¡1)/jAw (k¡1)j. Initially,
M (0)

i ˘ 1/
p

N for any node i , which encode no topological information. In iteration

k ˘ 1, the metric M (1)
i is derived as the sum of the metrics of its neighbors from iter-

ation 0, i.e., M (1)
i ˘

P
j 2N (i ) M (0)

j , where node i ’s 1-hop neighbor set N (i ) ˘ {1,2,3,4}.

Thus, M (1)
i encodes the information of 1-hop neighborhood of node i as illustrated in

the pink area in Figure 2.9 (A). In iteration k ˘ 2, the metric M (2)
i is derived as M (2)

i ˘
P

j 2N (i ) M (1)
j ˘ 4M (0)

i ¯M (0)
5 ¯M (0)

6 ¯ 2M (0)
7 ¯M (0)

8 ¯M (0)
9 , which encodes up to 2-hop

neighborhood information of node i as illustrated in the pink area in Figure 2.9 (B). Con-
sequently, for any iteration k, the metric M (k)

i of node i encodes information of up to
k-hop neighborhood.

2.5.2. TRAINING OF REGRESSION MODELS
Given a network G , we train a Random Forest regression (RFR) model based on the
q ˘ 10% of nodes whose nodal influences are known and use the trained model to pre-
dict the influence of the rest nodes. We adopt RandomForestRegressor in the Python
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library scikit-learn to implement our regression models. The hyperparameters are
determined via 5-fold cross-validation on the training set, where the number of trees
considered in RFR, n_estimators, is tuned in the range [50,1000]. The final RFR with
the identified hyperparameters is trained on the training set.

Performance of all iterative based models in nodal influence prediction is the average
over 50 realizations of training set sampling and model training.

2.5.3. RESULTS FOR PERFORMANCE OF ITERATIVE METRIC BASED MODELS

Figure 2.10 and Figure 2.11 show the Mean Squared Errors, r 2, and Recognition rate of
top 10% nodes of the three iterative metric based RFR models in all considered real-
world networks and LFR networks, respectively. Figure 2.12 and Figure 2.13 shows the
results of iterative metric based Ridge regression models in all considered real-world net-
works.

Figure 2.10: Mean Squared Errors, r 2, and Recognition rate of top 10% nodes of the Normalized
Walk Count, Visiting Probability, and H index based models, respectively, in nodal influence pre-
diction as a function of the size K of an iterative metric set in each of the 9 real-world networks.



2

30 2. PREDICTING NODAL INFLUENCE VIA LOCAL ITERATIVE METRICS

Figure 2.11: Mean Squared Errors, r 2, and Recognition rate of top 10% nodes of the Normalized
Walk Count, Visiting Probability, and H index based models, respectively, in nodal influence pre-
diction as a function of the size K of an iterative metric set in LFR networks with 1000 nodes, where
the mixing parameter „ ˘ [0.02,0.05,0.1,0.2,0.3,0.4].

„ Diameter Q ‚c
0.02 11 0.971 0.060
0.05 8 0.933 0.050
0.1 7 0.859 0.050
0.2 6 0.728 0.050
0.3 6 0.614 0.040
0.4 6 0.497 0.040

Table 2.4: Basic properties of networks generated by LFR model with 10000 nodes using different
mixing parameter „: network diameter, the modularity Q, epidemic threshold ‚c of the SIR pro-
cess on the network.
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Figure 2.12: Kendall correlation between the actualy nodal influence s and nodal spreading in-
fluence ŝ predicted by each iterative metric (NWC, VP or HI) based Ridge regression model as a
function of the size K of an iterative metric set in each of the 9 real-world networks.

Figure 2.13: Mean Squared Errors, r 2, and Recognition rate of top 10% nodes of the Normalized
Walk Count, Visiting Probability, and H index based Ridge regression models, respectively, in nodal
influence prediction as a function of the size K of an iterative metric set in each of the 9 real-world
networks.



2

32 2. PREDICTING NODAL INFLUENCE VIA LOCAL ITERATIVE METRICS

Figure 2.14: Kendall correlation between the actualy nodal influence s and nodal spreading influ-
ence ŝ predicted by each iterative metric (NWC, VP or HI) based Random Forest regression model
as a function of the size K of an iterative metric set in LFR network with 10000 nodes.

Figure 2.15: Kendall correlation between nodal spreading influence s and different orders of NWC
(w (k), panel A), VP (p(k), panel B), and H index (h( j ), panel C), and the convergence of NWC (D),
VP (E), HI (F), measured by the Kendall’s correlation between the iterative metric after k iterations
and the corresponding global centrality metrics, as a function of iteration number k in LFR net-
works with 10000 nodes and different „ ˘ 0.02,0.05,0.1,0.2,0.3,0.4. (G) shows the coverage, i.e. the
average fraction of nodes covered by hopping step out from a node, as a function of the number of
hops.
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Figure 2.16: Prediction performance comparison in LFR networks with 10000 nodes of four sets
of metrics (vertical axis): Normalized Walk Count when K ˘ 4 (NWC(4)), Visiting Probability when
K ˘ 4 (VP(4)), H index when K ˘ 4 (HI(4)), and seven centralities. Three panels correspond to dif-
ferent evaluation measures of predictive models: r 2 (left panel), Kendall’s ¿ (middle panel), and
recognition rate of top 10% nodes (right panel), respectively. The prediction quality ratio between
NWC based model and the benchmark model ranges from 95% to 106% for all evaluation mea-
sures. Results are averaged over 50 realizations of Random Forest Model training process.

Figure 2.17: Mean Squared Errors, r 2, and Recognition rate of top 10% nodes of the Normalized
Walk Count, Visiting Probability, and H index based models, respectively, in nodal influence pre-
diction as a function of the size K of an iterative metric set in LFR networks with 10000 nodes,
where the mixing parameter „ ˘ [0.02,0.05,0.1,0.2,0.3,0.4].
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Progress has been made in how to suppress epidemic spreading on temporal net-
works via blocking all contacts of targeted nodes or node pairs. In this chapter, we
develop contact blocking strategies that remove a fraction of contacts from a temporal
(time evolving) human contact network to mitigate the spread of a Susceptible-Infected-
Recovered (SIR) epidemic. We define the probability that a contact c(i , j , t ) is removed as
a function of a given centrality metric of the corresponding link l (i , j ) in the aggregated
network and the time t of the contact. The aggregated network captures the number of
contacts between each node pair. A set of 12 link centrality metrics have been proposed
and each centrality metric leads to a unique contact removal strategy. These strategies
together with a baseline strategy (random removal) are evaluated in empirical contact
networks via the average prevalence, the peak prevalence and the time to reach the peak
prevalence. We find that the epidemic spreading can be mitigated the best when con-
tacts between node pairs that have fewer contacts and early contacts are more likely to
be removed. A strategy tends to perform better when the average number contacts re-
moved from each node pair varies less. The aggregated pruned network resulted from
the best contact removal strategy tends to have a large largest eigenvalue, a large modu-
larity and probably a small largest connected component size.

3.1. INTRODUCTION
Networks, such as physical contact networks and online social networks, facilitate the
spread of epidemics and information. The study of epidemic spreading first assumed
the topology of networks to be static [1, 2], while many real-world networks are not
static as nodes and links can appear and disappear over time, thus can be better rep-
resented as temporal networks [3]. For example, human contact networks such as face-
to-face contact networks [4] are temporal networks, which can be described by a se-
quence of contacts (or temporal links) between pairs of individuals occurring at discrete
time steps. The increasing availability of network data with temporal information has
fostered research on how the temporal aspect of networks can affect dynamic processes
such as the spreading of epidemics [5, 6] and information [7] on temporal networks. Epi-
demic/information spreading can be mitigated via reducing physical contacts. Covid-19
measures like curfew, working at home, social distancing all aim to block physical con-
tacts. These measures treat at least a subgroup of the population in the same way. In this
work, we address the further question of how to mitigate the epidemic spreading more
effectively via selecting the contacts to block heterogeneously and strategically. We pro-
pose to develop contact removal strategies utilizing the network properties of contacts.

We consider real-world physical contact networks, where only the connection be-
tween nodes evolves (appears when there is a contact and disappears) over time whereas
the nature/type of nodes and contacts do not change . In this case, a temporal network
observed within a time window [0,T ] can be represented by G ˘ (N ,C ), where N is
the node set observed within [0,T ], size N ˘ jN j is the number of nodes in the network,
C ˘ {c(i , j , t ), t 2 [0,T ], i , j 2 N } is the set of contacts between pairs of nodes in N , with
contact (i , j , t ) representing the interaction between node i and node j at time step t . A
contact c(i , j , t ), also called a temporal link, describes interaction/connection between
node i and j at a specific time t . A node without any contact at time t can be regarded
as inactive or not observed at that time step. We confine ourselves to the Susceptible-
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Infected-Recovered (SIR) epidemic spreading model [1] on a temporal network instead
of more realistic spreading processes: Initially at t ˘ 0, a seed node is selected to be in-
fected whereas all the other nodes are susceptible; When a contact happens between an
infected node and a susceptible node at any time step, the susceptible node becomes
infected with a probability fl; Each infected node becomes recovered with a probability
° at each time step. A recovered node will neither be infected nor infect any other node.
The contacts to block will be selected based on the (time) aggregated network GW of
the temporal network G . Aggregated network represented as GW ˘ (N ,L ) is a weighted
network with the same node set N as temporal network G , L is the set of weighted links,
two nodes i and j in GW are connected by a link l (i , j ) if they have at least one contact in
temporal network G and link l (i , j ) is associated with a weight recording the number of
contacts in G between the two nodes. In the rest of this chapter, links refer to the links in
the aggregated network, and contacts will not be called temporal links anymore to avoid
confusion. Contacts between two nodes i and j can be regarded as the corresponding
link l (i , j ) in the aggregated network activated at specific time steps.

The objective is to mitigate the epidemic spreading via blocking a given percentage
` of contacts, selected based on the aggregated network. The fraction ` of contacts re-
moved corresponds to the cost of the mitigation. To launch a contact removal interven-
tion during the time window [0,T ], the information of the aggregated network of the
temporal network G observed in [0,T ] needs to be known at T ˘ 0. Such aggregated
network is assumed to be given in our work, whereas in practice, it can be estimated
based on the temporal network observed before T ˘ 0. Predicting the aggregated net-
work is more feasible compared to predicting the temporal network in [0,T ]. The latter,
i.e. long-term prediction of time specific and possibly noisy contacts challenges ma-
chine learning approaches that target at short-term predictions. Hence, we focus on the
development of contact removal strategies based on the aggregated network, instead of
the complete temporal network information which is difficult to obtain.

We propose probabilistic contact removal strategies. Specifically, the probability that
a contact c(i , j , t ) is removed is a generic function of a centrality metric [8] of link l (i , j )
in the aggregated network and the time t of the contact. Each centrality metric leads to a
unique mitigation strategy in contact removal. The impact of an SIR epidemic spreading
can be evaluated via the following performance measures, which will be used to eval-
uate the mitigation strategies: the average prevalence over time, where the prevalence
at a time step is the number of infected nodes; the maximal prevalence, so called peak
height, which suggests the maximal demand in e.g. hospital resources; the time to reach
the peak prevalence, so called peak time, which indicates the time to prepare the medical
resources for the peak demand.

The mitigation strategies that we have proposed are evaluated in 6 real-world tem-
poral networks. We find that the mitigation effect is better when contacts between node
pairs that have fewer contacts are removed with a higher probability. Removing contacts
that occur earlier in time could further enhance the mitigation effect. A strategy tends
to better mitigate the epidemic spreading if the average number of contacts removed
varies less among node pairs. Furthermore, we analyze properties of the aggregated
pruned network resulted from each contact blocking strategy. We find that the optimal
strategy tends to lead to an aggregated pruned network with a large largest eigenvalue, a
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large modularity and a possibly a small largest connected component. Networks with a
large modularity and a small largest connected component are difficult for an epidemic
to spread. Static networks with a small largest eigenvalue have been shown to be robust
against epidemic spreading i.e. have a high epidemic threshold for Susceptible-Infected-
Susceptible epidemic. The resultant aggregated pruned network after contact removal,
however, may lead to a low prevalence if its largest eigenvalue is large. This suggests
that the temporal information of contacts, may lead to new phenomena that can not be
captured by static network studied.

Recent work has been devoted to understand the influence of temporal networks
on dynamic processes and especially the mitigation of epidemic spreading. A first line
of reseach has studied the mitigation of epidemic spreading via node-level approaches.
Génois et. al have shown that vaccination of individuals who act as bridges between
communities in time-aggregated network can efficiently prevent epidemic outbreaks [9].
Gemmetto et. al have investigated the epidemic mitigation via excluding a sub-group
of nodes in a temporal network in school environments [10]. Another line of research
has focused on link-based approaches to suppress epidemic outbreaks. Link removal
strategies based on link centrality metrics in the aggregated network has been studied in
[11]. These strategies select the links in the aggregated network to block, thus removing
all contacts associated with the selected links. In this work, we investigate in-depth at
contact level, i.e. how to select a given number of contacts to remove to suppress epi-
demic spreading. To the best of our knowledge, few works have studied contact-level
approaches to suppress epidemic spreading. Our previous work [12] has addressed the
same question, however, was confined to Susceptible-Infected (SI) model, which is a
special case of SIR model. In this work, we consider the SIR model, broaden and deepen
our investigation towards a more comprehensive evaluation of mitigation effect and a
more systematic analysis of the properties of the pruned network to explain the perfor-
mance of the strategies. In view of the uncertainty of realistic temporal network data,
we further check the robustness of our finding in the relative effectiveness of proposed
mitigation strategies when the temporal networks are under the perturbation, i.e. when
the time (ordering) of contacts is uncertain.

3.2. METHODS

We will firstly propose our contract removal strategies. Afterwards, we will introduce the
real-world temporal networks and simulations that will be used to simulate the epidemic
spreading process and further to evaluate the effect of the mitigation strategies.

3.2.1. CONTACT BLOCKING STRATEGIES

We select the contacts to block based on a given centrality metric in the aggregated net-
work and the time of each contact. Specifically, the probability that a contact c(i , j , t ) is
removed is defined as a function of the given centrality metric of the corresponding link
l (i , j ) in the aggregated network GW and the time t of the contact. This function also
ensures that a fraction ` of contacts are removed on average.
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LINK CENTRALITY METRICS

We propose a set of link centrality metrics based on node centrality metrics for the aggre-
gated network GW . The aggregated network GW is a weighted network constructed from
a temporal network G . The weight of each link in the aggregated network represents
the number of contacts between the two corresponding nodes in the temporal network.
Each centrality metric below will lead afterwards to a unique mitigation strategy:

• Degree product of a link l (i , j ) refers to d(i ) ¢ d( j ), where d(i ) is the degree of node
i defined as the number of links incident to node i in the aggregated network.

• Strength product of a link l (i , j ) refers to s(i ) ¢ s( j ), where s(i ) is the strength of
node i defined as the total weights of all the links incident to node i in aggregated
network. The strength of a node tells the total number of contacts the node has.

• Betweenness is the number of shortest paths that traverse the link between all pos-
sibly node pairs in the unweighted aggregated network [13].

• Link weight of a link l (i , j ) in aggregated network refers to the total number of
contacts between node i and j in the corresponding temporal network.

• Weighted eigenvector component product is the product of the principal eigenvec-
tor components of the link’s two end nodes. The principal eigenvector is the eigen-
vector corresponds to the largest eigenvalue of the weighted aggregated network.

• Unweighted eigenvector component product is the product of the principal eigen-
vector components of the link’s two end nodes. The principal eigenvector is the
eigenvector corresponds to the largest eigenvalue of the unweighted aggregated
network.

Besides the proposed strategies based on the aforementioned link centrality metrics, we
introduce a baseline strategy called Random removal. In the Random removal strategy,
the probability for each contact c(i , j , t ) to be removed is independent of the centrality
of l (i , j ). Or equivalently, Random removal sets the centrality value as 1 for all links.

CONTACT REMOVAL PROBABILITY

Given a link centrality metric m, we can derive the centrality mi j for each link l (i , j ) in
the aggregated network. Consider the simple case where the probability that a contact
c(i , j , t ) between i and j is removed is independent of the time t and we first propose the
removal preference pi j :

pi j ˘ mi j
`

P
l k wl kP

l k (wlk ml k )
(3.1)

where wi j is the weight of link l (i , j ) in the aggregated network or equivalently the num-
ber of contacts between i and j , ` is the expected fraction of contacts to be removed,
thus we have

P
i j pi j wi j ˘ `

P
l k wl k , the expected number of contacts to be removed.

