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“. . . the raison d’être for model predictive control is its ability to handle control
problems where off-line computation of a control law is difficult or impossible.”
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Summary

The use of model predictive control (MPC) techniques for embedded systems with
fast dynamics is still limited. In fields such as aerospace or automotive, the use of
classical control methods such as PID is still significant. The presence of constraints,
however, impacts on the performance of these controllers that are usually designed
to avoid constraint saturation. MPC techniques are the obvious alternative to handle
constraint saturation and fully exploit the operative range of the system. Further-
more, MPC can be used as a fault-tolerant controller to handle actuator faults and
control reallocation in a modular and systematic way.

In this dissertation, we rely on MPC techniques to handle constraints and actu-
ator faults, motivated by an aerospace application (i.e., the longitudinal control of
an Airbus passenger aircraft). First, we show the improvements in terms of tracking
performance when constraints saturate during maneuvers compared to a PID imple-
mentation. Second, we show how to handle actuator faults by actively performing
control constraint reconfigurations in the MPC problem formulation. The proposed
fault-tolerant strategy strongly relies on the MPC capability of handling constraints
and directly controlling each actuator independently.

The advantages of MPC in terms of performance and fault tolerance, however,
are shadowed by the computational requirements of this technique. For medium- and
large-scale applications, MPC requires the online solution of a constrained optimiza-
tion problem (often a constrained quadratic programming problem). The presence of
an optimizer compromises the performance of the controller in terms of computation
time and increases its requirements in terms of hardware and software. Furthermore,
from an industrial perspective, the presence of the iterative optimizer affects also
the reliability of the design. In order to address the concerns above for the afore-
mentioned applications, the optimizer should be certifiable in terms of worst-case
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x SUMMARY

computation time to return medium-accuracy solutions (which are in practice suffi-
cient to ensure performance). Furthermore, the algebraic operations involved in the
optimizer should be simple (e.g., the solver should avoid to perform matrix inver-
sions or complex projections).

In this dissertation, we analyze the state of the art in terms of MPC-tailored op-
timizers suitable for online optimization. In particular, we focused on first-order
solvers, such as proximal-gradient and splitting methods, which are suitable candi-
dates for implementations on embedded platforms. In this respect our contribution
is the following. First, we focus on how the use of a subclass of these solvers—the
dual projected gradient methods—impacts on the (primal) feasibility of the MPC
problem solution and on the stability of the controlled system. We propose to use
a robust control technique (i.e., constraint tightening) to guarantee recursive feasi-
bility of the MPC problem and closed-loop stability. Second, in order to improve
the computation time of the solver, we combine the use of the proposed tightening
scheme with splitting methods. These algorithms allow us to exploit the structure of
the MPC problem and, if available, parallel hardware architectures. This approach
aims to address both regulation and tracking problems. Third, if parallel hardware
architectures are not available, we propose the use of a novel splitting algorithm that
allows one to randomly update the decision variables of the MPC problem formula-
tion. The use of these random updates aims to reduce the overall computation time
compared to the update of the full set of decision variables at each iteration of the
solver. For this algorithm, we provide a complete proof of convergence and two
accelerated versions to further improve the computation time.

The proposed contributions aim to bring MPC closer to actual implementation
on the next generation of aircraft.



Samenvatting

De toepassing van model predictive control (MPC) technieken voor embedded sys-
temen met snelle dynamiek is nog steeds beperkt. Bij toepassingen zoals lucht- en
ruimtevaart is het gebruik van klassieke regelmethoden zoals PID nog steeds signifi-
cant aanwezig. Het bestaan van randvoorwaarden heeft echter invloed op de presta-
ties van deze controllers, die gewoonlijk zijn ontworpen om randvoorwaardenverza-
diging te vermijden. MPC-technieken zijn het voor de hand liggende alternatief om
randvoorwaardenverzadiging aan te pakken en het operationele bereik van het sys-
teem volledig te benutten. Bovendien kan MPC als fouttolerante controller gebruikt
worden om actuatorfouten en regelactie-herverdeling op modulaire en systematische
wijze te behandelen.

In dit proefschrift, gemotiveerd door een ruimtevaarttoepassing (dat wil zeggen
de longitudinale controle van een Airbus-passagiersvliegtuig), vertrouwden we op
MPC-technieken om randvoorwaarden en actuatorfouten aan te pakken. Ten eer-
ste tonen we de verbeteringen aan in termen van het referentievolgend vermogen
wanneer randvoorwaarden tijdens manoeuvres verzadigen, vergeleken met een PID-
implementatie. Ten tweede tonen we aan hoe met de fouten in actuatoren moet
worden omgegaan door actief de randvoorwaarden in het MPC-probleem te herfor-
muleren. De voorgestelde fouttolerante strategie berust sterk op het vermogen van
een MPC-regelaar om randvoorwaarden te handhaven en onafhankelijk elke actuator
aan te sturen.

De voordelen van MPC in termen van prestatie en fouttolerantie worden ech-
ter overschaduwd door de vereiste rekenkracht voor deze techniek. Voor middel-
en grootschalige toepassingen vereist MPC het online oplossen van een optimalisa-
tieprobleem met randvoorwaarden (vaak een kwadratisch programmeringsprobleem
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xii SAMENVATTING

met randvoorwaarden). De aanwezigheid van optimaliseringssoftware compromit-
teert de prestaties van de controller met betrekking tot de rekentijd en verhoogt de ei-
sen ten aanzien van hardware en software. Vanuit industrieel oogpunt beïnvloedt de
iteratieve optimaliseringssoftware ook de betrouwbaarheid van het ontwerp. Om de
bovengenoemde zorgen voor de bovengenoemde toepassingen aan te pakken, dient
de optimaliseringssoftware te worden gecertificeerd in termen van de langst moge-
lijke rekentijd om oplossingen van gemiddelde nauwkeurigheid op te leveren (die in
de praktijk voldoende zijn om prestaties te waarborgen). Bovendien moeten de alge-
braïsche bewerkingen die betrokken zijn bij de optimaliseringssoftware eenvoudig
zijn (de solver moet bijvoorbeeld voorkomen dat matrix-inversies of ingewikkelde
projecties worden uitgevoerd).

In dit proefschrift hebben we de stand van de techniek geanalyseerd voor op-
timaliseringssoftware specifiek voor MPC, die geschikt zijn voor online optimali-
satie. In het bijzonder richten we ons op “first-order” solvers, zoals “proximal-
gradient”- en splitsingsmethoden, die geschikt zijn voor implementatie op embedded
platforms. Met betrekking tot dit is onze bijdrage het volgende. Ten eerste richten
we ons op hoe het gebruik van een subklasse van deze solvers—de duale “projected-
gradient” methoden—invloed heeft op de vervulbaarheid van de randvoorwaarden
in het MPC-probleem en op de stabiliteit van het geregelde systeem. We stellen voor
om een robuuste regeltechniek (dat wil zeggen, een aanscherping van de randvoor-
waarden) te gebruiken om recursieve vervulbaarheid van de MPC-randvoorwaarden
en de stabiliteit van het system en regelaar in een gesloten lus te garanderen. Ten
tweede combineren we het gebruik van de voorgestelde aanscherping van de rand-
voorwaarden met splitsingsmethoden om de rekentijd van de solver te verbeteren.
Deze algoritmen stellen ons in staat om de structuur van het MPC-probleem uit
te buiten en, indien beschikbaar, parallelle hardware-architecturen aan te wenden.
Deze aanpak kan zowel voor regels- als referentievolgproblemen worden gebruikt.
Ten derde stellen we voor indien parallelle hardware-architecturen niet beschikbaar
zijn, om een nieuw splitsingsalgoritme te gebruiken waarmee men de beslissings-
variabelen van de MPC-probleemformulering willekeurig kan updaten. Het gebruik
van deze willekeurige gekozen updates vermindert de totale berekeningstijd in ver-
gelijking met de update van de volledige set beslissingsvariabelen bij elke iteratie
van de solver. Voor dit algoritme hebben we een compleet bewijs geleverd van con-
vergentie en twee versnelde versies van het algoritme voorgesteld om de rekentijd
verder te verbeteren.

De voorgestelde bijdragen willen MPC dichter bij werkelijke implementatie bren-
gen op de eerstvolgende generatie vliegtuigen.
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1
Introduction

Model Predictive Control (MPC) is a popular control technique, especially suited to
handle multiple-input multiple-output (MIMO) systems with state, input, and output
constraints. In order to compute an optimal control action for the plant, the MPC
controller solves, recursively, an optimization problem based on the current plant
measurements and returns the optimal control sequence for the predicted evolution
of the model over a (generally) finite time frame, called prediction horizon. Then,
the controller only applies the first element of that optimal control sequence to the
plant. At the next sampling instant (i.e., when new measurements are available from
the plant), the MPC controller solves another optimization problem based on the
new measurements, in a receding horizon fashion [69; 6; 103].

This dissertation focuses on the application of MPC to a flight control problem,
that is the longitudinal control of an Airbus passenger aircraft [36; 37]. Having an
MPC controller implemented on the flight control unit can lead to significant im-
provements in terms of the aircraft performance. This is illustrated by an example in
Chapter 3 that shows how tracking performance can be improved in the presence of
constraints. Furthermore, MPC formulations can be used to develop a fault-tolerant
controller (as proposed in Chapter 5) and to improve the detection and the diagno-
sis of jamming faults on the aircraft actuators. In this scheme, the MPC controller
performs a sequence of control reconfigurations that aim to actively diagnose the
root-cause of the fault once it has been detected. The reconfigurations are possible
thanks to the MPC capability of directly enforcing constraints and computing the
optimal reference trajectory to handle the faults.

The main difficulty when using MPC in such applications, however, is related
to the presence of an optimizer. In the past, the need to solve a new computation-
ally demanding optimization problem at each problem instance has confined the use
of MPC to applications with slow dynamics, such as the chemical industry. Nev-

1
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ertheless, the growing availability of powerful, embedded computing hardware ar-
chitectures has increased the interest for MPC in applications with fast dynamics as
well, such as automotive or aerospace. In recent years, many researchers have fo-
cused their efforts on developing algorithms tailored to MPC for applications with
fast dynamics with the following main points of attention:

• Offline optimization (i.e., the explicit MPC [4]).

• Second-order methods (i.e., interior-point or active-set methods).

• First-order methods (i.e., proximal-gradient or splitting methods).

Concerning the approaches based on explicit MPC, the possibility to move the
computational effort offline is the most appealing for applications with hard real-
time constraints. The main drawback of these techniques, however, is that their
use is still limited to small scale problems due to the large number of regions (and
resulting memory requirements) that represent the multiparametric solution of the
underlying optimization problem.

Concerning the approaches based on second-order methods, these algorithms are
known to provide high-accuracy solutions in a sufficiently small amount of time.
Among the second-order methods, active-set methods are practically efficient to
solve small/medium scale problems (some fast active set strategies for MPC have
been recently proposed in [28]). These methods, however, to the best of the author’s
knowledge, do not provide any certification in terms of worst-case execution time,
which is an important requirement for the industrial clearance of a controller.

Among the second-order methods, interior-point solvers have gained most of the
attention for the class of problems considered in this dissertation. In this respect, in
the late 90s, the authors of [135; 101] presented one of the first interior-point meth-
ods tailored to MPC applications. In particular, they proposed a modified version of
the interior-point method presented in [73], known as predictor-corrector algorithm,
aiming to improve its performance in terms of computational costs. Their interior-
point method exploits the structure of the MPC problem and solves the linear system
that derives from the KKT conditions using a discrete-time Riccati recursion. As a
result, the computational cost of their algorithm grows linearly with the length N
of the prediction horizon instead of cubically, as in standard versions of the interior-
point method, such as [73]. Almost ten years later, the authors of [131; 141] built
on those results and developed novel interior-point-based algorithms that allow for
fast online computation of the MPC solution. First, the authors of [131] showed that
their proposed second-order solver (a modified version of the algorithm of [101] with
warm starting and early termination) was a suitable candidate for systems with fast
dynamics. As underlined by the same authors in [131], however, a stability analysis
was missing as well as a study on primal feasibility and optimality of the solution
returned by their algorithm. These issues were addressed by the authors of [141]. In
particular, they provided a competitive algorithm based on an interior-point method
that guarantees feasibility and closed-loop stability (the authors provided also a fast
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1robust MPC design based on the tube MPC concept for uncertain systems). The
key to guaranteeing stability in their approach was in the warm start and early ter-
mination techniques. The results presented in [141] were based on the observation
that if the suboptimal solution is feasible and the cost associated with the current
problem instance is lower than the cost associated with the shifted solution (used
for the warm starting of the solver), then suboptimality is sufficient to ensure stabil-
ity (feasibility implies stability [118]). The final result was an interior-point-based
algorithm tailored to MPC that guarantees feasibility and closed-loop stability in a
certified number of iterations.

The main drawback of MPC designs that rely on interior-point methods is that
a second-order method is not well suited for control applications that will run in an
embedded environment. In particular, these algorithms require advanced algebraic
operations and a significant amount of memory. A valid alternative to overcome
these issues is represented by first-order methods.

First-order methods, such as proximal and splitting methods, recently gained
significant attention (to mention a few [81; 82; 88; 61; 108; 106; 90; 91; 33; 78;
35; 128; 96; 123; 7]). These algorithms are a promising alternative to interior-point
solvers. They only require simple hardware and software and are relatively easy to
certify in terms of worst-case computation time and optimality.

Among the proximal methods, an interesting class of solvers suitable for MPC
applications is the class of projected-gradient methods. Depending on the complex-
ity of the MPC feasible region, these algorithms can be used (directly) on the primal
MPC problem (e.g., [61; 106]) or (indirectly) on the dual MPC problem (e.g., [33;
109; 91]). In particular, if the projection on the feasible region in the primal space
cannot be computed efficiently, under some mild assumptions, the computation of
the MPC problem solution can be moved to the dual space. This trick overcomes the
issues related to the projection step in primal space, but it introduces some challenges
in terms of feasibility and optimality of the primal solution. In this respect, several
algorithms tailored to MPC have been proposed that provide a-priori upper bounds
on primal infeasibility, primal suboptimality, and worst-case computation time. For
example, the authors of [91] proposed a custom version of Nesterov’s dual fast gradi-
ent (DFG) method [82], called Accelerated Dual Gradient Projection or GPAD. They
also optimized the choice of the Lipschitz constant for the dual gradient (which is im-
portant for the convergence of this class of solvers given that it affects, for instance,
their step size) and provided termination criteria for the algorithm. The authors
of [33] presented a DFG algorithm to solve a distributed MPC problem. Further-
more, in [31], the author proposed a generalization of the fast gradient method that
allows the use of a nonuniform quadratic upper bound on the negative dual function.

The aforementioned techniques certify the fast gradient method in terms of pri-
mal infeasibility, primal suboptimality, and worst-case computation time. Guaran-
tees on recursive feasibility and closed-loop stability (i.e., guarantees from the con-
trol perspective), however, are missing. The authors in [13; 32; 112] addressed these
aspects using constraint tightening techniques. In particular, these techniques con-



4 CHAPTER 1. INTRODUCTION

sider a modified primal MPC problem that differs from the original one in the defini-
tion of the primal feasible region. The feasible region of this modified primal MPC
problem is tightened by a factor εc proportional to the suboptimality ε of the DFG
algorithm. A tailored selection of the tightening parameter allows one to preserve
primal feasibility, a specified level of suboptimality, and closed-loop stability of the
original primal MPC problem.

Among the splitting methods, the alternating minimization algorithm (AMA [128;
35]) and the alternating direction method of multipliers (ADMM [8; 5]) emerged to
play a significant role in solving MPC problems. These algorithms are particularly
appealing for MPC applications because they allow one to exploit the structure of
the problem.

AMA derives from the application of the proximal-gradient method to the dual
problem. Compared to ADMM, the convergence analysis and certifications in terms
of feasibility and suboptimality can be derived from the ones of the proximal-gradient
method and guidelines are available for the selection of the tuning parameters of
the algorithm. Applications of this algorithm to MPC can be found for example
in [96; 97].

ADMM derives from the application of the Douglas-Rachford method to the dual
problem. Compared to AMA, the algorithm does not require any strong convexity
assumption (which is an interesting feature for control problems) and shows faster
convergence in practice (see, for example, [12]). Applications of this algorithm to
MPC can be found for example in [60; 63; 62; 121; 30].

This dissertation mainly focuses on first-order solvers, with a particular focus
on proximal-gradient and splitting methods, for aerospace applications. These ap-
plications offer several challenges from the optimization point of view. In general,
these applications require a long prediction horizon, have several state, input, and
output constraints (preventing the use of primal first-order solvers), and the condi-
tioning of the resulting MPC problem is poor (with impact on the convergence of
the first-order solvers). Furthermore, the computation time is in general limited to
few milliseconds and it is important that the controller guarantees a feasible solu-
tion within the available time. We worked to address the issues above in different
directions. In this respect, compared to the state of the art:

• We propose a novel constraint-tightening strategy when a DFG solver is used
to compute the solution of the MPC problem (Chapter 2). The proposed strat-
egy leads to less conservative primal feasible solutions and guarantees recur-
sive feasibility and closed-loop stability. This algorithm is tested on the longi-
tudinal control of an F-16 aircraft [113].

• Building on the results proposed in Chapter 2, we propose an improved strat-
egy that combines the DFG method with a decomposition of the original MPC
(Chapter 3). This decomposition helps improve the numerical properties of the
algorithm (leading to smaller computation time) and allows the algorithm to
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1select different tightening parameters along the length of the prediction hori-
zon. Furthermore, we provide closed-loop stability and recursive feasibility
guarantees for both MPC for regulation and tracking problems (tracking prob-
lems are not often considered but are interesting from the practical point of
view). Finally, we show how the proposed algorithm leads to improved results
in terms of computation time on the Airbus passenger aircraft [37].

• Motivated by the recent developments in the theory of stochastic proximal-
gradient methods [138; 51; 136; 119; 120] and the relationship between prox-
imal-gradient methods and AMA, we propose a stochastic AMA scheme with
variance reduction (i.e., SVR-AMA discussed in Chapter 4 and its accelerated
versions). Compared to AMA, this algorithm performs random updates of
the decision variables along the length of the prediction horizon. The main
advantage is that the algorithm can return medium accuracy solutions (that are
in general sufficient for flight control applications) within a smaller amount
of time (measured in terms of number of iterations) compared to AMA. The
proposed algorithms are also tested on the Airbus passenger aircraft [37].

We believe that these contributions can bring MPC closer to becoming a valid, high-
performance alternative in constrained flight control problems and enable their im-
plementation on real on-board control units.

Organization of the Dissertation

This dissertation makes several contributions, with results published in international
journals and conferences (refer to page 143 for a complete list of publications). The
remainder is organized as follows:

• Chapter 2 presents a novel MPC algorithm to deal with the early termination
of the solver used for online optimization. The proposed algorithm guarantees
recursive feasibility and closed-loop stability when using Nesterov’s dual fast
gradient scheme to solve the MPC problem online. Effectiveness of the pro-
posed approach is tested on the longitudinal control problem of an F-16 aircraft.
Chapter 2 appeared in the Journal of Optimal Control Applications and Methods
(OCAM) [78].

• Chapter 3 presents an improved MPC algorithm to deal with the early termina-
tion of the solver used for online optimization. Compared to the results presented
in the previous chapter, this algorithm relies on the use of splitting methods to
exploit the structure of the MPC problem. The proposed algorithm guarantees
recursive feasibility and closed-loop stability. Furthermore, the algorithm can be
implemented on parallel hardware architectures. Finally, the performance im-
provements (in terms of computation time) are demonstrated on the longitudinal
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control of an Airbus passenger aircraft. Chapter 3 appeared in the AIAA Journal
of Guidance, Control, and Dynamics (JGCD) [22].

• Chapter 4 presents SVR-AMA, a novel first-order solver suitable for MPC prob-
lems, and its accelerated versions. Compared to the approach presented in the
previous chapter, SVR-AMA performs random updates of the decision variables
of the MPC problem (a useful feature to have more flexibility in the computation
of the MPC problem solution when synchronized parallel hardware architectures
are not available). The numerical results on the longitudinal control of an Air-
bus passenger aircraft show improvements (in terms of quality of the solution
returned within the same number of iterations) compared to AMA. Chapter 4
has been submitted for review to the IEEE Transactions on Automatic Control
(TAC) [26].

• Chapter 5 presents an algorithm for the detection and active diagnosis of elevator
jamming faults (faults that can cause either temporary or permanent jamming of
the aircraft elevators). Compared to traditional fault-tolerant control approaches,
the proposed algorithm does not assume perfect knowledge of the fault. The
interactions between the fault detection (FD) unit and the MPC controller are
designed to allow the FD unit to identify the root cause of the actuator jamming
(i.e., to identify whether the jamming is permanent or temporary) through a se-
quence of tailored reconfigurations in the MPC controller. This strategy, which
strongly relies on features specific to MPC, is tested on the longitudinal control
of an Airbus passenger aircraft. Chapter 5 has been submitted for review to the
International Journal of Robust and Nonlinear Control (IJRNC) [27].

• Chapter 6 concludes the dissertation, summarizing key results, analyzing current
limitations, and highlighting opportunities for future research directions.
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22
An Adaptive Constraint Tightening Approach
to Linear Model Predictive Control Based on
Approximation Algorithms for Optimization

Abstract

In this chapter, we propose a model predictive control scheme for discrete-time linear
invariant systems based on inexact numerical optimization algorithms. We assume
that the solution of the associated quadratic program produced by some numerical al-
gorithm is possibly neither optimal nor feasible, but the algorithm is able to provide
estimates on primal suboptimality and primal feasibility violation. By adaptively
tightening the complicating constraints, we can ensure the primal feasibility of the
approximate solutions generated by the algorithm. We derive a control strategy that
has the following properties: the constraints on the states and inputs are satisfied,
asymptotic stability of the closed-loop system is guaranteed, and the number of iter-
ations needed for a desired level of suboptimality can be determined. The proposed
method is illustrated using a simulated longitudinal flight control problem.

7
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2.1 Introduction

Model predictive control (MPC) has become a popular advanced control technology
due to its ability to handle hard input and state constraints. An MPC scheme con-
sists of solving at each sampling time instant (i.e., when the controller receives new
measurements from the plant) an optimization problem whose variables are given by
the inputs and the states of the system over a finite time horizon. Once the optimal
solution is computed, only the first input is injected to the system and then the whole
procedure is repeated. MPC was first implemented in slow systems such as industrial
processes [99], but due to the increase of computing power and data transmission ca-
pabilities of modern digital devices it has been extensively studied also in the context
of controlling fast embedded systems and distributed control of networked systems.
Recently there has been a growing interest in developing faster MPC schemes for
embedded systems, by improving the computational efficiency and providing worst-
case computational complexity certificates for the applied solution methods, mak-
ing these schemes implementable on hardware with limited computational power
[49; 54; 53; 75; 79; 101; 107; 108]. In large-scale networked system settings many
decomposition methods have been proposed for the synthesis of distributed MPC
schemes as well [9; 74; 77; 75; 76; 114; 125].

The two main classes of general-purpose iterative algorithms that have typically
been used for solving the underlying linearly constrained convex quadratic programs
in MPC problems are the active-set and interior point methods [2]. Recently, how-
ever, there has been interest in applying first-order (projected gradient) methods to
the quadratic programming problems (QPs) arising in MPC. In particular, Nesterov’s
Fast Gradient Method (FGM) has been applied to MPC in [75; 79; 108; 145]. As
well as being a very simple algorithm to implement, and being very parallelizable
(the main computational load being a matrix-vector multiplication), and essentially
division-free and matrix-inversion-free, the key benefit is that a tight bound can be
found on the number of iterations required to achieve a given degree of solution
accuracy [75; 79; 108]. The primal FGM is well suited to implementation using
fixed-point arithmetic [145; 53]. Further recent developments include combination
with the Alternating Direction of Multipliers Method (ADMM) [79; 107] to handle
equality constraints (allowing the optimizer to use both the states and the control
commands as decision variables), solution of the Lagrangian dual problem rather
than the primal problem [75; 79; 91], and applications to distributed model predic-
tive control problems [32; 75]. An online tool, FiOrDoS, [129] can automatically
generate C-code for first-order methods, customized to specific problem structures.

Typical requirements for the practical implementation of real-time MPC include
certification of the worst-case execution time, reduced memory usage, simple nu-
merical iterations that can be easily implemented on cheap and/or certifiable hard-
ware and software, and distributed computations. Classic approaches meeting these
requirements such as explicit MPC [4], or methods based on interior point algo-
rithms [101] can become inapplicable due to the large dimension of the problems or
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complex iterations that involve matrix inversion. An alternative is provided by dual
first-order methods [107; 76; 79; 75]. Although these methods are characterized by
simple computations and offer tight worst-case bounds on the required number of
iterations, they can ensure feasibility only at optimality [79]. In order to avoid this
drawback, new dual methods based on constraint tightening have been proposed in
[14; 32; 75; 112]. The authors of [32; 112] present suboptimal stable MPC schemes
able to ensure also feasibility of the primal variables using a constraint tightening
approach. In these schemes the tightening is applied to both the state and the in-
put constraints, while the parameters measuring the suboptimality and the degree of
tightening are fixed for all initial states of the MPC scheme. In [14], stability and
feasibility of an MPC scheme is also ensured using a constraint tightening approach
and suboptimality results are based on dual subgradient analysis. In [75] the authors
derive a complete convergence rate analysis for two dual methods based on inexact
gradient information and averaging that generate approximate primal solutions for
smooth convex optimization problems. Further, they combine these methods with
constraint tightening and apply this framework to MPC. In the present chapter we
extend the main results from [75] on suboptimality and feasibility of a suboptimal
MPC scheme by assuming that the suboptimal control inputs are computed using a
generic inexact numerical optimization algorithm. Moreover, compared to [75], we
show that by choosing adaptively the parameters of the suboptimal MPC scheme we
can ensure closed-loop stability.

Contribution: The main contribution of this chapter is to propose a suboptimal
MPC scheme that ensures both feasibility and stability with only a limited num-
ber of optimization iterations. Given that in many MPC schemes an approximate
solution of the optimization problem that has to be solved online, that is, at each
sampling time instant when new measurements are available from the plant, might
not be feasible, we solve approximately an auxiliary problem obtained by tighten-
ing the constraints of the original one. We show that the approximate solution of the
tightened problem is also a suboptimal feasible solution for our original optimization
problem and thus we obtain an MPC scheme that ensures feasibility, suboptimality,
and stability for the closed-loop system. Compared to the recent papers [112; 32],
in our approach the tightening is applied only to the state constraints leaving the
original control input limitations unaltered. Furthermore, the parameters measuring
the suboptimality and the tightening are chosen adaptively, that is, depending on
the initial state of the MPC scheme. This leads to a more flexible and potentially
less conservative approach. The proposed MPC scheme can accommodate any QP
solver in order to find an approximate solution of the problem. Further, in order to
establish a bound on the number of iterations required to find a desired solution, we
also provide a dual fast gradient method taken from [75], which is at least one order
of magnitude faster than the one in [14].

Aerospace applications represent an area where embedded optimization-based
control solutions have received increased attention. In particular, within the area
of flight control, MPC has been used for diverse purposes including regulation and
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tracking [57], control reconfiguration [59], flight envelope protection [58], gust load
alleviation [39], and optimal control surface allocation [17]. In this chapter, we
demonstrate the applicability of our proposed inexact MPC scheme on a medium-
scale, nontrivial longitudinal flight control application problem involving two con-
trol inputs, 9 states, and around 1000 constraints.

Chapter outline: The chapter is organized as follows. In Section 2.2 we formu-
late the linear MPC problem and we also introduce a tightened problem that helps
us to recover feasibility. In Section 2.3 we present a dual fast gradient algorithm
for finding the approximate solution required by our MPC scheme and provide a
rate analysis and estimates on the primal feasibility violation and suboptimality of
the generated approximate primal solutions. In Section 2.4 we prove the feasibil-
ity, suboptimality, and stability of the proposed MPC scheme. Finally, in Section
2.5 we apply our scheme to a flight control problem involving altitude and airspeed
regulation of an F-16 aircraft.

Notation: We work in the space Rn composed by column vectors. For u, v ∈ Rn
we denote the standard Euclidean inner product 〈u, v〉 =

∑n
i=1 uivi, the Euclidean

norm ‖u‖ =
√
〈u, u〉, and the projection onto the nonnegative orthant Rn+ as [u]+.

We use the same notations 〈·, ·〉, ‖·‖, and [·]+ for spaces of different dimension.
Further, Q � (�) 0 denotes a positive (semi)definite matrix Q. For a matrix G, we
denote its spectral norm by ‖G‖.

2.2 Condensed QP Formulation for Linear MPC

We consider discrete-time linear systems, defined by the following linear difference
equation:

x(t+ 1) = Ax(t) +Bu(t), (2.1)

where x(t) ∈ Rnx and u(t) ∈ Rnu represent the state and the input of the system at
time t, respectively. We also impose state and input constraints:

x(t) ∈ X, u(t) ∈ U ∀t ≥ 0, (2.2)

where X ⊆ Rnx is a polyhedral set and U ⊆ Rnu is a simple convex set, i.e., the
projection on this set can be computed efficiently (e.g. hyperbox, Euclidean ball,
Rnu , etc). Moreover, we assume that both sets X and U contain the origin in their
interior. For the system (2.1) we consider a quadratic convex stage cost:

`(x(t), u(t)) = 1
2 ‖x(t)‖2Q + 1

2 ‖u(t)‖2R ,

where we use the notation ‖x‖2Q = xTQx. The following assumption is valid
throughout the chapter:

Assumption 2.2.1. The pair (A,B) is stabilizable and the matrices Q and R are
positive definite, i.e. Q � 0 and R � 0.
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Based on Assumption 2.2.1 we denote with K ∈ Rnu×nx the gain associated
with the infinite horizon linear quadratic regulator (LQR) defined by the matrices
A,B,Q and R and with P the solution of the algebraic Riccati equation associated
with the LQR problem. We also introduce a terminal cost:

V f(x) = 1
2‖x‖

2
P ,

and a terminal polyhedral setX f. We assume that the terminal setX f is µ-contractive
for the closed-loop system x(t+1) = (A+BK)x(t), not necessarily maximal, with
µ < 1 (see e.g. [103] for a detailed discussion), i.e.:

∀x ∈ X f ⇒ x ∈ X,Kx ∈ U and (A+BK)x ∈ µX f. (2.3)

For a prediction horizon of length N , the MPC problem for (2.1), with a given
initial state x ∈ X̄N , where X̄N denotes a region of attraction, can be formulated as
(see e.g. [118; 103] for more details):

V ∗(x) = min
x(i),u(i)

N−1∑
i=0

`(x(i), u(i)) + V f(x(N))

s.t: x(i+ 1) = Ax(i) +Bu(i), x(0) = x (2.4)

x(i) ∈ X, u(i) ∈ U, x(N) ∈ X f for i = 0, . . . , N − 1.

For the input trajectory of the system we use the notation:

u =
[
u(0)T · · ·u(N − 1)T]T ∈ RNnu .

By eliminating the states from the dynamics (2.1), the MPC problem (2.4) can
be expressed as a condensed quadratic convex optimization problem [103; 75]:

V ∗(x) = min
u∈U

VN (x,u)
(

= 1
2uTQu + (Wx)Tu

)
s.t: Gu + Ex+ g ≤ 0, (P(x))

where Q is positive definite due to the assumption that R is positive definite and the
convex set U is the Cartesian product of the setsU forN times. Note that if the setU
is simple, then the Cartesian product set U is also a simple set. Further, the inequal-
ities Gu + Ex + g ≤ 0 are obtained by eliminating the states from the constraints
x(i) ∈ X and x(N) ∈ X f and they are usually called complicating constraints.
Here we consider G ∈ Rp×Nnu . In MPC, at each discrete time instant, given the
initial state x, we need to solve the optimization problem (2.4) or equivalently opti-
mization problem (P(x)). We denote by u∗(x) the unique optimal solution and by
λ∗(x) an optimal Lagrange multiplier associated to the complicating constraints of
problem (P(x)). Further, we denote by uf(x) the LQR solution:

uf(x) = [(Kx(0))T · · · (Kx(N − 1))T]T,
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where x(0) = x and x(i + 1) = (A + BK)x(i) for all i = 0, . . . , N − 1. In any
practical situations, e.g., when we have fast dynamics and hard real-time computa-
tional requirements, or when we need to perform distributed computations, finding
the solution u∗(x) of (P(x)) is difficult. Thus, we assume that we have available
an optimization algorithm that can deliver in a computationally predictable way an
approximate ε-solution ū(x) = Alg((P(x)), ε), with ε > 0, such that:

ū(x) = uf(x) if x ∈ X f (2.5)

or

ū(x) ∈ U, ‖[Gū(x) + Ex+ g]+‖ ≤ ε and |VN (x, ū(x))− V ∗(x)| ≤ ε. (2.6)

We note that in this setting, the approximate solution ū(x) is indeed suboptimal for
the MPC scheme but it may also be infeasible since the constraints Gū(x) + Ex+
g ≤ 0 might not be satisfied. In many applications, such as the MPC problem,
the constraints typically represent physical limitations of actuators, or safety limits
and operating conditions of the controlled plant. Thus, ensuring the feasibility of
the primal variables, that are, u ∈ U and Gu + Ex + g ≤ 0, becomes a critical
requirement. We will see further how we can modify the original problem (P(x)) in
order to find an approximate optimal solution that is also feasible.

In our proposed approach, instead of solving the original problem (P(x)), we
consider a tightened version (similarly to [14; 32; 75; 112]). We introduce the fol-
lowing tightened problem using εc > 0 associated with the original problem (P(x)):

V ∗εc
(x) = min

u∈U
VN (x,u)

(
= 1

2 uTQu + (Wx)Tu
)

s.t: Gu + Ex+ g + εce ≤ 0, (Pεc(x))

where e denotes the vector with all entries 1. We state first the following assumption:

Assumption 2.2.2. For any x ∈ XN ⊆ X̄N there exists a strictly feasible vector
ũ(x) for problem (P(x)), i.e. there exists ũ(x) ∈ U satisfying Gũ(x)+Ex+g < 0.

Based on Assumption 2.2.2, we choose εc to satisfy e.g., the following inequality:

0 < εc ≤
1
2 min
j=1,...,p

{− (Gũ(x) + Ex+ g)j}, (2.7)

with ũ(x) being a strictly feasible vector for (P(x)).

Remark 2.2.1. Note that for this range of εc, the input sequence ũ(x) is also a strictly
feasible vector for problem (Pεc(x)), so that Assumption 2.2.2 still holds for this
problem. This observation is relevant to derive the results described in Section 2.4.

It is important to note that in our approach we apply the tightening only to the
state constraints. Thus, our approach is usually less restrictive than the approaches
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in [112; 32] where the tightening procedure is applied to both state and input con-
straints. It is straightforward to establish that both problems (P(x)) and (Pεc(x))
are convex quadratic programs with a strongly convex objective function since the
Hessian Q is positive definite. Thus, without loss of generality we assume that for
finding an ε-solution of problem (Pεc(x)) we can invoke the same algorithm as for
finding ū(x), i.e., ūεc(x) = Alg((Pεc(x)), ε).

