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Relative Navigation in Asteroid Missions using Dual

Quaternion Filtering
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Delft University of Technology, Faculty of Aerospace Engineering,
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D. Choukrounc
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This paper investigates the efficacy of dual quaternion filtering in the realm of aster-

oid missions. The main contribution is the development of a dual quaternion relative 

navigation filter applied to asteroid circumnavigation. The simulated target asteroid is 

Kleopatra, a dog-bone shaped asteroid featuring a low potential highly-perturbed grav-

ity field. The spacecraft is equipped with a navigation camera and a laser ranger for 

position sensing, and a star tracker and rate gyroscope for attitude sensing. The paper 

innovates in the methods for landmarks identification within a camera field-of-view,

true range and ranging errors determination, and spacecraft gravity-gradient torque 

modeling. For the sake of comparison, a navigation filter based on a conventional 

pose representation using Cartesian coordinates position and attitude quaternion is

developed and tested under the same conditions. The dual quaternion filter succeeds 

in estimating the relative pose with high accuracy, as well as the gyroscope drift and 

the asteroid angular rates. The latter depends on the frequency and geometry of the

landmarks lines-of-sight detected within the camera field-of-view. Significant gains in 

the transients of the estimation errors are achieved by the dual quaternion filter, when 

compared to the conventional filter. The errors feature similar steady-state levels in

both filters.
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I. Introduction

Asteroids are gaining increasing attention among space agencies and industries due to their

preserved state since the beginning of the Solar System, the opportunity of mining rare materials,

and the need to monitor potential “killer asteroids”. As of June 2016 three missions dedicated to

small bodies were launched and completed. NASA’s NEAR visited and landed on the asteroid Eros

in 2000 [1]. JAXA’s Hayabusa retrieved samples from the Itokawa asteroid [2], and ESA’s Rosetta

successfully put a lander on a comet in 2014 [3] before being controlled-crashed in 2016 as part of its

end-of-life strategy. For these missions’ success precise navigation relative to the asteroid/comet was

critical. While Earth-based measurements can provide accurate navigation, they also introduce time

delays that could be too large for proximity manoeuvres. Some level of autonomy in navigation is

therefore required, which is typically enabled via relative sensing systems like navigation cameras [4]

and laser rangers [5, 6]. It is common practice to develop navigation algorithms based on relative

pose modeling, rather than inertial pose modeling. Spacecraft pose is conventionally represented by

a position vector augmented by the attitude quaternion or matrix [7, 8]. An in-depth development

of a two-spacecraft relative navigation filter using the conventional pose model is presented in [7].

Dual quaternions provide an alternate representation [9–11] and have spawned growing attention

with applications ranging from image processing to spacecraft navigation [12–16]. Research shows

that it could result in higher accuracy and faster convergence[14, 15], while redundancy in the

position representation can be efficiently handled via order reduction [16], alike the approach used

for multiplicative attitude quaternion EKF [17, 18].

Yet, there have been no attempts to our knowledge to develop dual quaternion based filters

adapted to asteroids circumnavigation. In [16] the measurement model incorporates velocity and/or

acceleration measurements only, which is not adapted to state-of-art sensors that equip nowadays

spacecraft for asteroid circumnavigation. Strapdown inertial navigation systems [13] are not yet

adapted to asteroid missions as they heavily rely on the asteroid’s gravity field knowledge - a

dominant source of uncertainty. In [12] the pose process equation omits translational dynamics, the

state vector does not include a full dual quaternion, and no dual quaternion linearized dynamics are

developed.
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A realistic description of the asteroid’s gravity field is sine-qua-non for the Truth model to which

the navigation filter is applied. A vast body of research exists on the topic [19–22]. An accurate

representation of the gravity field of an irregular body can be provided by a polyhedron model

[19], used in this work. Further keys to a realistic simulation are: (a) the landmarks identification

within a camera field-of-view, (b) the true range and ranging errors evaluation, (c) the spacecraft

gravity-gradient Truth modeling, which is especially challenging because of the combination of a

low potential very irregular gravity field with large spacecraft dimensions [23, 24]. Simplifying

approaches like randomly appearing landmarks in the field of view [6], ellipsoid body shape [6],

or limited expansions of the gravity-gradient torque [25] allow for analytical, sometime tedious,

treatment yet impair the model realism.

In this paper we aim at investigating the efficacy of dual quaternion modeling in the realm of

asteroid missions. The main contribution is the development of a dual quaternion relative navigation

filter (DQEKF) applied to asteroid circumnavigation. The paper also innovates in the methods for

(a) landmarks identification within a camera field-of-view, (b) true range and ranging errors deter-

mination, (c) spacecraft gravity-gradient torque Truth modeling. The target asteroid for simulations

is Kleopatra, a dog-bone shaped asteroid featuring a low potential highly-perturbed gravity field.

A navigation filter is developed using the conventional pose representation [7] (QVEKF) and tested

under the same conditions for the sake of comparison. The simulations illustrate significant gains in

the transients of the estimation errors when using the DQEKF. The reduction in the settling times

of the DQEKF errors range from 1500 s for the velocity of the spacecraft relative to the asteroid,

to 1000 s for the relative position, attitude, and asteroid rate. The polyhedron modeling properties

are exploited as follows: 1/ to determine which surface point is actually illuminated by the laser

under pointing control errors. This in turn enables a truthful, albeit numerical, determination of

the actual ranging errors and therefore of their statistics - a key feature for the filter - capturing the

traditional foreshortening effect while not being constrained to simplified assumptions of the aster-

oid body shape, 2/ to determine which landmarks are within the camera polyhedron-shaped field

of view. This easy-to-implement approach does away with the arbitrary in picking the landmarks

lines-of-sight. The spacecraft is here modeled as a mass-point grid. Our numerical findings suggest
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that tuning coefficients can be evaluated in order to retrieve the gravity-gradient torque accuracy

of a large grid model while carrying low grid model computations.

Section II provides an overview of the process Truth model. Section III presents the sensors

hardware mathematical models for the navigation camera and the laser-ranger measurements. The

QVEKF is developed in Sec. IV. Section V introduces dual quaternions for pose representation.

Sec. VI presents the development of the DQEKF. Sec. VII includes simulation results and analysis.

Conclusions are drawn in Sec. VIII.

II. Dynamics

Asteroids have one of the most perturbed environments in the Solar System. Weak and non-

central gravity fields, irregular shapes, fast spinning and other disturbances make the dynamics in

the vicinity of an asteroid very unpredictable, thus simulating it has to be discussed in a greater

detail than the cases of conventional Earth-based missions.

A. Reference frames

Three reference frames are used throughout this paper: inertial, asteroid and body, denotes by

FI , FA and FB, respectively. Inertial and asteroid frames have the same origin (the centre of mass

of the asteroid), with the latter being fixed to the asteroid itself (rotating together with the asteroid

around the Z-axis), and the body frame is fixed to the spacecraft.

B. Translational Motion

The dynamics are simulated in the inertial frame, and the equations of motion are written in

the following form.