The removal preference pi j of a contact between any node pair i and j is proportional
to the centrality mi j of the corresponding link l (i , j ).

We cannot use the removal preference pi j directly as the removal probability of a
contact between node i and j in view of the following. Some centrality metrics could be
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highly heterogeneous. The removal preference pi j is possibly larger than 1 if the central-
ity measure mi j of the link l (i , j ) is large. To deal with this issue, we propose an iterative
process to derive the contact removal probability by re-normalizing pi j , where i , j 2 N :
we assign removal probabilities 1 to those contacts whose removal preference pi j ac-
cording to (3.1) is larger than one, and re-normalize pi j among the contacts with pi j • 1
to satisfy

P
i j pi j wi j ˘ `

P
i j wi j . We repeat this normalization process until the removal

preference pi j of all contacts are between 0 and 1, while the actual average fraction of
contacts blocked is `. Now we define p̃i j as the re-normalized pi j via the proposed iter-
ative process, and p̃i j is used as the removal probability of each contact between node i
and node j .

We further generalize the definition of the contact removal preference pi j as

p⁄
i j ˘ mfi

i j
`

P
lk wlkP

lk (wlk mfi
lk )

(3.2)

The removal preference of a contact c(i , j , t ) is proportional to a polynomial function of
mi j . The definition (3.1) of pi j is a special case when fi ˘ 1 of definition (3.2). The ran-
dom strategy, i.e. all contacts have the same probability of being removed, corresponds
to the case when fi ˘ 0. Consider (3.1) where the reciprocal metric 1

mi j
is taken as a new

centrality metric. The corresponding strategy is equivalent to the general definition (3.2)
where metric mi j is considered and fi ˘ ¡1.

In this work, we consider the definition (3.1) of pi j using the aforementioned list of
centrality metrics and their reciprocals as well as the random strategy, which correspond
to the general definition of (3.2) where fi ˘ 1,¡1,0, respectively.

Finally, we generalize our strategy by considering the timestamps of the contacts.
This is motivated by the intuition that early intervention, e.g. blocking early contacts,
could be possibly more effective. We propose a time-dependent contract removal pref-
erence pi j (t ):

pi j (t ) ˘ mi j f (t )
`

P
lk wlkP

lk (wlk mlk f (t ))
(3.3)

where f (t ) describes the preference to remove contacts at specific period. The prefer-
ence that c(i , j , t ) is removed is proportional to mi j ¢ f (t ). The same aforementioned
normalization process is applied to this generalized contact removal preference to de-
rive the removal probability of each contact.

As a start, we consider f (t ) ˘ 4 ¢1t•T /2 ¯1t¨T /2, f (t ) ˘ 1t•T /2 ¯4 ¢1t¨T /2 and f (t ) ˘ 1,
where the indicator function 1y is one if the condition y is true, and otherwise it is 0.
They correspond to the preference of removing contacts happening early in [1,T /2], late
in (T /2,T ] and no preference for the timestamps of the contacts, respectively.

3.2.2. DATASETS
The following real-world physical contact networks will be considered:

• HighSchool11&12 record the physical contacts between students in a high school
in Marseilles, France. [14]. The two datasets consider two different groups of stu-
dents.
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Datasets Nodes Links Contacts Duration
HighSchool11 (HS11) 126 1709 28561 3.15
HighSchool12 (HS12) 180 2220 45047 8.44
WorkPlace13 (WP13) 92 755 9827 11.43
WorkPlace15 (WP15) 217 4274 78249 11.50
MIT1 74 355 29107 6.99
MIT2 45 200 22714 6.99
MIT 96 5078 1086404 232.30

Table 3.1: Basic properties of real-world networks: the number of nodes, links (in the aggregated
network) and contacts, respectively. The duration refers to the duration T of the observation win-
dow [1,T] in the units of days.

• WorkPlace13&15 capture the contacts between individuals in an office building in
France [9]. The two datasets are measured from different groups of individuals
respectively.

• MIT are human contact network among students of the Massachusetts Institute of
Technology [15, 16]. The MIT dataset has been measured for about 8 months.

All networks are undirected. Their properties are given in Table 3.1. The duration of each
time step is 1 second in all the networks. For the MIT dataset, we choose randomly two
observation period, each of about one-week time. The temporal networks correspond-
ing to these two periods are called MIT1 and MIT2. In this way, all the six temporal
networks (HighSchool11&12, WorkPlace13&15, MIT1&2) are comparable in observation
window. They will be used to study the impact of the mitigation strategies on the average
prevalence over time, the focus of this work.

However, most networks have a short duration of the observation window, within
12 days, besides MIT. In order to observe the peak (increase and afterwards decrease of)
prevalence in the SIR process, the observation window of a temporal network needs to be
long in duration. When we study the performance measure like peak height/prevalence
and peak time, we repeat each of the temporal network HighSchool11&12, WorkPlace13&15
respectively for 10 times. The constructed networks, *HighSchool11&12, *WorkPlace13&15
which repeats one temporal network periodically are also called periodic networks [5].
Each constructed network has a duration ten times as large as the original network . We
consider the 4 constructed network *HighSchool11&12, *WorkPlace13&15 and the MIT
dataset to study the performance of the strategies in terms of peak prevalence and peak
time.

3.2.3. SIMULATION
In this subsection, we will introduce the simulation of the SIR spreading process and the
choice of parameters. The performance measures to evaluate the mitigation strategies
will be discussed in the next section.

We consider the following discrete time SIR spreading process: a seed node is cho-
sen to be infected at t ˘ 0, while the other nodes are susceptible at t ˘ 0. Each contact
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between an infected node and a susceptible node could lead to an infection with prob-
ability fl. At each time step, each infected node recovers with a recovery probability °.
We consider infection probability fl ˘ 0.01 as an example. In this case and when ° ˘ 0,
the prevalence at T is around the order of 10% in the first six temporal networks. Fur-
thermore, we consider the recover probability per time step ° ˘ 1.22 ¢ 10¡6 or ° ˘ 0. The
former, ° ˘ 1.22 ¢ 10¡6 leads approximately to a recovery probability 10% per day.

In the simulation, we simulate the exact infection and recovery process except the
following approximation in the recovery process. If there is no contact in the whole net-
work for the period t0, t0 ¯t , we update the state of each node only at the end of this time
window t0 ¯ t instead of at each of the t time steps. In the datasets we have considered,
the longest gap that no contact happens is around one day. Correspondingly, the average
prevalence is the number of infected nodes over the time steps when at least one contact
happens in the network.

Given a temporal network and a centrality metric, we compute the contact removal
preference (3.1) for each contact based on the aggregated network of the temporal net-
work and derive further the removal probability of each contact via the normalization
process of the contact removal preference. We select each node as a possible seed node
and iterate the following for five times per seed node: the fraction ` of contacts to be
removed are selected according to contact removal probabilities; The SIR process start-
ing from the given seed is performed on the pruned temporal network resulted from the
removal of the selected contacts; the prevalence ‰ is recorded at each time step when
there is a contact in the network. Given a network and a centrality measure, we obtain
the prevalence at a time step as the average over the five iterations per every seed node.
The average prevalence over all time steps when there is at least one contact is used as
the key performance to evaluate the contact removal strategies. The fraction ` of con-
tacts to be removed is a control parameter and ` ˘ 10% and ` ˘ 30% are considered.
Simulations are performed in the same way when the time factor f (t ) are taken into ac-
count via the contact removal probability (3.3).

3.3. RESULTS
In this section, we evaluate our contact removal strategies via three performance mea-
sures: the average prevalence and the peak height (the maximal number of infected at a
time step) and the peak time (the time to reach the peak height/prevalence).

3.3.1. PERFORMANCE EVALUATION

AVERAGE PREVALENCE

Firstly, we evaluate the strategies as defined in (3.1) where the probability that a contact
c(i , j , t ) is removed is independent of the time t of the contact but do depend a centrality
metric of the link l (i , j ) in the aggregated network. In total, 13 strategies are considered
that correspond to the aforementioned centrality metrics and their reciprocals. Figure
3.1 exemplifies the prevalence ‰(t ) over time in two periodic networks *HighSchool12
and *WorkPlace15 when each of the 13 strategies is performed and 10% contacts are
removed. The ordering of the prevalence ‰(t ) at each time step for the 13 strategies are
relatively stable over time. The relative performance of the mitigation strategies in terms
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of average prevalence over time seems not sensitive to duration of the observation time
window.

Figure 3.1: The prevalence ‰ of the SIR model over time in periodic network *HighSchool12 (A)
and *WorkPlace15 (B), when mitigated via 13 contact blocking strategies defined by (3.1) respec-
tively. The infection rate is fl ˘ 0.01 per time step, the recovery rate is ° ˘ 1.22 ¢ 10¡6 per time step,
approximately 10% per day and 30% of the contacts are removed.

We use the original network HighSchool11&12, WorkPlace13&15, MIT1&2 to evalu-
ate the blocking strategies with respect to the average prevalence. These networks are
comparable in duration of the observation time window, i.e. within 12 days. The perfor-
mance of each strategy in each network is evaluated via the the average prevalence E [‰],
i.e., the average fraction of infected nodes over the time steps when there is at least one
contact in the network. We start with the simple case when the recovery rate ° ˘ 0. In this

Metrics HS11 HS12 WP13 WP15 MIT1 MIT2
degree product 0.043 0.038 0.027 0.102 0.106 0.193
1/degree product 0.044 0.041 0.028 0.107 0.097 0.183
strength product 0.049 0.042 0.028 0.106 0.110 0.193
1/strength product 0.046 0.040 0.027 0.108 0.098 0.164
betweeness 0.046 0.037 0.027 0.106 0.097 0.178
1/betweeness 0.047 0.041 0.028 0.109 0.112 0.189
random 0.045 0.040 0.028 0.106 0.109 0.202
link weight 0.052 0.042 0.028 0.122 0.111 0.189
1/link weight 0.038 0.032 0.025 0.084 0.084 0.159
weighted eigen 0.050 0.041 0.028 0.108 0.121 0.197
1/weighted eigen 0.048 0.040 0.027 0.107 0.095 0.158
unweighted eigen 0.041 0.040 0.027 0.100 0.104 0.196
1/unweighted eigen 0.046 0.040 0.029 0.107 0.099 0.187

Table 3.2: The average prevalence E [‰] when the recovery rate is ° ˘ 0% per step, and ` ˘ 10% of
the contacts are removed from each temporal network using removal probability (3.1) based on
each centrality metric.

case, the SIR model is equal to the Susceptible-Infected (SI) model. The average preva-
lence when contacts are removed according to each strategy are shown in Table 3.2 and
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3.3, where ` ˘ 10% and ` ˘ 30% contacts are removed respectively. In most networks,
the 1/link weight performs the best among all 13 strategies. The same has been observed
when the recovery rate is ° ˘ 1.22 ¢ 10¡6 per step, approximately 10% per day, as shown
in Table 3.4 and 3.5. These observations suggest that removing contacts between nodes
that have few contacts tends to be the most effective in reducing the average prevalence.

Furthermore, we consider the time dependent contact removal strategies where the
contact removal probability pi j (t ) is defined in (3.3). When f (t ) ˘ 4 ¢ 1t•T /2 ¯ 1t¨T /2, a
contact happening early in time i.e. t ˙ T /2 is 4 times more likely to be removed than a
contact occurring late t ¨ T /2. When f (t ) ˘ 1t•T /2 ¯ 4 ¢ 1t¨T /2, contacts happening late
i.e. t ¨ T /2 are more likely to be removed. Contact removal strategies based on each of
these two f (t ) examples and each centrality metric are evaluated via the average preva-
lence. Their performance when ° ˘ 0, ` ˘ 10% is shown in Table 3.6 and 3.7, where early
and later contacts are more likely removed respectively. Comparing these results and
the time-independent strategies (Table 3.3) or equivalently when f (t ) ˘ 1, we find that
removing earlier contacts better suppresses the epidemic spreading. The same has been
observed when ° ˘ 1.22 ¢ 10¡6, ` ˘ 10% (see Table 3.8 and 3.9). Moreover, metric 1/link
weight tends to have the best performance independent of the choice of f (t ). Therefore,
the epidemic spreading can be better mitigated when contacts between node pairs that
have few contacts and happening early are more probable to be removed.

Metrics HS11 HS12 WP13 WP15 MIT1 MIT2
degree product 0.026 0.026 0.021 0.057 0.084 0.184
1/degree product 0.037 0.031 0.024 0.072 0.073 0.142
strength product 0.038 0.029 0.024 0.068 0.099 0.184
1/strength product 0.030 0.028 0.022 0.063 0.063 0.109
betweeness 0.032 0.026 0.022 0.059 0.074 0.151
1/betweeness 0.032 0.030 0.023 0.068 0.102 0.164
random 0.032 0.027 0.022 0.064 0.088 0.168
link weight 0.043 0.034 0.024 0.088 0.107 0.183
1/link weight 0.020 0.018 0.020 0.038 0.055 0.119
weighted eigen 0.032 0.031 0.023 0.070 0.101 0.177
1/weighted eigen 0.043 0.030 0.024 0.070 0.064 0.099
unweighted eigen 0.026 0.027 0.022 0.056 0.092 0.167
1/unweighted eigen 0.040 0.030 0.023 0.075 0.080 0.141

Table 3.3: The average prevalence E [‰] when the recovery rate is 0% per step, and ` ˘ 30% of the
contacts are removed from each temporal network using removal probability (3.1) based on each
centrality metric.
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Metrics HS11 HS12 WP13 WP15 MIT1 MIT2
degree product 0.034 0.023 0.014 0.051 0.074 0.132
1/degree product 0.038 0.023 0.014 0.052 0.071 0.124
strength product 0.038 0.024 0.014 0.051 0.069 0.131
1/strength product 0.037 0.023 0.013 0.049 0.061 0.110
betweeness 0.037 0.024 0.013 0.050 0.064 0.130
1/betweeness 0.038 0.023 0.015 0.050 0.072 0.130
random 0.036 0.024 0.014 0.047 0.075 0.126
link weight 0.043 0.024 0.015 0.058 0.078 0.139
1/link weight 0.031 0.020 0.013 0.040 0.061 0.111
weighted eigen 0.038 0.024 0.014 0.051 0.078 0.133
1/weighted eigen 0.039 0.024 0.014 0.055 0.072 0.122
unweighted eigen 0.033 0.022 0.013 0.045 0.076 0.138
1/unweighted eigen 0.039 0.024 0.013 0.050 0.068 0.127

Table 3.4: The average prevalence E [‰] when the recovery rate is ° ˘ 1.22 ¢ 10¡6 per step, approxi-
mately 10% per day, and ` ˘ 10% of the contacts are removed from each temporal network using
removal probability (3.1) based on each centrality metric.

Metrics HS11 HS12 WP13 WP15 MIT1 MIT2
degree product 0.021 0.015 0.011 0.026 0.060 0.118
1/degree product 0.032 0.018 0.012 0.033 0.051 0.093
strength product 0.031 0.017 0.011 0.031 0.069 0.121
1/strength product 0.024 0.016 0.011 0.030 0.044 0.075
betweeness 0.025 0.015 0.012 0.027 0.050 0.108
1/betweeness 0.026 0.018 0.011 0.030 0.070 0.110
random 0.026 0.016 0.012 0.031 0.062 0.105
link weight 0.036 0.021 0.012 0.040 0.068 0.121
1/link weight 0.017 0.011 0.010 0.017 0.039 0.081
weighted eigen 0.027 0.018 0.012 0.032 0.062 0.124
1/weighted eigen 0.037 0.018 0.012 0.034 0.042 0.068
unweighted eigen 0.021 0.016 0.011 0.026 0.063 0.119
1/unweighted eigen 0.032 0.018 0.012 0.034 0.056 0.094

Table 3.5: The average prevalence E [‰] when the recovery rate is ° ˘ 1.22 ¢ 10¡6 per step, approxi-
mately 10% per day, and ` ˘ 30% of the contacts are removed from each temporal network using
removal probability (3.1) based on each centrality metric.
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Metrics HS11 HS12 WP13 WP15 MIT1 MIT2
degree product 0.040 0.037 0.027 0.101 0.109 0.191
1/degree product 0.044 0.038 0.028 0.106 0.097 0.171
strength product 0.045 0.039 0.027 0.109 0.107 0.184
1/strength product 0.044 0.039 0.026 0.100 0.091 0.159
betweeness 0.041 0.034 0.027 0.098 0.099 0.165
1/betweeness 0.044 0.040 0.027 0.102 0.107 0.185
random 0.041 0.037 0.028 0.101 0.102 0.184
link weight 0.049 0.040 0.028 0.122 0.118 0.188
1/link weight 0.035 0.030 0.026 0.080 0.081 0.160
weighted eigen 0.045 0.040 0.028 0.108 0.096 0.192
1/weighted eigen 0.047 0.041 0.028 0.102 0.098 0.159
unweighted eigen 0.038 0.038 0.027 0.097 0.104 0.197
1/unweighted eigen 0.050 0.041 0.029 0.107 0.103 0.170

Table 3.6: The average prevalence E [‰] when the recovery rate is ° ˘ 0% per step and ` ˘ 10% of
the contacts are removed from each temporal network using removal probability (3.3) based on
each centrality metric and f (t ) ˘ 4 ¢ 1t•T /2 ¯ 1t¨T /2. Contacts occurring early in time i.e. t ˙ T /2
are more likely to be removed.