If x ∈ X f we do not need to introduce the tightened problem (Pεc(x)) since in
this case we have:

ū(x) = u∗(x) = uf(x), (2.8)

which is feasible and optimal for problem (P(x)). In this case, it is also known that
the value of the cost function is equal to the value of the terminal cost, i.e.:

VN (x, ū(x)) = V ∗(x) = V f(x). (2.9)

2.3 Dual Fast Gradient Algorithm for Convex Problems

In this section we present a dual fast gradient method that can be applied for finding
an ε-solution of the optimization problem (P(x)) or (Pεc(x)). There are different
versions of fast gradient methods, but in this chapter we consider Nesterov’s scheme
from [82; 75]. Since the algorithm can be applied to a wider class of problems we
introduce first the following convex optimization problem:

V ∗ = min
u∈U
{V (u) : Gu + g ≤ 0} , (2.10)

where V : RNnu → R is a σV-strongly convex function (i.e., V is a strongly convex
function with convexity parameter σV > 0), U ⊆ RNnu is a simple convex set,
as assumed in Section 2.2, G ∈ Rp×Nnu , and g ∈ Rp. We can notice that since
Gu + g ≤ 0 (the complicating constraints) is a general polyhedron, the projection
on this set is hard to compute, but the set U is simple (e.g., hyperbox, Euclidean
ball, RNnu , etc.), i.e., the projection on this set can be computed very efficiently. We
note that problems (P(x)) and (Pεc(x)) are particular cases of problem (2.10) with V
being a convex quadratic function, and in this case σV = λmin(Q).
By moving the complicating constraints into the cost via Lagrange multipliers we
define the dual function:

d(λ) = min
u∈U
L(u, λ), (2.11)

where L(u, λ) = V (u) + 〈λ,Gu + g〉 denotes the partial Lagrangian w.r.t. the
complicating constraints Gu + g ≤ 0. We also denote by u(λ) the optimal solution
of the inner problem:

u(λ) = arg min
u∈U
L(u, λ). (2.12)
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Algorithm 2.1 Dual fast gradient algorithm (DFG)
1: Set λ0 = 0
2: for k = 0 to k̄ do
3: Compute: uk = arg min

u∈U
L(u, λk)

4: Compute: λ̂k =
[
λk + 1

Ld
(Guk + g)

]
+

5: Compute: λk+1 = k+1
k+3 λ̂

k + 2
Ld(k+3)

[
k∑
s=0

s+1
2 (Gus + g)

]
+

,

6: end for

Since V is strongly convex, it can be proven that the gradient of the dual function
d(λ) is given by:

∇d(λ) = Gu(λ) + g, (2.13)

and it is Lipschitz continuous with constant Ld = ‖G‖2

σV
(see [76; 75] for more

general settings). If we assume that strong duality holds, we have for the outer
problem:

V ∗ = max
λ≥0

d(λ), (2.14)

for which we denote an optimal solution by λ∗. The next lemma provides bounds
for function d(λ) in terms of a linear and a quadratic model that use information of
the dual function and of its gradient.

Lemma 2.3.1 ([76; 75]). Let V be strongly convex and for a given λ let u(λ) be the
optimal solution of (2.12). Then, the following inequalities are valid:

0 ≥d(µ)− [d(λ) + 〈∇d(λ), µ− λ〉] ≥ −Ld

2 ‖µ− λ‖
2 ∀µ ∈ Rp+.

Algorithm 2.1 summarizes the dual fast gradient scheme we consider. Recall
that ∇d(λk) = Guk + g in Algorithm 2.1. A complete analysis of this algorithm,
in particular when the inner subproblems are solved inexactly with an initial iterate
λ0 , 0, can be found in [76; 75]. Note that we can start our algorithm also from a
Lagrange multiplier λ0 , 0 (see e.g., [76; 75]), but for simplicity of the exposition
we present here Algorithm 2.1 for λ0 = 0. Let us now define the following average
sequence for the primal variables:

ûk =
k∑
s=0

2(s+ 1)
(k + 1)(k + 2)us. (2.15)

Our main goal in this section is to derive estimates on primal feasibility violation
and suboptimality in the form (2.6) for our problem (2.10) using the averaged pri-
mal sequence ûk obtained by the proposed Algorithm 2.1 (see [75] for a complete
analysis of Algorithm 2.1).
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Theorem 2.3.1. Let V be strongly convex, the sequences
(
uk, λ̂k, λk

)
k≥0

be gen-

erated by Algorithm 2.1 and ûk be given by (2.15). Then, an estimate on the primal
feasibility violation for the original problem (2.10) is given by:

‖[Gûk + g]+‖ ≤
8LdRd

(k + 1)2 ,

where Rd = ‖λ∗‖. Moreover, an estimate on primal suboptimality is given by:

− 8LdR
2
d

(k + 1)2 ≤ V (ûk)− V ∗ ≤ 0.

Proof. From [76, Theorem 3.4], we have the following inequality which will help
us to establish the convergence properties of our proposed Algorithm 2.1:

(k + 1)(k + 2)
4 d(λ̂k) ≥

max
λ≥0

[
−Ld

2 ‖λ‖
2 +

k∑
s=0

s+ 1
2 (d(λs) + 〈∇d(λs), λ− λs〉)

]
∀λ ∈ Rp+.

Rearranging the terms in the previous inequality and taking into account that d(λs) =
V (us) + 〈Gus + g, λs〉 and∇d(λs) = Gus + g we get:

d(λ̂k) ≥ max
λ≥0

[
− 2Ld

(k + 1)2 ‖λ‖
2
]

+

max
λ≥0

[
k∑
s=0

2(s+ 1)
(k + 1)(k + 2) (d(λs)− 〈Gus + g, λs〉+ 〈Gus + g, λ〉)

]

= max
λ≥0

[
− 2Ld

(k + 1)2 ‖λ‖
2 +

k∑
s=0

2(s+ 1)
(k + 1)(k + 2)V (us) + 〈Gûk + g, λ〉

]

≥ max
λ≥0

[
− 2Ld

(k + 1)2 ‖λ‖
2 + 〈Gûk + g, λ〉

]
+ V (ûk),

where in the last inequality we used convexity of V . Further, we can write:

max
λ≥0

[
− 2Ld

(k + 1)2 ‖λ‖
2 + 〈λ,Gûk + g〉

]
≤ d(λ̂k)− V (ûk). (2.16)

For the term in the right-hand side we have:

d(λ̂k)− V (ûk) ≤ d(λ∗)− V (ûk) = min
u∈U

V (u) + 〈λ∗,Gu + g〉 − V (ûk)

≤ V (ûk) + 〈λ∗,Gûk + g〉 − V (ûk) = 〈λ∗,Gûk + g〉 (2.17)

≤ 〈λ∗, [Gûk + g]+〉 ≤ ‖λ∗‖‖[Gûk + g]+‖,
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where we used that λ∗ ≥ 0 and the Cauchy-Schwartz inequality. By evaluating the
left-hand side term in (2.16) and taking into account that 〈[v]+, v − [v]+〉 = 0 we
obtain the following expression:

max
λ≥0

[
− 2Ld

(k + 1)2 ‖λ‖
2 + 〈λ,Gûk + g〉

]
= (k + 1)2

8Ld
‖[Gûk + g]+‖2. (2.18)

Substituting now (2.17) and (2.18) into (2.16) we get the first statement of the the-
orem. In order to prove the left-hand side inequality in the primal suboptimality
formula we can write:

V ∗ = d(λ∗) = min
u∈U

V (u) + 〈λ∗,Gu + g〉 ≤ V (ûk) + 〈λ∗,Gûk + g〉

≤ V (ûk) +
〈
λ∗, [Gûk + g]+

〉
≤ V (ûk) + ‖λ∗‖ ‖[Gûk + g]+‖

= V (ûk) +Rd‖[Gûk + g]+‖,

which together with the first part of the theorem leads to the result. In order to prove
the right-hand side inequality we use (2.16):

V (ûk)− d(λ̂k) ≤ −max
λ≥0
− 2Ld

(k + 1)2 ‖λ‖
2 + 〈λ,Gûk + g〉

λ=0
≤ 0.

Taking now into account that d(λ̂k) ≤ V ∗ we get the result. �

An immediate consequence of the previous theorem is the following result: if we

take k̄ =
⌊

2
√

2LdRd
ε

⌋
iterations, we obtain the following estimates on feasibility

violation and primal suboptimality:

‖[Gûk̄ + g]+‖ ≤ ε and −Rdε ≤ V (ûk̄)− V ∗ ≤ 0.

Thus, if we redefine ε = max {ε, Rdε} we can conclude that ûk̄ is an ε-solution for
problem (2.10) satisfying (2.6). In other words, Algorithm 2.1 can be used for find-
ing an ε-solution of MPC problem (P(x)) or of the tightened MPC problem (Pεc(x)).
We will discuss further how we can recover the feasibility, suboptimality, and stabil-
ity of our suboptimal MPC scheme in the case when x < X f.

2.4 Suboptimality, Feasibility, and Stability of the Model
Predictive Control Scheme

As mentioned before, at each time step of the MPC scheme, given the initial state x,
instead of applying the algorithm Alg((P(x)), ε) (e.g. Algorithm 2.1 of the previous
section) to provide an ε-solution ū(x) of the optimization problem (P(x)) we apply
Alg((Pεc(x)), ε) for finding an ε-solution ūεc(x) of the tightened problem (Pεc(x)).
However, since we are interested in obtaining an approximate primal solution that
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may be suboptimal for the original problem (P(x)) but certainly primal feasible, we
need to find first a relation between optimal values V ∗εc

(x) and V ∗(x). In order to find
such a relation, let us denote by λ∗εc

(x) an optimal Lagrange multiplier associated
with the complicating constraints in problem (Pεc(x)). Then, the following upper
bound on ‖λ∗εc

(x)‖ can be established:

Lemma 2.4.1. Let λ∗εc
(x) denote an optimal Lagrange multiplier associated with

the inequality constraints Gu + Ex+ g + εce ≤ 0 in (Pεc(x)). Then, the following
upper bound on ‖λ∗εc

(x)‖ can be established:

‖λ∗εc
(x)‖ ≤ 2Rd,

where

Rd = VN (x, ũ)− d(λ̃)
min

j=1,...,p
{− (Gũ + Ex+ g)j}

, (2.19)

and ũ denotes a strictly feasible vector for problem (P(x)) (see Assumption 2.2.2),
d(·) denotes the dual function of (P(x)) with respect to the inequality constraints
Gũ + Ex+ g ≤ 0 and λ̃ ∈ Rp+.

Proof. First, let us denote by L(x,u, λ) and Lεc(x,u, λ) the partial Lagrangian with
respect to the complicating constraints in problem (P(x)) and (Pεc(x)), respectively.
Using Lemma 1 in [80] we can write:

‖λ∗εc
(x)‖ ≤ VN (x, ũ)−minu∈U Lεc(x,u, λ̃)

min
j=1,...,p

{− (Gũ + Ex+ g + εc)j}

=
[
VN (x, ũ)−minu∈U L(x,u, λ̃)

]
−
〈
λ̃, εce

〉
min

j=1,...,p
{− (Gũ + Ex+ g)j} − εc

≤ 2Rd ∀x ∈ XN , (2.20)

where in the last inequality we used (2.7) and the fact that both λ̃ and εc are nonneg-
ative. �

Note that for computing the bound Rd we have the freedom of choosing λ̃ ∈
Rp and ũ. Thus, we can obtain a small enough bound on the norm of Lagrange
multipliers λ∗εc

(x).
Taking now into account that

{u : Gu + Ex+ g + εce ≤ 0} ⊆ {u : Gu + Ex+ g ≤ 0} ,

we have on the one hand:
V ∗εc

(x) ≥ V ∗(x). (2.21)
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On the other hand, from the the dual formulation of the tightened problem (Pεc(x))
we have:

V ∗εc
(x) = min

u∈U
VN (x,u) +

〈
λ∗εc

(x),Gu + Ex+ g + εce
〉

≤ max
λ≥0

min
u∈U

VN (x,u)+〈λ,Gu+Ex+ g〉+√pεc‖λ∗εc
(x)‖

≤ V ∗(x) + 2√pRdεc. (2.22)

We will see further how we can use relations (2.21) and (2.22) to recover the primal
suboptimality for the original problem (P(x)) from the suboptimality of the tight-
ened problem (Pεc(x)). We assume now that ūεc(x) = Alg((Pεc(x)), ε), i.e., an
ε-suboptimal solution for problem (Pεc(x)), where the accuracy ε is chosen such that

ε ≤ 1
4 min
j=1,...,p

{− (Gũ + Ex+ g)j}, (2.23)

and the tightening parameter is chosen e.g., as

εc = 2ε, (2.24)

which satisfies (2.7). Thus, from (2.6) we have:

ūεc(x) ∈ U, ‖[Gūεc(x) + Ex+ g + εce]+‖ ≤ ε and |VN (x, ūεc(x))− V ∗εc
(x)| ≤ ε.

Further, using (2.24) we can write:∥∥[Gūεc(x)+Ex+g +εce]+
∥∥ ≤ ε = εc

2 < εc,

which implies that for all j = 1, . . . , p we have: [Gjūεc(x) + Ejx+ gj + εc]+ <

εc. Since Gjūεc(x) + Ejx + gj + εc ≤ [Gjūεc(x) + Ejx+ gj + εc]+ we can
conclude that Gūεc(x) + Ex+ g < 0 and therefore the feasibility of ūεc(x) for the
original MPC problem (P(x)) is guaranteed.

Further, since ūεc(x) is feasible for (P(x)), we have on the one hand that 0 ≤
VN (x, ūεc(x))− V ∗(x). On the other hand, using (2.22) we can write:

0 ≤ VN (x, ūεc(x))− V ∗(x) ≤ (1 + 4√pRd)ε, (2.25)

and thus ūεc(x) is a feasible approximate solution of the original problem (P(x)).
We are interested now in proving stability of the proposed MPC scheme. For

this purpose, we introduce first the following notation for the feasible suboptimal
solution ūεc(x):

ūεc(x) =
[
(ū0
εc

(x))T · · · (ūN−1
εc

(x))T]T .
Using this notation, the next state in our MPC scheme is then given by:

x+ = Ax+Bū0
εc

(x). (2.26)
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For the tightened problem with initial state x+, we will also use the notations ε+c
and R+

d for the tightening parameter and the upper bound given in Lemma 2.4.1,
respectively. The following result helps us to construct a strictly feasible vector ũ+

for the tightened problem (Pεc(x)).

Lemma 2.4.2. Let x+ be computed according to (2.26) and ūεc(x) be an ε-solution
of problem (Pεc(x)). Then, a strictly feasible vector of problem (P(x+)) is given by:

ũ+ =
[
(ū1
εc

(x))T · · · (ūN−1
εc

(x))T(Kx(N))T]T . (2.27)

Proof. First, let us note that ūεc(x) ∈ U, which together with (2.3) leads to ũ+ ∈ U.
Further, let us recall that the first N − 1 block inequalities in Gu + Ex + g ≤ 0
are obtained from the state constraints x(t) ∈ X for t = 1, . . . , N − 1 while the
last block is deduced from x(N) ∈ X f. It is straightforward to observe that the first
N − 1 block inequalities in Gũ+ + Ex+ + g are strictly satisfied, since the first
N − 2 blocks coincide with blocks {2, . . . , N − 1} of Gūεc(x) + Ex+ g, while the
new block N − 1 is deduced from x(N) ∈ X instead of the original x(N) ∈ X f,
which is strictly satisfied due to X f ⊆ X . Also from the µ-contractive property of
the setX f (see (2.3)) we can also deduce that the last block inequality, obtained from
x(N + 1) ∈ X f is also strictly satisfied. Thus, we can conclude that ũ+ is a strictly
feasible vector of problem (P(x+)). �

Therefore, in the MPC problem for the next state x+ we update the strictly fea-
sible vector as explained above, and consequently, if ε+c satisfies (2.7), according
to Remark 2.2.1 we have that ũ+ is also strictly feasible for the tightened problem
(Pε+

c
(x+)). It is well-known in the MPC framework (e.g., [118; 75; 103]) that if

Assumption 2.2.1 is satisfied and K and P are computed according to Section 2.2,
then the following relation holds:

VN (x+, ũ+) ≤ VN (x, ūεc(x))− ‖x‖2Q ∀x ∈ XN . (2.28)

In order to prove the asymptotic stability of the MPC scheme for all x ∈ XN we
use similar arguments as in [118; 75] by showing that VN (x, ūεc(x)) is a Lyapunov
function for the closed-loop system:

VN (x+, ūε+
c

(x+))
(2.25)
≤ V ∗(x+) + (1 + 4√pR+

d )ε+

≤ V ∗εc
(x+) + (1 + 4√pR+

d )ε+

≤ VN (x+, ũ+) + (1 + 4√pR+
d )ε+

(2.28)
≤ VN (x, ūεc(x))− ‖x‖2Q + (1 + 4√pR+

d )ε+.

From (2.23) and previous discussion we have that by choosing e.g.:

ε+ ≤min
{

1
2(1 + 4√pR+

d )
‖x‖2Q,

1
4 min
j=1,...,p

{−
(
Gũ++Ex++g

)
j
}
}
, (2.29)
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Algorithm 2.2 MPC scheme with adaptive constraint tightening
1: Given A,B,Q,R,X,U,X f, N
2: Compute offline K,P,Q, W,w,G,E,g
3: Measure initial state x at time t = 0.
4: Compute initial strictly feasible vector ũ for (P(x)).
5: Compute accuracy ε according to (2.23).
6: Compute tightening parameter εc from (2.24).
7: for t = 0 to∞ do
8: Measure current state x.
9: if x ∈ X f then

10: Compute u = Kx.
11: Implement control input u.
12: else
13: Compute ε-solution ūεc(x) = Alg((Pεc(x)), ε).
14: Compute u = ū0

εc
(x).

15: Update strictly feasible vector ũ← ũ+ according to (2.27).
16: Update accuracy ε← ε+ according to (2.29).
17: Update tightening parameter εc using (2.24).
18: Implement control input u.
19: end if
20: end for

we get asymptotic stability of the closed-loop system.

We can conclude that choosing the accuracy ε and the tightening parameter εc

according to (2.29) and (2.24), respectively, the proposed MPC scheme generates
a sequence of inputs that ensures feasibility, suboptimality, and stability. Also, we
can observe from (2.29) and (2.24) that both ε and εc are chosen adaptively, i.e.,
depending on the initial state of each step of the MPC scheme. More specifically, if
for instance the norm of the initial state is big enough, i.e., the system is far from the
origin, then the accuracy required for an approximate solution can be less stringent.
Thus, our approach can be less restrictive than the approach in [112; 32] where the
accuracy is fixed for all initial states. Conversely, if we are sufficiently close to the
origin, i.e., x ∈ X f, we do not have to apply the algorithm for finding the ε-solution
since the optimal solution is given by uf(x).

In Algorithm 2.2 we present an algorithmic description for the proposed adaptive
constraint-tightening based MPC scheme with feasibility, suboptimality, and stabil-
ity guarantees.

Note that in Step 4 of the proposed scheme we can compute the initial strictly
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feasible vector ũ for (P(x)) by solving the following linear program offline:

max
γ≥0,u∈U

γ

s.t.: Gu + Ex+ g + γ ≤ 0. (2.30)

2.5 Numerical Flight Control Simulation Example

This section presents an application of Algorithm 2.2 to the altitude/airspeed regu-
lation of an F-16 aircraft in the presence of actuator saturation, which is a common
problem in flight control. Under normal operating conditions, the longitudinal states
and the actuators of the aircraft are subject to the constraints shown in Table 2.1.
However, during an agile maneuver, the control surfaces of the aircraft might come
to a stall due to the aerodynamic pressure. In this situation, the controller is con-
fronted with reduced actuators bounds to stabilize the plane. Our ultimate goal is to
apply the techniques presented in the previous sections to stabilize the aircraft at a
predefined altitude and velocity. In the following, we rely on the equations of mo-
tion and the basic aerodynamic model of the F-16 aircraft presented in [124] and on
a publicly available F-16 simulation environment [113].

2.5.1 Model Predictive Control Problem Formulation

Our implementation focuses on the stabilization of the longitudinal motion of the
aircraft in the presence of actuator constraint saturation. The prediction model of the
MPC considers only the longitudinal states xlong of the aircraft, namely altitude (h),
pitch angle (ϑ), velocity (V ), angle of attack (α), and pitch rate (q). The original
six-degree-of-freedom F-16 model presented in [124] has four first-order actuator
models for thrust, elevator, aileron, and rudder. Since the F-16 longitudinal dynam-
ics are associated with the thrust and elevator control inputs we use the reduced
equations of motion, i.e., ẋlong = (xlong, δth, δe).

In order to stabilize the aircraft in the presence of actuator constraints, we con-
sider the following optimization problem, which follows from the formulation given
in [69]:

V ∗(x) = min
x,∆u

N−1∑
i=0

(
‖x(i)‖2Qh,V + ‖∆u(i)‖2R

)
+ V f(x(N))

s.t.: x(i+ 1) = Ax(i) +B∆u(i), x(0) = x

x(i) ∈ X ⊆ R9, ∆u(i) ∈ U ⊆ R2, for i = 0, . . . , N − 1 (2.31)

x(N) ∈ X f ⊆ R9,

where

• N is the prediction and the control horizon;
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Lower Bound Upper Bound
Altitude [ft] 5,000 40,000

Velocity [ft/sec] 300 900
Thrust [lbs] 1,000 19,000

Elevator [deg] -25 25
Thrust rate [lbs/sec] -10,000 10,000

Elevator rate [deg/sec] -60 60

Table 2.1: Constraints on states and actuators of the F-16 aircraft.

• x(i) is the i-step ahead prediction of the state of the augmented system (2.34)
that comprises the longitudinal states xlong, the aircraft actuators dynamics uin,
and the past MPC command signal;

• ∆u(t) is the control increment sequence;

• Qh,V and R are suitable weighting matrices. In particular, Qh,V penalizes
only the altitude h and the velocity V , which are the only bounded longitudinal
states in this setup, as also shown in Table 2.1;

• V f(x(N)) = 1
2 (x(N))T

Px(N) is the associated to Problem 2.31;

• A and B are matrices that describe the dynamics of the system;

• X is the admissible region where the constraints on the state of the augmented
system are satisfied;

• U is the admissible region where the constraints on the control increment are
satisfied;

• X f is the terminal set.

Solving the optimization problem above requires an appropriate prediction model.
We obtained a linearized continuous-time model using the aircraft simulator in [113]
and trimming the aircraft at some specified h = htrim and V = Vtrim values. The fol-
lowing linearized discrete-time longitudinal model is then obtained using a sampling
period Ts:

xlong(t+ 1) = Atrim xlong(t) + Btrim uin(t)
uin(t+ 1) = Auuin(t) + Buu(t), (2.32)

where uin(t) = [δth δe]T, Atrim, Au,Btrim, andBu are matrices of proper dimensions.
Furthermore, we use a linear quadratic controller Ke to stabilize the inner-loop (IL)
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dynamics. Thus, the resulting IL dynamics is given by:

xIL(t+1)︷              ︸︸              ︷[
xlong(t+ 1)
uin(t+ 1)

]
=

AIL︷                      ︸︸                      ︷ Atrim Btrim[
0

BδeKe

]
Au


xIL(t)︷        ︸︸        ︷[
xlong(t)
uin(t)

]
+

BIL︷  ︸︸  ︷[
0
Bu

]
u(t), (2.33)

whereB=[Bδth Bδe ]T. Subsequently, we augment the linearized IL model following
the approach presented in [57]. In particular, we add two integrators (one for each
actuator) and define new incremental inputs ∆u. The augmented model has the
following form:

x(t+1)︷            ︸︸            ︷[
xIL(t+ 1)
u(t)

]
=

A︷           ︸︸           ︷[
AIL BIL

0 Im

] x(t)︷          ︸︸          ︷[
xIL(t)
u(t− 1)

]
+

B︷   ︸︸   ︷[
BIL

Im

]
∆u(t). (2.34)

Finally, we compute the prediction model over the prediction horizon N by iter-
atively performing substitutions starting from the equations (2.34). In detail, for
given x(0) = x, we define x := [x(1)T . . . x(N)T]T as the vector described by the
following equation:

x = Ψx+ Θ∆u, (2.35)

where ∆u := [∆u(0)T . . .∆u(N − 1)T]T, Ψ and Θ are defined as follows:

Ψ :=



A

A2

...

...

AN

 , Θ :=



B 0 0 . . . 0
AB B 0 . . . 0
...

...
. . .

...
...

...
. . .

...

AN−1B AN−2B . . . . . . B

 . (2.36)

Using the predicted state (2.35), we can reformulate the optimization problem (2.31)
in a condensed form as a function of the control increment sequence ∆u as follows:

V (x)∗ = min
∆u ∈ U

1
2∆uTQ∆u + (Wx)T∆u + const︸                                             ︷︷                                             ︸

VN (x, ∆u)

s.t.: G∆u + Ex+ g ≤ 0, (2.37)

where U =
N times︷            ︸︸            ︷

U × · · · × U , Q := 2ΘTQ̄Θ+R, W := 2ΘTQ̄Ψ, const := xTΨTQΨx,
p denotes the number of constraints, and Q̄ is defined as Q̄ := diag(Q, . . . Q,︸        ︷︷        ︸

(N−1) times

P ).

Notice that the constraints on the predictor state in (2.37) are written as a function
of ∆u. Furthermore, the optimization problem (2.37) is a quadratic programming
(QP) problem – similarly to (P(x)) – with decision variable ∆u.
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In order to solve the above QP with Algorithm 2.2, we need to introduce the
tightened problem associated with (2.37), namely:

Vεc(x)∗ = min
∆u ∈ U

1
2∆uTQ∆u + (Wx)T∆u + const

s.t.: G∆u + Ex+ g + εce ≤ 0p. (2.38)

2.5.2 Simulation Results

Based on the problem formulation introduced in the previous section, we considered
the following simulation scenario:

• Trim conditions [htrim Vtrim]T = [10, 000 ft 579, 12 ft/sec]T;

• Sample time Ts equal to 0.05 sec;

• Prediction horizon N equal to 8 samples (i.e., 0.40 sec);

• Initial velocity (with respect to the trim condition) V0 = −4.5 ft/sec;

• Initial altitude (with respect to the trim condition) h0 = 82 ft;

• Reduced actuators bounds, i.e.,

[−4000 − 1]T ≤ uin(t) ≤ [14000 1.5]T

• Constraints on the optimization variable, i.e., the change of control input

[−50 − 3]T ≤ ∆u(t) ≤ [50 3]T.

Our problem setup requires computing a control-invariant terminal set X f. For this
purpose, we relied on the Multi-Parametric Toolbox (MPT) v3.0 [47] for MATLAB.
Our computations resulted in an overall number of p = 481 constraints.

We initialize the algorithm as follows. First, we compute a strictly feasible vec-
tor by solving the linear program (2.30) for ∆ũ offline. Next, we select the initial
accuracy of Algorithm 2.1 by choosing ε according to (2.23), where ũ = ∆ũ. Fi-

nally, we consider an initial number of iterations k̄ =
⌊

2
√

4RdLd
ε

⌋
= 67812, where

Ld = 703.15 andRd = 18745 was obtained by (2.19).
Figure 2.1 and Figure 2.2 illustrate the typical behavior of Algorithm 2.1 pre-

sented in Section 2.3 for one selected problem instance. In particular, Figure 2.1
depicts the evolution of the cost functions V (x) (solid grey line) and Vεc(x) (solid
black line) associated to problems (2.37) and (2.38), respectively. In addition, the
figure shows the associated optimal cost functions V ∗(x) (dashed grey line) and
V ∗εc(x) (dashed black line), respectively. Figure 2.2 presents the maximum value of
the estimated gradient maxi [∇d(λ)]i (i = 1, . . . , p) associated to Problem (2.37)
(solid grey line) and Problem (2.38) (solid black line), respectively. Furthermore,
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Figure 2.1: Comparison between the evolution of the cost function value using Algorithm 2.1 with
tightening (solid black lines) and without tightening (solid grey lines) of the constraints for one
illustrative problem instance using accuracy ε = 0.0324.
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Figure 2.2: Comparison between the evolution of the peak gradient value maxi [∇d(λ)]i
in (2.13) using Algorithm 2.1 with tightening (solid black lines) and without tightening (solid grey
lines) of the constraints for one illustrative problem instance using accuracy ε = 0.0324. The
dashed black line highlights the value of tightening parameter εc.
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the figure highlights the tightening parameter εc (dashed black line). As Figure 2
shows, within the predicted number of iterations, the residuals of Problem (2.37)
converge to zero asymptotically, while the residuals of Problem (2.38) converge be-
low the bound εc, resulting in a feasible solution for the the original problem. Note
that Algorithm 2.1 already returns a feasible solution for the tightened problem after
approximately 500 iterations, while the predicted number of iterations is larger. In
addition, note that the solution iterates with constraint tightening are suboptimal for
the original Problem (2.37). Moreover, notice that Algorithm 2.1 explores infeasi-
ble iterates before converging to the final solution due to its dual approach, as both
Figure 2.1 and Figure 2.2 demonstrate.

We compare the performance of our algorithm using adaptive tightening to the
one proposed in [112], which uses a fixed tightening parameter ε̄c for both the state
and the input constraints. In order to have a fair comparison, we chose the fixed
tightening parameter ε̄c in a way to obtain a terminal set and a terminal cost that
are of similar size and of the same order of magnitude of our problem. From our
calculations, the resulting value of the fixed tightening parameter is ε̄c = 2 · 10−5.
Furthermore, we use Algorithm 2.1 to compute the approximate solution for the re-
sulting tightened problem. To illustrate the performance of the two approaches, we
performed closed-loop simulations (using the Algorithm 2.1 to solve Step 13) where
the MPC solutions were implemented on the discrete-time linearized F-16 model. In
our experiments, we considered a maneuver that results in the elevator δe – a state
of the augmented system (2.34) – hitting a saturation limit. Figure 2.3 depicts the
behavior of δe obtained using the proposed adaptive constraint-tightening approach
(solid black line), the behavior of δe obtained using the fixed constraint-tightening
approach (dashed grey line), and the behavior of δe calculated by solving the origi-
nal problem using MATLAB’s quadprog (solid red line). Furthermore, Figure 2.3
highlights the setpoint (dashed black line), the elevator’s limits (dotted red lines),
and the instant when the state enters the terminal set (dash-dotted vertical black
line). Figure 2.4 compares the mismatch on the evolution of δe obtained using the
adaptive-tightening approach (solid black line) to the one obtained using the fixed-
tightening approach (dashed grey line). Note that the adaptive-tightening difference
to the original problem constraints is smaller, especially when δe approaches the
limits. The resulting closed-loop altitude and velocity trajectories are depicted in
Figure 2.5. In particular, Figure 2.5 highlights in red the trajectories computed using
the exact solution. Notice that the closed-loop behaviors obtained using the inexact
solutions (the adaptive and the fixed tightening approaches) are comparable to ones
obtained using the exact solution.

Remark 2.5.1. As Figure 2.4 highlights, the mismatch between the approximate
solutions and the exact solution is small. This result is a directly related to the sim-
ulation scenario that we are considering. This scenario offers many challenges. In
this respect, to keep the number of constraints small, the algorithms use a relatively
short horizon to enter the terminal set around the reference altitude and velocity.
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Furthermore, the reduced bounds on the elevator input (due to the fault scenario)
and the selected initial conditions leave little degree of freedom on the choice of an
admissible, strictly feasible input sequence. As a direct consequence, the subopti-
mality level and the amount of constraint tightening selected by the algorithm are
only at infinitesimal levels. Nevertheless, Figure 2.4 well illustrates the qualitative
benefits that can derive from the use of our adaptive tightening approach in a real-life
application. Potential remedies to this observed behavior are the following. Refer-
ence tracking MPC (with target calculator) can be exploited to alleviate the issues
related to the short control horizon and terminal constraint feasibility. Furthermore,
considering less challenging scenarios (e.g., increased feasible domain, no active
constraints before entering the terminal set) allows larger levels of suboptimality.

Figure 2.6 presents the evolution of the normalized level of suboptimality, i.e.,
(Vεc(x) − V ∗(x))/V ∗(x), computed using the proposed adaptive-tightening ap-
proach. The figure shows that despite the constraint tightening the cost stays very
close to the optimal value during the simulation. The cost value is very similar
using the fixed-tightening approach. Nevertheless, a direct and illustrative compar-
ison of the costs is difficult due to the small numerical differences associated to
the terminal cost. Figure 2.7 shows the evolution of the tightening parameter εc,
whose value is adapted over time, and remains small. In particular, notice that the
adaptive-tightening parameter becomes smaller than the fixed-tightening parameter
when the elevator approaches is saturation limits. Note that once the state enters the
terminal set, i.e., x ∈ X f, the algorithm automatically switches to the LQ terminal
controller K, which occurs at 0.65 sec into the simulation, therefore the time axis of
Figure 2.6 and Figure 2.7 is only displayed until this time. The solution computed
with adaptive-tightening approach is closer to the exact solution when the state of
the system approaches its limits, as the presented results highlight.

2.6 Conclusions

In this chapter we have proposed a model predictive control scheme for discrete-time
linear time-invariant systems based on the general framework of inexact numerical
optimization algorithms. We have developed our main results on stability and feasi-
bility of a suboptimal MPC scheme using the framework from [75], and computed
suboptimal control inputs using fast dual gradient algorithms. We have derived a
control strategy that has the following properties: the constraints on the states and
inputs are satisfied, asymptotic stability of the closed-loop system is guaranteed and
the number of iterations needed for a certain level of suboptimality can be deter-
mined. We have implemented our proposed approach in a flight control scenario in
order to illustrate its behavior, and showed that the performance degradation due to
the constraint tightening remains very small for this problem. Furthermore, we have
compared the presented approach with alternative techniques from [112].
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3
Operator-Splitting and Gradient Methods for

Real-Time Predictive Flight Control Design

Abstract

Despite their ability to operate on the limits of performance, handle multivariable
and nonlinear systems, and offer online adaptation and reconfiguration capabilities,
model predictive control (MPC) approaches to aerospace applications suffer from
limitations related to the online computational burden and complexity of the under-
lying optimization problem. In this chapter we focus on quadratic programming
(QP) formulations that represent certain types of predictive flight control problems,
and propose a parallelizable QP solver based on operator-splitting and fast gradi-
ent methods. The presented methodology and solution approach promise real-time
implementation of QP-based predictive flight control schemes on future embedded
platforms. We also provide formal analysis and guidelines on how to reshape the
feasible region of the MPC problem st each time instant to ensure recursive feasibil-
ity and closed-loop stability. Finally, simulation results for the longitudinal control
of an Airbus passenger aircraft are presented to show how the obtained computable
certificates can be simplified in practice and to bring the proposed approach a step
closer to future on-board real-time implementation.