ṘI = VI (1)

V̇I = gI + adist (2)

where RI , VI and gI are a position, velocity and gravity field vector in the FI frame, respectively.

adist is a perturbing acceleration, due to non-gravitational disturbances. It is assumed that no

control is present, so no external propulsion force.
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Polyhedron Gravity Field

Since the gravity field of asteroids is highly irregular, a central gravity-field approximation would be

inaccurate. Having a 3D surface model (polyhedron) of an asteroid and assuming constant density,

the most accurate way to simulate it is a constant-density polyhedron gravity model, first introduced

by Werner and Scheeres [19]. The gradient of the potential is given as a sum over the edges and

faces:

gA = ∇U = −Gρ
∑

e∈edges

EereLe +Gρ
∑

f∈faces

Ffrfωf (3)

where G is the gravitational constant, ρ is the mean density of the asteroid (assumed to be constant),

re and rf are the distances from a field point (in this case the spacecraft) to an edge and a face

respectively, Ee is a dyadic matrix of an edge, Ff is an outer product of a face normal, and Le is a

dimensionless per-edge factor, representing the potential of the edge. For a complete derivation and

implementation, the interested reader is referred to Werner and Scheeres [19]. The sum through

all faces of dimensionless per-face factor ωf gives a solid angle, which vanishes if the field point is

outside the polyhedron, or equals 4π, if it is inside the volume. This is a very useful property of

polyhedron models, since it gives a mean to know, whether a spacecraft crashes into an asteroid.

Moreover, this property will be exploited for hardware simulations later on.

Disturbance forces

Third-body perturbations for the orbits simulated in this paper are negligible, so only solar-

radiation-pressure (SRP) force is simulated. It can be calculated as a sum over all (N) illuminated

planes of the spacecraft [18]. The simulated spacecraft has solar panels with a reflectivity of

εSP = 0.21 and the body with εB = 0.5.

C. Rotational Motion

Attitude Representation

There are many ways to represent the attitude of a spacecraft, each having its advantages and

disadvantages. Commonly, quaternions proved to be the most efficient, singularity-free choice, so

they will be used for this study. Unfortunately, quaternions are not uniquely defined, and since

different authors use various conventions, we will use the one in Markley and Crassidis’ book [18].

5



A quaternion is defined as a four-dimensional vector with the first three components being a vectorial

part and the last one a scalar component. For attitude description only unit quaternions are used,

thus their norm has to be one. Furthermore, two quaternion products are defined as follows:

[q⊗] =

 q4I3 − [q1:3×] q1:3

−qT1:3 q4

 , [q�] =

 q4I3 + [q1:3×] q1:3

−qT1:3 q4

 (4)

and the following holds:

q1 ⊗ q2 = q2 � q1 (5)

The first product is more often used, since it represents the composition of rotations in a similar

way as it is done with a direction cosine matrix (DCM). Let qB/A denote the attitude quaternion

from FA to FB, it is decomposed as follows:

qB/A = qB/I ⊗ qI/A (6)

where qI/A denotes the quaternion from FA to FI and qB/I denotes the quaternion from FI to

FB. Let vA and vB denote the projections of the same physical vector onto the frames FA and FB,

respectively, then

vB = qB/A ⊗ vA ⊗ qA/B (7)

Kinematics and Dynamics

The most appealing property of using quaternions is the kinematic equation, which is linear with

respect to the quaternion. For a spacecraft attitude relative to an inertial frame, it is written as:

q̇B/I =
1

2
ωBB/I ⊗ qB/I (8)

where ωBB/I is the angular velocity of FB with respect to FI , expressed in FB. Note that in this

formulation real vectors, formulated as quaternions, have the fourth component (scalar part) equal

to zero. According Eq. (4), the kinematic equation is then written as:

q̇B/I =
1

2
Ω
(
ωBB/I

)
qB/I , where Ω (ω) =

 − [ω×] ω

−ωT 0

 (9)
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Furthermore, the dynamics of a spacecraft is given by Euler’s equation:

ω̇BB/I = I−1
(
−ωBB/I × Iω

B
B/I + Tdist

)
(10)

where I and Tdist denote, respectively, the inertia tensor and a disturbance torque resultant acting

on the spacecraft, expressed in FB.

Disturbance Torques

Disturbance torques can either be internal or external. Internal torques are caused by fuel slosh-

ing, mass imbalances in reaction wheels, etc., however, these are currently assumed to be absent.

External torques are caused by sources, such as solar-radiation pressure, a gravity gradient, mag-

netic fields and an atmosphere. Since an asteroid does not have a significant magnetic field, nor

an atmosphere, these can be discarded. Moreover, the simulated spacecraft is axi-symmetric, both

in geometry and surface properties, so the SRP torque is neglected. Thus, only a gravity-gradient

torque will be simulated. Many sources give the gravity-gradient torque for a central gravity field

as [18, 23]:

Tgg = 3
µ

R3
a3 × Ia3 (11)

where µ is the gravitational parameter, R is the distance to the attracting body and a3 is the

third component of Local Vertical Local Horizontal reference frame, which has nadir direction.

Equation (11) only holds for central gravity fields, which is not true for an asteroid, so a new way to

simulate this torque is needed. In general, the gravity-gradient torque arises from different gravity

field strengths at different parts of the spacecraft body. We can assume the spacecraft to be made

of N point-masses, as seen in Figure 1.

Then the torque is given by:

Tgg,B =

N∑
i=1

RB,i ×migB,i (12)

where RB,i is the distance of the point-mass from the centre of mass of the SC, gB,i is gravity field

strength at the point-mass (calculated with polyhedron model), and mi is its mass. Obviously, the

more point-masses are taken into account, the more accurate the torque will be. Figure 2 shows the

comparison of GG torques computed with different number of point-masses. There is an obvious
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Fig. 1: Spacecraft made of N=175 point-masses.
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Fig. 2: Gravity gradient torques with different number of masses compared.

convergence trend seen, when the number of point-masses increases, whereas the simplified torque

model is instead inaccurate. To understand the errors better, it is assumed that the model with

175 point masses is the ‘real’ one, since it is the most accurate from the given ones, and the relative

errors are computed as T = |Treal−T (N)|
Treal

× 100%. The results, plotted in Figure 3, are remarkable.

All the relative errors stay constant. The constant is clearly a function of the number of point
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Fig. 3: Gravity Gradient torques with various number of point-masses compared to N=175 torque.

masses taken, N . As a result, it suggests a different way of calculating GG torque accurately. Since:

Treal − T (N)

Treal
= const(N) (13)

Then the real gravity gradient torque can be computed as:

Treal =
T (N)

1 + const(N)
(14)

So we need to evaluate the constant for a large number of point-masses taken, then use the least

number of point masses, e.g., 16 to simulate the GG torque, which is eventually corrected, using

Eq. (14). However, this method is based on empirical data and lacks some background theory to

explain why the error is constant.

D. Asteroid Dynamics

The orbit of an asteroid around the Sun is not simulated, since the simulation time is up to

(only) three hours, therefore the movement around the Sun is negligible. Furthermore, the angular

velocity of the asteroid is assumed to be constant in direction and magnitude, ignoring any nutation

and/or precession:

ωAA/I = const (15)
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This leaves only the attitude of the asteroid to be simulated, which, if expressed in quaternions, is

given similarly to the SC kinematics, Eq. (9):

q̇A/I =
1

2
Ω
(
ωAA/I

)
qA/I (16)

In other words, if one knows the initial attitude of the asteroid and its angular velocity, he will also

know it at any time in the future.

E. Relative States

Until now, the dynamics was expressed with respect to an inertial reference frame, but since

the navigation filter will deal with relative states, these need to be expressed. Let RA denote the

position vector from the center of frame FA to the center of frame FB, expressed in FA, a.k.a ‘the

spacecraft relative position’. Let VA denote its time-derivative with respect to FA expressed in FA,

a.k.a ‘the spacecraft relative velocity’. The states describing the spacecraft relative dynamics and

kinematics are thus RA, VA, qB/A, and ωBB/A. Let us start with the position and velocity. Relative

position is simply obtained by frame transformation:

RA = CA/IRI (17)

where CA/I is expressed with qA/I as follows:

C(q) =
(
q2
4 − ‖q1:3‖2

)
I3 + 2q1:3q

T
1:3 − 2q4 [q1:3×] (18)

Differentiating Eq. (17) yields the relative velocity:

VA = CA/IVI − ωAA/I ×RA (19)

The relative attitude quaternion is:

qB/A = qB/I ⊗ q−1
A/I (20)

where q−1
A/I denotes the quaternion conjugate, q∗A/I , and the angular rate:

ωBB/A = ωBB/I −CB/Aω
A
A/I (21)

where CB/A is obtained from qB/A.
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III. Hardware

The simulated spacecraft is equipped with a star tracker and a gyroscope for inertial state

measurements, a navigation camera and a laser ranger for relative state measurements.