Metrics HS11 HS12 WP13 WP15 MIT1 MIT2
degree product 0.043 0.040 0.027 0.106 0.109 0.193
1/degree product 0.047 0.042 0.028 0.110 0.102 0.186
strength product 0.051 0.042 0.027 0.109 0.111 0.200
1/strength product 0.045 0.040 0.028 0.105 0.095 0.172
betweeness 0.046 0.038 0.027 0.107 0.101 0.191
1/betweeness 0.046 0.042 0.027 0.111 0.115 0.193
random 0.048 0.041 0.028 0.107 0.108 0.200
link weight 0.051 0.045 0.029 0.114 0.114 0.191
1/link weight 0.041 0.035 0.026 0.086 0.089 0.161
weighted eigen 0.048 0.041 0.028 0.112 0.108 0.191
1/weighted eigen 0.050 0.041 0.028 0.112 0.097 0.166
unweighted eigen 0.046 0.040 0.027 0.107 0.109 0.200
1/unweighted eigen 0.050 0.043 0.027 0.108 0.103 0.191

Table 3.7: The average prevalence E [‰] when the recovery rate is ° ˘ 0% per step and ` ˘ 10% of
the contacts are removed from each temporal network using removal probability (3.3) based on
each centrality metric and f (t ) ˘ 1t•T /2 ¯ 4 ¢ 1t¨T /2. Contacts occurring late in time i.e. t ¨ T /2
are more likely to be removed.
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Metrics HS11 HS12 WP13 WP15 MIT1 MIT2
degree product 0.032 0.023 0.013 0.046 0.070 0.127
1/degree product 0.039 0.025 0.014 0.049 0.065 0.113
strength product 0.038 0.024 0.014 0.051 0.072 0.133
1/strength product 0.037 0.023 0.013 0.048 0.062 0.108
betweeness 0.034 0.021 0.014 0.047 0.062 0.114
1/betweeness 0.033 0.023 0.014 0.048 0.069 0.134
random 0.033 0.023 0.013 0.048 0.070 0.131
link weight 0.037 0.024 0.013 0.054 0.079 0.131
1/link weight 0.029 0.019 0.012 0.038 0.054 0.104
weighted eigen 0.036 0.025 0.013 0.050 0.067 0.128
1/weighted eigen 0.038 0.025 0.014 0.050 0.064 0.111
unweighted eigen 0.030 0.023 0.013 0.044 0.073 0.126
1/unweighted eigen 0.038 0.024 0.014 0.051 0.068 0.113

Table 3.8: The average prevalence E [‰] when the recovery rate is ° ˘ 1.22 ¢ 10¡6 per step, and
` ˘ 10% of the contacts are removed from each temporal network using removal probability (3.3)
based on each centrality metric and f (t ) ˘ 4 ¢1t•T /2 ¯1t¨T /2. Contacts occurring early in time i.e.
t ˙ T /2 are more likely to be removed.

Metrics HS11 HS12 WP13 WP15 MIT1 MIT2
degree product 0.036 0.025 0.014 0.052 0.074 0.134
1/degree product 0.039 0.024 0.014 0.053 0.071 0.124
strength product 0.039 0.025 0.014 0.052 0.078 0.139
1/strength product 0.037 0.024 0.014 0.052 0.070 0.117
betweeness 0.037 0.024 0.014 0.051 0.065 0.126
1/betweeness 0.036 0.025 0.014 0.051 0.077 0.133
random 0.037 0.025 0.014 0.051 0.077 0.138
link weight 0.041 0.026 0.015 0.055 0.075 0.129
1/link weight 0.033 0.021 0.014 0.042 0.059 0.110
weighted eigen 0.040 0.025 0.014 0.051 0.082 0.141
1/weighted eigen 0.041 0.025 0.014 0.054 0.067 0.115
unweighted eigen 0.036 0.025 0.013 0.050 0.078 0.136
1/unweighted eigen 0.039 0.024 0.014 0.056 0.067 0.123

Table 3.9: The average prevalence E [‰] when the recovery rate is ° ˘ 1.22 ¢ 10¡6 per step and
` ˘ 10% of the contacts are removed from each temporal network using removal probability (3.3)
based on each centrality metric and f (t ) ˘ 1t•T /2 ¯ 4 ¢ 1t¨T /2. Contacts occurring late in time i.e.
t ¨ T /2 are more likely to be removed.
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PROPERTIES OF THE PRUNED NETWORK

The pruned network is the resultant temporal network after contacts being removed ac-
cording to a strategy. In this section, we explore the relation between the properties of
the pruned network and the average prevalence, resulted from a contact removal strat-
egy. This could help us understand what kind of pruned networks may lead to a low
prevalence. We focus on time-independent contact removal strategies to illustrate our
method.

The average number of contacts removed between any node pair i and j or link l (i , j )
in the aggregated network is pi j wi j , where wi j is the number of contacts between i and
j and pi j is the probability that a contact between i and j is removed. The average
number of contacts removed by strategy 1/link weight is the same for all links in the
aggregated network1. We explore whether a strategy that removes a similar number of
contacts per node pair (link) may better mitigates the epidemic spreading. Figure 3.2
(B) demonstrates the scatter plot of the average prevalence E [‰] versus

p
V ar [pi j wi j ]

for each strategy when ` ˘ 10% contacts are removed and the recovery rate is ° ˘ 0 per
step. We find that, in each network, a strategy tends to reduce the average prevalence
E [‰] more if

p
V ar [pi j wi j ] is small. The same can be observed when the recovery rate

° and removal fraction ` vary (see (B) of Figure 3.3, 3.4, 3.5).
Each pruned network is a temporal network. We investigate three properties of the

aggregated network W ⁄ of the pruned network. Each element W ⁄
i j in the weighted adja-

cency matrix W ⁄ of the aggregated pruned network tells the number of contacts between
i and j in the pruned network.

We explore firstly the largest eigenvalue ‚1(W ⁄) of the aggregated pruned network in
relation the corresponding average prevalence resulted from each strategy. Consider the
Susceptible-Infected-Susceptible SIS epidemic spreading process on a static network. It
has been shown that the largest eigenvalue of the network suggests the robustness of the
network subject to epidemic spreading [2, 17–19]. When the effective infection rate, i.e.
infection rate divided by the recovery rate, is above (below) the threshold ¿c » 1

‚1(W ⁄) , a
none-zero (zero) fraction of the population is infected in the meta-stable state. A static
network whose largest eigenvalue is small has a large epidemic threshold, thus is robust
against epidemic spreading.

Would a pruned network with a small ‚1(W ⁄) lead to a low prevalence according to
the findings of SIS model on static networks? Figure 3.2(A), 3.3(A), 3.4(A), 3.5(A) respec-
tively show the scatter plot of the average prevalence E [‰] versus ‚1(W ⁄) of the aggre-
gated pruned network 2 for each strategy in each network. We observe the opposite:
the best strategy with the lowest prevalence tends to lead to a pruned network with a
large largest eigenvalue. Such inconsistency can be possibly explained as follows. First,
a network that is robust against SIS epidemic spreading is not necessarily robust against
SIR epidemic spreading. Each link in the aggregated pruned network can transmit the
epidemic maximally once in SIR model whereas possibly multiple times in SIS models.

1In the simulation, the average number of contacts removed per link by strategy 1/link weight may differ
slightly among the links. When the removal probability pi j ¨ 1, we set pi j ˘ 1 and re-normalize the removal
probabilities of the other links to ensure that a fraction ` of contacts are removed.

2Given a temporal network and a contact removal strategy, we have simulated per seed node 5 realizations of
contact removal and a SIR spreading process on each resultant pruned network. The ‚1(W ⁄) in the scatter
plot is the average over the 5N realizations of the pruned network.
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That is why removing many contacts from links whose end nodes have a high strength
may better reduce the largest eigenvalue and better suppress the SIS epidemic but not
the SIR epidemic spreading. Second, a network with a low epidemic threshold does not
implies a high prevalence when the effective infection rate is above the epidemic thresh-
old. Finally, the aggregated pruned network can not capture the temporal information
of contacts, which influence the spread of an epidemic.

Figure 3.2: Scatter plot of the average prevalence E [‰] versus the largest eigenvalue ‚1(W ⁄) of

the aggregated pruned network (A), the standard deviation
q

V ar [p̃i j wi j ] of the average number

of contacts removed from a node pair (B) the modularity Mod(W ⁄) (C) and the relative size of
the largest connected component of the aggregated pruned network (D), respectively. A fraction
` ˘ 10% of the contacts are removed. The recovery rate is ° ˘ 0 per step. The results obtained with
1/link weight strategy are circled.

Furthermore, we consider the modularity Mod(W ⁄) of the aggregated pruned net-
work. Given a weighted network and a given partition of all the nodes into non-overlapping
communities, the quality of this community partition can be measured by the modular-
ity [20, 21] 1

2L
PN

i , j ˘1 (W ⁄
i j ¡

si s j
2L )–Ci C j , where si is the strength of node i , Ci is the label

of the community to which node i belongs to, the Kronecker delta function –Ci C j ˘ 1
if Ci ˘ C j or else –Ci C j ˘ 0. The modularity of a partition describes the extent to which
that more link weights are within each community than link weights between communi-
ties. The modularity Mod(W ⁄) 2 [0,1] of a network is the maximal modularity that could
be obtained via network/node partition. We compute the modularity of an aggregated
pruned network via the Louvain method [22]. The scatter plot in Figure 3.2(C), 3.3(C),
3.4(C), 3.5(C) shows that the optimal contact removal strategy that obtains the minimal
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Figure 3.3: Scatter plot of the average prevalence E [‰] versus the largest eigenvalue ‚1(W ⁄) of

the aggregated pruned network (A), the standard deviation
q

V ar [p̃i j wi j ] of the average number

of contacts removed from a node pair (B) the modularity Mod(W ⁄) (C) and the relative size of
the largest connected component of the aggregated pruned network (D), respectively. A fraction
` ˘ 30% of the contacts are removed. The recovery rate is ° ˘ 0 per step. The results obtained with
1/link weight strategy are circled.

average prevalence tends to result in a pruned network that has a large modularity. A
network with a large modularity is more robust against epidemic spreading.

Finally, we explore the relative size S1(W ⁄) of the largest connected component of
the aggregated pruned network. We wonder whether the optimal strategy reduced the
prevalence via disconnecting the network. As shown in the bottom-right figure of Figure
3.2(D), 3.3(D), 3.4(D), 3.5(D), most pruned networks still have a relative large component
S1(W ⁄) » 1. Exceptions are observed for in MIT1 and MIT2, where strategies may evi-
dently disconnect the aggregated pruned network. In such cases, the optimal strategy
tends to lead to a relatively small largest component size S1(W ⁄). This is in line with the
finding that efficient immunization strategy should keep the largest connected compo-
nent size small [23].

In summary, the optimal mitigation strategy tends to lead to an aggregated pruned
network with a large largest eigenvalue, a large modularity and possibly a small largest
connected component (in case contact removal strategies evidently disconnect the pruned
network). Moreover, a strategy seems to better reduce the prevalence if it removes a sim-
ilar number of contacts from the links. These observations together further support our
previous explanation why the optimal strategy could result in an aggregated pruned net-
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Figure 3.4: Scatter plot of the average prevalence E [‰] versus the largest eigenvalue ‚1(W ⁄) of

the aggregated pruned network (A), the standard deviation
q

V ar [p̃i j wi j ] of the average number

of contacts removed from a node pair (B) the modularity Mod(W ⁄) (C) and the relative size of
the largest connected component of the aggregated pruned network (D), respectively. A fraction
` ˘ 10% of the contacts are removed. The recovery rate is ° ˘ 1.22 ¢ 10¡6 per step, approximately
10% per day. The results obtained with 1/link weight strategy are circled.

work with a large largest eigenvalue: the optimal strategy tends to remove a similar num-
ber of contacts from links, keeping the hubs, i.e. nodes with a large node strength. Such
hubs contribute to a large largest eigenvalue and thus a low epidemic threshold for SIS
epidemic spreading. However, the modular structure of the pruned network limits the
prevalence of an epidemic, which can not be captured directly by the largest eigenvalue.

PEAK HEIGHT AND PEAK TIME

The peak height/prevalence and peak time suggest the maximal demand in e.g., health-
care resources and the time to prepare for the highest demand in resources, respectively.
We consider the 4 constructed network *HighSchool11&12, *WorkPlace13&15 and the
MIT dataset to study the performance of the strategies in terms of peak prevalence and
peak time.

For each centrality metric or strategy, we simulate the SIR spreading process five
times for every possible seed node. The peak height is found as the maximum preva-
lence in each spreading process. Table 3.10 shows the average peak height over all 5 ¢ N
realizations of the spreading processes. We find that the strategy 1/link weight results in
the smallest peak height. The average peak height shown in Table 3.10 differs from the
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Figure 3.5: Scatter plot of the average prevalence E [‰] versus the largest eigenvalue ‚1(W ⁄) of

the aggregated pruned network (A), the standard deviation
q

V ar [p̃i j wi j ] of the average number

of contacts removed from a node pair (B) the modularity Mod(W ⁄) (C) and the relative size of
the largest connected component of the aggregated pruned network (D), respectively. A fraction
` ˘ 30% of the contacts are removed. The recovery rate is ° ˘ 1.22 ¢ 10¡6 per step, approximately
10% per day. The results obtained with 1/link weight strategy are circled.

maximal prevalence in Figure 3.1, which corresponds to the maximum of the average
prevalence over the 5 ¢ N realizations.

Similarly, the average peak time, i.e. time to reach the maximal prevalence over all
spreading processes started at every possible seed node is derived and given in Table
3.11. Interestingly, the peak time for strategy 1/link weight is not always the smallest.
Strategy 1/link weight leads to the lowest peak height and possibly a longer peak time.

ROBUSTNESS

Temporal networks measured in real-world scenarios possibly contain noise, e.g., uncer-
tainty of the ordering of contacts or occurring time of contacts. We would like to explore
whether our findings in the relative effectiveness of the proposed mitigation strategies
still holds when the temporal networks measured are subject to such type of uncertainty.

We assume the temporal networks that we have so far analyzed are measured rel-
atively precisely. For each of these temporal networks, we apply two approaches, re-
spectively, to generate the corresponding temporal networks perturbed by the afore-
mentioned uncertainty. The duration of one time step in the original temporal networks
is either 1 second or 20 seconds. We split the observation period [0,T ] of a temporal net-
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work into non-overlapping bins, whose duration is ¢ ˘ 60 seconds to further perturb the
networks. We first adopt the uncertainty model I used in [24], which randomly reshuffles
the timestamps of the contacts within each bin of ¢ ˘ 60 seconds. This model encapsu-
lates the uncertainty of the ordering of contacts that happen at similar time. Given the
uncertainty model I (one network realization as an example) of each original temporal
network, we evaluate the contact blocking strategies in the same way as in the original
network and their performance is given in Table 3.12 and Table 3.13. We find that the
ranking of the strategies does not change in model I compared to that in the original
temporal networks and the 1/link weight remains the best strategy. Our finding seems
to be robust against minor uncertainty in the ordering of contacts.