33
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3.1 Introduction

Model predictive control (MPC) is a consolidated control technique that has been
studied since the mid ’60s [95]. Initially, its industrial application has been lim-
ited mainly to systems with slow dynamics [104; 29]. In recent years, however, this
technique has gained increasing attention also for the control of systems with fast dy-
namics in areas such as aerospace and automotive applications [57; 42; 50; 43; 38].
MPC is very appealing for its ability to easily formulate the control objectives and
handle the constraints on the plant via a finite-horizon optimal control problem for-
mulation. In particular, every time new measurements are available, a model predic-
tive controller solves an optimization problem (very often a quadratic programming
problem) that includes the control objectives (formulated in the cost function) and
the information concerning the constraints and the dynamics of the plant. Then, as
soon as the optimizer returns a solution for the MPC problem, i.e., a control sequence
based on the predicted evolution of the system (over a predefined time window called
prediction horizon) satisfying the constraints and the control objectives, the MPC
implements only the first element of the returned solution as the closed-loop control
law, in a receding horizon fashion [72].

This chapter focuses on one major limitation that is preventing a more extensive
use of MPC in various fields with hard real-time constraints, such as aerospace, i.e.,
the online optimization. In particular, solving the optimization problem associated
with the MPC online, i.e., every time new measurements are available, might lead to
issues such as (i) unpredictable computation times, (ii) increasing hardware require-
ments (in terms of CPUs, memory, FPUs, etc.), (iii) infeasible control commands,
and (iv) unstable closed-loop behavior.

Solutions have been proposed to avoid the online optimization, such as [4], in
which equivalent explicit control laws are computed offline and stored in a look-up
table. The control law is then computed online by searching on the look-up table,
considerably reducing the online computation burden. The main drawback of this
approach is that it can only handle small/medium scale problems due to the com-
plexity and related memory requirements of the look-up tables. In recent years,
the solvers used for online optimization have received increased attention to over-
come the limitation of explicit MPC controllers [4] related to the problem size. Two
main families of solvers have received particular attention in the MPC community:
second-order and first-order solvers. The first category includes interior-points meth-
ods [101; 134] and active-set methods [28], for example. Several algorithms have
been proposed that focus on the real-time computation issue, such as [131; 141; 52].
The second category includes gradient methods [34; 82; 33; 3; 61; 86; 90] and opera-
tor splitting methods, such as alternating direction methods of multipliers (ADMM)
or alternating minimization algorithms (AMA) [8; 5; 128; 63; 35; 96]. This second
category of solvers is the focus of our work in this chapter for the following reasons.
These solvers are more suitable for embedded platforms (e.g., [53; 92]), since they
only rely on very simple mathematical functions and require little memory (hence
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simpler hardware and software) compared to the second-order solvers. Furthermore,
detailed convergence analysis (e.g., [82; 46; 35]) and worst-case computation time
to reach a desired level of suboptimality are available (e.g., [82; 35; 90]).

In order to overcome the issues (i)-(iv) listed above, we propose a novel optimiza-
tion algorithm: a parallel dual fast-gradient (PDFG) solver [20], based on operator-
splitting techniques [121] and projected dual fast-gradient methods [82] to solve the
MPC optimization problem online. Thanks to the use of operator-splitting methods,
the algorithm solves smaller independent subproblems in parallel, whose sizes do
not increase with the length of the horizon and are characterized by a better condi-
tion number compared to the original condensed QP problem. The PDFG relies on
the projected dual fast-gradient method [82] and can be used to solve MPC problems
with state, input, and output constraints. The main steps of the algorithm involve the
computation of the solution of an unconstrained least-squares problem (in the primal
variables), a consensus step, and a linear update of the dual variables. In particular,
our solver operates on the dual of the subproblems to compute a primal feasible and
suboptimal solution, given that the complexity of the primal feasible region prevents
an efficient direct computation of the projection step of the gradient method in the
primal subproblems. While solving the projection step is very efficient using the
dual formulation, early termination after a fixed number of iterations of the solver
(driven by real-time constraints) might lead to primal infeasible solutions (given that
the fast-gradient method converges to the solution of the QP problem only asymp-
totically). Nevertheless, an upper-bound on the primal infeasibility is available [78]
and can be exploited to formally recover primal feasibility and suboptimality. In this
respect, we propose an adaptive strategy to reshape the (primal) feasible region of
each independent subproblem in order to guarantee recursive primal feasibility (of
the original MPC problem) and closed-loop stability of the system controlled by the
proposed MPC controller. Finally, we describe how our theoretical findings can be
adapted and simplified in practice to apply our approach to the real-time longitudinal
control of an Airbus passenger aircraft [21].

The chapter is structured as follows. Section 3.2 introduces our application, an
Airbus passenger aircraft, used as motivating example for this study, while Sec-
tion 3.3 introduces the PDFG solver for a general convex problem. Section 3.4 de-
tails the MPC problem formulation and the steps needed to reformulate the original
MPC problem for the PDFG. Then, Section 3.5 describes the strategy to adaptively
update the feasible region of the MPC problem in order to formally ensure recursive
feasibility and closed-loop stable trajectories, and the strategy to ensure real-time
computation in practical MPC applications. Section 3.6 presents the simulation re-
sults obtained by using the proposed control algorithm. Section 3.7 concludes the
chapter. Finally, the proofs of the Lemmas and Theorems in this chapter can be
found in Appendices A-F.

The following notation is used in the remainder of the chapter. For u ∈ Rn,
‖u‖ =

√
〈u, u〉 is the Euclidean norm and [u]+ is the projection onto the nonneg-

ative orthant Rn+. Given a matrix A, [A]i denotes the i-th row of A and [A]i,j the
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entry (i, j) of A. Furthermore, 1n is the vector of ones in Rn and In the identity
matrix in Rn×n. In addition, eigmax(A) and eigmin(A) denote the largest and the
smallest (modulus) eigenvalues of the matrix ATA, respectively. P ∈ Sn>0 denotes
that P ∈ Rn×n is positive definite.

3.2 Motivating Example

In this section we consider control of the longitudinal dynamics of an Airbus passen-
ger aircraft [37], as a motivating example, and compare the behavior of the baseline
controller (provided with the aircraft simulator) and a traditional MPC design (refer
to [23] for more details on the control architecture). The purpose of this introduc-
tory comparison is twofold. On one hand, we show how the on-board Guidance &
Control unit can benefit in terms of performance by using an MPC controller. On
the other hand, we show the limitations (in terms of computation time) that currently
prevent the use of MPC for these tasks.

Our benchmark model is an Airbus civilian aircraft simulator [36; 37] and the
control of the longitudinal dynamics of the aircraft is investigated. In this respect,
the controller can rely on the tail control surfaces. Furthermore, the control design
has to take into account the constraints, not only on the control surfaces, but also on
the states and on the outputs of the system. A sampling time of Ts = 0.04 sec is
available to solve the MPC problem online.

The control goal is to track a desired reference signal generated by a pilot stick
command on the vertical load factor nz that forces the system to reach the upper
saturation limit (as depicted in Figure 3.1). The same scenario will be considered in
Section 3.6 to show the potential of our proposed solver for this application from the
computational point of view.

For now, our aim is to illustrate that MPC has the potential to improve the per-
formance of the aircraft in this scenario, albeit with increased and in general unpre-
dictable computation time due to online optimization. Figure 3.1 shows the tracking
performance of the two controllers. In particular, the solid line is associated with the
MPC controller, while the dashed line with the baseline controller. The reference
trajectory is the dash-dotted line and the upper-bound on the vertical load factor is
the dotted line. As Figure 3.1 shows, the MPC controller improves the tracking per-
formance of the baseline controller, mostly because it is able to accurately predict
the aircraft behavior and operate against the constraint limits.

The improvement of performance depicted in Figure 3.1 comes at the cost of a
large computation time topt to solve the constrained MPC optimization problem on-
line, as depicted in Figure 3.2. In particular, Figure 3.2 depicts the computation time
required for online optimization topt obtained using a second-order solver (dashed
line) and the average computation time (dotted line) compared to the sampling time
of the system (solid line). Note the behavior of the computation time that is typ-
ical of a second-order solver. We show, in Section 3.6, how this behavior can be
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improved by using our proposed first-order solver.

Remark 3.2.1. In the context of this work, we focus on the computational aspects
related to MPC. For more examples and details on other design challenges that this
application offers in the context of MPC (e.g., how to handle model mismatches, how
to perform control reconfiguration when actuator faults occur during the flight, etc.)
we refer the reader to [23]. An overview of the most recent techniques for robust
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MPC (to handle disturbances and model mismatches) can be found in Chapter 16
of [6].

Motivated by these results, the next section focuses on a QP solver, a parallel dual
fast gradient method (PDFG), based on operator-splitting and first-order methods,
that can be used to solved the MPC optimization problem online in real-time using
only simple mathematical operations.

3.3 The Parallel Dual Fast Gradient Algorithm

This section introduces the solver we rely on throughout the developments in the
chapter, i.e., the parallel dual fast gradient method (or PDFG) proposed in [20].

Consider the following problem:

minimize
φt

N∑
t=0

V̄t(φt) (3.1a)

subject to: H1φt+1 −H2φt = 0 t = 0, . . . , N − 1 (3.1b)

Gφt + g ≤ 0 t = 0, . . . , N, (3.1c)

where the φt ∈ Rnφ (nφ indicates the dimension of φt) are coupled in the con-
straints (3.1b), where H1 ∈ Rnz×nφ and H2 ∈ Rnz×nφ , and G ∈ Rc×nφ . We
consider the following assumptions:

Assumption 3.3.1. The functions V̄t(φt) (t = 0, . . . , N ) are convex functions.

Assumption 3.3.2. H1 and H2 have full row rank.

3.3.1 Operator Splitting

Our goal is to simplify the structure of Problem (3.1) and improve the calculation of
its solution (in terms of computation time). In this respect, we aim to decompose the
problem to allow one to compute each φt independently using N + 1 independent
(parallel) workers1 Πt. Hence, one possible way to exploit the structure of Prob-
lem (3.1) is to remove the coupling (3.1b) by introducing N consensus variables
zt ∈ Rnz (t = 1, . . . , N ) as follows (according to the splitting strategy proposed
in [121] for MPC):

zt = H1φt = H2φt−1. (3.2)

1A worker is a process performing computations. We used the same terminology of the MATLAB’s
Parallel Computing Toolbox.
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This allows Problem (3.1) to be written as the following sum of independent sub-
problems that can be solved by N + 1 independent workers Πt:

minimize
φt

N∑
t=0

V̄t(φt) (3.3a)

subject to: Hzzt+1 − H̄2φt ≤ 0 t = 0, . . . , N − 1 (3.3b)

Hzzt − H̄1φt ≤ 0 t = 1, . . . , N (3.3c)

Gtφt + gt ≤ 0 t = 0, . . . , N, (3.3d)

where HT
z = [I − I], H̄T

1 = [HT
1 − HT

1 ], H̄T
2 = [HT

2 − HT
2 ], Gt = G, gt = g are

used to reformulate the equality constraints (3.1b) as inequality constraints.

Remark 3.3.1. We reformulate the consensus constraints (3.2) as (3.3b)-(3.3c) for
theoretical purposes only. In particular, the Lagrange multipliers associated with the
inequality constraints (3.3b)-(3.3c) have a known sign (i.e., they must be greater than
or equal to zero) and we can exploit this information to derive upper bounds on the
dual variables in the Lemmas and Theorems that follow.

The PDFG is detailed in Algorithm 3.1. The PDFG is a dual solver, i.e., a solver
that operates on the dual of Problem (3.3), which is given by:

maximize
µt≥0

N∑
t=0

dt(µt), (3.4)

where µt ≥ 0 is the vector of Lagrange multipliers associated with the inequality
constraints in Problem (3.3). Furthermore, the dual function dt(µt) is defined as
follows:

dt(µt) := minimize
ξt

Lt(µt, ξt), (3.5)

where ξT
t := [φT

t z
T
t z

T
t+1] and Lt(µt, ξt) is defined as follows:

Lt(µt, ξt) := Vt(ξt) + 〈µt, Ḡtξt + ḡt〉, (3.6)

given ρ > 0, Vt(ξt) := V̄t(φt)+ ρ
2‖Hzzt+1−H̄2φt‖22 + ρ

2‖Hzzt−H̄1φt‖22, and Ḡ,
ḡ follow from the partitioning of the constraints (3.3b)-(3.3d) according to the defini-
tion of ξt. Note that, for t = 0 and t = N , ‖Hzzt− H̄1φt‖22 and ‖Hzzt+1− H̄2φt‖22
do not appear in the definition ofL0(µ0, ξ0) andLN (µN , ξN ), respectively (together
with the associated inequality constraints (3.3c) and (3.3b)). Furthermore, if As-
sumptions 3.3.1 and 3.3.2 hold, the Vt are strongly convex functions with convexity
parameter σVt .

Remark 3.3.2. The size of the subproblems obtained from the decomposition re-
mains unaffected if N increases. Intuitively, this modularity is an additional feature
that can be exploited to preserve some favorable numerical properties of the problem
(e.g., conditioning, Lipschitz constant, etc.) even when the algorithm is running in
serialized mode [130].
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Algorithm 3.1 Parallel Dual Fast Gradient Method.

Given ξ0
t , µ

0
t , Ḡt, ḡt, Lt, and k̄ for each Πt (t=0, . . . , N )

while k ≤ k̄ or termination criteria are not met do
1. Πt computes φk+1

t = argmin
φt

Lt(µt, ξt).

2. Πt receives φk+1
t−1 from Πt−1, sends φk+1

t to Πt+1.
3. Πt updates zk+1

t according to (3.7).
4. Πt receives zk+1

t−1 from Πt−1, sends zk+1
t to Πt+1.

5. Πt computes
µ̂k+1
t =

[
µkt + L−1

t ∇T
µtdt(µt)

]
+ .

6. Define: a := k+1
k+3I , bt :=L−1

t
2

(k+3) .
7. Πt computes:

µk+1
t =aµ̂k+1

t +bt

[
k∑
s=0

s+ 1
2 ∇T

µtdt(µt)
]

+

.

end while

Remark 3.3.3. We introduced a quadratic penalty in the cost of the form ρ/2(‖H̄1φt−
Hzzt‖2+‖H̄2φt − Hzzt+1‖2), according to the ADMM strategy [8]. This penalty
has no impact on the cost of Problem (3.1), if the consensus constraints (3.2) are sat-
isfied. As an alternative, we could have used the Lagrangian that does not include the
quadratic penalty according to the AMA strategy [35]. In this context, we preferred
the ADMM alternative to relax the assumption on the cost V̄t (Assumption 3.3.1),
given that AMA requires these functions to be strongly convex (this assumption
might be too restrictive for some MPC applications).

Algorithm 3.1 relies on Nesterov’s DFG method in which we propose the inner
problem (i.e., the minimization of the augmented Lagrangian (3.5)) to be solved in
an ADMM fashion, as explained below. Specifically, as Figure 3.3 depicts, at each
iteration of the algorithm, Πt computes a minimizer ξkt for Lt(µt, ξt) (steps 1©- 4©),
i.e., the algorithm returns a solution for each inner subproblem (3.5). In particular,
our algorithm, in compliance with the ADMM strategy, first minimizes Lt(µt, ξt)
with respect to φt in parallel for each subproblem (step 1©). Then, using the in-
formation received by Πt−1, that is, the updated value of φk+1

t−1 (synchronization
step 2©), our algorithm computes—in parallel for each subproblem—the value of
the global variable zt according to the following rule (step 3©):

zk+1
t = 1

2

(
H1φ

k+1
t +H2φ

k+1
t−1

)
. (3.7)

Then, (synchronization step 4©) Πt receives (sends) the updated value of zk+1
t−1 (zk+1

t )
from Πt−1 (to Πt+1), respectively. Finally, the worker Πt computes the new values
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Figure 3.3: Iteration k of Algorithm 3.1.

of the multipliers µk+1
t (steps 5©- 7©).

We compute offline (for each subproblem) the Lipschitz constant Lt associated
with ∇µtdt(µt) to perform the multipliers’ update as Lt := ‖Ḡt‖22 σVt

−1. Further-
more, the solver iterates for k̄ iterations or until a given termination criterion is met
(e.g., ‖µkt − µk−1

t ‖22 ≤ ηt, where ηt is the desired accuracy).

Each Πt can be assigned to a different processor to parallelize the execution of
Algorithm 3.1. The synchronization overhead (steps 2© and 4©) can have impact
on the performance of the solver. Nevertheless, the workers only exchange vectors
of small dimension (matrices are not involved in the exchange). Hence, the opera-
tions should be performed efficiently without largely affecting the performance of
the algorithm.

The proposed algorithm converges to the optimal solution of Problem (3.1) asymp-
totically, that is, for k → ∞ (Theorem 3.3.1). In practice, we have to take into ac-
count that the execution of the solver terminates in finite time. Using an argument
similar to the one of Theorem 1 in [78], we can compute the primal feasibility vi-
olation and the level of suboptimality of the solution of Problem (3.3) returned by
Algorithm 3.1.

Theorem 3.3.1 ([78]). Suppose that Assumptions 3.3.1 and 3.3.2 hold. Then, let the

sequences (ξkt , µ̂kt , µkt ) be generated by Algorithm 3.1, and ξ̂
k

t :=
∑k
s=0

2(s+1)
(k+1)(k+2)ξ

s.
Then, an estimate on the primal feasibility violation for the subproblem (3.3) is given
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by the following:

‖[∇T
µtdt(ξ̂

k

t )]+‖ ≤
8Rtmaxt=0,...,N{Lt}

(k + 1)2 =: ηt, (3.8)

where Rt := ‖µ∗t ‖ . Moreover, an estimate on primal suboptimality is given by the
following:

0 ≤ V∗t −Vt(ξ̂t) ≤ Rtηt. (3.9)

Algorithm 3.1 terminates after a fixed number of iterations that depends on ηt
and Rt [78]:

k̄ = maximize
t=0,...,N

k̄t :=
⌊√

8Rtmaxt=0,...,N{Lt}
ηt

⌋
. (3.10)

The upper bound on the number of iterations (3.10) is proportional to the level of
suboptimality ηt. Hence, we can either decide to fix ηt to derive k̄ or, if the number
of iterations is imposed by the available processors/sampling time, fix k̄ to compute
the achievable guaranteed level of suboptimality ηt.

According to Theorem 3.3.1 an averaged sequence ξ̂t should be implemented.
In practice, however, the use of ξk̄t (i.e., the last element of the primal sequence
computed by Algorithm 3.1) has a more positive impact on the convergence of the
solver [89].

Remark 3.3.4. In [60], ADMM is used in combination with Nesterov’s fast gradient
methods. At each iteration, the algorithm proposed in [60], first computes the exact
minimizer φt by solving a constrained QP problem and then updates the multipli-
ers associated with the consensus constraints (3.3b)-(3.3c). Our PDFG combines an
unconstrained least-squares problem and a consensus step to solve the inner prob-
lem (3.5), which can be solved more efficiently, compared to the constrained QP
in [60], and then updates the multipliers associated with the inequality constraints in
Problem (3.3) using the acceleration strategy proposed in [82], accelerating the con-
vergence of the algorithm compared to [60]. The proposed algorithm is also different
from the one proposed in [121] to solve similar problem formulations. In particu-
lar, the workers exchange the necessary pieces of information before the update of
the Lagrange multipliers and none of the dual variables are exchanged between the
neighboring workers, as Figure 3.3 highlights, simplifying the study of the conver-
gence of the algorithm. Furthermore, the information exchange between neighbor-
ing workers is unidirectional, i.e., Πt−1 sends the updated information to Πt, but Πt

does not send any updated information to Πt−1. Finally, we focuses on the use of
first-order solvers to solve the inner problem (3.5), while the focus of [121] was on
the novelty of the proposed decomposition technique.

In the following, we show how to reshape the feasible region of Problem (3.1) to
anticipate possible constraints violations when using the PDFG. In particular, Sec-
tion 3.3.2 introduces the equality relaxed (ER) subproblems that rely on a relaxed
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consensus policy, while Section 3.3.3 introduces a preliminary set of inequality-
tightened (IT) subproblems that rely on a tightened feasible region to compensate
for the early termination of the PDFG. Section 3.5 shows how to improve the formu-
lation of the subproblems, from the MPC perspective, to formally ensure recursive
feasibility and closed-loop stability.

3.3.2 Equality Constraint Relaxation

The decomposition presented in the previous section is possible thanks to the intro-
duction of the consensus constraints (3.2) that are, equivalently, reformulated as
inequality constraints (3.3b)-(3.3c) in the definition of the independent subprob-
lems (3.3). The iterative nature of the proposed solver and its asymptotic conver-
gence properties, however, might prevent that the constraints (3.3b)-(3.3c) are ac-
tually satisfied at the equality. This observation motivates the introduction of ER
parameters εzt ,εzt+1>0 to relax the consensus constrained as follows. For each sub-
problem (3.3), the former equality constraints (3.2) are replaced by the following
inequality constraints:

H̄1φt −Hzzt ≤ εzt 12nz , (3.11a)

H̄2φt−Hzzt+1 ≤ εzt+1 12nz . (3.11b)

Thus, for each subproblem, we can realistically consider a feasible region defined as
follows:

wt : [ H̄1 −Hz 0] ξt − εzt12nz ≤ 0, (3.12a)

vt+1 : [ H̄2 0 −Hz] ξt − εzt+112nz ≤ 0, (3.12b)

λt : [ Gt 0 0] ξt + gt ≤ 0, (3.12c)

or, in a more compact notation:

Gξtξt + gξt ≤ 0, (3.13)

whereGξt ∈ Rpξt×(nφ+2nz), pξt := p+4nz , andwt, vt+1, λt are the Lagrange mul-
tipliers associated with the constraints (3.12a), (3.12b), and (3.12c), respectively.
Hence, let µT

t := [λT
t wt

T vt+1
T] ∈ Rpξt+ be the Lagrange multipliers associated with

the new set of inequality constraints defined by (3.13). The equality relaxed (ER)
subproblems can be defined as follows:

V∗t = minimize
ξt

Vt(ξt) subject to: Gξtξt + gξt≤0, t=0, . . . , N. (3.14)

These subproblems, however, only anticipate the possible violation of the consensus
constraints when the PDFG terminates in a finite number of iterations. In the next
section, we show how to further modify the feasible region of these subproblems to
ensure that their solution is also primal feasible.
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3.3.3 Tightening of the Original Inequality Constraints

We introduce N + 1 auxiliary subproblems, namely the inequality tightened (IT)
subproblems, which differ from the ER subproblems (3.14) in the definition of the
feasible region, in order to guarantee the primal feasibility of each subproblem using
Algorithm 3.1. In particular, each IT subproblem can be defined as follows:

V∗εt =min
ξt

Vt(ξt) s.t.: Gξtξt + gξt + εt1pξt ≤ 0, (3.15)

where εt ≥ 0 is the tightening parameter, which depends on the suboptimality
level ηt that the proposed algorithm can reach within k̄ iterations (3.10). Accord-
ing to [78], solving the IT subproblem (3.15) using Algorithm 3.1 ensures, with a
proper choice of εt, that the solution of the IT subproblem (3.15) is primal feasible
and suboptimal for subproblem (3.14).

We must compute an upper bound for the optimal Lagrange multiplier, namely
µ∗t,εt , associated with the IT subproblem (3.15), to define an εt similar to the one
introduced in [78]. We use an argument similar to the one of Lemma 1 in [80]. In
particular, we compute the aforementioned upper bound for µ∗t,εt according to the
following lemma.

Lemma 3.3.1. Assume that there exists a Slater vector φ̃t ∈ Rnφ that satisfies the
consensus constraints (3.2) and Gtφ̃t + gt < 0. Then, there exists εt ≥ 0, εt <
minj=1,...,pt{−(Gtφ̃t + gt)j}, and εzt , εzt+1 > εt, such that the upper bound for
µ∗t,εt is given by

‖µ∗t,εt‖ ≤ 2Rdt := 2Vt(ξ̃t)− dt(µ̃t)
min

j=1,...,pξt
{[Γt]j}

, (3.16)

where Γt:=
[
[−(Gtφ̃t+gt)T−εt 1T

pt ][(εzt− εt) 1T
2nz ][(εzt+1− εt) 1T

2nz ]
]T ∈ Rpξt , and

dt(µ̃t) is the dual function for the original subproblem (3.5) evaluated at µ̃t ∈ Rpξt .

Proof. See Appendix A. �

Note that ξ̃t := [φ̃T
t (H1φ̃t)T (H1φ̃t+1)T]T, i.e., ξ̃t is computed by using φ̃t and

assuming that the consensus constraints (3.2) are satisfied.

Remark 3.3.5. Lemma 3.3.1 does not only provide an upper bound for ‖µ∗t,εt‖,
but it also provides guidelines to select the values of εzt and εzt+1 as a function
of minj=1,...,pt{−(Gtφ̃t + gt)j}, which only depends on the primal variable φ̃t. An
alternative way to determine the relaxation parameters is to include εzt and εzt+1 in
the set of decision variables and penalize them in the cost function as it is usually
done to handle soft constraints. This will, however, increase the number of decision
variables in the problem formulation and it will have an impact on the original cost.
Otherwise, in a more practical implementation of the solver, the ER parameters can
be selected offline to be sufficiently small.
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These results show how to reformulate Problem (3.1) to return feasible solutions
for the independent subproblems (3.3) when using the PDFG. In the remainder of the
chapter, we focus on how these changes impact the MPC problem (and on the con-
trolled plant) when the MPC solution is applied in closed-loop. Hence, in the next
section, we show how a general MPC problem can be reformulated as Problem (3.1)
and how to improve the choice of the tightening parameters to ensure recursive fea-
sibility and closed-loop stability.

3.4 General MPC Formulation

Consider the discrete-time linear time-invariant (LTI) system described below:

x(t+ 1) = Ax(t) +Bu(t) ∀t ≥ 0, (3.17a)

y(t) = Cx(t) +Du(t) ∀t ≥ 0, (3.17b)

where x(t) ∈ X ⊆ Rn denotes the states of the system, u(t) ∈ U ⊆ Rm denotes the
control inputs, and y(t) ∈ Y ⊆ Rr denotes the outputs of the system. The sets X ,
U , and Y are simple proper convex sets (i.e., convex sets that contain the origin in
their interior).

In the remainder of the chapter, we consider the following assumption:

Assumption 3.4.1. The pair (A,B) is stabilizable.

Our goal is to steer the output of system (3.17) to a desired reference value de-
noted by yref. Furthermore, we have to take into account the constraints acting on x,
u, and y. Hence, we rely on a modified version of the MPC for tracking formulation
proposed in [66; 19]. In particular, we can formulate our so-called original MPC
problem as follows:

V∗(yref, xinit) := minimize
x,u,θ

N∑
t=0

lt(yref, xt, ut, θt) (3.18a)

subject to: Axt +But = xt+1, t = 0, . . . , N, (3.18b)[
x̂t
ût

]
= Mθθt, t = 0, . . . , N, (3.18c)

C̄xt + D̄ut + g ≤ 0 t = 0, . . . , N, (3.18d)

C̄x̂t + D̄ût + g ≤ 0 t = 0, . . . , N, (3.18e)

ŷt = Nθθt t = 0, . . . , N, (3.18f)

x0 := xinit, (3.18g)

(xN , θN ) ∈ Ωwt,K (3.18h)

where xt ∈ Rn, ut ∈ Rm indicate the t-step-ahead state and control predictions,
respectively. Furthermore, θt ∈ Rm is the vector of parameters used to generate
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the artificial steady state, input, and output x̂t, ût, and ŷt, respectively. Mθ and Nθ
are suitable matrices (refer to [66] for details). In addition, (3.18b) represents the
prediction model dynamics, while (3.18d) represents the constraints on the predicted
state, input, and output (C̄ ∈ Rc×n, and D̄ ∈ Rc×m). For a prediction horizon of
length N , lt in (3.18a) is described as follows:

lt(yref, xt, ut, θt) := ‖xt − x̂t‖2Q + ‖ut − ût‖2R + α‖ŷt − yref‖2,

where Q = QT ∈ Sn≥0, R = RT ∈ Sm>0, and α > 0. For t = N , the state weighting
matrix is replaced by P ∈ Sn>0, which is computed as the solution of the algebraic
Riccati equation associated with the unconstrained infinite-horizon linear quadratic
regulator (IH-LQR), characterized by the matrices A, B, Q, and R. Finally, the
proposed problem formulation relies on Ωwt,K ⊆ Rn+m, which is an invariant set for
tracking. In particular, the following assumption holds:

Assumption 3.4.2 ([66; 19]). Given the gainK ∈ Rm×n obtained by the IH-LQR—
characterized by the matrices A, B, Q, and R—and L = [−K I]Mθ ∈ Rm×m, then
∀ (x, θ) ∈ Ωwt,K , ((A+BK)x+BLθ, θ) ∈ Ωwt,K .

Remark 3.4.1. Compared to the design proposed in [66; 19], we consider poten-
tially different values of θ along the length of the prediction horizon to allow more
flexibility in the computation of the artificial reference.

In general, the MPC controller solves Problem (3.18) online and returns an op-
timal sequence of states and control inputs that minimizes the cost (3.18a). Let the
optimal sequence be defined as follows:

{x,u,θ} := {x0, . . . , x
∗
N , u

∗
0, . . . , u

∗
N−1, θ

∗
0 , . . . , θ

∗
N}. (3.19)

Only the first element of u is implemented in closed-loop, i.e., the control law ob-
tained using the MPC controller is given by:

κMPC(yref, xinit) = u∗0, (3.20)

and the closed-loop system is described by

x(t+ 1) = Ax(t) +BκMPC(yref, xinit). (3.21)

In the remainder of Section 3.4 and 3.5, we derive our results for a regulation
problem, i.e., by assuming yref = 0 and the associated θt, x̂t, ût, and ŷt equal to zero
in Problem (3.18), to simplify the discussion and notation, however the numerical
example in Section 3.6 will consider a more general tracking example. In particular,
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for analysis and illustrative purposes only, we consider the following problem:

V∗(xinit) = minimize
x,u

1
2

N−1∑
t=0

(xTt Qxt+uTt Rut) + xT
NPNxN (3.22a)

subject to: xt+1 = Axt +But, t=0, . . . , N − 1 (3.22b)

C̄xt + D̄ut + g ≤ 0, t=0, . . . , N − 1 (3.22c)

x0 = xinit (3.22d)

xN ∈ XN , (3.22e)

where XN := {x ∈ Rn |FNx≤fN , FN ∈ RcN×n, fN ∈ RcN } is used as terminal
invariant set according to the following assumption (a particular case of Assump-
tion 3.4.2 for Problem (3.22)):

Assumption 3.4.3. Suppose Assumption 3.4.1 holds. Given the gain K ∈ Rm×n
obtained by the IH-LQR, characterized by the matrices A, B, Q, and R, ∀x ∈ XN ,
then x ∈ X , Ku ∈ U , and (A+BK)x ∈ τXN , 0 < τ ≤ 1.

In the following, we show how to reformulate Problem (3.22) for Algorithm 3.1.
We aim to solve Problem (3.22) online, i.e., every time new measurements are

available from the plant, using Algorithm 3.1. According to Section 3.3, we can ex-
ploit a similar approach as the one proposed in [121] and decompose Problem (3.22)
along the length of the prediction horizon N into N + 1 independent subproblems
to be solved by N + 1 parallel workers Πt (t=0, . . . , N ).

The coupling in Problem (3.22) is caused by the dynamics (3.18b). Hence,
the auxiliary zt ∈ Rn in (3.2) are used to store the local predicted state xt+1 of
each subproblem and exchange this stored information to guarantee consensus be-
tween neighboring subproblems, i.e., to ensure that the predicted state of the (t)-
th subproblem, namely x

(t)
t+1, is equal to the current state of the (t+ 1)-st sub-

problem, namely x(t+1)
t+1 (the superscript (t) is used to indicate that xt belongs to

Worker Πt). Specifically, the consensus constraints (3.2) can be reformulated as
zt+1 = x

(t)
t+1 = x

(t+1)
t+1 and, by defining φt := [x(t) T

t u
(t) T
t ]T, H1 := [In 0],

H2 := [A B], V̄t := blkdiag{Q, R} (for t = 0, . . . , N − 1), V̄N := HT
1PH1,

Gt := [C̄ D̄], gt := g (for t = 0, . . . , N −1), GN := [FN 0cN×m], and gN := −fN
Problem (3.22) is equivalent to Problem (3.3). In addition, Assumption 3.3.1 is satis-
fied given the definition of Q and R, while Assumption 3.3.2 is satisfied if Assump-
tion 3.4.1 holds. Hence, we can use the PDFG to solve Problem (3.22) (or, in the
more general case, Problem (3.18)). We have to take into account, however, that the
PDFG solver is an inexact solver due to the finite number of iterations it performs.
Hence, the proposed choice of ER and IT parameters (Sections 3.3.2 and 3.3.3)
might not be enough, from the control perspective, to formally ensure recursive fea-
sibility and closed-loop stability using the solution computed using Algorithm 3.1.
The next section discusses how to improve the choice of the IT parameters to for-
mally ensure the aforementioned control properties.
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Figure 3.4: Local and consolidated predictions.

3.5 Parallel MPC Using Adaptive ER-IT Parameters

Section 3.4 showed how to reformulate the MPC Problem (3.22) (or Problem (3.18),
in the general case) for the PDFG and Section 3.3.3 detailed how to choose the
tightening parameter εt of each IT subproblem to ensure that the t-th local solution,
i.e., the solution computed by the t-th IT subproblem (3.15), is primal feasible for
the t-th ER subproblem. This section provides guidelines to improve the choice of
the tightening parameter of each IT subproblem (3.15) in order to guarantee closed-
loop stability and recursive primal feasibility of the consolidated solution, i.e., the
predictions obtained, starting from the initial state x0, using the control sequence

ūε :=
{
ū

(0)
0,ε0

, . . . , ū
(N−1)
N−1,εN−1

}
, (3.23)

where the elements of ūε are computed by the independent IT subproblems (3.15).
The consolidated solution (3.23) is a suboptimal solution for the original prob-
lem (3.22). Figure 3.4 highlights the difference between the local and the consoli-
dated prediction. In particular, the subproblems (3.15) (represented in the top half
of Figure 3.4 as boxes characterized by the dedicated worker, local states, and con-
trol commands) compute in parallel

(
x0, ū

(0)
0,ε0

)
, . . .,

(
x̄

(N−1)
N−1,εN−1

, ū
(N−1)
N−1,εN−1

)
, and

x
(N)
N,εN

, respectively (local predictions). According to the results of Section 3.3, the

pair (x̄(t)
t,εt , ū

(t)
t,εt) is primal feasible for the t-th subproblem (3.14), thanks to the in-

troduction of the IT subproblems. Nevertheless, due to the relaxation introduced on
the equality constraints (3.11a)-(3.11b), there is a bounded mismatch (highlighted
in Figure 3.4) between x(t)

t+1 and x(t+1)
t+1 (t = 0, . . . , N − 1). Hence, starting from

x0 := xinit, when the control sequence ūε is applied to compute the consolidated
state prediction (represented in the bottom half of Figure 3.4)

x̄ε := {x0, x̄1,ε1 . . . , x̄N,εN }, (3.24)

the feasibility of x̄ε is no longer guaranteed. Note, however, that ūε ∈ U :=
U1× . . . × UN , i.e., ūε is feasible. Hence, no additional tightening is needed on
the input constraints.