A. Gyroscope

Gyroscopes measure the inertial angular velocity directly, but, as all sensors, they are susceptible

to noise. Moreover, they experience a drift, which is an accumulated noise over time. Other errors,

such as misalignment and scale errors are discarded for now, assuming that the knowledge of these

parameters is absolute. In continuous time, the measured rate, ω̃BB/I (the tilde symbol denotes

measured values), of a spacecraft can be written as:

ω̃BB/I(t) = ωBB/I(t) + µ(t) + ηv(t) (22)

µ̇(t) = ηu(t) (23)

where µ is the drift, and ηv, ηu are zero-mean, white noise vectors with known variance. Gyroscopes

output values in discrete time, thus it is more precise to simulate them in discrete time [18]:

ω̃k+1 = ωk+1 +
1

2
(µk+1 + µk) +

(
σ2
v

∆t
+

1

12
σ2
u∆t

)1/2

ηvk (24)

µk+1 = µk + σu∆t1/2ηuk
(25)

B. Star Tracker

A star tracker measures the position of the stars in its field-of-view and compares this to the

known positions on the celestial sphere in the star map, stored on-board. Basically, it would output

a single unit vector for each star, and when there are more than one star, one could estimate the

attitude. Modern star trackers output a quaternion q̃B/I directly, having a simple estimator inside

the tracker itself. This will be the way the star tracker is simulated. The real quaternion qB/I will

be affected by a noise quaternion δq.

q̃B/I = δq−1 ⊗ qB/I (26)
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The noise quaternion δq is constructed by normalizing the following vector:

δq =



φ/2

θ/2

ψ/2

1


(27)

where φ, θ, ψ denote mutually independent angular noises that are simulated as zero-mean white

Gaussian sequences with known variances. The axis corresponding to the boresight has usually a

higher variance than the other two axes. The scale-factors and misalignment errors are assumed to

be perfectly known and are not accounted for in this simulation. Otherwise they would be estimated

via standard techniques such as state augmentation.

C. Navigation Camera

The navigation camera detects landmarks on the asteroid, identifies them and outputs unit

vectors to the corresponding landmarks, which are then fed to the navigation filter. The positions

of the landmarks on the asteroid are assumed to be known.

Generating Landmarks

In general, a landmark can be a crater, boulder, ridge or any other distinguishable feature, however,

here a landmark is taken as a point on the surface, as no identification algorithm is included. It will

also be assumed that the landmarks are spread evenly on the surface of the asteroid. The asteroid’s

3D model is given as a polyhedron file with defined vertices and triangular faces. So, first a face is

randomly chosen after which a point is placed randomly on the triangle. A way to place a random

point on a triangle was investigated by Osada et al [26] in his shape-recognition paper. The random

point on a triangle equation is given as:

P = (1−
√
r1)A+

√
r1(1− r2)B +

√
r1r2C (28)

where A, B and C are the vertices of a triangle and r1, r2 are random numbers, r1, r2 ∈ [0, 1]. As a

result, Asteroid Kleopatra is depicted with 2000 landmarks in Figure 4. The number 2000 is chosen,

because it assures that the navigation camera will see sufficient number of landmarks most of the

time, but is not correlated with the actual landmarks of the asteroid.
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Fig. 4: Asteroid Kleopatra with 2000 landmarks

Each landmark gets an identifier and has its coordinates and normal vector associated to it in

the asteroid frame FA.

Landmarks in the Field-Of-View

Having the landmark map generated, one needs to know, which ones are seen by the navigation

camera (NAVCAM). The parameters of the NAVCAM are taken from the Rosetta mission. The

field-of-view (FOV) is a 5◦ × 5◦ square with 1024× 1024 pixels and a focal length, f , of 152.5 mm.

The FOV forms an imaginary pyramid with a square base. If one extends this pyramid until the

base is inside the asteroid (if possible), then the landmarks, within the FOV, will be in this pyramid.

Then, a polyhedron model is constructed for this pyramid. Now, we recall the useful property of

polyhedron models that the sum of the solid angle ωf through all faces indicates, whether a point

lies inside or outside the body. Running through all the landmarks will give those, which are in the

FOV of the camera.

Pixel Coordinates

When landmarks in the FOV are identified, their coordinates have to be expressed in the FB frame

and then projected on the camera plane. For the sake of simplicity, which is standard practice,

the focal point of the camera coincides with the origin of FB. Figure 5 shows the geometry of the

process. So, first the landmark coordinates are transformed:

13
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d

Fig. 5: A landmark projected on a sensor plane

RLM
B = CB/A

(
RLM
A −RA

)
(29)

Then, using a pinhole-camera-model, they are projected on the sensor [7] by: u

v

 =
1

p

f

ZLMB

 XLM
B

Y LMB

 (30)

where u, v are coordinates in pixels, p is the pixel size, which in this case (Rosetta mission) is 13 µm.

Furthermore, since the actual landmark-recognition and centre-finding algorithm is not simulated,

errors/noise are added to the coordinates:

 ũ

ṽ

 =

 u

v

+

 δu

δv

 (31)

where δu, δv are zero-mean, white noises with known variance, expressed in (sub-)pixels.

Measurement Vector

To implement Eq. (31) in the navigation filter, it is more convenient to use unit vectors to the

landmarks and write them in the form:

b̃ = C (q) r (32)
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where the measured unit vector b̃ is:

b̃ =
1√

(pũ)2 + (pṽ)2 + f2


pũ

pṽ

f

 (33)

and r is the reference vector, which in this case is defined as:

r =
RLM −RA

‖RLM −RA‖
(34)

D. Laser Ranging

When landmarks are detected in the FOV, one of them will be chosen to measure the distance.

It is assumed that the laser ranger has a gimbal or mirror system, which enables pointing it to the

landmark. However, as reality is not perfect, this pointing introduces an error, which will propagate

to the distance error.

Measuring the Distance

The distance, d, between the spacecraft and a landmark can be simply expressed by looking at

Fig. 5:

d =
∥∥RLM

A −RA

∥∥ (35)

However, as mentioned before, if a pointing error is introduced, the measured distance can change

significantly. Figure 6 (left) shows that when the angle between the laser beam and the local normal

increases, the same angular deviation causes larger overshoots. This effect is increased even more

for irregular shapes, which is mostly the case for asteroids. As a result, Eq. (35) is not valid any

more for getting the measured distance, since the pointing-angle error changes the distance in an

unpredictable way. There is no analytical function to solve this problem for an irregular body, thus

a numerical solution must be found. The very same useful property of polyhedrons will be used.

Suppose the nominal pointing of the laser is bnomB = ( 0 0 1 )T , then this vector is rotated

around X- and Y-axis in the FB frame in an active (alibi) manner to point to the landmark:

bLMB = Ry(θ̃)Rx(φ̃)bnomB (36)

where φ̃ and θ̃ are control angles, extracted from the landmark pixel-coordinates, with introduced
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POINTING ERRORS

RA

dbLMA
~

d1

d2

d3

~

~

~

inside

outside

RA+d2bLMA
~

Fig. 6: Laser ranger errors (left) and measurement simulation process (right)

pointing errors:

φ̃ = φ+ δφ θ̃ = θ + δθ (37)

where δφ, δθ are zero-mean, white noise representing the pointing error. The pointing errors are

assumed to have a magnitude of 0.01◦. This can be seen as the actual gimbal/mirror system,

rotating the laser beam to the selected landmark. The actual geometry is depicted in Fig. 7.