To capture the uncertainty of the exact occurring time of contacts, we use our uncer-
tainty model II, where each contact’s occurring time is measured in the time resolution
of ¢ ˘ 60 seconds instead of second. In other words, the number of contacts between
each pair of nodes in each bin of ¢ ˘ 60 seconds is known in model II. However, the
exact occurring time of the contacts happening within each bin in precision of seconds
is unknown. For each snapshot/bin of ¢ ˘ 60 seconds, model II constructs a weighted
network, where the weight between two nodes counts the number of contacts between
them that occur within the bin of ¢ ˘ 60 seconds. Each weighted network is thus an ag-
gregated network of the original temporal network over 60 seconds. The performance of
each blocking strategy on model II are shown in Table 3.14 and Table 3.15, demonstrating
that strategy 1/link weight outperforms the others, the same as observed in the original
temporal networks. Hence, our evaluation of the strategies is robust against network
perturbations that models the uncertainty of temporal network data.

Metrics *HS11 *HS12 *WP13 *WP15 MIT
degree product 0.355 0.121 0.018 0.235 0.163
1/degree product 0.346 0.119 0.020 0.239 0.156
strength product 0.356 0.130 0.020 0.246 0.182
1/strength product 0.301 0.109 0.017 0.225 0.130
betweeness 0.314 0.099 0.018 0.230 0.171
1/betweeness 0.354 0.120 0.020 0.242 0.164
random 0.346 0.119 0.018 0.236 0.167
link weight 0.384 0.132 0.020 0.261 0.170
1/link weight 0.279 0.077 0.016 0.193 0.110
weighted eigen 0.371 0.128 0.020 0.237 0.182
1/weighted eigen 0.298 0.115 0.021 0.227 0.144
unweighted eigen 0.347 0.117 0.019 0.235 0.169
1/unweighted eigen 0.343 0.112 0.018 0.241 0.164

Table 3.10: The peak height i.e. the highest prevalence over time, when the recovery rate is 10%
per day, and ` ˘ 10% of the contacts are removed from each temporal network using removal
probability (3.1).
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Metrics *HS11 *HS12 *WP13 *WP15 MIT
degree product 3.714 2.518 0.877 1.381 0.429
1/degree product 3.514 2.519 1.695 1.380 0.429
strength product 3.317 2.520 1.678 1.381 0.429
1/strength product 3.321 2.522 1.258 1.382 0.430
betweeness 3.717 2.778 1.208 1.381 0.429
1/betweeness 3.320 2.521 1.078 1.380 0.429
random 3.120 2.521 1.145 1.381 0.429
link weight 3.119 2.516 1.297 1.381 0.429
1/link weight 4.119 2.719 0.617 1.904 0.589
weighted eigen 3.120 2.519 1.111 1.381 0.430
1/weighted eigen 3.117 2.519 1.314 1.381 0.429
unweighted eigen 3.915 2.520 1.079 1.381 0.482
1/unweighted eigen 3.120 2.519 1.043 1.381 0.482

Table 3.11: The peak time in units of t/T before the maximum prevalence is achieved. The re-
covery rate is 10% per day, and ` ˘ 10% of the contacts are removed from each temporal network
using removal probability (3.1).

Metrics HS11 HS12 WP13 WP15 MIT1 MIT2
degree product 0.028 0.027 0.022 0.059 0.089 0.180
1/degree product 0.038 0.031 0.025 0.072 0.075 0.142
strength product 0.038 0.029 0.023 0.069 0.101 0.186
1/strength product 0.030 0.027 0.022 0.065 0.061 0.107
betweeness 0.031 0.025 0.022 0.061 0.073 0.154
1/betweeness 0.036 0.030 0.023 0.064 0.100 0.175
random 0.033 0.027 0.023 0.063 0.092 0.165
link weight 0.042 0.033 0.024 0.087 0.105 0.185
1/link weight 0.021 0.018 0.020 0.037 0.056 0.124
weighted eigen 0.034 0.032 0.023 0.068 0.104 0.187
1/weighted eigen 0.047 0.030 0.024 0.071 0.060 0.101
unweighted eigen 0.026 0.028 0.022 0.053 0.097 0.176
1/unweighted eigen 0.041 0.030 0.024 0.074 0.077 0.142

Table 3.12: The average prevalence E [‰] in uncertainty model I when the recovery rate is ° ˘ 0
per step, and ` ˘ 30% of the contacts are removed from each temporal network using removal
probability (3.1) based on each centrality metric.
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Metrics HS11 HS12 WP13 WP15 MIT1 MIT2
degree product 0.022 0.016 0.013 0.026 0.060 0.112
1/degree product 0.031 0.018 0.012 0.033 0.052 0.098
strength product 0.030 0.018 0.012 0.030 0.068 0.120
1/strength product 0.025 0.017 0.012 0.031 0.042 0.081
betweeness 0.024 0.016 0.011 0.027 0.048 0.095
1/betweeness 0.027 0.018 0.012 0.031 0.068 0.115
random 0.026 0.017 0.011 0.030 0.055 0.112
link weight 0.036 0.021 0.013 0.041 0.064 0.125
1/link weight 0.017 0.011 0.010 0.017 0.035 0.082
weighted eigen 0.027 0.019 0.012 0.033 0.066 0.120
1/weighted eigen 0.035 0.019 0.013 0.032 0.042 0.067
unweighted eigen 0.021 0.017 0.011 0.025 0.065 0.121
1/unweighted eigen 0.033 0.018 0.012 0.034 0.051 0.096

Table 3.13: The average prevalence E [‰] in uncertainty model I when the recovery rate is ° ˘ 1.22 ¢
10¡6 per step, approximately 10% per day, and ` ˘ 30% of the contacts are removed from each
temporal network using removal probability (3.1) based on each centrality metric.

Metrics HS11 HS12 WP13 WP15 MIT1 MIT2
degree product 0.022 0.016 0.011 0.025 0.061 0.114
1/degree product 0.031 0.018 0.013 0.033 0.047 0.093
strength product 0.029 0.017 0.012 0.031 0.065 0.122
1/strength product 0.026 0.017 0.012 0.032 0.041 0.077
betweeness 0.025 0.015 0.012 0.029 0.051 0.103
1/betweeness 0.027 0.017 0.013 0.030 0.068 0.113
random 0.028 0.017 0.012 0.030 0.061 0.109
link weight 0.035 0.022 0.013 0.043 0.073 0.128
1/link weight 0.017 0.011 0.011 0.018 0.038 0.086
weighted eigen 0.028 0.019 0.012 0.033 0.070 0.130
1/weighted eigen 0.036 0.018 0.012 0.034 0.043 0.068
unweighted eigen 0.019 0.015 0.011 0.025 0.066 0.118
1/unweighted eigen 0.032 0.018 0.011 0.036 0.053 0.096

Table 3.14: The average prevalence E [‰] in uncertainty model II when the recovery rate is ° ˘ 0
per step, and ` ˘ 30% of the contacts are removed from each temporal network using removal
probability (3.1) based on each centrality metric.
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Metrics HS11 HS12 WP13 WP15 MIT1 MIT2
degree product 0.021 0.016 0.012 0.022 0.055 0.114
1/degree product 0.026 0.017 0.012 0.030 0.051 0.099
strength product 0.027 0.017 0.012 0.026 0.069 0.110
1/strength product 0.023 0.016 0.011 0.029 0.039 0.078
betweeness 0.023 0.015 0.012 0.025 0.051 0.095
1/betweeness 0.024 0.017 0.012 0.028 0.060 0.109
random 0.022 0.016 0.011 0.028 0.058 0.103
link weight 0.030 0.020 0.013 0.036 0.066 0.117
1/link weight 0.016 0.011 0.011 0.017 0.036 0.081
weighted eigen 0.025 0.017 0.013 0.029 0.060 0.123
1/weighted eigen 0.029 0.018 0.011 0.031 0.041 0.066
unweighted eigen 0.020 0.015 0.011 0.024 0.061 0.108
1/unweighted eigen 0.028 0.017 0.012 0.032 0.051 0.094

Table 3.15: The average prevalence E [‰] in uncertainty model II when the recovery rate is ° ˘
1.22 ¢ 10¡6 per step, and ` ˘ 30% of the contacts are removed from each temporal network using
removal probability (3.1) based on each centrality metric.
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3.4. CONCLUSIONS
In this chapter, we have developed and evaluated contact blocking strategies in order to
mitigate SIR epidemic spreading on a temporal network. The probability that a contact
c(i , j , t ) is removed is defined as a generic function of a given centrality metric of the cor-
responding link l (i , j ) in the corresponding aggregated network and time t . In total 12
centrality metrics or strategies and a baseline strategy (random removal) have been con-
sidered. The strategy (1/link weight) that tends to remove contacts between node pairs
with few contacts and removes early contacts seems to mitigate the epidemic spread-
ing the best, with respect to the average prevalence, the peak prevalence and the time
needed to reach the peak prevalence. This suggests that the removal of contacts along
weak social ties in an early phase tends better suppress the epidemic spreading. Remov-
ing a large number of contacts from few node pairs is likely too costly to be effective. We
demonstrate further that our finding, i.e., the 1/link weight strategy tends to outperform,
still holds when uncertainty is introduced into original temporal networks via reshuffling
the ordering of contacts and enlarging the temporal resolution, respectively.

Characterization of the pruned network resulted from the contact removal of a given
strategy provides insights why some strategies outperform the others: an optimal strat-
egy (1/link weight) leads to an aggregated pruned network with a large largest eigen-
value, a large modularity and a possibly small largest connected component size. A strat-
egy tends to perform better when a similar number of contacts are removed from links.
These findings are in line with our understanding that a network with a small largest con-
nected component, a large modularity prohibits epidemic spreading. However, the large
largest eigenvalue achieved by the optimal strategy seems to contradict our understand-
ing that a static network with a large largest eigenvalue tends to facilitate SIS epidemic
spreading with respect to its small epidemic threshold. We explain this seemingly incon-
sistency with respect to the difference between SIR and SIS models, between epidemic
threshold and prevalence, and the complexity introduced by the temporal contacts that
cannot be captured by the aggregated network.

A few limitations of our work should be noticed and could be explored in future work.
First, we have confined ourselves to the SIR model with limited choice of parameters and
a few real-world networks. SIR model is a simplified model of the epidemic spreading
process, whereas real-world epidemic spreading can be more complicated. Hence, our
conclusion regarding the effectiveness of the mitigation strategies cannot be generalized
directly to real-world epidemic mitigation. It is essential to explore further generalized
choice of more realistic epidemic spreading model. Second, the dependency of removal
preference pi j (t ) on time, i.e., f (t ), that we have we chosen is one of the simplest forms.
Other forms of time-dependent function f (t ) could be further explored, especially those
that are feasible for policy makers. The contact removal strategies proposed is based
on the knowledge of the aggregated network over the observation window, the period
when we intervene the spreading process. One challenging question is how to estimate
or predict this aggregated network based on the observation of the aggregated network
in the past. Beyond the aggregated network, contact removal strategies can also be based
on temporal and topological properties of contacts.
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Temporal higher-order networks, where each hyperlink involving a group of nodes
are activated or deactivated over time, are recently used to represent complex systems
such as social contacts, interactions or collaborations that occur at specific times. Such
networks are substrates for social contagion processes such as the diffusion of informa-
tion and opinions. In this chapter, we consider eight temporal higher-order networks
derived from human face-to-face interactions in various contexts and the Susceptible-
Infected threshold process on each of these networks: whenever a hyperlink is active
and the number of infected nodes in the hyperlink exceeds a threshold £ , each suscep-
tible node in the hyperlink is infected independently with probability fl. The objective
is to understand (1) the contribution of each hyperlink to the diffusion process, namely,
the average number of nodes that are infected directly via the activation of the hyper-
link when the diffusion starts from an arbitrary seed node, and (2) hyperlinks with what
network properties tend to contribute more. Such understanding is crucial for further
development of strategies to mitigate a diffusion process.

We first propose to construct the information diffusion backbone. The backbone is a
weighted higher-order network, where the weight of each hyperlink denotes the contri-
bution of the hyperlink to a given diffusion process. Secondly, we find that the backbone,
or the contribution of hyperlinks, is dependent on the parameters fl and £ of the diffu-
sion process, which is also supported by our theoretical analysis of the backbone when
fl ! 0. Thirdly, we systematically design centrality metrics, i.e., network properties, for
hyperlinks in a temporal higher-order network and use each centrality metric to estimate
the ranking of hyperlinks by the weight in the backbone. Finally, we find and explain why
different centrality metrics can better estimate the contributions of hyperlinks for differ-
ent parameters of the diffusion process.

4.1. INTRODUCTION
Complex networks serve as substrates for the diffusion of information, where a piece
of information propagates along links connecting couples of nodes. Complex systems
in nature and society are rarely static but exhibit time-varying network topologies [1–
3]. Traditionally, such systems can be represented as temporal networks, where links
between pairs of nodes are activated and deactivated over time. For example, a hu-
man physical contact network is usually experimentally recorded as a collection of time-
resolved contacts, where a contact denotes an interaction between a pair of nodes at a
specific timestamp.

Prior works have revealed that properties of temporal networks such as the inter-
event time distribution can affect the dynamics of processes unfolding on the temporal
network, e.g., impact the speed of epidemic spreading or diffusion [4–8], or impede the
random walk explorations [9]. The properties of nodes, node pairs, and subgraphs [10]
in temporal networks have been explored in order to identify which kind of nodes, node
pairs, or subgraphs to activate (or block) to maximize (or to minimize) the spread of in-
formation (or epidemics) [11–14]. It was found that that vaccinating nodes with certain
properties in a temporal network leads to a lower outbreak size when mitigating an epi-
demic spreading process on temporal networks [11, 12]. Ciaperoni et al. [10] proposed
to identify the subgraphs of a temporal network using a generalized k-core decomposi-
tion method and showed that the removal of temporal links belong to these subgraphs
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leads to large decrease in the final outbreak size of a spreading process.

Despite advances made in the past decade, studies of temporal networks have mostly
focused on pairwise interactions, which fall short of representing a wide variety of real-
world systems [15–18]. For example, individuals [19, 20] or animals [21, 22] may interact
in a group of a size larger than two and the collaboration in a scientific paper may in-
volve more than two researchers [23, 24]. Such higher-order (group) interactions can be
represented as temporal higher-order networks, where a group or hyperlink is activated
(when it has an interaction or contact) and deactivated over time. Previous studies have
found shared properties of real-world temporal higher-order networks representing hu-
man physical interactions, such as the temporal correlation between hyperlinks in ac-
tivity [19, 25–27]. It was also demonstrated that the properties of temporal higher-order
networks influence the behavior of dynamical processes. For instance, the duration of
hyperlink activations was found to affect the onset of endemic state in epidemic spread-
ing processes [28], while the time ordering of hyperlink activations impacts the consen-
sus reached in nonlinear consensus dynamics [29]. This body of research has mainly
revealed how global properties of the entire temporal higher-order network influence
the behavior of dynamical processes.

However, the role or contribution of a hyperlink in a spreading process, e.g., the num-
ber of nodes that are infected directly via the activation of the hyperlink, on a temporal
higher-order network remains unexplored. Recently, Zhan et al. [13] studied the contri-
bution of pairwise links in a diffusion process on a temporal pairwise network, finding
that links that activate frequently earlier in time tend to contribute more when the infec-
tion probability is large. Contreras et al. [30] investigated spreading processes on static
higher-order network and found that the parameters of the spreading process affect the
probability of a node being directly infected by another node. To understand which kind
of hyperlinks contribute more to the diffusion process unfolding on temporal higher-
order networks, new methods are required due to the new dynamics of the diffusion
process.

In this work, we aim to understand the role of hyperlinks and investigate which kind
of hyperlinks, or hyperlinks with what properties, tend to contribute more to a spread-
ing process on the temporal higher-order network. Empirical evidence has shown that
in social phenomena, such as the diffusion of rumors or the adoption of norms and be-
haviors, contact with a single active neighbor is often insufficient to trigger adoption
by an individual [31–33]. Moreover, effects such as peer-pressure can occur as a conse-
quence of the simultaneous exposition to many active members in a group gathering. As
a result, a number of generalized models on higher-order networks have been proposed
recently to study social contagion, which is also referred as a spreading or diffusion pro-
cess [34–36]. In this work, we model the social contagion process by generalizing the
Susceptible-Infected threshold spreading process, which is originally defined on a static
higher-order network [35], to a spreading process unfolding on a temporal higher-order
network: initially, one seed node is infected while the other nodes are susceptible; when
a hyperlink is active at any time, if the number of infected nodes within the hyperlink
exceeds a threshold £ , each susceptible node in the hyperlink is independently infected
with a probability fl. The threshold £ reflects how many exposures to infected nodes in
a group interaction are required to trigger the infection of each susceptible node within
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the group. We propose to represent the contribution of each hyperlink to a diffusion pro-
cess by constructing the diffusion backbone. The diffusion backbone is a static higher-
order network that is the union of all hyperlinks that appear in at least one diffusion
trajectory of the spreading process, starting from an arbitrary seed node. Each hyperlink
in the backbone is assigned a weight that reflects the average number of nodes directly
infected through the activation of this hyperlink, over different choices of the seed node
and realizations of the spreading process.