In the following, we define an upper bound on the maximal feasibility viola-
tion of x̄ε in Section 3.5.1. This feasibility violation is a consequence of the local
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relaxations of the equality constraints. Then, we introduce sufficient conditions to
ensure the primal feasibility of the consolidated prediction and provide guidelines
for the choice of the tightening parameters for each IT subproblem in Section 3.5.2.
Finally, we introduce Algorithm 3.2 to update adaptively the ER-IT parameters and
guarantee recursive feasibility and closed-loop stability of the system controlled by
the MPC control command (3.20) in Section 3.5.3.

3.5.1 Upper Bound on the Maximal Feasibility Violation of x̄ε
Let ūε and x̄ε be defined by (3.23) and (3.24), respectively. Moreover, from (3.11a)
and (3.11b), the following holds:

‖x̄(t−1)
t,εt−1 − x̄

(t)
t,εt‖ ≤ 2εzt . (3.25)

Our goal is to characterize how far the consolidated predicted state is from the lo-
cal predicted state.

Lemma 3.5.1. Let the t-step-ahead consolidated prediction x̄t,εt be defined by (3.24)
and assume that (3.25) holds. Then, there exists αt ∈ R, αt ≥ 0, such that the mis-
match between x̄t,εt and the state of the t-th subproblem x̄

(t)
t,εt is bounded, as follows:

‖x̄t,εt − x̄
(t)
t,εt‖ ≤ αt. (3.26)

Proof. See Appendix B. �

Remark 3.5.1. According to the proof of Lemma 3.5.1 a possible choice for αt is
the following:

αt := 2
t−1∑
j=0
‖Aj‖εzt−j . (3.27)

3.5.2 Selection of the Tightening Parameters

According to Lemma 3.5.1, x̄t,εt differs from x̄
(t)
t,εt by a quantity bounded by αt.

Thus, x̄t,εt might violate the constraints of the t-th subproblem (3.3) by as much as
αt, in the worst-case scenario. In particular, we must ensure that C̄tx̄t,εt +D̄tūt,εt +
gt ≤ 0. Using the computed upper bound (3.26), the following holds:

C̄tx̄
(t)
t,εt + D̄tū

(t)
t,εt + gt + |C̄t|αt 1n +εt 1ct ≤ 0

m (3.26)
C̄tx̄t,εt + D̄tū

(t)
t,εt + gt + |C̄t|αt 1n +εt 1ct ≤ 0,

where |C̄t| indicates the absolute value of C̄t.
Recall that these mismatches are caused by the use of inexact solvers and that

αt depends on εzt . In the following, we provide guidelines to improve the choice
of εt for each subproblem. Furthermore, we provide a modified upper bound for
the optimal Lagrange multiplier associated with the tightened subproblems (3.15),
which considers the additional tightening introduced by αt.
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Lemma 3.5.2. Consider the following IT subproblems:

V∗γt =min
ξt

Vt(ξt) s.t.: Gξtξt + gξt + γt ≤ 0, (3.28)

for t= 0, . . . , N , where γt:= [(|C̄t|αt 1n +εt 1ct)T εt 1T
4n]T. Consider the assump-

tions of Lemma 3.3.1 and the existence of αt for all t = 1, . . . , N according to
Lemma 3.5.1. Then, for each subproblem, there exist εt ≥ 0, εzt > εt, εzt+1 > εt
such that the upper bound for the optimal Lagrange multiplier associated with the
IT subproblems (3.28) is described by

‖µ∗t,γt‖ ≤ 2Rt := 2 Vt(ξ̃t)− dt(µ̃t)
minj=1,...,ct+4n{[Γαt ]j}

, t=0, . . . , N,

Γαt :=
[
[−(Gtφ̃t+gt)T− (|C̄t|αt 1n)T−εt1T

ct ][(εzt−εt)1
T
2n][(εzt+1−εt)1T

2n]
]T ∈

Rct+2n.

Proof. See Appendix C. �

Remark 3.5.2. The choice of εt (t = 0, . . . , N ) is not unique and depends on the
choice of εzt (t= 1, . . . , N ). For example, given αt in (3.27), a possible choice of
εzt (t=1, . . . , N ) is:

εzt ≤ min
{

εzN
‖AN−t‖

, ..,
εzt+1

‖A‖
,

min
j=1,...,ct

{−(Gtφ̃t + gt)j}

1 + 2t max
j=1,...,ct

{∑n
i=1 |[C̄t]j,i|

}}. (3.29)

Consequently, the tightening parameters are given by:

εt ≤
1
2 min

{
εzt , εzt+1 , min

j=1,...,ct
{−(Gtφ̃t + gt)j}

}
, (3.30)

for t= 0, . . . , N . This choice implies that first we select the relaxation parameters
and then we adapt the tightening parameters on the original inequality constraints
based on the choice of εzt for all t = 1, . . . , N . An alternative is to fix εt for the
inequality constraints and consequently compute εzt . In general, the choice of the
parameters strongly depends on the system-state matrix A in (3.17).

Remark 3.5.3. In the next section we propose a method (Algorithm 3.2) to adapt the
above derived parameters at each problem instance. If we consider a fixed tightening
scheme, such as the one proposed by [111], εt and εzt can be computed offline (for
all the initial states in the region of attraction).

Remark 3.5.4. We define the ER and the IT parameters to be the same for all the
constraints of the subproblem without taking into account the magnitudes of the
states/inputs/outputs. This choice is made to simplify the notation in the Lem-
mas/Theorems. In practice, this choice could be very conservative if there is a large
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difference among the magnitudes of the states/inputs/outputs (see Section 3.6, for ex-
ample). A possible strategy to avoid conservatism is to define a state-transformation
to normalize the magnitudes or adopt different ER and IT parameters based on the
state/input/output magnitudes.

In the following, we show that by using {x̄γ , ūγ}—where ūγ is the control se-
quence obtained by solving the IT subproblems (3.28) and x̄γ is the correspond-
ing consolidated prediction—the inequality constraints of the original MPC prob-
lem (3.22) are satisfied. Consequently, the predicted final state is in the terminal set
of the original problem.

Theorem 3.5.1. Under the same assumptions of Lemma 3.5.1, if the desired level of
suboptimality of Algorithm 3.1 is chosen as:

ηt := 1
2εt (3.31)

then the following holds:

C̄tx̄t,γt + D̄tūt,γt + gt < 0 t=0, . . . , N,

where x̄t,γt is the t-step-ahead consolidated prediction computed using the solution
to the IT subproblem (3.28) with tightening parameter γt.

Proof. See Appendix D. �

Remark 3.5.5. The IT parameters depend on ηt (3.31) that is related to the number
of iterations (3.10). If k̄ is fixed (e.g., according to the available computational
resources) ηt can be computed and the IT parameters can be selected accordingly to
ensure real-time performance. It could happen, however, that their choice might lead
to primal infeasible solutions. How to handle these scenarios is part of our future
work. For the proposed example in Section 3.6, k̄ is fixed and the ER-IT parameters
are tuned offline to ensure that the solution remains indeed feasible.

In summary, this section showed that there exists a choice of the relaxation and
tightening parameters that guarantee a feasible consolidated prediction with respect
to the original problem (3.22).

3.5.3 Suboptimality, Recursive Feasibility, and Closed-Loop Stabil-
ity

In the following, we derive bounds for Vγ :=
∑N
t=0 Vt(x̄γ , ūγ), i.e., the cost ob-

tained using {x̄γ , ūγ}, with respect to the optimal cost V∗ of the original problem.

Theorem 3.5.2. Assuming that there exist εt (t= 0, . . . , N ) and εzt (t= 1, . . . , N )
selected according to Lemma 3.5.2, then the following holds:

V∗ ≤ Vγ ≤ V∗ + 2
N∑
t=0
Rt
√
ctγ̄t, (3.32)

where γ̄t := εt + max
j=1,...,ct

{∑n
i=1 |[C̄t]j,i|

}
αt.
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Proof. See Appendix E. �

Theorem 3.5.2 established the level of suboptimality of the consolidated predic-
tion with respect to the original problem. In particular, the sequence {x̄γ , ūγ} is
suboptimal for the original problem and satisfies the original inequality constraints
(including those associated with XN ).

Recall that for the update of Rt, our algorithm requires a strictly feasible vector
φ̃t for (3.3d). Hence, every time new measurements are available from the plant,
our algorithm must provide a strictly feasible solution (not necessarily optimal)
for the first ct inequality constraints of each ER subproblem. This strictly feasi-
ble solution can be computed according to [78]. In particular, let φ̄γ be defined
as φ̄γ := [φ̄T

0,γ0
. . . φ̄T

N,γN
] = [(xT

0 ū
T
0,γ0

) . . . (x̄T
N−1,γN−1

ūT
N−1,γN−1

) (x̄T
N,γN

))]T.
Then, a feasible φ̃+ at the next problem instance, is given by:

φ̃+ = [φ̄γ[2:N+1]((A+BKf )x̄N,γN )T]T. (3.33)

We want to show that the cost decreases at each problem instance and, consequently,
asymptotic stability can be guaranteed. Hence, we introduce the following theorem.

Theorem 3.5.3. Under Assumption 3.4.3, there exist εzt , εt ≥ 0 (t = 0, . . . , N )
such that x̄N,γN ∈ XN and V0 ≥

∑N
t=0 ν

(
γ̄+
t ,R+

t

)
, ν
(
γ̄+
t ,R+

t

)
= γ̄+

t (2R+
t

√
ct),

where γ̄+
t and R+

t represent the updated values of these parameters according to
φ̃+. Consequently, the following holds:

N∑
t=0

Vt(φ̄+
t,γt)≤

N∑
t=0

Vt(φ̄t,γt)−V0(φ0) +
N∑
t=0

ν(γ̄+
t ,R+

t ), (3.34)

Proof. See Appendix F. �

The inequality above shows that the total cost decreases at each problem instance
if XN is defined according to Assumption 3.4.3 and if the N -step-ahead consoli-
dated prediction lies in the terminal set.

Remark 3.5.6. A possible choice to update εzt (t= 1, . . . , N) to fulfill (3.34) is the
following:

ε+zt ≤ min
{

V0

[
4NR+

t

√
ct

(
1 + 2t max

j=1,...,ct

{
n∑
i=1
|[C̄t]j,i|

})]−1

,

εzt satisfying (3.29)

}
.

(3.35)

Consequently, εt can be selected according to (3.30) to preserve the definition of the
upper bound on the optimal Lagrange multipliers given in Lemma 3.5.2.

Remark 3.5.7. The iterative fast gradient method leads to a nonmonotonic improve-
ment of the cost function. Nevertheless, thanks to Theorems 1 and 2, which provide
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Algorithm 3.2 MPC design with adaptive parallel tightening scheme.

1: Given A,B, C̄, and D̄.
2: Compute offline: N,K,P, FN , fN , H̄1, H̄2, Hz, Q, and R.
3: Compute offline the constant matrices in Problem (3.3).
4: for t = 0 to N do
5: Compute: initial strictly feasible vector φ̃t.
6: Compute: initial tightening according to Lemma 3.5.2.
7: end for
8: Measure: initial state xinit at time t = 0.
9: repeat

10: Measure: initial state xinit.
11: if xinit ∈ XN then
12: Compute: u = Kxinit.
13: else
14: Compute in parallel (Alg. 1): ξ̄0,γt , . . . , ξ̄N,γN exploiting (3.28).
15: Compute: u = ūγ0 .
16: Update: φ̃← φ̃+ according to (3.33).
17: for t = 0 to N − 1 do
18: Update: εzN−t←ε+zN−t

according to Lemma 3.5.2.
19: end for
20: for t = 1 to N do
21: Update: εt ← ε+t according to Lemma 3.5.2.
22: Update: γt ← γ+

t according to Lemma 3.5.2.
23: end for
24: end if
25: Implement u.
26: end repeat

a monotonic bound for the cost, we can rely on (3.34). Furthermore, when V0 → 0
for x→ 0, the property ν(·)→ 0 due to the definition ofRt and (3.35) is no longer
used, given that the state will enter the terminal set, which contains the origin in its
interior.

Algorithm 3.2 summarizes the main steps needed to obtain a stabilizing control
law when the original MPC problem is solved in parallel using the PDFG. If the mea-
sured state is in XN , from Assumption 3.4.3, the state and the control constraints are
automatically satisfied without solving the MPC problem in parallel. Algorithm 3.2
must be called every time new measurements are available from the plant to ensure
performance in closed loop.

Remark 3.5.8. Steps 17-23 of Algorithm 3.2 are the only nonparallel ones of the
algorithm (Algorithm 3.1 is fully parallelizable). The main reason is in the adap-
tive nature of the algorithm (see also Remark 3.5.3). Algorithm 3.2 adapts εt and
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Algorithm 3.3 MPC design with simplified tightening strategy.

1: Given A,B, C̄, and D̄.
2: Compute offline: N, H̄1, H̄2, Hz, Q, and R.
3: Compute offline the constant matrices in Problem (3.3).
4: Compute offline: k̄ according to Remark 3.5.5.
5: Compute offline: εt and εzt for t = 0, . . . , N .
6: Compute offline: γt for t = 0, . . . , N .
7: repeat
8: Compute in parallel (Alg. 1): ξ̄0,γt , . . . , ξ̄N,γN exploiting (3.28).
9: Compute: u = ūγ0 .

10: Implement u.
11: end repeat

εzt every time new measurements are available from the plant. A fully parallel Al-
gorithm 3.2 is possible using a fixed tightening strategy, in which εt and εzt are
computed offline.

Algorithm 3.2 formally shows how to rigorously select the ER-IT parameters on-
line. The proposed adaptive strategy has the advantages (discussed also in [78]) that
the obtained solutions are less conservative compared to an offline tuning of the same
parameters. Furthermore, the effectiveness of the proposed approach has been ver-
ified in practice on an academic example presented in [20]. The proposed adaptive
strategy, however, is less suitable for real-time computation, given that k̄ can vary
according to the current state measurements. Hence, in practice, when the real-time
requirements are critical for the application, we can consider to use Algorithm 3.3,
which is a simplified version of Algorithm 3.2. In particular, Algorithm 3.3 replaces
the terminal set and cost, which are challenging to compute for some applications,
with a long enough prediction horizonN that is tuned offline to ensure the system to
enter a control invariant set within the given N steps [83; 72]. Furthermore, Algo-
rithm 3.3 assumes that the number of iterations k̄ is fixed, according to the available
computational units (Remark 3.5.5). Hence, the ER-IT parameters are computed of-
fline, as any other tuning parameters, to ensure good closed-loop performance of the
algorithm.

Remark 3.5.9. Algorithms 3.2 and 3.3 require to store some information concerning
the system. Nevertheless, the information that needs to be stored is comparable to the
information stored when designing a classical MPC controller (such as, the system
matrices, constraint description, weighting matrices, etc.). In particular, compared
to solving Problem (3.18), the size of the weighting and constraint matrices does not
grow with N . The algorithm only needs to store the matrices describing the cost
and constraints for subproblem 0, t, and N , given that the description of the sub-
problems for t = 1, . . . , N − 1 is the same. For the proposed aerospace application



3.6. LONGITUDINAL CONTROL OF A PASSENGER AIRCRAFT 55

C
ha

pt
er

3

discussed in Sections 3.2 and 3.6, compared to the baseline controller, the amount
of data might be larger, given that the baseline controller requires only to store some
precomputed gains that are updated based on given criteria. Nevertheless, as Sec-
tion 3.2 shows, if we can overcome the computational burden, the MPC controller
can largely improve the performance of the aircraft and simplify other tasks, such as
the control reconfiguration after a fault [23].
Remark 3.5.10. The on-board control unit on an aircraft uses legacy hardware and
software that are certified to guarantee a specified set of operational criteria. Ad-
vance mathematical operations, such as QP solvers for MPC, are not available. Our
solver, compared to second-order solvers, requires only basic algebraic operations
(vector sums and multiplications) supported by any on-board control unit. Compared
to a classical Nesterov’s dual fast gradient method [78], the memory requirements
are smaller (given that the size of the matrices does not grow withN , as discussed in
Remark 3.5.9). Compared to classical ADMM [8], our algorithm provides an upper
bound on the level of suboptimality of the obtained solution and primal infeasibil-
ity. Compared to the alternating minimization algorithms (AMA) [35], the proposed
algorithm does not have the requirement of strong convexity of the cost functions,
which could lead to conservative behaviors of the system controlled by the MPC
controller.

3.6 Longitudinal Control of a Passenger Aircraft

In this example we use an Airbus civilian aircraft simulator [36; 37] and our aim
is to show that the proposed strategy can lead to significant benefits to the MPC
controller from the solver perspective motivating further investigations of MPC in
the aerospace industry.

We control the aircraft by using an (LTI) MPC controller, as depicted in Fig-
ure 3.5. In particular, our MPC design exploits the available linearized models of
the aircraft at different points (trim conditions) in the flight envelope to build the
predictor as described below. At this stage, we assume that there is no model mis-
match, that is, we assume the same aircraft and prediction model. Nevertheless, all
the important properties that could affect the performance of the solver (such as con-
ditioning of the problem, number of decision variables, number of constraints, etc.)
are preserved in this example.

Aircraft dynamics. The discretized (at Ts = 0.04 sec) aircraft longitudinal dynam-
ics at a given trim condition are described by the following system:

xA/C(k + 1) = AA/CxA/C(k) +BA/Cδ(k), (3.36a)

yA/C(k) = CA/CxA/C(k) +DA/Cδ(k), (3.36b)

where the state vector xA/C :=
[
q p vg α θ h

]T
includes the pitch rate,

roll rate, ground speed, angle of attack, pitch angle, and altitude, respectively, the
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Figure 3.5: Proposed Control Architecture.

control input δ :=
[
δeil δeir δeol δeor

]T
includes the inner-left, inner-right,

outer-left, and outer-right elevator outputs, respectively, and the measured outputs
y :=

[
xT nz

]T
are the states x and nz , that is, the vertical load factor (a parameter

related to the acceleration on the vertical axis). In particular, the linearized aircraft
model is obtained at the following trim condition inside the flight envelope:

xT
init :=

[
q, p, vg, α, θ, h

]
0

=
[

0 deg
sec , 0 deg

sec , 205 knots, 2.30 deg, 2.30 deg, 12500 ft
]
.

Actuator dynamics. As Figure 3.5 shows, the control input δ is generated by the
output of the actuator system, described by the following equations:

xact(k + 1) = Aactxact(k) +Bactu(k), (3.37a)

δ(k) = Cactxact(k) +Dactu(k), (3.37b)

where xact ∈ R12 and u is the control command generated by the MPC controller.

Actuator-state observer. While dedicated sensors measure the aircraft states xA/C,
the actuator states xact are not available and have to be estimated in order to include
them in the MPC prediction model. Given that u and δ are measured, we design a
classical Luenberger state observer characterized by a static gain L to estimate xact,
as Figure 3.5 depicts.

Augmented aircraft dynamics. The augmented aircraft model used by the MPC
controller to build the predictions is given by:

x(k + 1) = Ax(k) +Bu(k) (3.38a)

y(k) = Cx(k) +Du(k), (3.38b)
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where x(k) :=
[
xT

A/C xT
act
]T

and y(k) := yA/C are the states and the outputs, re-
spectively.

To control the longitudinal dynamics of the aircraft, the MPC tracks a desired
vertical load factor yref := nzref generated by a pilot-stick command (i.e., the same
general tracking scenario as considered in Section 3.2). In particular, the given stick
command generates the maximum allowed vertical load factor as reference signal.
This reference signal allows to test the behavior of the solver when the output of
the system is steered towards its saturation limits. Furthermore, the MPC takes into
account the constraints acting on x(t), u(t), and y(t). In particular, the vertical load
factor nz must be constrained to lie between nz := 2.5 g and nz := −1 g. We use
the aforementioned information to formulate Problem (3.18).

Compared to Problem (3.18), the MPC controller in this numerical example can-
not rely on a terminal set for tracking, given the size of the considered optimiza-
tion problem (this is a practical limitation that we have to deal with given that the
available algorithms are not able to provide a solution in bounded time) and, for
the proposed application, Algorithm 3.3 is used. In this respect, we chose a long
enough prediction horizon N to ensure closed-loop stability. In this respect, we
fixed N := 30 samples (i.e., 1.2 sec). Hence, according to Section 3.3, we can de-
compose the original problem (3.18) into 31 (N + 1) independent subproblems that
can be solved in a parallel, batch, or serialized fashion.

A design issue that we have to take into account concerns the different magni-
tudes of the state variables that influence the choice of the ER-IT parameters and the
conditioning of the system. Compared to the academic example in [20], for the pro-
posed aerospace application, we must take into account that some of the states are
angular measurements that can vary of few degrees, while some other states (such as
altitude or speed) can vary thousand of units. Hence, if we impose the same amount
of relaxation and tightening for all the states the closed-loop performance might be
penalized. Hence, we can introduce a suitable state transformation to normalize the
system matrices and, consequently, impose the same amount of relaxation/tightening
to all the state variables. This strategy can be seen as a preconditioning of the MPC
problem and can be beneficial not only for the choice of the ER-IT parameters, but
also to improve the convergence of the PDFG algorithm. This strategy led to a signif-
icant performance improvement of the solver and motivates further investigation of
preconditioning strategies when using first-order solvers as part of our future work.

Finally, given the absence of the terminal set and the small computation time,
according to Algorithm 3.3, we tuned the ER-IT parameters offline to preserve the
closed-loop performance of the MPC. In particular, we relaxed each equality con-
straint according to (3.12a)-(3.12b) by a quantity εzt = 10−4. Furthermore, we
tightened the inequality constraints of the obtained ER-IT subproblems according
to (3.15) by a quantity εt = 10−2.

In the context of this work, we chose to solve the problem in a serialized fash-
ion to allow the comparison with other state-of-the-art solvers that cannot benefit
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from parallel hardware architectures. In particular, we compared the closed-loop
behavior obtained by solving the MPC problem (3.18) using Algorithm 3.3 (using
Algorithm 3.1 in a serialized fashion) with the one obtained using the state-of-the-art
Nesterov’s dual fast gradient method proposed in [78] (we use the same amount of
tightening εt and weighting matrices for this solver). We run the closed-loop sim-
ulations in MATLAB 64-bit on Windows-based OS with an Intel i7 CPU (at 1.90
GHz). Both solvers are implemented as MATLAB mex files. The size (in terms
of memory) of the mex function obtained for Algorithm 3.3 is only 81 KB, while
the size of mex file obtained to implement the algorithm in [78] is 1553 KB, i.e.,
almost 20 times larger than the one obtained using our proposed algorithm. This
is an encouraging observation for the future implementation of the algorithm on an
embedded platform.

Remark 3.6.1. The results obtained in this section rely on floating-point units (FPUs).
Nevertheless, several studies show that first-order solvers perform well on embedded
platforms that do not have FPUs available and tailored strategies can be derived to
ensure reliable operations and convergence of these algorithms when FPUs are not
available (as discussed, for example in [53; 92]).

In Figures 3.6-3.8, we use the following notation: the solid black line represents
the behavior of the system using the PDFG, the short-dashed grey line represents
the behavior of the system using the DFG, the long-dashed black line represents the
behavior of the system obtained by using the optimal solution of the MPC problem,
the dot-dashed black line represents the reference signal, and the dotted black line
represents the bound on the quantity of interest.

Figure 3.6 shows the computation time required for online optimization topt ob-
tained using the two solvers in real-time compared with the sampling time of the
system. The maximum number of iterations of each solver is fixed to satisfy the
real-time requirements (50 iterations for the PDFG and 80 for the DFG). Note that
the iterations of the PDFG are more expensive from the computational point of view,
given that the algorithm runs in serialized mode. Nevertheless, its computational
cost can be significantly reduced even further by exploiting parallel hardware archi-
tecture. The smaller number of iterations of the PDFG, however, does not impact
the closed-loop performance, in fact as Figures 3.7 and 3.8 show. In particular, Fig-
ure 3.7 shows the behavior of the vertical load factor, while Figure 3.8 shows the
control command allocated to one of the elevators. The PDFG outperforms the DFG
in closed loop. In particular, note that after approximately 3 sec from the beginning
of the simulation (Figures 3.7 and 3.8), the quality of the solution obtained within
the available number of iterations using the DFG decreases causing the closed-loop
behavior to diverge from the optimal one (long-dashed black line), while the qual-
ity of the solution obtained using the PDFG (solid black line) remains higher (as
the comparison with the optimal one highlights), despite the limited number of it-
erations. The main reason is related to the improved numerical properties of the
subproblems. Furthermore, each subproblem has a smaller dimension, that is, less
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Figure 3.6: Computation time.

decision variables, compared to Problem (3.18).

These results confirm the benefits highlighted in [20] for regulation problems
and show the potential that the algorithm has in practical applications.

3.7 Conclusions

We presented a parallel MPC solver, which is very promising for applications with
strong real-time requirements, such as aerospace applications. The proposed algo-
rithm, compared to state-of-the-art first-order solvers shows better conditioning and
convergence to a suboptimal solution within a smaller number of iterations. Further-
more, we showed how to use the proposed solver on a practical example, i.e., the
longitudinal control of an Airbus passenger aircraft. The main purpose of this ex-
ample was to show the performance of the proposed solver on a realistic application
with hard real-time constraints. Our solver can ensure computation of the model pre-
dictive control problem solution within the sampling time of the system (compared
to second-order solvers) by using simple algebraic operations (making the controller
more suitable for embedded applications).
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A Proof of Lemma 3.3.1 in Section 3.3.3

Proof. The following inequality holds:

dt(µ̃t, ξ̃t) ≤ Vt(ξ̃t) + µ∗ T
t,εt∇

T
µtdt,εt(µt, ξt)

= Vt(ξ̃t) + λ∗ T
t,εt(Gtφ̃t + gt + εt1ct)+

+ w∗ T
t,εt(H̄1φ̃t −Hzzt − εzt12nz + εt12nz)+

+ v∗ T
t+1,εt(H̄2φ̃t −Hzzt+1 − εzt+112nz + εt12nz)

≤ Vt(ξ̃t) + λ∗ T
t,εt(Gtφ̃t + gt + εt1ct) + w∗ T

t,εt(−εzt + εt)12nz+
+ v∗ T

t+1,εt(−εzt+1 + εt)12nz , (3.39)

where the last inequality takes into account that φ̃t satisfies the consensus con-
straints (3.2) at equality. Consequently, the following holds:

‖µ∗t,εt‖ ≤ ‖[λ
∗ T
t,εt w

∗ T
t,εt v

∗ T
t+1,εt ]

T‖. (3.40)

Furthermore, recalling that λ∗t,εt ∈ R
ct
+ , w∗t,εt ∈ R

nz
+ , and v∗t+1,εt ∈ R

nz
+ , the follow-

ing holds:
‖[λ∗ T

t,εt w
∗ T
t,εt v

∗ T
t+1,εt ]

T‖≤ [λ∗ T
t,εt w

∗ T
t,εt v

∗ T
t+1,εt ]

T1pξt . (3.41)

Hence, if we compute an upper bound for the vector [λ∗ T
t,εt w

∗ T
t,εt v

∗ T
t+1,εt ]

T, we obtain
an upper bound for ‖µ∗t,εt‖. Thus, from the inequality (3.39), it follows that:

 λ∗t,εt
w∗t,εt
v∗t+1,εt

T −(Gtφ̃t + gt)− εt1ct
(εzt − εt)12nz

(εzt+1 − εt)12nz


︸                              ︷︷                              ︸

Γt

≤ Vt(ξ̃t)− d(µ̃t, ξ̃t). (3.42)

Notice that choosing εt < min
j=1,...,ct

{−(Gtφ̃t + gt)j}, εzt > εt, εzt+1 > εt, i.e.,

according to the assumptions of the lemma, the elements of Γt are all greater than
zero.

Thus, using (3.40) and (3.41) leads to

1
2 min
j=1,...,pξt

{[Γt]j}‖µ∗t,εt‖ ≤
[
λ∗t,εt w∗t,εt v∗t+1,εt

]
Γt. (3.43)

Consequently, the upper bound on the optimal Lagrange multiplier is given by:

‖µ∗t,εt‖ ≤ 2Vt(ξ̃t)− dt(µ̃t, x̃it)
min

j=1,...,pξt
{[Γt]j}

.

�
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B Proof of Lemma 3.5.1 in Section 3.5.1

Proof. In the following, we omit the dependence on εt to simplify the notation. The
proof is constructive. For t = 0, x0 ≡ x̄

(0)
0 . For t = 1, x̄1 = Ax0 + Bū0 ≡ x̄

(0)
1 ,

which is the 1-step-ahead state computed by the subproblem associated with worker
Π0. Hence, the mismatch between x̄1 and x̄(1)

1 is simply given by

‖x̄1 − x̄(1)
1 ‖ ≤ 2εz1 = α1.

For t=2, . . . , N , the following holds:∥∥∥x̄2 − x̄(2)
2

∥∥∥ =
∥∥∥x̄2 − x̄(1)

2 + x̄
(1)
2 − x̄

(2)
2

∥∥∥ ≤ ∥∥∥x̄2 − x̄(1)
2

∥∥∥+
∥∥∥x̄(1)

2 − x̄
(2)
2

∥∥∥
≤
∥∥∥Ax̄(0)

1 +Bū1 −Ax̄(1)
1 −Bū1

∥∥∥+ 2εz2 ≤ 2(‖A‖εz1 + εz2) = α2,

...∥∥∥x̄N − x̄(N)
N

∥∥∥ ≤ 2(‖AN−1‖εz1 + ‖AN−2‖εz2 + . . .+ εzN ) = αN ,

which proves the lemma. �

C Proof of Lemma 3.5.2 in Section 3.5.2

Proof. This lemma follows from Lemma 3.3.1 applied to the subproblems (3.28).
From inequality (3.42) formulated for subproblem (3.28), the following must hold λ∗t,εt

w∗t,εt
v∗t+1,εt

T −(Gtφ̃t + gt)− |C̄t|αt 1n−εt1ct
(εzt − εt)12n

(εzt+1 − εt)12n


︸                                               ︷︷                                               ︸

Γαt

≤ Vt(ξ̃t)− dt(µ̃t).

Hence, in order to satisfy the inequality above, we can select the relaxation parame-
ters εzt and the tightening parameters εt according to the assumption of the lemma
for t=0, . . . , N , i.e., the following must hold:

(i)
1
2 min
j=1,...,ct

{−(Gtφ̃t + gt)j}≥ max
j=1,...,ct

{
n∑
i=1
|[C̄t]j,i|

}
αt + εt

(ii) max
j=1,...,ct

{
n∑
i=1
|[C̄t]j,i|

}
αt + εt > 0

(iii) εzt , εzt+1 ≥ εt ≥ 0,

where φ̃t is a strictly feasible solution for the original t-th subproblem. Hence, there
exists Rt such that the upper bound on the optimal Lagrange multiplier µ∗t,γt is
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defined as follows:

‖µ∗t,γt‖ ≤
Vt(ξ̃t)− dt(µ̃t)

min
j=1,...,ct+2n

{[Γtαt]}
.

�

D Proof of Theorem 3.5.1 in Section 3.5.2

Proof. If the desired level of suboptimality of Algorithm 3.1 is chosen according
to (3.31) then, according to Theorem 3.3.1, there exists ξ̄t,γt := [φ̄T

t,γt z̄
T
t,γt z̄

T
t+1,γt ]

T

such that ‖[∇T
µtdt(ξ̄t,γt)]+‖ ≤ ηt < εt. Using similar arguments as in [78], the

following holds for t=0, . . . , N :[
Gξt ξ̄t,γt + gξt +

[
|C̄t|αt 1n +εt 1ct

εt 14n

]]
+
< εt 1ct+4n .

Hence, for all j = 1, . . . , ct, the following holds[
[C̄tx̄(t)

t,γt + D̄tū
(t)
t,γt + gt + |C̄t|αt 1n +εt 1ct ]j

]
+
≤ εt.

Consequently, exploiting the upper bound (3.26), for all j = 1, . . . , ct, we have:

[C̄tx̄t,γt + D̄tūt,γt + gt + |C̄t|αt 1n +εt 1ct ]j ≤ εt

which leads to C̄tx̄t,γt + D̄tūt,γt + gt < 0 t=0, . . . , N . �

E Proof of Theorem 3.5.2 in Section 3.5.3

Proof. The feasible region of the tightened subproblems is contained in that of the
original ones (as shown in Section 3.5.2). This implies that due to the tightening of
the original inequality constraints Vγ ≥ V∗.

Recall that the consolidated prediction satisfies the equality constraints (3.22b)
by construction. Hence, the following holds:

Vγ ≤
N∑
t=0

[
max
λ≥0

(min
xt,ut
Vt(xt, ut) + 〈λ,Ctxt +Dtut + gt〉) +

〈
λ∗γt , [Ict 0]γt

〉]

≤V∗ + 2
N∑
t=0
Rt
√
ct

(
εt + max

j=1,...,ct

{
n∑
i=1
|[C̄t]j,i|

}
αt

)
.

where [Ict 0] γt selects the first ct components of the vector γt. �
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F Proof of Theorem 3.5.3 in Section 3.5.3

Proof. Using a similar argument as in [103], under Assumption 3.4.3 on XN and
ensuring that x̄N,γN ∈ XN (thanks to a proper choice of the tightening parameters,
as Section 3.5.2 showed), we can show that:

N∑
t=0

Vt(φ̃+
t ) ≤

N∑
t=0

Vt(φ̄t,γt)−V0(φ0) ∀φ0 ∈ Φattr, (3.44)

where Φattr is the region of attraction. Hence, from (3.32) and (3.44), the following
holds:

N∑
t=0

Vt(φ̄+
t,γt)

(3.32)
≤ V∗(x+) +

N∑
t=0

ν(γ̄+
t ,R+

t ) (3.45a)

≤
N∑
t=0

Vt(φ̃+
t ) +

N∑
t=0

ν(γ̄+
t ,R+

t ) (3.45b)

(3.44)
≤

N∑
t=0

Vt(φ̄t,γt)−V0(φ0) +
N∑
t=0

ν(γ̄+
t ,R+

t ). (3.45c)

Asymptotic stability of our controller follows from V0(φ0) ≥
∑N
t=0 ν(γ̄+

t ,R+
t ),

which can be satisfied by a proper choice of εt and εzt . �
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4
SVR-AMA: an Asynchronous Alternating

Minimization Algorithm with Variance Reduction for
Model Predictive Control Applications

Abstract

This chapter focuses on the design of an asynchronous dual solver suitable for model
predictive control (MPC) applications. The proposed solver relies on a state-of-the-
art variance reduction (VR) scheme, previously used in the context of stochastic
proximal gradient methods (Prox-SVRG), and on the alternating minimization al-
gorithm (AMA). The resultant algorithm, a stochastic AMA with VR (SVR-AMA),
shows geometric convergence (in the expectation) to a suboptimal solution of the
MPC problem and, compared to other state-of-the-art dual asynchronous algorithms,
allows one to tune the probability of the asynchronous updates to improve the quality
of the estimates. Two novel accelerated versions of the Prox-SVRG (and by duality
of SVR-AMA) are also provided by relying on the similarity between the stochastic
proximal gradient with variance reduction and an inexact proximal-gradient scheme.
We apply the proposed algorithm to a specific class of splitting methods, that is, the
decomposition along the length of the prediction horizon. Numerical results on the
longitudinal control problem of an Airbus passenger aircraft show the benefits that
we can gain in terms of computation time when using our proposed solver with an
adaptive probability distribution.