B frame

Y

X

Z

bnom

φ

θ

RXbnom

RyRxbnom

~

~

Fig. 7: Laser pointing

If the pointing vector bLMA (expressed in frame FA) is extended in the same direction by d̃,

Figure 6, at some point the vector RA + d̃bLMA will be inside the asteroid (the sum of solid angle

ωf will be 4π). Then, in a similar way the bisection method works, the boundary between inside

and outside can be found, which will represent the measured distance d̃. For example, suppose we

extend the vector by d̃1, Fig. 6. The vector RA + d̃1b
LM
A is still outside the asteroid, so we extend

it again by the same distance, which results in d̃2b
LM
A . Now the vector RA + d̃2b

LM
A is inside the

asteroid, so we reduce the distance by half of d̃1 value, which represents the vector d̃3b
LM
A . At this
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point, the vector RA + d̃3b
LM
A is outside the asteroid, so now we would extend it by a quarter of d̃1

value and continue the process until a desired accuracy is reached. The measured distance d̃ will be

the value from the last iteration, d̃i.

IV. Nominal EKF Development

There are many different variants of the Extended Kalman filter, especially concerning attitude

with quaternions. A multiplicative quaternion error [17] is chosen for this paper. Furthermore,

the nominal EKF will include a position vector, thus the relative pose will be represented by a

quaternion-vector pair. This filter will be called QVEKF. The error model, measurement equations

and the QVEKF algorithm will be briefly presented.

A. State Vector

First of all, we need to define the state vector for the filter. It should include the relative position,

RA, and velocity, VA, relative attitude, qB/A, and the angular velocity ωBB/A. The common practice

for inertial navigation filters is not to estimate the angular rate directly, but to estimate its drift µ,

since the rate is measured by the gyroscope. We will do the same for the relative rate, because it is

a function of the inertial angular velocity and the relative attitude, Eq. (21). However, estimating

the drift accurately requires frequent attitude measurements, which cannot be achieved by the

navigation camera, therefore star-tracker measurements will be used. This requires the inertial

attitude, qB/I , to be added to the state vector as well. Finally, the rotation period of the asteroid

will also be estimated, assuming that a coarse estimate was available before arrival to the asteroid.

So, we have:

X20 =



RA

VA

qB/A

qB/I

µ

ωAA/I



(38)
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B. Process Equation

The navigation filter will supposedly run on-board the spacecraft, so it cannot deal with complex

models, e.g., a polyhedron gravity field. As a result, we will use simplified models and introduce a

process noise, w. For the gravity field we will use the central-gravity field approximation with the

noise, ηg, which will be a tuning parameter for the filter. Furthermore, we do not know the real

inertial angular velocity of the spacecraft, so the measured one, corrected for the drift, will be used.

The errors of the gyroscope are therefore included in the process equation, and they are not treated

as measurements by the filter. As a result, the non-linear process equation for the spacecraft around

an asteroid is given as:

Ẋ = f(X) +Gw = (39)

=



VA

−GM
R3

A
RA − 2ωAA/I × VA − ω

A
A/I × ω

A
A/I ×RA

1
2Ω
(
ω̃BB/I − µ−CB/A(qB/A)ωAA/I

)
qB/A

1
2Ω(ω̃BB/I − µ)qB/I

0

0



+



03×3 03×3 03×3 03×3

I3×3 03×3 03×3 03×3

04×3 − 1
2Ξ(qB/A) 04×3 04×3

04×3 − 1
2Ξ(qB/I) 04×3 04×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3





ηg

ηv

ηu

ηa



where ηa represents the process noise of the asteroid rate, although it is noiseless, Eq. (15). The

noise is only added for tuning the filter. Since the EKF deals with errors of the state, this process

has to be written in a linear way for the perturbations:

δẊ = F (X)δX +Gw (40)

where F (X) is the gradient matrix of f(X), however, the attitude quaternions are constrained by

the norm equal to one, and the Kalman filter is not meant for constrained optimization, so a linear

attitude-error model has to be derived.

C. Linear Perturbation Model for Attitude

Inertial Attitude

Let us start with the inertial quaternion. An error between the estimated and the real quaternion
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is defined as follows:

δqI = qB/I ⊗ q̂−1
B/I (41)

where the hat symbol denotes an estimated value. The perturbation is then differentiated with

respect to time:

δq̇I = q̇B/I ⊗ q̂−1
B/I + qB/I ⊗ ˙̂q−1

B/I = (42)

=
1

2
ωBB/I ⊗ qB/I ⊗ q̂

∗
B/I − qB/I ⊗

1

2
q̂∗B/I ⊗ ω̂

B
B/I =

1

2
ωBB/I ⊗ δqI −

1

2
δqI ⊗ ω̂BB/I

The real angular rate is:

ωBB/I = ω̃BB/I − µ− ηv (43)

where ω̃BB/I is the measured rate from the gyro. The estimated rate is defined as:

ω̂BB/I = ω̃BB/I − µ̂ (44)

Combining Eqs. (43) and (44) gives:

ωBB/I = ω̂BB/I + µ̂− µ− ηv = ω̂BB/I + δω (45)

where δω = µ̂− µ− ηv. Substituting the expression above into Eq. (42), yields:

δq̇I =
1

2

(
ω̂BB/I + δω

)
⊗ δqI −

1

2
δqI ⊗ ω̂BB/I = (46)

=
1

2
ω̂BB/I ⊗ δqI −

1

2
δqI ⊗ ω̂BB/I +

1

2
δω ⊗ δqI

Then, since the angular rate, when expressed as a quaternion, has the fourth component equal to

zero, Eq. (46) simplifies to:

δq̇I =
1

2
ω̂BB/I ⊗ δqI −

1

2
ω̂BB/I � δqI +

1

2
δω ⊗ δqI (47)

=
1

2

 −2
[
ω̂BB/I×

]
0

0 0

 δqI +
1

2
δω ⊗ δqI =
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=

 −
[
ω̂BB/I×

]
0

01×3 0

 δqI − 1

2
δµ− 1

2
ηv

where ω̂BB/I = ω̃BB/I − µ̂ and δµ = µ− µ̂. For small angle errors, a quaternion can be approximated

by a rotation vector:

δq ≈

 1
2δϑ

1

 (48)

Thus, Eq. (47) can be written for the rotation vector:

δϑ̇I =
[
−ω̂BB/I×

]
δϑI − δµ− ηv (49)

Relative Attitude

With the relative attitude quaternion, the same process is repeated. The error quaternion, δqR (R

denotes the relative state) is defined as:

δqR = qB/A ⊗ q̂−1
B/A (50)

Then, differentiating and expressing the error in rotation-vector form, the following is obtained [7]:

δϑ̇R = −
[
ω̂BB/I×

]
δϑR − δµ−C(qB/A)δωA − ηv (51)

where δωA = ωAA/I − ω̂
A
A/I . Notice that the relative attitude error rate depends on the inertial

angular velocity of the spacecraft, rather than the relative angular velocity, and that this result

would hold even if the asteroid angular rate was time-varying.