We construct the diffusion backbones for real-world temporal higher-order networks
underlying SI threshold processes with diverse parameters, fl and £ . Eight temporal
higher-order networks derived from human face-to-face interactions in various contexts
are considered. Firstly, we investigate how the infection probability fl and threshold £
influence the constructed diffusion backbone. The backbone is shown to be dependent
on the parameters of the spreading process via both experiments and theoretical anal-
ysis of the backbone when fl ! 0. Secondly, we explore which properties of a hyperlink
tend to results in a large weight of the hyperlink in the diffusion backbone thus a sig-
nificant contribution to the diffusion process. We propose different centrality metrics
or properties for hyperlinks in the underlying temporal higher-order network and use
each centrality metric to estimate the ranking of hyperlinks in their contribution to the
spreading process. Each proposed metric is based only on the partial temporal higher-
order network observed at the hyperlinks itself and its neighboring hyperlinks. This al-
lows efficient identification of hyperlinks that contribute more to the diffusion. For dif-
ferent ranges of the process parameters, different (parameter-free) metrics perform the
best, approaching the optimal performance of complex centrality metrics with control
parameters. This is further explained through physical and theoretical interpretations.

Our findings elucidate the contributions of hyperlinks to a spreading process pro-
cess. These findings could be insightful for the design of strategies to facilitate (or sup-
press) the information spreading on temporal higher-order networks via e.g., incentiviz-
ing the activation of selected groups.

4.2. METHODS

4.2.1. TEMPORAL HIGHER-ORDER NETWORKS

A temporal (pairwise) network can be represented by G ˘ (N ,C ), where N is the set of
nodes (or individuals), and C ˘ {(l (u, v), t )ju, v 2 N , t 2 [1,T ]} is the set of events. Each
event (l (u, v), t ) 2 C represents the pairwise interaction between node u and v occurring
at discrete time t . A temporal network G can be aggregated along the time dimension,
giving the (time) aggregated network, denoted as G ˘ (N ,C ). A link between the node
pair (u, v) exists in aggregated network G , i.e., l (u, v) 2 C , if and only if there is at least one
interaction in the temporal network between u and v during [1,T ]. Each link l (u, v) 2 C
in the aggregated network G(N ,C ) is indexed with an integer j , and the j -th link l j is
associated with a weight w j , which is the number of times that link l j has been activated
in the temporal network.

However, people often gather in larger groups where more than two individuals inter-
act simultaneously. The classic pairwise representation of temporal networks is limited
in describing such group interactions, requiring the formalism of temporal higher-order
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networks. A temporal higher-order network (or temporal hypergraph) is represented as
H ˘ (N ,E ), where E ˘ {(h(u1, ...,ud ), t )ju1, ...,ud 2 N , t 2 [1,T ]} is the set of higher-
order interactions (events) involving an arbitrary number of nodes from the node set N .
Each higher-order event (h(u1, ...,ud ), t ) 2 E denotes a group interaction among the d
individual nodes at time t , where h(u1, ...,ud ) ˘ {u1, ...,ud } denotes an order-d hyperlink
among a set of the corresponding d individuals. The size d of the group is also referred
to as the order of hyperlink h(u1, ...,ud ). For example, the order of a dyadic and triadic
hyperlink are 2 and 3 respectively. The higher-order aggregated network of a temporal
higher-order network H is denoted as H ˘ (N ,E), where E is the set of hyperlinks. Hy-
perlink h(u1, ...,ud ) exists in E if and only if hyperlink h(u1, ...,ud ) has been activated at
least once in the temporal higher-order network. Each hyperlink in the aggregated net-
work H is indexed with an integer j and associated with a weight w j , where j 2 [1, jE j]
and jE j is the total number of hyperlinks in H . The weight w j represents the number
of times that hyperlink h j has been activated during [1,T ]. We denote the activation of
link h j in the temporal higher-order network by a time series x j (t ), where t 2 [1,T ] and
x j (t ) ˘ 1 if hyperlink h j is activated at time t , otherwise x j (t ) ˘ 0. A temporal higher-
order network H can thus be equivalently represented by its aggregated network H with
each link h j in H further associated with its activity time series x j (t ).

4.2.2. DIFFUSION PROCESS ON TEMPORAL HIGHER-ORDER NETWORKS

We consider a social contagion process on a temporal higher-order network, where each
node is in one of two states at any time: infectious or susceptible. Initially, one seed
node is infected while the other nodes are susceptible. Susceptible nodes can be in-
fected through interactions with other infected nodes: when a hyperlink is active at any
time, if the number of infected nodes within the hyperlink exceeds a threshold £ , each
susceptible node within the hyperlink gets infected independently with a probability fl;
otherwise, it remains susceptible. The traditional Susceptible-Infected (SI) process on a
temporal pairwise network can be regards as a special case of the above diffusion pro-
cess when all hyperlinks in H (N ,E ) are dyadic (order-2), and the threshold is £ ˘ 1.
When £ ˘ 1 and fl ˘ 1, the diffusion process on a higher order temporal network be-
comes equivalent to the traditional SI process on the corresponding temporal pairwise
network, where each higher-order interaction in the temporal higher-order network is
treated as interactions between each pair of nodes within the hyperlink. We consider
two cases in this work: £ ˘ 1 and £ ˘ d ¡1. When £ ˘ d ¡1, the threshold for a hyperlink
is dependent on the order d of the hyperlink. Hence, hyperlinks of a higher order have a
higher threshold.

Furthermore, the aforementioned diffusion model can be considered as a adjusted
version of the model studied in Ref. [35], with the following distinctions. We consider
a discrete time Susceptible-Infectious (SI) diffusion process on temporal higher-order
networks. In contrast, a continuous time Susceptible-Infectious-Susceptible (SIS) pro-
cess on static higher-order networks has been studied in Ref. [35]. Our choice of discrete
time process is because the underlying temporal higher-order networks evolve at dis-
crete time. We start with the simple SI process instead of SIS process, which requires
both network data of longer periods and better method to understand and identifies the
steady state.
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4.2.3. EMPIRICAL DATASETS
We apply our analysis to 8 real-world human physical contact datasets from SocioPat-
terns. These datasets contain collections of face-to-face interactions among individ-
uals in various social contexts, including hospital (Hospital), primary school (Prima-
ryschool2013), high school (Highschool2012, Highschool2013), workplace (Workplace2015),
museum (Infectious), and conferences (HT2009, SFHH). The face-to-face interactions
are recorded as pairwise contacts, where an interaction is stored when two individu-
als face each other at a distance of approximately . 1.5 meters over a 20-second inter-
val. Each original dataset naturally records only pairwise interactions, from which we
deduce the corresponding temporal higher-order network via the common method al-
ready used in the literature [19, 25–27]. Specifically, at any time t , if there are d(d ¡ 1)/2
pairwise interactions between each nodes pair of a set of d nodes, thus forming a clique,
we promote these d(d ¡ 1)/2 pairwise interactions to an interaction of order d . For ex-
ample, three temporal links (l (a,b), t ), (l (b,c), t ) and (l (a,c), t ) in the temporal network
G (N ,C ) at time t are considered as a single temporal hyperlink (h(a,b,c), t ) in the cor-
responding temporal higher-order network H (N ,E ). Since a clique of order d contains
all its sub-cliques of orders d 0 ˙ d , only the maximal clique is promoted to a higher-
order event. Furthermore, we preprocess the datasets by removing time steps without
any interaction in the whole network and also excluding nodes that are not in the largest
connected component of the higher-order aggregated network H . The basic statistics of
each preprocessed dataset are presented in Table 4.1.

Network jN j jE j jE j T

infectious 410 3350 14725 1393
primaryschool 242 12704 106879 3101
highschool2012 180 2645 42105 11274
highschool2013 327 7818 172035 7376
hospital 75 1825 27835 9454
ht09 113 2434 19037 5247
workplace15 217 4903 73823 18489
SFHH 403 10541 54306 3510

Table 4.1: Statistics of real-world temporal higher-order networks after data processing. The num-
ber of nodes jN j, the number of hyperlinks jE j, the number of higher-order events jE j, and the
number of time steps T are shown.

4.2.4. DIFFUSION BACKBONE
Given a temporal higher-order network H (N ,E ) and a diffusion process unfolding on
H , we quantify the contribution of a hyperlink (a group of nodes) to the diffusion pro-
cess as the average number of nodes that are directly infected via the activation of the
hyperlink. Specifically, we propose the following construction of a diffusion backbone
to represent the contribution of each hyperlink to the diffusion process. The diffusion
backbone of H (N ,E ) is a higher-order (static) network denoted as B(N ,EB ). At time
step t ˘ 0, one seed node is infected while all the other nodes are susceptible. For each
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seed node i , we construct a diffusion trajectory Ti (£ ,fl) as the union of the hyperlinks
through which at least one susceptible node gets infected directly, during time period

[1,T ]. Each hyperlink h j in the trajectory Ti is associated with a weight wTi
j denoting

the number of nodes in h j that are infected through the activation of hyperlink h j di-
rectly. The diffusion backbone is then defined as the union of all diffusion trajectories
starting from each node in N , i.e., B(£ ,fl) ˘ [i2N Ti (£ ,fl). Each hyperlink h j in B(£ ,fl)
is associated with a weight wB

j , which is the average weights of the same hyperlink h j

over all jN j diffusion trajectories, i.e., wB
j ˘ 1

jN j
P

i2N wTi
j . An illustration of the con-

struction of the diffusion backbone in case of fl ˘ 1 is shown in Figure 4.1. In case of
0 ˙ fl ˙ 1, the diffusion process is stochastic, the diffusion backbone can be obtained by
averaging over multiple independent realizations. In this work, we choose the number
of realizations as 5 ¢ 104. The convergence of the backbone as the number of realizations
increases is discussed in Appendix 4.5.2. The backbone B(N ,EB ) encodes how many
nodes on average are infected directly through each hyperlink when the seed node node
is randomly selected. By definition, the total weights of all hyperlinks in the backbone
B(fl,£ ) plus one is equal to the average number jN j‰ of infected nodes during time [1,T ]
per seed node, i.e.,

P
j 2EB wB

j ¯ 1 ˘ jN j‰, since each infected node except the seed node

leads to an increment of 1 in the weight of a hyperlink .

Now, we derive the backbone analytically for the limiting case when fl ! 0. When
£ ˘ 1, the diffusion backbone B(fl ! 0,£ ˘ 1) approaches the higher-order aggregated
network H(N ,E) in topology, which can be explained as follows. Firstly, consider an ar-
bitrary node i as the seed node and one of its 1-hop neighbors v in the higher-order ag-
gregated network, i.e., i and v have at least a (group) interaction. The probability that the
information diffuses from node i to v through an interaction that involves both nodes is
fl. Similarly, the total probability that i infects v via a hyperlink h j is flw j , where w j is the
weight of hyperlink h j in the aggregated higher-order network, or equivalently, the total
number of activations of h j in the temporal higher-order network. The total probability
that the information diffuses from node i to v is the total weight of all hyperlinks that
include both i and v in the aggregated higher-order network times fl, thus of order fl.
Furthermore, consider a 2-hop neighbor u of seed node i in the aggregated higher-order
network H , i.e., node u has interactions with at least one 1-hop neighbor of i but has no
interaction with node i . The probability that the information diffuses from node i to a
one hop neighbor of i , which spreads the information further to node u is proportional
to fl2, which is negligibly small compared to the probability for i to infect a first-hop
neighbor. Hence, the diffusion trajectory Ti starting from any seed node i approaches
the ego network of node i in the aggregated higher-order network H , which comprises
node i , its 1-hop neighbors and any hyperlink that includes i and at least one of its 1-hop
neighbors. Hence, the diffusion backbone B(fl ! 0,£ ˘ 1), which is the union of all jN j
diffusion trajectories, has the same topology as the aggregated higher-order network H .
The weight of an arbitrary hyperlink h j in the backbone is wB

j ˘ fljh j j(jh j j¡ 1) ¢ w j ¢ 1
jN j ,

because the activation of h j could spread the information only if a component node of
h j is the seed and then each of the other jh j j ¡ 1 component nodes could possible get
infected.

Consider the backbone when £ ˘ d ¡ 1 and fl ! 0. The same analysis applies to the
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weight wB
j of a dyadic hyperlink, thus the weight wB

j of a dyadic hyperlink is the same

as that in the backbone B(fl ! 0,£ ˘ 1), i.e., wB
j ˘ 2flw j ¢ 1

jN j . The weight of an order-3

hyperlink h j in B(fl ! 0,£ ˘ d ¡ 1) approaches 2
jN j fl

2 PT
t˘1 x j (t ) ¢

‡P
l2L sub ( j )

P
¶˙t xl (¶)

·

where the function x j (t ) indicates whether the target hyperlink h j is activated at time t
(i.e., x j (t ) ˘ 1) or not (i.e., x j (t ) ˘ 0) and L sub( j ) includes all dyadic hyperlinks that share
two common nodes with h j . This second-order estimation can be explained as follows.
Only when the seed node is a component node of h j , could the activation of h j at any
time t infect a node with a probability of order fl2: the probability for a second node in
h j to get infected before t is fl times the total number of dyadic interactions the seed
node has with the component nodes in h j before t . Taking into account the possibility
that each component node of h j could be the seed node, the total probability that a
second component node is infected before t is 2fl times the total number of activationsP

l2L sub ( j )
P

¶˙t xl (¶) of all sub-links L sub( j ) of h j before t . If a second component node
gets infected before t , the activation of h j could infect a third component node with
probability fl. If the seed node is outside h j , the probability for the hyperlink to infect
another node is negligibly small compared to that when the seed is a component node
of h j .

4.2.5. OBSERVATION TIME WINDOWS

Each real-world temporal higher-order network has a unique observation window [1,T ],
determined by its measurement. To better understand the relationship between a hy-
perlink’s network properties and its contribution to the diffusion process, should we
consider the full observation window or only a portion of it as the dataset? To address
this, we examine the evolution of the average prevalence ‰(t ) over time, where 1 • t • T
and T is the duration of original observation window, for each of the eight empirical
temporal higher-order networks. This helps us understand events occurring at which
time period may contribute to the spreading, thus is relevant for the construction of
the diffusion backbone. In case of £ ˘ 1 and fl ˘ 1.0, the evolution of average preva-
lence ‰ at each timestamp is shown in Figure 4.2. In some networks like highschool2013,
the average prevalence increases rapidly in a short time and hardly anymore afterward,
while in other networks like infectious, the average prevalence increases continuously
over time. This implies that in highschool2013, the diffusion backbone B(£ ˘ 1,fl ˘ 1.0)
is mainly determined by the interactions that occur in the early period, while in infec-
tious, all interactions during [1,T ] could contribute to the diffusion process. The above
observation motivates us to consider various observation time windows from each data
set when exploring the relation between properties of a hyperlink and its contribution
in the diffusion process. Specifically, for each temporal higher-order network, we con-
sider three time windows of different lengths, which are derived as follows. We examine
the average prevalence ‰(t ) when £ ˘ 1 and fl ˘ 1.0, where 1 • t • T . We consider the
following three observation windows, i.e., [1,Tp%], where Tp% is the earliest time when
the average prevalence ‰ reaches p% ¢ ‰(T ), i.e., Tp% ˘ min{t : ‰(t ) ‚ p% ¢ ‰(T )}, and
p 2 {30,60,90}. For each time window, we construct a temporal higher-order network
that includes all the higher-order events occur during [1,Tp%]. Eventually, a total of three
temporal higher-order networks are derived from each dataset. In the following, we will
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Figure 4.1: An illustration of the construction of the diffusion backbone of a temporal higher-
order network when the infection probability of the diffusion model is fl ˘ 1.0. (A) A temporal
higher-order network H with 5 nodes and T ˘ 8 time steps. (B) The time-aggregated higher-order
network H , with a weight w j associated with each hyperlink j . (C-D) Diffusion trajectory Ti (fl ˘ 1)
when £ ˘ 1 (panel C) and £ ˘ d ¡ 1 (panel D) for each possible seed node i . (E-F) The diffusion
backbone B when £ ˘ 1(panel E) and when £ ˘ d ¡ 1 (panel F).

present the results for the time window with the largest length, [1,T90%] , and we refer to
the Appendix 4.5.3 for results related to other time windows, which lead to qualitatively
similar findings.