67
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4.1 Introduction

Model Predictive Control (MPC) applications to systems with fast dynamics are still
relatively limited [57; 50]. Applications in fields such as automotive and aerospace
have to deal often with embedded legacy systems. These systems usually run on
certified (for safety purposes) hardware architectures with limited availability of, for
example, parallel computation units and only support a small set of (certified) math-
ematical functions. In particular, the availability of optimization toolboxes suitable
for MPC purposes on these platforms are limited (or nonexistent).

Growing attention has been recently dedicated to the design of simple first-order
solvers for MPC [106; 90; 121; 20; 96]. These solvers are relatively easy to certify
(in terms of level of suboptimality of the solution), use only simple algebraic op-
erations, and require little memory. In [121] and [96], operator-splitting methods,
such as the alternating direction method of multipliers (ADMM) [8] and the fast al-
ternating minimization algorithm (FAMA) [35], have been used to exploit the MPC
problem structure and speed-up the computation of the solution. These algorithms
most of the time require frequent exchanges of information at given synchronization
points. To reduce the bottleneck af the synchronization points, a solver that can offer
more flexibility in how the solutions are computed (for example, by allowing asyn-
chronous updates) would be attractive. In this work, we are interested in extending
the use of splitting methods, such as AMA, to this asynchronous framework.

Contribution. The contribution of the chapter is threefold. First, we propose
a novel algorithm, a stochastic alternating minimization algorithm with variance re-
duction (SVR-AMA), suitable for MPC applications with state and input constraints.
The proposed algorithm operates in the dual space and combines the advantages of
the variance reduction scheme proposed in [55; 136] for the proximal stochastic
gradient method with the alternating minimization algorithm [128]. The result is
that the solution of the MPC problem can be computed in an asynchronous fashion
(i.e., at each iteration, the algorithm updates a randomly selected subset of the dual
variables instead of the whole set of dual variables) and the resultant algorithm has
geometric convergence (in the expectation) to the optimal solution. Furthermore, the
proposed algorithm allows the use of a generic probability distribution for the asyn-
chronous updates. In addition, the probability distribution can be updated online
to improve the quality of the estimates, as our numerical results show. Finally, the
algorithm relies on simple algebraic operations, an appealing quality for embedded
MPC applications.

Second, we show how Prox-SVRG can be accelerated, by relying on its sim-
ilarities with the inexact proximal-gradient method in [116] and the existing con-
vergence results in [136]. In particular, first we show how the variance reduction
scheme in [136] can be viewed as an error in the calculation of the gradient that
converges (according to the analysis of [136]) geometrically in the expectation. By
exploiting this observation, we can rely on the analysis of [116] to accelerate the
variance-reduction loop (or inner loop) of Prox-SVRG. Second, we derive similar
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conclusions for the outer loop of Prox-SVRG by combining the convergence anal-
ysis derived in [136] for the inner loop with classical stability arguments based on
dynamical systems theory. Finally, we apply the proposed acceleration strategies for
Prox-SVRG in the dual framework to derive an inner-accelerated SVR-AMA (IA-
SVR-AMA) and an outer-accelerated SVR-AMA (OA-SVR-AMA) that can be used
to solve problems that come from MPC applications.

Third, we show how we can use SVR-AMA (the same analysis can be extended
to its accelerated versions) for a specific splitting technique, that is, the decomposi-
tion along the length of the prediction horizon (or time splitting [121]), and present
simulation results on a practical aerospace application, that is, the longitudinal con-
trol of an Airbus passenger aircraft [37]. The results show that the proposed algo-
rithms (i.e., SVR-AMA and its accelerated versions) are more robust when solving
ill-conditioned problems, outperforming synchronous methods in terms of computa-
tion time (measured in terms of number of iterations) and suboptimality level of the
solution.

Related Work. SVR-AMA derives from the application to the dual problem of
the proximal stochastic gradient method with variance reduction (Prox-SVRG) pro-
posed in [136] and has been proposed by the same authors of this manuscript in [24].
Compared to [24], we extend the analysis of the proposed algorithm with two dif-
ferent acceleration techniques, which is not trivial, provide additional proofs for the
convergence of SVR-AMA, and improve the numerical results. An accelerated ver-
sion of the inner-loop of Prox-SVRG has been proposed in [84]. Compared to [84],
we approach the analysis of the acceleration of the inner-loop from the perspec-
tive of an inexact proximal-gradient algorithm, which significantly simplifies the
analysis, and we provide guidelines to select the number of inner-loop iterations to
exploit both the benefits of the acceleration and variance reduction. Furthermore,
an accelerated version of the outer loop of an algorithm similar to Prox-SVRG (i.e.,
the stochastic dual coordinate ascent method or SDCA [119]) has been proposed
in [120]. The algorithm in [120] focused on regularized loss minimization. Com-
pared to our proposed outer-loop acceleration of Prox-SVRG, [120] requires the
minimization of a regularized version of the original cost function in the outer loop.
Furthermore, our analysis derives from the results of [136] leading to a simplified
proof and an algorithm that can be used to minimize the sum of two functions in
which one of the two terms does not have to be strongly convex, which is of impor-
tance in order to handle control problems.

The investigation of asynchronous dual algorithms for MPC is gaining more at-
tention recently. In [85], for example, an asynchronous dual algorithm is proposed.
Compared to [85], SVR-AMA allows the use of a generic (i.e., not necessarily uni-
form) probability distribution and, consequently, more flexibility in the tuning phase
of the algorithm.

Finally, the idea of the time splitting has been previously proposed in [121].
Their work relies on a synchronous ADMM algorithm. In this context, we reformu-
late the approach for AMA to exploit SVR-AMA.



70 CHAPTER 4. SVR-AMA FOR MPC APPLICATIONS

Outline. The chapter is structured as follows. Section 4.2 introduces the MPC
problem formulation. Section 4.3 summarizes AMA and Prox-SVRG. Section 4.4
details the two acceleration techniques (Section 4.4.1 describes the acceleration of
the inner loop and Section 4.4.2 describes the acceleration of the outer loop). Sec-
tion 4.5 introduces SVR-AMA and its accelerated versions. Then, Section 4.6 shows
how to reformulate the proposed MPC problem for SVR-AMA using the time split-
ting. Section 4.7 presents numerical results using an aerospace example. Section 4.8
concludes the chapter. Finally, Appendices A-C provide all the proofs contained in
the manuscript.

Notation. For u ∈ Rn, ‖u‖ =
√
〈u, u〉 is the Euclidean norm. Let C be a convex

set. Then, PrC(u) is the projection of u onto C. Let f : D → C be a function.
Then, f?(y) = supx(yTx − f(x)) and ∇f(x) are the conjugate function and the
gradient of f(x), respectively. Furthermore, IC(σ) is the indicator function on the
convex set C, which is zero if σ ∈ C and infinity otherwise. Let A ∈ Rn×m. Then,
eigmax(A) and eigmin(A) are the largest and the smallest (modulus) eigenvalues of
ATA. P ∈ Sn×n+ denotes that P ∈ Rn×n is positive definite. In addition, let x ∈ Rn
be a random variable, E[x] is its expected value. Finally, details on the notions of
strong convexity and Lipschitz continuity used in the chapter can be found in [7].

4.2 Problem Formulation

Consider the discrete linear time-invariant (LTI) system described by the following
equation:

x(t+ 1) = Ax(t) +Bu(t), t = 0, 1, 2, . . . (4.1)

The state x(t) ∈ Rn and the control input u(t) ∈ Rm are subject to the following
polyhedral constraints:

Cx(t) +Du(t) ≤ d, (4.2)

where C ∈ Rp×n and D ∈ Rp×m. Note that the definition of the constraints (4.2)
can include constraints on x(t) only or on u(t) only. We aim to regulate the state x(t)
to the origin using the control input u(t) while respecting the constraints (4.2). This
goal can be translated into the following model predictive control (MPC) problem:

min
x,u

1
2

N∑
t=0

(
xT
tQxt + uT

tRut
)

(4.3a)

s.t.: xt+1 = Axt +But t = 0, . . . , N − 1 (4.3b)

Cxt +Dut ≤ d t = 0, . . . , N (4.3c)

x0 = xinit, (4.3d)

where xt and ut represent the t-step-ahead state and control predictions, respectively,
N indicates the length of the prediction horizon, Q ∈ Sn×n+ , R ∈ Sm×m+ , and xinit

is the initial (measured) state vector. The MPC law implemented in closed loop
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Algorithm 4.1 AMA [128].
Given µ0, T , and τ < σf/ eigmax(Hy).
while k = 1, . . . , T do

1a. yk = argminy f(y) + 〈µk−1,−Hyy〉.
1b. zk = argminz g(z) + 〈µk−1,−Hzz〉+ τ

2‖d−Hyyk −Hzz‖2.
2. µk = µk−1 + τ(d−Hyyk −Hzzk)

end while

is given by the first element of the optimal control sequence obtained by solving
Problem (4.3), that is, uMPC = u∗0.

Our goal is to solve Problem (4.3) in an embedded environment. In particular,
we assume that explicit MPC [4] cannot be used due to the problem size and that
the computational resources are limited, that is, parallel architectures are not avail-
able, memory resources are limited, and only simple algebraic operations are sup-
ported. With this framework in mind, in the following, we focus on the design of a
simple solver for Problem (4.3) that relies on operator-splitting methods (which, for
example, usually rely on parallel hardware architectures) and asynchronicity (which
allows one to perform updates of a randomly selected subset of variables to reduce
the computational effort). The next section introduces the techniques we rely on
to solve Problem (4.3), i.e., AMA proposed in [128] and the proximal stochastic
gradient descent method with variance reduction (Prox-SVRG) proposed in [136].

4.3 Preliminaries

4.3.1 Alternating Minimization Algorithm

Consider the following problem:

minimize f(y) + g(z) (4.4a)

subject to Hyy +Hzz = d, (4.4b)

where f(y) :=
∑N
t=0 f

(t)(y) under the following assumptions:

Assumption 4.3.1. f (t) is a strongly convex function and σf(t) denotes its convexity
parameter (t = 0, . . . , N ).

Assumption 4.3.2. f (t) has a Lipschitz continuous gradient with modulus Lf(t)

(t = 0, . . . , N ).

Assumption 4.3.3. g is a convex function not necessarily smooth.

Assumption 4.3.4. Hy :=
[
H

(0)T

y . . . H
(N)T

y

]T
. Each H(t)

y indicates the constraint

matrix associated with f (t)(y).
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Furthermore, recall the following properties of the conjugate function f?:

Lemma 4.3.1 (Thm. 4.2.1 [48]). If f is strongly convex with convexity parameter
σf , then f? has a Lipschitz continuous gradient with constant L(∇f?) = σ−1

f .

Lemma 4.3.2 (Thm. 4.2.2 [48]). If f is convex and has a Lipschitz continuous
gradient with modulus Lf , then f? is strongly convex with convexity parameter L−1

f .

A state-of-the-art algorithm to solve Problem (4.4) is AMA [128]. AMA operates
as a proximal gradient algorithm (such as ISTA [3]) on the dual of Problem (4.4).
Specifically, given the dual of Problem (4.4) (under the assumptions above), de-
scribed as follows:

maximize
µ∈Rnµ

D(µ) {:= −F (µ)−G(µ)} , (4.5)

whereF (µ) :=
∑N
t=0 Ft(µ), Ft(µ) :=f (t)?

(
H

(t)T

y µ
)

for t = 0, . . . , N , andG(µ) :=
g?(HT

zµ)− dTµ, the following holds:

Lemma 4.3.3. If Assumptions 4.3.1-4.3.3 are satisfied, F (µ) is strongly convex with
Lipschitz continuous gradient characterized by Lipschitz constant L? = L(∇F ) :=
eigmax(Hy)σ−1

f . Furthermore G(µ) is convex with convexity parameter σG.

Proof. We can use Lemmas 4.3.1 and 4.3.2 to derive the properties of F (µ). Con-
vexity ofG(µ) follows from the properties of the conjugate of a convex function and
from the fact that dTµ is a linear function. �

Remark 4.3.1. If g(z) is the indicator function on the closed convex set C, that
is, g(z) = IC(z), then G(µ) is a support function, that is, G(µ) is a convex set.
Furthermore, note that σG is only required for theoretical purposes and its value is
not needed to tune the parameters of Algorithm 4.5.

AMA updates the dual variables µ ∈ Rpµ as described in Algorithm 4.1. In gen-
eral, AMA uses only simple algebraic operations (if y and z are unconstrained steps
1a and 1b can be performed efficiently) and does not require advanced hardware

architectures. Nevertheless, the algorithm requires frequent exchange of informa-
tion at given synchronization points (e.g., step 1b requires y computed at step 1a ,
which can lead to bottlenecks in the computation of the problem solution). Hence, it
would be better to have some flexibility in the update strategy. Motivated by this ob-
servation, the following section introduces Prox-SVRG used to derive our proposed
asynchronous AMA, as described in Section 4.5.

4.3.2 Prox-SVRG: Stochastic Proximal Gradient Method with Vari-
ance Reduction

Consider the following primal problem:

minimize
y∈Rny

P (y) {:= F (y) +G(y)} , (4.6)
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Algorithm 4.2 Prox-SVRG [136].
Given ỹ0, N , s̄, IN := {0, . . . , N}, η, and T .
while s ≤ s̄ do

0a. Set ỹ = ỹs−1.
0b. Set β̃ = ∇F (ỹ).
0c. Set y0 = ỹ.
0d. Set Π := {π0, . . . , πN}.
for k = 1, . . . , T do

1. Pick i ∈ IN randomly according to Π.
2. βk = β̃ + ∇Fi(yk−1)−∇Fi(ỹ)

πi
3. yk = proxηG(yk−1 − ηβk)

end for
4. ỹs = (1/T )

∑T
k=1 yk.

end while

where F (y) :=
∑N
t=0 Ft(y) and G(y) satisfy the following assumptions:

Assumption 4.3.5. F (y) is a strongly convex function with convexity parameter
σF and Lipschitz continuous gradient characterized by a Lipschitz constant L ≤∑N
t=0 Lt, where Lt are the Lipschitz constants of each Ft(y).

Assumption 4.3.6. G(y) is a convex function.

Furthermore, define the proximal operator as follows:

proxηG(y) := argmin
y∈Rny

{
1
2 ‖y − x‖

2 + ηG(y)
}
. (4.7)

The main idea behind Prox-SVRG [136] is to eliminate the dependency of the
number of iterations (typical of stochastic gradient methods) in the definition of the
step size and to reduce the burden in the computation of∇F (y) (typical of classical
gradient methods). As pointed out in [136], proximal stochastic gradient methods
(such as [138; 51]) suffer from sublinear convergence (to a suboptimal solution of
Problem (4.6)) given that the step size decreases at each iteration of the algorithm,
but behave well when N is large. On the other hand, classical proximal gradient
methods require at each iteration of the algorithm to compute the full gradient of
F (y), which can be an involved operation if N is large, but the step size is fixed and
independent of the number of iterations (leading to better theoretical convergence
properties). Hence, Prox-SVRG aims to exploit the benefits of the two techniques as
explained below and described in Algorithm 4.2.

Prox-SVRG uses a multistage strategy to gradually reduce the variance in the
estimation of the full gradient ∇F (y) (without computing the actual full gradient
at each iteration). In particular, the full gradient of F (y) is updated only every
T iterations to reduce the computational effort compared to the classical gradient
methods, and the proximal step (step 3 ) uses a modified direction βk (step 2 ) that



74 CHAPTER 4. SVR-AMA FOR MPC APPLICATIONS

leads to a smaller variance E‖βk−∇F (yk−1)‖2 compared to the one obtained using
classical stochastic gradient methods E‖∇Fi(yk−1)−∇F (yk−1)‖2 (i ∈ IN ), where
∇Fi(yk−1) is used as update direction (refer to [136] for more details). Furthermore,
the random sampling (step 1 ) is performed on a probability distribution Π :=
{π0, . . . , πN} that does not necessarily have to be uniform, i.e., the algorithm allows
more flexibility in the tuning phase by supporting other distributions as well, such as
Poisson distributions, normal distributions, etc. Algorithm 4.2 achieves geometric
convergence in the expectation, as stated in the following theorem:

Theorem 4.3.1 (Thm. 3.1 in [136]). Suppose Assumptions 4.3.5 and 4.3.6 hold. Let
y∗ = argminy P (y) and LΠ := maxt Lt/πt. Assume that 0 < η < 1/(4LΠ) and
T is sufficiently large so that:

ρ := 1
ησFT (1− 4ηLΠ) + 4ηLΠ(T + 1)

T (1− 4ηLΠ) < 1. (4.8)

Then, for s̄ > 1, Algorithm 4.2 has geometric convergence in expectation:

EP (ỹs̄)− P (y∗) ≤ ρs̄ [P (ỹ0)− P (y∗)] . (4.9)

Remark 4.3.2. The dependency on the probability πt in the choice of the step size
η can be problematic when πt → 0 or when N → ∞ (e.g., the constrained infinite
horizon LQR). Nevertheless, this dependency can be removed in the special case in
which F (y) =

∑N
t=1 Ft(yt), i.e., when the cost is separable in yt. In this scenario,

we can select 0 < η < 1/(4 maxt Lt). From the MPC perspective, this is very
often the case when the dual formulation is used. Hence, this observation, when
the algorithm is used in the dual framework, can be very beneficial to improve the
choice of the step size and the quality of the MPC solution.

4.4 Accelerated Prox-SVRG

In the following we propose two different acceleration strategies for Algorithm 4.2.
In particular, Section 4.4.1 describes a strategy to accelerate the inner loop of Prox-
SVRG, while Section 4.4.2 describes a strategy to accelerate the outer loop of Prox-
SVRG. We rely on the following observation in order to show that we can accelerate
Prox-SVRG.

4.4.1 Analysis of Algorithm 4.3

Algorithm 4.2 can be interpreted as a proximal gradient method (such as ISTA [3]) in
which the gradient of F is computed inexactly, i.e., by using a modified direction βk
obtained by using the variance reduction strategy. In particular, Prox-SVRG reduces
to the inexact proximal-gradient proposed by [116], in which the full gradient of F
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Algorithm 4.3 Inner-loop acceleration of Prox-SVRG.
Given ỹ0, N , s̄, IN := {0, . . . , N} η, γ := σF

L , and T .
while s ≤ s̄ do

0a. Set ỹ = ỹs−1.
0b. Set β̃ = ∇F (ỹ).
0c. Set y0 = ỹ.
0d. Set Π := {π0, . . . , πN}.
for k = 1, . . . , T + 1 do

1. Pick i ∈ IN randomly according to Π.
2. βk = β̃ + ∇Fi(ŷk−1)−∇Fi(ỹ)

πi
3. yk = proxηG(ŷk−1 − ηβk)
4. ŷk = yk + 1−√γ

1+√γ (yk − yk−1).
end for
5. ỹs = (1/T )

∑T
k=1 yk.

end while

is computed inexactly (step 3 of Algorithm 4.2):

yk = proxηG (yk−1 − ηβk) (4.10a)

= proxηG (yk−1 − η (∇F (yk−1) + ek)) . (4.10b)

The error in the gradient calculation is defined as follows:

ek = βk −∇F (yk−1). (4.11)

Hence, Algorithm 4.2 is a particular case of the inexact proximal gradient method
(I-PGM) proposed in [116]. As a consequence, we can derive a framework similar
to the one proposed in [116] to show the acceleration of Prox-SVRG. In this respect,
we proceed as follows:

1. The first step is to use the convergence results in [116, Proposition 4] to derive
conclusions on the convergence of the inner loop of Algorithm 4.3.

2. Second, we check that the expectation on the gradient calculation error, E‖ek‖2
is bounded and converges linearly to zero, in order to satisfy the assumptions
in [116].

3. Third, we show how the acceleration of the inner loop impacts the outer loop
of Algorithm 4.3.

Analysis of the inner loop of Algorithm 4.3 In the following, we reformulate Propo-
sition 4 in [116] for the problem we take into account, that is, we do not consider the
error in the calculation of the proximal operator and we consider that we deal with
stochastic variables in the inner loop of Algorithm 4.3.
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Proposition 4.4.1. Under the same assumptions of Theorem 4.3.1, for k ≥ 0 and yk
computed according to Algorithm 4.3, the following holds:

EP (yk)− P (y∗) ≤

(1− γ)k
[√

2(P (ỹ)− P (y∗)) + Γk(ỹ)
√

2
σF

]2

,
(4.12)

with

Γk(ỹ) :=
k∑
i=1
E‖ei−1(ỹ)‖(1− √γ)−i/2. (4.13)

Proof. The proof can be found in Appendix A.1. �

Bound on the variance in Algorithm 4.3 The error in the gradient calculations that
we take into account by using Prox-SVRG is a stochastic error and it is bounded (in
the expectation) according to Corollary 3.5 in [136]. We can compute the bound on
the error when βk is computed according to step 2 in Algorithm 4.3.

Corollary 4.4.1. Consider βk defined as follows (k = 0, . . . , T ):

βk = ∇F (ỹ) + ∇Fik(ŷk−1)−∇Fik (ỹ)
πik

. (4.14)

In addition, let LΠ = maxi=1,...,N Li/(πi).1 Conditioned on yk−1, we have Eβk =
∇F (ŷk−1) and

E‖ek−1(ỹs−1)‖2≤4LΠ[P (ŷk−1)+P (ỹs−1)− 2P (y∗)]. (4.15)

Proof. The proof follows from the one of Corollary 3.5 in [136] by using the update
rule for βk in step 2 of Algorithm 4.3. �

Remark 4.4.1. Accelerating the inner loop does not affect the upper bound on the er-
ror, as can be easily shown by looking at the proof of Corollary 3.5 in [136]. The up-
per bound above suggests that when ỹs → y∗ and ŷk−1 := (1−α)yk−1 +αyk−2 →
y∗ (α = (1 − √γ)/(1 + √γ) < 1) the expected error in the gradient calculation
is zero, that is, the error goes to zero at the same rate of the estimates (i.e., ŷk and
ỹs) of the optimal solution of Problem (4.6). As shown in Theorem 4.3.1, in which
the convergence of Prox-SVRG is discussed, ỹs → y∗ and consequently E‖ek‖ is
guaranteed by design to converge to zero. For E‖ek‖2 to decrease to zero linearly
(in order to exploit the upper bound provided in Proposition 4.4.1), the following
condition must be verified (we omit the dependency on ỹs−1 when it is clear from
the context):

E‖ek‖2 ≤
1
k
E‖ek−1‖2. (4.16)

1i in this case is not the iteration counter, but indicates that Li is associated with the function Fi,
i = 1, . . . , N .
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The condition above can be checked on the error upper bound (4.15). If we formulate
this condition, we notice immediately that we can derive guidelines to select the
batch size T , that is, the number of inner loop iterations. In particular, the following
holds:

P (yk−1) ≤ 1− α− kα
k(1− α) P (yk−2) + α

k(1− α)P (yk−3)+

2
(1− α)P (y∗) + 1

k(1− α)P (ỹ).

The right hand side of the equation above is the sum of positive terms if and only if
the coefficient of P (yk−2) is greater than or equal to zero. Hence, we have to limit
the number of inner loop iterations. In particular, we can derive the following upper
bound

T ≤
⌈ 2√γ

1− √γ

⌉
, (4.17)

which means that if the problem is ill-conditioned the acceleration is not recom-
mended.

Analysis of the outer loop of Algorithm 4.3 By exploiting Proposition 4.4.1 we
are able to immediately derive an upper bound for the cost computed using Algo-
rithm 4.3 that depends on Γk, as described in the theorem below.

Theorem 4.4.1. Under the same assumptions as Theorem 4.3.1, let y∗ be the optimal
solution of Problem (4.6), γ := (σF /LΠ), and 0 < η ≤ (1/LΠ). For

⌊
2
γ (1− γ)

⌋
≤

T ≤
⌈

2√γ
1−√γ

⌉
and s̄ > 0 the following holds:

EP (ỹs̄)− P (y∗) ≤ ρs̄IA,I-PGM [P (ỹ0)− P (y∗)] +

2
TσF

s̄−1∑
s=0

ρsIA,I-PGMΓ(ỹs),
(4.18)

where ρIA,I-PGM and Γ(ỹs) are defined as follows:

ρIA,I-PGM := 2
Tγ

[
(1− γ)− (1− γ)T+1] < 1 (4.19a)

Γ(ỹs) :=
T∑
k=1

E‖ek−1(ỹs−1)‖2

(1− √γ)k . (4.19b)

Proof. The proof can be found in Appendix A.2. �

Remark 4.4.2. Note that T > 2
γ (1 − γ) is required in order to have ρIA,I-PGM < 1.

If we analyze the upper and lower bound on T in the statement of Theorem 4.4.1,
Algorithm 4.3 can be used only when the conditioning of Problem (4.6) is such that
the following holds:

1 < γ + √γ, (4.20)

which only holds if 1 > γ > 0.4, that is, if the problem is well conditioned.
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Algorithm 4.4 Outer-loop acceleration of Prox-SVRG.
Given ỹ0, N , s̄, IN := {0, . . . , N} η, and T .
while s ≤ s̄ do

0a. Set ỹ = ŷs−1.
0b. Set β̃ = ∇F (ỹ).
0c. Set y0 = ỹ.
0d. Set Π := {π0, . . . , πN}.
for k = 1, . . . , T do

1. Pick i ∈ IN randomly according to Π.
2. βk = β̃ + ∇Fi(yk−1)−∇Fi(ỹ)

πi
3. yk = proxηG(yk−1 − ηβk)

end for
4. ỹs = (1/T )

∑T
k=1 yk.

5. ŷs = ỹs + 1−√γ
1+√γ (ỹs − ỹs−1).

end while

4.4.2 Analysis of Algorithm 4.4

In the following, we propose an alternative acceleration strategy of Prox-SVRG.
Compared to the results provided in the previous subsection, this section focuses
on the acceleration of the outer loop of Prox-SVRG. In this respect, we proceed by
analyzing Algorithm 4.4 as follows:

1. First, we check that the acceleration of the outer loop does not affect the bound
on the error in the gradient calculations of the inner loop.

2. Second, we provide a proof of convergence of Algorithm 4.4. This proof
mainly relies on the convergence analysis in [136].

Bound on the variance in Algorithm 4.4 In the following, we show that the accel-
eration of the outer loop does not affect the variance reduction strategy in the inner
loop and that the results of Corollary 3.5 in [136] hold to prove the convergence of
Algorithm 4.4. In particular, when βk is computed according to step 2 in Algo-
rithm 4.4 the following holds.

Corollary 4.4.2. Consider βk defined as follows:

βk = ∇F (ỹ) + ∇Fik(yk−1)−∇Fik (ỹ)
πik

. (4.21)

In addition, letLΠ := maxi Li/(Nπi), βs :=
∑T
k=1 βk, and ys−1,avg := 1

T

∑T
k=1 yk−1.

Conditioned on yk−1, the followings hold:

Eβs := ∇F (yavg)
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and

E‖es‖2 ≤
2LΠ

T
[P (ys−1,avg) + P (ỹ)− 2P (y∗)] . (4.22)

Proof. The proof can be found in Appendix B.1. �

Accelerating the outer loop does not affect the upper bound on the error ex-
pectation provided by [136]. Furthermore, notice that (4.22) provides guidelines
to select the number of inner loop iterations. In particular, if the following holds
the error in the gradient calculations decreases linearly with respect to ỹ → y∗ and
ys−1,avg → y∗:

T > d2LΠe. (4.23)

Convergence of Algorithm 4.4 We can now show the convergence of Algorithm 4.4
using the following theorem.

Theorem 4.4.2. Under the same assumptions of Theorem 4.3.1, for s ≥ 0, the
following holds for ỹs computed according to Algorithm 4.4:

EP (ỹs)− P (y∗) ≤ (1− √γ)s(P (ỹ0)− P (y∗)). (4.24)

Proof. The proof can be found in Appendix B.2. �

Remark 4.4.3. The outer loop acceleration converges geometrically at a rate that
depends on γ := µ/L. If (1 − √γ) < ρ, we can expect to converge to the optimal
solution at a faster rate, compared to Algorithm 4.2. If that does not hold, due to the
problem conditioning, the acceleration of the outer loop is not beneficial. In general,
note that ρ depends on the number of inner-loop iterations T and ρ << 1 only
if T is large. Hence, in general, we expect that the condition for the acceleration
(1 − √γ) < ρ holds in many applications to keep the overall computation time of
the algorithm bounded (i.e., we expect to keep T small to reduce the computation
time of the algorithm).

4.5 Stochastic AMA with Variance Reduction and Its Ac-
celerated Versions

Our goal is to solve Problem (4.4) in an asynchronous fashion, that is, by allowing
updates of a randomly selected subset of the dual variables at each iteration of the
solver. Hence, given that Algorithm 4.2 cannot be directly applied to Problem (4.4),
we proceed as explained in Section 4.3.1, that is, we apply Algorithm 4.2 to the dual
of Problem (4.4). The resultanting algorithm (SVR-AMA) is described by Algo-
rithm 4.5. In order to derive convergence results for Algorithm 4.5, we consider the
dual formulation of [136, Lemma 3.6].
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Lemma 4.5.1. Let D(µ) := −F (µ) − G(µ) defined in (4.5), where ∇F (µ) is
Lipschitz continuous with parameter L? := σ−1

f (according to Lemma 4.3.1), and
F (µ) and G(µ) have convexity parameters σF := L−1

f and σG, respectively. For
any µ ∈ dom(G) and β ∈ Rnµ , define:

µ+ = proxηG(µ) (µ− ηβ) (4.25a)

h = 1
η

(µ− µ+) (4.25b)

∆ = β −∇F (µ), (4.25c)

where η ≤ σf . Then, for any µ̃ ∈ Rnµ , we have

D(µ+)−D(µ̃) ≥hT(µ̃− µ) + η

2‖h‖
2+

σF
2 ‖µ̃− µ‖

2 + σG
2 ‖µ̃− µ

+‖2+

∆T(µ+ − µ̃).

(4.26)

Proof. The definition of µ+ in (4.25a) follows from [35, Theorem 4] (in particular
using [35, Theorem 4] it is shown that steps 2 and 4 in Algorithm 4.5 are equivalent
to proxηG (µ− ηβ), which is equivalent to the proximal step 3 of Algorithm 4.2).
Then, (4.26) follows from the proof of Lemma 3.6 in [136] by taking into account
the definition of D(µ). �

We can now establish the convergence of Algorithm 4.5.

Theorem 4.5.1. Suppose Assumptions 4.3.1-4.3.4 hold. Let µ∗ = argmaxµ D(µ),
where D(µ) is the dual cost defined in (4.5). Let L?Π :=maxt=0,...,Neigmax(Hy)
(πtσf )−1= maxt=0,...,N π

−1
t L?, πt ∈ Π. Assume that 0 < η < 1/(4L?Π) and

T ≥ 1 such that:

ρ? := Lf
ηT (1− 4ηL?Π) + 4ηL?Π(T + 1)

T (1− 4ηL?Π) < 1. (4.27)

Then, for s̄ > 0, Algorithm 4.5 has geometric convergence in expectation:

D(µ∗)− ED(µ̃s̄) ≤ ρ?s̄ [D(µ∗)−D(µ̃0)] . (4.28)

Proof. The proof can be found in Appendix C.1. �

Corollary 4.5.1 (Corollary 3.5 in [136] on the dual). Consider βk defined in step 3
of Algorithm 4.5. Conditioned on µk−1, the following holds:

Eβk = ∇F (µk−1), (4.29)

and
E‖βk−∇F (µk−1)‖2≤4L?Π[P (yk)+P (ỹ)−2P (y∗)]. (4.30)
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Algorithm 4.5 SVR-AMA.
Given µ̃0, N , s̄, IN := {0, . . . , N}, η, and T .
while s ≤ s̄ do

0a. Set µ̃ = µ̃s−1, ỹ = ỹs−1.
0b. Set β̃ = ∇F (µ̃).
0c. Set µ0 = µ̃.
0d. Set Π := {π(0), . . . , π(N)}.
for k = 1, . . . , T do

1. Pick i ∈ IN randomly according to Π.
2a. yk = argminy f (i)(y) + 〈µk−1,−H(i)

y y〉.
2b. zk = argminz g(z) + 〈µk−1,−Hzz〉+ η

2 ‖d−Hyyk −Hzz‖
2.

3. βk = β̃ + ∇Fi(µk−1)−∇Fi(µ̃)
πi

4. µk = µk−1 − η(βk +Hzzk − d)
end for
5. µ̃s = 1

T

∑T

k=1 µk, ỹs = 1
T

∑T

k=1 yk.
end while

Proof. The proof can be found in Appendix C.2. �

Remark 4.5.1. According to Corollary 4.5.1, by exploiting the definition of∇F (µ),
we can relate the upper bound on the variance in the gradient calculations in the dual
framework with the primal cost. This observation is useful to preserve (in the dual
framework) the results obtained in the primal framework in Sections 4.4.1 and 4.4.2
to select the inner- and outer-loop iterations for E‖βk −∇F (µk−1)‖2 → 0.

Sections 4.4.1 and 4.4.2 showed how to accelerate Prox-SVRG, while Section 4.5
showed how Algorithm 4.5 (i.e., SVR-AMA) is equivalent to Algorithm 4.2 (i.e.,
Prox-SVRG [136]) applied to the dual of Problem (4.6). This observation allows
us to formulate the accelerated versions of SVR-AMA, knowing that their conver-
gence can be derived from Theorem 4.4.1 and Theorem 4.4.2 applied to the dual.
In this respect, Algorithm 4.6 describes the inner accelerated version of SVR-AMA
(or IA-SVR-AMA), while Algorithm 4.7 describes the outer accelerated version of
SVR-AMA (or OA-SVR-AMA).

4.6 MPC formulation for SVR-AMA

Our aim is to solve the MPC Problem (4.3) presented in Section 4.2 using SVR-
AMA and its accelerated versions. Hence, we must show that the MPC Prob-
lem (4.3) is a particular case of Problem (4.4).