Error-state Vector

Since the attitude errors were expressed with three-dimensional rotation vectors, the error-state

vector size decreased by two dimensions, compared to the state vector itself, and is written as

follows:

δX18 =



δRA

δVA

δϑR

δϑI

δµ

δωA



(52)
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Transition Matrix

Combining Eqs. (39), (49) and (51) we can obtain the continuous time state transition matrix, F ,

for perturbations, Eq. (40). It is written as:

F =



03×3 I3×3 03×3 03×3 03×3 03×3

df(X)4:6
dRA

∣∣∣∣
X=X̂

df(X)4:6
dVA

∣∣∣∣
X=X̂

03×3 03×3 03×3
df(X)4:6
dωA

A/I

∣∣∣∣
X=X̂

03×3 03×3 −
[
ω̂BB/I×

]
03×3 −I3×3 −C(qB/A)

03×3 03×3 03×3 −
[
ω̂BB/I×

]
−I3×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3



(53)

where:

∂V̇A
∂RA

= µ
3RRT −RTRI3

R5
+
(
ωTA/IωA/II3 − ωA/IωTA/I

)
(54)

∂V̇A
∂VA

= −2
[
ωA/I×

]
(55)

∂V̇A
∂ωA/I

= 2 [VA×]− ωTA/IRAI3 − ωA/IRT + 2RAω
T
A/I (56)

and its discrete time version, Φ:

Φ = expF∆t ≈ I18×18 + F∆t (57)

D. Measurement Equations

Since most of the measurements are nonlinear, the measurement matrices,H, for the filter must

be found.

Startracker

Since the star tracker measures the inertial attitude quaternion then a measurement of the filter

state δϑR is obtained by computing twice the vector part of the quaternion measurement prediction

error, and the associated measurement matrix is expressed as follows:

HST =

[
03×9 I3×3 03×6

]
(58)
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Navigation Camera

The navigation camera gives unit vectors to the landmarks, so its measurement to the ith landmark

is:

zNAV CAM,i = h(X) = C(qB/A)
RLM,i −RA

‖RLM,i −RA‖
(59)

To adapt Eq. (59) for the filter, we express the error between the real and predicted measurement.

For this, we write the attitude matrix as follows [7]:

C
(
qB/A

)
= (I3 − [δϑR×])C

(
q̂B/A

)
(60)

Substituting Eq. (60) into Eq. (59), and defining δz = z − ẑ yields:

δz = CB/A(q̂B/A)
RLM,i −RA

‖RLM,i −RA‖
× δϑR (61)

The measurement error becomes linear with respect to the relative attitude error, but not to the

position. As a result, the measurement matrix for a single landmark is:

HNAV CAM =

[
dh(X)
dRA

∣∣∣∣
X=X̂

03×3

[
CB/A(q̂B/A)

RLM,i−R̂A

‖RLM,i−R̂A‖×
]

03×9

]
(62)

where:

∂h(X)

∂RA
=

(RLM −RA) (RLM −RA)
T − (RLM −RA)

T
(RLM −RA) I3

‖RLM −RA‖3
(63)

Laser Ranger

The laser ranger measures distance to a selected landmark:

zLR = h(X) = ‖RLM,i −RA‖ (64)

To obtain the measurement matrix, we just find a Jacobian of Eq. (64):

HLR =

[
dh(X)
dRA

∣∣∣∣
X=X̂

01×15

]
(65)

where:

∂h(X)

∂RA
=

RLM −RA

‖RLM −RA‖
(66)

22



V. Dual Quaternions For Pose Representation

A dual quaternion is an eight-dimensional vector representing position and attitude in a coupled

way. It was first introduced by William Kingdom Clifford in his paper about bi-quaternions [9]. To

understand dual quaternions, it is first needed to understand dual numbers and dual algebra. Dual

numbers (also called duplexes) are an extension to the real numbers. In the form they are written,

dual numbers resemble complex numbers [10]:

ď = a+ εb (67)

where ď is a dual number (the symbol ’ˇ ’ denotes a dual quantity), a and b are real numbers, and

ε has the following properties:

ε 6= 0, ε2 = 0 (68)

The first part in Eq. (67) is called the primary (or real) part of the dual number and the second

one represents the dual component. For further details about dual numbers and dual algebra the

reader is referred to the book of Fischer [10].

A. Dual Quaternion

Similarly to how a dual number is constructed, a dual quaternion (DQ), q̌, can be written as

[11]:

q̌ = qr + εqd (69)

where qr is the real and qd is the dual part of the dual quaternion, and both of them are quaternions

(not necessarily unit quaternions). Furthermore, a dual quaternion can be seen as a dual-hyper-

complex vector and can be written in the following form:

q̌ = qr1i+ qr2j + qr3k + qr4 + ε (qd1i+ qd2j + qd3k + qd4) (70)

where i, j and k are imaginary numbers. It is cumbersome to manipulate a dual quaternion alge-

braically, as in Eq. (70). Thus, in this paper a dual quaternion is seen as an 8-tuple vector, defined
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as follows:

q̌ =

 qr

qd

 =



qr1

qr2

qr3

qr4

qd1

qd2

qd3

qd4



(71)

The multiplication (⊗̌) of two dual quaternions follows the rules of dual numbers and quaternions.

It reads as follows:

q̌1⊗̌q̌2 = qr1 ⊗ qr2 + ε (qr1 ⊗ qd2 + qd1 ⊗ qr2) (72)

where ⊗̌ is the dual quaternion multiplication, which in matrix form is written as:

[q̌1⊗̌] q̌2 =

 [qr1⊗] 04×4

[qd1⊗] [qr1⊗]


 qr2

qd2

 (73)

B. Conjugates

A dual quaternion can have three different conjugates [11]:

q̌� = qr − εqd (74)

q̌∗ = q∗r + εq∗d (75)

q̌◦ = q∗r − εq∗d (76)

A multiplication of DQ with its second conjugate gives:

q̌⊗̌q̌∗ = (qr + εqd) (q∗r + εq∗d) = qr ⊗ q∗r + ε (qr ⊗ q∗d + qd ⊗ q∗r ) (77)

A quaternion multiplication with its conjugate (qr ⊗ q∗r ) gives a quaternion with zero vector part,

and the dual part, after some mathematical treatment, turns out to be also a quaternion with zero
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vector part. Thus, the result of the second conjugate product is given as follows:

q̌⊗̌q̌∗ = ‖qr‖2 + 2ε (qr1qd1 + qr2qd2 + qr3qd3 + qr4qd4) (78)

The result in a general case is a dual quaternion with scalar real and dual parts, but if the real part

is orthogonal to the dual one, the dual part vanishes, and the product becomes a dual quaternion

with real scalar part.

C. Pose Representation

Up to this point, we have discussed the general properties of dual numbers and dual quaternions,

but we have not introduced a way to represent both, the position and the attitude (pose of a

Cartesian coordinates frame with respect to another frame) with a dual quaternion. To begin

with, the real part of a dual quaternion will be a unit quaternion, thus representing the attitude.

Furthermore, the position has to be incorporated as well. Jia [11] gives the dual part of the dual

quaternion as a multiplication of the real part with a position vector from the origin frame to the

frame the pose is described for:

qd =
1

2
qr ⊗R (79)

where R is treated as a quaternion (fourth component is zero). Then we calculate the dual quater-

nion product with its second conjugate:

q̌⊗̌q̌∗ =

(
qr +

1

2
εqr ⊗R

)
⊗̌
(
qr +

1

2
εqr ⊗R

)∗
=

(
qr +

1

2
εqr ⊗R

)
⊗̌
(
q∗r +

1

2
εR∗ ⊗ q∗r

)
=

(80)

= qr ⊗ q∗r +
1

2
ε (qr ⊗R⊗ q∗r + qr ⊗R∗ ⊗ q∗r )

The quaternion conjugate of a pure vector is simply R∗ = −R, so Eq. (80) reduces to a unit dual

quaternion, which, means that the dual quaternion has the norm of one. Thus, in a similar way the

quaternion of rotation must have a norm of one, a dual quaternion to represent a pose must also

have a norm (real number) of one:

q̌⊗̌q̌∗ = 1 (81)

25



The equation above requires two constraints to be met. The real part of a dual quaternion has to

have a norm of one, which is equivalent to the quaternion being a quaternion of rotation, and it is

written as follows:

‖qr‖2 = 1 (82)

Furthermore, a second constraint is introduced, which is derived from the dual part of the dual

quaternion product in Eq. (78).