4.3. RESULTS

In this section, we will construct the diffusion backbone for each of the real-world tem-
poral higher-order networks listed in Table 4.1 with its corresponding time window, e.g.,
[1,T90%]. We focus on two extreme cases for the threshold of the diffusion model: £ ˘ 1
and £ ˘ d ¡ 1, with the infection probability fl ranging from 0.001 to 1.0 on a logarith-
mic scale, i.e., fl 2 [0.001,1.0], to construct the backbones. To understand which kind
of hyperlinks are used more in the diffusion process thereby acquire higher weights in
the backbone under different parameters £ and fl, we will conduct the following anal-
ysis. Firstly, we will explore whether and how diffusion backbone changes with the two
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Figure 4.2: The average prevalence ‰ of the spreading process with threshold £ ˘ 1 and infection
probability fl ˘ 1.0 on each original temporal network over time t . The time steps are normalized
by the total number of time steps T of each dataset.

parameters fl and £ of the diffusion model. This analysis will help understand whether
different properties of hyperlinks should be used to estimate the ranking of hyperlinks
by their weight in the backbone when the parameters of the diffusion process vary. Sec-
ondly, we will propose a set of hyperlink centrality metrics that capture diverse proper-
ties of a hyperlink in the temporal higher-order network. By examining the correlation
between each proposed metric and the weight of a hyperlink in the backbone, we will
uncover hyperlinks with what properties acquire higher weights in the diffusion back-
bone under different process parameters. In the following, we will present the results for
SFHH dataset with time window [1,T90%], as the results for other datasets and different
time windows show qualitatively similar trends (see Appendix).

4.3.1. INFLUENCE OF PROCESS PARAMETERS ON THE BACKBONE
In Section 4.2.4, we have analytically derived the weighted backbone in the limit case
of fl ! 0. The backbone is shown to differ when £ varies. Now, we explore how the
backbone B(fl,£ ) changes as the infection probability fl and threshold £ vary.

TOTAL WEIGHT AND NUMBER OF LINKS AND IN THE BACKBONE

We first examine the prevalence of the diffusion process, which is equivalent to the to-
tal weights of all hyperlinks in the backbone plus one. In Figure 4.3 (A), we show the
prevalence as a function of the infection probability fl. The wide range of prevalence
under different fl and £ shows that our constructed backbones span a broad dynamical
space. Given the threshold £ , the prevalence increases with the infection probability fl,
suggesting that hyperlinks contribute more to the diffusion. The prevalence gets sup-
pressed when £ changes from 1 to d ¡ 1, because for the larger threshold £ ˘ d ¡ 1, the
diffusion through hyperlinks of higher orders (d ¨ 2) is impeded, which motivates us to
explore the contribution of hyperlinks of different orders separately. The relative con-
tribution cB

d of order-d hyperlinks to a diffusion process is reflected by the total weight
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Figure 4.3: (A): The prevalence as a function of fl when £ ˘ 1 and £ ˘ d ¡ 1 respectively. (B):
The contribution of order-2 and order-2 hyperlinks as a function of fl when £ ˘ 1 and £ ˘ d ¡ 1,
respectively. (C): The percentage of order-2 and order-3 hyperlinks that appear in in backbone B
as a function of fl when £ ˘ 1 and £ ˘ d ¡ 1. Results are shown for the SFHH dataset.

of all order-d hyperlinks in the backbone normalized by the total weight of all hyper-
links in the backbone. The relative contribution cB

d indicates the percentage of infected

nodes that are infected through the activations of order-d hyperlinks. Hence,
P

d cB
d ˘ 1.

Since the number of hyperlinks of orders d ¨ 3 in each temporal higher-order network
is small, we focus on hyperlinks of order 2 and order 3. Figure 4.3 (B) shows the con-
tribution cB

d of order 2 and order 3, respectively, under two distinct thresholds: £ ˘ 1
and £ ˘ d ¡ 1, as fl increases. Generally, dyadic (order-2) hyperlinks exhibit the high-
est contribution, indicating that the majority of node infections occur through dyadic
interactions. This is because order-2 interactions comprise the largest proportion of in-
teractions in all the temporal higher-order networks and their threshold to spread in-
formation £ ˘ d ¡ 1 ˘ 1 is relatively low. Given the same fl, the relative contribution of
order-3 links when £ ˘ d ¡ 1 is smaller than it is when £ ˘ 1, as expected. Let us con-
sider the case when £ ˘ d ¡1. When fl ! 0, cB

2 ! 1 and the contribution of higher orders
(d ¨ 2) approaches zero, which is consistent with our theoretical analysis (Section 4.2).
In this case, only few nodes get infected such that the number of infected nodes in a
hyperlink of order d ¨ 2 can hardly reach d ¡ 1. As fl grows, more nodes get infected,
which increases the chance that the information diffuses through triadic (higher-order)
interactions. As a consequence, the contribution of triadic (dyadic) hyperlinks increases
(decreases). When £ ˘ 1, the contribution of order-3 hyperlinks decreases as fl increases,
because nodes within a triadic link could possibly get infected via interactions of dyadic
links (large in number) before the activation of the triadic link, reducing the probability
for a triadic link to diffuse the information.

Figure 4.3 (C) shows the percentage of hyperlinks of a specific order d in the aggre-
gated higher-order network H that appear in the backbone B(fl,£ ). When £ ˘ 1 and
0 ˙ fl ˙ 1, each hyperlink in the temporal higher-order network H has a nonzero proba-
bility to appear in diffusion trajectories starting from every possible seed node. Thus, the
diffusion backbone B(£ ˘ 1,0 ˙ fl ˙ 1) contains all hyperlinks in the aggregated network
H . While in the deterministic case of fl ˘ 1, the diffusion from a source node to a tar-
get node follows the time-respecting paths that arrives at the target node the earliest in
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time. Hence, only hyperlinks that are present in such paths from one node to any other
node are included in the diffusion backbone. This explains the drop in the fraction of
hyperlinks that appears in the backbone as fl ! 1, independent of £ . When £ ˘ d ¡ 1
and 0 ˙ fl ˙ 1, each dyadic (order-2) hyperlink in the aggregated network appears in the
backbone with a non-zero probability. However, not all order-3 hyperlinks necessarily
appear in the backbone, because the condition £ ˘ d ¡ 1 for an order-3 hyperlink to
diffuse the information is possibly difficult to meet, especially when fl is small.

CORRELATION BETWEEN BACKBONES UNDER DIFFERENT PROCESS PARAMETERS

Figure 4.4: The Kendall correlation between wB
j (£ ˘ 1) and wB

j (£ ˘ d ¡ 1) for order-2 hyperlinks

and order-3 hyperlinks, in the SFHH dataset.

In this work, we aim to understand if a certain property of hyperlinks in the temporal
higher-order network can be used to estimate the rankings of hyperlinks of the same
order d by the weight wB

j in the backbone. In the following, we study how the rankings

of hyperlinks of a given order d by the weight wB
j change with process parameters fl and

£ . If the backbone changes with process parameters, different properties of hyperlinks
maybe needed to identify hyperlinks with the highest backbone weight.

Consider hyperlinks of order d in the aggregated higher-order network H . We inves-
tigate the Kendall rank correlation between their weights in backbone B(fl,£ ˘ 1) and
backbone B(fl,£ ˘ d ¡ 1). Figure 4.4 shows that the Kendall correlation for order-2 hy-
perlinks is in general higher than for order-3 hyperlinks, independent of fl. This suggests
that different properties of hyperlinks may be needed to estimate the weights of order-3
hyperlinks in B(fl,£ ˘ 1) and in B(fl,£ ˘ d ¡ 1), respectively. Furthermore, we exam-
ine the Kendall correlation between the weights of these hyperlinks in the backbones
constructed with two different infection probabilities and the same threshold , which is
shown in Figure 4.5. We find that when the difference between the two infection prob-
abilities is small (large), the correlation is large (small). This suggests that backbones
constructed under different infection probabilities differ in their link weights and dif-
ferent properties of hyperlinks may be required to estimate the ranking of hyperlinks in
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Figure 4.5: The Kendall correlation between the weight wB
j (fl,£ ) of an order-d hyperlink obtained

for two different infection probabilities, fl, in the SFHH dataset. Two left (right) panels correspond
to the case of £ ˘ 1 (£ ˘ d ¡ 1). Two upper (lower) panels show the Kendall correlation for hyper-
links of order d ˘ 2 (order d ˘ 3).

their backbone weight as fl varies.

4.3.2. CENTRALITY METRICS FOR HYPERLINKS BASED ON LOCAL TEMPORAL

HIGHER-ORDER NETWORKS
Given a temporal higher-order network H , which network property of a hyperlink is cor-
related with the weight of the hyperlink in the backbone B(fl,£ ) under each parameter
set (fl,£ )? We will design different centrality metrics for a hyperlink, each reflecting a
specific property of a hyperlink within its local temporal higher-order network. In the
next subsection, we will investigate how well each metric can be used to estimate the
ranking of hyperlinks based on their contribution to the diffusion process.

The motivation for using local network information is threefold. Firstly, the informa-
tion of local connections is more accessible than the global network information. Sec-
ondly, computing centrality metrics based on local connections is more efficient than
those based on a larger set of connections. Thirdly, local connections of a hyperlink
could be more relevant than the rest of the temporal higher-order network, thus suffi-
cient in estimating the weight of the hyperlink in the backbone, particularly when infec-
tion probability fl is relatively low. As discussed in Section 4.2.4, when fl ! 0 and £ ˘ 1,
only 1-hop neighbors of the seed node could possibly get infected. Hence, the backbone
weight of a hyperlink depends only on the number of times the hyperlink has been ac-
tivated and the order of the hyperlink. As fl increases, the nodes that are further than 1-
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hop from the seed node may also get infected with a nonzero probability. In this case,
the activity (temporal connection) of neighboring hyperlinks of a target hyperlink could
influence the weight of the target hyperlink in the backbone. For example, neighbor-
ing hyperlinks with a large number of activations may infect the component nodes of
the target hyperlink, enabling the target hyperlink to meet its threshold condition and
contribute to the spreading process.

We design local centrality metrics based on the activity of the target hyperlink it-
self and the activity of its neighboring hyperlinks. Since dyadic hyperlinks are more
abundant than higher-order hyperlinks in each of the considered temporal higher-order
networks, for an arbitrary target hyperlink h j , we consider two different sets of neigh-
boring dyadic hyperlinks respectively: all adjacent dyadic hyperlinks that share at least
one common node with the target h j , denoted as set L ad j ( j ), and the dyadic sub-
hyperlinks that include all dyadic hyperlinks that share two common nodes with h j , de-
noted as set L sub( j ). Any dyadic sub-hyperlink is also an adjacent dyadic hyperlink, so
L sub( j ) µ L ad j ( j ). We propose firstly four centrality metrics capturing static or tempo-
ral properties of these two types of local neighborhoods, respectively. We refer to Table
4.2 for a summary of the notation used in this chapter.

Static adjacent hyperlink based metric »ad j
j of hyperlink h j is defined as:

»ad j
j (fi) ˘ w j ¢

ˆ

1 ¯
X

l2L ad j ( j )

wl

!fi

, (4.1)

Static sub-hyperlink based metric »sub
j is defined similarly as equation (4.1), except

that the set of sub-hyperlinks L sub( j ) is considered instead of adjacent hyperlinksL ad j ( j ):

»sub
j (fi) ˘ w j ¢

ˆ

1 ¯
X

l2L sub ( j )

wl

!fi

. (4.2)

The static metrics »ad j
j and »sub

j are determined by the number of activations of

the target hyperlink, w j , as well as the total number of activations of neighboring hy-
perlinks in set L ad j ( j ) and L sub( j ), respectively. The parameter fi is the scaling pa-
rameter, which is a real constant and determines the contribution of neighboring hy-
perlinks to the metrics. Each proposed centrality metric is used to estimate the rank-
ing of hyperlinks in backbone weight. Hence, using the logarithm of the metric e.g.,

log(»ad j ) ˘ log w j ¯ fi log
‡
1 ¯

P
l2L ad j ( j ) wl

·
, to predict the ranking is the same as using

»ad j
j . This reveals also how fi controls the relative contribution of the adjacent links and

the target link itself. These two metrics are motivated by the possibility that a hyperlink
that has many activations in its neighborhood and in itself may contribute more to a
diffusion process.

Temporal adjacent hyperlink based metric ¥ ad j
j further considers the time order-

ing between the activations of the target hyperlink and the activations of hyperlinks in
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L ad j ( j ). We define the metric ¥ ad j
j of a hyperlink h j as:

¥ ad j
j (fi) ˘

TX

t˘1
x j (t ) ¢

ˆ

1 ¯
X

l2L ad j ( j )

X

¶˙t
xl (¶)

!fi

, (4.3)

Temporal sub-hyperlink based metric ¥ sub
j is defined in the same way as ¥ ad j , ex-

cept that the contribution of neighboring hyperlinks in set L sub( j ) is considered. The
metric ¥ sub

j of a hyperlink h j is defined as:

¥ sub
j (fi) ˘

TX

t˘1
x j (t ) ¢

ˆ

1 ¯
X

l2L sub ( j )

X

¶˙t
xl (¶)

!fi

. (4.4)

In equation (4.3) and (4.4), the function x j (t ) indicates whether the target hyperlink

h j is activated at time t (i.e., x j (t ) ˘ 1) or not (i.e., x j (t ) ˘ 0). Taking the metric ¥ ad j
j as

an example, it assigns a weight to each activation of the target hyperlink h j . The weight
for an activation at time t , given by (1¯

P
l2L ad j ( j )

P
¶˙t xl (¶))fi, depends on the total num-

ber of activations of neighboring hyperlinks in set L ad j ( j ) that occurred before time t .

Metric ¥ ad j
j tends to be large if hyperlink h j has a large number of events (activations),

and prior to each of its events, a large number of events have already occurred in adja-
cent hyperlinks. Consider an order-3 target hyperlink, when £ ˘ d ¡1 and fl is small, the
target hyperlink could possibly infect its component nodes only when it is active (has an
event) and two component nodes have already been infected at that time, which is more
likely to happen when the neighboring hyperlinks have a large number of activations be-
fore. When fl is large, the large number of events occurring in the adjacent links before
the activation of the target link could lead to the infection of all the component nodes
of the target link, reducing the chance for the target hyperlink to infect its component
nodes. Both scenarios motivate us to examine the number of events occurring in adja-
cent links before each event at the target hyperlink. Actually, the design of ¥ sub

j is directly

motivated by theoretical weight of an order-3 hyperlink in B(fl ! 0,£ ˘ d ¡ 1) derived in

Section 4.2.4, i.e., 2
jN j fl

2 PT
t˘1 x j (t ) ¢

‡P
l2L sub ( j )

P
¶˙t xl (¶)

·
. Hence, ¥ sub

j with fi ˘ 1 is sup-

posed to estimate well the ranking of order-3 links in their weights in B(fl ! 0,£ ˘ d ¡1).
When fi ˘ 0, all metrics are equal to the weight w j of the target hyperlink in the

higher-order aggregated network, i.e., »ad j
j (0) ˘ »sub

j (0) ˘ ¥ ad j
j (0) ˘ ¥ sub

j (0) ˘ w j . When

fi ¨ 0 (fi ˙ 0), the events in the neighborhood either L ad j ( j ) or L sub( j ), contribute
positively (negatively) to each centrality metric. Order 2 hyperlinks have no neighboring
sub-hyperlinks, i.e., the set L sub( j ) is empty, which means »sub

j (fi) ˘ ¥ sub
j (fi) ˘ w j .

Furthermore, we consider a metric that has been proposed in [13] and used to esti-
mate the diffusion backbone for temporal pairwise networks when fl ˘ 1.

Time-scaled weight  j of hyperlink h j is defined as:

 j („) ˘
TX

t˘1
x j (t ) ¢ t„, (4.5)
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where „ is the scaling parameter. When „ ˘ 0, the metric  j equals the weight w j of
hyperlink h j in the aggregated network. When „ ˙ 0 („ ¨ 0), the metric  j assigns higher
(smaller) weights to activations that occur earlier in time. This metric is motivated by the
possibility that a hyperlink that has activations that are large in number and early in time
may contribute more to a diffusion process, especially when fl is relatively large.