First, we decompose Problem (4.3) along the length of the prediction horizon N
into N + 1 smaller subproblems, according to the time-splitting strategy proposed
in [121]. This results is achieved thanks to the introduction of N consensus vari-
ables zt ∈ Rn (t = 1, . . . , N ) used to break up the dynamic coupling (4.3b). This
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Algorithm 4.6 Inner-loop accelerated SVR-AMA.
Given µ̃0, N , s̄, IN := {0, . . . , N} η, γ, and T .
while s ≤ s̄ do

0a. Set µ̃ = µ̃s−1, ỹ = ỹs−1.
0b. Set β̃ = ∇F (µ̃).
0c. Set µ̂0 = µ0 = µ̃.
0d. Set Π := {π0, . . . , πN}.
for k = 1, . . . , T + 1 do

1. Pick i ∈ IN randomly according to Π.
2a. yk = argminy f (i)(y) + 〈µ̂k−1,−H(i)

y y〉.
2b. zk = argminz g(z) + 〈µ̂k−1,−Hzz〉+ η

2‖d−Hyyk −Hzz‖2.
3. βk = β̃ + ∇Fi(µ̂k−1)−∇Fi(µ̃)

πi
4. µk = µ̂k−1 − η(βk +Hzzk − d)
5. µ̂k = µk + 1−√γ

1+√γ (µk − µk−1).
end for
6. µ̃s = (1/T )

∑T
k=1 µk, ỹs = (1/T )

∑T
k=1 yk.

end while

decomposition allows to reformulate Problem (4.3) as follows:

min
x,u

1
2

N∑
t=0

(
x

(t)T

t Qx
(t)
t + u

(t)T

t Ru
(t)
t

)
(4.31a)

s.t.: zt+1 = Ax
(t)
t +Bu

(t)
t t = 0, . . . , N − 1 (4.31b)

zt+1 = x
(t+1)
t+1 t = 0, . . . , N − 1 (4.31c)

Cx
(t)
t +Du

(t)
t ≤ d t = 0, . . . , N (4.31d)

x
(0)
0 = xinit, (4.31e)

where the original dynamic coupling (4.3b) has been replaced by the consensus con-
straints (4.31b) and (4.31c). Note that we introduced the superscript t to empha-
size that xt and ut are local variables of the subproblems obtained after the time
splitting [121]. Finally, if we introduce N + 1 additional slack variables σt ∈ Rp
to remove the inequality constraints (4.31d) and define C := {σt ∈ Rp |σt ≥ 0},
Problem (4.31) can be written as the sum of the following subproblems:

min
yt

ft (yt) +
p∑
i=1
IC(σti) (4.32a)

s.t.: wt : zt = H1yt, (4.32b)

vt+1 : zt+1 = H2yt, (4.32c)

λt : σt = d−Gyt, (4.32d)

where we define yT
t := [x(t)T

t u
(t)T

t ], ft(yt) := yT
tQyt, Q := diag {Q,R}, G :=
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Algorithm 4.7 Outer-loop accelerated SVR-AMA.
Given µ̂0, ỹ0, N , s̄, IN := {0, . . . , N} η, γ and T .
while s ≤ s̄ do

0a. Set µ̃ = µ̂s−1, ỹ = ỹs−1.
0b. Set β̃ = ∇F (µ̃).
0c. Set µ0 = µ̃.
0d. Set Π := {π0, . . . , πN}.
for k = 1, . . . , T do

1. Pick i ∈ IN randomly according to Π.
2a. yk = argminy f (i)(y) + 〈µk−1,−H(i)

y y〉.
2b. zk = argminz g(z) + 〈µk−1,−Hzz〉+ η

2‖d−Hyyk −Hzz‖2.
3. βk = β̃ + ∇Fi(µk−1)−∇Fi(µ̃)

πi

4. µk = µk−1 − η(βk +Hzzk − d)
end for
5. µ̃s = (1/T )

∑T
k=1 µk, ỹs = (1/T )

∑T
k=1 yk.

6. µ̂s = µ̃s + 1−√γ
1+√γ (µ̃s − µ̃s−1).

end while

[C D], H1 := [In 0n×m], H2 := [A B]. Furthermore, for each equality constraint
in Problem (4.32), the corresponding Lagrange multipliers have been highlighted.

If we define the following:

yT = [yT
0 . . . y

T
N ],

f(y) = yTQy =
N∑
t=0

ft(yt),

zT = [zT
1 . . . z

T
N σT

0 . . . σ
T
N ],

Q = diag{Q . . .Q},

g(z) =
N∑
t=0
IC(σt),

hT
y0

= [HT
2 | −GT],

hT
y = [HT

1 HT
2 | −GT],

hT
yN = [HT

1 | −GT],

hT
d0

= hT
dN = [0n | − dT],

hT
d = [0n 0n | − dT],
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Hy :=


hy0 0 . . . . . . 0
0 hy 0
...

. . .
...

0 0 . . . hy 0
0 0 . . . 0 hyN

 , d :=


hd0

hd
...

hd
hdN

 ,

Hz :=



In 0 . . . 0 0 0 . . . 0
0 0 . . . 0 Ip 0 . . . 0
In 0 . . . 0 0 0 . . . 0
0 In . . . 0 0 0 . . . 0
0 0 . . . 0 0 Ip . . . 0
...

. . .
...

. . . 0
0 0 . . . In 0 0 . . . 0
0 0 . . . 0 0 0 . . . Ip


,

Problem (4.3) can be rewritten as follows:

minimize f(y) + g(z) (4.33a)

Hyy +Hzz = d, (4.33b)

According to the definition ofQ, f(y) is strongly convex, has a convexity parameter
σf := eigmin(Q) = eigmin(blockdiag{Q,R}) = σft , and a Lipschitz constant
Lf := eigmax(Q). In addition, g(z) is a convex function.

For the proposed splitting, Assumptions 4.3.2 and 4.3.3 are satisfied. Concerning
Assumption 4.3.1, note that L(∇F ) := eigmax(Hy)σ−1

f =maxt(eigmax(Hyt)σ−1
ft

)
= maxt(Lt(∇Ft)) = Lt(∇Ft) ≤

∑N
t=0 Lt(∇Ft), where the last equality follows

from the fact that we deal with LTI systems (L0 = L1 = . . . = LN ). Hence, on
the dual, Assumption 4.3.5 still holds and, consequently, we can use SVR-AMA to
solve Problem (4.3).

The associated SVR-AMA algorithm to solve Problem (4.33) is detailed in Algo-
rithm 4.82. In particular, defining µT := [vT

1 λ
T
0 | wT

1 . . . wT
N−1 v

T
N λT

N−1 | wT
N λT

N ],
according to the partitioning of Hy and Hz, F (µ) = f?(HT

yµ). Furthermore,
∇F (w) is the gradient of F at w, ∇F (v) is the gradient of F at v, and ∇F (λ)
is the gradient of F at λ. Note that the calculation of the gradient step for this partic-
ular splitting is very simple and requires the evaluation of the product Hyy, which
can be performed efficiently by exploiting the structure of the matrix Hy. Finally,
note that, given the structure of F (µ) the probability πt does not affect the choice of
the step size η, according to Remark 4.3.2.

The following complexity upper bound on the primal sequence can be defined:

Theorem 4.6.1. Consider Problem (4.33). Let {yk} and {µk} be the sequence of
primal and dual variables, respectively, generated by Algorithm 4.8. If Assump-

2The accelerated versions are omitted here due to space limitations, but can be easily derived from
Algorithms 4.6 and 4.7, respectively.



4.6. MPC FORMULATION FOR SVR-AMA 85

C
ha

pt
er

4

Algorithm 4.8 SVR-AMA for Problem (4.33).
Given µ̃0, N , s̄, IN := {0, . . . , N}, L? := (σf )−1 eigmax(Hy), η, and T .
while s ≤ s̄ do

0a. Set w̃ = w̃s−1, ṽ = ṽs−1,
λ̃ = λ̃

s−1
, and ỹ = ỹs−1.

0b. Set β̃w = ∇F (w̃), β̃v = ∇F (ṽ), and
β̃λ = ∇F (λ̃).

0c. Set w0 = w̃, v0 = ṽ, and λ0 = λ̃.
0d. Set Π := {π0, . . . , πN} on IN
for k = 1, . . . , T do

1. Pick i ∈ IN randomly according to Π.
2a. yki = argminy fi(yi) + 〈wi, H1yi〉+

〈vi+1, H2yi〉+ 〈λi,−Gyi〉.
2.b σki = PrC(Gyki − d− ηλi).

2c. zki = 1
2
[
H1y

k
i +H2yi−1 − η(wi + vi)

]
.

3a. βkwi = β̃wi + (yki −ỹi)
THT

1
πi

.

3b. βkvi = β̃vi + (yi−1−ỹi−1)THT
2

πi
.

3c. βkλi = β̃λi −
(yki −ỹi)

TGT

πi
.

4a. wki = wi + η
(
zki − βkwi

)
.

4b. vki = vi + η
(
zki − βkvi

)
.

4c. λki = λi + η
(
βkλi + d− σki

)
.

end for
5. w̃s = 1

T

∑T
k=1 wk, ṽs = 1

T

∑T
k=1 vk,

λ̃
s = 1

T

∑T
k=1 λ

k, and ỹs = 1
T

∑T
k=1 y

k .
end while

tions 4.3.1-4.3.3 are satisfied, given µ̃0 ∈ dom(G), where G := g?(HT
zµ) − dTµ,

then, the following holds:

E‖ỹs − y∗‖2 ≤ 2
σf

(D(µ∗)− ED(µ̃0)). (4.34)

Proof. The inequality can be derived by the results of Theorem 5.3 in [96] by notic-
ing that the primal updates in the inner loop are the same as AMA. Then, we have to
take into account for Algorithm 4.8 that the primal variables are stochastic variables
and that we must consider their expected values. These observations combined with
the results of Theorem 4.5.1 lead to (4.34). �

Remark 4.6.1. The initial value of the dual variables µ̃0 should be a feasible start-
ing point in order to use the results of Theorem 5.3. This can be accomplished by
noticing the following. Concerning the λ̃0

t components of µ̃0, they must be in Ct.



86 CHAPTER 4. SVR-AMA FOR MPC APPLICATIONS

Concerning the w̃0
t and ṽ0

t components of µ̃0, by providing an initial primal solution
satisfying the consensus constraints (e.g., by using the evolution of the state starting
from xinit under the associated unconstrained LQR control law ut = KLQRxt), they
can be set equal to zero.

The decomposition along the length of the prediction horizon offers several ad-
vantages. First, the size of the subproblems (4.32) is fixed and independent from
the length of the prediction horizon. Second, the resulting subproblems have im-
proved numerical properties (in terms of condition number, for example), compared
to solving Problem (4.3). Third, this decomposition allows one to fully parallelize
the solution of Problem (4.3), thanks to the introduction of the consensus variables.
In theory, if N + 1 independent workers are available, the dual update of each sub-
problem can be assigned to its dedicated worker that exchanges information with
its neighbors only at dedicated synchronization points to update the consensus vari-
ables, as detailed in [121]. If the prediction horizon, however, is larger than the
number of available workers the computation of the solution has to be partially (or
fully, if only one worker is available) serialized. This scenario can be quite com-
mon for embedded legacy control systems, where the serial hardware architecture is
formally verified and the costs to upgrade to the parallel one are too high. In this
scenario, Algorithm 4.5 plays a fundamental role to compute a suboptimal solution
of Problem (4.3).

Algorithm 4.5 applied to Problem (4.31) translates into the possibility of asyn-
chronous updates of the independent subproblems. Compared to solving the subpro-
lems in a serialized fashion (i.e., one after the other) in a synchronous framework,
the asynchronous updates lead to less costly (in terms of computation time) iterations
of the algorithm. In particular, assuming that only one worker is available, at each
inner-loop iteration (steps 1-4 of the algorithm), only one subproblem is randomly
selected for the update. In a synchronous framework, the update of all the subprob-
lems would have been required, which can be costly if the length of the horizon is
large.

Compared to other asynchronous dual algorithms (e.g., [85]), Algorithm 4.5 al-
lows one to tune and adapt (online) the probability distribution Π. This is particu-
larly useful, for example, to give priority in the update to those subproblems whose
associated dual variables vary the most between two iterations of the algorithm, as
shown in the next section.

4.7 Numerical Example

This section considers the linearized model (at a given trim condition) of an Air-
bus passenger aircraft [37] to test the proposed design. Aerospace applications offer
several challenges for MPC from the computational perspective. First, these appli-
cations usually have strict real-time requirements. Second, the states have different
magnitudes (ranging from few degrees to thousands of feet) affecting the condi-
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tioning of the MPC problem. Third, the open-loop system has complex conjugate
eigenvalues close to the imaginary axis. Finally, the problem size is relatively large
and a long prediction horizon is required.

We focus on the longitudinal control of the aircraft. In this respect, the model we
consider has n = 6 states (to describe the longitudinal dynamics) andm = 4 control
actuators. In particular, the states associated with the longitudinal dynamics are
pitch rate [deg/sec], roll rate [deg/sec], ground speed [knots], angle of attack [deg],
pitch angle [deg], and altitude [ft]. Finally, the control surfaces for the longitudinal
dynamics are the four elevators on the tail of the aircraft.

The sampling time of the system is Ts = 0.04 sec and we consider an horizon
length N = 60. The total number of decision variables is 600. Furthermore, we
have 3000 inequality constraints and 600 equality constraints. The goal of the MPC
controller is to regulate the state of the system to the origin starting from a nonzero
initial condition close to the saturation limits of the system.

We compared the behavior of Algorithms 4.5 (SVR-AMA), 4.6 (SVR-AMA with
inner-loop acceleration), and 4.7 (SVR-AMA with outer-loop acceleration) with Al-
gorithm 4.1 (AMA). The baseline for the comparison is the trajectory obtained using
the MPC functions of MPT3 [47].

First, we are interested in showing that the possibility of tuning the probability
distribution that the algorithm offers can lead to improvements in terms of perfor-
mance of the MPC controller, especially when the solver runs for a limited number
of iterations to reach a medium accuracy. In this respect, we consider three different
probability distributions (depicted in Figures 4.1-4.2): (i) uniform, (ii) generalized
Pareto, and (iii) adaptive. The adaptive distribution is computed online by the algo-
rithm according to the following guidelines. We initialize Π to be the Pareto distribu-
tion. Then, every T inner-loop iterations, we check, for each t = 0, . . . , N whether
the following condition is verified ‖µ̃T−µ̃T−1‖2 < 0.01. If the condition is verified,
πt ← 0.5πt and the probabilities of its neighbors become πt+1 ← πt+1 + 0.25πt
and πt−1 ← πt−1 + 0.25πt. Figure 4.2 shows how the distribution varies when
running Algorithm 4.5.

Second, we are interested in showing the benefits that the acceleration of the
inner and outer loops can bring in terms of number of iterations needed to reach a
suboptimal solution of the MPC problem (4.4). In this respect, we run the proposed
algorithms (i.e., Algorithms 4.5, 4.6, and 4.7) and AMA for one problem instance
that causes active inequality constraints at the optimum until the value of the dual
variables between two iterates, in norm, does not vary more than 10−4 (i.e., ‖µ̃s −
µ̃s−1‖ ≤ 10−4).

Figures 4.3-4.103 present the results obtained when testing the proposed algo-
rithms. For the comparison, we fixed the total number of iterations for all the algo-
rithms (T s̄ = 15 · 105) and we use the same step size η. Concerning the tuning of
the number of inner iterations, on one hand, we select T = 500 when using Algo-

3The units on the vertical axes of the presented plots have been removed upon request of our industrial
partners.
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Figure 4.1: Probability distributions used to test
the performance of Algorithms 4.5, 4.6, and 4.7
plotted in log10 scale.
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Figure 4.2: Adaptive probability generated when
running Algorithm 4.5 (SVR-AMA) plotted in
log10 scale., 4.6 (SVR-AMA with inner-loop
acceleration), and 4.7 (SVR-AMA with outer-loop
acceleration) plotted in log10 scale.

rithm 4.6 (according to the guidelines provided to select the number of inner-loop
iterations for IA-SVR-AMA), leading to a larger number of outer-loop iterations.
On the other hand, we select T = 3000 when using Algorithm 4.7 (according to
the guidelines provided to select the number of inner-loop iterations for OA-SVR-
AMA), leading to a smaller number of outer-loop iterations (that requires the update
of the full gradient). Concerning the tuning of η, we selected the value according
to the guidelines that derive from the theory. Nevertheless, we notice that the pro-
posed algorithms allow one to use a larger step size compared to AMA, potentially
leading to better performance when we need to further reduce the number of itera-
tions (and the computation time). Figures 4.3 and 4.4 show the behavior of one of
the actuators and one of the states (the pitch rate, which is also interesting for the
tracking of the vertical load factor to regulate the trajectory of the aircraft) when
using Algorithm 4.5. The behavior of SVR-AMA is compared with AMA and the
optimal trajectory. Hence, we notice that, within the limited number of iterations,
the possibility to tune Π leads to improvements in terms of quality of the solution.
In particular, notice that the uniform distribution leads to a behavior comparable to
AMA, while using the Pareto and the adaptive distribution lead to improved trajec-
tories.

Figures 4.5 and 4.6 show the behavior of one of the actuators and one of the
states (the pitch rate) when using Algorithm 4.6 to accelerate the inner-loop iterates.
The behavior of the inner-accelerated algorithm is compared with SVR-AMA (with
adaptive distribution) and AMA. Hence, we notice that the algorithm leads to some
improvements in the calculation of the optimal solution of the MPC problem. The
main issue is that the algorithm requires more updates of the full gradient of F ,
which can be problematic when N is large. It is, however, interesting to notice that
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the combined use of variance reduction (which is also an acceleration strategy from
the stochastic point of view) and inner-loop acceleration (which is an acceleration
strategy in a more classical sense) still lead to some benefits in the computation of
the optimal solution.

Figures 4.7 and 4.8 show the behavior of one of the actuators and one of the
states (the pitch rate) when using Algorithm 4.7 to accelerate the outer-loop iterates.
As in the previous case, the behavior of the outer-accelerated algorithm is compared
with SVR-AMA (with adaptive distribution) and AMA. We notice that the solution
returned by OA-SVR-AMA is closer to the optimal one. Furthermore, we can also
observe the benefits of tuning Π online. In particular, note that the Pareto and the
adaptive distributions clearly outperform the uniform distribution.

Finally, Figures 4.9 and 4.10 directly compare the best results obtained using
SVR-AMA, IA-SVR-AMA, and OA-SVR-AMA. In particular, the plots highlight
the significant improvements obtained using the outer-loop acceleration. Further-
more, note that Algorithm 4.7 requires less full gradient updates and fully exploits
the benefits of the variance reduction scheme in the inner loop. Hence, it can be
more efficient when used for applications with large N , compared to Algorithm 4.6.

4.8 Conclusions

We presented an asynchronous alternating minimization algorithm with variance re-
duction (SVR-AMA) scheme and its accelerated versions suitable for model predic-
tive control (MPC) applications. As our numerical example showed, the proposed
algorithms, compared to a state-of-the art solver (i.e., the alternating minimization
algorithm), provide higher-accuracy solutions within the same number of overall it-
erations. Furthermore, compared to other state-of-the-art asynchronous dual solvers
that only perform random updates according to a uniform distribution, the proposed
algorithms allow one to prioritize the update of the variables at the beginning of the
prediction horizon, leading to improved behavior in closed loop, as our numerical
example showed.

We analyzed the possibility of tuning the probability distribution to improve the
performance of the algorithm in terms of number of iterations. As part of our future
work, we plan to further investigate the benefits that the proposed algorithm (SVR-
AMA and its accelerated versions) can have in a distributed framework. In particular,
we plan to investigate how to use the probability distribution as a tuning parameter
to plan the communications among the agents in the network.
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Figure 4.3: Control trajectories obtained using different probability distributions Π in
Algorithm 4.5 in open loop.
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Figure 4.4: Pitch-rate trajectories obtained using different probability distributions Π in
Algorithm 4.5 in open loop.

A Proofs of Section 4.4.1

A.1 Proof of Proposition 4.4.1

Proof. We exploit the equivalence between Prox-SVRG and I-PGM. In particular,
the following holds:

yk = proxηG (yk−1 − ηβk) (4.35a)

= proxηG (yk−1 − η (∇F (yk−1) + ek)) , (4.35b)

where ek = βk − ∇F (yk−1). Then, the proof follows directly from Proposition 4
in [116] by taking into account that the proximal step is computed exactly and the
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Figure 4.5: Control trajectories obtained using different probability distributions Π in
Algorithm 4.6 in open loop.
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Figure 4.6: Pitch-rate trajectories obtained using different probability distributions Π in
Algorithm 4.6 in open loop.

only error we take into account is the one in the gradient calculations, which is a
stochastic error (hence the expectation in the definition of Γk). Furthermore, we
take into account that each yk is a stochastic variable and, consequently, we can
consider the expectation in the value of P (yk). �

A.2 Proof of Theorem 4.4.1

Proof. According to Proposition 4.4.1, the following holds:

EP (yk)− P (y∗) ≤

2(1− γ)k(P (ỹs−1)− P (y∗)) + 2
σF

(1− γ)kΓ2
k(ỹs−1),

(4.36)
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Figure 4.7: Control trajectories obtained using different probability distributions Π in
Algorithm 4.7 in open loop.
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Figure 4.8: Pitch-rate trajectories obtained using different probability distributions Π in
Algorithm 4.7 in open loop.

We are interested in the convergence of the outer loop of the algorithm. Hence, we
sum for k = 1, . . . , T the inequality above:

T∑
k=1

[EP (yk)− P (y∗)] ≤
T∑
k=1

[
2(1− γ)k (P (ỹs−1)− P (y∗))

]
+

2
σF

T∑
k=1

(1− γ)kΓ2
k(ỹs−1).
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Figure 4.9: Comparison of the best control trajectory computed by SVR-AMA, IA-SVR-AMA, and
OA-SVR-AMA in open loop.

0 0.2 0.4 0.6 0.8 1 1.2

t [sec]

q
[d
eg
/
se
c]

 

 
AMA
Inner-loop acceleration
Outer-loop acceleration
SVR-AMA
Optimal

Figure 4.10: Comparison of the best pitch-rate trajectory computed by SVR-AMA, IA-SVR-AMA,
and OA-SVR-AMA in open loop.

Then, the following holds:

T∑
k=1
EP (yk)− TP (y∗) ≤

T∑
k=1

[
2(1− γ)k

]
[P (ỹs−1)− P (y∗)] +

2
σF

T∑
k=1

(1− γ)kΓ2
k(ỹs−1).
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Using
∑
E[·] = E

∑
[·] and dividing by T > 0, the following holds:

E

(
1
T

T∑
k=1

P (yk)
)
− P (y∗) ≤

2
T

T∑
k=1

[
(1− γ)k

]
[P (ỹs−1)− P (y∗)] +

2
TσF

T∑
k=1

(1− γ)kΓ2
k(ỹs−1)

Exploiting the convexity of P and the fact that 1− γ < 1, we have:

EP (ỹs)− P (y∗)

≤ 2
Tγ

(
(1− γ)− (1− γ)T+1) [P (ỹs−1)− P (y∗)] +

2
TσF

T∑
k=1

(1− γ)kΓ2
k(ỹs−1)

The following holds:

EP (ỹs)− P (y∗) ≤ρIA,I-PGM [P (ỹs−1)− P (y∗)] +
2

TσF
Γ(ỹs−1)

Applying recursively for s = 1, 2, . . . , s̄

EP (ỹs̄)− P (y∗) ≤ ρs̄IA,I-PGM [P (ỹ0)− P (y∗)] +

2
TσF

s̄−1∑
s=0

ρsIA,I-PGMΓ(ỹs),

which proves the theorem. �

B Proofs of Section 4.4.2

B.1 Proof of Corollary 4.4.2

Proof. The proof follows the same steps of the one of Corollary 3.5 in [136] but takes
into account that we are considering βs instead of βk. In particular, the following
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holds:

E‖es‖2 = E
∥∥∥∥∥ 1
T

T∑
k=1

(βk −∇F (yk−1))
∥∥∥∥∥

2

≤ 1
T 2E

T∑
k=1
‖βk −∇F (yk−1)‖2

≤ 1
T 2E

T∑
k=1
‖vk‖2 ,

where vk := ∇Fik (yk−1)−∇Fik (ỹ)
πik

+ ∇F (ỹ) − ∇F (yk−1). Using the fact that∑
i E[xi] = E

∑
i xi and E‖x − Ex‖2 = E‖x‖2 − ‖Ex‖2 according to [136] the

following holds:

E‖es‖2

≤ 1
T 2E

T∑
k=1
‖vk‖2

= 1
T 2

T∑
k=1
E

∥∥∥∥∇Fik(yk−1)−∇Fik(ỹ)
πik

∥∥∥∥2
−

1
T 2

T∑
k=1
‖∇F (yk−1)−∇F (ỹ)‖2

≤ 1
T 2

T∑
k=1

N∑
i=1

1
Nπi

‖∇Fi(yk−1)−∇Fi(ỹ)‖2

≤ 1
T 2

T∑
k=1

N∑
i=1

2Li
Nπi

(Pi(yk−1)− Pi(y∗) + Pi(ỹ)− Pi(y∗))

≤ 2LΠ

T 2

T∑
k=1

(P (yk−1)− P (y∗) + P (ỹ)− P (y∗))

≤ 2LΠ

T
(P (ys−1,avg)− P (y∗) + P (ỹ)− P (y∗)) .

�

B.2 Proof of Theorem 4.4.2

Proof. In the following, we provide a proof for the convergence of Algorithm 4.7.
Given that the inner loop of Algorithm 4.4 is not affected by the acceleration the

following result from Theorem 4.3.1 in [136] holds:

EP (ỹs)− P (y∗) ≤ ρ (P (ŷs−1)− P (y∗)) . (4.37)
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Consider for simplicity α := 1−√γ
1+√γ . Then, define the following quantity (according

to [116, Section 6.4]):

vs :=
(

1− 1
√
γ

)
ỹs−1 + 1

√
γ
ỹs, (4.38)

and

θ =
√
γ − γ

1− γ < 1. (4.39)

Hence, the following holds:

ŷs = (1− θ)ỹs + θvs. (4.40)

Given that
√
γ < 1, by using the convexity of P and the definition of vs in (4.38),

the following holds:

EP (ỹs)− P (y∗) ≤(1− √γ)(P (ỹs−1)− P (y∗))+
√
γ(EP (vs)− P (y∗)).

(4.41)

At the same time, by using (4.37) and the definition of ŷs in(4.40), the following
holds:

EP (ỹs+1)− P (y∗) ≤ρ(1− θ)(P (ỹs)− P (y∗))
+ ρθ(P (vs)− P (y∗)).

(4.42)

From (4.42), the following holds:

EP (ỹs)− P (y∗) ≥
EP (ỹs+1)− P (y∗)− ρθ(EP (vs)− P (y∗))

ρ(1− θ) (4.43)

At the same time, using (4.41), the following holds

(ρ(1− θ))(1− √γ)(P (ỹs−1)− P (y∗))+
(ρ(1− θ))√γ(EP (vs)− P (y∗))
≥ ρ(1− θ)(EP (ỹs)− P (y∗))
≥ (EP (ỹs+1)− P (y∗))− ρθ(EP (vs)− P (y∗)).

Then, the following holds:

(ρ(1− θ))(1− √γ)(P (ỹs−1)− P (y∗))+
((ρ(1− θ))√γ + ρθ)(EP (vs)− P (y∗))
≥ ρ(1− θ)(EP (ỹs)− P (y∗)) + ρθ(EP (vs)− P (y∗))
≥ (EP (ỹs+1)− P (y∗)).

(4.44)

Given the fact that ρθ(EP (vs)−P (y∗)) ≤ ((ρ(1− θ))√γ+ ρθ)(EP (vs)−P (y∗))
and, at the same time, (4.44) holds, the following must hold for all s > 0

(EP (ỹs)− P (y∗)) ≤ (1− √γ)(P (ỹs−1)− P (y∗)). (4.45)

Hence, if we apply the inequality above recursively, the following holds:

EP (ỹs)− P (y∗) ≤ (1− √γ)s(P (ỹ0)− P (y∗)). (4.46)

�
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C Proofs of Section 4.5

C.1 Proof of Theorem 4.5.1

Proof. If the assumptions of the theorem are satisfied, exploiting a similar argument
to the one in [35, Theorem 4] for AMA, we can show that Algorithm 4.5 is equiva-
lent to apply Algorithm 4.2 to Problem (4.5), that is, the dual of Problem (4.4). In
particular, according to the proof of Theorem 4, using the optimality conditions that
derive from steps 2a and 2b , we can show that steps 2 and 4 are equivalent

to computing proxηG (µk − ηβk), which is equivalent to the proximal step 3 of
Algorithm 4.2. The definition of βk in step 3 of Algorithm 4.5 follows the same
logic of Prox-SVRG on the dual. In particular, by defining β̃ = ∇F (µ̃), we replace
the calculation of the full gradient of F (µ) with the following:

βk =β̃ + ∇F
(i)(µk−1)−∇F (i)(µ̃)

π(i) (4.47a)

=β̃ + (yk − ỹ)TH
(i)T

y

π(i) (4.47b)

Hence, we can conclude that Algorithm 4.5 is equivalent to Algorithm 4.2 applied
to the dual of Problem (4.4). Then, we can use Lemmas 4.3.1 and 4.3.2 to derive
the upper bound on η and to satisfy the assumptions of Theorem 4.3.1. Finally, by
using Lemma 4.5.1 we can derive the results of the theorem by following the proof
of Theorem 4.3.1 (applied to the dual). �

C.2 Proof of Corollary 4.5.1

Proof. We first prove (4.29) by using the same logic in the proof of Corollary 3.5
in [136]. In particular, the following holds:

Eβk = E∇F (µ̃) + E∇F
(i)(µk−1)
π(i) − E∇F

(i)(µ̃)
π(i)

= ∇F (µ̃) +
N∑
i=0

π(i)∇F (i)(µk−1)
π(i) −

N∑
i=0

π(i)∇F (i)(µ̃)
π(i)

= ∇F (µ̃) +
N∑
i=0
∇F (i)(µk−1)−

N∑
i=0
∇F (i)(µ̃)

= ∇F (µ̃) +∇F (µk−1)−∇F (µ̃)
= ∇F (µk−1).

Then, the proof of (4.30) follows exactly the proof in [136] with the only difference
that in the last step we use the definition of ∇F (µ). In particular, the following
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holds:

E(βk −∇F (µk−1))

≤ 2
N∑
i=0

1
π(i) ‖∇F

(i)(µk−1)−∇F (i)(µ∗)‖2+

2
N∑
i=0

1
π(i) ‖∇F

(i)(µ̃)−∇F (i)(µ∗)‖2

⇓ using the definition of∇F (µ)

= 2
N∑
i=0

1
π(i) ‖H

(i)
y (yk − y∗)‖2 + 2

N∑
i=0

1
π(i) ‖H

(i)
y (ỹ − y∗)‖2

⇓ using the Cauchy-Schwarz inequality

≤ 2
N∑
i=0

‖H(i)
y ‖2

π(i) (‖yk − y∗‖2 + ‖ỹ − y∗‖2)

⇓ using the fact that ‖y − y∗‖2 ≤
2
σF

(P (y)− P (y∗))

≤ 4
N∑
i=0

‖H(i)
y ‖2

σFπ(i) [P (yk)− P (y∗) + P (ỹ)− P (y∗)]

≤ 4L?π[P (yk)− P (y∗) + P (ỹ)− P (y∗)],

where L?Π := maxi(eigmax(H(i)T

y H
(i)
y )/(σFπ(i))). �
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5
Fault-Tolerant Reference Generation

for Model Predictive Control
with Active Diagnosis of Elevator Jamming Faults

Abstract

This chapter focuses on the longitudinal control of an Airbus passenger aircraft in
the presence of elevator jamming faults. In particular, in this chapter, we address
permanent and temporary actuator jamming faults using a novel reconfigurable fault-
tolerant predictive control design. Due to their different consequences on the avail-
able control authority and fault duration, the above two actuator jamming faults need
to be distinguished so that appropriate control reconfigurations can be adopted ac-
cordingly. Their similarity in symptoms, however, prevents effective discrimination
of the root cause of the jamming when using only a passive fault-diagnosis approach.
Hence, we propose the use of model predictive control (MPC) as fault-tolerant con-
troller to actively help the fault-detection (FD) unit discriminate between a perma-
nent and a temporary jamming fault, while ensuring the performance of the aircraft.
The MPC controller and FD unit closely interact during the detection and diagnosis
phases. In particular, every time a fault is detected, the FD module commands the
MPC controller to perform a predefined sequence of reconfigurations to diagnose the
root cause of the fault. An artificial reference signal that accounts for changes in the
actuator operative ranges is used to guide the system through this sequence of recon-
figurations. Our strategy is demonstrated on an Airbus passenger aircraft simulator.

99
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5.1 Introduction

The ability to automatically handle faults and component malfunctions while pre-
serving overall performance is the main characteristic of a fault-tolerant control
(FTC) system [144]. Fault-tolerant control systems have been largely investigated in
the context of flight control taking into account the occurrence of faults on sensors
and actuators [11; 15; 44; 110; 87; 93; 140; 142].

In this work, we focus on faults that can occur on the aircraft actuators (i.e.,
actuator jamming faults). Actuator jamming faults have long been investigated in
the field of fault-tolerant flight control (e.g., [70; 15; 10; 140]). Among other tech-
niques, we focus on the use of model predictive control (MPC) as fault-tolerant con-
trol. MPC provides a well-recognized framework for fault tolerance [1; 56; 70; 65].
On one hand, by relying on actuator redundancy, MPC (even) without reconfigura-
tion has some inherent self-reconfiguration properties that allows one to reallocate
the control effort in the presence of actuator faults [68]. On the other hand, re-
configurable MPC further improves fault tolerance capabilities by exploiting extra
fault information in a structured manner, especially when it comes to dealing with
constraints [68].

In practical applications, the control design has to take into account that the in-
formation concerning the fault is provided by a fault-detection (FD) module. Hence,
in these scenarios, the design of a reconfigurable MPC controller must be integrated
with an FD module. Robustness and guaranteed fault tolerance of this integrated
fault-tolerant MPC (FTMPC) scheme was analyzed with set theoretic methods in
[126; 139].

In most literature, actuator jamming is attributed to a permanent jamming (or
stuck fault), during which the actuator is locked at a certain position. The study
of temporary jamming due to dynamic manoeuvres (combined with the presence of
heavy aerodynamic forces), however, has been only investigated by few researchers
(e.g., the authors of [10] propose a sliding mode fault-tolerant control scheme to
detect and compensate the effects of the temporary and permanent jamming faults).
This temporary jamming—known as stall load or blow-down [36; 10] for aerospace
applications—leads to more stringent control limits for a bounded period of time.
The original limitations of the actuators can be recovered once either the control
command is consequently adjusted or the aerodynamic forces become smaller [36].
Although both stuck fault and stall load lead to a jammed actuator, their conse-
quences on the control limits and jamming duration are significantly different. There-
fore, we must be able to identify the root cause of the actuator jamming (i.e., identify
whether the actuator is temporarily or permanently jammed). Furthermore, in case
of stall load, we must be able to determine its end to apply suitable reconfiguration
strategies from the control design perspective.

Conventional FD cannot achieve this goal because the fault phenomena of a per-
manent or temporary jamming have a high similarity. We propose to integrate recon-
figurable MPC with active FD to address the challenge above. Instead of passively
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monitoring actuator behaviors, we exploit a sequence of reconfiguration strategies
using the MPC controller to assist the FD module, not only to distinguish the root
cause of the actuator jamming, but also to actively detect the end of a stall load (in
case of a temporary jamming). Then, once the root cause of the jamming is detected,
the MPC controller adopts suitable successive reconfigurations, aimed to improve
the overall control performance. All these improvements from both FD and control
perspective cannot be achieved without using active reconfigurations to assist FD.