(qr1qd1 + qr2qd2 + qr3qd3 + qr4qd4) = qr · qd = 0 (83)

which requires that the dot product between the real and the dual parts is equal to zero. In other

words, the two quaternions have to be orthogonal.

A dual-quaternion is an eight-dimensional vector, so these constraints remove two parameters,

and thus only six are left, which is the number required to represent the pose.

Now, it is essential to define in which reference frame the position vector is expressed. Suppose

having two reference frames FA and FB. The attitude of the frame FB with respect to the frame FA

is qB/A. Then we would write the position vector in frame FA and the resulting dual quaternion,

representing the pose of frame FB with respect to frame FA, would be given as follows:

q̌B/A = qB/A +
ε

2
qB/A ⊗RA (84)

If one wants to use the vector in frame FB, then a simple right multiplication of the dual part with

a quaternion unity Iq = q∗ ⊗ q has to be done.

q̌B/A = qB/A +
ε

2
qB/A ⊗RA ⊗ q∗B/A ⊗ qB/A (85)

where qB/A ⊗RA ⊗ q∗B/A is a quaternion frame transformation for vectors in the frame FA to be

expressed in frame FB. As a result, Eq. (85) becomes:

q̌B/A = qB/A +
ε

2
RB ⊗ qB/A (86)

Comparing Eqs. (84) and (86), we can see that the same dual parts can be expressed in two different

frames by just switching the places of the multiplicands.
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To retrieve the attitude quaternion and the position vector from a dual quaternion, one has to

do the following steps:

qB/A = qr (87)

RA = 2q∗r ⊗ qd (88)

D. Screw Displacement

Chasle’s theorem states that any rigid displacement is equivalent to a rotation around a line,

called the screw axis, followed by a translation in the direction of the line [11]. This allows us to

visualize a dual quaternion in a similar way a quaternion can be visualised (Euler theorem).

VI. Dual Quaternion Extended Kalman Filter

This section explains the development of the dual-quaternion Extended Kalman Filter (DQEKF).

The main difference between DQEKF and QVEKF is that the relative pose in the latter is expressed

by a quaternion-vector pair and in the DQEKF by a dual quaternion. All the other states remain

the same. Also, the relative attitude is represented identically in both filters.

A. Relative Pose

Suppose having reference frames FA and FB defined relative to FI . We recall that the FI has

the same origin as the asteroid frame, so we express their pose in dual quaternions as:

q̌A/I = qA/I + ε0 (89)

q̌B/I = qB/I +
ε

2
qB/I ⊗RI (90)

where RI is the position vector of the spacecraft, expressed in FI . The relative pose is then:

q̌B/A = q̌B/I⊗̌q̌∗A/I =
(
qB/I +

ε

2
qB/I ⊗RI

)(
q∗A/I + ε0

)
= qB/I⊗q∗A/I+

ε

2
qB/I⊗RI⊗q∗A/I (91)

The position quaternion can be expressed in the asteroid frame using the quaternion frame trans-

formation:

RI = q∗A/I ⊗RA ⊗ qA/I (92)
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Substituting Eq. (92) into Eq. (91) yields:

q̌B/A = qB/A +
ε

2
qB/I ⊗ q∗A/I ⊗RA ⊗ qA/I ⊗ q∗A/I = qB/A +

ε

2
qB/A ⊗RA (93)

which is a logical outcome, showing a translation, RA, in FA, followed by a rotation.

B. DQEKF State Vector

In DQEKF the relative pose is expressed in a dual-quaternion form. We change the state

representation accordingly, and the full state vector reads as follows:

X21 =



q̌B/A

VA

qB/I

µ

ωAA/I


(94)

We can see that the state representation increased by one dimension, because the position is now

expressed in a four-dimensional quaternion form.

C. Dual Quaternion Kinematic Equation

By taking Eq. (93) and differentiating it with respect to time, the following is obtained:

˙̌qB/A = q̇B/A +
ε

2

(
q̇B/A ⊗RA + qB/A ⊗ ṘA

)
= (95)

=
1

2
ωBB/A ⊗ qB/A +

ε

2

(
1

2
ωBB/A ⊗ qB/A ⊗RA + qB/A ⊗ VA

)

This result, after some rearrangement, can be written in a matrix form:

˙̌qB/A =
1

2


[
ωBB/A⊗

]
04×4

[VA�]
[
ωBB/A⊗

]

 qr

qd

 (96)

where qr = qB/A and qd = ε
2qB/A ⊗ RA are the real and the dual parts of the dual quaternion,

respectively. Furthermore the term qB/A ⊗ VA in Eq. (95) can be rewritten as:

qB/A ⊗ VA = qB/A ⊗ VA ⊗ q∗B/AqB/A = VB ⊗ qB/A (97)
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Then, substituting Eq. (97) into Eq. (95) and writing it in matrix form, yields:

˙̌qB/A =
1

2


[
ωBB/A⊗

]
04×4

[VB⊗]
[
ωBB/A⊗

]

 qr

qd

 (98)

Here, we introduce a dual velocity, which is defined in FB as:

ω̌B = ωBB/A + εVB (99)

The kinematics equation is then:

˙̌qB/A =
1

2
ω̌B⊗̌q̌B/A (100)

where ⊗̌ is a dual quaternion product and, according to Eq. (98), it is defined as follows:

[
ω̌BB/I⊗̌

]
=


[
ωBB/A⊗

]
04×4

[VB⊗]
[
ωBB/A⊗

]
 (101)

Full process model

Only the relative position representation has changed, so the process function f changes accordingly:

f(X) =



1
2Ω
(
ω̃BB/I − µ−C(qr)ω

A
A/I

)
qr

1
2ω

B
B/A ⊗ qd + 1

2qr ⊗ VA

−GM
R3

A
RA − 2ωA/I × VA − ωA/I × ωA/I ×RA

1
2Ω(ω̃BB/I − µ)qB/I

0

0



(102)

D. Linear Perturbation Model for Dual Quaternion

As was done for the QVEKF, a linear perturbation model for dual quaternions is developed first.

Dual quaternion error

The dual quaternion error is defined as:

δq̌ = q̌B/A ⊗ ̂̌q∗B/A (103)

where q̌B/A is the real dual quaternion and ̂̌qB/A is the estimated one. They are expressed as

follows:

q̌B/A = qB/A +
ε

2
qB/A ⊗RA (104)
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̂̌qB/A = q̂B/A +
ε

2
q̂B/A ⊗ R̂A (105)

Substituting Eqs. (104) and (105) to (103) and using (q1 ⊗ q2)
∗

= q∗2 ⊗ q∗1 yields:

δq̌ =
(
qB/A +

ε

2
qB/A ⊗RA

)(
q̂∗B/A +

ε

2
R̂∗A ⊗ q̂∗B/A

)
= (106)

= qB/A ⊗ q̂∗B/A +
ε

2
qB/A ⊗RA ⊗ q̂∗B/A +

ε

2
qB/AR̂

∗
A ⊗ q̂∗B/A

The quaternion error qB/A ⊗ q̂∗B/A is δqR, and R̂∗A = −R̂A, then the error expression is simplified:

δq̌ = δqR +
ε

2
qB/A ⊗

(
RA − R̂A

)
⊗ q̂∗B/A = (107)

= δqR +
ε

2
qB/A ⊗ q̂∗B/A ⊗ q̂B/A ⊗

(
RA − R̂A

)
⊗ q̂∗B/A =

= δqR +
ε

2
δqR ⊗ δRB

With a first order approximation δqR ⊗ δRB ≈ δRB , the dual quaternion error becomes:

δq̌ ≈ δqR +
ε

2
δRB (108)

which shows a useful result, since the dual part of the error is approximately the position error

itself, however, expressed in FB.