Finally, we combine the proposed temporal metrics, which capture the relatively
time ordering of the activations of neighboring hyperlinks and the activations of the
target hyperlink, with the metric time-scaled weight that captures the times of the ac-
tivations of the target hyperlink itself.

Combined metrics ©ad j
j and ©sub

j combine the time-scaled weight  j with metric

¥ ad j
j and ¥ sub

j , respectively.

©ad j
j („,fi) ˘

TX

t˘1
x j (t ) ¢ t„ ¢

ˆ

1 ¯
X

l2L ad j ( j )

X

¶˙t
xl (¶)

!fi

, (4.6)

©sub
j („,fi) ˘

TX

t˘1
x j (t ) ¢ t„ ¢

ˆ

1 ¯
X

l2L sub ( j )

X

¶˙t
xl (¶)

!fi

, (4.7)

where the real constants „ j and fi are two scaling parameters. We have ©ad j
j („ ˘ 0,fi) ˘

¥ ad j
j , ©sub

j („ ˘ 0,fi) ˘ ¥ sub
j , ©ad j

j („,fi ˘ 0) ˘ ©sub
j („,fi ˘ 0) ˘  j („).

4.3.3. ESTIMATING HYPERLINK WEIGHT w B
j USING LOCAL CENTRALITY MET-

RICS

NEW METRICS WITH A SINGLE PARAMETER fi
We examine the performance of each centrality metric with the scaling parameters fi 2
[¡3,3] and „ 2 [¡3,3] in predicting the ranking of hyperlinks of a specific order d by the
weights wB

j . It is challenging to pre-select the parameter(s) of a metric when perform-

ing such a prediction task, especially when the number of parameters is large. Hence,
we first evaluate the performance of the four new metrics with a single parameter fi:

»ad j
j (fi), »sub

j (fi), ¥ ad j
j (fi), ¥ sub

j (fi), our main focus. The objectives are to (1) understand

how the scaling parameter fi affects their performance and whether certain values of
the scaling parameter lead to the highest performance of a metric across all networks,
and (2) compare the performance of these four metrics. Later in Section 4.3.4, we will
compare the performance of these four metrics with the other three metrics we have
introduced in Section 4.3.2, time-scaled weight from literature and two combined met-
rics. The objective is to explore whether these four metrics with one parameter or with
evident choice of the parameter could perform close to the combined metrics with two
scaling parameters.
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Variable Description

Higher-order network H Temporal higher-order network
H Time-aggregated higher-order network of H
N The set of nodes in H
E The set of higher-order events in H
E The set of hyperlinks in H
T Total number of time steps in H
h j Hyperlink in H
w j Weight of hyperlink h j in H

Diffusion model and backbone fl Infection probability
£ Threshold
Ti Diffusion trajectory when node i is the seed
B Diffusion backbone
wB

j Weight (contribution) of h j in B
cB

d Contribution of order d in B
Centrality metrics »ad j

j (fi) Static adjacent hyperlink based metric

»sub
j (fi) Static sub-hyperlink based metric

¥ ad j
j (fi) Temporal adjacent hyperlink based metric

¥ sub
j (fi) Temporal sub-hyperlink based metric

 j („) Time-scaled weight proposed in ref. [13]

©ad j
j Combined metric that combines  j and ¥ ad j

j
©sub

j Combined metric that combines  j and ¥ sub
j

Table 4.2: Notation used in this chapter.
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Figure 4.7: The Kendall correlation between a local metric with the scaling parameter fi 2 {0,1,¡1}
and the weight wB

j of the hyperlink in the backbone B , as a function of infection probability fl, in

the SFHH dataset. Results are shown for dyadic hyperlinks (A-B) and triadic hyperlinks (C-D). Two
columns corresponds to £ ˘ 1 and £ ˘ d ¡ 1, respectively.
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Figure 4.6 (A-H) show the Kendall rank correlation between each of the four new
metrics and the weight wB

j of an order-3 hyperlink as a function of the scaling parameter

fi and the infection probability fl, when £ ˘ 1 (panel (A-D)) and £ ˘ d ¡1 (panel (E-H)). A
general observation is that when fl is relatively small (large), each metric with a positive
(negative) fi of a hyperlink is positively correlated with the weight of the hyperlink in the
backbone. This is also observed for order-2 hyperlinks. Indeed, when fl is small, a large
number of activations of neighboring hyperlinks could increase the chance that nodes
in the target hyperlink get infected, which increases the chance that activations of the
target hyperlink afterwards could infect other nodes. However, when fl is sufficiently
large, the chance that all component nodes in the target hyperlink get infected through
the activations of neighboring hyperlinks may increase, which suppresses the chance
that the activation of the target hyperlink afterwards could infect other nodes.

Given the parameters fl and £ , the best prediction performance of each metric is
roughly achieved when fi ˘ 0,1 or ¡1 in each real-world network, which is further shown
by the comparison of the performance of each metric with fi ˘ 0,1, ¡1 and its best per-
formance across fi 2 [¡3,3] in Figure 4.15 in Appendix. Hence, we will focus metrics

w j , »ad j
j (1), »ad j

j (¡1), ¥ ad j
j (1), ¥ ad j

j (¡1), »sub
j (1), »sub

j (¡1), ¥ sub
j (1), ¥ sub

j (¡1), where the

parameter has been selected. Since order-2 hyperlinks have no sub-hyperlinks, which

makes »sub
j (fi) ˘ ¥ sub

j (fi) ˘ w j according to the definitions, only metrics, w j , »ad j
j (1),

»ad j
j (¡1), ¥ ad j

j (1), ¥ ad j
j (¡1), will be considered for order-2 hyperlinks.

Figure 4.7 shows the Kendall correlation between each metric with fi 2 {0,1,¡1} with
the weight wB

j of a hyperlink as a function of fl, for order-2 and order-3 hyperlinks re-

spectively. Generally, the best-performing centrality metric varies depending on the
process parameters £ and fl, because the backbone is dependent on the process pa-
rameters. Consider the region of fl ! 0. Metric ¥ sub

j (1) exhibits the highest correlation

with the weight wB
j of order-3 hyperlinks in backbone B(fl ! 0,£ ˘ d ¡ 1), as shown

in Figure 4.6 (D), while metric w j is the best-performing metric to estimate the weight
wB

j of order-2 hyperlinks in backbone B(fl ! 0,£ ˘ d ¡ 1) (Figure 4.7 (B)) and to esti-

mate the weight wB
j of hyperlinks of both order 2 (Figure 4.7 (A)) and order 3 (Figure 4.7

(C)) in backbone B(fl ! 0,£ ˘ 1). These two observations are in line with the backbone
B(fl ! 0,£ ) derived analytically in Section 4.2.4.

As fl increases but is still small (˙ 10¡1), metric ¥ ad j
j (1) outperforms the other met-

rics. In this range of fl, nodes that are more than 1 hop away from the seed could be
infected with a non-zero probability. A larger number of activations of the adjacent hy-
perlinks could lead to a higher probability of infection of the component nodes of the
target hyperlink, which makes the target hyperlink more likely to meet the threshold to
infect other component node(s) when activated.

When fl is large (¨ 10¡1), our temporal metrics with fi ˘ ¡1 tend to perform the
best. However, their performance is still relatively low, i.e., the correlation with back-
bone weight is evidently lower than 0.5. This suggests that when fl is large, the diffusion
becomes global, local network information alone may be insufficient to well predict the
contribution of a hyperlink to the diffusion process.

In general, when the infection probability fl is not large (fl ˙ 10¡1), either ¥ ad j
j (1),
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¥ sub
j (1) or w j performs best, depending on the process parameters and the order of hy-

perlinks. These observations are qualitatively similar in other datasets and different ob-
servation time windows, though the specific range of fl for the a metric to perform the
best may vary (see Appendix).

Figure 4.8: The Kendall correlation between the time-scaled weight  j („) with „ 2 {0,1,¡1} and

the weight wB
j (fl,£ ) of a hyperlink in the backbone, in SFHH dataset. This is compared with the

optimal Kendall correlation (circles) of  j („) achieved all possible choices of „ 2 [¡3,3]. Results
are shown for dyadic hyperlinks (A-B) and triadic hyperlinks (C-D). Two columns corresponds to
£ ˘ 1 and £ ˘ d ¡ 1, respectively.

4.3.4. COMPARISON WITH OTHER TEMPORAL CENTRALITY METRICS

We further compare the performance of ¥ ad j
j (1), ¥ sub

j (1) and w j with the other three

metrics: the time-scaled weight  j („) and the two combined metrics ©ad j
j („,fi), ©sub

j („,fi),

in predicting the ranking of hyperlinks of a given order by their weights in the backbone
B(fl,£ ).

We first investigate whether the metric  j („) with a specific choice of the scaling pa-
rameter „ tends to lead to the highest prediction performance across all networks. As
shown in Figure 4.8, when fl is small (fl ˙ 10¡2), the optimal/highest Kendall correla-
tion between metric  j („) and the weight wB

j , is achieved approximately by w j ˘  j (0).

When fl increases but is still smaller than 10¡1, the performance of  j (1) is close to the
optimal Kendall correlation, indicating that hyperlinks that activate frequently later in
time tend to contribute more. As fl increases further (fl ¨ 10¡1), the optimal Kendall
correlation is approximately achieved by metric  j (¡1), suggesting that hyperlinks that
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Figure 4.9: The Kendall rank correlation between the four metrics w j ,  j (1), ¥
ad j
j and ¥ sub

j and

the weight wB
j of a hyperlink in the backbone, in comparison to the optimal Kendall correlation

between each combine metric and the weight wB
j , in SFHH dataset. Results are shown for dyadic

hyperlinks (A-B) and triadic hyperlinks (C-D). Two columns corresponds to £ ˘ 1 and £ ˘ d ¡ 1,
respectively.

activate earlier in time tend to contribute more to the diffusion process when fl is large.

Next, we will compare so far the best performing metrics ¥ ad j
j (1), ¥ sub

j (1), w j and  j (1),

which do not require parameter calibration, with the two combined metrics in estimat-
ing the ranking of hyperlinks of a given order by their weights in the backbone B(fl,£ ).

Given the infection probability fl and the threshold £ , we perform a grid search for
the scaling parameters „ and fi within the range [¡3.0,3.0] to find the highest Kendall
correlation of each combined metric when estimating the ranking of order-2 and order-

3 hyperlinks, respectively. The optimal performance of a combined metric, say ©ad j
j , is

the upper bound for the performance of ¥ ad j
j , w j and the time-scaled weight  j , which

are special cases of the combined metric. As shown in Figure 4.9, the best performance

achieved by metrics ¥ ad j
j (1), ¥ sub

j (1), w j and  j (1) is close to the optimal performance

of the two combined metrics when fl ˙ 10¡1. We compare further the performance of

the four metrics without the need for parameter calibration: ¥ ad j
j (1), ¥ sub

j (1), w j and

 j (1). When fl ! 0, either metric w j or ¥ sub
j (1) performs the best depending on £ and

the order of hyperlinks under estimation, which is in line with our analytical analysis. As

fl increases (fl … 10¡2), ¥ ad j
j (1) outperforms. A large number of activations of the adja-



4.4. CONCLUSION AND FUTURE WORK

4

85

cent hyperlinks could cause the infection of component nodes in a target hyperlink thus
fulfilling the threshold condition for the target to infect other nodes. As fl increases fur-
ther but still within the range of fl ˙ 10¡1,  j (1) performs the best. A hyperlink with a
large number of activations that occur relatively late in time tend to contribute more the
spreading process. Activations that occur late, when more nodes are infected thus the
threshold condition is likely met, tend to contribute effectively to the spreading process.
In summary, for different ranges of the infection rate fl, different parameter free central-
ity metrics estimate the backbone weights the best, close to the optimal performance of
combined metrics achieved by parameter searching.

4.4. CONCLUSION AND FUTURE WORK

CONCLUSION AND FUTURE WORK
In this chapter, the contribution of a hyperlink in a temporal higher-order network to a
spreading process is defined as the average number of nodes infected via the activation
of the hyperlink. We explored which properties of a hyperlink in the temporal higher-
order network lead to a high contribution. A generalized Susceptible-Infected threshold
process with infection probability fl and threshold £ is considered on eight real-world
temporal higher-order networks derived from human face-to-face contacts in various
contexts. Firstly, we proposed the construction of the diffusion backbone B where the
weight of each hyperlink equals the the contribution of the hyperlink to the diffusion
process starting from a random seed node. In the limiting case when fl ! 0, the back-
bone weight of a hyperlink was derived analytically based on local temporal connections
around the hyperlink. Secondly, we illustrated the dependency of the backbone B(fl,£ )
on the two process parameters fl and £ . This is also evidenced by the different back-
bones derived when £ varies and fl ! 0. To explore which properties of hyperlinks are
associated with high contributions to the diffusion process, we designed centrality met-
rics for a hyperlink to estimate the ranking of hyperlinks by their weights in backbone
B(fl,£ ). Each proposed metric is defined based on the activity of the target hyperlink
and the activity of its neighboring hyperlinks in the temporal higher-order network. Dif-
ferent metrics are shown to predict the best for different parameter sets (fl,£ ) of the
process, approaching the optimal performance of combined metrics achieved via pa-
rameter searching. The reason why certain properties of a hyperlink result in a high
contribution to the process is further explained.

There are several limitations in this work that call for further exploration. Firstly, we
only considered the Susceptible-Infected threshold process as the diffusion model on
temporal higher-order networks and focused only on two extreme cases for the thresh-
old £ . A more comprehensive investigation of diffusion models is needed. Secondly,
it is interesting to explore other types of temporal higher-order networks, such as sci-
entific collaborations, which may have different properties than the human interaction
networks considered in this work. Thirdly, the backbone constructed captures the con-
tribution of each hyperlink. This definition can be extended to study the contribution
of each node. Finally, it is promising to investigate how to use the backbone or our pro-
posed centrality metrics that well estimate the backbone to mitigate the dynamic pro-
cess on the network via the blocking of selected hyperlinks.
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4.5. APPENDIX

4.5.1. STATISTICS OF EMPIRICAL DATASETS

Figure 4.10: The fraction of events (hyperlinks) that are of order d in each real-world temporal
higher-order network with the original observation time window [1,T ] is shown in the left (right)
panel.

Dataset T30% T60% T90%

infectious 519 784 1104
primaryschool 287 359 994

highschool2012 916 1477 3664
highschool2013 195 395 1252

hospital 1266 3942 7702
ht09 437 1154 2361

workplace 574 2133 8773
SFHH 483 1124 1421

Table 4.3: The number of time steps in the observation time windows [1,Tp%] that we choose for
each empirical dataset.
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4.5.2. CONVERGENCE OF DIFFUSION BACKBONE
We explore whether R ˘ 50000 realizations of the diffusion process starting from each
seed node is sufficient to obtain a representative backbone for 0 ˙ fl ˙ 1. Given the in-
fection probability fl and the threshold £ , we construct the diffusion backbones B(fl,£ )
resulting from different numbers R of independent realizations. Then, we measure the
Kendall correlation between the backbones in weight resulting from R realizations and
50000 realizations, for order-2 and order-3 hyperlinks, respectively.

Figure 4.11 and Figure 4.12 show that ss the number of realizations R grows, the
Kendall correlation ¿(R) increases quickly and approaches one, suggesting that the rank-
ing of hyperlinks by their weights in the backbone gradually becomes stable. This sup-
ports our choice of R ˘ 50000 realizations. Similar trends are observed when changing
the observation time window, as shown in Figure 4.13 and Figure 4.14.
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Figu
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4.5.3. RESULTS FOR SFHH DATASET

Figure 4.15: The SFHH dataset with the observation time window [0,T90%). The Kendall rank

correlation between the metrics w j , ¥
ad j
j (1), ¥

ad j
j (¡1), ¥ sub

j (1) and ¥ sub
j (¡1), and the weight

wB
j of a hyperlink, in comparison to the optimal Kendall correlation between metrics, ¥

ad j
j , ¥ sub

j ,

and the weight wB
j . Results are shown for dyadic hyperlinks (A-B) and triadic hyperlinks (C-D).