The use of active FD in the context of FTMPC has been rather limited so far
and focused only on permanent faults [98; 100; 137]. In contrast, our contribution
lies in discriminating between a permanent and temporary jamming (i.e., stuck fault
and stall load, respectively) that share highly similar fault symptoms. Compared to
the approach we proposed in [23], we rely on (i) an improved FD strategy, (ii) a
different MPC formulation for tracking, and (iii) a modified disturbance observer to
incorporate plant-model mismatches. From the detection perspective, in [23] the FD
unit relies only on the information from a single control surface, without exploiting
the actuator redundancy. In this work, we combine the detection strategy in [23]
with an additional check that compares the behavior of the single elevator with the
others. This has the additional benefit that if only one (or two) control surfaces are
subject to faults, the fault can be detected quickly by monitoring the deviation of the
residual signal from the normal behavior of the others. This strategy is useful espe-
cially for permanent jamming faults that are more likely to involve only one control
surface. Temporary faults that are more likely to affect all the control surfaces can
still be detected by monitoring whether the residual signal of each actuator exceeds
a predetermined threshold. From the control perspective, in [23] we made the as-
sumption that the desired reference during a manoeuvre could not lead to infeasible
solutions and all the control reconfigurations were performed on the actuator con-
straints directly, without affecting the desired reference signal. In contrast to [23], in
this work we exploit a strategy similar to the artificial reference tracking proposed
by [66; 19]. In [66; 19], the concept of artificial reference is used to enlarge the
region of attraction of the proposed controller while ensuring closed-loop stability
guarantees. We reinterpret this idea for fault-tolerant control purposes. In particular,
this approach can be used to compute artificial reference signals for the state and
the actuator commands in order to compensate for the occurrence of faults that can
suddenly affect the feasible region of the MPC controller. In particular, the sequence
of reconfigurations used to detect and diagnose the root cause of the jamming is not
performed directly on the actuators’ constraints, but on the constraints associated
with the artificial reference signal. By doing so, when a fault is detected the refer-
ence followed by the states and the actuators is adapted to the faulty feasible region.
Consequently, if the desired reference signal becomes unfeasible in the presence of a
fault, the artificial reference acts as a fault-tolerant reference signal to avoid infeasi-
bility (and possible instability) issues. Finally, compared to [23], we incorporate the
effects of plant-model mismatches directly in the definition of the artificial reference
constraints using the information provided by an improved disturbance estimator
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module. We demonstrate the effectiveness of our approach using an Airbus civil
aircraft simulator [37].

In the following, Section 5.2 presents the Airbus simulator used to evaluate our
design. Section 5.3 describes our fault-tolerant control architecture. Section 5.4
introduces the proposed detection and diagnosis strategy and highlights the interac-
tions between the FD module and the MPC controller. Section 5.5 compares the
behavior of the MPC controller with and without the proposed active reconfigura-
tions when multiple faults occur on the elevators. Finally, Section 5.6 concludes this
chapter.

5.2 Benchmark Model and Scenario Definition

This section describes the RECONFIGURE benchmark model, that is, an Airbus
civil aircraft simulator [37] (Section 5.2.1), and details the actuator fault scenarios
we focus on in this work (Section 5.2.2).

5.2.1 The Aircraft Longitudinal Model

This work focuses on the longitudinal control of an Airbus passenger aircraft in
the presence of actuator jamming faults. Our proposed FTC architecture relies on
MPC, which is a model-based technique. Hence, a mathematical description of
the longitudinal dynamics of the aircraft (i.e., the model) is necessary to ensure
performance of our FTC scheme. In this respect, in the control design phase, we
can rely on linearized aircraft models at given operating points (or trim conditions)
to build the prediction model of the MPC controller. In the following, we describe
the augmented aircraft model (i.e., the cascade actuator-aircraft dynamics depicted in
Figure 5.3) and introduce the notation used to design our MPC control (Section 5.3).

The linearized and discretized longitudinal dynamics of the aircraft can be de-
scribed as follows:

xA/C(t+ 1) = AA/Cx(t) +BA/CuA/C(t) (5.1a)

yA/C(t) = CA/Cx(t) +DA/CuA/C(t), (5.1b)

where xA/C := [q p v αϑh]T ∈ XA/C ⊆ RnA/C is the state vector, which includes
the pitch rate, roll rate, ground speed, angle of attack, pitch angle, and altitude, re-
spectively, uA/C := [δeli δeri δelo δero ] ∈ U⊆Rnu is the control input with δeli , δeri , δelo ,
and δero representing the left inner, right inner, left outer and right outer elevator de-
flections, respectively, and yA/C := [nz x

T]T ∈ YA/C ⊆ RnyA/C is the output vector
with nz representing the vertical load factor, which is a quantity related to the accel-
eration on the vertical axis. All the states describing the longitudinal dynamics are
measurable using dedicated sensors. These measurements are, however, affected by
delays that must be compensated in the control design (Section 5.3).
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Figure 5.1: Stuck fault.
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Figure 5.2: Stall load.

The elevator dynamics in the RECONFIGURE benchmark model can be mod-
eled as third-order linear time-invariant (LTI) systems. The following model de-
scribes the elevator dynamics:

xel(t+ 1) = Aelxel(t) +Belu(t) (5.2a)

yel(t) = Celxel(t) +Delu(t) (5.2b)

where xel ∈ Xel ∈ Rnel (the components of xel are the elevator position, velocity,
and acceleration), u ∈ UMPC ⊆ Rnu , and yel ≡ uA/C (i.e., the elevator position).

Finally, we assume that X , U ,Y,Xel, and UMPC are polyhedral sets that contain
the origin in their interior. Furthermore, in the remainder of the chapter, we use δ ei
and δ ei to indicate the upper and the lower bounds of the i-th elevator output δei
(i ∈ I := {li, ri, lo, ro}).

5.2.2 Fault Description

This work focuses on elevator jamming scenarios. In these scenarios, one or more
elevators remain fixed at an unpredictable value δf

ei (i ∈ I), which might differ
from their normal saturation limits. The elevator jamming can be attributed to two
different root causes exemplified in Figures 5.1 and 5.2:

• Stuck Fault. The elevator is permanently jammed at a certain position δf
ei and

cannot be recovered (Figure 5.1). This effect can be modelled as a perma-
nent change at time tf in the elevator’s upper and lower operating bounds that
become both equal to the jammed position δf

ei ∀t ≥ tf.

• Stall Load [36]. The elevator is temporarily jammed during a dynamic ma-
noeuvre, due to heavy aerodynamic forces preventing the elevator to achieve
its commanded control surface deflection (Figure 5.2). In this situation, the el-
evator can still move within its reduced control limits [−δ ei , δ

f
ei ] or [−δf

ei , δ ei ],
determined by the jammed position δf

ei . The stall load ends if either the ma-
noeuvre becomes less dynamic or the aerodynamic forces acting on the control
surface become smaller.
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Figure 5.3: Proposed control architecture.

Considering their different consequences on the control limits and jamming duration,
a stuck elevator and stall load need to be distinguished and require adopting different
reconfiguration strategies in FTC. Nevertheless, because of the high similarity in the
jamming phenomena, it is difficult to distinguish these two root causes. Hence, our
proposed integrated FTC approach actively modifies the control strategies to help
the FD module discriminate between the two root causes of the jamming, as detailed
in Section 5.4.

Remark 5.2.1. This work focuses on jamming faults for which it is nontrivial to dis-
tinguish the root cause of the jamming. Although in some practical situations the
stall load limits might change overtime leading to control challenges, from the diag-
nosis point of view we can still distinguish the root cause of the jamming easily in
this case (when the fault is detected it is evident that the actuator is not permanently
stuck at a given position). Hence, given that our goal is to design the interactions
between the FD unit and the MPC controller to diagnose the root cause of a jamming
fault, we do not focus on stall load scenarios with time-varying limits.

5.3 FTC Architecture

This section focuses on our proposed FTC architecture. In this respect, Figure 5.3
provides an overview of our proposed FTC design and show the interactions among
the different components of our control system and the controlled plant. In particu-
lar, Figure 5.3 highlights (i) in dark grey the main components of the plant (i.e., the
augmented aircraft model described in Section 5.2.1, the constraints depicted as sat-
uration blocks, and the sensor delays) and (ii) in light grey the main components of
our fault-tolerant controller. A detailed description of these components is provided
in the remainder of the section.
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5.3.1 Elevator-State Observer

The elevator states are needed by the MPC controller to build the predictions. By
using the elevator model (5.2), four Luenberger observers [67], characterized by
a constant gain L, are constructed. The gain L is the same for all the operating
points, given that the elevators are LTI systems (according to their description in the
RECONFIGURE model). Each observer independently monitors one elevator. On
one hand, the elevator-state estimates are needed to exploit the elevator dynamics in
the MPC problem formulation. On the other hand, these elevator-state estimates are
used to compute predicted elevator outputs δp

e for the disturbance observer and the
FD module.

The realization we adopt for the elevators is such that, for each elevator, the
state associated with the elevator position corresponds to the output of the elevator.
Hence, when a saturation is detected on the i-th elevator position, the other two states
(associated with the velocity and acceleration of the i-th elevator) are set to zero and
the estimated position value is set to the measured elevator output. This allows us
to estimate the elevator states without requiring a more advanced state estimator to
handle saturation.

Note that if the model of the elevators is nonlinear or depends on the flight con-
dition the gain L should also vary accordingly. As previously stated, in this work we
adopt the elevator description provided in the RECONFIGURE benchmark model,
which assumes the elevators to be LTI systems.

5.3.2 Disturbance Observer

The disturbance observer is used to compensate constant measurement errors, reduce
the effects of plant-model mismatches, and provide useful information to help the
FD module detect jamming faults. The proposed observer strongly relies on the
information provided by the MPC controller and on the plant measurements.

The observer is composed by two modules used to compensate (i) measurement
errors and (ii) plant-model mismatches, respectively. In particular, the first module
estimates a constant disturbance signal (that is then used by the MPC controller)
as follows. First, we take into account that the MPC controller does not model
the sensor and filter dynamics in the predictor to reduce the number of decision
variables (and, consequently, the computation time). Hence, the proposed observer
monitors enz := nm

z − np
z , that is, the mismatch between the measured and the

predicted load factor. Second, the observer monitors eδei
:= δm

ei − δ
p
ei , that is, the

mismatch between the measured and the predicted elevator outputs, for elevator-
jamming detection purposes. Hence, the first module of the disturbance observer
estimates d := [dnz d

T
e ]T as follows:

d(t+ 1) = d(t) +
[
enz

eδei

]
. (5.3)
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This estimated disturbance d ∈ Rnd (nd = 5) affects the predicted elevator outputs,
the aircraft states, and the aircraft outputs. Hence, we must consider this disturbance
as an additional state in the MPC prediction model as explained below.

The second module of the disturbance observer takes into account plant-model
mismatches and, eventually, nonlinearities in the plant that are not modelled in the
MPC controller, given that only linearized plant models are used to build the predic-
tions. In this respect, we define an upper bound on these plant-model mismatches as
εnl := ‖x̂t − xt|t−1‖2, where x̂t is the measured state of the aircraft (we omitted the
subscript A/C to simplify the discussion) at time t and xt|t−1 is the value of the state
at time t predicted (by the MPC controller) according to the value of the measured
state at time t − 1. This upper bound monitors the distance between the predicted
behavior of the plant and the real behavior and can be used (as explained below) to
design a robust reference signal to avoid constraint violations in the MPC problem
formulation.

Remark 5.3.1. The strategy described in (5.3) can only be used to estimate distur-
bances that can be modeled as constant values. Hence, given that the plant-model
mismatches and the nonlinearities in the plant cannot be modelled as constant distur-
bances, we decided to include their effects in the definition of the MPC constraints
as explained below.

5.3.3 Fault-Detection Module

The Fault-Detection (FD) module relies on the elevator-output prediction error eδei

to compute the residual signal used for the detection of jamming faults. The gener-
ated residual for each elevator is evaluated by its root mean square (RMS) value

Ji(t) :=

√√√√ 1
Neval

t∑
k=t−Neval+1

e2
δei

(k) , i ∈ I (5.4)

over a sliding window [t − Neval + 1, t]. Neval is selected according to the slowest
mode of the actuators. This is an empirical choice to give sufficient time to the
physical system to register the jamming fault. The choice of Neval is a trade-off
between reducing the risks of miss detection/false alarms and detection delay.

The fault detection decision is made by comparing each residual evaluation value
Ji(t) with the related threshold J th

i , that is,

FD Logic :
{
Ji(t) ≤ J th

i ⇒ fault-free in elevator i
Ji(t) > J th

i ⇒ jamming in elevator i.
(5.5)

After fixing the length of the sliding evaluation window, the thresholds {Ji(t)} are
determined by the plant-model mismatch of the elevator model (5.2). In practice,
each threshold J th

i can be selected as the peak value of Ji(t) in a large set of fault-
free scenarios. In this work, we determine the thresholds by using dynamic fault-
free manoeuvres (i.e., when stall loads might be more likely to occur). Its choice is
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a trade-off between reducing the miss detections/false alarms and, at the same time,
reducing detection delays.

Remark 5.3.2. Note that in this work we rely on a simple fault-detection logic with
fixed J th

i to present our integrated approach. Nevertheless, the proposed approach
can be extended with the use of more sophisticated detection techniques to select
the threshold J th

i (for example, when an explicit description of multiplicative model
uncertainties is taken into account).

Furthermore, we add an additional check to improve the detection of isolated
faults for which we can exploit redundancy, that is, the presence of redundant con-
trol surfaces. In fault-free conditions, the residual signals of each elevator are suf-
ficiently small and close to each other (in terms of magnitude). Suppose that one
of the residual signals starts deviating from the others. This abnormal behavior is
an indicator that the elevator associated with that residual signal might be jammed.
This strategy is useful when we have to deal with isolated faults on one or two actu-
ators. For example, this strategy is useful to anticipate the detection of a stuck fault,
because a permanent jamming is more likely to occur on a single elevator.

Remark 5.3.3. The detection logic described above is insufficient to identify the
root cause of jamming by itself given that it only informs the controller that the
actuator is jammed. At this stage the controller does not know whether the jamming
is permanent or temporary. In Section 5.4, we combine the detection logic ((5.5))
with different active reconfigurations to capture more detailed fault information.

5.3.4 Model Predictive Controller

MPC controllers rely on (i) the plant description to build predictions of the plant
behavior over a predefined time window (called prediction horizon), (ii) the infor-
mation on state, input, and output constraints, and (iii) current measurements from
the plant, such as state measurements and desired reference signals. These con-
trollers offer an intuitive and structured framework to compute the optimal control
law to simultaneously satisfy the control objectives and constraints on the plant. This
control law is computed by solving (either offline or online [4; 28; 101; 90; 141], de-
pending on the number of decision variables) an optimization problem (usually a
quadratic programming problem). For more details on MPC refer to [72; 69; 6] and
the references within.

Remark 5.3.4. In this work, we solve the MPC optimization problem online. This
requires solving a quadratic programming (QP) problem of size proportional to the
number of decisions variables and length of the prediction horizon. The solution of
this optimization problem in an embedded environment can be challenging, due to
small sampling times and limited hardware and software resources (the availability
of a QP solver is usually not guaranteed). First-order solvers, such as proximal-
gradient and splitting methods (refers to [88; 123] and the references within for an
overview) are valid solutions for this problem. In this respect, in the context of
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aerospace applications, in [22], we show on the RECONFIGURE benchmark model
how we can efficiently compute the MPC problem by relying on these first-order
solvers (in particular, by combining the use of Nesterov’s dual fast gradient and the
alternating direction method of multipliers).

With this framework in mind, we define the model used to compute the predic-
tions in the MPC controller. In particular, given (5.1)-(5.2), this model is computed
as follows:

x(t+ 1) =Ax(t) +Bu(t) t ≥ 0, (5.6a)

y(t) =Cx(t) +Du(t) t ≥ 0, (5.6b)

where x := [x̄T
A/C x

T
el d̂

T]T ∈ XMPC ⊆ Rn (where x̄T
A/C := [q v α h] takes into ac-

count a subset of the longitudinal states to maintain the size of the prediction model
small and n :=nA/C−2+nel+nd), and y := [yT

A/C y
T
el ]T ∈ YMPC :=Y×U ⊆ RnyA/C +nu .

The structure of A, B, C, and D follows from the choice of the state, input, and
output for the cascade actuator-aircraft dynamics depicted in Figure 5.3 (namely, the
augmented system) and by describing the disturbance dynamics as constant, that is,
d̂(t+ 1) = d̂(t), where d̂(t) = d(t) (5.3).

Remark 5.3.5. Note that we use linearized aircraft models in the MPC problem for-
mulation (as described in Section 5.2.1 as well) to explain our algorithm. Neverthe-
less, the approach can potentially be extended to linear-parameter varying (LPV) or
linear time-varying (LTV) models [71; 115; 16; 94].

In the remainder of the chapter, we consider the following assumption:

Assumption 5.3.1. The augmented system is stabilizable.

Our goal is to control the longitudinal dynamics of the aircraft. In particular, our
goal is to steer the output of system (5.6) to a desired reference value denoted by ν,
which is generated by a pilot stick command. The reference value is measured at
each sampling time and we assume that is constant along the length of the prediction
horizon in the MPC problem formulation. Furthermore, we have to take into account
the constraints acting on state, input, and output, that are, XMPC, U , and YMPC, re-
spectively. Hence, compared to [21], we rely on a modified version of the MPC for
tracking formulation proposed in [66; 19]. In particular, we can formulate our MPC
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problem as follows:

V∗(ν, xinit) := minimize
x,u,θ

N∑
t=0

lt(ν, xt, ut, θt) (5.7a)

subject to: Axt +But = xt+1, t = 0, . . . , N, (5.7b)[
x̂t
ût

]
= Mθθt, t = 0, . . . , N, (5.7c)

Gxxt +Guut + g ≤ 0 t = 0, . . . , N, (5.7d)

Gxx̂t +Guût + gθ + Eεnl ≤ 0 t = 0, . . . , N, (5.7e)

ŷt = Nθθt t = 0, . . . , N, (5.7f)

x0 := xinit, (5.7g)

where xt ∈ Rn, ut ∈ Rnu indicate the t-step-ahead state and control predictions,
respectively. In addition, (5.7d) represents the constraints on the predicted state,
input, and output (Gx ∈ Rc×n, Gu ∈ Rc×nu , and gθ = g in fault-free operating
conditions) that follow from the definition of XMPC, U , and YMPC. Furthermore,
θt ∈ Rnu is the vector of parameters used to generate the artificial steady state,
input, and output x̂t, ût, and ŷt, respectively. Mθ andNθ are suitable matrices (refer
to [66] for details). For a prediction horizon of length N , the cost lt in (5.7a) is
described as follows:

lt(ν, xt, ut, θt) := ‖xt − x̂t‖2Q + ‖ut − ût‖2R + ρ1‖ŷt − ν‖22, (5.8)

where Q = QT ∈ Sn≥0, R = RT ∈ Sm>0, and ρ1 > 0.
The main idea of the artificial reference associated with the parameters θt in

Problem (5.7) is to generate a reference for the states and the control inputs that
achieves the control objectives (i.e., the tracking of the reference ν) while satisfy-
ing the constraints on the system. This strategy allows one to compromise between
tracking performance and feasibility of the solution when the commanded reference
ν does not lead to feasible state and control trajectories. In this respect, note that in
the cost the distance between the desired reference and ŷt is penalized by a factor
ρ1 > 0 (which is a tuning parameter of our design) in order to generate an output
trajectory close to the desired one. At the same time, the constraints (5.7e) prevent
that the generated trajectory along the prediction horizon becomes infeasible. This
strategy has the following advantage compared to the one proposed in [23]. For ev-
ery problem instance, if a jamming fault is detected on the actuators, with a simple
reconfiguration of the constraints on θt (i.e., by changing the definition of gθ ac-
cording to the severity of the fault, but without changing the initial feasible region
of the states and control commands) we can generate a feasible reference signal for
the state, input, and output that steers the system towards the new (post fault) fea-
sible region. This reference signal is clearly suboptimal (note that we are using the
2-norm in (5.8) to penalize the distance from ν, which is not an exact penalty), but
ensures a safer transition to the after-fault feasible region of the controller.
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Remark 5.3.6. One concern when using this approach is related to the stability of
the system controlled by the MPC controller. In [19] a terminal set for tracking is
introduced in the MPC problem formulation to guarantee stability. When a jamming
fault occurs, this impacts the definition of the terminal set that shrinks according
to the severity of the fault. While a rigorous stability proof is out of the scope
of this manuscript (our main focus is to provide a strategy for active diagnosis of
jamming faults using control reconfiguration and, consequently, in the remainder of
the chapter, we consider maneuvers that do not impact the stability of the system),
we provide different possible strategies/guidelines to design a robust MPC controller
in the presence of faults:

1. The jamming faults can be considered as (possibly persistent) disturbances
bounded in a given setW computed based on some heuristics (for example, by
considering different fault combinations). The robust terminal set for tracking
computed based on the worst combination of faults can then be used in the
MPC formulation (leading to a tube-based MPC design [64] for tracking).

2. If in the current setup we include a terminal set for tracking (according to [19]),
when a fault occurs, the only reconfigurations in the MPC problem formula-
tion affect the parameters θ used to generate the artificial reference signal. The
optimizer computes the best artificial reference trajectory to compromise be-
tween tracking performance and constraint satisfaction. Hence, if we tighten
(according to the severity of the fault) the constraints associated with the pa-
rameters θ this should directly prevent violation of the original terminal set for
tracking (which remains unmodified for the states and control commands).

3. Alternatively, if we include a terminal set for tracking in the current MPC
formulation (as in the previous point), a solution could be to tighten the termi-
nal set by an amount proportional to the fault and uncertainties in the model.
The terminal set associated with the augmented aircraft model takes into ac-
count also the dynamics of the actuators. Consequently changes in the actuator
bounds will impact the dynamics and the choice of the associated tightening
parameters.

An interesting alternative to be investigated (as part of our future research and out
of the scope of this manuscript) is related to the use of infinite horizon MPC formu-
lations [117; 122; 25], that are recently gaining increasing attention and can remove
the requirements of a terminal set in the MPC problem formulation.

Note that the constraints on the artificial states (5.7e) are tightened (E is the
matrix used to select the subset of state constraints where the tightening occurs),
compared to (5.7d), by a quantity εnl, which is computed by the disturbance ob-
server (presented in Section 5.3.2) at each sampling time. This additional tight-
ening allows the controller to take into account the effects of the plant model-
mismatches/nonlinearities, which are not modelled in the prediction model (5.7b)
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and cannot be modelled as constant disturbances (5.3). Consequently, the pairs
(x̂t, ût) are generated to take into account these plant-model mismatches leading to
a robust artificial reference generation, without directly affecting the feasible region
of the states and control inputs. Note that constraint tightening is a technique used
in robust MPC to avoid infeasibility in the presence of disturbances (the interested
reader can refer to [105] and the references within).

In general, the MPC controller solves Problem (5.7) online from the plant and re-
turns an optimal sequence of states and control inputs that minimizes the cost (5.7a).
Let the optimal sequence be defined as follows:

{x,u,θ} := {x0, . . . , x
∗
N , u

∗
0, . . . , u

∗
N−1, θ

∗
0 , . . . , θ

∗
N}. (5.9)

Only the first element of u is implemented in closed-loop, that is, the control law
obtained using the MPC controller is given by:

κMPC(ν, xinit) = u∗0, (5.10)

and the closed-loop system is described by

x(t+ 1) = Ax(t) +BκMPC(ν, xinit). (5.11)

With this framework in mind, the next section details the interactions between
the FD module and the MPC controller to actively detect and diagnose the root cause
of jamming faults.

5.4 Proposed FD-MPC Design

This section aims to describe the close interactions between the FD module and the
MPC controller (described in Sections 5.3.3 and 5.3.4, respectively) in our proposed
integrated FTMPC approach. Figure 5.4 summarizes these interactions. In the fol-
lowing, we show how the fault information obtained by the FD module is exploited
by the MPC controller and how the MPC controller actively modifies its reconfigu-
ration strategies to assist the FD module in diagnosing the root cause of a detected
elevator jamming.

5.4.1 Detection

As Figure 5.4 shows, during the detection phase, the FD module constantly monitors
each elevator by evaluating its corresponding residual signal eδei

with Ji in(5.4)
(i ∈ I). If the residual evaluation signal Ji associated with the i-th elevator at time
tfi exceeds the predefined threshold J th

i or differs from the others as described in
Section 5.3.3, the FD module detects that the i-th elevator is jammed. At this stage,
the root cause of jamming is still unknown. Hence, the FD module sends a message
to the MPC controller to activate the first reconfiguration (i.e., reconfiguration for
diagnosis in Figure 5.4).
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Figure 5.4: Proposed FD-MPC design.

5.4.2 Reconfiguration for Diagnosis

The aim of the reconfiguration for diagnosis is to help the FD module understand
the root cause of the jamming fault. The MPC controller checks the sign of eδei

at
time tfi to decide whether to modify δ ei or δ ei , that is, the upper or the lower bounds
of the i-th elevator. Note that this modification in the MPC problem formulation
affects only the definition of gθ (i.e., the feasible region of the parameters θ used to
generate the artificial reference signal). The idea is to temporarily set the jammed
elevator bound to a tightened value δf

ei ± γ, where δf
ei is the measured value of the

elevator at time tfi and γ is a positive constant that should be tuned sufficiently small
to preserve the performance of the controller, but, at the same time, large enough to
allow the size of residual signal to exceed the predefined threshold J th

i for a stuck
elevator. Note that the positive or negative (±) sign depends on the bound that the
MPC modifies, according to the description in Figure 5.4. The MPC maintains this
new γ-tightened bound for τ samples. On one hand, τ must be selected sufficiently
large to ensure that the control commands u have time to adjust to the updated (in
terms of feasible region) parameters θ. On the other hand, τ must be small enough
to preserve performance (especially in case of false alarms or stuck faults). It is
reasonable to set τ proportional to the prediction horizon N .
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5.4.3 Diagnosis of the Root Cause

If Ji(tfi + τ) < J th
i at the end of the diagnosis period, the FD module confirms

a stall load as the root cause of the jamming fault, because the controller showed
(using the reconfiguration for diagnosis) that jammed elevator can still move within
its reduced bounds. If Ji(tfi + τ) ≥ J th

i , the FD module confirms a stuck elevator as
the root cause of the jamming fault, because the faulty elevator was unable to reach
the tightened bound.

5.4.4 Reconfiguration for Stuck Fault

As soon as the FD module communicates the root cause of the jamming fault, the
MPC controller performs the second reconfiguration. If the diagnosis is that the ele-
vator is stuck, the MPC controller performs the reconfiguration for the stuck elevator
by setting both δ ei and δ ei in the definition of gθ to δfei , as Figure 5.4 shows. In this
way, the artificial reference is generated to take into account that the i-th elevator
is permanently stuck at the fault position and adapts the reference for the remaining
healthy elevators accordingly. This second reconfiguration is also the last one for the
stuck elevator.

5.4.5 Reconfiguration for Stall-Load Start

If the diagnosis is stall load on the i-th elevator, the MPC controller performs the re-
configuration for stall-load start to allow the detection of the end of the stall load. In
this respect, the controller sets the previously modified bound (δ ei or δ ei depending
on the sign of eδei

at time tfi) to the new value δfei ±α, that is, the controller allows a
α > 0 larger bound for the i-th elevator, but does not restore the original bound (δ

o
ei

or δ o
ei) yet. This new limit allows one to detect whether the elevators deviate from

the temporarily jammed position at the end of the stall load.

Remark 5.4.1. Setting α = 0 could prevent the FD module to monitor the end of
the stall load because the elevator cannot follow a command that exceeds its reduced
bound. The reduced bounds of elevators due to miss detecting the end of a stall load
may lead to sever control performance degradation.

5.4.6 Detection of the End of Stall Load

During the reconfiguration for stall-load start, the FD module constantly monitors
the discrepancy between the measured elevator position δm

ei and its previously jammed
position δfei . If |δm

ei − δ
f
ei | ≤ α, the FD module communicates that the stall load is

still active on the i-th elevator and the MPC controller maintains its current formu-
lation. When this condition is violated, the FD module communicates the end of the
stall load to the controller and returns to monitor the residual value.
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5.4.7 Reconfiguration for Stall-Load End

When the stall load ends, the MPC must restore the original saturation limit (i.e.,
gθ = g), which is the last reconfiguration for the stall load.

Remark 5.4.2. The MPC reconfiguration can handle more than one elevator fault at
a time, thanks to the decoupled structure of the FD module, which monitors each
elevator independently. In this work, however, we consider symmetric faults, that is,
if a jamming fault occurs on the left inner elevator, the same fault occurs on the right
inner elevator. The reason for this choice is related to the fact that nonsymmetric
faults affect the lateral behavior of the aircraft and would require a different (more
complex) model to build the MPC predictions.

Remark 5.4.3. Compared to [23], all the reconfigurations in the MPC problem for-
mulation do not affect the states and the control commands, but only the feasible
region of the parameters θ. These reconfigurations affect the way the artificial ref-
erence is generated and allow a smoother transition from the fault-free region to the
faulty feasible region (by generating a feasible reference signal for the states and
actuators for every problem instance).

5.4.8 Discussion

The proposed algorithm relies on the interactions between the FD unit and the MPC
controller. In this work, we proposed a simple FD design and an LTI MPC formu-
lation to simplify the presentation of our approach (as pointed out in Remarks 5.3.2
and 5.3.5).

The success of our proposed algorithm depends on the accuracy of the detection
and diagnosis. In general, the fault detection and diagnosis accuracy depends mainly
on Neval, J th

i and τ . These parameters determine the delay from fault occurrence to
control reconfiguration. On one hand, if we set these parameters so that the delay is
short, the FD results are less accurate. Consequently, control performance is sacri-
ficed. On the other hand, if we set those parameters so that the delay is larger, the FD
results are more accurate, but the control performance would still be sacrificed (due
to the larger delay). This suggests a trade-off in the waiting time for the reconfigura-
tion. Detailed theoretical analysis of such an integration for FD parameter tuning is
an open theoretical challenge [143]. Nevertheless, the intuitive understanding above
provides a guideline for tuning.

The proposed design is robust to scenarios that might lead to misdetection or
misdiagnosis of actuator faults. For example, if the reconfiguration for diagnosis is
triggered by a misdetection in the FD unit, a temporary reconfiguration of the actu-
ator bounds will be performed leading to τ time instances of conservative behavior.
In most cases, the redundancy in the number of actuators (that allows to reallocate
the control action on the healthy control surfaces) will mitigate the conservatism due
to the misdetection.
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A more severe situation that the proposed algorithm does not address is related
to the misdiagnosis of a stuck fault. In particular, suppose that τ is too short and the
residual signal does not have enough time to decrease during the diagnosis phase. In
this scenario, a stuck fault for an healthy elevator is diagnosed by our algorithm. This
misdetection can seriously affect the performance, especially if all the longitudinal
control surfaces are erroneously diagnosed as stuck. The algorithm can be modified
to include additional control surfaces (e.g., the ones associated to the lateral dynam-
ics) to compensate for the fault, or techniques to recover from the misdiagnosis of a
fault must be implemented for this particular scenario.

5.5 Simulation Results

This section presents numerical results of our integrated control strategy on an Air-
bus passenger aircraft simulator that has been the benchmark model of the RECON-
FIGURE project [37].

The threshold J th
i in the FD module is selected according to the guideline of

Section 5.3 and is equal to 0.40 for the inner elevators and to 0.65 for the outer ele-
vators (the thresholds are different given the differences between the inner and outer
elevator models). In addition, we implemented the detection strategy that exploits
redundancy described in Section 5.3.3. In this respect, the FD unit detects a fault
on the i-th elevator if Ji >= 4Jj , i , j, i, j ∈ I, that is, when the residual signal
of the i-th elevator is four times larger than the residual signals of the other eleva-
tors. In addition, we selected the time required for the diagnosis of the root cause
of the jamming as τ = NTs (N = 20 is the length of the prediction horizon and
Ts := 0.04 sec is the sampling time of the system), that is, τ is selected proportional
to the prediction horizon used in the MPC problem formulation. Another parameter
that requires a trade-off between performance and accuracy is γ, used to tighten the
faulty-elevator constraints during the reconfiguration-for-diagnosis phase. We no-
ticed that a small value of γ (e.g., 1% of the maximum allowed control command)
is sufficient for the diagnosis. Finally, we selected α sufficiently large (e.g., 3γ)
to avoid false alarms in the detection of the stall-load end right after the diagnosis
phase.

We trimmed the aircraft at an altitude of 12, 500 feet and calibrated airspeed of
335 knots (inside the flight envelope) and we used the linearized model of the aircraft
at the trimmed operating condition to build the MPC prediction model. Our aim is
to track a doublet signal on the vertical load factor, that is, ν := nzref . Specifically,
we consider the sequence of two doublets of different amplitude. The first doublet
starts at 0.04 sec and ends at 20.04 sec and its value exceeds the allowed constraints
on the vertical load factor. The second doublet starts at 30.04 sec and ends at 50.04
sec and its value remains within the constraints of the vertical load factor. We study
the performance of our integrated design in the following scenarios:

• Stall load occurring at 2.65 sec from the beginning of the simulation on the
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inner elevators.

• Stuck fault occurring on the inner elevators at 2.65 sec from the beginning of
the simulation.

The baseline to evaluate the performance of the proposed integrated design is the
behavior of the system controlled by the MPC controller, in the fault-free case. Note
that we simulate the occurrence of the faults during the first doublet when the ref-
erence signal starts exceeding the vertical load factor bounds. Furthermore, in the
following, recall that all the reconfigurations operate on the feasible region of the
artificial reference signal (as discussed in Section 5.4) and do not affect the original
feasible region of the states and actuators.

5.5.1 Stall Load

Figures 5.5-5.6 present the results obtained using the proposed algorithm (i.e., the
integrated FD-MPC design) in case of stall load on the inner elevators. In this sce-
nario the outer elevators are healthy.

Figure 5.5 details the behavior of the vertical load factor. During the first part of
the manoeuvre the stall load occurs. The proposed algorithm allows the controller
to avoid the constraint violation of the vertical load factor (that would have occurred
without a tailored control reconfiguration) with a minor loss of performance (less
than 5%) compared to the fault-free case (dot-dashed green line). Figure 5.61 details
the behavior of the elevators and of the residual signals during the detection and di-
agnosis of the stall load. Once the fault is detected, the MPC controller immediately
updates the lower bound of the faulty inner elevators. Consequently, the outer ele-
vators (second row) compensate for the temporary loss of the inner elevators (first
row) leading to an overall control action (third row) that is comparable to the one in
the fault-free case.

The detection and diagnosis of the fault is fundamental for the performance of
the controller. In particular, as shown in the last row of Figure 5.6, the FD unit
alerts the MPC controller as soon as the residual signal Ji of the inner elevators
starts to abnormally increase with respect to the one of the outer elevators. When the
anomaly is detected the MPC controller proceeds to perform the reconfiguration for
fault diagnosis (first row) and adapts the reference signal to maintain feasibility. At
the end of the detection time, given that the residual signal is below the threshold,
the FD unit notifies the MPC controller of the occurrence of a stall load. Note that,
at the end of the detection phase, the inner elevators are no longer in stall, but they
remain close (within α) to the lower bound. Hence, the FD unit does not immediately
declare the end of the stall load and waits that the conditions for the reconfiguration
for stall-load end are met. As soon as the inner elevators move away from their

1The units on the vertical axis of the elevator plots (Figures 5.6, 5.8) have been removed upon request
of our industrial partners.
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Figure 5.5: Comparison of the vertical load factor tracking performance in the fault-free case
(dot-dashed green line) and when a stall load on the inner elevators (at 2.65 sec from the
beginning of the simulation) is detected and diagnosed using the proposed integrated design
(solid blue line).

reduced saturation bounds the stall load ends and the MPC controller restores the
original elevator bounds.