Error kinematics

We differentiate the error, Eq. (107), with respect to time, and since the real part of the dual

quaternion error derivative is essentially the same as was derived for the relative attitude quaternion,

Eq. (51), therefore it is not repeated again. The dual part (all terms with ε) derivative is as follows:

δq̇d =
(
V̂B + δVB

)
⊗δqR +

1

4

(
ω̂BB/A + δω −C

(
q̂B/A

)
ω̂AA/I × δϑR −C

(
q̂B/A

)
δωA

)
⊗δRB+

(109)

−1

2
δqR ⊗ V̂B −

1

4
δRB ⊗ ω̂BB/A

Neglecting the second order terms yields:

δq̇d =
1

2
V̂B ⊗ δqR +

1

2
δVB +

1

4
ω̂BB/A ⊗ δRB −

1

2
δqR ⊗ V̂B −

1

4
δRB ⊗ ω̂BB/A = (110)
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= −
[
V̂B×

]
δqR +

1

2
δVB −

1

2

[
ω̂BB/A×

]
δRB =

= −
[
C
(
q̂B/A

)
V̂A×

]
δqR +

1

2
C
(
q̂B/A

)
δVA −

[
ω̂BB/A×

]
δqd

Since the dual part error can be represented by δRB , Eq. (108), and the real part by a small rotation

vector, ϑR, the whole dual quaternion error is written as:

δq̌ =



1
2δϑR

1

1
2δRB

0


(111)

Therefore, we reduce the pose vector dimension from eight to six:

δq̌1:6 =

 δϑR

δRB

 (112)

Then, Eq. (110) becomes:

δṘB = −
[
C
(
q̂B/A

)
V̂A×

]
δϑR +C

(
q̂B/A

)
δVA −

[
ω̂BB/A×

]
δRB (113)

As opposed to the QV filter the derivative of δRA is not δVA.

Full State-error Vector

Since the dual quaternion error is now expressed as a six-dimensional number, the full state-error

vector has the same size as in QVEKF case:

δX18 =



δϑR

δRB

δVA

δϑI

δµ

δωA



(114)

Full Linear-perturbation Model

The linear perturbation model would basically be different only by the position error kinematics,

expressed in Eq. (113). However, since the error, δRB is now expressed in FB instead of FA, as
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it was in QVEKF, the Jacobian for the velocity has to be modified accordingly. Without loss of

generality, we can write:

∂f

∂RB
=

∂f

∂RA

∂RA

∂RB
(115)

where ∂RA

∂RB
is simply an attitude matrix:

∂RA

∂RB
= CA/B = C

(
qB/A

)T (116)

As a result, the velocity Jacobian is expressed as follows:

∂VA
∂RB

=
∂VA
∂RA

C
(
qB/A

)T (117)

F =



−
[
ω̂BB/I×

]
03×3 03×3 03×3 −I3×3 −C

(
q̂B/A

)
−
[
C
(
q̂B/A

)
V̂A×

]
−
[
ω̂BB/A×

]
C
(
q̂B/A

)
) 03×3 03×3 03×3

03×3
df(X)7:9
dRA

C
(
q̂B/A

)T ∣∣∣∣
X=X̂

df(X)7:9
dVA

∣∣∣∣
X=X̂

03×3 03×3
df(X)7:9
dωA

A/I

∣∣∣∣
X=X̂

03×3 03×3 −
[
ω̂BB/I×

]
−I3×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3


(118)

Since the state vector has changed, the noise mapping matrix has changed accordingly:

G =



03×3 −I3×3 03×3 03×3

03×3 03×3 03×3 03×3

I3×3 03×3 03×3 03×3

03×3 −I3×3 03×3 03×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3



(119)

E. Measurement Equations

Since the position error in DQEKF is represented by δRB , and it was δRA for QVEKF, then

the measurement matrices are essentially the same.
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Star tracker

The star tracker matrix is very alike to the QVEKF one, and it reads as follows:

HST =

[
03×9 I3×3 03×6

]
(120)

Note that the order of the state variables has changed, so the matrix has changed accordingly, see

Eq. (114).

Navigation Camera

For the Jacobians with respect to the position vector, the same method is applied as in Eq. (116):

∂h

∂RB
=

∂h

∂RA
C
(
qB/A

)T (121)

This allows us to use the same measurement matrices as for QVEKF by multiplying them with

CT
B/A. The measurement matrix for the navigation camera is then:

HNAV CAM =

[ [
CB/A(q̂B/A)

RLM,i−R̂A

‖RLM,i−R̂A‖×
]

dh(X)
dRA

C
(
qB/A

)T
03×12

] ∣∣∣∣
X=X̂

(122)

Laser Ranger

Similarly to the NAVCAM measurement matrix, the laser ranger one is obtained:

HLR =

[
01×3

dh(X)
dRA

C
(
qB/A

)T
01×12

] ∣∣∣∣
X=X̂

(123)

VII. Simulation and Results

This section presents the results of the nominal EKF (QVEKF) and the dual quaternion counter-

part (DQEKF). The spacecraft size and mass parameters are taken from Rosetta mission. A ’polar’

orbit around asteroid Kleopatra is simulated for 10,000 s with the initial position and velocity:

RA =


0

0

200

 km, VA =


0

−35.35

0

 m/s (124)
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The initial inertial and relative attitudes are the same:

qB/I = qB/A =



1

0

0

0


(125)

which means that at t = 0 frames FI and FA coincide. The asteroid is spinning around its Z-axis

at the rate of ωA/I = 3.241× 10−4 rad/s and the initial spacecraft angular velocity is:

ωBB/I =


1.711× 10−4

0

0

 rad/s (126)

The trajectory is shown in Figure 8, where the light-blue pyramids show the FOV pyramids of

the spacecraft.
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Fig. 8: Simulated trajectory around the Kleopatra asteroid (the spacecraft is not in scale)

The initial angular velocity of the SC is chosen to match the mean motion of its orbit, which

in an ideal case would mean that it would always point nadir. However, in the current spacecraft

model neither position nor attitude control is considered. This complicates the navigation, because
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the navigation camera experiences unfavourable pointing relative to the asteroid. As a result, due

to perturbations it drifts from its nominal trajectory. Figure 9 shows the evolution of the number of

landmarks in the FOV per each frame. The number varies from 3 to 20, which will give significantly

different situations for the filter.
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Fig. 9: Number of landmarks, seen by the navigation camera per frame

Target for Laser-Ranger Selection

When the landmarks in the FOV are identified, one of them is chosen for the range measurement.

The choice can be done randomly, however, we recall that the error in measured distance depends

on the angle between the pointing vector and the local (landmark) normal vector, Fig. 6. The

landmark-normal vector is included in the landmark map database, thus assumed to be available

on-board the spacecraft. With this knowledge we can choose a landmark with the smallest angle

and thus reduce the possible distance errors.