Two columns corresponds to £ ˘ 1 and £ ˘ d ¡ 1, respectively.
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Figure 4.16: The Kendall correlation between a centrality metric with the scaling parameter fi 2
{0,1,¡1} and the weight wB

j of a hyperlink in the backbone B , as a function of infection probability

fl, in SFHH dataset with the time observation time window [0,T60%]. Results are shown for dyadic
hyperlinks (A-B) and triadic hyperlinks (C-D). Two columns corresponds to £ ˘ 1 and £ ˘ d ¡ 1,
respectively.
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Figure 4.17: The Kendall correlation between a centrality metric with the scaling parameter fi 2
{0,1,¡1} and the weight wB

j of a hyperlink in the backbone B , as a function of infection probability

fl, in SFHH dataset with the time observation time window [0,T30%]. Results are shown for dyadic
hyperlinks (A-B) and triadic hyperlinks (C-D). Two columns corresponds to £ ˘ 1 and £ ˘ d ¡ 1,
respectively.
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Figure 4.18: The Kendall rank correlation between each of the four metrics w j ,  j (1), ¥
ad j
j and

¥ sub
j and the weight wB

j of a hyperlink in the backbone, in comparison to the optimal Kendall

correlation between each combined metric and the weight wB
j , in SFHH dataset with the time

observation time window [0,T60%]. Results are shown for dyadic hyperlinks (A-B) and triadic hy-
perlinks (C-D). Two columns corresponds to £ ˘ 1 and £ ˘ d ¡ 1, respectively.
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Figure 4.19: The Kendall rank correlation between each of the four metrics w j ,  j (1), ¥
ad j
j and

¥ sub
j and the weight wB

j of a hyperlink in the backbone, in comparison to the optimal Kendall

correlation between each combined metric and the weight wB
j , in SFHH dataset with the time

observation time window [0,T30%]. Results are shown for dyadic hyperlinks (A-B) and triadic hy-
perlinks (C-D). Two columns corresponds to £ ˘ 1 and £ ˘ d ¡ 1, respectively.



4.5. APPENDIX

4

97

4.5.4. RESULTS FOR OTHER DATASETS

Figure 4.20: The infectious dataset. The Kendall correlation between a centrality metric with the
scaling parameter fi 2 {0,1,¡1} and the weight wB

j of a hyperlink in the backbone B , as a function

of infection probability fl. Results are shown for dyadic hyperlinks (A-B) and triadic hyperlinks
(C-D). Two columns corresponds to £ ˘ 1 and £ ˘ d ¡ 1, respectively.
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Figure 4.21: The primaryschool dataset. The Kendall correlation between a centrality metric with
the scaling parameter fi 2 {0,1,¡1} and the weight wB

j of a hyperlink in the backbone B , as a func-

tion of infection probability fl. Results are shown for dyadic hyperlinks (A-B) and triadic hyperlinks
(C-D). Two columns corresponds to £ ˘ 1 and £ ˘ d ¡ 1, respectively.
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Figure 4.22: The highschool2012 dataset. The Kendall correlation between a centrality metric with
the scaling parameter fi 2 {0,1,¡1} and the weight wB

j of a hyperlink in the backbone B , as a func-

tion of infection probability fl. Results are shown for dyadic hyperlinks (A-B) and triadic hyperlinks
(C-D). Two columns corresponds to £ ˘ 1 and £ ˘ d ¡ 1, respectively.
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Figure 4.23: The highschool2013 dataset. The Kendall correlation between a centrality metric with
the scaling parameter fi 2 {0,1,¡1} and the weight wB

j of a hyperlink in the backbone B , as a func-

tion of infection probability fl. Results are shown for dyadic hyperlinks (A-B) and triadic hyperlinks
(C-D). Two columns corresponds to £ ˘ 1 and £ ˘ d ¡ 1, respectively.
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Figure 4.24: The hospital dataset. The Kendall correlation between a centrality metric with the
scaling parameter fi 2 {0,1,¡1} and the weight wB

j of a hyperlink in the backbone B , as a function

of infection probability fl. Results are shown for dyadic hyperlinks (A-B) and triadic hyperlinks
(C-D). Two columns corresponds to £ ˘ 1 and £ ˘ d ¡ 1, respectively.
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Figure 4.25: The ht09 dataset. The Kendall correlation between a centrality metric with the scaling
parameter fi 2 {0,1,¡1} and the weight wB

j of a hyperlink in the backbone B , as a function of

infection probability fl. Results are shown for dyadic hyperlinks (A-B) and triadic hyperlinks (C-
D). Two columns corresponds to £ ˘ 1 and £ ˘ d ¡ 1, respectively.
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Figure 4.26: The workplace15 dataset. The Kendall correlation between a centrality metric with
the scaling parameter fi 2 {0,1,¡1} and the weight wB

j of a hyperlink in the backbone B , as a func-

tion of infection probability fl. Results are shown for dyadic hyperlinks (A-B) and triadic hyperlinks
(C-D). Two columns corresponds to £ ˘ 1 and £ ˘ d ¡ 1, respectively.
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Figure 4.27: The infectious dataset. The Kendall rank correlation between each of the four metrics

w j ,  j (1), ¥
ad j
j and ¥ sub

j and the weight wB
j of a hyperlink in the backbone, in comparison to the

optimal Kendall correlation between each combined metric and the weight wB
j . Results are shown

for dyadic hyperlinks (A-B) and triadic hyperlinks (C-D). Two columns corresponds to £ ˘ 1 and
£ ˘ d ¡ 1, respectively.
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Figure 4.28: The primaryschool dataset. The Kendall rank correlation between each of the four

metrics w j ,  j (1), ¥
ad j
j and ¥ sub

j and the weight wB
j of a hyperlink in the backbone, in compari-

son to the optimal Kendall correlation between each combined metric and the weight wB
j . Results

are shown for dyadic hyperlinks (A-B) and triadic hyperlinks (C-D). Two columns corresponds to
£ ˘ 1 and £ ˘ d ¡ 1, respectively.
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Figure 4.29: The highschool2012 dataset. The Kendall rank correlation between each of the four

metrics w j ,  j (1), ¥
ad j
j and ¥ sub

j and the weight wB
j of a hyperlink in the backbone, in compari-

son to the optimal Kendall correlation between each combined metric and the weight wB
j . Results

are shown for dyadic hyperlinks (A-B) and triadic hyperlinks (C-D). Two columns corresponds to
£ ˘ 1 and £ ˘ d ¡ 1, respectively.
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Figure 4.30: The highschool2013 dataset. The Kendall rank correlation between each of the four

metrics w j ,  j (1), ¥
ad j
j and ¥ sub

j and the weight wB
j of a hyperlink in the backbone, in compari-

son to the optimal Kendall correlation between each combined metric and the weight wB
j . Results

are shown for dyadic hyperlinks (A-B) and triadic hyperlinks (C-D). Two columns corresponds to
£ ˘ 1 and £ ˘ d ¡ 1, respectively.
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Figure 4.31: The hospital dataset. The Kendall rank correlation between each of the four metrics

w j ,  j (1), ¥
ad j
j and ¥ sub

j and the weight wB
j of a hyperlink in the backbone, in comparison to the

optimal Kendall correlation between each combined metric and the weight wB
j . Results are shown

for dyadic hyperlinks (A-B) and triadic hyperlinks (C-D). Two columns corresponds to £ ˘ 1 and
£ ˘ d ¡ 1, respectively.



4.5. APPENDIX

4

109

Figure 4.32: The ht09 dataset. The Kendall rank correlation between each of the four metrics w j ,

 j (1), ¥
ad j
j and ¥ sub

j and the weight wB
j of a hyperlink in the backbone, in comparison to the

optimal Kendall correlation between each combined metric and the weight wB
j . Results are shown

for dyadic hyperlinks (A-B) and triadic hyperlinks (C-D). Two columns corresponds to £ ˘ 1 and
£ ˘ d ¡ 1, respectively.
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Figure 4.33: The workplace15 dataset. The Kendall rank correlation between each of the four met-

rics w j ,  j (1), ¥
ad j
j and ¥ sub

j and the weight wB
j of a hyperlink in the backbone, in comparison

to the optimal Kendall correlation between each combined metric and the weight wB
j . Results are

shown for dyadic hyperlinks (A-B) and triadic hyperlinks (C-D). Two columns corresponds to £ ˘ 1
and £ ˘ d ¡ 1, respectively.
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5
CONCLUSION

In this thesis, we focus on understanding the roles of nodes and links in a spreading
process. We investigate the roles of nodes and links from three different angles, each
covered in a separate chapter. The general objective is to analyze how these roles are as-
sociated with the properties of nodes and links, as captured by centrality metrics, within
the underlying network.

We first investigate, in Chapter 2, the spreading influence of a node, which indicates
the average number of nodes that are eventually infected when it serves as the seed node.
Chapter 3 addresses a more practical problem: how to select contacts (temporal links) to
block in order to mitigate the epidemic spreading on temporal networks. Here, we inves-
tigate the roles of temporal links in mitigating a spreading process. Finally, in Chapter 4,
we explore the roles of hyperlinks in a spreading process unfolding on a temporal higher-
order network (temporal hypergraphs). We study how many nodes are directly infected
through the activation of each hyperlink, which indicates the contribution of a hyperlink
to the spreading process.

In this chapter, we summarize the contributions of this thesis and reflect on its limi-
tations in Section 5.1, then discuss the potential directions for future research in Section
5.2.

5.1. MAIN CONTRIBUTION AND REFLECTIONS
In Chapter 2, we explore to what extent local and global topological information of a
node is needed to predict its spreading influence and whether relatively local topologi-
cal information around a node is sufficient for the prediction. To this end, we propose
to predict nodal influence using an iterative metric set derived from an iterative process.
The iterative metric set consists of an iterative metric from order 1 to K , encoding pro-
gressively more global information as K increases. We consider three iterative metrics:
Normalized Walk Counts (NWC), Visiting Probability (VP), and H index (HI), each con-
verging to a corresponding global metric in the iterative process. A regression model
using an iterative metric set is trained on a fraction of nodes whose influence is known

113



5

114 5. CONCLUSION

to predict the influence of the remaining nodes. We evaluate the performance of these
three iterative metrics in predicting nodal influence in SIR spreading processes across
various effective infection rates around the epidemic threshold, on both real-world net-
works and synthetic networks with different strength of community structure. Our find-
ings show that the prediction quality of each iterative metric set converges to its optimal
when relatively low orders (up to order 4) are included, with only marginal improve-
ment upon adding higher orders. This is explained by the correlation between the iter-
ative metric of each order and nodal influence, and the convergence rate of each itera-
tive process. The best-performing iterative metric set, NWC, achieves prediction quality
comparable to the benchmark method, which combines both local and global centrality
metrics. In spatially embedded networks with extremely large diameter and modular-
ity, however, the iterative metric of higher orders (thus a large K ) are needed to achieve
comparable prediction quality as the benchmark. These findings suggest that NWC met-
rics of relatively low orders (up to order 4) contain sufficient information for predicting
nodal influence reasonably well in networks with the small-world property, while being
computationally less complex than global centrality metrics in the benchmark model. In
most networks, the NWC metric of order k … 4 has near-maximal correlation with nodal
influence, indicating that nodes with a large number of distinct 4-hop walks originat-
ing from them tend to be more influential. However, the interpretability of the iterative
metric-based regression model is limited because of the strong correlation among an
iterative metric of different orders.

In Chapter 3, we investigate how to strategically select contacts to block to mitigate
the epidemic spreading on temporal networks. We propose probabilistic contact block-
ing strategies based on the properties of contacts within the temporal network. Specifi-
cally, we define the probability of blocking a contact c(i , j , t ) as a function of a given cen-
trality metric of the corresponding link l (i , j ) in the time-aggregated network and time t .
In total, we consider 12 centrality metrics, each defining a unique strategy, along with a
baseline strategy (random removal). We find that the strategy that prioritizes the removal
of early contacts between node pairs with fewer contacts achieves the most effective epi-
demic mitigation in terms of reducing the average prevalence, the peak prevalence, and
the time needed to reach the peak prevalence. This suggests that removing contacts as-
sociated to weak social ties (i.e., links activated less frequently) in the early phase tends
to better suppress the epidemic spreading. Our findings still hold when uncertainty is
introduced in the original temporal networks, either by reshuffling the ordering of con-
tacts or by enlarging the temporal resolution.

We further analyze the properties of the pruned network resulting from contact re-
moval according to each strategy. Our analysis shows that the strategy that best mitigate
the spreading produces an aggregated pruned network with a high largest eigenvalue,
a large modularity, and a possibly a small size of the largest connected component. A
strategy tends to perform better when the number of removed contacts of each link is
similar. These findings are in line with our understanding that a network with a small
largest connected component and high modularity hinders epidemic spreading. How-
ever, the high largest eigenvalue in the aggregated pruned network resulting from the
best strategy seems to contradict our understanding that a static network with a large
largest eigenvalue tends to facilitate SIS epidemic spreading with respect to its small
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epidemic threshold. This is possibly because of differences between SIR and SIS mod-
els, distinctions between epidemic threshold and prevalence, and the complexity intro-
duced by the temporal nature of the network, which cannot be fully captured by the
aggregated network.

Chapter 4 focuses on the spreading process unfolding on a temporal higher-order
network. In this chapter, we study the contribution of a hyperlink in a temporal higher-
order network to the spreading process, defined as the average number of nodes directly
infected via the activation of the hyperlink. We explore which properties of a hyperlink
in the temporal higher-order network lead to a high contribution to the spreading pro-
cess. A generalized Susceptible-Infected threshold process with two parameters, infec-
tion probability fl and threshold £ , is considered on eight real-world temporal higher-
order networks, which are derived from human face-to-face contacts in various contexts.
We first proposed the construction of the diffusion backbone, where the weight of each
hyperlink represents its contribution to the spreading process starting from a random
seed node. In the limiting case where fl ! 0, the weight of a hyperlink in the backbone is
derived analytically based on the local temporal connections around the hyperlink. We
then illustrate the dependency of the backbone on the two process parameters. This is
also evidenced by the backbones analytically derived as fl ! 0 when £ varies. To explore
which properties of hyperlinks are associated with high contributions to the spreading
process, we designed centrality metrics for a hyperlink to estimate the ranking of hyper-
links by their weights in the backbone. Each proposed metric is defined based on the
activity of the target hyperlink and its neighboring hyperlinks in the temporal higher-
order network. Different metrics are shown to achieve the best prediction performance
for different parameter sets (fl,£ ) of the process, and the best performance approaches
the optimal performance of the combined metrics.

5.2. FUTURE WORK
Based on the methods and results in this thesis, we raise some promising future direc-
tions.

The impact of network properties on the prediction of nodal influence. In Chapter
2, we observe the trend that an iterative metric of high orders, which encode more global
network information, are needed for the iterative metric-based method to perform close
to its optimal in networks with larger diameters. It would be valuable to identify the min-
imal order of an iterative metric needed to achieve, for example, at least 95% of the op-
timal performance of the iterative metric-based method in relation to properties of the
underlying network, such as diameter. Furthermore, the diameter and strength of com-
munity structure are possibly correlated in real-world networks and network models.
We have observed the influence of community structure and diameter on the prediction
quality of the NWC-based method and the benchmark model. An open question is how
diameter influences the prediction quality while the community strength is fixed. To ad-
dress both objectives, network models with a controllable diameter and more real-world
networks, especially those without the small-world property, are needed.

Systematic exploration of mitigation of epidemic spreading. In Chapter 3, we have
confined ourselves to the SIR model with limited choice of parameters and a few real-
world networks. While the SIR model is a simplified representation of epidemic spread-
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ing, real-world epidemics are often more complicated. Hence, our conclusion regard-
ing the effectiveness of mitigation strategies cannot be generalized directly to real-world
epidemic mitigation. It is essential to explore more realistic epidemic spreading models.
Additionally, in our time-dependent contact removal strategies, the time dependence
is defined using one of the simplest functional forms. Exploring other time-dependent
functions, especially those that are practical for policymakers, would be valuable.

Backbones of other types of higher-order interactions and under different dynam-
ics. In Chapter 4, we consider only the Susceptible-Infected threshold process as the dif-
fusion model on temporal higher-order networks and focus on two extreme cases for the
threshold. Indeed, the proposed method can also be generalized to other dynamical pro-
cesses unfolding on temporal higher-order networks to study the relation between the
contribution of each hyperlink and the process dynamics. Moreover, it may be used to
investigate how different temporal correlations observed in real temporal higher-order
networks can affect the hyperlink contribution. Furthermore, it would be interesting to
explore other types of temporal higher-order networks, such as scientific collaborations
networks, which may have different properties than the human interaction networks
considered in Chapter 4. Finally, it would be promising to investigate how to design
strategies to mitigate the dynamic process on the network via blocking selected hyper-
links, based on the backbone or our proposed centrality metrics.
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