5.5.2 Stuck Fault

Figures 5.7-5.8 present the results obtained using the proposed integrated control
algorithm in case of permanent jamming of the inner elevators. In this scenario the
outer elevators are healthy.

Figure 5.7 details the behavior of the vertical load factor. During the first part of
the manoeuvre the inner elevators become jammed. The proposed algorithm, thanks
to the detection and diagnosis of the root cause of the jamming fault, allows the
controller to avoid the constraint violation of the vertical load factor with a minor
loss of performance. Note that without the proposed sequence of reconfigurations
for detection and diagnosis, due to the severity of the fault, the MPC controller would
not be able to maintain the system within its feasible region and ensure stability.

Figure 5.8 presents the behavior of the elevators and of the residual signals dur-
ing the detection and diagnosis of the stuck fault. Once the fault is detected, the
MPC controller immediately performs the first reconfiguration (as done in the previ-
ous case for the temporary jamming) to update the bounds associated with the inner
elevators in the feasible region of the artificial reference. During the detection phase,
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compared to the previous scenario, the residual signal of the inner elevators (solid
blue line on the last row of Figure 5.8) increases. At the end of the detection time the
residual signal associated with the inner elevators is still above the predefined thresh-
old and the FD module can diagnose the permanent jamming of the inner elevators.
After the diagnosis, the MPC controller performs the reconfiguration for stuck fault
by updating the upper and lower bound of the faulty elevators in the MPC problem
formulation (as also the first row of Figure 5.8 depicts). The tracking performance
is maintained (compared to the fault-free case depicted in dash-dotted green lines)
with limited loss thanks to the reallocation of the control authority on the healthy
outer elevators (second and third row of Figure 5.8). The minor performance loss is
due mainly to the inner elevator being stuck to a nonzero value and the presence of
physical rate limitations in the actuators that affect the response of the outer elevators
to the loss of the inner ones.

5.6 Conclusions

We presented a novel fault-tolerant controller tailored to aerospace applications. Our
approach relies on the close interaction between a fault-detection (FD) module and
a model predictive controller (MPC). The FD module exploits the controller to diag-
nose the root cause of the elevator jamming and the MPC exploits the information
provided by the FD module to better handle the jamming. We showed on an Airbus
passenger aircraft simulator the benefits that our strategy can bring to the perfor-
mance of the control system.

As the numerical example showed, the proposed integrated design provides an
effective strategy for the detection and active diagnosis of jamming faults that can
occur on the aircraft actuators. Furthermore, the reconfiguration and fault-tolerant
reference generation allows one to preserve the tracking performance after the oc-
currence of the fault.

A limitation of the current approach is related to the definition of the threshold
used to activate the diagnosis. Exploiting the information provided by the other actu-
ators helps the early detection of the faults, but if all the control surfaces are affected
by a fault (e.g., in case of temporary jamming) the choice of the threshold remains
critical. As part of our future work, we plan to investigate different strategies on the
threshold selection (for example, by exploring the relationship with the amplitude of
the reference signal and disturbances) to improve the detection of the fault.
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Figure 5.6: Comparison of the elevator behaviors (rows 1–3) in the fault-free case (dot-dashed
green line) and when a stall load on the inner elevators is detected and diagnosed using the
proposed integrated design (solid blue line). The last row depicts the behavior of the residual
signals used to detect and diagnose the fault. The grey area highlights the duration of the
reconfiguration for stall load start.
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the beginning of the simulation) is detected and diagnosed using the proposed integrated design
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green line) and when a stuck fault on the inner elevators is detected and diagnosed using the
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6
Conclusions

This dissertation focused on the design of first-order methods for MPC in appli-
cations with fast dynamics, motivated by the benchmark problem of the EU funded
project RECONFIGURE. The main techniques we relied on in this work are proximal-
gradient and splitting methods. In the following, we summarize the key results of
this dissertation.

• Adaptive constraint-tightening strategy for MPC. We showed how to deal
with the early termination of a first-order solver to guarantee recursive feasibil-
ity and closed-loop stability of the system controlled by the MPC controller. The
main idea was to deal with the early termination of the solver in a robust way, that
is, by tightening the feasible region of the MPC problem by a quantity propor-
tional to the possible constraint violation. The amount of tightening is selected
online to reduce the conservatism in the solution.

• Parallel constraint-tightening strategy for MPC. The approach above was ini-
tially developed to handle the possible infeasibility and suboptimality of the MPC
problem solution obtained from Nesterov’s dual fast gradient scheme. This the-
ory was then nontrivially extended and improved by using splitting methods to
exploit the structure of the MPC problem. The resulting algorithm is suitable for
implementation on parallel hardware architectures. Furthermore, by exploiting
the structure of the MPC problem, we showed how to improve the numerical
properties of the MPC problem itself and, consequently, the practical conver-
gence of the solver. Furthermore, the initial results were extended to deal with
tracking problems.

• Accelerated versions of the stochastic proximal-gradient method with vari-
ance reduction. We proposed two different acceleration strategies of the stochas-
tic proximal-gradient (Prox-SVRG) method proposed in [136]. Prox-SVRG uses
a multistage strategy that consists of two loops: an inner loop (the algorithm
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behaves similarly to the stochastic proximal-gradient method) and an outer loop
(the algorithm behaves similarly to a proximal-gradient method). First, we showed
how to accelerate the inner loop of Prox-SVRG by exploiting its similarity to the
inexact proximal-gradient method. Second, we showed how to accelerate the
outer loop of the Prox-SVRG by using in the proof classical stability arguments
based on dynamical systems theory.

• Stochastic alternating minimization algorithm with variance reduction. We
proposed a stochastic alternating minimization algorithm with variance reduc-
tion (SVR-AMA) suitable for MPC applications. In particular, the proposed
algorithm follows from the application of Prox-SVRG to the dual of the MPC
problem. Furthermore, we also proposed two accelerated versions of SVR-AMA
following a similar approach to the one described above for Prox-SVRG.

• Numerical results on aerospace applications. All the proposed methods were
tested using aerospace applications (longitudinal flight control problems) to eval-
uate the performance of the proposed solvers and control algorithms when ap-
plied to these systems. The proposed solvers led to significant improvements in
terms of quality of the MPC problem solution achievable within the sampling
time of the aircraft. Furthermore, the proposed control algorithms guaranteed
closed-loop stability and recursive feasibility.

• Active diagnosis strategy for jamming faults. We designed a fault detection
and diagnosis algorithm that strongly relies on reconfigurable MPC to handle el-
evator jamming faults. The diagnosis of the fault is active in the sense that the
fault detection (FD) unit is able to diagnose the root cause of the jamming by us-
ing the information provided by the MPC controller. In this respect, after the FD
unit communicates the occurrence of a fault, the MPC controller is commanded
to perform a tailored reconfiguration that provides the FD unit with the neces-
sary information for the diagnosis. Without these interactions, passive diagnosis
methods alone would not be able to diagnose the root cause of the jamming faults.

• Fault-tolerant reference generation. In order to help the FD unit diagnose the
root cause of jamming faults, we proposed the use of an artificial reference for the
state and the control commands that takes into account the occurrence of faults.
This strategy helps deal with changes in the feasible region of the controller, by
generating, for each problem instance, a reference signal that is feasible for the
available control command.

Future Directions

1. Distributed MPC using SVR-AMA. The proposed SVR-AMA scheme can be
a suitable candidate to deal with large-scale distributed MPC applications. In
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particular, it would be interesting to investigate the possibility of using the prob-
ability distribution of the random updates as a tuning parameter to design the
interactions among different agents in the network.

2. Constrained linear quadratic regulator problem. The presence of the ter-
minal set to guarantee closed-loop stability in MPC often leads to conservative
performance. In addition, the terminal set has usually (a negative) impact on
the conditioning of the optimization problem leading to poor performance of the
first-order solver (in terms of number of iterations needed to reach a desired level
of suboptimality). Hence, it would be interesting to reconsider the constrained
linear quadratic regulator problem. Promising results in this direction are pro-
vided in [122; 25].

3. Implementation on embedded systems. Several studies focused on the is-
sues related to the implementation of solvers for embedded MPC applications
([53; 145; 38; 92] to mention a few). Most of the algorithms proposed in this
dissertation have been implemented in MATLAB (with a few exceptions in C)
using floating-point architectures. It would be interesting to investigate how these
algorithms (especially SVR-AMA) perform on fixed-point units. Furthermore,
it would be interesting to implement the proposed designs using the Airbus li-
brary, which is a formally verified programming language used to implement the
control laws on the on-board control unit and only supports a limited number of
operations.

4. Data-driven designs. From the control perspective, accurate models are impor-
tant for MPC to guarantee good performance. For flight control applications,
we have to take into account that the aircraft dynamics can vary significantly
throughout the flight envelope and are influenced by several parameters and flight
modes, such as control surface configurations, landing gear, the center of grav-
ity, the weight of the aircraft or weather conditions (e.g., presence of icing), to
mention a few. All these parameters have a significant impact on the dynamics
of the aircraft that cannot be captured by a single LTI model. In practice, there
is typically a lack of availability of sets of linearized models (corresponding to
operating points sampled sufficiently densely from the flight envelope) corre-
sponding to all parameter configurations. This motivates the study of alternative
approaches based on data-driven online model adaptation and control design,
such as moving horizon estimation (MHE) [102; 45] or subspace predictive con-
trol (SPC) problems [18]. In this respect, there are already some studies on SPC
for aerospace applications (for example, in [40]), but the work is still limited due
to the computation requirements of this technique.

5. Linking control theory and optimization. In the proof of the outer acceleration
of Prox-SVRG we relied on dynamical systems theory to derive conclusions on
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the convergence of the solver. Thanks to this theory we could provide a simple
proof of convergence of the algorithm. There is an emerging trend in applying
control theory to optimization [127; 133; 132; 41]. In this respect, we can investi-
gate the use of control theory to revise the analysis and improve the convergence
of the first-order solvers introduced in this dissertation.

6. Application domains. The proposed algorithms have been tested on aerospace
applications, motivated by the benchmark model of the RECONFIGURE project.
The proposed techniques can be used in other application domains with hard
real-time constraints, such as automotive or maritime applications. For example,
the use of splitting algorithms is still limited for motion planning and control
of autonomous cars or vessels. The proposed algorithms can be of great use to
develop distributed real-time planners to handle dynamic environments and avoid
collisions.
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predictive control using tubes. Automatica, 40(1):125–133, 2004.

[65] J. Lew. Robust predictive control for structures under damage condition. Jour-
nal of Guidance, Control, and Dynamics, 36:1824–1829, 2013.



133

[66] D. Limón, I. Alvarado, T. Alamo, and E. F. Camacho. MPC for tracking of
piece-wise constant references for constrained linear systems. Automatica,
44:2382–2387, 2008. DOI:10.1016/j.automatica.2008.01.023.

[67] D. Luenberger. Observers for multivariable systems. IEEE Transactions on
Automatic Control, 11(2):190–197, 1966. DOI:10.1109/TAC.1966.1098323.

[68] J. M. Maciejowski. The implicit daisy-chaining property of constrained pre-
dictive control. Applied Mathematics and Computer Science, 8:695–712,
1998.

[69] J. M. Maciejowski. Predictive Control: with Constraints. Pearson Education,
2002.

[70] J. M. Maciejowski and C. N. Jones. MPC fault-tolerant flight control case
study: Flight 1862. In Proceedings of IFAC Safeprocess Sympoisum, pages
119–124, 2003.

[71] A. Marcos and G. J. Balas. Development of linear-parameter-varying models
for aircraft. Journal of Guidance, Control, and Dynamics, 27(2):218–228,
2004.

[72] D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert. Constrained
model predictive control: Stability and optimality. Automatica, 36(6):789–
814, 2000. DOI:10.1016/S0005-1098(99)00214-9.

[73] S. Mehrotra. On the Implementation of a Primal-Dual Interior Point Method.
SIAM Journal on Optimization, 2(4):575–601, 1992.

[74] I. Necoara and D. Clipici. Efficient parallel coordinate descent algorithm
for convex optimization problems with separable constraints: application to
distributed MPC. Journal of Process Control, 23(3):243–253, 2013.

[75] I. Necoara and V. Nedelcu. Rate analysis of inexact dual first order methods.
application to dual decomposition. IEEE Transactions on Automatic Control,
59(5):1232–1243, 2014. DOI: 10.1109/TAC.2013.2294614.

[76] I. Necoara and J.A.K. Suykens. Application of a smoothing technique to de-
composition in convex optimization. IEEE Transactions on Automatic Con-
trol, 53(11):2674–2679, 2008.

[77] I. Necoara, V. Nedelcu, and I. Dumitrache. Parallel and distributed optimiza-
tion methods for estimation and control in networks. Journal of Process Con-
trol, 21:756–766, 2011.

[78] I. Necoara, L. Ferranti, and T. Keviczky. An adaptive constraint tightening ap-
proach to linear model predictive control based on approximation algorithms
for optimization. Optimal Control Applications and Methods, 36(5):648–666,
2015. ISSN 1099-1514. DOI:10.1002/oca.2121.



134 CHAPTER 6. CONCLUSIONS

[79] V. Nedelcu, I. Necoara, and Q. Tran-Dinh. Computational complexity of
inexact gradient augmented Lagrangian methods: application to constrained
MPC. SIAM Journal on Control and Optimization, 52(5):3109–3134, 2014.

[80] A. Nedic and A. Ozdaglar. Approximate primal solutions and rate analysis for
dual subgradient methods. SIAM Journal on Optimization, 19(4):1757–1780,
2009. DOI:10.1137/070708111.

[81] Y. Nesterov. A method of solving a convex programming problem with con-
vergence rate O(1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983.

[82] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical
Programming, 103(1):127–152, 2005. DOI:10.1007/s10107-004-0552-5.

[83] V. Nevistic and J. A. Primbs. Finite receding horizon linear quadratic control:
A unifying theory for stability and performance analysis. Technical report,
California Institute of Technology, Pasadena, CA, 1997.

[84] A. Nitanda. Stochastic proximal gradient descent with acceleration tech-
niques. In Proceedings of Advances in Neural Information Processing Sys-
tems, pages 1574–1582, 2014.

[85] I. Notarnicola and G. Notarstefano. Randomized dual proximal gradient for
large-scale distributed optimization. In Proceedings of the 54th IEEE Confer-
ence on Decision and Control, pages 712–717, 2015.

[86] B. O’Donoghue and E. Candès. Adaptive restart for accelerated gradient
schemes. Foundations of Computational Mathematics, 15(3):715–732, 2015.
DOI:10.1007/s10208-013-9150-3.

[87] D. Ossmann. Fault tolerant control design for the longitudinal aircraft dynam-
ics using quantitative feedback theory. In AIAA Guidance, Navigation, and
Control Conference, pages 1–16, 2015. DOI:10.2514/6.2015-1310.

[88] N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends® in
Optimization, 1(3):127–239, 2014. DOI:10.1561/2400000003.

[89] A. Patrascu, I. Necoara, and R. Findeisen. Rate of convergence analysis of a
dual fast gradient method for general convex optimization. In Proceedings of
the 54th IEEE Conference on Decision and Control (CDC), pages 3311–3316,
2015. DOI:10.1109/CDC.2015.7402717.

[90] P. Patrinos and A. Bemporad. An accelerated dual gradient-projection algo-
rithm for embedded linear model predictive control. IEEE Transactions on
Automatic Control, 59(1):18–33, 2014. DOI:10.1109/TAC.2013.2275667.

[91] P. Patrinos and P. Bemporad. An accelerated dual gradient-projection algo-
rithm for linear model predictive control. In Proceedings of the 51st IEEE
Conference on Decision and Control, pages 662–667, 2012.



135

[92] P. Patrinos, A. Guiggiani, and A. Bemporad. Fixed-point dual gradient projec-
tion for embedded model predictive control. In Proceedings of the European
Control Conference (ECC’13), pages 3602–3607, 2013.

[93] T. Péni, B. Vanek, Z. Szabò, and J. Bokor. Supervisory fault tolerant control of
the GTM UAV using LPV methods. International Journal of Applied Math-
ematics and Computer Science, 25(1):117–131, 2015. DOI:10.1515/amcs-
2015-0009.

[94] I. Prodan, S. Olaru, R. Bencatel, J. B. de Sousa, C. Stoica, and S. I.
Niculescu. Receding horizon flight control for trajectory tracking of au-
tonomous aerial vehicles. Control Engineering Practice, 21(10):1334–1349,
2013. DOI:10.1016/j.conengprac.2013.05.010.

[95] A. I. Propoi. Use of linear programming methods for synthesizing sampled-
data automatic systems. Automation and Remote Control, 24(7):837–844,
1963.

[96] Y. Pu, M. N. Zeilinger, and C. N. Jones. Fast alternating minimization
algorithm for model predictive control. In Proceedings of the 19th IFAC
World Congress, pages 11980–11986, 2014. DOI:10.3182/20140824-6-ZA-
1003.01432.

[97] Y. Pu, C.N. Jones, and M.N. Zeilinger. Inexact alternating minimization al-
gorithm for distributed optimization with an application to distributed MPC.
Technical report, EPFL, August 2016. arXiv preprint arXiv:1608.00413.

[98] I. Puncochar, J. Siroky, and M. Simandl. Constrained active fault detection
and control. IEEE Transactions on Automatic Control, 60:253–258, 2015.

[99] S.J. Qin and T.A. Badgwell. A survey of industrial model predictive control
technology. Control Engineering Practice, 11(7):733–764, 2003.

[100] D. M. Raimondo, G. R. Marseglia, R. D. Braatz, and J. K. Scott. Fault-tolerant
model predictive control with active fault isolation. In Proceedings of 2013
Conference on Control and Fault-Tolerant Systems, Nice, France, 2013.

[101] C. V. Rao, S. J. Wright, and J. B. Rawlings. Application of interior-point
methods to model predictive control. Journal of Optimization Theory and
Applications, 99(3):723–757, 1998. DOI:10.1023/A:1021711402723.

[102] J. B. Rawlings. Moving horizon estimation. Encyclopedia of Systems and
Control, pages 1–7, 2014.

[103] J.B. Rawlings and D.Q. Mayne. Model Predictive Control: Theory and De-
sign. Nob Hill Publishing, 2009.

[104] J. Richalet, A. Rault, J.L. Testud, and J. Papon. Model predictive heuristic
control: Applications to industrial processes. Automatica, 14(1):413–428,



136 CHAPTER 6. CONCLUSIONS

1978. DOI:10.1016/0005-1098(78)90001-8.

[105] A. Richards and J. How. Robust stable model predictive control with con-
straint tightening. In Proceedings of the American Control Conference, pages
1557–1562. IEEE, 2006.

[106] S. Richter, C.N. Jones, and M. Morari. Real-time input-constrained
MPC using fast gradient methods. In Proceedings of the 48th
IEEE CDC held jointly with the 28th CCC, pages 7387–7393, 2009.
DOI:10.1109/CDC.2009.5400619.

[107] S. Richter, M. Morari, and C.N. Jones. Towards computational complexity
certification for constrained MPC based on Lagrange relaxation and the fast
gradient method. In Proceedings of the 50th IEEE Conference on Decision
and Control, pages 5223–5229, 2011.

[108] S. Richter, C.N. Jones, and M. Morari. Computational complexity certifi-
cation for real-time MPC with input constraints based on the fast gradient
method. IEEE Transactions on Automatic Control, 57:1391–1403, 2012.

[109] S. Richter, C. N. Jones, and M. Morari. Certification aspects of the fast gradi-
ent method for solving the dual of parametric convex programs. Mathematical
Methods of Operations Research, 77(3):305–321, 2013.

[110] P. Rosa, J. Vasconcelos, and M. Kerr. A mixed-µ approach to the inte-
grated design of an FDI/FTC system applied to a high-fidelity industrial air-
bus nonlinear simulator. 9th IFAC Symposium on Fault Detection, Supervision
and Safety for Technical Processes (SAFEPROCESS), 48(21):988–993, 2015.
DOI:10.1016/j.ifacol.2015.09.655.

[111] M. Rubagotti, P. Patrinos, and A. Bemporad. Stabilizing Embedded MPC
with Computational Complexity Guarantees. In Proceedings of the European
Control Conference, pages 3065–3070, July 2013.

[112] M. Rubagotti, P. Patrinos, and A. Bemporad. Stabilizing linear model pre-
dictive control under inexact numerical optimization. IEEE Transactions on
Automatic Control, 59(6):1660–1666, 2014.

[113] R.S. Russell. Nonlinear F-16 simulation using simulink and matlab. Tech-
nical report, University of Minnesota, 2003. https://www.aem.umn.edu/
people/faculty/balas/darpa_sec/software/F16Manual.pdf.

[114] R. Scattolini. Architectures for distributed and hierarchical model predictive
control - a review. Journal of Process Control, 19(5):723–731, 2009.

[115] C.W. Scherer. LPV control and full block multipliers. Automatica, 37(3):
361–375, 2001. DOI:10.1016/S0005-1098(00)00176-X.

[116] M. Schmidt, N. Le Roux, and F. Bach. Convergence rates of inexact proximal-

https://www.aem.umn.edu/people/faculty/balas/darpa_sec/software/F16Manual.pdf
https://www.aem.umn.edu/people/faculty/balas/darpa_sec/software/F16Manual.pdf


137

gradient methods for convex optimization. In Advances in neural information
processing systems (NIPS), pages 1458–1466, 2011.

[117] P. O. M. Scokaert and J. B. Rawlings. Constrained linear quadratic regulation.
IEEE Transactions on Automatic Control, 43(8):1163–1169, 1998.

[118] P.O.M. Scokaert, D.Q. Mayne, and J.B. Rawlings. Suboptimal model predic-
tive control (feasibility implies stability). IEEE Transactions on Automatic
Control, 44(3):648–654, 1999.

[119] S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods
for regularized loss minimization. Journal of Machine Learning Research,
14:567–599, 2013.

[120] S. Shalev-Shwartz and T. Zhang. Accelerated proximal stochastic dual coor-
dinate ascent for regularized loss minimization. Mathematical Programming,
155:105–145, 2016.

[121] G. Stathopoulos, T. Keviczky, and Y. Wang. A hierarchical time-splitting
approach for solving finite-time optimal control problems. In Proceedings of
the Eurpean Control Conference (ECC’13), pages 3089–3094. IEEE, 2013.

[122] G. Stathopoulos, M. Korda, and C. N. Jones. Solving the infinite-
horizon constrained LQR problem using accelerated dual proximal
methods. IEEE Transactions on Automatic Control (TAC), 2016.
DOI:10.1109/TAC.2016.2594381.

[123] G. Stathopoulos, H. Shukla, A. Szucs, Y. Pu, and C. N. Jones. Operator split-
ting methods in control. Foundations and Trends® in Systems and Control, 3
(3):249–362, 2016.

[124] B. Stevens, , and F. Lewis. Aircraft Control and Simulation. Wiley, New
York, 1992.

[125] B.T. Stewart, A.N. Venkat, J.B. Rawlings, S.J. Wright, and G. Pannocchia.
Cooperative distributed model predictive control. Systems & Control Letters,
59:460–469, 2010.

[126] F. Stoican and S. Olaru. Set-theoretic Fault-tolerant Control in Multisensor
Systems. John Wiley & Sons, Inc., 2013.

[127] W. Su, S. Boyd, and E. Candès. A differential equation for modeling Nes-
terov’s accelerated gradient method: Theory and insights. In Advances in
Neural Information Processing Systems, pages 2510–2518, 2014.

[128] P. Tseng. Applications of a splitting algorithm to decomposition in convex
programming and variational inequalities. SIAM Journal on Control and Op-
timization, 29(1):119—138, 1991. DOI:10.1137/0329006.

[129] F. Ullmann. A matlab toolbox for C-code generation for first order methods.



138 CHAPTER 6. CONCLUSIONS

Technical report, ETH Zürich, 2011.

[130] M. Voss and R. Eigenmann. Reducing parallel overheads through dynamic
serialization. In Proceedings of the 13th IPDPS, pages 88–92. IEEE, 1999.
DOI:10.1109/IPPS.1999.760440.

[131] Y. Wang and S. Boyd. Fast Model Predictive Control Using Online Opti-
mization. IEEE Transactions on Control Systems Technology, 18(2):267–278,
2010. DOI:10.1109/TCST.2009.2017934.

[132] A. Wibisono, A. C. Wilson, and M. I. Jordan. A variational perspective on
accelerated methods in optimization. Proceedings of the National Academy
of Sciences, 113(47):E7351–E7358, 2016. DOI:10.1073/pnas.1614734113.

[133] A. C Wilson, B. Recht, and M. I. Jordan. A lyapunov analysis of momentum
methods in optimization. arXiv preprint arXiv:1611.02635, 2016.

[134] S. J. Wright. Primal-Dual Interior-Point Methods. SIAM Publications, 1997.

[135] S. J. Wright. Applying New Optimization Algorithms to Model Predictive
Control. AIChE Symposium Series, 93(316):147–155, 1997.

[136] L. Xiao and T. Zhang. A proximal stochastic gradient method with progres-
sive variance reduction. SIAM Journal on Optimization, 24(4):2057–2075,
2014. DOI:10.1137/140961791.

[137] F. Xu, S. Olaru, V. Puig, C. Ocampo-Martínez, and S. Niculescu. Sensor-fault
tolerance using robust MPC with set-based state estimation and active fault
isolation. In Proceedings of the 53rd Conference on Decision and Control,
pages 4953–4958, Los Angeles, CA, 2014.

[138] J.C. Duchi Y. Singer. Efficient learning using forward-backward splitting. In
Proceedings of Advances in Neural Information Processing Systems, pages
495–503, 2009.

[139] A. Yetendje, M. M. Seron, and J. A. De Doná. Robust multiactuator fault-
tolerant MPC design for constrained systems. International Journal of Robust
and Nonlinear Control, 23:1828–1845, 2013.

[140] X. Yu, Z. Liu, and Y. Zhang. Fault-tolerant flight control de-
sign with finite-time adaptation under actuator stuck failures. IEEE
Transactions on Control Systems Technology, 25(4):1431–1440, 2017.
DOI:10.1109/TCST.2016.2603072.

[141] M. N. Zeilinger, N. J. Colin, D. M. Raimondo, and M. Morari. Real-time
MPC-Stability through Robust MPC design. In Proceedings of the 48th IEEE
Conference on Decision and Control held jointly with the 28th Chinese Con-
trol Conference, pages 3980–3986, 2009. DOI:10.1109/CDC.2009.5400903.

[142] Y. Zhang and J. Jiang. Fault tolerant control system design with



139

explicit consideration of performance degradation. IEEE Transac-
tions on Aerospace and Electronic Systems, 39(3):838–848, 2003.
DOI:10.1109/TAES.2003.1238740.

[143] Y. Zhang and J. Jiang. Issues on integration of fault diagnosis and recon-
figurable control in active fault-tolerant control systems. IFAC Proceedings
Volumes, 39(13):1437–1448, 2006.

[144] Y. Zhang and J. Jiang. Bibliographical review on reconfigurable fault-
tolerant control systems. Annual Reviews in Control, 32(2):229 – 252, 2008.
DOI:10.1016/j.arcontrol.2008.03.008.

[145] P. Zometa, M. Koegel, T. Faulwasser, and R. Findeisen. Implementation as-
pects of model predictive control for embedded systems. In Proceedings of
the American Control Conference, pages 1205–1210, 2012.





Curriculum Vitae

Laura Ferranti was born in Rome in 1986. She received
her B.Sc. degree in Control Engineering from the Uni-
versity of Rome “Tor Vergata”, Rome, Italy, in 2009, and
her M.Sc. degree in Control Engineering from the Uni-
versity of Rome “Tor Vergata”, Rome, Italy, in 2012.
Her M.Sc. thesis project was carried out at ULg in
collaboration with Schneider-Toshiba Inverter Europe,
France. After her M.Sc. graduation, she was a visit-
ing scholar at UC Berkeley, CA, in 2012. She conducted
the research that led to this dissertation in the Delft Cen-

ter for Systems and Control (DCSC), Delft University of Technology, Delft, The
Netherlands, from 2013 to 2017. During her Ph.D. studies, she was a vising re-
searcher at EPFL, Lausanne, Switzerland, at the beginning of 2016.

Her research interests include optimization and optimal control, model predictive
control, embedded optimization-based control with application in flight control.

141





Publications

This dissertation consists of a number of research papers, as published in the follow-
ing journals (or as recently submitted for review) 1:

I. Necoara, L. Ferranti, and T. Keviczky. An adaptive constraint tightening approach to linear
model predictive control based on approximation algorithms for optimization2. Journal of
Optimal Control Applications and Methods (OCAM), DOI:10.1002/oca.2121, 2015.

L. Ferranti and T. Keviczky. Operator-splitting and gradient methods for real-time predic-
tive flight control design3. AIAA Journal of Guidance, Control, and Dynamics (JGCD),
DOI:10.2514/1.G000288, 2016.

L. Ferranti, Y. Pu, C. N. Jones, and T. Keviczky. SVR-AMA: an asynchronous alternating
minimization algorithm with variance reduction for model predictive control applications 4.
Submitted for review to the IEEE Transactions on Automatic Control (TAC), 2017.

L. Ferranti, Y. Wan, and T. Keviczky. Fault-tolerant reference generation for model predictive
control with active diagnosis of elevator jamming faults5. Submitted for review to the Inter-
national Journal of Robust and Nonlinear Control (IJRNC), 2017.

1The text may slightly differ from the original version in minor editorial changes made to improve
readability.

2Appears in Chapter 2.
3Appears in Chapter 3.
4Appears in Chapter 4.
5Appears in Chapter 5.

143



144 PUBLICATIONS

Related publications not included in the dissertation are listed in the following:

L. Ferranti, Y. Wan, and T. Keviczky. Predictive flight control with active diagnosis and re-
configuration for actuator jamming In Proceedings of the 5th IFAC Conference on Nonlinear
Model Predictive Control (NMPC), vol. 48, n. 23, pp. 166-171, Seville, 2015.

L. Ferranti and T. Keviczky. A parallel dual fast gradient method for MPC applications. In
Proceedings of the 54th IEEE Conference on Decision and Control (CDC), pp. 2406-2413,
Osaka, 2015.

L. Ferranti and T. Keviczky. MPC design for the longitudinal motion of a passenger aircraft
based on operator-splitting and fast-gradient methods. In Proceedings of the European Con-
trol Conference (ECC), Aalborg, 2016.

L. Ferranti, Y. Pu, C. N. Jones, and T. Keviczky. Asynchronous splitting design for model pre-
dictive control In Proceedings of the 55th IEEE Conference on Decision and Control (CDC),
Las Vegas, 2016.

L. Ferranti, G. Stathopoulos, C. N. Jones, and T. Keviczky. Constrained LQR using online
decomposition techniques In Proceedings of the 55th IEEE Conference on Decision and
Control (CDC), Las Vegas, 2016.

X. Zhang, L. Ferranti, and T. Keviczky. An improved primal-dual interior-point solver for
model predictive control Accepted for publication in the proceedings of the the 56th IEEE
Conference on Decision and Control (CDC), Melbourne, 2017.


	Acknowledgements
	Summary
	Samenvatting
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 An Adaptive Constraint Tightening Approach to Linear Model Predictive Control Based on Approximation Algorithms for Optimization
	2.1 Introduction
	2.2 Condensed QP Formulation for Linear MPC
	2.3 Dual Fast Gradient Algorithm for Convex Problems
	2.4 Suboptimality, Feasibility, and Stability of the MPC Scheme
	2.5 Numerical Flight Control Simulation Example
	2.5.1 MPC Problem Formulation
	2.5.2 Simulation Results

	2.6 Conclusions

	3 Operator-Splitting and Gradient Methods for Real-Time Predictive Flight Control Design
	3.1 Introduction
	3.2 Motivating Example
	3.3 The Parallel Dual Fast Gradient Algorithm
	3.3.1 Operator Splitting
	3.3.2 Equality Constraint Relaxation
	3.3.3 Tightening of the Original Inequality Constraints

	3.4 General MPC Formulation
	3.5 Parallel MPC Using Adaptive ER-IT Parameters
	3.5.1 Upper Bound on the Maximal Feasibility Violation of 
	3.5.2 Selection of the Tightening Parameters
	3.5.3 Suboptimality, Recursive Feasibility, and Closed-Loop Stability

	3.6 Longitudinal Control of a Passenger Aircraft
	3.7 Conclusions
	A Proof of Lemma 3.3.1 in Section 3.3.3 
	B Proof of Lemma 3.5.1 in Section 3.5.1
	C Proof of Lemma 3.5.2 in Section 3.5.2
	D Proof of Theorem 3.5.1 in Section 3.5.2 
	E Proof of Theorem 3.5.2 in Section 3.5.3
	F Proof of Theorem 3.5.3 in Section 3.5.3
	4 SVR-AMA: an Asynchronous Alternating Minimization Algorithm with Variance Reduction for Model Predictive Control Applications
	4.1 Introduction
	4.2 Problem Formulation
	4.3 Preliminaries
	4.3.1 Alternating Minimization Algorithm
	4.3.2 Prox-SVRG: Stochastic Proximal Gradient Method with Variance Reduction
	4.4 Accelerated Stochastic Proximal Gradient with Variance Reduction
	4.4.1 Analysis of Algorithm 4.3
	4.4.2 Analysis of Algorithm 4.4

	4.5 Stochastic AMA with VR and its accelerated versions

	4.6 MPC formulation for SVR-AMA

	4.7 Numerical Example

	4.8 Conclusions
	A Proofs of Section 4.4.1
	A.1 Proof of Proposition 4.4.1
	A.2 Proof of Theorem 4.4.1

	B Proofs of Section 4.4.2
	B.1 Proof of Corollary 4.4.2
	B.2 Proof of Theorem 4.4.2

	C Proofs of Section 4.5
	C.1 Proof of Theorem 4.5.1
	C.2 Proof of Corollary 4.5.1
	5 Fault-Tolerant Reference Generation for Model Predictive Control with Active Diagnosis of Elevator Jamming Faults
	5.1 Introduction
	5.2 Benchmark Model and Scenario Definition
	5.2.1 The Aircraft Longitudinal Model
	5.2.2 Fault Description

	5.3 FTC Architecture
	5.3.1 Elevator-State Observer
	5.3.2 Disturbance Observer
	5.3.3 Fault-Detection Module
	5.3.4 Model Predictive Controller

	5.4 Proposed FD-MPC Design
	5.4.1 Detection
	5.4.2 Reconfiguration for Diagnosis
	5.4.3 Diagnosis of the Root Cause
	5.4.4 Reconfiguration for Stuck Fault
	5.4.5 Reconfiguration for Stall-Load Start
	5.4.6 Detection of the End of Stall Load
	5.4.7 Reconfiguration for Stall-Load End
	5.4.8 Discussion

	5.5 Simulation Results
	5.5.1 Stall Load
	5.5.2 Stuck Fault

	5.6 Conclusions

	6 Conclusions

	References
	Curriculum Vitae
	Publications