Laser-Ranger Errors

Until now, we only discussed the laser ranger errors, but did not characterise them. The Kalman

filter algorithm needs to know the measurement covariance RLR, however the errors are state and

asteroid surface dependent, so there is no analytical function to express them. Figure 10 gives the

laser-ranger errors as a function of the angle between the landmark normal and the laser pointing

vector. There is a clear correlation between the angle and the distance error, and a few cases can be

distinguished. The first is between 0◦ to 20◦, and the distance error has variance of ≈ 25 m2. The

second has an angle from 20◦ to 40◦ and the variance of ≈ 169 m2. The third has an angle from

40◦ to 60◦ and the variance of ≈ 900 m2, and the last one is 60◦ and above, and the error variance
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≈ 2500 m2.
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Fig. 10: Laser-ranger angles between the pointing and landmark normal vectors, and

corresponding distance errors

Since we defined that the landmark map has normal vectors associated to each landmark, we

can use this property in the filter on-board the spacecraft. For each aforementioned case we define

the laser ranger covariance as:

RLR1 = 25 m2, RLR2 = 169 m2, RLR3 = 900 m2 and RLR4 = 2500 m2 (127)

and switch them dynamically, according to the laser incidence angle.

A. Filter Initialisation

Both filters are initialised with the same state vector X̂0/0, error covariance matrix P0/0, pro-

cess covariance matrix Q and measurement covariance matrices RST , RNAV C and RLR, only the

order of variables is different.

State vector

Position and velocity are initialised with errors of 100 m and 1 m/s on each axis, respectively.

Relative and inertial quaternions are selected as:

q̂B/A,0 =



0.985

−0.099

0.099

−0.099


and q̂B/I,0



0.999

−0.001

0.001

−0.001


(128)

36



which represents ΦR = 19.6◦ and ΦI = 1.98◦ attitude errors (2 cos−1 δq4), respectively. The gyro-

scope drift is initialised with zeros and the asteroid rate is chosen such that it would represent 10%

error for the Z-axis and small errors (2× 10−6 rad/s) for X- and Y-axis:

ω̂AA/I,0 =


0.02

0.02

3.565

× 10−4 rad/s (129)

Covariance Matrices

The covariance matrices are the main parameters for tuning the filter. Since it is not a linear Kalman

filter, no offline analysis can be done and each parameter has to be tuned empirically. So, the state

error covariance matrix is initialised as:

P0/0 =



107I3×3 03×3 03×3 03×3 03×3 03×3

03×3 10I3×3 03×3 03×3 03×3 03×3

03×3 03×3 10−1I3×3 03×3 03×3 03×3

03×3 03×3 03×3 10−1I3×3 03×3 03×3

03×3 03×3 03×3 03×3 10−10I3×3 03×3

03×3 03×3 03×3 03×3 03×3 10−8I3×3



(130)

The process noise covariance matrix after tuning was set to:

Q =



σ2
gI3×3 03×3 03×3 03×3

03×3 σ2
vI3×3 03×3 03×3

03×3 03×3 σ2
uI3×3 03×3

03×3 03×3 03×3 σ2
aI3×3


(131)

where σg = 0.005 m/s2 denotes the uncertainty in the gravity field, σv = 5.8 × 10−7 rad/s1/2 and

σu = 5.8× 10−8 rad/s3/2 denote the gyroscope noises standard deviations, and σa = 3.2−8 rad/s1/2

denotes the uncertainty in the asteroid rate, which is added in the filter model for the sake of
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numerical performances. The star tracker has the measurement covariance matrix:

RST = 0.1×


4, 76× 10−8 0 0

0 5.88× 10−10 0

0 0 5.88× 10−10

 (132)

The covariance matrix of the navigation camera is:

RNAV C =


1.69× 10−11 0 0

0 1.69× 10−11 0

0 0 1.69× 10−13

 (133)

The Z-axis has a far smaller variance set, because the focal length is constant and the noise comes

only from the norm of the vector, Eq. (33). Finally, the laser-ranger covariance is given by Eq. (127).

B. Results

This subsection presents the results of the QVEKF and DQEKF. Only the magnitude of vectorial

errors between the real and estimated values are presented, together with 3-σ boundaries. The filter

is run with a 0.1 s time step (the sampling time of the gyroscope), the star tracker is set to 1 s and

the navigation camera (also the laser ranger) to 10-s sampling times. Let us start with the estimates

of the gyro drift and the asteroid rate, since they affect the process equation (39). Figure 11 shows

the estimate errors of the drift, µ (top), and the the asteroid rate, ωAA/I (bottom).
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Fig. 11: Gyroscope drift and asteroid rate errors
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Surprisingly, both filters behave identically in steady state. The gyroscope-drift estimates show

a fast transient of about 500 s and their steady-state regime is not fluctuating in time. These

estimates are indeed mainly influenced by star-tracker measurements, which are independent from

the relative states and are always available. The errors stay within the 3-σ boundaries. The asteroid

rates convergence are slower (≈ 2000 − 3000 s) and here we start seeing a difference between the

filters. DQEKF converges around 1000 s faster than QVEKF. Also, its 3-σ boundaries follow the

estimate more accurately.
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Fig. 12: Inertial and relative attitude errors

Furthermore, inertial and relative attitude estimates are presented in Fig. 12 by the angle

Φ = 2 cos−1 q4. In this case the QVEKF and DQEKF behave the same in the steady state again.

Inertial attitude estimates converge in 500 s. After convergence the error does not change and stays

within about 10 arcsec 3− σ value. This is already a good result, since we recall having the errors

of the star tracker with standard deviations 45, 5, 5 arcsec on the X-,Y- and Z-axis, respectively. So

the estimates show an error reduction of more than an order of magnitude. The relative attitude

estimates are different for the two filters in the transient phase, with DQEKF being faster than

QVEKF to converge, 2000 s and 3000 s, respectively. The errors for both filters stay within 20-25

arcsec 3 − σ values on average, and reach minima of 10 arcsec 3 − σ at 6000 s (the maximum

landmark number in the FOV).

Finally, relative position and velocity estimates are shown in Fig 13. Both filters still have an
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Fig. 13: Position and velocity estimates’ errors

identical performance in the steady state, however, as seen in previous figures, DQEKF converges

faster. DQEKF position and velocity estimates converge 1000 s and 1500 s, respectively, faster

than QVEKF. Position and velocity converge once the asteroid rate converges. After convergence,

the estimates stay within the 3-σ boundaries, which is around 15 m for position and 0.2 m/s for

the velocity. Position estimates reach a minimum at about t = 6000 s, which corresponds to the

maximum number of the visible landmarks in the FOV, Fig. 9.

VIII. Conclusion

This paper presented a novel dual quaternion EKF applied to asteroid circumnavigation. It

also introduces novel methods for landmarks identification within a camera field-of-view, true range

and ranging errors determination, and spacecraft gravity-gradient torque Truth modeling. Realistic

simulations of the environment based on typical sensing accuracies yielded, in steady-state, 5 m and

0.06 m/s standard deviations for the position and velocity, respectively, and standard deviations of

around 3 arcsec and 5 arcsec for the inertial and relative attitude error, respectively. Significant

gains in the estimation errors transients are achieved by the DQEKF filter when compared with

the QVEKF filter. The settling times of the DQEKF filter errors range from 1000 s to 1500 s less

than those of the QVEKF filter: 1000 s for the asteroid rate, the relative attitude, and the relative

position and 1500 s for the relative velocity. It is conjectured that the latter stems from the coupling

40



between position and velocity that exists by definition of the dual part of the dual quaternion error.

The similarity in the errors steady states in both filters might be partially explained by noting that

both design models feature similar expressions for the linearized position error vector. The novel

method in landmarks identification within the navigation camera field of view leverages the gravity

field polyhedron model, exploiting the very useful property of the solid angles seen by a point lying

inside/outside a polyhedron. The same property was exploited for the novel method in determining

whether a landmark lies inside the polyhedron of the camera field of view. Furthermore, a by

product of this enhanced realistic method is the distribution of the range error as a function of the

pointing laser-finder angle for arbitrary shaped asteroids.
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